Meat and Milk Production on Irrigated Birdsfoot Trefoil Pastures in the Mountain West USA

Jennifer W. MacAdam
Utah State University

Sara R. Hunt
Utah State University

Silvana Martini
Utah State University

Rachael Christensen
Utah State University

Jong-Su Eun
Utah State University

Follow this and additional works at: https://uknowledge.uky.edu/igc

Part of the [Plant Sciences Commons](https://uknowledge.uky.edu/plantsci), and the [Soil Science Commons](https://uknowledge.uky.edu/soils)

This document is available at https://uknowledge.uky.edu/igc/22/1-7/15

The XXII International Grassland Congress (Revitalising Grasslands to Sustain Our Communities) took place in Sydney, Australia from September 15 through September 19, 2013.

Publisher: New South Wales Department of Primary Industry, Kite St., Orange New South Wales, Australia

This Event is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in International Grassland Congress Proceedings by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Meat and milk production on irrigated birdsfoot trefoil pastures in the Mountain West USA

Jennifer W MacAdam A, Sara R Hunt A, Silvana Martini A, Rachael Christensen B and Jong-Su Eun B

A Utah State University, Department of Plants, Soils & Climate, Logan, Utah 84322-4820 USA
B Utah State University, Department of Animal, Dairy & Veterinary Sciences, Logan, Utah 84322-4815 USA
Contact email: jennifer.macadam@usu.edu

Keywords: Beef, dairy, Lotus corniculatus, ruminants, animal production.

Introduction
Irrigated birdsfoot trefoil (BFT; Lotus corniculatus L.) is a productive, persistent perennial legume in the Mountain West region of the United States of America (USA) (MacAdam and Griggs 2006). It does not cause bloat, even when grazed in pure stands, because it contains a relatively small amount (2-4% of dry matter (DM)) of condensed tannins (Mueller-Harvey 2006; Waghorn 2008). Birdsfoot trefoil tannins bind excess plant proteins at rumen pH (~ pH 6.2) sufficiently to prevent bloat and then release these proteins into the abomasum at gastric pH (~ pH 2.5). This allows plant proteins to be digested to amino acids that can be absorbed in the small intestines (Waghorn et al. 1987).

Short-term increases in productivity have been demonstrated in beef cattle (Wen et al. 2002) and dairy cows (Woodward et al. 1999) grazing BFT, but few studies have looked at longer-term effects on commercial farms.

This study investigated the rate of season-long average daily liveweight gain and meat quality of cattle (MacAdam et al. 2011) and the intake and milk production of dairy cattle grazing pure stands of BFT on commercial farms during the summer grazing period of 2012.

Material and methods
Beef cattle production
Cattle and grazing details are shown in Table 1. Flood-irrigated pastures were seeded with BFT cv. Norcen in August 2011. Data are presented for 2012. Nine dairy cows rotationally grazed for 10 weeks on either a BFT or grass-based pasture, comprised of Lolium perenne, Dactylis glomerata, Schedonorus arundinaceus, Elymus repens and Trifolium repens. Cows were fed 2.27 kg of barley with a vitamin and mineral supplement and moved to fresh paddocks after each milking (every 12 hours). Intake was determined as the difference between pre-grazing and post-grazing DM with a rising plate meter. Milk production was measured at the beginning of the study and every 2 weeks, by collecting milk from each cow at 4 successive (2 morning and 2 evening) milkings.

Results and Discussion

Beef cattle production
Results from the beef producers’ cattle are reported in Table 1. The relatively low stocking rate of the Morgan Co. producer’s fall-born cattle resulted in under-

Table 1. Liveweight gain of steers grazing pure birdsfoot trefoil irrigated pastures owned and managed by rancher cooperators in Morgan and Box Elder Counties in Utah, USA

<table>
<thead>
<tr>
<th>Location</th>
<th>Pasture size</th>
<th>Morgan County</th>
<th>Box Elder County</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of cattle</td>
<td>Average initial weight per head ± SEM</td>
<td>Average final weight per head ± SEM</td>
</tr>
<tr>
<td>Morgan Co</td>
<td>7 Angus steers</td>
<td>383 ± 8 kg (~ 9 months old)</td>
<td>507 ± 16 kg</td>
</tr>
<tr>
<td>Box Elder Co</td>
<td>10 Angus-Simmental cross steers</td>
<td>432 ± 13 kg (~ 12 months old)</td>
<td>604 ± 14 kg</td>
</tr>
</tbody>
</table>
utilization of the forage produced, whereas the high stocking rate of the Box Elder Co. producer’s yearling cattle resulted in good forage utilization. The average daily gains from the more intensively stocked pastures approached those expected from grain finishing (1.65 kg/day). Steaks from the 2 cattle finished on the BFT pasture were graded ‘high select’ and considered by the consumer panel to be either equal to or preferred to grain-finished steaks. Both BFT- and grain-finished steaks were preferred to steaks from organic grass-finished cattle for most traits.

Dairy production

Intake of dairy cows grazing BFT in mid-summer was higher than for cows grazing grass pasture (Fig. 1A), resulting in higher milk production for cows fed BFT than grass (Fig. 1B).

Conclusion

We have demonstrated that the production increases found in controlled studies can be achieved by producers managing their cattle within the constraints of a working farm or ranch. Birdsfoot trefoil has the potential to be an alternative beef finishing system and is an excellent mid-summer dairy pasture.

References

