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ABSTRACT OF DISSERTATION

OPTIMAL CONTROL AND EVALUATION OF SHIPBOARD POWER
SYSTEMS

Electric warships are involved in complex missions consisting of multiple simultane-
ous operations. In order to ensure mission success, future ships must be designed in a
way that optimizes their performance in the presence of complex mission loads. The
focus of this research is an effort to optimally control the performance of shipboard
systems during missions involving multiple scenarios or vignettes. The evaluation of
the performance of mission-oriented power systems is based on the degree to which
these systems deliver power to the loads required to perform the mission at hand.
The performance of such systems involves a dynamic interplay between the power
systems, the mission, and the loads required to perform the mission. Evaluating the
performance is fundamental in the design of such systems for future use, and this
evaluation is advanced by formulating the evaluation as an optimal control problem.
This formulation allows the dynamic interaction between the system and the mis-
sion to be considered directly and is a natural evolution of existing simulation-based
methods. In this work, the proposed approach is demonstrated using a notional,
but representative, set of system implementations and missions. Furthermore, ex-
amples of the types of system trade offs that can be considered using this approach
are presented and discussed. In addition, the optimal control problem can be im-
plemented using market-based control. Market-based control is an approach which
can be used when the system becomes difficult to control and maintain using central-
ized approaches such as Markov decision process-based optimization. A key feature
of market-based control is that it reduces a global optimization problem into a se-
ries of smaller local optimization problems (i.e., profit maximization) combined with
finding the market clearing prices that result in market equilibrium (i.e., quantity
supplied is equal to quantity demanded). The market clearing price is the price
which results in an equilibrium between demanded and supplied resources. Finding
the globally coordinating market-clearing prices is a root-finding problem. It is known
that under sufficient conditions the market-clearing problem is equivalent to solving
the global optimization problem. To enable market-based control of such systems,
it is necessary that appropriate market-clearing algorithms exist that can locate the
market-clearing prices that allow the system to operate at equilibrium. This work



examines the numerical challenges of solving the root-finding problem of finding the
market-clearing prices using traditional algorithms. A method has been proposed for
solving the market clearing problem and its performance has been compared with the
performances of traditional root-finding algorithms. Finally, the connection between
various optimization approaches has been explored and validated with results.

KEYWORDS: Operability, mission, Markov decision process, market-based control,
price, dynamic programming, simulation
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Chapter 1 Introduction

1.1 Introduction

Mission-oriented power systems are designed to support the performance of specific
missions. These missions may involve dynamic use of different loads during missions
of varying duration. The value of power delivered to different loads will depend on the
specific mission or even the particular point in the mission’s progress. Such systems
include shipboard power systems [2, 3], aerospace systems [4, 5], uncrewed electric
vehicles [6, 7], and other power-electronic-based power systems [8, 9].

The power system of an electric warship provides electric power to loads involved
in missions in a way that they continue operating even after sustaining damage. It
differs from traditional power systems as it is not entirely focused on maintaining
system reliability and stability at all times; rather, it aims to deliver power dynam-
ically during missions of relatively short durations or operational vignettes. Unlike
conventional power systems, loads are not generally relatively equal in importance.
Power quality metrics used in these systems must consider the value of the power
system in performing the mission at hand. Specifically, to evaluate the potential per-
formance of such systems, it is necessary to understand how they will help complete
the mission when controlled optimally across a range of vignettes.

Various metrics such as survivability [10–12], operability [13], etc. have been used
for this evaluation. Some performance metrics can also be derived from the metrics
mentioned herein. Metrics such as susceptibility, vulnerability, and recoverability can
be derived from the survivability metrics [14] whereas metrics derived from operability
are dependability, average system dependability, minimum system dependability, etc.
[13, 15]. Traditionally, survivability and its associated metrics have been used in
shipboard power system evaluation. With the emergence of shipboard systems with
dynamic loads, it is assumed that the ship would physically survive and continue the
mission. In such case, a more dynamic evaluation of performance is needed. The
metric operability can play a major role in this assessment. The ability to continue
a mission and the performance during the mission can be assessed using the metric
operability and metrics derived from it.

An evolution in mission-oriented power system evaluation was necessary. In par-
ticular, to develop a reasonable understanding of the potential performance of such
systems, it is necessary to consider the dynamic interplay between mission and sys-
tem because there is an intrinsic connection to mission performance. This resulted in
a break from evaluation using static load profiles and weights, and served as an im-
proved basis for system evaluation, as the basis for system control development, and
as a framework for better understanding the role of mission requirements in power
system design. This evolution, initial steps of which are described in [16,17], involves
transforming the evaluation problem into an optimal control problem, the solution of
which can reveal the potential performance of a power system implementation.

This approach of modeling the combined system and mission as a hybrid dis-
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crete/continuous, stochastic/deterministic dynamic system and combining with mission-
specific rewards to be optimized is naturally represented as a Markov decision process
(MDP). The applications of MDP-based modeling vary across literature, but the com-
mon goal is to solve an optimization problem to achieve the maximum reward (e.g.
in the form of maximum performance or minimum costs), given some constraints in
the system and its dynamics.

In case of power electronics-based power systems, generally, the control objective
involves directing power to specific loads as required under the current conditions.
This can typically be formulated as a mathematical optimization problem. If the
overall system structure and condition, including the statuses and internal character-
istics of each component, are known globally, it is possible to develop a centralized
control system that is able to control the system by solving the global optimization
problem. However, it is recognized that this approach may be brittle (i.e., sensitive
to changes in system configuration and design) and dependent on data that may
not be centrally available about individual components and their statuses in certain
conditions. An alternative to a centralized control system is market-based control.

Market-based control is a control approach in which an artificial market is created
for resources within the system, and the forces of supply and demand guide the system
toward equilibrium states. The operation of each component can be represented as
a profit-maximizing firm. In a perfectly competitive market, resource distribution
is guided by the market forces to the most productive (in this sense, maximizing
the control objective above). If system conditions shift, a shortage or surplus arises,
causing prices to rise or fall, respectively, components change their behavior, and a
new equilibrium emerges.

A key feature of market-based control is that it reduces a global optimization
problem into a series of smaller local optimization problems (i.e., profit maximiza-
tion) combined with finding the market-clearing prices that result in market equilib-
rium (i.e., quantity supplied is equal to quantity demanded). Finding the globally
coordinating market-clearing prices is a root-finding problem. It is known that under
sufficient conditions the market-clearing problem is equivalent to solving the global
optimization problem (e.g., [17]).

To enable market-based control of such systems, it is necessary that appropriate
market-clearing algorithms exist that can locate the market-clearing prices that allow
the system to operate at equilibrium. Power-electronics-based power distribution sys-
tems exhibit some features that can complicate market-based control. For example,
the systems are typically efficient, resulting in relatively small variations in losses with
operating conditions. They tend to operate relatively similarly across their operating
ranges, except at their operating limits, which can create sharp discontinuities in
their operating profiles. The numerical challenges of solving the root-finding problem
of finding the market-clearing prices in these systems is explored in this work. In
addition, an algorithm has been proposed to solve the market clearing problem.

The decision functions of various components in the system are used to optimize
the controller to solve for the market clearing price. On the other hand, the opti-
mal control solution can also be determined using the state variables and actions to
evaluate the expected performance of the system. Hence, both MDP-based optimal
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control and market-based control optimize a controller under certain constraints. The
dynamic optimal control problem can also be represented by solving a sequence of
static optimizations, where each step’s solution informs the next, ensuring that the
overall control strategy is optimized over the entire planning horizon. Thus, sequence
of static optimizations also optimize a controller under certain constraints. Hence, a
connection among these three optimization approaches can be established, which will
be explored in this work.

1.2 Contributions of the Dissertation

With the advancement in modeling of power systems and power electronics-based
systems, the current state of performance evaluation can be represented using MDP-
based dynamic optimal control, market-based control, and sequence of static opti-
mizations of the dynamic problem. This way, the effect of the power system perfor-
mance on the dynamic mission performance can be represented. Namely, the major
contributions of this work are-

1. The evaluation of mission-oriented power system performance as an optimal
control problem has been articulated, allowing the dynamic interaction between
the system and the mission to be considered. This involves demonstrating the
optimal-control-based approach to evaluation in a notional, but representative,
set of system implementations and missions. In addition, the types of system
trade offs that can be considered using this approach has been illustrated.

2. The numerical challenges of market-based control has been explored. An algo-
rithm has been proposed that solves the market clearing price under constraints
and it has been demonstrated that the proposed algorithm is efficient in clearing
the market. This has also been validated using dynamic simulation.

3. In addition, the equivalence of sequence of static optimizations to dynamic
optimal control problem has been explored, and validated with results. This has
bridged the connection among various optimization approaches- market-based
control, sequence of static optimizations, and MDP-based dynamic optimal
control.

1.3 Organization of the Dissertation

This dissertation shows how optimal control and performance evaluation of ship-
board power system has evolved, how it is currently being performed and how it can
be improved. The organization of the report is as follows. In Chapter 2, an insight
on previous work on optimal control-based evaluation has been given along with a
background on important concepts used in the dissertation. In Chapter 3, optimal
control-based evaluation using Markov decision process (MDP) is introduced using a
notional problem. In Chapter 4, the application of MDP-based modeling has been
applied on a system consisting of energy magazines. It has also been shown how
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MDP-based optimal control is similar to the traditional performance evaluation met-
ric ‘operability’. In Chapter 5, the current state of optimal control has been described
for mission-oriented power systems. Various system trade offs and sensitivity of per-
formance to initial assumptions are considered. Chapter 6 introduces market-based
control approach and discusses the computational difficulty of solving the market
clearing price using traditional root-finding algorithms. In Chapter 7, an algorithm
has been proposed for solving the market clearing problem, and determining the mar-
ket clearing price for systems with various constraints. The efficiency of the proposed
approach has been verified using dynamic simulation. In Chapter 8, the equivalence
of dynamic optimal control and sequence of static optimizations has been discussed
and established. Finally, in Chapter 9, the current research has been summarized
and opportunities for future developments to this research has been discussed.

Copyright© Musharrat Sabah, 2024.
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Chapter 2 Background and Literature Review

2.1 Introduction

The use of various metrics have varied across literature for the evaluation of per-
formance of mission-oriented power systems. In this chapter, the evolution of these
metrics and performance evaluation techniques will be discussed. This will be followed
by a discussion of the current approach of solving optimal control-based problems.

2.2 Overview of Various Metrics

In traditional shipboard systems, the evaluation of performance involved the use of
the survivability metric [18–21]. Survivability can be expressed mathematically as
the probability of survival, PS. It can be described by the equation below:

PS = 1− (PH ∗ PK/H) ∗ (1− PR), (2.1)

where PH is the probability of being hit, or susceptibility,
PK/H is the probability of being killed, given a hit, or vulnerability, and
PR is the probability of recovery, or recoverability.

In addition to survivability, traditional shipboard power systems focused on Qual-
ity of Service (QOS) metric [22, 23]. This metric determines how reliable the power
system is in providing electrical power to loads. In [23],a two-level topology design
and architecture for a shipboard power system has been presented. The system en-
sures QOS and survivability in case of an interruption [24,25]. Survivability and QOS
can be characterized as primary design criteria that ensures reliability. Survivability
measures the ability of the power system to support system during damage. On the
other hand, QOS measures the ability to provide continued service during peacetime
or normal operations.

To ensure survivability, zonal architectures are sought that prohibit the spread of
a fault to undamaged zones of the SPS [15,26–28]. As for the peacetime operations,
service interruptions are most often caused by the failures of individual components
within the distribution system. The reliability during peacetime operations is char-
acterized using QOS metrics. In the literature, the metrics for calculating peacetime
QOS in SPS have been established [1], [16] and applied to designing SPS with a
primary focus on equipment design choices and control interfaces. The approach to
quantify distribution system reliability as a function of system topology has also been
explored [2, 4, 29,30].

However, the metric QOS does not indicate a way to measure the performance
of electric warships. This is particularly true in case of damaged systems where the
shipboard power system must continue the mission even after sustaining damage. In
other words, the mission must be continued even when there is lack of survivability
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and reliability. The metric operability provides a useful measure of performance in
such a situation.

The application of operability and reliability metrics is not only limited to ship-
board electrical systems. The control and mechanics of aerospace vehicles affect
these metrics, particularly operability [31]. The evaluation of operability has also
been conducted in the control of systems in chemical engineering. An index, dynamic
operability (dOI) has been defined for performance assessment of dynamic systems
over a range of desired outputs [32, 33].

2.3 Operability Metric

Operability can generally be thought of as the ability of a system to perform during
a single scenario (or vignette). The earliest examples of operability were calculated
based on scenarios involving battle damage [13, 15, 26], but this was extended to
challenging load profiles [27], cyber disruptions [28], and other situations. It was
understood that, given an accepted definition of operability, metrics could be derived
from operability that characterized the system performance in different ways. Metrics
based on expected and worst-case values of operability were considered initially [13,
26]. Later, histograms of operability were presented along with probabilities of failing
to attain a given level of operability [16,28]. The recent conception of operability of a
control system as being a factored metric normalized by the underlying capability of
the platform is a method of attempting to attribute the ability of the overall system
to various elements.

Previous approaches to operability formulation have been based on integrating an
instantaneous reward function in continuous time [1, 13, 26, 27] or summing such a
function in discrete time [2, 4, 29, 30]. In both cases, it has been possible to include
temporal discounting (potentially necessary for convergence if the time interval is un-
bounded). The reward function in previous approaches has been based on power flow,
which is attractive from a power systems standpoint (power flow is well understood),
but it may not represent the mission value of the power flow. More recent discussions
of load elasticity as a nonlinear relationship between the applied power and/or en-
ergy and the mission effectiveness of that application represent a shift from a purely
load-oriented operability metric toward a mission-oriented operability metric [16].

Operability was previously evaluated based on static load profiles (perhaps ran-
domly drawn in some way). The load profile did not vary based on the ability of the
system to satisfy the given load demand. Combined with these challenges was the
question of how to represent control action during the evaluation of operability. Each
previous conception of operability involved the evaluation of a time-domain-based
performance metric [34]. The control of the system has a significant influence on
the evaluated operability of the system. The earliest studies of operability involved
simplistic representation of local distributed controllers.

In this chapter, the evolution of ship platforms from a load-oriented system to a
mission-oriented system is discussed. A trajectory leading towards current optimal-
control-based approaches emerges, and the current state of such approaches is demon-
strated in a notional problem in the next chapter.
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2.4 Beginnings of Operability as a Performance Metric

In [13,26], the metric operability was introduced to determine how effective the power
system is at responding to mission loads. It measures the degree to which the per-
formance of the power system contributes to mission effectiveness in a particular
scenario. Operability was initially represented as an integral of weighted power flows
to loads:

O =

∫ tend

t0

∑I
i=1wiPi(t)dt∫ tend

t0

∑I
i=1wiPmax,i(t)dt

, (2.2)

where I is the number of loads in the system, Pi(t) is the power consumption of
load i at time t, Pmax,i(t) is the maximum (or demanded) power of load i at time
t, and wi is a mission-specific, potentially time-varying weighting function indicating
the relative importance of load i. The interval of time considered is [t0, tend] and
the weighting functions might be exponentially decaying to place specific value on
performance early during the scenario.

Depending on the modeling and simulation methodology employed, it may be
convenient to express the operability metric in discrete-time form as

O =

∑kend

k=k1

∑I
i=1wiPi(k)∑kend

k=k1

∑I
i=1wiPmax,i(k)

, (2.3)

where k indicates the period (of time) as an integer from k0 to kend.
The operability metrics above are intended to convey the value of the power system

performance to the mission being performed in a given operational scenario. Given
an accepted definition of operability as such a measure of mission performance, other
metrics can be derived from the operability metric. One such metric is dependability
[13,26]. Average system dependability is the expected value of the operability over a
distribution of events that the power system could face:

D̄s = E[O]. (2.4)

In the same way, the minimum system dependability can be used as a metric of
worst-case performance:

Ds,min = min[O]. (2.5)

Other derived metrics (e.g., the probability of operability exceeding a given threshold
value) have also been considered [35].

One of the features of these metrics is that they are evaluated via time-domain
simulation. To do this, variable loading should be represented. The load demands of
different ships in a mission vary depending on a ship’s intended operational use and
operational speeds. A ship can move at various speeds, and its load demands vary in
time depending on mission.

In addition to variable loading conditions being represented, it is necessary to rep-
resent the control of the power system. The manner in which the system is controlled
has a strong influence on the performance of the overall system, and this becomes
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particularly important in situations in which there is scarcity, i.e., systems in which
the allocation of power to various purposes is constrained by the physical limits of
the systems. This specifically includes the types of challenging operational scenarios
for which operability is intended to quantify performance. The earliest approaches
to modeling the control systems in time-domain simulation involved simplistic local
control systems that avoided physically unacceptable solutions. Loads operated when
local conditions suggested it was physically plausible. This baseline representation
permitted evaluation of time-domain performance metrics, but it did not represent a
more sophisticated control system.

2.5 Evolution of Operability

While the earliest applications of operability involved performance of damaged power
systems, the loading of these systems was relatively static, but realisitic load profiles
are necessarily dynamic [36]. The next step happened in [27, 28]. In these works,
two approaches for generating dynamic load profiles were presented. In [37, 38], a
generative approach for producing load profiles based on a statistical representation
of a given mission narrative was presented. In [28], a Markov-chain-based approach
for producing load profiles was presented in which a mission profile could be conceived
as a trajectory of a Markov chain. These approaches, while superficially dissimilar,
are mathematically essentially equivalent and represent a statistical approach for
generating dynamic and mission-relevant load profiles.

Coupled with this evolution was an evolution in the manner in which control sys-
tems (and indeed the system physics) were represented for purposes of time-domain
evaluation. Very early, it was recognized that the most important dynamics asso-
ciated with operability evaluation were slower, at the same rate as the bulk load
dynamics. This includes thermal phenomena, generator ramp rates, energy stor-
age, etc. An initial first step was to represent the power system physics using a
linear programming problem [37]. This idea was further developed in other math-
ematical programming modeling approaches [39, 40]. One of the consequences of
introducing mathematical programming modeling approaches to modeling the power
system physics is that these problems have objective functions; there is something
the mathematical programming solver is trying to optimize. The obvious approach
was to maximize the instantaneous integrand (or the summand) in the operability
definition, a representation of the action of a greedy controller. In other words, the
adoption of mathematical-programming-based modeling approaches also resulted in
a representation of a controller that was attempting to allocate power optimally at a
system level [41].

These solutions were still instantaneous solutions. They did not intrinisically con-
sider the future or the value of future energy. They were not solving the desired
optimal control problem; they approximated the optimal control problem as a se-
quence of static optimization problems. This idea was further extended in [2, 38] to
the idea of multiperiod optimal power flow. In this approach, the optimization prob-
lems describing the physics and control objectives of the power system are carefully
concatenated to form a larger optimization problem representing the complete opti-
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mal control problem. This approach represented an optimal solution to the control of
the power system during a potentially dynamic loading situation provided that the
future is known in advance.

In the next sections, general descriptions of the terms used in this work are dis-
cussed. In the next chapter, a notional problem is presented where these general
terms and notations are made more specific to the problem description.

2.6 Markov Chains

A Markov chain is a probabilistic sequence that adheres to the Markov property,
indicating that knowledge of the present renders the past and future independent [42].
In essence, with awareness of the current state, no further historical data is necessary
for optimal future predictions. This characteristic streamlines analysis by significantly
reducing the parameter count.

A stochastic process X = Xn, n ∈ N in a countable space S is a discrete-time
Markov chain if:

For all n ≥ 0, Xn ∈ S
For all n ≥ 1 and for all i0, ...in−1, in ∈ S, we have:
P
{
Xn = in | Xn−1 = in−1, ..., X0 = i0

}
= P

{
Xn = in | Xn−1 = in−1

}
A transition matrix Pt for Markov chain {X} at time t is a matrix containing

information on the probability of transitioning between states. In particular, given
an ordering of a matrix’s rows and columns by the state space S, the (i, j)th element
of the matrix Pt is given by

(Pt)i, j = P(Xt+1 = j | Xt = i). (2.6)

This means each row of the matrix is a probability vector, and the sum of its
entries is 1.

Transition matrices have the property that the product of subsequent ones de-
scribes a transition along the time interval spanned by the transition matrices. That
is to say, P0 · P1 has in its (i, j)th position the probability that X2 = j given that
X0 = i. And, in general, the (i, j)th position of Pt · Pt+1 · · ·Pt+k is the probability
P(Xt+k+1 = j | Xt = i)

The k-step transition matrix is P
(k)
t = Pt · Pt+1 · · ·Pt+k−1 and, satisfies

P
(k)
t =


P(Xt+k = 1 | Xt = 1) P(Xt+k = 2 | Xt = 1) · · · P(Xt+k = n | Xt = 1)
P(Xt+k = 1 | Xt = 2) P(Xt+k = 2 | Xt = 2) · · · P(Xt+k = n | Xt = 2)

...
P(Xt+k = 1 | Xt = n) P(Xt+k = 2 | Xt = n) · · · P(Xt+k = n | Xt = n)


(2.7)
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2.7 Markov Decision Process

A Markov decision process (MDP) is defined by (S, A, P, R, α), where S are the
states, A is the set of actions, P is the state-transition probability of moving from
one state to another , R is the reward, and α is the discounting factor [43]. The state
reward R is the expected reward over all the possible states that one can transition
to from state st. This reward is received for being at the state S. By convention, it is
said that the reward is received after the agent leaves the state, and is hence regarded
as Rt+1. Introduction to actions elicits a notion of control over the Markov process.
Previously, the state transition probability and the state rewards were more or less
stochastic (random). However, now the rewards and the next state also depend on
what action the agent picks. Basically, the agent can control its own fate (to some
extent).

The return Gt is the total discounted reward from time-step t.

Gt = Rt+1 + αRt+2 + · · · =
∞∑
k=0

αkRt+k+1 (2.8)

Rewards are temporary. Even after picking an action that gives a decent reward,
there might be a greater total reward missing in the long-run. This long-term total
reward is the Return. However, in practice, discounted Returns are considered.

The variable α ∈ [0, 1] is the discounting factor. The intuition behind using a
discount is that there is no certainty about the future rewards. While it is important
to consider future rewards to increase the Return, it’s also equally important to limit
the contribution of the future rewards to the Return.

A policy π is a distribution over actions given states,

π(a | s) = P[At = a | St = s] (2.9)

A policy defines the thought behind making a decision (picking an action). For-
mally, a policy is a probability distribution over the set of actions a, given the current
state s. It gives the probability of picking an action a at state s.

2.8 Value Function Iteration

A value function is the long-term value of a state or an action. In other words, it is
the expected Return over a state or an action.

The state value function vπ(s) of an MDP is the expected return starting from
state s, and then following the policy π.

vπ(s) = Eπ[Gt | St = s] (2.10)

The action value function qπ(s, a) is the expected return starting from state s,
taking the action a and then following the policy π.

qπ(s, a) = Eπ[Gt | St = s, At = a] (2.11)
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Figure 2.1: Markov chain illustrating transition from one state to another.

Since there is a state to action transition, the expected action value over all the
actions needs to be taken.

And this completely satisfies the Bellman equation as the same is done for the
action value function:

qπ(s, a) = Ra
s + α

∑
s′∈S

P a
ss′vπ(s

′) (2.12)

2.9 Conclusion

In this chapter, a background on various performance metrics has been discussed. The
evolution of the metric operability over the years has been discussed in detail. This
evolution directs towards the current optimal control approach of using MDP-based
performance evaluation. A generalized discussion of the terms used in MDP-based
evaluation has also been presented in this chapter.

Copyright© Musharrat Sabah, 2024.
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Chapter 3 Optimal Control-Based Performance Evaluation

3.1 Introduction

In the previous chapter, the evolution of the metric ‘operability’ has been discussed.
This was followed by a discussion on the current optimal control approaches based
on Markov Decision Process. The primary contributions of this chapter are

1. to establish the current state of optimal control-based performance evaluation,
and

2. to present a notional two-function problem involving multiple missions that
demonstrates the current state of optimal control-based approaches for the eval-
uation of power system performance.

3.2 Current State of Operability

Prior to the current developments in the use of operability as a performance met-
ric for power systems, it was possible to represent dynamic loading profiles. These
were drawn statically from a given statistical distribution. Importantly, they did not
dynamically depend on the performance of the power system. If a load needed a
certain amount of power for a certain amount of time, there was no provision for this
load demand to be adjusted if the power system could only provide a fraction of that
power (e.g., by demanding power for a longer period of time). Likewise, there was
the capacity for representing optimal control of the power system, but this could only
be done in this framework if the future was known with certainty.

The next step in the evolution of operability as a performance metric was the
representation of the problem using Markov decision processes [16]. In this way, the
effect of the power system performance on dynamic mission performance could be
represented (i.e., in the transitions of the Markov decision process). Likewise, the
uncertainty of the future could be incorporated into the problem.

3.3 State of Optimal Control-based Evaluation using MDP

Markov decision processes are used widely to represent optimal control problems.
Notation varies, so the notation used herein is described below.

A problem is defined by a combination of mission and system implementation.
The combined state of the mission and system at moment k is represented by xk.
This state variable is a vector involving both continuous and discrete components.
The elements can evolve deterministically or stochastically.

Given a state xk, there is a set of available actions Ω(xk), which is a property of
both the mission and the system. The action taken at moment k is uk ∈ Ω(xk) and
is a vector.
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The state in the next moment xk+1 will depend on the moment k, the present
state xk, and the present action uk. The state can transition deterministically or
stochastically (or some combination of both) depending on the system and mission.

A functional V depending on the trajectory of the state (x0,x1, . . .) and action
(u0,u1, . . .) indicates the quality of the mission performance. The functional for an
infinite horizon, time-invariant problem with temporal discounting can be expressed
as

V =
∞∑
k=0

αkR(xk,uk,xk+1), (3.1)

where α ∈ (0, 1] is a temporal discounting factor and R is an instantaneous reward
function. This is a time-invariant Markov decision process. The optimal control
problem is

max
(u0,u1,...)

E[V (x0, x1, . . . , u0, u1, . . .)]. (3.2)

The stochastic Bellman equation can be solved for the expected reward V̄ numerically

V̄ (xk) = max
uk∈Ω(xk)

E[R(xk,uk,xk+1) + αV̄ (xk+1)]. (3.3)

Solving the Bellman equation yields an evaluation of the expected mission per-
formance of the system given a starting state, while also including the dynamic and
potentially stochastic interdependence of the mission and system states. The value
of V̄ (x0) for a given starting state becomes a measure of the mission capability of the
system in a given operating environment.

3.4 Notional Problem

A two-function notional problem is used here to illustrate the current state of optimal
control-based evaluation. The system is able to allocate power to actuators to track
a target and/or to attack a target based on the mission being undertaken.

In this problem, the system may have to perform one of the three missions, with
given probabilities. The missions involve different applications of the system’s actu-
ators and available energy. In the missions considered, one or both the actuators are
required for success.

Along with the three different missions, three different systems are considered. In
System 1 (Shared), energy storage is shared between actuators as shown in Figure 3.1.
In System 2 (Dedicated), energy storage is dedicated to each actuator, as shown
in Figure 3.2. In System 3 (Distributed), an interconnecting distribution network
provides a path for power between the two actuators. Thus, energy can be moved
from one actuator to the other, as shown in Figure 3.3, but at a limited rate. The
parameter values for the problem are given in Table 3.1.
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Actuator 2

(attacking)

Actuator 1

(tracking)

Energy

Storage

Figure 3.1: System 1 (Shared). This is an idealized system in which stored energy is
freely available throughout the system.

Table 3.1: Notional Parameter Values

Parameter Value
ptrack,max 1
pattack,max 1
pdist,max 0.2
ptrack,m1 = ptrack,m3 0.12
p̄track,m1 = p̄track,m3 0.5
p̄attack,m1 = p̄attack,m3 1.4
αm1 0.5
αm2 0.99
αm3 0.99
pm1 0.3
pm2 0.3
pm3 0.4

3.4.1 Mission 1

Mission 1 involves obtaining and maintaining an adequate track on a target. The
variable, stracked, indicates whether the target is being tracked adequately and is
initially false. The action consists of the variable, ptrack ∈ [0, ptrack,max], which is the
normalized energy expended in tracking during the current period. The probability
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Actuator 2

(attacking)

Actuator 1

(tracking)

Energy

Storage 1

Energy

Storage 2

Figure 3.2: System 2 (Dedicated). Energy in system is allocated to a specific actuator
and cannot be repurposed.

Actuator 2

(attacking)

Actuator 1

(tracking)

Energy

Storage 1

Energy

Storage 2

Power

Distribution

Figure 3.3: System 3 (Distributed). Energy is allocated to specific actuators but can
be moved with limited power through distribution system.
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of the target being tracked adequately in the next period is modeled as

P [stracked,k+1] =

1− e
−ptrack

ptrack,m1 stracked,k

1− e
−ptrack

p̄track,m1 s̄tracked,k,
(3.4)

where ptrack,m1 > 0 and p̄track,m1 > 0 are parameters that represent the difficulty of
maintaining and obtaining an adequate track, respectively. Greater values of these
parameters indicate that the task requires more energy to achieve a high probability
of success. Generally, ptrack,m1 ≤ p̄track,m1.

The functional representing the performance of a system for Mission 1 is given by

Vm1(x0) =
1− αm1

α2
m1

∞∑
k=0

αk
m1stracked,k, (3.5)

where αm1 ∈ (0, 1) is a parameter that represents temporal discounting. A greater
value of this parameter indicates that the future is given greater weight (i.e., is dis-
counted less with respect to the present). This functional represents the ability of
the system to track the target continuously.

3.4.2 Mission 2

Mission 2 involves using energy to neutralize a target. The variable, sneut, indicates
whether the target has been neutralized and is initially false. The action consists
of the variable, pattack ∈ [0, pattack,max], which is the normalized energy expended in
attacking during the current period.

The probability of the target being neutralized in the next period is described by

P [sneut,k+1] =

{
1 sneut,k

1− e
−pattack

p̄attack,m2 s̄neut,k,
(3.6)

where p̄attack,m2 > 0 is a parameter that represents the difficulty of neutralizing the
target. A greater value of this parameter indicates that the task requires more energy
to achieve a high probability of success. The functional representing the performance
of a system for Mission 2 is given by

Vm2(x0) =
1− αm2

α2
m2

∞∑
k=0

αk
m2sneut,k, (3.7)

where αm2 ∈ (0, 1) is a parameter that represents temporal discounting. A greater
value of this parameter indicates that the future is given greater weight (i.e., is dis-
counted less with respect to the present). This functional represents the ability of
the system to neutralize the target quickly.
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3.4.3 Mission 3

Mission 3 involves obtaining and maintaining an adequate track on a target, and then
using energy to neutralize it. The mission state involves two discrete state variables.
The variable, stracked, indicates whether the target is being tracked adequately and is
initially false. The second, sneut, indicates whether the target has been neutralized
and is also initially false. The action consists of two variables. The first, ptrack ∈
[0, ptrack,max], is the normalized energy expended in tracking during the current period.
The second, pattack ϵ [0, pattack,max], is the normalized energy expended in attacking
during the current period. The probability of the target being tracked adequately in
the next period is modeled as

P [stracked,k+1] =

1− e
−ptrack

ptrack,m3 stracked,k

1− e
−ptrack

p̄track,m3 s̄tracked,k,
(3.8)

where ptrack,m3 > 0 and p̄track,m3 > 0 are parameters that represent the difficulty of
maintaining and obtaining an adequate track, respectively. Greater values of these
parameters indicate that the task requires more energy to achieve a high probabil-
ity of success. Generally, ptrack,m3 ≤ p̄track,m3. The probability of the target being
neutralized in the next period is described by

P [sneut,k+1] =

1 sneut,k

stracked,k

(
1− e

−pattack
p̄attack,m3

)
s̄neut,k,

(3.9)

where p̄attack,m3 > 0 is a parameter that represents the difficulty of neutralizing the
target. A greater value of this parameter indicates that the task requires more energy
to achieve a high probability of success. Significantly, it is impossible to neutralize
the target without obtaining an adequate track first. The functional representing the
performance of a system for Mission 3 is given by

Vm3(x0) =
1− αm3

α2
m3

∞∑
k=0

αk
m3sneut,k, (3.10)

where αm3 ∈ (0, 1) is a parameter that represents temporal discounting. A greater
value of this parameter indicates that the future is given greater weight (i.e., is dis-
counted less with respect to the present). This functional represents the ability of
the system to track and then neutralize the target quickly.

3.4.4 Aggregate Mission Performance

The combined value of a given mission and system state is given by the weighted
combination of these three value functionals:

V (x0) =
3∑

n=1

PmnVmn(x0), (3.11)

where Pm1 ≥ 0, Pm2 ≥ 0, and Pm3 ≥ 0 are the probabilities of performing Missions
1, 2, and 3, respectively, with Pm1 + Pm2 + Pm3 = 1.
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3.4.5 System State

The system state in each system is modeled differently. In System 1 (Shared), which
has shared energy storage, the system state is a scalar, e, that represents the normal-
ized stored energy. The energy stored in the next period is described by

ek+1 = ek − ptrack,k − pattack,k. (3.12)

In System 2 (Dedicated), there are two state variables, etrack and eattack, which
represent the normalized stored energy associated with each actuator. The energy
stored in the next period is described by

etrack,k+1 = etrack,k − ptrack,k (3.13)

eattack,k+1 = eattack,k − pattack,k. (3.14)

In System 3 (Distributed), there are two additional action variables, ptrack,t,k and
pattack,t,k that represent the flow of normalized energy from each actuator to the
distribution system and by conservation of power

ptrack,t,k + pattack,t,k = 0. (3.15)

These actions are constrained by the limits of the distribution system such that
−pdist,max ≤ ptrack,t,k ≤ pdist,max and −pdist,max ≤ pattack,t,k ≤ pdist,max, where pdist,max

is the maximum normalized flow of energy through the distribution system in a period.

3.5 Results

For each configuration, the individual results from each mission were combined using
the probabilities of each mission to obtain the aggregate expected performance of the
system.

3.5.1 System 1 (Shared)

By solving the optimization problem, it can be seen how the mission performance
varies with the initial normalized energy storage as shown in Figure 3.4. As expected,
a higher available energy results in a higher expected performance.

3.5.2 System 2 (Dedicated)

Similar to System 1 (Shared), the probability of success is higher when higher energy is
available for both tracking and attacking. This is visualized in Figure 3.5. However,
if insufficient energy is available for either operation (tracking or attacking), the
aggregate expected performance will be low, even if energy available for the other
task is high. In such a system, it is necessary to maintain an appropriate balance
between the available energy storage dedicated to each action. For example, it is
possible to find the configuration of initial available energy that results in the highest
aggregate expected performance by dividing a fixed amount of energy between the
two actuators.
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Figure 3.4: Variation of mission performance for System 1 (Shared)

3.5.3 System 3 (Distributed)

Similar to the previous configurations, the aggregate expected performance is higher
when higher energy is available for both tracking and attacking. If insufficient energy
is available for either tracking or attacking, the system can move energy through the
power distribution system to achieve the given mission. This transfer is power limited,
but it results in performance that is less sensitive to the initial allocation of energy
than System 2 (Dedicated). Nonetheless, it is also possible to find the configuration
of initial available energy that results in the highest aggregate expected performance
by dividing a fixed amount of energy between the two actuators.

3.5.4 Comparison of Systems

When a given amount of energy is optimally allocated between the two actuators for
both the dedicated and distributed energy storage systems, it is possible to compare
the three systems on the basis of their aggregate expected performances. This com-
parison is shown in Figure 3.7. In this figure, it can be seen that the flexibility of the
shared energy storage system results in higher expected performance regardless of the
initial amount of available energy than the dedicated energy storage system. However,
it can also be seen that, with a distribution system that is capable of handling 20%
of the maximum load power and optimally allocated initial energy, the distributed
energy storage system is capable of matching the performance of the shared energy
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Figure 3.5: Variation of mission performance for System 2 (Dedicated)

Figure 3.6: Variation of mission performance for System 3 (Distributed)
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Figure 3.7: Performance comparison of System 1 (Shared), System 2 (Dedicated), and
System 3 (Distributed). Energy for System 2 (Dedicated) and System 3 (Distributed)
is allocated optimally between the two actuators.

storage system. This overlap between shared and dedicated energy storage systems
is shown in Figure 3.8.

3.6 Conclusion

In this chapter, mission-based systems are considered more carefully from a mission
perspective, as opposed to the earlier approaches involving fixed loads. Current
optimal-control-based approaches represent dynamic interaction between the system
and the mission. The results obtained using three different system arrangements are
presented and compared. In more realistic scenarios, a ship might involve several more
types of mission functions. Expansion to higher orders of system and mission nature
is explored in the upcoming chapters along with sensitivity analysis to understand
how much resolution in modeling system-mission interactions is needed to obtain
useful performance measures.

Copyright© Musharrat Sabah, 2024.
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Figure 3.8: Performance comparison showing overlap between System 1 (Shared) and
System 3 (Distributed)
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Chapter 4 Optimal Control-Based Performance Evaluation in the
Presence of Energy Magazines

4.1 Introduction

In the current era of mission-oriented power systems, the optimal control and per-
formance evaluation is done in the presence of dynamic loads based on the initial
allocation of energy storage. In this chapter, the optimal performance of mission-
based systems is evaluated in the presence of both dynamic loads which are involved
in missions, and regular loads which are not involved in missions. The evaluation
takes place in the presence of energy magazines which essentially involves a power
converter with energy storage that is connected to one or more load. Such evaluation
is essential because it helps in the understanding of allocation of energy to vital and
non-vital loads, as opposed to a system which only considers mission loads. The
optimization problem can be solved using Markov decision process (MDP) where
state-space models can be used to represent missions and the systems to determine
the maximum performance during missions.

The system considered in the previous chapter is fairly simple, but it represented
a transformation of operability to a more mission-oriented perspective. Herein, this
approach to operability evaluation is applied to a more conventional operability prob-
lem, allowing this work to bridge from conventional to mission-focused concepts of
operability.

MDP-based approaches have widely been used across various areas to solve mission-
oriented problems [44–47]. The application of MDP-based modeling has varied across
different domains, but the common goal has always been to solve an optimization
problem to achieve the maximum reward (e.g. in the form of maximum performance
or minimum costs), given some constraints in the system.

In [48], MDP has been used to solve optimal power generation scheduling for
shipboard power systems with and without energy storage. The goal was to minimize
average fuel consumption in a system that is dynamic in nature. With the increase
of renewable distributed generation, operating distribution systems has become a
challenge due to the uncertainties in the system [49]. Therein, MDP-based modeling
was used to minimize load curtailments and load sheddings given the uncertainties
as system constraints. In [50], MDPs have been applied for the allocation of power
in the hybrid energy storage system in electric vehicle. Optimal power allocation can
ensure optimal performance by reducing energy loss and increasing battery life. The
constraint is the fluctuation of power and the reward depends on the stored energy
and the loss of energy.

Although the above mentioned works apply MDP-based modeling in systems with
some form of energy storage, the systems are relatively static in nature but modeled
as dynamic systems due to the system uncertainties. They are largely concerned with
minimizing energy loss or maximizing the amount of stored energy. In other words,
they do not consider how the system uses the stored energy to approach dynamic
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mission power requirements.
How energy stored in a shipboard power system (e.g., in an energy magazine) is

optimally applied to dynamic missions and how such systems are evaluated is con-
sidered herein. One of the first mentions about the concept of energy magazines in
power systems was in [51]. In [52], the history and future trends in electric ships were
discussed. Therein, it was mentioned that energy magazines need to be developed in
power systems to provide support for pulse power loads, improved system stability,
backup power, and integration with existing distribution voltages on multiple plat-
forms. Energy magazines are used in systems of intermittent, pulsed, or dynamic
nature. The concept of energy magazines was studied in [53] where the performance
of three different types of energy storage was evaluated for integrating pulsed laser
loads on electric ships. The energy magazines provide support to the power system
by recharging during downtimes. In this way, the challenges posed by the intermit-
tent nature of pulsed loads were overcame. Similarly, in [54], energy magazines were
integrated in a pulsed power system which was modeled using a digital twin. Energy
magazines were considered as a solution for shipboard power systems in the presence
of high power and dynamic loads in [55]. The resources were managed based on the
priorities of loads in a constrained power system.

The primary contributions of this chapter are

1. to extend optimal-control-based evaluation to practical shipboard systems, in-
cluding systems with considerable energy storage used to serve mission loads,
and

2. to align conventional and optimal-control-based operability concepts to demon-
strate the connection between and the evolution of these concepts.

4.2 System Description

A notional integrated power and energy system has been developed. The system
consists of two main gas turbine generators and two auxiliary gas turbine generators
with proportional power sharing controls. The loads are propulsion motor modules,
service loads, and mission loads. Propulsion motor modules comprise the largest
loads in the system. In this system, there are four propulsion loads. Ship service
loads are supplied from eight low voltage ac load centers. There are four dc mission
loads in the system which are interfaced to the medium voltage ac system through
eight energy magazines. The energy magazines are sized to be able to supply the full
power demand for a designated amount of time. The system has four zones, with the
outer zones 1 and 4 having the same energy magazine ratings and the inner zones
2 and 3 having the same energy magazine ratings. This symmetry as well as the
bilateral symmetry is exploited in the studies presented herein. The ratings of each
of the components is given in Table 4.1

A representation of the notional integrated power and energy system is consid-
ered in this study to understand the effect of energy magazines. This representation
exploits the symmetry of the notional system. It consists of inner zone of same rating
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Table 4.1: Ratings of System Components

Component name Rating (MW)
Main turbine generator 2× 35
Auxiliary turbine generator 2× 4.5
Propulsion motor module 4× 15
Outer zone mission 2× 2.0
Inner zone mission load inner 2× 1.0
Outer zone energy magazine 4× 2.0
Inner zone energy magazine 4× 1.0
Outer zone service load 4× 1.0
Inner zone service load 4× 1.0

Aggregate

 Available

 Generation

Energy

Storage 

Power

Conversion 

Module
Aggregate

Propulsion

Load

Aggregate

Energy

Magazine
Aggregate

Service

Load

Aggregate

Mission

Load

Figure 4.1: Diagram of the simplified representation of the notional system. Symme-
try is used to aggregate generation, energy magazines, and propulsion, service, and
mission loads.

aggregated together and outer zone compponents of same rating aggregated together.
There are auxiliary turbine generators, energy magazines, missions loads, propulsion
loads, and service loads. The main turbine generators are not used in this simplified
representation. The auxiliary turbine generators provide power to all the loads and
the energy magazines. Four energy magazines of the same rating are on the inner
zone and four energy magazines of a different rating are on the outer zone. The four
energy magazines on each zone are connected to two mission loads of the same rating.
In addition, there are two other loads- service loads and propulsion motor module.
The four energy magazines and two mission loads of the same rating (on the same
zone) are aggregated together to be treated as a single energy magazine and a single
mission load. The overall system has been illustrated in Figure 4.1. The total ratings
of each of the components is given in Table 4.2.
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Table 4.2: Mission Parameters

Parameter Value
Total available generation 9 MW
Total outer zone energy magazine power rating 8 MW
Total inner zone energy magazines power rating 4 MW
Total outer zone mission load demand 3.2 MW
Total inner zone mission load demand 1.6 MW
Total propulsion load demand 1.25 MW
Total service load demand 6.4 MW
Weight of mission load 2
Weight of propulsion load 0.75
Weight of service load 1

4.3 Operability Formulation

The metric operability was defined in the previous chapter and in [13, 26] to deter-
mine the effectiveness of power systems in responding to mission loads. This metric
measures the degree to which the performance of the power system contributes to
mission effectiveness in a particular scenario. Initially, operability was equivalent to
a weighted sum of power flows to loads:

O =

∑kend

k=k0

∑I
i=1wiPi(k)∑kend

k=k0

∑I
i=1wiPmax,i(k)

, (4.1)

where I is the number of loads in the system, Pi(k) is the power consumption of load
i at discrete period (of time) k, Pmax,i(k) is the maximum (or demanded) power of
load i at period k, and wi is a mission-specific, potentially time-varying weighting
function indicating the relative importance of load i. The period of time considered
is k0, . . . kend.

Operability is therefore the sum of weighted power flows of all loads in a system
with respect to the sum of weighted maximum power flows of the loads, and it is a
widely adopted means of evaluating system performance. The connection between
this formulation of operability and MDPs is explored in the following section.

4.4 Mission Scenario

The mission state consists of a discrete state variable s, which indicates the progress.
A mission involving a sudden engagement in which the generator lineup is insuffi-
cient to meet the system’s loads is considered. The system must deliver power while
additional generation is brought online. This situation is modeled in two ways: fixed-
duration and probabilistic. The system state is the energy stored in each of the
aggregate energy magazines.
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Figure 4.2: State transition diagram for the fixed-duration model.

4.4.1 Fixed-Duration Model

In the fixed-duration model, there are N + 1 discrete states. The mission transitions
from state 1 to state N + 1 in N steps. Rewards are accumulated on the transitions
from s = 1 to s = N + 1. The possible state transitions of the fixed-duration
model are illustrated in Figure 4.2. The action consists of four variables. The first,
pml1 ∈ [0, pml,max1], is the power applied to the outer zone mission loads during the
current period. The second, pml2 ∈ [0, pml,max2], is the power applied to the inner
zone mission loads during the current period. The third, pem1 ∈ [0, pem,max1], is the
power applied to the outer zone energy magazines during the current period. The
fourth, pem2 ∈ [0, pem,max2], is the power applied to the inner zone energy magazines
during the current period.

The actions are constrained such that the total power flowing each energy storage
is limited by the available energy, and the total power flow from the generation is
limited by the available power:

(pml1 − pem1)∆t ≤ eem1 (4.2)

(pml2 − pem2)∆t ≤ eem2 (4.3)

plc + ppl + pem1 + pem2 ≤ pg,max, (4.4)

where ∆t is the time step, eem1 represents energy stored in outer zone energy mag-
azines, eem2 represents energy stored in inner zone energy magazines, plc represents
service load power, ppl represents propulsion power, and pg,max represents the maxi-
mum generator power available.
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The instantaneous reward for the mission is given by the ratio

R =
1

Vnorm

(wml(pml1 + pml2)+wlcplc + wplppl)

(wml(pml,max1 + pml,max2)+wlcplc,max + wplppl,max)
, (4.5)

where wml is the weight of mission load, wlc is the weight of service load, wpl is the
weight of propulsion load, plc,max is the maximum service load demand, ppl,max is the
maximum propulsion load demand, and

Vnorm =
1− αN

1− α
, (4.6)

with this value approaching N in limit if α = 1.
The reward is normalized so the maximum value of the value function V is one if

all load demands are satisfied.

4.4.2 Probabilistic Model

In the probabilistic model, there are two discrete states. The first state represents
the period of time in which the system operates with insufficient available generation,
and the second state represents the time when the system has sufficient generation.
Rather than modeling the interval of time required to transition between these states
deterministically as represented in the fixed-duration model, it is represented stochas-
tically. The system can transition from state 1 to state 2 in one step with a given
probability.

The probability of transition from one state to another is p which is a function of
α̂ and the total number of states, N . The probability of remaining in current state
is 1 − p. This is illustrated in Figure 4.3. The action consists of the four variables
as discussed above. The instantaneous reward function for the system is given by
(4.5). The temporal discounting parameter α̂ ∈ (0, 1] may be different than the value
α used in the fixed-duration model.

Using the fixed-duration model, a system with all load demands satisfied will have
a performance of

Vfixed =
N−1∑
k=0

αk 1

Vnorm

, (4.7)

which is unity due to the normalization factor Vnorm.
For the probabilistic model, the expected reward for a system with all load de-

mands satisfied is

Vprob =
∞∑
j=0

p(1− p)j−1 1

Vnorm

(
1− α̂j

1− α̂

)
(4.8)

=
1

Vnorm

1

1− (1− p)α̂
, (4.9)

and this is an expected value rather than a deterministic value because the number
of steps required to reach the final state is random. To ensure that the fixed-duration
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Figure 4.3: State transition diagram for the probabilistic model.

and probabilistic models are normalized equivalently, Vprob = 1, or

(1− p)α̂ = 1− 1

Vnorm

. (4.10)

This creates a degree of freedom in representing the fixed-duration scenario with a
probabilistic model. This relationship between the temporal discounting parameter
and the transition probability is illustrated in Figure 4.4.

Modeling stochastically using one state transition reduces solution run time and
complexity. It is also possible that the probabilistic model more accurately represents
some of the problem uncertainty. The degree to which the probabilistic model matches
the fixed-duration model for different configurations is considered below.

4.5 Solution Algorithm

The optimization problem is solved using value function iteration. The non-linear
optimization method fmincon in MATLAB is used with the constraints described in
the earlier section. Using fmincon, the solution is stored each time, which is later
used as the starting guess for the next iteration. In this way, a total of 100 iterations
is performed to converge to a final solution. This problem is two-dimensional for
two aggregate energy magazines. To solve the problem, the number of points in each
dimension is arbitrarily considered as 11, ranging linearly from 0 MJ to 400 MJ. In
this way, a representation of the performance, V is solved by using a specific number
of grid points for the problem.
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Figure 4.4: Temporal discounting factor α̂ with transition probability p with α = 1
and N = 12.

4.6 Results and Discussion

4.6.1 Relationship between Operability and Value Function

In Section 4.3, the operability metric was discussed as means of evaluating system
performance. In Section 4.4, the expected reward V was defined, and it was mentioned
that the two metrics are similar. In the modeling with fixed duration presented in
this paper, the discounting factor α = 1, time step ∆t = 10 and the number of
steps N = 12. The weights and load demands, i.e., the terms in the denominators of
both the operability and value functions, are constant. Hence, the operability can be
expressed as

O =

∑
k

∑
i wiPi(k)∑

k

∑
i wiPmax,i

=
1

N
∑

iwiPmax,i

∑
k

∑
i

wiPi(k).
(4.11)
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Figure 4.5: Performance of notional system for fixed-duration model.

In the same way, the value function can be expressed as

V =
1

N

∑
k

∑
iwiPi(k)∑
i wiPmax,i

=
1

N
∑

i wiPmax,i

∑
k

∑
i

wiPi(k).

(4.12)

Thus, in the given scenario with α = 1 and the denominators being constant, oper-
ability is exactly equal to the value function of the MDP. In more general situations,
these values may be expected to be correlated, but not necessarily identical.

4.6.2 Results for the Two Models

The solution to the fixed-duration model is shown in Figure 4.5. As expected, higher
initial energy in the energy magazine results in higher performance. The performance
is more highly dependent on the energy stored in the outer zone energy magazines
because the outer zone mission loads require more power. As long as a certain amount
of energy is present in the outer and inner zones, the performance saturates because
a fixed amount of energy is required to complete a fixed duration scenario.

In the probabilistic model, the problem is solved using different combinations of
temporal discounting parameter and transition probability. In particular, six tran-
sition probabilities linearly distributed between 0 and 1/N are selected along with
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Figure 4.6: Variation of rms error between fixed-duration and probabilistic model
with transition probability, p. The relatively low values of error indicate that the
two types of modeling yield almost identical results. There is little variation amongst
each of the errors inidicating that it is not dependent on the combination of transition
probability p and discounting parameter α̂.

the corresponding temporal discounting parameter from (4.10) (or Figure 4.4). Value
function iteration was performed for each combination and the rms error with respect
to the fixed-duration model was computed over the 121 grid points. This comparison
is shown in Figure 4.6.

As can be seen, the error or similarity with the fixed-duration model is not depen-
dent on the combination selected. Moreover, the solutions themselves do not appear
visually distinct. In Figure 4.7, the results with p = 0 and α̂ = 0.9167 are shown,
and in Figure 4.8, the results with p = 1/N and α̂ = 1 are shown.

These results are visually indistinguishable, which is likely a result of the manner
of ensuring consistent normalization. While the particular combination does not
appear to matter, there can be algorithmic convergence differences associated with
different choices of α̂.

As seen in the figures for the probabilistic model, the performance is higher when
the initial energy in the energy magazine is higher. Similar to the fixed-duration
model, it is more highly dependent on the energy stored in the outer zone energy
magazines. The maximum performance is however less than that of fixed-duration
model, indicating that there might be some loss in accuracy when the system is
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Figure 4.7: Performance of notional system for probabilistic model when transition
probability p = 0 and discounting parameter α̂ = 0.9167.

modeled stochastically. Although visually similar, there are some differences in the
performances as indicated by the rms errors in Figure 4.6. Hence, the choice of
modeling is a compromise between solution run time and accuracy.

4.7 Conclusion

In this chapter, MDP-based state-space models have been used to evaluate the op-
timal performance of mission-based systems in presence of regular loads and energy
magazines connected to dynamic mission loads. The mission scenarios were modeled
in two different ways: fixed-duration model and probabilistic model. Results for the
two modeling approaches have been presented to show how the two types of model-
ing resemble and vary, along with a numerical comparison of the performances. The
similarity between MDP-based performance evaluation using value function iteration
and the widely adopted mission performance evaluation metric, operability has also
been explored. In the next section, a more robust approach is considered for the
evaluation of system performance using MDP-based approach.

Copyright© Musharrat Sabah, 2024.
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Chapter 5 Robust Optimal Control-Based Evaluation Considering
System Trade-offs

5.1 Introduction

Mission-oriented power systems are designed to support the performance of specific
missions. To evaluate the potential performance, it is necessary to understand how
the system will help complete the mission when controlled optimally.

The significance of mission profile on system performance has been recognized.
In [8, 9, 56, 57], the impact of mission profile on reliability of power-electronics-based
systems was analyzed. Similarly, in [58], the reliability was predicted for multilevel
converters, and a synchronous buck dc-dc converter was used in mission profile-based
optimization of a wearable power system [59]. Mission profile-based analysis have
also been used to predict the lifetime of single-phase transformerless photovoltaic
inverters [60], to study the reconfiguration of hybrid shipboard power systems [61],
and to study the optimal sizing of hybrid electric vehicle components [62]. In addition,
the impact of mission profile on the performance of uncrewed aerial vehicles have been
discussed in [6, 7, 63].

In shipboard power systems, a mission-load oriented metric called operability has
been used [13,26]. Operability has generally been described as a weighted integral of
load power flows, which provides a quantitative measure of the ability of the power
system to meet the demand for power under different operating conditions. The
basic idea behind this approach is to evaluate the performance of the power system
by considering the power flows through the system and the importance of each load
in the overall mission. This can be achieved by defining a set of weighting factors
that reflect the criticality of each load in achieving the mission objectives. Typically,
such evaluations have either involved static load demands and weights (but perhaps
physical or cyber disruptions) with weights dictating priority [13, 26, 62]. Dynamic
load demands and weights have also been considered in which Markov chain or mission
narrative approaches are used to construct dynamic load demands and weights, but
these fixed profiles are not responsive to system performance [1, 27,37,38].

An evolution in mission-oriented power system evaluation is necessary. In par-
ticular, to develop a reasonable understanding of the potential performance of such
systems, it is necessary to consider the dynamic interplay between mission and system
because there is an intrinsic connection to mission performance. This will result in a
break from evaluation using static load profiles and weights and will serve as an im-
proved basis for system evaluation, as the basis for system control development, and
as a framework for better understanding the role of mission requirements in power
system design. This evolution, initial steps of which are described in [16,17], involves
transforming the evaluation problem into an optimal control problem, the solution of
which can reveal the potential performance of a power system implementation.

This approach of modeling the combined system and mission as a hybrid dis-
crete/continuous, stochastic/deterministic dynamic system and combining with mission-
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specific rewards to be optimized is naturally represented as a Markov decision process
(MDP). The applications of MDP-based modeling vary across literature, but the com-
mon goal is to solve an optimization problem to achieve the maximum reward (e.g.
in the form of maximum performance or minimum costs), given some constraints in
the system and its dynamics.

One area of application of mission or situation-based MDP is the optimal dispatch
of medical evacuation assets [44]. In this work, the goal was to maximize steady-
state system utility based on the number of casualties, priority level, and locations
of casualty event and ambulatory helicopters. In [45], the possibility of cyber data
attacks and system vulnerability was analyzed in a dynamic environment consisting
of smart grids. Like before, the goal was to maximize the aggregate reward (e.g.
financial benefits, system stability, etc.) based on the intruder’s current actions.

MDP-based modeling is highly useful in cases where the power system needs to
behave differently from traditional power systems, such as calamities and cases with
load fluctuations. MDP-based strategies have been used to predict hurricane prob-
ability to minimize generation costs and load curtailments [46]. A similar goal was
pursued in [47], where dynamic programming and iteration were used in the case
of extreme weather events. With the increase of renewable distributed generation,
operating distribution systems has become a challenge due to the uncertainties in the
system [49]. Therein, MDP-based modeling was used to minimize load curtailments
and load shedding given the uncertainties as system constraints. Real-time pricing
can also be predicted based on the total requested energy for residential energy man-
agement (REM) in smart grids using MDP [64].

The application of MDP-based modeling can be extended to autonomous systems
in aircraft and spacecraft. In [65], an autonomous spacecraft system has been modeled
by solving an MDP problem. In [66], the control system in an autonomous aerial
vehicle was modeled to increase flight safety and decrease mission failures to ensure
that they would avoid obstacles in hostile environments. Similarly, it has been used
to analyze the behavior through different stages of flight operations based on mission
requirements [67] and in path planning [68,69].

MDPs have also found utility closer to the application area considered herein.
In [48], the optimal power generation scheduling for shipboard power systems with
and without energy storage is solved using MDP. The goal was to minimize average
fuel consumption in a system that is dynamic in nature. Allocation of energy storage
has been considered in [50,70]. The priority of charging and discharging was developed
using MDP in [70]. In [50], MDPs have been applied for the allocation of power in
the hybrid energy storage system of an electric vehicle. Optimal power allocation
ensured optimal performance by reducing energy loss and increasing battery life.
The constraint was the fluctuation of power and the reward depended on the stored
energy and the loss of energy.

Herein, the fundamental objective is to advance the evaluation of mission-oriented
power systems. The specific contributions of this chapter toward this objective are

1. to articulate the evaluation of mission-oriented power system performance as an
optimal control problem, allowing the dynamic interaction between the system
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and the mission to be considered,

2. to demonstrate the optimal-control-based approach to evaluation in a notional,
but representative, set of system implementations and missions, and

3. to illustrate the types of system trade offs that can be considered using this
approach.

5.2 Problem Formulation

The formulation of the problem has been discussed in Chapter 3 in Section 3.3.
The Bellman equation is solved to evaluate the expected mission performance of

the system given a starting state. This allows for various system implementations
with different component ratings or interconnections to be compared objectively on
the basis of their mission performance. As a byproduct, the solution also yields the
optimal control policy for the system implementations. This understanding of how
to control the system optimally could be valuable in developing the system control
implementation.

5.3 Notional System And Missions

A notional system employing various actuators for performing different types of mis-
sions is considered. Alternative implementations are considered, and their perfor-
mance in a set of notional missions is evaluated.

The notional system and missions are explicitly not connected to any practical real
world system, but they are intended to convey many salient features such as scarcity
of resources, competing uses of resources, and multiple approaches to completing
missions. Power, energy, and time are normalized throughout.

In Mission 1 (Search and Destroy), two of the actuators are required for success.
The effectiveness of the second actuator depends on the effective application of energy
to the first actuator, and success is measured by the successful application of energy
to the second actuator. An example of such a mission might involve obtaining and
maintaining an adequate track on a target while using energy to attack the target.

In Mission 2 (Contested Transit), two of the actuators are required for success.
Success is measured by application of energy to the first actuator, but the use of the
first actuator can be limited by situational conditions that can be remedied by the
application of energy to the second actuator. An example of such a mission might
involve moving along a path which may be occasionally obstructed by targets that
can be removed by using energy to attack.

In Mission 3 (Fight or Flight), combinations of actuators may be employed to
achieve success. An example of such a mission might involve a need to escape from
a threat. Energy may be used to track and attack the threat, but energy can also be
used to move, thus evading the threat.

In these missions, success requires different applications of energy to the system’s
actuators. The parameters for the notional problem are given in Table 5.1.
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Table 5.1: Notional Problem Parameter Values

∆t 1 pu
N 60
ptrack,max 1 pu
pattack,max 1 pu
pmove,max 1 pu
βtrack 0.489 pu
β̄track 1.96 pu
βattack 9.49 pu
kmove

35
N ·20 3

√
pmove,max

pu

p̄move,max (5/35)3 pu

αm1 0.99
1
N

αm2 0.01
1
N

αm3 0.50
1
N

Pobs
3
60

pe,max ∞
pY,e,max ∞
pY,t,max 0.1

5.3.1 Mission 1 (Search and Destroy)

In this mission, a target must be tracked and neutralized. The mission state consists
of a discrete state variable s, which indicates the mission progress. When s = 1,
the target has not been adequately tracked, and this is the initial value of s. When
s = 2, the target has been adequately tracked but not neutralized. When s = 3, the
target has been neutralized. The mission action consists of two variables. The first,
ptrack ∈ [0, ptrack,max], is the power applied to tracking during the current period. The
second, pattack ∈ [0, pattack,max], is the power applied to attacking during the current
period. The probability of being in the state where the target has not been tracked
adequately in the next period is modeled as

P [sk+1 = 1] =


e

−ptrack,k
β̄track if sk = 1,

e
−pattack,k
βattack e

−ptrack,k
βtrack if sk = 2,

0 if sk = 3,

(5.1)

where β̄track > 0, βtrack > 0, and βattack > 0 are parameters that represent the
difficulty of obtaining a track on, maintaining a track on, and neutralizing a target.
A greater value of these parameters indicates that these tasks require more power to
achieve a high probability of success. Generally, βtrack ≤ β̄track. The probability of
being in the state where the target has been tracked adequately but not neutralized
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Figure 5.1: Probability of maintaining track on target versus tracking power. Power
rating of tracking actuator is vertical line.

in the next period is modeled as

P [sk+1 = 2] =


1− e

−ptrack,k
β̄track if sk = 1,

e
−pattack,k
βattack

(
1− e

−ptrack,k
βtrack

)
if sk = 2,

0 if sk = 3.

(5.2)

The probability of being in the state where the target has been neutralized in the
next period is modeled as

P [sk+1 = 3] =


0 if sk = 1,

1− e
−pattack,k
βattack if sk = 2,

1 if sk = 3.

(5.3)

The probability functions described above have a similar characteristic. While not
tied to the performance of any real actuator, these characteristics have the practical
feature of increasing probability of success with higher power with diminishing incre-
mental return. This is illustrated in Figure 5.1, where the probability of maintaining
a track on a target is plotted with respect to the tracking power.

The possible mission state transitions are summarized in Figure 5.2.
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Not tracked Tracked Neutralized

Figure 5.2: State transition diagram for Mission 1 (Search and Destroy).

The functional representing the performance of the system for Mission 1 (Search
and Destroy) is given by

V =
1

α

∞∑
k=0

αkitrans,k, (5.4)

where α ∈ (0, 1] is a parameter that represents temporal discounting. A greater value
of this parameter indicates that the future is given greater weight (i.e., is discounted
less with respect to the present). The indicator variable itrans,k is one on the transition
from sk = 2 to sk+1 = 3, and is zero otherwise. The functional is normalized such
that its maximum possible value is one, which occurs if the target is neutralized at
sk = 2.

5.3.2 Mission 2 (Contested Transit)

In this mission, movement along a path is required, but movement may occasionally
be obstructed by a target that can be neutralized by attacking. The mission state
involves one continuous and one discrete state variable. The continuous state variable
l indicates the distance traveled along a path and is initially zero. The discrete state
variable s is a logical variable that indicates whether the path is obstructed by a
target, and is initially false. The mission action consists of two variables. The first,
pmove ∈ [0, pmove,max], is the power applied to moving during the current period. The
second, pattack, is the power applied to attacking during the current period. The
distance traveled along a path in the next period is modeled as

lk+1 = lk + vmove(pmove,k)∆t, (5.5)

where the function vmove(·) mapping power applied to moving to distance traveled is
given by

vmove(pmove) = kmove
3
√
pmove, (5.6)

and kmove > 0 is a scaling parameter. The power applied to moving is limited such
that lk+1 ≤ 1:

pmove,k ≤ −v−1
move(1− lk). (5.7)
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Figure 5.3: State transition diagram for Mission 2 (Contested Transit).

Moreover, if the path is obstructed (s), the power applied to moving is limited such
that pmove ≤ p̄move,max ≤ pmove,max, which represents the inability to traverse the
path safely at higher speeds while it is obstructed. The probability of the path being
obstructed in the next period is described by

P [sk+1] =

{
Pobs s̄k

e
−pattack,k
βattack sk,

(5.8)

where Pobs ∈ [0, 1] is the probability of the path becoming obstructed in a moment 1.
The mission states have been illustrated in Figure 5.3.

The functional representing the performance of the system for Mission 2 (Con-
tested Transit) is given by

V =
1

Vnorm

∞∑
k=0

αk(lk+1 − lk). (5.9)

The normalization constant is given by

Vnorm = vmax∆t

(
1− αNnorm

1− α

)
+ αNnorm(1−Nnormvmax∆t), (5.10)

where vmax = vmove(pmove,max), and Nnorm = ⌊1/(vmax∆t)⌋. This functional is
normalized such that it is one if the path is transited at full speed without obstruction.

1Parameter values with the same symbol, e.g. βattack, described in the different missions could
have different values for each mission.
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Figure 5.4: State transition diagram for Mission 3 (Fight or Flight).

5.3.3 Mission 3 (Fight or Flight)

In this mission, a target threat exists, and a given minimum distance from the target
must be obtained through movement or through successfully tracking and neutralizing
the target. The mission state involves one continuous and one discrete state variable.
The continuous state variable l indicates the distance from the target and is initially
zero. The discrete state variable s indicates the mission progress. When s = 1, the
target has not been adequately tracked, and this is the initial value of s. When s = 2,
the target has been adequately tracked but not neutralized. When s = 3, the threat
has been neutralized. The mission action consists of three variables. The first, ptrack,
is the power applied to tracking during the current period. The second, pattack, is
the power applied to attacking during the current period. The third, pmove, is the
power applied to moving during the current period. The distance from the target in
the next period is modeled using (5.5) subject to the constraints in (5.6) and (5.7)
without the limitation associated with obstruction in Mission 2 (Contested Transit).

The probability of being in the state where the target has not been tracked ade-
quately in the next period is modeled using (5.1). The probability of the target being
in the state where the target has been tracked adequately but not neutralized in the
next period is modeled using (5.2). The probability of the target being in the state
where the target has been neutralized in the next period is modeled using (5.3). The
mission states are illustrated in Figure 5.4.

The functional representing the performance of a system for Mission 3 (Fight or
Flight) is given by

V =
1

Vnorm

∞∑
k=0

αk(l̂k+1 − l̂k), (5.11)

where

l̂k =

{
lk if sk ̸= 3,

1 if sk = 3,
(5.12)
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Figure 5.5: System 1 (Shared). This is an idealized system in which stored energy is
freely available throughout system.

and
Vnorm = vmax + α(1− vmax). (5.13)

The functional is normalized such that its maximum possible value is one, which
occurs if the target is neutralized at sk = 2 while moving at full speed.

5.4 System Implementations

Three potential system implementations are considered. Each system implementation
has its own state variable(s), distinct from the state variables associated with indi-
vidual missions described above. The system state variables are components of the
problem state variable x described earlier in Section 3.3. There are also constraints
associated with each system implementation, again distinct from those associated
with each mission, that are embedded in (3.3) as constraints on the action. The
specific state variables and constraints for each system implementation are described
below.

5.4.1 System 1 (Shared)

In System 1 (Shared), energy storage is shared between actuators as illustrated in
Figure 5.5. This represents an idealized system in which stored energy is freely
available for any purpose. In practical systems, it could be difficult for energy to be
shared as freely depending on the system ratings and topology.

The system state is a scalar, e, that represents the normalized stored energy. The
energy stored in the next period is described by

ek+1 = ek − (ptrack,k + pattack,k + pmove,k)∆t. (5.14)
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Figure 5.6: System 2 (Dedicated). Energy in system is allocated to a specific actuator
and cannot be repurposed.

The total power flowing from the energy storage is constrained by the available energy
and the power limit of the energy storage:

(ptrack,k + pattack,k + pmove,k)∆t ≤ ek (5.15)

ptrack,k + pattack,k + pmove,k ≤ pe,max, (5.16)

where pe,max ≥ 0 represents the power limit of the energy storage.

5.4.2 System 2 (Dedicated)

In System 2 (Dedicated), stored energy is dedicated to each actuator, which is illus-
trated in Figure 5.6.

There are three state variables, etrack, eattack, and emove, which represent the stored
energy associated with each actuator. The energy stored in the next period is de-
scribed by

eY,k+1 = eY,k − pY,k∆t, (5.17)

where Y ∈ {track, attack,move}.
The power flowing from each energy storage is constrained by the available energy

and the power limit:

pY,k∆t ≤ eY,k (5.18)

pY,k ≤ pY,e,max, (5.19)

where Y ∈ {track, attack,move} and pY,e,max ≥ 0 represents the power limit of the
energy storage associated with each actuator.
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Figure 5.7: System 3 (Distributed). Energy allocated to specific actuators but can
be moved with limited power through distribution system.

5.4.3 System 3 (Distributed)

A third implementation is considered, System 3 (Distributed), in which energy can be
moved from one actuator to the other, perhaps necessitating more capability from the
power distribution system, as illustrated in Figure 5.7. Hence, if there is insufficient
energy available for an action, the power distribution system can be used to move
energy among the actuators.

In System 3 (Distributed), three additional action variables, ptrack,t,k, pattack,t,k,
and pmove,t,k represent the flow of power from each actuator to the distribution system.
The energy stored in the next period is described by

eY,k+1 = eY,k − (pY,k + pY,t,k)∆t, (5.20)

where Y ∈ {track, attack,move}.
The actions are constrained such that:

eY,k − eY,e,max ≤ (pY,k + pY,t,k)∆t ≤ eY,k (5.21)

−pY,e,max ≤ pY,k + pY,t,k ≤ pY,e,max (5.22)

−pY,t,max ≤ pY,t,k ≤ pY,t,max, (5.23)

where Y ∈ {track, attack,move}, pY,t,max ≥ 0 represents the power limits of the
distribution system to accept power from each actuator, and eY,e,max ≥ 0 represents
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the stored energy limits of the energy storage associated with each actuator. Power
is conserved in the distribution system:

ptrack,t,k + pattack,t,k + pmove,t,k = 0. (5.24)

5.5 Solution Algorithm

Each problem (i.e., mission and system implementation) is solved by solving the
stochastic Bellman equation (3.3) numerically. Specifically, uniform grids over the
continuous state space are established for each discrete value in the state space. For
each grid point in the space, x, an estimated value of V̄ (x) and of the optimal action
u∗(x) is stored. Both of these estimates are initialized at zero. The estimated values
of V̄ are used with linear interpolation to approximate V̄ (·) within the grid.

To solve the optimal control problem, value function iteration is employed. At
each grid point x, the stochastic Bellman equation is solved using MATLAB R2022a’s
fmincon function, with its default parameters, with a starting point of u∗(x) using
linear interpolation to approximate V̄ (·) in (3.3). These optimization results are used
to update the approximations of V̄ (·) and u∗(·), completing one iteration. This is
performed for 100 iterations for each problem. The implementation of this algorithm
is given in Algorithm 1 below.

Algorithm 1 Value Function Iteration Implementation

X = set of grid points given in Table 5.2
N = 100
for all x ∈ X do

V̄ (x) := 0
ū∗(x) := 0

end for
V̄est := linear interpolant over (X, V̄ )
for n = 1, . . . , N do

for all x ∈ X do
From initial guess of ū∗(x) use fmincon to solve
max
u∈Ω(x)

E[R(x,u,xnext) + αV̄est(xnext)]

for V̄ (x) and ū∗(x)
subject to problem state dynamics and constraints

end for
V̄est := linear interpolant over (X, V̄ )

end for

The problems have different dimensions. For example, in Mission 1 (Search and
Destroy) with System 1 (Shared), the mission state involves no continuous state vari-
ables and the system state has a single shared energy storage variable; this problem is
one dimensional. The grid points for each problem are selected to control the scaling
such that adding a dimension results in approximately five times more grid points
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Table 5.2: Grids for Notional Problems

Mission System Implementation Grid points
Mission
1
(Search
and
Destroy)

System 1 (Shared) s ∈ {1, 2}
e ∈ [0, 120] 500 points

System 2 (Dedicated) s ∈ {1, 2}
etrack ∈ [0, 60] 50 points
eattack ∈ [0, 60]50 points

System 3 (Distributed) s ∈ {1, 2}
etrack ∈ [0, 60] 23 points
eattack ∈ [0, 60] 23 points
emove ∈ [0, 60] 23 points

Mission
2 (Con-
tested
Transit)

System 1 (Shared) s ∈ {0, 1}
l ∈ [0, 1] 50 points
e ∈ [0, 60] 50 points

System 2 (Dedicated) s ∈ {0, 1}
l ∈ [0, 1] 23 points

eattack ∈ [0, 60] 23 points
emove ∈ [0, 60] 23 points

System 3 (Distributed) s ∈ {0, 1}
l ∈ [0, 1] 16 points

etrack ∈ [0, 60] 16 points
eattack ∈ [0, 60] 16 points
emove ∈ [0, 60] 16 points

Mission
3 (Fight
or
Flight)

System 1 (Shared) s ∈ {1, 2}
l ∈ [0, 1] 50 points

e ∈ [0, 120] 50 points
System 2 (Dedicated) s ∈ {1, 2}

l ∈ [0, 1] 16 points
etrack ∈ [0, 60] 16 points
eattack ∈ [0, 60] 16 points
emove ∈ [0, 60] 16 points

System 3 (Distributed) s ∈ {1, 2}
l ∈ [0, 1] 16 points

etrack ∈ [0, 60] 16 points
eattack ∈ [0, 60] 16 points
emove ∈ [0, 60] 16 points

with the simplest one-dimensional problem using 500 grid points. Table 5.2 shows
the grid structure for each of the problems considered herein.

5.6 Results and Discussion

The set of problems, i.e., the notional missions described in Section 5.3 and sys-
tem implementations described in Section 5.4, are solved using the solution method
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Figure 5.8: Expected performance for Mission 1 (Search and Destroy) with System 1
(Shared). Higher initial allocation of energy results in higher expected performance.

described in Section 5.5. The solutions and ways in which these solutions can be
interpreted to understand overall system performance are described below.

5.6.1 Problem Solutions

For each mission with each system implementation, the stochastic Bellman equation
is solved using the method described in the previous section. Each combination of
mission and system implementation has a somewhat different structure as described
in Table 5.2, resulting in nine different problems. For example, for System 1 (Shared),
two different functions of one continuous variable are found in Mission 1 (Search and
Destroy), and two different functions of two continuous variables are found in Mission
2 (Contested Transit). Given the initial condition for each mission, the expected
performance of each problem is a function of the initial allocation of energy.

In a system implementation with one continuous energy variable, the expected
performance is one dimensional. This occurs with System 1 (Shared) in all missions
because energy is shared freely among actuators. An example of such a problem is
Mission 1 (Search and Destroy) with System 1 (Shared). The expected performance
of this problem is visualized in Figure 5.8. As expected, a higher initial allocation of
energy results in higher expected performance.

In a system implementation with two continuous energy variables for a given mis-
sion, the expected performance is two dimensional. This occurs with System 2 (Ded-
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Figure 5.9: Expected performance for Mission 1 (Search and Destroy) with System
2 (Dedicated). Higher initial energy for either actuator results in higher expected
performance. However, if very low energy is available for either actuator, the perfor-
mance is low, even if the energy available for the other actuator is high.

icated) when only two actuators contribute to mission performance (i.e., the energy
allocated to the other actuator does not affect expected performance). An example
of such a problem is Mission 1 (Search and Destroy) with System 2 (Dedicated). The
expected performance of this problem is visualized in Figure 5.9. Similar to System
1 (Shared), the expected performance is higher when higher energy is available for
each actuator (tracking or attacking). However, if insufficient energy is available for
either actuator (tracking or attacking), the expected performance will be low, even if
energy available for the other actuator is high.

In a system implementation with three continuous energy variables for a given
mission, the expected performance is three dimensional. This occurs with System 2
(Dedicated) when all actuators contribute to mission performance or with System 3
(Distributed) in all missions because energy can be moved through the distribution
system. In the same way, in a system with three continuous variables, the problem
is three-dimensional. An example of such a problem is Mission 1 (Search and De-
stroy) with System 3 (Distributed). The expected performance of this problem is
more difficult to visualize because of the higher dimensionality, but it can be plotted
against total initial energy as shown in Figure 5.10. Similar to the previous system
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Figure 5.10: Expected performance for Mission 1 (Search and Destroy) with System 3
(Distributed). The performance is higher when higher energy is available for tracking,
attacking, and moving. The vertical spread represents initial energy allocations that
are not optimal with respect to this mission. Unlike System 2 (Dedicated), the
performance is not zero unless no energy is available. If the initial energy allocation
is not optimal, energy can be moved through the distribution system.

implementations, the performance is higher when higher energy is available. There
is a vertical spread, representing initial energy allocations that are not optimal for
this mission. If insufficient energy is available for either actuator (tracking or attack-
ing), the system can move energy through the power distribution system to perform
the given mission. However, this power transfer is limited by the capability of the
distribution system, potentially resulting in lower performance.

For Missions 2 and 3 with System 3 (Distributed), similar figures can be obtained
as illustrated in Figure 5.11 and Figure 5.12. The figures for the rest of the missions
and system implementations are in Appendix A. Due to the increase in the dimension
of the problem, the figures are two-dimensional.

5.6.2 Overall Performance

If the system is expected to perform missions from a distribution of missions, it is
possible to determine the overall expected performance.
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Figure 5.11: Expected performance for Mission 2 (Contested Transit) with System 3
(Distributed). The performance is higher when higher energy is available for tracking,
attacking, and moving. The vertical spread represents initial energy allocations that
are not optimal with respect to this mission.

For example, if the three missions considered herein are expected to occur with
probabilities Pm1, Pm2, Pm3 ≥ 0 with Pm1 + Pm2 + Pm3 = 1, the overall expected
performance is given by

V̄overall = Pm1V̄m1 + Pm2V̄m2 + Pm3V̄m3. (5.25)

For each system, the performances are functions of the initial energy allocation (i.e., e
for System 1 (Shared), and eY for System 2 (Dedicated) and System 3 (Distributed)).

For System 2 (Dedicated) and System 3 (Distributed), it is possible to determine
the optimal allocation of a specified amount of energy among the actuators.

Determining the optimal allocation of a fixed amount of energy is significant
because the overall energy is strongly correlated with size, weight, and cost of the
system. This problem for a given amount of energy e can be expressed as

max
γtrack,γattack,γmove≥0

V̄overall(γtracke, γattacke, γmovee) (5.26)

subject to γtrack + γattack + γmove = 1. (5.27)

Herein, the probabilities given in Table 5.3 are assumed.
By aggregating mission performance as indicated in (5.25), it is possible to under-

stand the overall performance of the system implementations. For System 1 (Shared),
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Figure 5.12: Expected performance for Mission 3 (Fight or Flight) with System 3
(Distributed). The performance is higher when higher energy is available for tracking,
attacking, and moving.

Table 5.3: Notional Mission Probabilities

Probability of Mission 1 (Search and Destroy), Pm1 0.3
Probability of Mission 2 (Contested Transit), Pm2 0.3
Probability of Mission 3 (Fight or Flight), Pm3 0.4

the overall performance is shown in Figure 5.13. It has the expected characteristic
that overall performance increases with greater available energy, which is similar to
the expected performance of this system for individual missions (e.g., Figure 5.8).
This system can be considered an idealized system as the energy is not allocated
for any particular actuator, instead being freely available throughout the system.
Therefore, the overall performance of this system represents an upper bound on the
available performance based only on the available energy and the characteristics of
the actuators and the missions themselves. The other two system implementations
are compared against this upper bound in the following subsection.

Likewise, the overall mission performance of System 2 (Dedicated) with respect
to total initial energy is shown in Figure 5.14. In this figure, different combinations
of initial energy allocation are aggregated into one dimension. As for the individ-
ual missions (e.g., Figure 5.9), greater available energy generally results in higher
performance. The wide vertical spread indicates that overall performance is very
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Figure 5.13: Overall mission performance for System 1 (Shared). Similar to individual
mission performances for this system, higher allocation of energy results in higher
expected performance.

sensitive to the initial allocation of energy, which is expected because energy cannot
be repurposed for different uses in this dedicated system. By solving (5.26) for dif-
ferent amounts of total energy, it is possible to determine the optimal split of energy
among the actuators that will result in optimal overall performance. The result of
this optimization is shown in Figure 5.15. For lower amounts of energy, energy is
only allocated to moving, meaning that the system is unable to perform Mission 1
(Search and Destroy) and can only apply energy to moving in Mission 2 (Contested
Transit) and Mission 3 (Fight or Flight). As the total energy increases, the optimal
ratio of the allocation of the total energy shifts, with the greatest amount allocated
to tracking. The optimal overall performance for System 2 (Dedicated) is also shown
in Figure 5.14.

For System 3 (Distributed), the overall mission performance with respect to total
initial energy is shown in Figure 5.16. Like the previous system, different combina-
tions of initial energy allocation are aggregated into one dimension. As expected, the
overall performance increases with increase in initial allocation of energy. The vertical
spread indicates the sensitivity of the overall performance to the initial allocation of
energy. Unlike, System 2 (Dedicated), the vertical spread is relatively narrow, indicat-
ing that performance is considerably less sensitive to the initial allocation of energy.
This observation, which is examined further below, is expected because this system
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Figure 5.14: Overall mission performance for System 2 (Dedicated). Similar to in-
dividual mission performances for this system, higher allocation of energy results in
higher expected performance. The wide vertical spread indicates high sensitivity to
initial allocation of energy. The optimal curve indicates overall performance when
energy is initially optimally allocated among actuators.

is able to move energy through the distribution system to the actuators that need it.
By solving (5.26) for different amounts of total energy, it is possible to determine the
optimal allocation of energy among the actuators that will result in optimal overall
performance. The result of this optimization is shown in Figure 5.17. Compared with
System 2 (Dedicated), energy is only allocated to a single actuator for a relatively
smaller range of energy, and it is allocated to a different actuator (attack vs. move).
This suggests that, for the distribution of missions considered and scarce available
energy, there is more value in having energy allocated to move if it cannot be moved
through the distribution system and there is more value in having energy allocated
to attack if it can be repurposed dynamically through the distribution system. The
optimal overall performance for System 3 (Distributed) is also shown in Figure 5.16.
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Figure 5.15: Optimal split of energy among three actuators for System 2 (Dedicated).
For lower amounts of energy, energy is only allocated to moving, but ratio changes
as total energy increases.

5.6.3 Comparison of Systems

When a given amount of energy is optimally allocated among the three actuators for
each of the systems, it is possible to compare the systems on the basis of their overall
performances. This comparison is shown in Figure 5.18. In this figure, System 1
(Shared) can be understood as the ideal performance. Because available energy is
freely available, the performance of this system represents the maximum performance
available based on the ratings and performance of the actuators and the nature of the
missions. It can be seen that System 2 (Dedicated) performs worse at all amounts
of energy than System 3 (Distributed). This result is expected because System 3
(Distributed) is able to move energy through the distribution system to the actuators
that need it and System 2 (Dedicated) cannot reallocate energy to adjust to mission
demands. This difference can be characterized in terms of the difference between the
idealized System 1 (Shared) performance and the performance of System 2 (Dedi-
cated) and System 3 (Distributed), which is indicated as the performance penalty.
It can be seen that the greatest difference between the idealized and more practical
systems occurs for approximately the same amount of energy. Moreover, the peak
performance penalty for System 2 (Dedicated) is more than twice that of System 3
(Distributed). As a greater amount of energy is available, the performance penalty
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Figure 5.16: Overall mission performance for System 3 (Distributed). Similar to the
individual mission performances for this system, higher allocation of energy results
in higher expected performance. Narrow vertical spread indicates low sensitivity to
initial allocation of energy. The optimal curve indicates overall performance when
energy is initially optimally allocated among actuators.

of both practical systems diminishes and the overall performance of both approaches
that of the idealized system. The vertical gap between System 2 (Dedicated) and
System 3 (Distributed) represents the additional expected performance for System 3
(Distributed) compared with System 2 (Dedicated) for the same total energy. Like-
wise, the horizontal gap between System 3 (Distributed) and System 2 (Dedicated)
represents the additional energy that must be available to System 2 (Dedicated) in
order to have the same overall performance as System 3 (Distributed). While there
are costs associated with a distributed system, it will generally be higher performing
and require lower available energy than a dedicated system.

When an MDP is combined with a control policy, it results in a Markov reward
model. In other words, a Markov chain is paired with reward that is accumulated.
The performance values expressed above accumulate dynamically in time over sample
trajectories of the Markov chain. It is possible to visualize the way in which reward
is accumulated through Monte Carlo simulation of resultant Markov reward models.
For example, Mission 2 (Contested Transit) involves reward accumulated through
distance traveled. By sampling trajectories of the Markov reward model starting from
a given state, it is possible to visualize the dynamic differences in performance that
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Figure 5.17: Optimal split of energy among three actuators for System 3 (Dis-
tributed). There is considerably smaller range of energy for which energy is only
allocated to one actuator (attack).

result in the performance differences illustrated above. To see this, 30 pu of energy are
distributed to both System 2 (Dedicated) and System 3 (Distributed) according to the
optimal splits shown in Figure 5.15 and Figure 5.17, respectively. From this starting
state, 500 trajectories of each were sampled simulating for 100 periods. This results
in distributions of state values, actions, and performance for each system. Box plots
showing the distributions of distance traveled at each time period for each system
implementation are shown in Figure 5.19 and Figure 5.20, respectively. Specifically,
the range (with outlier excluded based on interquartile range) and the lower and
upper quartiles are shown. It can be seen that with the same amount of starting
energy, System 3 (Distributed) is generally able to reach the target distance of 1 pu
more often and more quickly than System 2 (Dedicated). This difference in time
results in a difference in accumulated performance. The sample performances for
the two systems are 0.67 and 0.74, respectively. These correspond with expected
performance values from value function iteration of 0.63 and 0.71, respectively, with
differences attributed to function approximation and truncation errors. This example
illustrates how the value function solution approximates the dynamic performance of
the system.
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Figure 5.18: Performance comparison of systems. Energy for the System 2 (Ded-
icated) and System 3 (Distributed) is optimally allocated among three actuators.
System 1 (Shared) is an idealized system and represents an upper bound on available
performance. The performance penalty is computed by comparison of more practical
systems with idealized System 1 (Shared). System 3 (Distributed) generally performs
better for given amount of energy and requires lesser energy to achieve same perfor-
mance as System 2 (Dedicated).

5.6.4 Distribution System Unavailability

The previous subsection demonstrates that System 3 (Distributed) generally outper-
forms System 2 (Dedicated), but there are potential costs related to a distributed
system. One such cost is the potential for the distribution system to be unavailable
at the moment a mission is to be performed. Such unavailability could be caused by
damage, maintenance, or other factors and would degrade the performance of Sys-
tem 3 (Distributed). Using the problem solutions above, it is possible to analyze the
performance of System 3 (Distributed) while the distribution system is unavailable.
Specifically, the optimal control of System 3 (Distributed) would follow the optimal
control of System 2 (Dedicated), but the energy would not be optimally allocated.
The performance of System 2 (Dedicated) is compared with the performance of Sys-
tem 3 (Distributed) with the distribution system both available and unavailable in
Figure 5.21. It can be seen (as in Figure 5.18) that System 3 (Distributed) outper-
forms System 2 (Dedicated) when the distribution system is available and System
2 (Dedicated) outperforms System 3 (Distributed) when the distribution system is
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Figure 5.19: Distribution of distance traveled at each time period for Mission 2
(Contested Transit) with System 2 (Dedicated). Starting from optimally allocated
30 pu of energy, 500 sample trajectories are simulated for 100 periods. The range
(with outliers excluded) and the lower and upper quartiles are shown.

unavailable. This makes conceptual sense because System 2 (Dedicated) and System
3 (Distributed) have the same topology when the distribution system is unavailable
(i.e., Figure 5.6), but System 2 (Dedicated) is optimized for maximal performance in
this configuration.

If the probability that the distribution system will be unavailable can be estimated,
it is possible to evaluate the expected performance of System 3 (Distributed). It
is assumed in the following discussion that this probability is 10%, which is likely
very high for practical distribution systems. Figure 5.22 illustrates the expected
performance of System 3 (Distributed), optimized for the distribution system being
available but subject to unavailability. It can be seen that the expected performance
is slightly lower than the performance when the distribution system is available, but
it remains significantly greater than System 2 (Dedicated).

Given that there is an expected performance penalty for distribution system un-
availability, it is possible to hedge against this unavailability. In particular, it is pos-
sible to solve for the optimal energy allocation (i.e., (5.26)) considering the assumed
probability of unavailability, effectively hedging against the unavailability. This will
result in a system with performance that is somewhat less dependent on the avail-
ability of the distribution system. The performance of such a system is shown in
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Figure 5.20: Distribution of distance traveled at each time period for Mission 2
(Contested Transit) with System 3 (Distributed). Starting from optimally allocated
30 pu of energy, 500 sample trajectories are simulated for 100 periods. The range
(with outliers excluded) and the lower and upper quartiles are shown.

Figure 5.23 and compared with the performance of System 2 (Dedicated) with the
distribution system being both available and unavailable. As without hedging, Sys-
tem 3 (Distributed) outperforms System 2 (Dedicated) when the distribution system
is available and that System 2 (Dedicated) outperforms System 3 (Distributed) when
the distribution system is unavailable. However, the range of energy for which Sys-
tem 2 (Dedicated) significantly outperforms System 3 (Distributed) is significantly
smaller as a result of the hedging.

The expected performance of System 3 (Distributed) with and without hedging is
compared with the performance of System 1 (Shared) and System 2 (Dedicated) in
Figure 5.24. With or without hedging, System 3 (Distributed) has higher expected
performance than System 2 (Dedicated). Hedging results in essentially identical ex-
pected performance as not hedging, but the performance when the distribution system
is unavailable is significantly better as seen by comparing Figure 5.21 and Figure 5.23.

5.6.5 Mission Sensitivity

Mission-oriented power systems are often designed to have a very long service life
(e.g., [22]). During this service life, the strategic environment in which these systems
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Figure 5.21: Performance comparison of systems with possibility of unavailable distri-
bution system when there is no hedging against unavailability. System 3 (Distributed)
outperforms System 2 (Dedicated) when distribution system is available, but System
2 (Dedicated) outperforms System 3 (Distributed) when it is unavailable.

Table 5.4: Assumed Mission Probabilities

Probability of Mission 1 (Search and Destroy), Pm1 0.5
Probability of Mission 2 (Contested Transit), Pm2 0.5
Probability of Mission 3 (Fight or Flight), Pm3 0.0

operate will change. Systems designed for certain missions will be tasked with new
missions over their lifetimes.

The analyses performed in the previous subsections assume a particular distribu-
tion of missions (i.e., Table 5.3). In this subsection, the assumption that the specific
distribution of missions is known at design time is relaxed. In particular, the en-
ergy allocations of System 2 (Dedicated) and System 3 (Distributed) are made with
respect to the assumed mission distribution in Table 5.4 by solving (5.26), but the sys-
tems are evaluated with respect to the actual distribution in Table 5.3. The assumed
distribution does not consider Mission 3 (Fight or Flight).

By comparing the real performance of the systems designed under the assumed
distribution with those designed under the real distribution, it is possible to under-
stand the sensitivity of performance to initial assumptions about mission distribution.
This comparison is shown in Figure 5.25. In this figure, System 1 (Shared) does not
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Figure 5.22: Performance comparison of systems with 10% probability of unavail-
able distribution system. Expected performance of System 3 (Distributed) is slightly
lower than performance when distribution system is available. Expected performance
remains significantly greater than System 2 (Dedicated).

change because there are no energy allocation decisions in this idealized system. How-
ever, the performance of System 2 (Dedicated) and System 3 (Distributed) will be
somewhat worse when the energy allocation of these systems is performed with the
assumed distribution instead of the real distribution of missions. Sensitivity is defined
here as the difference between the real performance when the systems are designed
with the real distribution and when the systems are designed with the assumed distri-
bution and is an estimate of how sensitive the resulting performance is to the assumed
mission distribution.

These results yield two observations. First, both systems are relatively insensi-
tive to the assumed mission distribution. Without considering Mission 3 (Fight or
Flight), the optimal energy allocations for both systems result in similar performance
as if this mission is considered. This suggests that the analysis approaches proposed
herein can yield meaningful results even when the specific mission environment in
which such system will operate is unknown. Second, System 3 (Distributed) has con-
siderably smaller sensitivity than System 2 (Dedicated), meaning its performance is
less sensitive to the specific mission distribution that is considered when designing it.
This seems reasonable because of the ability of this system to move energy through
the distribution system, which can help compensate for suboptimal initial energy
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Figure 5.23: Performance comparison of systems with possibility of unavailable dis-
tribution system when there is hedging against unavailability. System 3 (Distributed)
outperforms System 2 (Dedicated) when distribution system is available, but System
2 (Dedicated) outperforms System 3 (Distributed) when it is unavailable. However,
range of energy for which System 2 (Dedicated) outperforms System 3 (Distributed)
when distribution system is unavailable is significantly smaller than when no hedging
is performed.

allocation due to the assumed mission distribution.

5.7 Conclusion

The evaluation of mission-oriented power system performance is advanced by formu-
lating the evaluation as an optimal control problem. Specifically, the optimal control
problem allows the dynamic interaction between the system and the mission to be
considered directly. This approach is a natural evolution of existing simulation-based
methods, where this interaction is modeled statically. The proposed approach is
demonstrated using a notional, but representative, set of system implementations
and missions. Furthermore, examples of the types of system trade offs that can be
considered using this approach are presented and discussed. In the next chapter,
market clearing-based algorithm is introduced as a method of solving optimization
problems and its numerical challenges are explored.
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Figure 5.24: Performance comparison of systems considering the probability of distri-
bution system unavailability. Expected performance of System 3 (Distributed) with
hedging is essentially identical to expected performance without hedging and signifi-
cantly better than System 2 (Dedicated), but hedging performance is generally better
when distribution system is unavailable.
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Chapter 6 Market-Based Control in Power Electronics-Based Power
Distribution Systems and its Challenges

6.1 Introduction

Market-based control is a widely used concept for controlling complex systems that
are difficult to control and maintain. It has applications in a wide variety of power
systems.

Power-electronics-based power distribution systems are arising in many different
applications, ranging from the power systems of electric passenger vehicles [71] to
microgrids [72, 73] to shipboard electric power systems [74]. A unique characteristic
of these systems is their controllability [75, 76], which allows power to be directed
more intentionally through the system to meet control objectives.

A conceptual framework for market-based control has been presented for the op-
eration of emerging distribution systems in [77]. Optimal utilization of distributed
resources and efficient strategy for system control can be obtained through market-
based control. In [78], a multi-agent coordination system developed to provide coor-
dination has been presented. In this system, there is an electronic market on which
local control agents negotiate using strategies based on short-term microeconomics.

In [79], a bi-level optimization technique has been proposed to maximize profit
and market clearing price. Mathematical programming with equilibrium constraints
(MPEC) and Karush-Kuhn-Tucker (KKT) conditions have been used to find an op-
timal solution for the problem. Similarly, in [80], a bi-level optimization method has
been proposed for these interactions between distributed system operator (DSO) and
independent system operator, and the interactions among each of the DSOs. The
proposed optimization model was converted into MPEC formulation. In [81], an in-
tegrated approach is applied to find the market clearing price of both electricity and
heat.

Market clearing formulations have also taken power system security into ac-
count [82–84]. In [85], a market clearing procedure was used for the uncertainty
of generating units in the form of system contingencies. This had been solved us-
ing a stochastic model consisting of two stages, using Monte–Carlo simulation for
random scenario generation and as a series of deterministic optimization problems
(scenarios) including non-contingent scenarios and different post-contingency states.
The objective function consisted of the offered cost function, lost opportunity cost,
and expected interruption cost. AC power flow and security constraints of the power
system were considered to solve each optimization problem.

In [86], the market clearing method has been applied for the penetration of wind
power into the grid. Due to the variable nature of wind power, it cannot be scheduled
and dispatched in the traditional manner. It is difficult to forecast load demand using
wind speed profile. Because of the difficulty to forecast wind speed, there needs to
be a reserved amount of wind power to keep the power system stable and secure.
Integrating wind power into the traditional grid impairs security. Multi-objective
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market clearing method can be used to provide a balance between the total cost and
risk level of the system. A metaheuristic technique and a multi-objective algorithm
were adopted to derive a set of non-dominated solutions with sufficient diversity for
decision-making support.

Market clearing prices can be predicted in daily power markets using historical
prices, quantities, and other information [87]. A neural network method has been used
for fitting and extrapolation of prices and quantities where the network is a three-
layer back propagation network. In [88], a multi-objective market clearing method
has been proposed for a wind-thermal power system that has uncertainties in wind
power generation and load demand forecasts.

To enable market-based control of such systems, it is necessary that appropriate
market-clearing algorithms exist that can locate the market-clearing prices that allow
the system to operate at equilibrium. Finding the globally coordinating market-
clearing prices is a root-finding problem. In this chapter, traditional root-finding
algorithms have been used to attempt to solve the market clearing problem. The
contributions of this chapter are

1. to examine the numerical challenges of solving the root-finding problem of find-
ing the market-clearing prices using traditional root-finding algorithms by look-
ing at three very simple systems (based on a notional shipboard power system)
under three different operating conditions, and

2. to test the numerical algorithms on a more complex system: a notional MVDC
system.

6.2 Problem Formulation

The problem being solved herein is equivalent to a distributed maximization problem
where each component i (of I) consumes power (or provides power if negative) to one
or more buses:

max
P1,P2,...,PI

I∑
i=1

Ui(Pi) (6.1)

where
I∑

i=1

Pi = 0, (6.2)

where Pi is a vector describing the net power consumed by component i from each
bus and Ui(·) is a utility function that describes how much benefit is gained by that
level of power consumption. The specific entries of Pi that can be nonzero are based
on the bus connectivity of the component, and the specific values of these entries are
limited by the operating characteristics of the component (e.g., rating, efficiency).
Each component can produce utility (i.e., value to the overall control objective, with
arbitrary unit “util”).

If power at each bus is priced according to the vector Π and utility is valued at
an arbitrary price Πu > 0 (herein, 1 $/util), the profit realized by component i can
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be expressed as
Profiti(Pi) = ΠuUi(Pi)−ΠTPi. (6.3)

The decision function for that component represents its profit-maximizing operating
point and is

Fi(Π) = argmax
Pi

Profiti(Pi). (6.4)

These decision functions describe the profit-maximizing behavior of each component
and allow the components to be described using a local model depending only on the
interface conditions (i.e., prices).

If each component acts in this way, an artificial market economy is established. It
can be shown that the optimization problem in (6.4) is equivalent under reasonable
conditions to finding the market-clearing prices Π such that

F(Π) =
I∑

i=1

Fi(Π) = 0, (6.5)

where F(·) is the system decision function. The set of market-clearing prices are
the prices at which power supplied and power demanded at each bus are equal. The
equilibrium priceΠ is determined by searching for the root of this function, i.e. where
the total demand equals total supply.

The systems considered in this paper are comprised of four different fundamental
types of components: generators, interconnects, converters, and loads. Each of these
components is connected to one or more buses, and power at each bus is a commodity
in the artificial market. All power values are normalized and expressed in per-unit
(pu). The specific decision functions for each type of component are discussed in
Section 6.3.

The system decision function practically has some structural characteristics. For
example, it can be thought of as somewhat decreasing. It will not really be decreasing
everywhere, but if the ith element of F(Π) > 0 for Π with ith element Πi, there exists
∆Πi > 0 such that, Π with Πi +∆Πi makes the ith element of F(Π) ≤ 0 (and vice
versa). In other words, if there is an imbalance in power consumption at a given bus,
this imbalance can be forced to change signs by changing the price of power at that
bus sufficiently.

The system decision function is largely flat over large ranges. This occurs because
when components are operating at their rated limits or at zero, changes in prices
will not cause the component to operate above its rating or below zero. Conversely,
the decision function can have relatively large derivatives for operating points in the
interior of the operating range of the various components.

Finally, because power electronic converters are modeled to have relatively con-
stant efficiency, and the close electrical distances between buses, there is a stiffness
associated with the system decision function. Components that can transfer power
efficiently from one bus to another will shift their output dramatically in response
to relatively small differences in price between these buses. Therefore, there is a
relatively tight coupling among the prices throughout the system generally.
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6.3 Decision Functions

The systems considered are comprised of four different fundamental types of compo-
nents: generators, interconnects, converters, and loads. Each of these components is
connected to one or more buses, and power at each bus is the commodity in the artifi-
cial market. In the example system considered herein, all power values are normalized.
Each component can produce utility (i.e., value to the overall control objective), which
is valued at an arbitrary price Πu > 0 (herein, one). The profit-maximizing decision
functions of each type of component are presented in the following subsections.

6.3.1 Generator

Generators have instantaneous operating limits based on the mechanical state of the
variable (a detailed discussion is provided in [76]). The generator will not exceed its
instantaneous maximum power Pmax, but it may need to go below its instantaneous
minimum power Pmin if insufficient load exists in the system (e.g., due to a fault or
load shedding).

Such deviations (represented by ∆P ) are heavily penalized in the utility function
via parameter wtrip > 0 because they are associated with overspeed tripping of the
generator. On the other hand, output power from the generator is lightly penalized in
the utility function via parameter w > 0, which represents the cost of operating the
generator. To balance the system operation, the utility function is also penalized using
parameter ϵ by the square of the output power. On the other hand, the generator
receives revenue by selling power at its output bus at price Πbus. The overall profit
function of the generator is

Profit = ΠbusPout − Πu(wgPout + wtrip∆P +
1

2
ϵP 2

out) (6.6)

subject to

0 ≤ Pout ≤ Pmax,inst (6.7)

Pout +∆P ≥ Pmin,inst. (6.8)

The profit-maximizing output power is given by

Pout =



Πbus−wΠu

ϵΠu
Πbus ≥ ϵΠuPmin,inst + wΠu

Pmin,inst Πbus < ϵΠuPmin,inst + wΠu

and Πbus > ϵΠuPmin,inst

+(w − wtrip)Πu
Πbus−(w−wtrip)Πu

ϵΠu
Πbus ≤ ϵΠuPmin,inst

+(w − wtrip)Πu,

(6.9)

which must be limited to [0, Pmax,inst]. The negative of the output power (−Pout)
appears in the element of the generator decision function corresponding to the gen-
erator’s bus.

69



0

0.1

0.4

0.2

500.3

O
u

tp
u

t 
P

o
w

er

0.3

0

Mechanical State

0.4

0.2

Output Price

0.5

-50
0.1 -100

0 -150

Figure 6.1: Generator output power as a function of bus price and mechanical state.
The parameter ϵ is artificially much larger than used herein to emphasize the high-
slope regions.

In terms of generator ramp rate dynamics, the generator has a maximum step
parameter Pstep and a time constant τ that represent its ramping capability. The
generator can tolerate step changes to its output of Pstep and ramping output at
a rate Pstep/τ . An internal state variable Pm is a low-pass filtered version of the
generator’s output power:

dPm

dt
=

Pout − Pm

τ
. (6.10)

In discrete-time with time step ∆t, this can be represented as

Pm(t+∆t) = Pm(t) +
Pout(t)− Pm(t)

τ
∆t. (6.11)

The instantaneous minimum and maximum operating limits are given by

Pmin,inst = max{Pm − Pstep, 0} (6.12)

Pmax,inst = min{Pm + Pstep, Prating}. (6.13)

6.3.2 Converter

The converter can be thought to be controlled such that profit is maximized during
power conversion operation. In essence, the converter operates such that its decision
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function enables it to decide what the output power will be, given a set of market
prices (Π), the converter’s maximum power Pmax, the converter’s efficiency η, and
the sharing parameter ϵ. Mathematically, the profit can be represented as

Profit = ΠoutPout − Πin
Pout

η
− Πu

1

2
ϵP 2

out (6.14)

subject to 0 ≤ Pout ≤ Pmax. The profit-maximizing output power is

Pout =
Πout − Πin

η

ϵΠu

, (6.15)

which must be limited to [0, Pmax]. The input power is Pin = Pout/η. The input
power (Pin) and the negative of the output power (−Pout) appear in the elements
of the converter decision function corresponding to the converter’s input and output
buses, respectively.

6.3.3 Interconnect

Interconnects are represented very similarly with converters. Their efficiency is unity
and they are modeled as capable of bidirectional power flow. Practically, they would
also have a smaller (by rating) value of the sharing parameter ϵ. Their profit is

Profit = ΠoutPout − ΠinPout − Πu
1

2
ϵP 2

out (6.16)

subject to −Pmax ≤ Pout ≤ Pmax.
The profit-maximizing power flow through the interconnect (from “input” bus to

“output” bus) is given by

Pout =
Πout − Πin

ϵΠu

, (6.17)

which must be limited to [−Pmax, Pmax]. The input power is Pin = Pout. The input
power (Pin) and the negative of the output power (−Pout) appear in the elements
of the interconnect decision function corresponding to the interconnect’s input and
output buses, respectively.

6.3.4 Load

Each load is assumed to have a weight w corresponding to its degree of importance,
e.g. vital and nonvital loads that contributes to utility. The utility function is also
penalized using the sharing parameter ϵ by the square of the load power. The profit
derived by a load is

Profit = ΠuwPin − ΠinPin − Πu
1

2
ϵP 2

in (6.18)

subject to 0 ≤ Pin ≤ Pmax. The profit-maximizing power consumption of the load is
given by

Pin =
wΠu − Πin

ϵΠu

, (6.19)

which must be limited to [0, Pmax]. The input power (Pin) appears in the element of
the load decision function corresponding to the load’s bus.
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6.4 Numerical Algorithms for Market Clearing

Broyden’s method, a Newton-like method (e.g., [89, 90]), can be used to solve root-
finding problems without knowledge of the Jacobian matrix of the function. The
Jacobian matrix of a vector-valued function of several variables is the matrix of all its
first-order partial derivatives. Computing the Jacobian matrix is a computationally
expensive operation. Broyden’s method works by updating an estimated Jacobian of
the function as the algorithm proceeds. Herein, Broyden’s method is studied with
a starting Jacobian estimate of −I, the negative of the identity matrix, based on
the problem structure described above. As the systems considered herein are very
small and it is reasonable to calculate the Jacobian matrix analytically based on
the decision functions in Section 6.3, Newton-Raphson method is also considered,
using the analytical Jacobian matrix directly. This represents an idealized algorithm,
and its performance can be compared with Broyden’s method, which would be more
practical in realistic situations in which the Jacobian was not available.

6.5 Example System and Scenarios

The three systems considered herein, are one-, two-, and three-bus representations
of three similar systems. In each, there are two generators of different ratings and a
load. In the first system, all components are connected to a single bus. In the second
system, one of the generators is connected to a second bus through an interconnect.
In the third system, the load is connected to a third bus through a power-electronic
converter. The system configurations are shown in Figure 6.2, 6.3 and 6.4; and the
parameters of the systems are shown in Table 6.1 in the appendix.

Table 6.1: System Parameters

Parameter Value
Rated power of generator 1 0.44
Rated power of generator 2 0.06
Rated power of converter 0.35
Rated power of load 0.30
Efficiency of converter, η 0.99
Weighting of operating each generator, w 0.5
Weighting of tripping of each generator, wtrip 100
Weighting of load, w 26
Sharing parameter of generator 1, ϵ 0.0227
Sharing parameter of generator 2, ϵ 0.1667
Sharing parameter of interconnect, ϵ 0.001
Sharing parameter of converter, ϵ 0.0286
Sharing parameter of load, ϵ 0.0333

Three scenarios are considered. The first, labeled Scarcity, corresponds to a sit-
uation in which insufficient generation is available to serve a load immediately. The
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Figure 6.2: Representative System 1 with one bus, two generators, and a load.

Generator 1

Bus 2InterconnectBus 1

Load Generator 2

Figure 6.3: Representative System 2 with two buses, two generators, an interconnect,
and a load.

second, labeled Abundance, corresponds to a situation in which sufficient generation
is available. The third, labeled Overabundance, corresponds to a situation in which
less load is connected to the system than the available generation can serve without
going under its minimum instantaneous capacity. The parameters associated with
these scenarios are shown in Table 6.2.

Table 6.2: Scenario Parameters

Scarcity Abundance Overabundance
Generator 1 Pmin 0.00 0.16 0.16
Generator 1 Pmax 0.13 0.37 0.37
Generator 2 Pmin 0.00 0.01 0.01
Generator 2 Pmax 0.04 0.06 0.06
Load Pmax 0.30 0.30 0.15
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Figure 6.4: Representative System 3 with three buses, two generators, an intercon-
nect, a converter, and a load.

6.6 Results

Monte Carlo analysis of both Broyden’s method and Newton-Raphson method is
performed for starting price guesses within various ranges of the equilibrium set of
prices (i.e., uniformly distributed by up to the range in either direction independently
in each direction). The equilibrium prices for each system and scenario are given in
Table 6.3.

Table 6.3: Equilibrium Prices for Systems under Scenarios

Price
System Bus Scarcity Abundance Overabundance

1 1 25.9943 0.5060 -99.4968

2
1 25.9943 0.5060 -99.4968
2 25.9942 0.5059 -99.4968

3
1 25.729 0.5060 -99.4968
2 25.7296 0.5063 -99.4966
3 25.9944 0.5199 -100.4974

High precision is required because of the stiffness of these problems as demonstrated
herein.

The fraction of times each algorithm converges to the market-clearing set of prices
is recorded. For example, the percentage of times the algorithms converge for System
1 in the Scarcity Scenario is shown in Figure 6.5. This is defined as the probability of
convergence (%) in the figure. Similar figures emerge for other systems and scenarios.
The figures are shown in the Appendix B.
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Figure 6.5: Price convergence probability for System 1 in Scenario 1 (Scarcity). Sim-
ilar figures emerge for the other systems and scenarios.

Table 6.4: Maximum Range of Starting Prices

Scenario System Broyden’s Newton-Raphson

Scarcity
1 6.31e-4 3.98e-3
2 2.51e-6 3.98e-4
3 1.14e-6 4.25e-4

Abundance
1 2.51e-4 1.58e-3
2 3.98e-6 3.98e-4
3 6.31e-7 2.35e-4

Overabundance
1 6.31e-5 3.98e-3
2 2.51e-6 3.98e-4
3 6.31e-7 2.35e-4

From such figures, it is possible to compute the maximum range of starting prices
for which the algorithm can solve the market-clearing problem. These ranges are
shown in Table 6.4, and high values indicate that the algorithm is less sensitive to
starting guesses.

As can be seen, using the analytic Jacobian matrix results in better convergence
than estimating the Jacobian through Broyden’s method. However, even Newton-
Raphson suffers poor convergence. The reason for this is the structure of the decision
functions described in Section 6.3. The large flat regions create large ranges in which
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Figure 6.6: Average starting Jacobian rank for System 1 in Scenario 1 (Scarcity).

the Jacobian matrix will not have sufficient information (i.e., insufficient rank) to
guide the algorithm toward a solution. This is illustrated by Figure 6.6, where it
can be seen that the average starting Jacobian rank nearly identically mirrors the
probability that the Newton-Raphson algorithm will converge.

6.7 Application in a Notional MVDC System

The challenges of solving the market clearing problem are demonstrated on a larger
system, the notional medium-voltage DC (MVDC) system shown in Figure 6.7.

The system is based on a notional MVDC system developed by the Electric Ship
Research and Development Consortium [1]. Parameters for the system are shown in
Table 6.5.

The four-zone system consists of two main generators and two auxiliary generators.
The two propulsion motor drives operate at power levels corresponding with the
desired speed. The radar and the mission loads are used to engage in the mission.
The zonal loads are fed through converter modules, and each zone contains some vital
and some nonvital loads. The MVDC system has a variety of different component
types: interconnects, generators, converters, energy storage, and loads. Each of these
component types will act as firms in the artificial market-based economy and has
a decision function that specifies its profit-maximizing operation for a given set of
prices.
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Figure 6.7: Notional MVDC system. MTG signifies main turbine generator, ATG
signifies auxiliary turbine generator, PMD signifies propulsion motor drive, CM sig-
nifies converter module, R signifies radar, and ZL signifies zonal load [1]. The small
black squares are used to separate the four zones in the horizontal direction, and the
upper and lower zones in the vertical direction.

Table 6.5: Parameters of Notional MVDC System

Parameter Value
Rating of main turbine generator (MTG) 36 MW
Rating of auxiliary turbine generator (ATG) 5 MW
Total rated propulsion load 60.4 MW
Radar load 3.8 MW
Vital load per zone 0.93 MW
Nonvital load per zone 0.84 MW
Zone 1 mission load 13 MW
Zone 2 mission load 5 MW
Zone 3 mission load 7 MW

For this system as well, Monte Carlo analysis of both Broyden’s method and the
Newton-Raphson method is performed as described in the earlier section. The per-
centage of times the algorithms converge for the MVDC system is shown in Figure 6.8.

As can be seen, using the analytic Jacobian matrix yields better convergence
than estimating the Jacobian through Broyden’s method. With Broyden’s method,
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Figure 6.8: Price convergence probability for MVDC system

the solution converges in a very short range of the starting prices with very low
probability. Generally, the Jacobian matrix will not have sufficient information (i.e.,
insufficient rank) to guide the algorithms toward a solution.

6.8 Conclusion

In this chapter, the advantages to using market-based control for power electronics-
based electric power distribution systems are discussed. The practical application
of such control techniques requires an algorithm that can find the market-clearing
price. Because of the numerical structure of this problem, conventional algorithms
for solving such root-finding problems struggle.

The computational difficulties of finding accurate market clearing price in differ-
ent types of market conditions have been presented in this chapter. Three notional
systems have been tested using Broyden’s method and Newton-Raphson method, the
conventional algorithms are used to solve such root-finding problems. Results have
been illustrated for the systems under different conditions.

While these algorithms can solve the market-clearing problem, they only converge
consistently when the starting guess is extremely close to the equilibrium value. This
difficulty is caused by the numerical properties of the system decision function for
these efficient and spatially compact power electronics-based power distribution sys-
tems and will need to be resolved to apply market-based control effectively to such
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systems.
By exploiting the structure of the decision functions in Section 6.3, an algorithm

is proposed in the next chapter that is able to solve the market-clearing problem to
enable such control approaches to address the control of realistic systems.

Copyright© Musharrat Sabah, 2024.
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Chapter 7 Numerical Algorithm for Solving Market Clearing Problem in
Power Electronics-Based Power Distribution Systems

7.1 Introduction

In the previous chapter, the numerical challenges of solving the root-finding problem
of finding the market-clearing prices in power electronics-based power systems were
examined by looking at a complex notional shipboard power system and three very
simple systems (based on the notional shipboard power system). In this chapter, the
work presented in the previous chapter and in [91] has been extended. A numerical
algorithm has been proposed that solves the market clearing problem and determines
the market clearing price of the systems under different operating conditions. A com-
plex notional power system, similar to the one in [91] has been used. Three simpler
systems have been based on the complex system. The systems have been tested under
the three operating scenarios mentioned in [91]. Additionally, the proposed algorithm
has been tested using dynamic simulation.

Dynamic simulation is a very important technique used in the analysis of power
systems. System dynamics [92], control elements, disturbances [93], and load changes
[94] can be accommodated in such an approach. In cases with load unbalance, three
phase dynamic simulation can be used [95]. Fast and accurate dynamic simulation is
very useful for power system operation companies for training operators, analyzing
large sets of scenarios, assessing the dynamic security of the network in real-time or
scheduling the day ahead operation [93]. Hence, dynamic simulation can serve a useful
purpose in testing the robustness of an algorithm. In this paper, the robustness and
accuracy of the proposed market clearing algorithm has been validated using dynamic
simulation.

The specific contributions of this chapter are

1. to propose a market-based algorithm that solves the market clearing price under
numerical challenges,

2. to compare the proposed algorithm with traditional root-finding algorithms like
Broyden’s method and Newton-Raphson method for different systems, and

3. to demonstrate that the proposed market-based control is efficient in clearing
the market by using dynamic simulation.

7.2 Problem Formulation

The formulation of the problem has been discussed in Section 6.2.
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7.3 Proposed Algorithm for Solving the Market Clearing Problem

The market-clearing problem is essentially a multi-variable root-finding problem, es-
sentially finding the market-clearing set of prices Π such that F(Π) = 0.

Many algorithms traditionally used for solving such problems use the Jacobian
matrix of the function F(·). For example, Broyden’s method uses an estimate of
the inverse of the Jacobian matrix J−1

est. Newton-Raphson method uses the Jacobian
matrix directly to update the price vector. The Jacobian matrix of a vector-valued
function of several variables is the matrix of all its first-order partial derivatives.
While the Jacobian matrix may sometimes be available analytically (e.g., for the
relatively simple component models in Section 6.3), it would more generally need to
be estimated numerically, which can be computationally expensive.

Traditional algorithms for solving the problems considered herein struggle because
of certain properties of system decision functions: The Jacobian function is generally
singular because of large plateaus in the system decision function. There is high
stiffness in these problems because of the high degree of coupling between prices at
different buses.

The proposed algorithm exploits the problem structure. It maintains an estimate
of the inverse of the Jacobian matrix J−1

est using Broyden’s good method, but it makes
relaxed updates to its estimate:

J−1
est := J−1

est + ϵ
(∆Π− J−1

est∆P)

(∆ΠTJ−1
est∆P)(∆ΠTJ−1

est)
. (7.1)

This update prevents the algorithm from overcorrecting the estimate, recognizing
that the step over which the update is being calculated involves large flat regions of
the system decision function. A visual depiction of this process is shown in Figure 7.1.

In this diagram, showing a one-dimensional version of the problem, the algorithm
takes a step from a flat area of the decision function towards a point near the so-
lution. If the derivative of this function were estimated on the basis of this step, it
would significantly underestimate the magnitude of the derivative in the vicinity of
the solution. This would cause the magnitude of the inverse of the derivative to be
overestimated, which would make it appear that significantly larger steps were needed
to reach the solution, causing poor convergence behavior. Using the relaxation pa-
rameter ϵ (herein 0.05) helps the algorithm avoid overcorrection while maintaining
useful direction information in J−1

est.
Exploiting the somewhat decreasing nature of the system decision functions, it

is recognized that a zero crossing can be induced even when the decision function is
flat by moving far enough in the appropriate direction. This is used in the proposed
algorithm to take appropriate steps that create changes in the decision function even
starting in regions where the function is flat. Line searches are used to approach the
zero crossing more precisely with a tolerance of γ (herein 10−12).

The high degree of coupling between the problem’s dimensions makes it beneficial
to pursue steps in directions aligned with this coupling rather than focusing on the
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Figure 7.1: Root finding for a single dimensional problem

ordinary basis directions. Using the relaxed estimate J−1
est, it is possible to do princi-

pal component analysis using the singular value decomposition to explore the most
important directions in terms of reducing error while reflecting the coupling between
the dimensions.

Understanding the scope of the problem also provides some advantages. For
example, it is known that the solutions are never very far from 0. If the initial guess
has an error worse than starting from zero, the algorithm can start from zero instead.
Likewise, if a candidate direction does not induce a zero crossing with a sufficiently
small step M (herein 106 $/s), the algorithm proceeds with the next most important
direction.

The proposed algorithm is shown in Algorithm 2. Herein, the proposed numerical
algorithm has a starting estimate J−1

est := −I, the negative of the identity matrix,
based on the somewhat decreasing nature of the system decision function described
in Subsection 6.2 above. The algorithm proceeds until the error is reduced below δ
(herein 10−6 pu) or it fails.

The proposed algorithm is compared with some reference algorithms as described
in the next section. Monte Carlo analysis of the proposed algorithm and the reference
algorithms are then performed for starting price guesses within various ranges of the
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Algorithm 2 Proposed Algorithm

J−1
est := −I

P := F(Π)
if |F(0)| < |P| then ▷ reposition initial guess

Π := 0
P := F(Π)

end if
while |P| > δ do

USVT := J−1
est ▷ singular value decomposition

U = [u1 u2 · · ·uN ]

S =


s1

s2
. . .

sN


V = [v1 v2 · · ·vN ]
I := sort indices i in descending order of |sivT

i P|
for all i ∈ I do

s := (vT
i P)

d := −sui ▷ bracket zero crossing
if (vT

i F(Π+ d)) = s then
lb := 1
ub := 2
while (vT

i F(Π+ ub · d)) = s do
lb := ub
ub := 2 · ub
if ub > M then ▷ bound step length

skip to next direction in I
if no remaining directions, algorithm fails

end if
end while

else
lb := 0
ub := 1

end if
while ub− lb >= γ do ▷ locate zero crossing

if (vT
i F(Π+ (ub+ lb)/2 · d)) = s then

lb := (ub+ lb)/2
else

ub := (ub+ lb)/2
end if

end while
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∆Π = ub · d
Π := Π+∆Π
∆P := F(Π)−P
P := P+∆P
J−1
est := J−1

est + ϵ
(∆Π−J−1

est∆P)

(∆ΠTJ−1
est∆P)(∆ΠTJ−1

est)

▷ relaxed Broyden update
end for

end while

equilibrium set of prices (i.e., uniformly distributed by up to the range in either
direction independently in each direction). With the method proposed herein, the
numerical challenges faced in [91] can be minimized and the algorithm is able to guide
the Jacobian towards a solution, that is, towards clearing the market with appropriate
prices. The robustness of the algorithm is then tested using dynamic simulation.

7.4 Reference Algorithms

Three reference algorithms have been used for comparison with the proposed market-
clearing algorithm.

7.4.1 Broyden’s Method

The first reference algorithm is Broyden’s method, a Newton-like method (e.g., [96,
97]) that can be used to solve root-finding problems without direct knowledge of
the Jacobian matrix of the function. For practical systems in which the derivative
information associated with component decision functions may not be known, the
Jacobian matrix may not be available. Broyden’s method works by maintaining an
estimate of the inverse of the Jacobian matrix J−1

est.
The estimate of the inverse of the Jacobian matrix is initialized as J−1

est := −I,
which corresponds to the somewhat partially decreasing structure of the decision
function described above. The price vector is updated as follows:

Π := Π− J−1
estP. (7.2)

This results in a change in the price vector of ∆Π = −J−1
estP and a change in the

power imbalance vector of ∆P = F(Π+∆Π)−F(Π). Using Broyden’s good method,
the estimate of the inverse of the Jacobian matrix is updated as follows:

J−1
est := J−1

est +
(∆Π− J−1

est∆P)

(∆ΠTJ−1
est∆P)(∆ΠTJ−1

est)
. (7.3)

The algorithm terminates successfully when |P| <= δ or unsuccessfully when ∆P in
denominator is zero, ∆P = 0.
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7.4.2 Newton-Raphson Method

The second reference algorithm is the Newton-Raphson method, which uses the Ja-
cobian matrix directly to update the price vector. For the relatively simple compo-
nent models considered herein (Section 6.2), it is possible to evaluate the Jacobian
matrix analytically, but this might not be as practical for more complex system mod-
els. Using the exact Jacobian matrix eliminates any error due to estimation, and
the Newton-Raphson method might be expected to perform better than Broyden’s
method.

This method works by updating the price vector as follows:

Π := Π− J−1P. (7.4)

The algorithm terminates successfully when |P| <= δ or unsuccessfully when ∆P in
denominator is zero, ∆P = 0.

7.4.3 Fsolve Method

The third reference algorithm is MATLAB’s fsolve function with its default param-
eters. This a trust-region-dogleg algorithm and represents a more sophisticated im-
plementation of numerical root finding than the first two reference algorithms. The
algorithm is taken to be successful if it terminates with |P| <= δ.

7.5 Example Systems

7.5.1 Representative System

The convergence of the proposed market-clearing algorithm is demonstrated on a
suite of power-electronics based power systems of progressing complexity. The simpler
systems (Systems 1–3) are based on a representative power system (System 4), which
is shown in Figure 7.2. For survivability, this system is divided into four zones (Zones
1-4 from right to left) with two separate corridors providing connection between the
zones (at the bottom and top of the diagram, respectively). There are interconnects
between the zones in the corridors as well as connecting the corridors that can be
disconnected to isolate sections of the system. The system is powered by two main
generators (MG 1 and MG 2) in the inner zones and two auxiliary generators (AG
3 and AG 4) in the outer zones. These generators are connected primarily to one of
the corridors but can also be connected to the opposite corridor. This system has
a large peak propulsion load that is served by four propulsion motor drives situated
throughout the system. Like the generators, the propulsion drives are primarily
connected to one of the corridors but can also be connected to the opposite corridor.
A series of mission loads situated in each zone is fed through pairs of converters from
each corridor for redundancy. Each zone also contains service loads connected in each
zone and in each corridor.

This system is labeled System 4, and its parameters are given in Table 7.1.
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Table 7.1: Parameters of Representative System (System 4)

Parameter Value
Main generator (MG) rating 0.44 pu
Auxiliary generator (AG) rating 0.06 pu
Interconnect (I) rating 1 pu
Propulsion load total (P) rating 0.75 pu
Mission load (M) rating 0.03 pu
Service load (L) rating 0.01 pu
Propulsion drive converter (P) rating 0.19 pu
Mission load converter (C) rating 0.03 pu
Generator operating weight w 0.5 util/s/pu
Generator tripping weight wtrip 20 util/s/pu
P weight 1 util/s/pu
M weight 4 util/s/pu
L weight 2 util/s/pu
MG sharing parameter 0.0229 util/s/pu2

AG sharing parameter 0.16 util/s/pu2

I sharing parameter 0.001 util/s/pu2

P sharing parameter 0.0133 util/s/pu2

C sharing parameter 0.4 util/s/pu2

M sharing parameter 0.4 util/s/pu2

L sharing parameter 0.8 util/s/pu2

P efficiency 100%
C efficiency 99%
MG load step parameter 0.1094 pu
AG load step parameter 0.0156 pu
MG time constant 2.50 s
AG time constant 2.50 s

7.5.2 Simplified Systems

Before considering the more complex system (System 4) described above, a sequence
of simplified systems of increasing complexity is considered. The systems are based
on the representative system and successively demonstrate its salient features.

In each of the simplified systems, there are two generators, a main generator (MG)
and an auxiliary generator (AG). There is also a propulsion load (P), a mission load
(M), and a service load (L).

In the first system (System 1), all of the components are connected to a single
bus (B). In the second system (System 2), the main generator and the propulsion
load are connected to one bus (B 1), and the auxiliary generator, mission load, and
service load are connected to another bus (B 2). The buses are connected via an
interconnect. The third system (System 3) resembles System 2, but the mission load
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Figure 7.2: Diagram illustrating a complex, representative power system (System 4).
It consists of two main generators on the inner zones (MG 1 and MG 2), two auxiliary
generators on the outer zones (AG 3 and AG 4), four propulsion loads (P), mission
loads (M) fed through converter module (C), service loads (L), and interconnects (I)
to connect between buses (B).

is fed from a converter (C) connecting B 2 to a third bus (B 3) to which the mission
load is connected.

The system configurations are shown in Figure 7.3–7.5, and the parameters of the
systems are shown in Table 7.2.
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Figure 7.3: Diagram illustrating System 1. The main generator (MG), auxiliary
generator (AG), service load (L), mission load (M), and propulsion load (P) are all
connected to a single bus (B).

Table 7.2: Parameters of Simplified Systems (Systems 1–3)

Parameter Value
Main generator (MG) rating 0.44 pu
Auxiliary Generator (AG) Rating 0.06 pu
Interconnect (I) rating 1 pu
Propulsion load total (P) rating 0.75 pu
Mission load (M) rating 0.1 pu
Service load (L) rating 0.1 pu
Efficiency of converter, η 99%
Generator operating weight, w 0.5 util /s/pu
Generator tripping weight, wtrip 20 util/s/pu
P weight 1 util/s/pu
M weight 4 util/s/pu
L weight 2 util/s/pu
MG sharing parameter 0.0229 util/s/pu2

AG sharing parameter 0.16 util/s/pu2

I sharing parameter 0.001 util/s/pu2

P sharing parameter 0.0133 util/s/pu2

M sharing parameter 0.1 util/s/pu2

L sharing parameter 0.1 util/s/pu2

Propulsion load converter sharing parameter 0.0133 util/s/pu2

Mission load converter sharing parameter 0.1 util/s/pu2

Service load converter sharing parameter 0.1 util/s/pu2
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Figure 7.4: Diagram illustrating System 2. The main generator (MG) supplies power
to the propulsion load (P) through one bus (B 1) since a higher rated load requires
a higher rated generator. The mission load (M) and service load (L) are supplied
power by the auxiliary generator (AG) through another bus (B 2). The two buses
are connected via an interconnect (I).

7.5.3 Operating Scenarios

To test the proposed market-clearing algorithm, three different operating scenarios
are considered for each system. Scenario 1 (Scarcity) corresponds to a situation
in which insufficient generation is instantaneously available to serve load demand.
Scenario 2 (Abundance) corresponds to a situation in which sufficient generation is
available. Scenario 3 (Overabundance) corresponds to a situation in which less load is
connected to the system than the available generation can serve without going under
its minimum instantaneous capacity. This situation could lead to over-speed tripping
of generators and may be associated with sudden load shed events (or faults, which
could result in load being disconnected from generators). The parameters associated
with these scenarios are shown in Table 7.3.
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Figure 7.5: Diagram illustrating System 3. The main generator (MG) supplies power
to the propulsion load (P) through one bus (B 1) since it has higher rating. The
mission load (M) and service load (L) are supplied power by the auxiliary generator
(AG) through another bus (B 2). The two buses are connected via an interconnect
(I). The mission load (M) is connected to a converter module (C) via a separate bus
(B 3).

Table 7.3: Scenario Parameters for All Systems (Systems 1–4)

Scarcity Abundance Overabundance
MG Pmin,inst 0.1422 pu 0.2844 pu 0.2844 pu
MG Pmax,inst 0.3609 pu 0.4375 pu 0.4375 pu
AG Pmin,inst 0.0203 pu 0.0406 pu 0.0406 pu
AG Pmax,inst 0.0516 pu 0.0625 pu 0.0625 pu
Propulsion Load Pmax 0.25 pu 0.25 pu 0.0625 pu
Mission Load Pmax Rated Rated Rated
Service Load Pmax Rated Rated Rated

7.6 Convergence of the Proposed Algorithm and Reference Algorithms

Monte Carlo analysis of the proposed algorithm and the reference algorithms is per-
formed to understand the convergence properties of these algorithms. For a given
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Range

Equilibrium Prices

Figure 7.6: Monte Carlo sampling of starting prices.

range of starting prices, starting prices are uniformly distributed in cuboids about
the equilibrium prices for that system and scenario. These cuboids extend indepen-
dently in each dimension in both directions as shown in Figure 7.6.

For each range, 200 starting prices are considered, and each algorithm is executed
until it converges or fails. By considering increasing range values, the performance of
the algorithms with starting prices further from the equilibrium prices is considered.
Herein, 41 ranges logarithmically distributed between 10−8 and 102 are considered.

The equilibrium prices for each system and scenario are given in Table 7.4.
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Table 7.4: Equilibrium Prices for Systems under Scenarios

Price ($/s)
System Bus Scarcity Abundance Overabundance

1 1 0.9972 0.5090 -19.4948

2
1 0.9972 0.5090 -19.4948
2 0.9973 0.5091 -19.4946

3
1 0.9972 0.5090 -19.4948
2 0.9973 0.5091 -19.4946
3 1.0124 0.5193 -19.6865

4

1 0.9943 0.5090 -19.4948
2 0.9943 0.5092 -19.4946
3 0.9943 0.5092 -19.4946
4 0.9943 0.5092 -19.4946
5 0.9944 0.5092 -19.4946
6 0.9944 0.5093 -19.4946
7 0.9944 0.5093 -19.4945
8 0.9944 0.5093 -19.4945
9 0.9941 0.5090 -19.4947
10 0.9944 0.5093 -19.4946
11 0.9944 0.5093 -19.4945
12 0.9943 0.5092 -19.4946
13 0.9943 0.5092 -19.4946
14 0.9943 0.5092 -19.4946
15 0.9944 0.5093 -19.4946
16 0.9944 0.5093 -19.4946
17 1.0093 0.5193 -19.6865
18 1.0093 0.5193 -19.6865
19 1.0094 0.5195 -19.6865
20 1.0095 0.5195 -19.6865
21 0.9972 0.5126 -19.4938

High precision is required because of the stiffness of these problems as demonstrated
herein.

The fraction of times each algorithm converges for each range is recorded. For
example, the percentage of times the algorithms converge for System 1 in Scenario
1 (Scarcity) is shown in Figure 7.7. Similar figures emerge for other systems and
scenarios. The figures are shown in the Appendix C.

All of the algorithms converge when starting prices are close to the equilibrium
prices. As the range increases, Broyden’s method fails to converge first. The con-
vergence behavior of the Newton-Raphson methods and the fsolve method are nearly
identical. The proposed algorithm converges for every range considered.

Using such results, it is possible to compute the maximum range of starting prices
for which the algorithms solved the problem consistently. These ranges are shown in
Table 7.5. The low values for the reference algorithms indicate that they are very sen-
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Figure 7.7: Price convergence probability for System 1 in Scenario 1 (Scarcity). Sim-
ilar figures emerge for the other systems and scenarios. The arrow points to the plot
for the proposed algorithm.

sitive to starting guesses. Among the three reference algorithms, Broyden’s method
performs worst, which is evident from both Figure 7.7 and Table 7.5. Broyden’s
method does not consistently converge for the representative system (System 4) even
with the smallest range of starting prices. The traditional root finding algorithm,
Newton-Raphson method exhibits the same performance as the commercially avail-
able algorithm fsolve, but fsolve does not require the analytical Jacobian matrix. The
proposed algorithm converges over the full range, indicating that the algorithm is not
sensitive to the starting guesses and successfully solves the market-clearing problem
over a practically relevant range.

7.7 Dynamic Simulation of Representative System

In the previous section, it has been shown that the proposed algorithm does not suffer
from the inability to converge to a market clearing price for large ranges of starting
price unlike the reference algorithms. To further demonstrate the performance of the
proposed algorithm, a dynamic simulation of the representative system (System 4) is
performed. It is simulated for 60 s using a 0.1-s time step, and the market-clearing
problem is solved in each time step using the proposed algorithm.

The scenario that is considered involves a dynamic situation in which the system
enters different operating modes and different configurations.

The system starts with MG 1 and AG 4 online, and initialized to zero initial load-
ing condition. Each service load initially demands 0.0125 pu, and the total propulsion
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Table 7.5: Maximum Range of Starting Prices

Scenario System Broyden’s Newton-Raphson Fsolve Proposed

Scarcity

1 3.16e-5 3.16e-4 3.16e-4 ≥ 102

2 1.00e-6 5.62e-5 5.62e-5 ≥ 102

3 1.00e-6 5.62e-5 5.62e-5 ≥ 102

4 < 10−8 1.78e-5 1.78e-5 ≥ 102

Abundance

1 1.00e-4 1.00e-3 1.00e-3 ≥ 102

2 1.00e-4 1.00e-3 1.00e-3 ≥ 102

3 1.00e-6 3.16e-5 3.16e-5 ≥ 102

4 < 10−8 1.78e-5 1.78e-5 ≥ 102

Overabundance

1 1.78e-6 1.00e-4 1.00e-4 ≥ 102

2 1.78e-6 1.00e-4 1.00e-4 ≥ 102

3 1.00e-6 5.62e-5 5.62e-5 ≥ 102

4 < 10−8 1.78e-5 1.78e-5 ≥ 102

The identical values for Newton-Raphson and Fsolve are due to the sampling of
ranges (4 per decade).

demand is 0.1875 pu. At 10 s, each mission load begins to demand 0.025 pu, and
propulsion load increases to 0.25 pu. Starting at 20 s, the propulsion demand drops
to 0.0625 pu. MG 2 is brought online (at zero initial loading condition). At 40 s, the
system enters a split-plant configuration by opening I 7, 8, 10, 11, 14, 15, 18, 19, 22,
and 23, effectively separating the two main corridors. At 50 s, the propulsion demand
increases to 0.5 pu. The scenario concludes at 60 s.

Prices at different buses throughout the system tend to have similar values at
different times (i.e., approximately equal to the product of Πu and the weight of the
least valuable load being served at that time). The prices at two representative buses
are shown in In Figure 7.8. B 9 is the bus at which MG 1 is connected, and B 17 is
the bus at which M 1 is connected.

Initially, B 9 has a price of approximately $1/s/pu, representing a scarcity con-
dition caused by the generators ramping up to serve the demand and incompletely
meeting the propulsion demand. Once the generators ramp up, the price moves to
approximately $0.5/s/pu, representing an abundance condition because there is suf-
ficient available generation to meet the connected load. During this time, B 17 has
a price of $0/s/pu. There is no mission load demand, so the price on these buses is
$0/s/pu and no power is transferred to these buses through the converter modules.

When mission load demand is added to the system at 10 s, the prices (including
at B 17 at this point) again rise to approximately $1/s/pu, indicating a temporary
period of scarcity in which propulsion load is not completely met while the genera-
tors ramp up further. At 20 s, there is a sudden drop in propulsion load (faster than
the generators would nominally ramp down), causing the system to enter an over-
abundance condition with large negative prices. After the generators ramp down, the
abundance condition is restored.

When MG 2 is brought online at 30 s, there is not a strong shift in prices. Likewise,
the plant realignment at 40 s does not cause significant changes in price. Finally, there
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Figure 7.8: Bus prices for dynamic simulation. Bus 9 is the bus for main generator
1 and bus 17 is the bus for mission load 1. During the time interval between 20 s
and 21.1 s, both prices decrease to approximately −$20/s/pu (an overabundance
condition).

is again a momentary price increase (scarcity condition) associated with the increased
propulsion load at 50 s.

In Figure 7.9, the output power of the three generators is shown. Likewise, in
Figure 7.10, the total load powers for the different load types are shown. Each mission
load can be served through paralleled converter modules, and the total propulsion load
is served through four propulsion drives. Output powers from one of the converters
and one of the propulsion drives are shown in Figure 7.11. All of the power flows are
governed by the market prices represented in Figure 7.8 and determined in each time
step by the proposed algorithm.

At first, MG 1 and AG 3 are online. These two generators ramp up to meet the
initial demand, consisting of service load and propulsion load.

After 10 s, the increase in mission and propulsion load power causes an increase
in generator output power as indicated in the curve. The two generators ultimately
share load in proportion to their ratings.

After 20 s, the propulsion load drops, causing drops in the output of the generators
and the propulsion drives. At 30 s, an additional generator is brought online. The
output powers of the generators shift so that all generators are sharing proportional
to their ratings. This does not have an effect on the load powers, but it causes a very
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Figure 7.9: Generator output power for dynamic simulation.
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Figure 7.10: Load input power for dynamic simulation.
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Figure 7.11: Converter output power for dynamic simulation.

slight shift in how propulsion load is shared among the propulsion drives because of
the local availability of power.

At 40 s, the plant is realigned by separating the main corridors. Through use
of the different propulsion drives and mission load converters, the overall load can
still be more or less shared between the generators, but slight shifts are visible in the
generator output powers as well as the converter powers.

After 50 s, the propulsion load power is increased again, hence the output power
of each generator ramps up to meet the new demand.

This dynamic simulation shows how the market-clearing algorithm can be used
to solve the market-clearing problem in a wide-range of dynamic scenarios for a
representative system. The market-clearing solution at each time step (shown in
Figure 7.8) drive the power-flow solutions shown in Figure 7.9–7.11. In this way, the
market-based control approach can be implemented.

7.8 Conclusion

In this chapter, an algorithm has been proposed for solving the market-clearing prob-
lem. The market-clearing prices and the output power is obtained as a result of
this evaluation. The proposed algorithm and existing reference root-finding algo-
rithms are applied on a complex representative power system and three simplified
power systems based on the representative system under different operational scenar-

97



ios, and the convergence of the algorithms is compared. Because of the numerical
structure of the problem, conventional algorithms for solving root-finding problems
struggle. All of the algorithms generally converge when starting prices are close to
the equilibrium prices. However, as the range increases, Broyden’s method fails to
converge first, followed by Newton-Raphson method and the commercially available
algorithm fsolve. The proposed algorithm converges for every range considered. This
convergence behavior indicates that the reference algorithms are very sensitive to
starting price guesses. The proposed algorithm converges over the full range, indicat-
ing that the algorithm is robust with respect to starting guesses and successfully solves
the market-clearing problem over a practically relevant range. Dynamic simulation
has been used additionally to demonstrate the efficacy of the proposed algorithm in
clearing the market in a wide range of dynamic conditions.

Copyright© Musharrat Sabah, 2024.
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Chapter 8 Equivalence of Dynamic Programming Problem and Sequence
of Static Optimizations

8.1 Introduction

In Chapter 6, market-based control has been introduced as an alternative to central-
ized control when the overall system structure and condition, including the statuses
and internal characteristics of each component are not known globally. It reduces
a global optimization problem into a series of smaller local optimization problems
combined with finding the market clearing prices that result in market equilibrium.
Hence, under sufficient conditions, the market clearing problem is equivalent to solv-
ing the global optimization problem (e.g., [17]).In other words, the market clearing
problem is equivalent to a sequence of static optimization problems.

Static optimization means maximizing some objective function subject to a given
set of constraints at each moment in time:

max
u

U(u). (8.1)

The objective function in mathematical programming defines the criteria that
the problem optimizes. Depending on how the problem is set up, the maximum
or minimum value of the computation is usually desired [4]. Therein, a linear pro-
gramming approach is presented to model this. However, linear programming does
not always provide a unique solution. This lack of uniqueness arises when multiple
optimal solutions exist. For example, if the objective function is parallel to a con-
straint boundary or if there are multiple intersections at the same optimal value, the
linear programming problem will have several solutions that yield the same optimal
value for the objective function. This characteristic can be particularly challenging in
power systems optimization, where unique solutions might be necessary for consistent
decision-making and operational stability.

In contrast, quadratic programming extends linear programming to include quadratic
objective functions, which can model more complex relationships and nonlinearities
present in real-world problems. The objective function in mathematical program-
ming defines the criteria that the problem optimizes. For the quadratic programming
problem, the objective is to find an n-dimensional vector u in a single time step that
will

max
u

−1

2
uTHu+ cTu (8.2)

subject to

Au ≤ b, (8.3)

Aequ = beq. (8.4)
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whereA andAeq are matrices representing the inequality and equality constraints,
respectively, and b and beq are vectors representing the right-hand side of the con-
straints. The notation Au ≤ b means that every entry of the vector Au is less than
or equal to the corresponding entry of the vector b (component-wise inequality) in a
single time step.

Simulation proceeds via time steps in which the mathematical programming prob-
lem is solved in each moment. The elements of u correspond to various power flows
in a single time step. In discrete time simulation, the power flows in the system are
the solutions to the quadratic programming problem. State variables of the problem
are updated discretely based on the power flows of the current state.

On the other hand, in market-based control, the behavior of each of the individual
components can be aggregated into an overall system consumption function F(Π),
which maps the vector of bus prices Π to the net consumption of power at each bus.
The market clearing problem tries to find a set of equilibrium prices such that:

F(Π) =
I∑

i=1

Fi(Π) = 0, (8.5)

and the profit is maximized

Profiti(Pi) = ΠuUi(Pi)−ΠTPi, (8.6)

Fi(Π) = argmax
Pi

Profiti(Pi). (8.7)

Solving for the set of prices Π results in same power flow as solving (8.2).
In Chapter 2, the metric operability was introduced as a way to measure the degree

to which the performance of the power system contributes to mission effectiveness in
a particular scenario. Operability was initially represented as an integral of weighted
power flows to loads. In discrete-time form, it can be defined as

O =

∑kend

k=k1

∑I
i=1wiPi(k)∑kend

k=k1

∑I
i=1wiPmax,i(k)

, (8.8)

where I is the number of loads in the system, Pi(k) is the power consumption of load i,
Pmax,i(k) is the maximum (or demanded) power of load i, and wi is a mission-specific
weighting function indicating the relative importance of load i. k indicates the period
(of time) as an integer from k0 to kend. Hence, operability can be represented as the
performance obtained from simulation of a sequence of static optimizations:

O =
∑

U(u). (8.9)

In Chapters 3, 4, 5, dynamic optimal control has been used to represent the per-
formance of notional systems and missions. In the context of power systems, the
evolution of dynamic optimal control has been driven by the need to manage the
complexities of modern energy systems. Early applications focused on integrating
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instantaneous reward functions in continuous or discrete time to evaluate system
performance. However, these methods did not adequately capture the dynamic inter-
dependencies and uncertainties inherent in power systems. Recent advancements have
leveraged techniques such as multiperiod optimal power flow, where the optimization
problem is solved over multiple time periods, considering both current and future
states. This approach effectively transforms the dynamic problem into a sequence of
static optimizations, where each step’s solution informs the next, ensuring that the
overall control strategy is optimized over the entire planning horizon. Thus, the dy-
namic problem can also be represented as a sequence of static optimization problems,
which will be explored in this chapter. That is, all of these ideas are equivalent, as
shown in Figure 9.1.

8.2 Problem Equivalence

In Chapter 2, it was mentioned that the previous approaches to operability have
been based on integrating a discounted instantaneous reward function in continuous
time. Hence, the continuous-time operability or performance can be mathematically
represented as

V =

∫ ∞

0

e−rtR(t)dt. (8.10)

if R(t) ∈ [0, Rmax]. Here, r is the discounting rate.
In discrete-time with step ∆t, the performance V can be represented as

V =
∞∑
k=0

e−rk∆t(1− e−r∆t)

r
Rk = M

∞∑
k=0

αkRk = M
∞∑
k=0

αkR(xk,uk,xk+1), (8.11)

where, M = 1−e−r∆t

r
and α = e−r∆t, which is useful for proper normalization when

the same problem is considered with different time steps.
The optimal control problem can be represented as

max
(u0,u1,...)

E[V (x0, x1, . . . , u0, u1, . . .)]. (8.12)

The stochastic Bellman equation can be solved for

arg max
uk∈Ω(xk)

E[R(xk,uk,xk+1) + αV̄ (xk+1)]. (8.13)

Solving the Bellman equation yields the optimal action at each time step with respect
to the performance measure in (8.12).
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Figure 8.2: Diagram of representation of the notional system showing the power flows.

Alternatively, with mathematical programming, the optimal action can be found
using quadratic programming where objective function to be maximized is quadratic.
This can be formulated as:

max
uk∈Ω(xk)

−1

2
uTHu+ cTu, (8.14)

where H is a symmetric positive definite matrix representing the quadratic terms
and c is a vector representing the linear terms. Depending on the nature of the
instantaneous reward, state transitions, etc., it is possible to equate the optimal
control to mathematical programming. For example, by choosing H and c, it is
possible to equate these two as shown in subsequent sections.

8.3 Demonstration Problem

In the previous section, the quadratic programming problem was introduced as the
initial step to solving a sequence of static optimizations. In this section, details on
how quadratic programming can solve the optimization problem will be discussed.

The system being considered is shown in Figure 8.2. The power flows of each of
the components are shown to indicate which component is supplying power to the
buses and which component is getting power from the buses. The parameters of the
system are shown in Table 8.1.
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Table 8.1: System Parameters

Total generator rating, pg,max 9
Total outer zone converter rating, pc,max1 8
Total inner zone converter rating, pc,max2 4
Total outer zone mission load demand, pml,max1 3.2
Total inner zone mission load, pml,max2 1.6
Total service load demand, plc,max 6.4
Total propulsion load demand, ppl,max 1.25
Weight of mission load, wml 2
Weight of service load, wlc 1
Weight of propulsion load, wpl 0.75
Weight of discharging energy, wd 0.8

Table 8.2: Discretization Parameters

Time step, ∆t 10
Total time, texpected 120
Time scaling, tscale texpected
γscale 0.1
r log(γscale)/− tscale

There are two discrete states- the first state represents the period of time in
which the system operates with insufficient available generation, and the second state
represents the time when the system has sufficient generation. When the system
reaches state 2, the reward Rk = Rmax. The transition from state 1 to state 2 can be
modeled stochastically in one step with a given probability. The parameters required
for discretization of the problem considered in the system are shown in Table 8.2.
The probability of transition from one state to another is p:

p =
∆t

texpected
. (8.15)

The diagram of the state transition is shown in Figure 8.3.
For the system, Aeq, beq, A, b, upper bound, and lower bound are based on the

action constraints. The action u is defined by:

u =
[
pg pc1 pc2 pem1 pem2 pml1 pml2 plc ppl

]T
, (8.16)

where pg is generator power, pc1 is outer zone converter power, pc2 is inner zone
converter power, pem1 is outer zone energy magazine power, pem2 is inner zone energy
magazine power, pml1 is outer zone mission load power, pml2 is inner zone mission
load power, plc is service load power, and ppl is propulsion load power.

The actions are constrained such that the total power flowing each energy storage
is limited by the available energy, and the total power flow from the generation is
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Figure 8.3: State transition diagram.

limited by the available power:

−pg + pc1 + pc2 + plc + ppl = 0 (8.17)

−pc1 − pem1 + pml1 = 0, (8.18)

−pc2 − pem2 + pml2 = 0, (8.19)

0 ≤ pg ≤ pg,max, (8.20)

0 ≤ pc1 ≤ pc,max1, (8.21)

0 ≤ pc2 ≤ pc,max2, (8.22)

pem1∆t ≤ eem1, (8.23)

pem2∆t ≤ eem2, (8.24)

0 ≤ pml1 ≤ pml,max1, (8.25)

0 ≤ pml2 ≤ pml,max2, (8.26)

0 ≤ plc ≤ plc,max, (8.27)

0 ≤ ppl ≤ ppl,max, (8.28)

pem1 ≥ 0, (8.29)

pem2 ≥ 0, (8.30)

where eem1 is the energy of the outer zone energy magazine and eem2 is the energy of
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Table 8.3: H matrix parameters and values

ϵml,max1 0.001/pml,max1

ϵml,max2 0.001/pml,max2

ϵlc,max 0.001/plc,max

ϵpl,max 0.001/pnpl,max

the inner zone energy magazine. Matrices c and H can be defined as:

c =



0
0
0
0
0

wml

wml

wlc

wpl


, (8.31)

H =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 ϵml,max1 0 0 0
0 0 0 0 0 0 ϵml,max2 0 0
0 0 0 0 0 0 0 ϵlc,max 0
0 0 0 0 0 0 0 0 ϵlc,max


. (8.32)

The actual values of the parameters in the H matrix are given in Table 8.3 The
power flows can be used to determine the reward Rk, which accounts for the nonlin-
earities in the system:

Rk = wml(pml1 + pml2) + wlcplc + wplppl

− 1

2
ϵml1p

2
ml1 −

1

2
ϵml2p

2
ml2 −

1

2
ϵlcp

2
lc −

1

2
ϵplp

2
pl.

(8.33)

From this, the maximum reward can be determined to be:

Rmax = wml(pml,max1 + pml,max2) + wlcplc,max + wplppl,max

− 1

2
ϵml1p

2
ml,max1 −

1

2
ϵml2p

2
ml,max2 −

1

2
ϵlcp

2
lc,max −

1

2
ϵplp

2
pl,max.

(8.34)

In (8.11), the performance V was defined. Using (8.33), the performance Vsamples over
a total period of Ntime can be defined as:

Vsamples = M

Ntime∑
k=0

αkRk. (8.35)
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Table 8.4: Monte Carlo Simulation Parameter Values

Stopping time, tstop 10tscale
Total time steps, Ntime floor[tstop/∆t]
Total samples, Nsamples 300
Switching time, tswitch exprnd(repmat(texpected, 1, Nsamples)

Monte Carlo simulation can be employed to obtain the overall performance Voverall

by averaging the performance across multiple sample paths. The parameters for
Monte Carlo simulation are given in Table 8.4.

This process involves the following steps:

1. Generate Sample Paths: Multiple sample paths are generated, each repre-
senting a possible sequence of states and actions over the time horizon. Each
path simulates the system behavior under different random events and uncer-
tainties.

2. Compute Performance for Each Path: For each sample path, compute the
performance Vsamples using the equation above.

3. Average Performance: Calculate the average performance Voverall across all
sample paths to estimate the expected overall performance of the system.

The overall performance Voverall can be expressed as:

Voverall =
1

Nsamples

Nsamples∑
i=1

Vsamples,i, (8.36)

where Nsamples is the number of sample paths.
Hence, obtaining the overall performance Voverall from Monte Carlo simulation of

Vsamples validates the equivalence of solving the Bellman equation for the maximum
performance in (8.13). In other words, Monte Carlo simulation validates the estimate
of the expected performance of a control policy. Thus, this establishes the connection
between dynamic optimal control and sequence of static optimizations.

8.4 Demonstration Problem with Fixed Weights for Discharging

In the previous section, the matrix c had been defined for the values of weights of
each of the components. In a practical system, some penalty has to be assigned
for discharging power from the energy magazine. This penalty is the weight for
discharging wd. The value of wd is provided in Table 8.1. If weights are used for
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Figure 8.4: Performance comparison between MDP-based optimal control and se-
quence of static optimization for fixed discharging weights. The plot on the bottom
indicates that slightly lower performance is obtained with sequence of static opti-
mizations.

discharging energy from the energy storage, the matrix c can be updated to cnew:

cnew =



0
0
0

−wd

−wd

wml

wml

wlc

wpl


. (8.37)

This is an attempt to maximize expected reward Rk time step by time step with
a little penalty on energy.

The plot for fixed discharging weights is shown in Figure 8.4. As expected, higher
initial energy in the energy magazine results in higher performance. The performance
is more highly dependent on the energy stored in the outer zone energy magazines
because the outer zone mission loads require more power. The shapes of the two
curves are identical and mostly overlapping which indicates that the performance of
dynamic optimal control is very similar to sequence of static optimizations. There
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is however a slight decrease in performance with static optimizations as indicated by
its plot which lies below the dynamic optimal control plot.

8.5 Demonstration Problem with Varying Weights for Discharging

In the previous section, fixed weights had been used for discharging energy from the
energy storage in matrix cnew in (8.37). In a practical mission-oriented system, the
discharge of energy is not expected to occur at a constant rate. Hence, the weights
for discharging would vary in every time step. The discharging weights would be
functions of the performance V with respect to the initial allocation of energy E, i.e.,
∂V /∂E:

V [xk+1] ≈ V [xk] +
∂V

∂E
∗ E, (8.38)

With varying discharging weights, the problem is trying to maximize cnew
Tu. In

other words, it is trying to maximize the expected sum of reward Rk and the penalty,
E[R(xk,uk,xk+1) + αV̄ (xk+1)]. Here,

E[V (xk+1)] =
∑

pV [xk+1] (8.39)

= (1− p)(V1(ek+1)) + pVmax (8.40)

= (1− p)

(
V1(ek) +

∂V1

∂e
∆e

)
+ pVmax. (8.41)

The M , p, and α values are chosen to equate the mathematical programming problem
to the dynamic optimal control problem. The discharging weights are as follows:

wem1 = (1− p)
1

M

(
α∆t

∂V

∂E1

)
(8.42)

wem2 = (1− p)
1

M

(
α∆t

∂V

∂E2

)
(8.43)

The expected performance from the value function iteration in (8.13) are used
to determine the value of the discharging weight for each energy magazine at each
time step. The variation of discharging weight is shown in Figure 8.5. As seen, the
discharging weight decreases with progression of the mission in each time step.

The matrix cnew is updated at each time step to account for the varying weights
for discharging energy. Monte Carlo simulation is then performed as described in the
previous section with the updated cnew at each time step.

The performance for dynamic optimal control is compared with that for sequence
of static optimizations for varying discharging weights. Similar to the plot for fixed
discharging weight in Figure 8.4, a plot can be generated for variable discharging
weights as shown in Figure 8.6. In this case, the two plots are almost overlapping
with only slight differences between them. This indicates that static optimizations
with varying discharging weights at every time step more closely resembles dynamic
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Figure 8.5: Variation of discharging weight.

optimal control. This further validates the equivalence of the two optimization ap-
proaches. In a practical system, it is more likely for the discharging weights to vary
at each time step.

8.6 Conclusion

In this chapter, the connection between market-based control and sequence of static
optimizations has been discussed, showing the equivalence of the two optimization
approaches. The equivalence of dynamic optimal control and sequence of static op-
timization has been explored and validated with results. Moreover, the results for
static optimization with fixed and varying discharging weights have been compared
with dynamic optimal control to illustrate the dynamics of a practical system.

Copyright© Musharrat Sabah, 2024.
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Chapter 9 Summary and Opportunities for Future Developments

9.1 Introduction

In current research, the evaluation of the performance of mission-oriented systems
is advanced by formulating it as an optimal control problem. This formulation al-
lows the dynamic interaction between the system and the mission to be considered
directly. The approach of modeling the combined system and mission as a hybrid
discrete/continuous, stochastic/deterministic dynamic system and combining with
mission-specific rewards to be optimized is naturally represented as a Markov decision
process (MDP). This has been demonstrated using a notional, but representative, set
of system implementations and missions. Examples of the types of system trade-offs
using this approach have been considered.

In case of power electronics-based power systems, generally, the control objective
involves directing power to specific loads as required under the current conditions,
which can typically be formulated as a mathematical optimization problem. If the
overall system structure and condition, including the statuses and internal charac-
teristics of each component, are not known globally and there are changes in system
configuration and design, market-based control can be used instead of a centralized
control approach.

The dynamic problem can also be represented as a sequence of static optimization
problems. Quadratic programming can be used to represent the linearities and non-
linearities of the system. The elements of u correspond to various power flows in a
single time step. In discrete time simulation, the power flows in the system are the
solutions to the quadratic programming problem. This gives the reward which can
be used to determine the performance at a single time step. Monte Carlo simulation
of the performance can be used to obtain the overall performance by averaging the
performance across multiple sample paths over a total period. This gives the overall
performance across sample paths which is equivalent to solving the dynamic optimal
control for maximum performance.

Additionally, it has also been shown that the sequence of static optimizations
is equivalent to solving the market clearing problem which tries to find a set of
equilibrium prices such that the resultant system is in equilibrium. In other words:

F(Π) =
I∑

i=1

Fi(Π) = 0, (9.1)

Whereas, the static optimization problem tries to maximum some objective function
subject to a given set of constraints at each moment in time:

max
u

U(u). (9.2)

Thus, in this work, performance evaluation has been explored using dynamic opti-
mal control, market-based control, and sequence of static optimizations. In addition
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the connection between market-based control with sequence of static optimizations,
and the connection between sequence of static optimizations with dynamic optimal
control has been explored.

9.2 Future Developments

In Chapter 2, operability metric was introduced as an ability for a system to perform
during a single scenario (or vignette). It is possible to calculate operability for all
points in time at once rather than period by period. Mathematical programming can
be used to solve for power flow in each time step where the optimal power flow can
be mathematically concatenated to obtain the maximum operability. The continuity
conditions between each time step can be represented as linear equations where the
physical behavior of the system can be expressed in terms of linear equality and
inequality constraints, and the desired behavior at each time step as a quadratic
objective function. The system configuration can be set up to match the scenario
that is being considered. For example, there can be a case where the energy magazine
is lost. In such a scenario, the energy magazine would need to be turned off in the
problem configuration. If the capacity of the energy storage is reduced, this would
similarly be reflected in the problem setup. The load demands and weights need to
have the same time step as the multiperiod solution. While it is possible to calculate
maximum operability over an entire interval of time, the system configurations are
updated manually for each case in a spreadsheet. In future developments of this work,
this process of matching the system configuration for each scenario can be automated.
Moreover, the work can be expanded to include the system dynamic behavior.

In Chapter 5, various system trade-offs have been considered to optimally evaluate
the performance of different missions for different system configurations. However,
there might be brief pauses (e.g. 30s) in a mission. How the systems react for such
pauses has not been explored. In Mission 3 (Fight or Flight), a target threat exists,
and a given minimum distance from the target must be obtained through movement
or through successfully tracking and neutralizing the target. In a real scenario, there
might be multiple treats. In this case, moving away from the target or neutralizing
multiple targets at once may become tricky. Hence, it is necessary to consider how
the system would react and how the performance would vary in such a case.

In addition, expanding the problem to include more types of missions and combi-
nations of the system configurations already discussed is necessary for more accurate
representation of the system.

In Section 5.6, some results are demonstrated using two-dimensional figures even
though the nature of the problem is three-dimensional or higher. The ability to
visualize higher dimensional problems using higher dimensional figures would help
understand the relationship among the variables considered. Hence, it is necessary
to find a solution that appropriately visualizes the problems based on their nature.
One possible way might be to use pseudo axes for some dependent variables.

In Chapter 6 and 7, a centralized method has been described for finding the market
clearing price by taking advantage of the system decision functions. In future, it might
be helpful if a decentralized method of finding price is found.
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Figure 9.1: Relationship between optimization concepts.

The connection shown in Figure 9.1 has been explored in this work. However, how
market-based control relates to dynamic optimal control has not been directly ex-
plored in this work. Exploration of this connection is important in the understanding
of optimal control-based evaluation. In other words, the application of market-based
control in the notional systems in Chapters 3, 4, and 5 need to be explored. Market-
based control allows a controller with local information to provide global outcomes.
If the market-based control is combined with the weights for energy storage in 8.5,
a decision about global optimal control could be made in a completely decentralized
way.

Other than these developments, there are some general developments that could
be incorporated in future:

1. Implementation of the complex, representative power system (System 4) shown
in Figure 7.2 in a real time digital simulator (RTDS),

2. Reducing the run times of the simulations, especially problems with higher
dimensions. Exploiting the use of cluster computing could be a possible way,

3. Exploring other optimization techniques that can be used to evaluate and op-
timally control mission-oriented power system.

Overall, many progresses has been made in terms of representing systems and
modeling system-mission interactions. This research has bridged conceptual gaps
between systems that have existed for a long time. This creates a scope for continued
growth in this area.

Copyright© Musharrat Sabah, 2024.
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Appendices

Appendix A: Figures for Chapter 5
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Figure 1: Expected performance for Mission 2 (Contested Transit) with System 1
(Shared).
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Figure 2: Expected performance for Mission 2 (Contested Transit) with System 2
(Dedicated).
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Figure 3: Expected performance for Mission 3 (Fight or Flight) with System 2 (Ded-
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Appendix B: Figures for Chapter 6
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Figure 4: Price convergence probability for System 2 in Scenario 1 (Scarcity).
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Figure 5: Price convergence probability for System 3 in Scenario 1 (Scarcity).
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Figure 6: Price convergence probability for System 1 in Scenario 2 (Sufficiency).
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Figure 7: Price convergence probability for System 2 in Scenario 2 (Sufficiency).
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Figure 8: Price convergence probability for System 3 in Scenario 2 (Sufficiency).
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Figure 9: Price convergence probability for System 1 in Scenario 3 (Overabundance).
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Figure 10: Price convergence probability for System 2 in Scenario 3 (Overabundance).
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Figure 11: Price convergence probability for System 3 in Scenario 3 (Overabundance).

123



Appendix C: Figures for Chapter 7
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Figure 12: Price convergence probability for System 1 in Scenario 2 (Sufficiency).
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Figure 13: Price convergence probability for System 1 in Scenario 3 (Overabundance).
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Figure 14: Price convergence probability for System 2 in Scenario 1 (Scarcity).
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Figure 15: Price convergence probability for System 2 in Scenario 2 (Sufficiency).
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Figure 16: Price convergence probability for System 2 in Scenario 3 (Overabundance).

128



10-8 10-6 10-4 10-2 100 102

Range of starting price

0

20

40

60

80

100

P
ro

b
ab

il
it

y
 o

f 
co

n
v

er
g

en
ce

 (
%

)

Broyden's

Newton-Raphson

Fsolve

Proposed

Figure 17: Price convergence probability for System 3 in Scenario 1 (Scarcity).
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Figure 18: Price convergence probability for System 3 in Scenario 2 (Sufficiency).
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Figure 19: Price convergence probability for System 3 in Scenario 3 (Overabundance).
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