
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Electrical and 
Computer Engineering Electrical and Computer Engineering 

2024 

Cross-Layer Design of Highly Scalable and Energy-Efficient AI Cross-Layer Design of Highly Scalable and Energy-Efficient AI 

Accelerator Systems Using Photonic Integrated Circuits Accelerator Systems Using Photonic Integrated Circuits 

Sairam Sri Vatsavai 
University of Kentucky, ssr226@uky.edu 
Author ORCID Identifier: 

https://orcid.org/0000-0003-1847-3976 
Digital Object Identifier: https://doi.org/10.13023/etd.2024.143 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Sri Vatsavai, Sairam, "Cross-Layer Design of Highly Scalable and Energy-Efficient AI Accelerator Systems 
Using Photonic Integrated Circuits" (2024). Theses and Dissertations--Electrical and Computer 
Engineering. 201. 
https://uknowledge.uky.edu/ece_etds/201 

This Doctoral Dissertation is brought to you for free and open access by the Electrical and Computer Engineering at 
UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Electrical and Computer Engineering 
by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

https://uknowledge.uky.edu/
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece
https://orcid.org/0000-0003-1847-3976
https://uky.az1.qualtrics.com/jfe/form/SV_0lgcRp2YIfAbzvw
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained needed written permission statement(s) 

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing 

electronic distribution (if such use is not permitted by the fair use doctrine) which will be 

submitted to UKnowledge as Additional File. 

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and 

royalty-free license to archive and make accessible my work in whole or in part in all forms of 

media, now or hereafter known. I agree that the document mentioned above may be made 

available immediately for worldwide access unless an embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s thesis including all 

changes required by the advisory committee. The undersigned agree to abide by the statements 

above. 

Sairam Sri Vatsavai, Student 

Ishan G Thakkar, Major Professor 

Daniel Lau, Director of Graduate Studies 



Cross-Layer Design of Highly Scalable and Energy-Efficient AI Accelerator Systems
Using Photonic Integrated Circuits

DISSERTATION

A dissertation submitted in partial
fulfillment of the requirements for
the degree of Doctor of Philosophy
in the College of Engineering at the

University of Kentucky

By
Sairam Sri Vatsavai
Lexington, Kentucky

Director: Dr. Ishan G Thakkar,
Assistant Professor of Electrical and Computer Engineering

Lexington, Kentucky
2024

Copyright© Sairam Sri Vatsavai 2024



ABSTRACT OF DISSERTATION

Cross-Layer Design of Highly Scalable and Energy-Efficient AI Accelerator Systems
Using Photonic Integrated Circuits

Artificial Intelligence (AI) has experienced remarkable success in recent years,
solving complex computational problems across various domains, including computer
vision, natural language processing, and pattern recognition. Much of this success can
be attributed to the advancements in deep learning algorithms and models, particu-
larly Artificial Neural Networks (ANNs). In recent times, deep ANNs have achieved
unprecedented levels of accuracy, surpassing human capabilities in some cases. How-
ever, these deep ANN models come at a significant computational cost, with billions
to trillions of parameters. Recent trends indicate that the number of parameters
per ANN model will continue to grow exponentially in the foreseeable future. To
meet the escalating computational demands of ANN models, the hardware accelera-
tors used for processing ANNs must offer lower latency and higher energy efficiency.
Unfortunately, traditional electronic implementations of ANN hardware accelerators,
including CPUs, Graphics Processing Units (GPUs), Application-Specific Integrated
Circuits (ASICs), and Field Programmable Gate Arrays (FPGAs), have fallen short
of meeting the latency and energy efficiency requirements for processing deep ANN
models. Furthermore, the interconnection network subsystems in these electronic ac-
celerator systems, designed to facilitate large-scale data transfers between processing
cores and memory/control units within the accelerator systems, have become bottle-
necks that hinder the throughput, latency, and energy efficiency of deep ANN model
processing.

Fortunately, Photonic Integrated Circuits (PICs)-based accelerator systems, fea-
turing photonic network subsystems are promising alternatives to conventional elec-
tronic accelerators. PIC-based accelerator systems operate in the optical domain,
delivering processing at the speed of light with ultra-low latency, minimal dynamic en-
ergy consumption, and high throughput. These advantages stem from the wavelength
division multiplexing capabilities and the absence of distance-dependent impedance
in PICs. Furthermore, these characteristics enable the implementation of high-
performance photonic network subsystems within PIC-based accelerator systems.
Additionally, PIC-based accelerator systems offer inherent optical nonlinearities.



Despite these numerous advantages over electronic accelerators, PIC-based sys-
tems still encounter several challenges due to limited optical power budget, suscepti-
bility to crosstalk and other sources of noise caused by the analog operation, high area
consumption, and restricted functional flexibility of PICs. These challenges manifest
in various ways. (i) The existence of a significant trade-off between the achievable
processing core size and the supported bit precision that impedes the scalability
of processing cores. (ii) The limited reconfigurability, in terms of supported com-
puting size and precision, makes them less adaptable to modern ANN models with
diverse computational and precision demands. (iii) The reliance on electronic adder
networks for accumulation diminishes the latency and energy consumption benefits
of PIC-based accelerator systems due to frequent analog-to-digital conversions and
memory accesses involved in accumulations.

My research has contributed several solutions that overcome a multitude of these
challenges and improve the throughput, energy efficiency, and flexibility of PIC-based
AI accelerator systems. I identified and analyzed factors that affect the scalability
and reconfigurability of PIC-based AI accelerator systems. I proposed several novel
PIC-based accelerator architectures with enhancements at the circuit level, architec-
ture level, and system level to improve scalability, reconfigurability, and functional
flexibility. At the circuit level, these enhancements serve to decrease optical signal
losses, reduce control complexity, enable adaptability for various ANN processing
tasks, and lower power and area consumption. The architecture-level improvements
mitigate crosstalk noise, facilitate functional reconfigurability, enable in-situ and flexi-
ble spatio-temporal accumulation, and provide flexible support for different dataflows.
The system-level enhancements involve the integration of stochastic computing with
PIC-based accelerators to break the inherent trade-off between scalability and sup-
ported bit precision. Additionally, applying stochastic computing enhances the flex-
ibility of PIC-based accelerators, allowing them to support mixed-precision ANN
models. These cross-layer enhancements collectively contribute to the design of PIC-
based AI accelerator systems, resulting in improved throughput, energy efficiency,
scalability, and reconfigurability.

KEYWORDS: Photonic Computing, Photonic AI Accelerators, Photonic Intercon-
nects, Reservoir Computing, AI Hardware
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Chapter 1 Introduction

Artificial intelligence, especially deep learning, has revolutionized the implementation
of various real-world computing tasks such as image recognition, language translation,
and problems in autonomous cars [96, 128, 118, 92], due to its high inference accuracy.
Artificial Neural Networks (ANNs) are the building blocks of deep learning, which
attempt to mimic biological neural networks. However, these ANNs require high com-
putational effort, and to achieve higher accuracy, the model parameter count has been
increasing [198]. The trend of network size is growing exponentially for these ANNs,
leading to an exponential increment of computational effort. Traditional central pro-
cessing units (CPUs) cannot meet this computational demand, and hence various
electronic hardware accelerators have been designed for processing ANNs. These ac-
celerators include graphical processing units (GPUs), application-specific integrated
circuits (ASICs), field-programmable gate arrays (FPGAs) [198], as well as other spe-
cialized electronic solutions (e.g., IBM TrueNorth [8], Google TPU [81], Graphcore
[57] and Cerebras [30]). However, these electronic accelerators struggle to meet the
escalating energy efficiency and performance demands of modern highly scaled ANN
models due to the dwindling scaling of CMOS technology as it approaches its physical
scalability limit [176]. The demand to meet these ANN computation efforts motivates
the need for a new platform for computing, and Photonic Integrating Circuits (PIC)
based Accelerators are one such platform. This chapter briefly explains the types of
ANNs, the need for accelerators, and how PIC based Accelerators can be used for
the computation of ANNs. In addition, this chapter also briefly describes the role of
network subsystems in accelerators and the advantages of Photonic Network subsys-
tems over Electrical Network subsystems. Furthermore, this chapter also discusses
the challenges faced by PIC based Accelerators and outlines the various solutions
proposed to overcome these challenges.

1.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are a subset of artificial intelligence (AI) aimed
at solving tasks with capabilities comparable to humans. These networks draw in-
spiration from the structure and function of the human brain, seeking to replicate
the behavior of biological neurons. Fig. 1.1 illustrates a single artificial neuron and
its resemblance to a human neuron. An artificial neuron processes multiple inputs,
denoted as x0, x1, x2, with each input having an associated weight, represented as
w0, w1, w2. The output yi of the neuron is determined by Equation 1.1, where f
represents the non-linear activation function, and b denotes the bias term [96].

yi = f(
∑
i

(wixi) + b) (1.1)

These neurons are interconnected to form different layers, including an input layer,
multiple hidden layers, and an output layer. Input data is initially fed into the neural
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Figure 1.1: An artificial neuron structure analogous to human brain.

network through the input layer. The hidden layers then manipulate or process this
data to accomplish the task at hand, with the final output being generated at the
output layer. The three widely used types of artificial neural networks (ANNs) are:

• Feed Forward Neural Networks (FNN)

• Recurrent Neural Networks (RNNs)

• Convolutional Neural Networks (CNNs)

1.1.1 Feed Forward Neural Networks

Feedforward Neural Networks (FNNs), also known as Fully Connected Neural Net-
works, exhibit dense connectivity where each neuron in a layer is connected to ev-
ery neuron in the subsequent layer. Although FNNs were initially prominent, their
dense connections have led to their integration within Convolutional Neural Networks
(CNNs) or Recurrent Neural Networks (RNNs), often referred to as dense layers. Fig-
ure 1.2 depicts an FNN, typically featuring an input layer that receives input data
such as images or audio sequences. Multiple hidden layers within the network ma-
nipulate the data to generate the desired output at the output layer. The output
of these networks commonly represents probabilities associated with potential out-
comes. Each layer’s output in FNNs can be described using Equation 1.1, where Wi

denotes a weight matrix, with each entry corresponding to the connection strength
between layers.

1.1.2 Convolutional Neural Networks

Convolution Neural Networks are mainly used for image classification taking input
images to abstract information like the visual cortex system to classify an image
with unprecedented accuracy. Typically, a CNN comprises multiple convolutional
layers, pooling layers, and a few fully connected layers, as depicted in Figure 1.3.
Convolutional layers employ convolution operations to process input images. A kernel
of size k × k traverses the image, generating a single output image at each step.
This kernel moves across the input based on a Stride (S) parameter, and optionally,
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Figure 1.2: A fully connected neural network.

Figure 1.3: A convolutional Neural Network.

empty edges are added to the input based on the Padding (P ) parameter. The output
dimensions are determined by the input and kernel dimensions, along with the Stride
and Padding parameters. A convolutional layer may employ multiple kernels, known
as channels. Following a convolutional layer, there may or may not be a pooling layer,
which serves to reduce the spatial size of the representation. Towards the end of the
CNN architecture, a few dense layers are employed to produce the final output.
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Figure 1.4: A Recurrent Neural Network.

1.1.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) find extensive application in processing sequen-
tial or temporal data, including tasks such as speech recognition, natural language
processing, and time series prediction. A basic RNN architecture resembles a Feedfor-
ward Neural Network (FNN), as illustrated in Figure 1.4, but incorporates recurrent
connections. In sequential or temporal data, the current output is not solely depen-
dent on the present input but also on preceding inputs or outputs. These recurrent
connections facilitate feedback within the system, ensuring that past information re-
mains accessible within the network. Long Short-Term Memory (LSTM) [68] and
Gated Recurrent Unit (GRU) [38] are among the most commonly utilized recurrent
layers in RNNs.

1.2 Need for ANN Accelerators

Figure 1.5 depicts the relationship between the number of operations performed by
state-of-the-art artificial neural network (ANN) models and their achievable top-5
error rates on the ImageNet dataset. Notably, there’s a clear trend: as computa-
tional efforts increase exponentially, there’s a linear improvement in accuracy. This
pattern underscores the substantial computational demands associated with enhanc-
ing model performance, a trend expected to persist in the coming years. However,
traditional CPUs fall short in meeting this computational demand, highlighting the
necessity for specialized hardware capable of handling the inference and training
tasks of these ANNs. As a result, both industry and academia have proposed various
electronics-based accelerators like GPUs, ASICs, and FPGAs [59]. ASIC-based ac-
celerators for ANNs have demonstrated improved performance and energy efficiency
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Figure 1.5: Number of operations versus top-five error rate for leading ANN designs
from ImageNet classification competition. Reproduced from [20].

over conventional CPU and GPU architectures [59]. Nonetheless, these accelerators
may face challenges in meeting the future requirements of ANNs, given the slowdown
of Moore’s Law, which limits the computational and performance-to-watt ratio ca-
pabilities of emerging electronic processors. Additionally, a significant concern with
these accelerators lies in their use of metallic interconnects for data movement, which
can suffer from scalability issues, leading to bandwidth, latency, and energy ineffi-
ciencies in modern-day processors. Figure 1.6 illustrates the performance density of
various ASIC and FPGA-based accelerators. It becomes evident that the number
of operations required to compute a neural network increases at a faster rate than
hardware performance can keep up with. In pursuit of better power density, GPUs
implement specific lower fixed-point arithmetic units. However, the performance den-
sity of these accelerators is heavily reliant on the feature size, which is directly linked
to Moore’s Law. With the slowdown of Moore’s Law, the feature size cannot be re-
duced beyond a certain point, impacting computational improvement, as seen in the
case of GPUs over the past few years. Therefore, increasing the performance of these
electronic-based accelerators to meet the growing demands of ANN computation may
prove challenging. Moreover, the operating speed of these accelerators is limited to
a range of a few GHz, highlighting the need for a new hardware platform capable of
performing ANN computations with higher performance and energy efficiency.

Among the available alternative platforms, Photonic Integrated Circuits (PICs)
are promising alternative for the electronic accelerators. Figure 1.7 illustrates the per-
formance density achieved by various ANN accelerator platforms. Notably, photonics-
based accelerators stand out for their ability to attain higher performance density
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Figure 1.6: Performance density (PD) of leading GPU and ASIC platforms. To catch
up with the required number of operations, simply increasing the chip area is not
feasible. Reproduced from [20].

compared to electronic-based accelerators, all while maintaining equivalent or even
superior energy efficiency. This superiority is attributed to the use of photonic in-
tegrated circuits (PICs) in photonics-based accelerators, which enable both compu-
tation and communication in the optical domain. PICs offer several advantages,
including ultra-low latency and high bandwidth, owing to dense wavelength division
multiplexing. Moreover, the integration of PICs with CMOS electronics manufac-
turing, particularly through silicon photonics, presents a cost-effective solution. Of
particular significance is their capability to perform multiply-accumulate (MAC) op-
erations, which are extensively utilized in ANN inference tasks. Additionally, the
inherent nonlinearities of PICs present opportunities for their utilization in various
AI tasks. All of these advantages position PIC-based accelerators as highly suitable
candidates for designing AI accelerators.

1.3 Photonic Integrated Circuits Based AI Accelerators

Photonic Integrated Circuits (PICs) have been widely used in high-speed commu-
nication links due to their capability of transmitting data at rates of tens of Gb/s.
Additionally, to overcome the metallic interconnect bandwidth and energy bottle-
necks, PIC-based photonic interconnects are considered as promising solutions. Pho-
tonic links have already displaced metallic links for data transfer at practically every
level of the computing hierarchy and are now being investigated for on-chip integra-
tion. Remarkably, these PICs can be used to perform matrix-vector multiplication
or matrix-matrix multiplication (GEMM) operations that can be leveraged in ANN
models like FNNs or CNNs [116], and they also exhibit rich non-linearity that can
be employed in Reservoir Computing [140], a less complex counterpart of RNNs.
Due to these capabilities, PICs have been used in various computing applications
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Figure 1.7: Performance Density (MAC/s/mm2) versus Energy Efficiency (J/MAC)
of various ANN accelerator platforms. Reproduced from [41].

[163, 144, 72, 22, 143, 131, 142, 53, 11, 39, 89].
Unlike electronic-based accelerators, PIC-based accelerators detect and process in-

formation directly in the optical domain, offering not only higher bandwidths, lower
latencies, and multiple options for signal multiplexing (wavelength, spatial modes,
polarization), but also various non-linearities not present or difficult to attain in elec-
tronics [179]. Additionally, PIC-based accelerators address the fan-in and fan-out
problems with linear algebra processors as their operational bandwidth can approach
the photodetection rate (typically in the hundreds of GHz), which is orders of magni-
tude higher than electronic systems today that operate at a clock rate of a few GHz
[34].

Considering these benefits, PICs have been used for Reservoir Computing, which
is utilized for performing temporal tasks. Similar to ANNs, a Reservoir Computer
consists of an input layer and an output layer, and instead of hidden layers, it has
a reservoir that consists of randomly connected nodes. The weights corresponding
to reservoir nodes are randomly assigned and are not trained. Only the weights
of output layer nodes are trained, thus reducing the complexity of training. This
enables the physical implementation of reservoir computing. PICs such as Mach
Zehnder interferometers (MZI), Microring Resonators (MRR), and Semiconductor
Optical Amplifiers (SOA) have demonstrated their capability as nonlinear nodes in
the reservoir [53, 11, 183, 67, 184, 89, 39, 115].

Furthermore, prior works have extensively focused on designing PIC-based acceler-
ators to accelerate dot product operations, which are the core computing requirement
in ANN inference. In CNNs, around 80% of the total processing time is taken by con-
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Figure 1.8: Illustration of a convolution operation and its equivalent vector dot prod-
uct operation between Input (6x6) and Kernel (3x3).

volution operations [198]. The convolution operation is analogous to a dot product
between two vectors. As shown in Figure 1.8, the input and kernel are transformed
into vectors X and K. The output of the dot product between these is equivalent to
O11. Hence, a dot product accelerator can perform convolutions, and several PIC-
based architectures were proposed to perform this operation [169, 211, 201]. Similarly,
in FNNs, the dense matrix-vector multiplication can be decomposed into dot product
operations, and the dot product core can be used for executing FNNs as well. Any
dot product core is composed of multiple dot product units that compute parallel
dot product operations. However, to meet the required computation efficiency, co-
design of PIC and electronic circuits is necessary. Figure 1.9 illustrates an overview
of a co-designed PIC-based accelerator where the PIC-based DPU is only responsible
for computing dot product operations, while Electronic Circuitry, generally FPGA,
performs all the pre-processing, post-processing, and controlling of the DPU. The
pre-processing involves decomposing and mapping for ANN onto each DPU, and
post-processing can consist of performing pooling, activation, etc., on the output. In
case the dot product operation requires a size greater than the DPU, a partial sum is
produced by the DPU, and FPGA is notified using feedback. Each DPU may perform
more than one dot product operation simultaneously, and multiple such dot product
units controlled by the same FPGA can improve the performance of the accelerator.
The interconnection and communication between these multiple DPUs are identical
to many-core systems in current processors.

Fig 1.10 illustrates the above-discussed co-design approach in a more detailed
manner. In the accelerator, an FPGA loads the ANN model information from the
memory and performs pre-processing before calling the DPUs. The digital data is
first converted to analog using DAC arrays. The accelerator has k by k DPUs, and
the FPGA is responsible for allocating the dot product requests to the DPUs. The
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Figure 1.9: Overview of the co-designed PIC based accelerator for CNNs. Reproduced
from [34].

dot product units perform the required dot product operations and communicate the
results to the FPGA using Photonic Interconnects. To avoid the communication bot-
tlenecks created by electrical interconnects and fully leverage the performance benefits
of PIC-based accelerators, photonic interconnects should be employed instead of elec-
trical interconnects. The outputs generated are again converted back to the digital
domain using ADC arrays. The FPGA, after obtaining the output values, performs
other operations involved in ANN, such as activation, max-pooling, or normalization.

Any PIC-based DPU requires four components to perform computation. (1) To
convert the data into an optical domain, for example, modulators (2) Optical data
carriers for transporting data in the optical domain to the computation device, for
example, waveguides, optical fiber, etc (3) Photonic devices capable of performing
computation, for example, MZI, MRR, VCSEL, etc.(4) Photodetectors for convert-
ing the data back to the electrical domain. Among the photonic computing devices,
MRRs provide better area efficiency, high bandwidth, and low dynamic energy con-
sumption. Therefore, we focus on the challenges of MRR-based accelerators. In
the next subsection, we will cover the background of the Microring Resonator and
its application in reservoir computing, dot product operation, and photonic network
subsystems.

1.3.1 Fundamentals: Microring Resonator

A microring resonator (MRR) is an optical waveguide looped to itself as shown in
Fig. 1.11 it is in resonance when the optical length of the resonator is exactly a whole
number of wavelengths. Most widely used configurations are all pass MRR (ref Figure.
1.11(a)) and add drop MRR (ref Figure. 1.11(b)). In Add drop configuration, if the
incoming wavelength λin is in resonance, then all the incoming light is coupled into
the MRR and no response is observed at throughput. The coupled light is dropped
at the drop port. The resonance wavelength of MRR is dependent on the radius (R)
and effective refractive index (neff ). The resonance wavelength of the MRR is given

9



CHAPTER 1. INTRODUCTION 10

Figure 1.10: A detailed illustration of a co designed PIC based dot product accel-
erator with FPGA as controller unit, L by K DPUs interconnected with photonic
interconnects.

Figure 1.11: (a) An all pass microring resonator(MRR) (b) An add-drop MRR with
radius R, resonance wavelength λ.



by the Eq 1.2.

λres =
L ∗ neff
m

(1.2)

where λres represents the resonance wavelength of the MRR, L denotes the round
trip length of the MRR given by 2πR, neff stands for the effective refractive index
of the MRR, and m is an integer. The λres of the MRR can be altered by changing
the R and neff . The neff can be modified by using electro-optic tuning [28], which
injects or removes charge carriers from the Si core of an MRR. Thermo-optic tuning
alters the neff by changing the temperature of the MRR [28]. MRRs are wavelength
division multiplexing (WDM) compatible devices that resonate at a specifically de-
signed wavelength and remain quiescent at all other wavelengths. Below, we discuss
the MRR computation capabilities.

1. Reservoir Computing with MRR
The MRRs can provide power-dependent nonlinear responses due to effects
such as two-photon absorption (TPA) and variation in the nonlinear refractive
index [39]. They exhibit a rich nonlinear response at the drop port, making
them suitable candidates for reservoir nodes [115]. In prior work [115], a 5 × 5
reservoir of randomly interconnected MRRs with randomly positioned feedback
loops was created, followed by a simple perceptron. This reservoir showcased its
computational capability by classifying digital words with a small classification
error of 0.1% and 0.5%. Similarly, another MRR-based reservoir [103], shown
in Fig. 1.12, was able to perform on par with state-of-the-art counterparts on
a nonlinear boolean task under various operating conditions.

2. Dot Product Operation with MRR
Figure 1.13(a) illustrates the through-port transmission of the MRR and its
passband. The input wavelength at the input port is represented by λin. To
imprint a particular input value x1 onto λin, the λres of the MRR is shifted to
the left using electro-optic tuning. Now, λin overlaps with the passband at x1,
and the amplitude of λin is changed to x1. Similarly, to imprint a value x2, the
MRR’s λres is further shifted to the left as shown in Figure 1.13. Thus, a value
can be imprinted on λin by an MRR if the MRR changes the amplitude of λin to
the input value x1. On the same waveguide, another MRR operating at this λres
can imprint weight value w1 onto the x1-imprinted λin, resulting in an amplitude
equivalent to x1 ·w1. Since MRRs are WDM-compatible devices, we can cascade
multiple MRRs to perform these products and use a photodetector at the end
of the waveguide to perform the summation of these products, achieving the
dot product operation.

The Figure 1.14 illustrates a 4×4 dot product operation using a set of cas-
caded MRRs. The first set of MRRs imprints the input vector values i1, i2, i3, i4
onto the wavelengths λ1, λ2, λ3, λ4, respectively. Subsequently, the second set
of MRRs imprints the weight vector values w1, w2, w3, w4 onto the same wave-
lengths, resulting in products x1 · w1, x2 · w2, x3 · w3, x4 · w4. These products
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Figure 1.12: Illustration the 4 × 4 swirl topology of the photonics reservoir under
investigation. Each node is a nonlinear microring resonator. Reproduced from [39].

Figure 1.13: (a) The through port transmission of a MRR with pass band and input
wavelength operating at λin (b) MRR pass band being shifted to the left to imprint
amplitude value x1 on λin (c) MRR pass band is shifted further to the left to imprint
amplitude value x2 on λin.

are obtained by modulating the amplitudes of the wavelengths λ1, λ2, λ3, λ4 ac-
cordingly. Finally, at the end of the waveguide, a photodetector performs the
summation by generating a photocurrent Ipd proportional to the result of the
dot product operation between vectors I and W .

3. Photonic Network Subsystems with MRR
As discussed in Section 1.3, an accelerator requires a network subsystem for
communication between the various DPUs and the controller. Photonic inter-
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Figure 1.14: A set of cascaded MRRs performing 4x4 dot product operation for
vectors x and w.

connects are the optimal choice for carrying out this operation due to their
high bandwidth, low latency, better scalability, and low data-dependent energy
consumption. The photonic interconnects are composed of photonic links. A
photonic link (Figure 1.15) comprises one or more photonic waveguides with
dense wavelength division multiplexing (DWDM) of multiple wavelengths into
each waveguide.

In a DWDM-enabled waveguide, MRR modulators, arrayed along the waveg-
uide at the source end, modulate input electric signals onto parallel photonic
channels. These photonic channels travel through the waveguide and reach the
destination end, where an array of MRRs drops the parallel photonic signals
onto adjacent photodetectors to recover the electric data signals.

At the transmitter side of the photonic link, each modulator MRR employs
a serialization module and a driver circuit capable of producing a sequence
of signal bias voltages corresponding to the input sequence of electrical bits.
The converted optical data packets are transmitted over different wavelength
channels at a higher bit rate compared to the electrical data packets. Therefore,
serialization modules are used to enable the conversion between the data rates,
and they are implemented using parallel-in serial-out electronic buffers.

Similarly, at the receiver side of the photonic link, each detector MR employs
a deserialization module (implemented using serial-in parallel-out electronic
buffers) and a transimpedance amplifier (TIA), which amplifies the output sig-
nals from the photodetector to digital voltage levels.

1.4 Challenges of PIC based AI Accelerators

1.4.1 Reservoir Computing Challenges

Despite their applicability in reservoir computing, PIC based reservoir computers face
below challenge.
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Figure 1.15: An on-chip photonic link.

Scalability and Implementation

Several PIC-based Reservoir Computer (RC) accelerators have been proposed in the
past (e.g., [53, 11, 39, 89]). However, these implementations do not scale well, as
they may require up to 102 − 103 nonlinear nodes per reservoir to achieve acceptable
accuracy, posing a significant feasibility challenge. The nodes in these reservoirs are
fixed; however, different tasks require a different number of nodes to achieve the best
accuracy. To address this shortcoming, an alternative model for RC called delayed
feedback reservoir computing (DFRC) has been proposed in [13], which employs a
dynamic system consisting of a single NL node subjected to delayed feedback [13].
The traditional RC and DFRC setups are illustrated in Fig 1.16(a) and Fig 1.16(b),
respectively. In DFRC, a single NL can act as the desired number of virtual nodes with
the help of feedback loops and pre-processing [13]. Prior DFRC accelerators [125, 48,
153] have achieved comparable performance to traditional RC accelerators with low
hardware overhead, thereby increasing the ease of implementation and scalability.
However, the DFRC accelerators still require long training times and significantly
large areas due to the usage of bulky optical fiber spools as feedback loops [125,
48, 153], limiting their applicability to intra-datacenter reservoir computing only.
Additionally, these accelerators do not support concurrency in performing multiple
RC tasks simultaneously, resulting in reduced throughput. Furthermore, to meet the
growing demand for implementing RC-based AI on edge devices (e.g., for applications
related to ubiquitous robotics and smart manufacturing), realizing a compact DFRC
accelerator that can be fully integrated on a chip is of paramount importance.
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Figure 1.16: (a) A Reservoir Computer setup (b) A Delay Feedback Reservoir Com-
puting setup. Reproduced from [13]

Figure 1.17: A MRR based DPU performing M dot product operations of size N.



1.4.2 Dot Product Acceleration Challenges

Scalability

As discussed earlier, a set of cascaded MRRs on a waveguide can be used to perform
dot product operations. The number of MRRs that can be cascaded on a waveguide
defines the achievable size N of dot product operation. As shown in Fig. 1.17, such
waveguides known as dot product elements (DPEs) are arranged together to form
a dot product unit (DPU). The number of such DPEs that can be accommodated
gives the M of DPU. The performance achieved by the MRR-based DPUs is largely
dependent on three parameters (1) The maximum achievable value of N (fan-in de-
gree/DPE size). Often, the achievable value of N for photonic DPUs is less than the
dot product size requirement of dot product operations corresponding to CNN mod-
els [152]. In that case, a DPU breaks the dot product into smaller DPU-compatible
chunks and generates intermediate results known as partial sums (psums). These
psums are later accumulated using electronic reduction networks [93], to generate
the final result. The psum reduction latency and energy consumption are non-trivial
components of overall latency and energy consumption [120]. Therefore, the value of
N plays a crucial role in governing the overall performance of DPUs. (2) The maxi-
mum achievable values of M (fan-out degree/count of parallel DPEs). The value of
M directly decides the parallelism and consequently achieved throughput by a DPU.
(3) The bit precision (B) of input and weight values. If the supported value of B is
less than the precision requirement of dot product operations, bit-slicing is applied
to input and weight values [156]. Due to bit-slicing, the overall count of dot product
operations increases, degrading the throughput and energy efficiency [186]. There-
fore, the fundamental driver for achieving high performance from optical DPU lies in
maximizing the values of N, M, and B.

Figure 1.18: Conceptual breakdown of optical power budget usage and dependency
of DPU size N on supported bit precision B for different values of B={2, 3}-bits
across datarates DR={1, 5} GS/s.
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In analog DPUs, a strong trade-off exists among supported values of N, M, and B
[9, 152]. The achievable values of M, N, and B also strongly depend on the available
optical power budget in the DPUs [9, 152]. This is illustrated in Fig. 1.18, assuming
N =M, which is a common assumption in the literature [9, 152]. For the bit precision
B=2, 2B=4 analog optical power levels are required that consume a large part of the
available power budget, and the remaining power budget is used to support N and
power penalty (incurred due to crosstalk effects and signal losses) in the DPU. As
B increases to 3-bits, a larger part of the power budget is used to support B, and
the available power budget to support N and power penalty further decreases. As
a result, the supported value of N decreases too. A similar impact can be observed
when the operating datarate of DPUs increases (Fig. 1.18). Low N=M decreases
fan-in and fan-out degrees in the DPU, hampering the achievable throughput and
energy efficiency.

Reconfigurability

The MRR-based DPU accelerators demonstrated in the literature [22, 109, 157, 156]
feature fixed-sized DPEs. However, such fixed-sized DPEs prove inefficient in pro-
cessing modern CNNs that utilize both standard convolutions and depthwise sep-
arable convolutions in their layers, as seen in architectures like Xception [36] and
MobileNet V2 [69]. This inefficiency arises due to the reduced dot product size re-
quirements of depthwise separable convolutions compared to standard convolutions.
Because the DPUs have fixed sizes, processing depthwise separable convolution layers
often results in low hardware utilization within the DPUs. This low hardware uti-
lization leads to non-amortizable area and static power overheads, while also missing
the opportunity to increase processing throughput. Consequently, this diminishes the
achievable performance and energy efficiency of such fixed-sized MRR-based DPUs.

Apart from employing different types of convolution layers, modern CNNs also uti-
lize various quantization techniques such as homogeneous quantization, heterogeneous
quantization, and binary quantization to create quantized CNNs. Quantized CNNs
reduce memory usage and energy requirements by representing weights and inputs
with low precision. Among these techniques, heterogeneous quantized CNNs achieve
a great balance between accuracy and compression to enhance the speed and efficiency
of CNN inference. Heterogeneous quantized CNNs have different precision require-
ments at different layers; however, existing MRR-based DPUs [160, 22, 157, 215]
are designed for executing homogeneous quantized CNNs or binary quantized CNNs.
Consequently, they fail to leverage the advantages of heterogeneous quantized CNNs
due to their fixed precision support of DPUs. With fixed precision support, these
DPUs end up using resources necessary for processing the highest supported pre-
cision, thereby diminishing the benefits in latency and power consumption offered
by heterogeneous quantized CNNs. Furthermore, binary quantized CNNs leverage
XNOR operations for efficient computations using binary values, while homogeneous
or heterogeneous quantized CNNs primarily require dot product operations to pro-
cess quantized integer values with reduced precision. The existing MRR-based DPUs
were specifically designed to handle either homogeneous quantized CNNs or binarized
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quantized CNNs, but not both simultaneously.
Therefore, due to the lack of reconfigurability in terms of DPU size, precision

adaptability, and computing operation, the existing MRR-based DPU accelerators
fall short of achieving their potential applicability and achievable throughput and
energy efficiency.

Functional Flexibility

The dataflow significantly influences the processing of CNNs on hardware [93]. In
CNNs, dataflow refers to how data moves through the network’s layers during compu-
tation. This data movement impacts both the efficiency and performance of CNNs on
hardware architectures. Optimal dataflow enables the hardware to harness parallelism
efficiently, streamline memory accesses to minimize access latency and bandwidth
demands, allow the pipelining of operations, and allocate resources effectively to pro-
cessing units, memory, and interconnects. Overall, optimal dataflow can unlock the
full potential of hardware, enabling efficient utilization of resources, reducing latency,
and improving overall performance and energy efficiency. However, the optimal data
flow varies from one CNN to another. Therefore, for efficient processing of CNNs, the
hardware should have the flexibility to support different dataflows efficiently. Unfor-
tunately, the existing MRR-based CNN accelerators [22, 157, 160, 164, 145, 94] lack
such flexibility to support different dataflow based on the CNN. In addition, they also
lack the functionality of performing in-situ temporal accumulations. This mandates
MRR-based CNN accelerators to rely heavily on electronic reduction networks for
partial sum reduction. Such reduction involves frequent use of power-hungry ADCs
and non-trivial read and write buffer accesses of partial sums.

Implementation Complexity

For current MRR-based DPU architectures [22, 109, 157], the presence of various
crosstalk effects and high spectral sensitivity in the MRR weight banks requires
the use of extremely complex control procedures for the actuation of weight val-
ues [167, 52]. Such control procedures often employ binary search algorithms[167] or
need a feedback control circuit [52]. This requirement increases the implementation
complexity, mandating the weight actuation control to be separate from the required
thermal stability control per MRR. Thus, each MRR requires two feedback control
circuits, one for weight actuation and one for thermal stabilization. Similarly, each
input MRR already requires a separate input actuation control due to its high-speed
operation (typically >1 Gbps). This would increase the number of required feedback
control units per weighted optical signal to four because both the input MRR and
weighting MRR would require one feedback control unit each for thermal stabilization
and another unit each for value actuation. Each control circuit consumes a significant
amount of static power [52]. As a result, the generation of each N-sized dot-product
at a BPD would increase the total static power consumption by 4N×, diminishing
the overall energy efficiency of the DPUs.
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Area Consumption

The DPEs designed for dot product operation demonstrated in the literature [22,
109, 157] often handle the multiplication of input and weight operands differently.
To achieve multiplication, the input operand needs to be modulated onto the incom-
ing optical wavelengths, requiring an additional optical modulator device for weight
actuation and multiplication, particularly when utilizing laser sources that provide
unmodulated optical power. This necessity of performing multiplication through an
additional modulator device introduces an increase in hardware area overhead and
complicates operand handling within the DPEs.

1.4.3 Photonic Network Subsystems Challenges

Figure 1.14 illustrates a DPU where each DPE performs multiplications between
inputs and weights on different optical wavelength channels and guides these wave-
length channels carrying multiplication results to the balanced photodetectors for the
dot product operation result or partial sum of the dot product result. In the case of
partial sums, the final dot product result is obtained by routing the partial sums to
an electronic reduction network consisting of adders. The total optical losses experi-
enced by the optical wavelengths depend on the organization of the photonic network
subsystems employed to aggregate the results. Often, to enable reliable transmission,
additional optical power, also known as power penalty, is added to each wavelength
channel. However, this leads to various power consumption challenges in photonic
network subsystems. The challenges can be classified into two categories: the losses
challenge and the over-provision challenge. Each of these challenges is discussed be-
low.

High Optical Power Consumption Due to High Optical signal losses

Photonic signals in photonic interconnects experience various types of losses, namely
propagation loss, bending loss, splitter and coupling loss, and through loss. Pho-
tonic signals propagating inside the waveguide encounter propagation and bending
losses. Propagation loss encompasses absorption loss and scattering loss. Non-linear
effects in Si, such as Two-Photon Absorption (TPA), induce a strong Free-Carrier
Absorption (FCA) effect in silicon [102], significantly increasing absorption losses in
waveguides. Si waveguides are also susceptible to high scattering losses due to the
sidewall roughness of the waveguides, given the high refractive index contrast be-
tween the Si core and SiO2 cladding. Additionally, splitters and couplers in photonic
interconnects incur splitter and coupling losses, while modulators and detectors in-
cur through losses. To ensure that detectors on the receiver end of the photonic
interconnect receive sufficient signal power, photonic signals require high laser power.
Consequently, high losses result in increased laser power dissipation, negating the
energy benefits of photonic interconnects.
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High Optical Power Overprovision

For inter-channel crosstalk, the signal power of the same wavelength channel is af-
fected by the noise power from one or more neighboring wavelength channels, while
for intra-channel crosstalk, the signal power of a particular wavelength channel is
affected by the noise power of the same wavelength channel [173]. The strength of
inter-channel crosstalk depends on several factors, namely the quality factor of the
MRRs, data rate, and the channel gap between the resonant wavelength of an MRR
and its adjacent wavelengths.

High crosstalk in photonic links degrades the optical signal-to-noise ratio (OSNR)
and the target bit-error-rate (BER). To compensate for the effects of inter-channel
crosstalk and ensure that the target BER remains unaffected, extra optical power
is added to each wavelength channel at the transmitter and receiver sides, known
as power penalty. This extra optical power is often over-provisioned from the laser
source, which can offset the high aggregated data rate, low packet frame delay, and
optical power efficiency advantages of photonic interconnects.

1.5 Contributions

Sections 1.4.1, 1.4.3, and 1.4.2 have delineated various design challenges associated
with PIC-based AI accelerator systems. In this report, we put forth several solutions
to address these challenges and make strides toward designing PIC-based AI accel-
erator systems, resulting in improved throughput, energy efficiency, scalability, and
reconfigurability. The structure/outline of this report, highlighting our contributions,
is organized as follows:

In Chapter 2, we address the challenges of scalability and implementation in
reservoir computing. We achieve this by presenting a compact architecture for an
integrated photonic DFRC accelerator. This accelerator utilizes an active MRR as its
nonlinear node and a low-loss photonic waveguide as its feedback loop. By employing
an MRR as the nonlinear node, we enable on-chip integration and open the door to
concurrent multi-model processing.

In Chapter 3, we tackle the challenge of high optical power over-provisioning in
photonic interconnects with a framework that utilizes design-time optimization and
runtime self-adaptation techniques to achieve a loss-aware balance between the laser
power consumption and performance of photonic network subsystems.

In Chapter 4, we address the underutilization issue caused by the lack of reconfig-
urability in MRR-enabled DPU-based CNN accelerators. We achieve this in several
steps. First, we present a methodology to categorize existing MRR-enabled DPU-
based CNN accelerators. Next, we perform a scalability analysis of these DPU cate-
gories to understand the relationships between the maximum achievable DPU size, bit
precision, and operating data rate. Then, we propose a novel reconfigurable structure
for Data Processing Engines (DPEs). These reconfigurable DPEs are then utilized
to modify existing DPUs, granting them the capability to dynamically re-aggregate
vectors for adaptive resizing of the processed dot product operation. Finally, we eval-
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uate the performance of our reconfigurable DPU design and compare it against three
different MRR-enabled DPU-based CNN accelerators from prior work.

In Chapter 5, we address the area consumption and implementation complex-
ity challenges of PIC-based binary neural network(BNN) accelerators by presenting
a novel MRR-based BNN accelerator. Our design utilizes an array of single-MRR-
based optical XNOR gates (OXGs) and highly scalable bit counting circuits called
Photo-Charge Accumulators (PCAs). These high-speed OXGs perform XNOR op-
erations with a single MRR, leading to reductions in latency, area, optical losses,
and static power consumption. Additionally, our PCA circuits perform in-situ bit
count accumulations, eliminating the need for external bit counting circuits and fur-
ther improving latency and power efficiency. Overall, at system level, our accelerator
achieves improved throughput and energy efficiency compared to prior MRR-based
BNN accelerators.

In Chapter 6, we address the challenges of scalability in MRR-based CNN accel-
erators by proposing a merger of stochastic computing and MRR-based CNN accel-
erators. We break the strong trade-off between the achievable input/weight precision
and DPU size for improved scalability. We leverage the innate precision flexibil-
ity of stochastic computing by inventing an MRR-based optical stochastic multiplier
(OSM). Then, we employ multiple OSMs in a cascaded manner using dense wave-
length division multiplexing to forge a novel stochastic computing-based optical neu-
ral network accelerator. Our accelerator achieves significantly high throughput and
energy efficiency for accelerating inferences of high-precision quantized CNNs.

In Chapter 7, we conduct a comparative analysis of the impact of different pho-
tonic interconnect organizations in DPUs on various optical crosstalk effects and
signal losses. We determine the scalability limits of each organization and assess
their performance in terms of throughput (FPS), energy efficiency (FPS/W), and
area efficiency (FPS/W/mm2) for CNN inferences.

In Chapter 8, we address the challenges of implementation complexity and limited
functional flexibility in PIC-based CNN accelerators. We achieve this by introducing
a novel accelerator design that utilizes a hybrid Time-Amplitude Analog Optical
Modulator (TAOM) and a balanced photo-charge accumulator (BPCA). The TAOM
leverages a single microring for multiplication, significantly reducing implementation
complexity. Our BPCA performs multiple in-situ spatio-temporal accumulations,
offering the flexibility to support various dataflows, including input stationary, weight
stationary, and output stationary. By seamlessly integrating multiple TAOMs, we
create a novel accelerator. We then conduct comprehensive analyses at the device,
circuit, and system levels to evaluate its advantages over previous works.

In Chapter 9, we tackle the challenges of reconfigurability, scalability, and limited
functional flexibility in PIC-based CNN accelerators by introducing a novel stochastic
computing-based optical accelerator with functional reconfigurability. Our accelera-
tor is designed to efficiently execute all types of quantized CNN models, including
homogeneous, heterogeneous, and binary quantized CNNs. It utilizes a unique de-
sign of reconfigurable single MRR-based logic gates (RLGs), enabling it to adjust
its functionality according to the specific requirements of the CNN. Moreover, this
work places particular emphasis on the practical implication of integrating on-chip
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laser sources. We assess our accelerator throughput, energy efficiency, and inference
accuracy in comparison to prior works.

Chapter 10 concludes this report. We recap all our contributions and provide
directions for future research.
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Chapter 2 Silicon Photonic Microring Based Chip-Scale Accelerator for
Delayed Feedback Reservoir Computing

2.1 Introduction

Artificial Neural Networks (ANNs) have achieved remarkable progress in recent years,
and they are being aggressively utilized in real-world applications related to artificial
intelligence (AI) and machine learning [137]. In general, ANNs mimic biological
neural networks. Depending on the type of the computing task, an ANN architecture
can be classified as a feedforward network (FNN) used for static or non-temporal
data processing [139], or a recurrent neural network (RNN) that is used for dynamic
or temporal data processing [64]. Theoretically, RNNs are very powerful tools for
solving complex temporal machine learning tasks. But, the application of RNNs to
real world problems is not always feasible due to their high computational training
cost and slow convergence [64]. To mitigate these shortcomings, Reservoir Computing
(RC) was proposed [77], which is a computational framework [191] derived from the
RNN models such as the echo state networks (ESNs) [75] and liquid state machines
(LSMs) [112].

In an accelerator for RC (Fig. 2.1), data inputs are transformed into spatiotem-
poral patterns in a high dimensional space using a reservoir, and analysis of these
patterns is performed by an output layer. The inputs are connected to the reservoir
with weights Win at the input layer, and the reservoir is connected to the output layer
with weights Wout. The reservoir consists of large number of nonlinear (NL) nodes
(Fig. 2.1) that are connected to each other through the recurrent nonlinear dynamics
by weights WR. The output of the reservoir is the linear combination of Wout and
the state of the NL nodes connected to the output layer. The key trait of RC is that
the input weights Win and the reservoir weights WR are not trained; they are fixed
and random. The output weights Wout are trained using simple learning algorithms,
e.g., linear regression, thus, remarkably reducing the computational cost of learning,
compared to the standard RNNs [99]. Thus, an accelerator for RC can have benefits
of both the fast information processing and low learning cost [64], compared to RNN
accelerators.

Photonics based implementations of RC accelerators are attractive as photonics
can have low dynamic power consumption and extremely fast computation. Several
photonics based RC ac celerators have been proposed in the past (e.g.,[53, 11, 183,
67, 184, 89, 39, 115]). However, these implementations do not scale well as they may
require up to 102-103 NL nodes per reservoir, making their feasibility a big challenge.
In contrast, an alternative model for RC called delayed feedback reservoir computing
(DFRC) has been proposed in [13], which employs a dynamic system consisting of a
single NL node subjected to delayed feedback [13]. It is shown in prior work (e.g., [178,
180, 151, 99]) that DFRC accelerators can achieve comparable performance with low
hardware overhead compared to the traditional RC accelerators, thereby increasing
the ease of implementation and scalability. In fact, prior work also present several
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Figure 2.1: Schematic of a reservoir computing (RC) accelerator

photonic DFRC accelerators (e.g., [125, 48, 153]). But unfortunately, the DFRC
accelerators from prior work still require long training times and significantly large
area, which limits their applicability to intra-datacenter reservoir computing only.
In contrast, to meet the growing demand of implementing RC-based AI on the edge
devices (e.g., for applications related to ubiquitous robotics and smart manufacturing)
(Section II.B), realizing a compact DFRC accelerator that can be fully integrated on
a chip is of paramount importance.

In this Chapter, we present an architecture of a chip-scale photonic DFRC accel-
erator, which employs a CMOS-compatible active silicon microring resonator (MR)
(e.g., [110]) as the NL reservoir node and a low-loss on-chip photonic waveguide (e.g.,
[110]) as the optical feedback loop. Our DFRC accelerator benefits from its MR reser-
voir node’s rich nonlinearity [39, 115] to enable ultra-fast, reasonably accurate, and
energy-efficient RC.

Our contributions in this Chapter are summarized below:

• We present a compact architecture of an integrated photonic DFRC accelerator
that has an active MR as its NL node and a low-loss photonic waveguide as its
feedback loop (Section IV);

• We evaluate our MR-based DFRC accelerator’s efficiency for performing typical
RC tasks such as NARMA10 [28], Santa Fe Time Series [28], and Nonlinear
Channel Equalization [77];

• We evaluate our MR-based DFRC accelerator in terms of training time and
prediction error metrics, and compare it with a photonic [48] and an electronic
[13] DFRC accelerators from prior work (Section V).
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2.2 Related Work And Motivation

Several accelerators for RC have been reported that use various types of physical
systems, substrates, and devices [53, 11, 183, 67, 184, 89, 39, 115, 14, 178, 180, 151].
Some of these accelerators (e.g.,[178, 11]]) use large reservoirs that employ many
interconnected NL nodes (as in Fig. 2.1), whereas the other accelerators (e.g., [48,
125, 153, 185, 140], [151, 99, 46]) use delayed feedback reservoirs (DFRs) with one
physical NL node subjected to delayed feedback to behave as N virtual NL nodes
(Section 2.3.1). Compared to large reservoirs, DFRs have recently become more
popular due to their implementation simplicity. A physical reservoir (DFR or large)
needs to satisfy a few traits as discussed in [140], to efficiently solve the temporal
computing problems. These traits for DFRs mainly depend on the NL nodes. Prior
works on DFRC accelerators explore several types of DFR NL nodes, as discussed
next.

2.2.1 DFRC Accelerators from Prior Work

In general, a DFRC accelerator employs a physical NL node and a delayed feedback
loop. The DFRC accelerators from prior work broadly use either electronic or pho-
tonic implementation for the NL node and delayed feedback loop. The electronic
DFRC accelerators (e.g., [110, 151, 99]) typically use analog circuits to implement
NL transformation. These analog circuits also take care of the required delayed feed-
back. However, these analog circuits can typically suffer from high capacitive loading,
which can significantly reduce the speed and power-efficiency, especially when longer
delay is required to accommodate large number of virtual nodes. In contrast, pho-
tonic DFRC accelerators (e.g., [48, 125, 153, 185] enjoy distance-independent and fast
computation speed. They employ NL photonic devices, such as Mach-Zehnder Inter-
ferometers (MZIs) [125] , semiconductor lasers [153], Vertical Cavity Surface Emitting
Lasers (VCSEL) [185], as NL nodes. To implement the feedback loop, they typically
use a bulky fiber spool [48]. Due to the large size of the photonic NL devices (e.g., a
few micro-milli meters for MZIs [62]) and long fiber spools (up to 1.7km [48]), these
photonic DFRC accelerators generally yield feedback loop delay (τ) in the micro-milli
seconds range, which in turn yields significantly long time (a few tens-hundreds of
seconds) for these accelerators to collect the reservoir states for output weights train-
ing. To decrease the training time, recent work [46] used a deep learning approach
with multiple DFRs and fiber spools. However, the use of bulky fiber spools lim-
its the deployment of such DFRC accelerators to high-end computing systems and
datacenters only.

2.2.2 Motivation for MR-based Chip-Scale DFRC Accelerators

Due to the emergence of ubiquitous robotics and smart manufacturing, the demand
for RC-based information processing and AI is rapidly growing. To this end, bulky
fiber spools based photonic DFRC accelerators find limited pertinence. To address
this shortcoming, we present a chip-scale DFRC accelerator that uses an active mi-
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croring resonator (MR) as the NL reservoir node and a low-loss photonic waveguide
as the delay feedback loop. In prior work [28] and [76], rich nonlinearity of MR
through-port response has been leveraged to realize RC accelerators. However, these
MR-based accelerators employ large reservoirs with large number of MR-based NL
nodes, and therefore, they do not scale well for integrated applications. In contrast,
our proposed DFRC accelerator uses only one active MR as the single physical NL
node that can be scaled to N virtual nodes on demand using a photonic waveguide
based delayed feedback loop, which makes our DFRC accelerator highly viable for
chip-scale applications.

2.3 Background and Fundamentals

2.3.1 Delayed Feedback Reservoir Computing (DFRC)

The basic idea of a delayed feedback reservoir computing (DFRC) accelerator is to
have a single physical NL node to behave as N virtual NL nodes. Fig. 2.2 illustrates
the functioning of a typical DFRC accelerator, which consists of (i) pre-processing
(masking) of input signals (Fig. 2.2 (a)), (ii) generation of N DFR states (Fig. 2.2
(b)), and (iii) output generation (Fig. 2.2 (b)), as discussed next.

1. Pre-Processing (Masking) of Input Signal
A time-dependent input to the DFRC accelerator can be a continuous-time
signal u(t) or a discrete-time signal u(k) (Fig. 2.2(a)). Regardless, such input
signal is typically sampled and held to produce a sampled (discretized) con-
tinuous signal j(t), with each sample of j(t) being constant for a period of τ .
Then, j(t) is multiplied with a periodic masking signal m(t), which plays the
role of assigning weights (input weights Win; Fig. 2.2) to the virtual nodes. The
masking signal m(t), with its period being τ , varies its value at each θ interval
for total N times during every τ period (Fig. 2.2(a) inset), so that τ = N *θ.
The masking is essential for sequentializing the input, breaking the symmetry
of the input and enabling the high dimensional space [140]. The periodic nature
of m(t) (i.e., m(t) holds the same value for a corresponding θ in every τ period)
ensures that the weight assigned to each virtual node remains identical for all
input samples. Multiplying m(t) with j(t) generates the masked signal u(t) that
is given as input to the DFR.

2. Generation of Delayed Feedback Reservoir (DFR) states
From Fig. 2.2(b), the physical NL node of the delayed feedback reservoir (DFR)
nonlinearly transforms u(t) to generate the state of the DFR s(t), and then
propagates s(t) along the delayed feedback loop. The state of the DFR is
generated at each θ interval, hence producing total N state values (i.e., s(t),
s(t- θ), s(t-2θ),. . . , s(t-Nθ)) in each τ period. Each of these N state values
represents the output of the corresponding virtual NL node (total N virtual
nodes). The input to the physical NL node is the combination of u(t) for
current τ period and the DFR response s(t- τ) (from the feedback loop) that
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(a)

(b)

Figure 2.2: Illustration of (a) the pre-processing (masking) of input signal, and (b)
the generation of delayed feedback reservoir (DFR) states and final output, for a
typical DFRC accelerator.

was obtained for u(t-τ) of the previous τ period. The governing formula for the
DFR states is given in Eq. 2.1- 2.2 [5].

s(t− iτ) = FNL(s(t− τ), u(t), θ) 0 ≤ i ≤ N (2.1)

u(t) = j(t) ∗m(t) (2.2)

where FNL is the nonlinear transfer function of the physical NL node. The time
separation between the two virtual NL nodes is θ. N is the number of virtual
nodes and τ corresponds to the total delay of the feedback loop.

3. Training of Output Weights for Final Output Generation
The states of the virtual NL nodes of the DFR are connected to the output
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layer with the output weights Wout, 0, Wout, 1, . . . , Wout, N (Fig. 2.2). The
final output Y(t) of the DFR is the linear combination of these output weights
and the states of the DFR, as given by Eq. 2.3 [5].

Y (t) =
N=τθ∑
i=o

Wout,i ∗ s(t− iθ) (2.3)

where Wout,i are the output weights, and s(t-iθ) are the DFR states. The out-
put weights of the DFR are typically trained offline using lightweight algorithms
(e.g., linear regression). During training, the output weights are initialized, then
the states of the DFR are observed for the input, and the corresponding inter-
mediate output of the DFR is calculated. The deviation in the intermediate
DFR output from the correct output (known during training) is referred to as
training error. Then, the output weights are optimized using a learning algo-
rithm until the least value of the training error is achieved. Several techniques,
such as Least Mean Squares, Recursive Least Mean Squares and Moore-Penrose
Pseudo Inverse [24], can be used to converge to optimal output weights during
training. In this Chapter, we use the Moore-Penrose Pseudo Inverse technique
as it suffers less from converging to local minima.

Figure 2.3: An add-drop microring resonator (MR) with radius R, resonance wave-
length λ, and coupling waveguides with cross-coupling coefficients k1, k2 and self-
coupling coefficients r1, r2 [28].

2.3.2 Fundamentals: Microring Resonators (MRs)

A microring resonator (MR) is an optical waveguide looped back on itself as shown
in Fig. 2.3 It also consists of a coupling mechanism to access the loop. The MR is in
resonance when the optical path length inside the MR cavity is an integer multiple of
the input wavelength. The incident optical at the input port of the MR is transmitted
to the through port and to the drop port (Fig. 2.3). From [76], the drop-port
transmission of an active MR shows very rich power-dependent nonlinear response,
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due to the two-photon absorption (TPA) effects [76]. This rich nonlinearity of MR’s
through-port response has been leveraged in [28] and [76] to realize efficient RC
accelerators. In this Chapter, we propose to use this rich nonlinearity to implement
the physical NL node of our DFRC accelerator, as discussed next.

2.4 Proposed MR-based Chip-Scale DFRC Accelerator

2.4.1 Overview

Fig. 2.4 illustrates our proposed MR-based DFRC accelerator with photonic waveg-
uide as a feedback loop. The accelerator architecture can be divided into three layers:
(i) input layer, (ii) reservoir layer, and (iii) output layer. The input layer consists
of a laser source (off-chip) that injects continuous-wave (CW) light of wavelength λ
into the on-chip waveguide. The on-chip waveguide is coupled to an MR modulator
that modulates the input CW λ with respect to the masked input u(t) to generate
a modulated optical signal (optical u(t)) in the waveguide at the through port of
the MR modulator. From [76], the through port response of an MR modulator does
not show significant nonlinearity, therefore, optical u(t) at the through port of the
MR modulator in the input layer is not nonlinearly transformed. This optical u(t)
propagates along the waveguide and enters the reservoir layer. In the reservoir layer,

Figure 2.4: Schematic layout of our proposed MR-based DFRC accelerator. The
parts enclosed in the red colored boxes can be integrated on a chip.

the input waveguide is coupled with one end of the feedback waveguide (used for
delayed feedback loop) via a coupler. This coupler sums the input optical signal u(t)
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with the feedback optical signal γs(t-τ), provided from the feedback waveguide that
imposes the propagation delay of τ . Just like u(t) (Section 2.3.1), the feedback optical
signal γs(t-τ) also changes every θ interval, and therefore, the summed optical signal
(u(t)+γs(t-τ)) at the coupler also changes every θ interval. This (u(t)+γs(t-τ)) signal
then passes through the reservoir MR that acts as the NL node in the reservoir. The
drop port of the reservoir MR is coupled with the other end of the feedback waveg-
uide. At the drop port of the reservoir MR (NL node), the (u(t)+γs(t-τ)) signal is
nonlinearly transformed into s(t), which is then injected into the feedback waveguide.
Just like (u(t)+γs(t-τ)), s(t) also changes every θ interval during the feedback period
τ . The value of s(t) during every θ interval corresponds to the state of a virtual NL
node. Thus, to have N virtual NL nodes in the system, total N θ-intervals should be
accomodated in period τ . The reservoir signal s(t) travels in the feedback waveguide
for total delay of τ and experiences attenuation by factor γ due to optical losses. The
resultant signal γs(t) combines with u(t+τ) at the input to the reservoir MR, for
the next τ step. Eq. 2.6-2.7 in Section 2.5.1 show how the reservoir MR (NL node)
transforms (u(t)+γs(t-τ)) into s(t).

The output layer of the DFRC accelerator is connected to the reservoir layer with
a splitter, which splits a fractional power of the optical signal s(t) travelling in the
feedback waveguide and transfers it to the output layer. At the output layer, we
employ another MR that acts as a filter to sample s(t) at each θ. Total N such
samples obtained during τ period represents the state of the reservoir for τ period.
These N samples are converted by a photodiode (PD) into electrical domain, and
are then digitized by the digitizer before being stored in the sample memory. These
digitized samples in the sample memory are used for training the output weights that
can be stored in the weight bank. During the testing/operating phase, the trained
weights from the weight bank can be used to transform the sampled reservoir state
to predict the output of the task.

2.4.2 Modelling the Nonlinear Response of the Reservoir MR

From [19], the richly nonlinear response (due to TPA) of an active MR’s through-port
transmission depends on the photon lifetime (τph) of the MR cavity. For an MR, τph
depends on the MR’s Q-factor. Therefore, we propose to control the nonlinearity
of the reservoir MR (NL node), by controlling the Q-factor (hence, τp) of the MR.
We can vary the Q-factor (hence, τph) by doping the MR with a PN-junction and
applying a reverse bias voltage across it to change the Q-factor (hence, τph) [146].
We model the τph dependent NL through-port response of the reservoir MR using
Eq. 2.4-2.5.

s(t) = (u(t) + γs(r − τ))(1− e(−θ/τph)) + s(t− τ), if u(t) > s(t− τ) (2.4)

s(t) = (u(t) + γs(r− τ))(1− e(−θ/τph)) + s(t− τ)e(−θ/τph), if u(t) < s(t− τ) (2.5)
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2.5 Evaluation

2.5.1 Evaluation Setup

We evaluate the performance of our proposed MR-based DFRC accelerator for three
RC tasks that include two time series prediction tasks such as NARMA10 [76] and
Santa Fe [4], and the third Nonlinear Channel Equalization task [77]. The timeseries
prediction tasks have important application, both in engineering and medical care
[83]. The computational abilities of the proposed DFRC accelerator are examined
using the Normalized Root Mean Square Error (NRMSE) and Symbol Error Rate
(SER). Our proposed MR-based DFRC accelerator (henceforth, identified as ‘Sili-
con MR’) is compared with the Mackey-Glass (MG) differential delay model based
electronic DFRC accelerator [5] (henceforth, identified as ‘Electronic (MG)’) and the
MZI-based all optical DFRC accelerator [177] (identified as ‘All Optical (MZI)’). In
our setup, we use the binary masking technique proposed in [12], which uses maxi-
mum length sequences (MLS) to generate optimal mask pattern that is suitable across
various tasks. To ensure ideal comparison with prior works, we employ the same bi-
nary masking technique across all considered DFRC accelerators. We analyzed the
prediction errors and training time for ‘Electronic (MG)’, ‘All Optical (MZI)’ and
‘Silicon MR’ accelerators across the considered benchmark tasks. We also report and
discuss the total power consumption for our considered photonic DFRC accelerators.

2.5.2 Error Metrics

Each considered benchmark task has a dataset, which consists of input signals and
corresponding target output. Generally, the dataset is divided into two subsets called
training and test sets. The training set is used to train the output weights of the DFR
with the goal to predict the target output. The deviation in the target output from
the predicted output is called error. The error reported for the DFRC accelerator
on the test set gives the performance; lower the error better the DFRC accelerator
performance. Below are the error metrics we have used in this Chapter.

1. Normalized Root Mean Square Error(NRMSE)
We use NRMSE for NARMA10 and Santa Fe timeseries tasks. NRMSE is
defined by Eq. 2.6 [48].

NRMSE =

√∑N
i=o(yi − ŷi)2

σŷ2
(2.6)

where ŷ is the predicted output, yi is the target output, N is the total length
of test set, σŷ2 is the variance of target output.

2. Symbol Error Rate (SER)
SER is used only for the Nonlinear Channel Equalization task, in which the
DFR reproduces the input symbol in a noisy channel. The SER is evaluated
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using Eq. 2.7 [77].

SER =
Totalnumberofcorrectlyreproducedsymbols

TotalNumberofsymbols
(2.7)

2.5.3 Prediction Error Evaluation

1. NARMA10
The Nonlinear Autoregressive Moving Average of 10th order (NARMA10) is
a time series whose current output depends on the past ten outputs. It was
introduction in [177]. NARMA10 is a standard benchmark task for RC with
DFRC accelerators [177, 48]. For NARMA10, the input i(k) is drawn from a
uniform distribution in interval [0, 0.5] and the target output y(k+1) is given
by Eq. 2.8.

y(k + 1) = 0.3y(k) + 0.005y(k)
9∑
i=0

y(k − i) + 1.5i(k)i(k − 9) + 0.1 (2.8)

The input i(k) is converted to j(t) by sample and hold, then the masking signal
m(t) generated by MLS technique [12] is multiplied with j(t) to get u(t). We
generate NARMA10 series dataset with 2000 samples; 1000 samples for training
and next 1000 samples for testing, as done in [48]. We report the NRMSE
on the testing set. The masking signal, training set and testing set are kept
constant across all three considered DFRC accelerators. The NRMSE values for
‘Electronic (MG)’, ‘All Optical (MZI)’ and ‘Silicon MR’ accelerators are shown
in Fig. 2.5. The value of NRMSE depends on the number of virtual nodes (N ),
and therefore, we do a sensitivity analysis to find the optimal value of N for
each DFRC accelerator to get the least possible NRMSE. Owing to the space
constraints we do not report all results obtained from the sensitivity analysis.
In addition, for ‘Silicon MR’, photonic lifetime (τph) (Eq. 2.4-2.5)) also directly
affects NRMSE. We find the minimum NRMSE for ‘Silicon MR’ at N = 900 and
τph = 50 ps. Similarly, minimum NRMSE is achieved for ‘All Optical (MZI)’
and ‘Electronic (MG)’ at N = 400 and 900, respectively. Moreover, ‘Silicon MR’
achieves 35% lower NRMSE compared to ‘All Optical (MZI)’, and it performs on
par with ‘Electronic (MG)’, with ‘Silicon MR’ having very high training speed
as discussed in Section 2.5.4 .These results clearly corroborate the capabilities
of ‘Silicon MR’ to perform complex RC tasks with good performance.

2. Santa Fe Time Series
The Santa Fe timeseries was introduced in [4], which has various datasets la-
belled A to F. Santa Fe dataset-A is a widely used for evaluating DFRC accel-
erators [46]. Santa Fe dataset-A records a far-infrared laser operating in chaotic
state values. The goal is to predict the laser behavior one-time step ahead. We
have used an extended version of Santa Fe dataset-A with 6000 samples from
[141]. The dataset is split into 4000 training samples and 2000 testing sam-
ples. We obtain the lowest NRMSE for ‘Silicon MR’ at N =40 and τph=50ps.
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As illustrated in Fig. 2.5, ‘Silicon MR’ performs extremely well on Santa Fe
compared to ‘All Optical (MZI)’ with 98.7% lower NRMSE. Even though ‘Elec-
tronic (MG)’ achieves a little better NRMSE, it requires N = 400, which is 10×
the N required by ‘Silicon MR’.

Figure 2.5: NRMSE values for ‘Silicon MR’, ‘All Optical (MZI)’ and ‘Electronic
(MG)’ for NARMA10 and Santa Fe timeseries tasks.

3. Nonlinear Channel Equalization Task
In this task, the goal of the DFRC accelerator is to reproduce the distorted
symbol due to noise in a wireless communication channel. It is a common task
which investigates the nonlinearity of DFRC accelerators. The input-output
relation is defined by Eq. 2.9-2.10 [77].

q(n) = 0.08d(n+ 2)− 0.12d(n+ 1) + d(n) + 0.18d(n− 1)

− 0.1d(n− 2) + 0.09d(n− 3)− 0.05d(n− 4)

+ 0.04d(n− 5) + 0.03d(n− 6) + 0.01d(n− 7) (2.9)

x(n) = q(n) + 0.036q2(n)− 0.011q3(n) + v(n) (2.10)

where d(n), is an independent, identically distributed, four level {-3, -1, 1,
3} sequence, v(n) is a pseudo-random Gaussian sequence with zero mean and
variance determined by the desired output signal-to-noise ratio (SNR). We vary
SNR from 12dB–32dB with a step size of 4dB. We generate 9000 symbols for

33



Figure 2.6: SER values of ‘Silicon MR’, ‘All Optical (MZI)’ and ‘Electronic (MG)’
for Nonlinear Channel Equalization task, with SNR ranging from 12dB-32dBs.

a dataset, of which 6000 are for training and 3000 are for testing. To evaluate
DFRC accelerators for Nonlinear Channel Equalization, we use SER metric.
The best SER for ‘Silicon MR’ is found at N =30 and τph = 50ps. The SERs of
‘Silicon MR’, ‘Electronic (MG)’ and ‘All Optical (MZI)’ are presented in Fig.
2.6. Across almost all SNR values, the best SER is achieved for ‘Electronic
(MG)’, closely followed by ‘Silicon MR’ and highest SER for ‘All Optical (MZI)’.
Nevertheless, ‘Silicon MR’ reaches 23% lower SER than ‘Electronic (MG)’ for
24dB SNR. On average, ‘Silicon MR’ outperforms ‘All Optical (MZI)’, having
58.8% lower SER.

2.5.4 Training Time

Fig. 2.7 gives the time consumed by each DFRC accelerator to complete the training
of the output weights. The training time includes time required to observe the DFR
states for each input and time required to train the output weights using linear
regression. The time involved in generating the DFR states depends on the total delay
τ associated with the feedback loop. ‘All Optical (MZI)’ and ‘Silicon MR’ clearly
have the advantage of shorter training time due to their shorter τ values of 7.56µs
and 45ns, respectively, compared to τ = 10ms for ‘Electronic (MG)’. Furthermore,
the integrated dynamics of ‘Silicon MR’ yield τph and θ to operate at picosecond
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Figure 2.7: Training time of ‘Silicon MR’, ‘All Optical (MZI)’ and ‘Electronic (MG)’
for tasks NARMA10, Santa Fe and Nonlinear Channel Equalization.

scale, resulting in a significant speedup of training for ‘Silicon MR’ by 98× and 93×
on average compared to ‘All Optical (MZI)’ and ‘Electronic (MG)’ respectively.

2.5.5 Discussion on Power Consumption

We report and discuss power consumption of the photonic DFRC accelerators ‘Silicon
MR’ and ‘All Optical (MZI)’. In contrast, as the ‘Electronic (MG)’ implementation in
[5] used all computer-controlled off-the-shelf electronic components, we are not able
to report the exact power numbers for it. The necessity of ADC and DAC in the
reservoir layer of ‘Electronic (MG)’ hinders its throughput scaling and increases the
power consumption compared to photonic DFRC accelerators. Since the operations of
the input and output layers are identical in both photonic DFRC accelerators, major
power variations can be noticed in the reservoir layer. For the photonic reservoir in
‘Silicon MR’ and ‘All Optical (MZI)’, we calculate the required laser power PLaser
using Eq. 2.11.

PLaser = ILdB + CouplingLoss+ SplitterLoss+DynamicRange+ S (2.11)

where ILdB is the total insertion loss, dynamic range is optical power range required to
implement masking of optical signal, and S is the sensitivity of the photodetector. We
considered the values listed in Table 2.1, and evaluated the total power consumption
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Table 2.1: Various Loss And Power Parameters

Parameter ‘Silicon MR’ ‘All Optical (MZI)’

Laser wall-plug efficiency 10% [19] 10% [19]
PD Sensitivity at 10Gb/s -5.8dBm [177] -5.8dBm [177]
ILdB 8.25dB [113] 7.4 dB [48]
Splitter Loss 0.5dB [66] NA
Coupling Loss 2dB [66] 3.3 dB [113]
Free Spectral Range (FSR) 20 nm [141] NA
Dynamic Range 6dB 20dB [48]
ZHL-32A amplifier NA 10 dBm [48]
Feedback Photodiode (TTI TIA525) NA 1.2mW [48]
Optical Attenuator

(Agilent 81571A)
NA 33dBm [48]

MR Modulator 15fJ/bit [177] NA
MR filter 0.705pJ/bit [177] NA
MZI modulator NA 100mW [48]

(laser + dynamic for all layers) in ‘Silicon MR’ to be 126.48mW and in ‘All Optical
(MZI)’ to be 549.54mW. Due to the high optical resolution of the reservoir MR used
in ‘Silicon MR’, compared to the MZI modulator used in ‘All Optical (MZI)’, ‘Silicon
MR’ requires lower dynamic range (Table 2.1) to implement the masking of the input
optical signal, thereby, requiring total overall power.

2.6 Summary

In this Chapter, we presented a silicon MR based chip-scale accelerator for delayed
feedback reservoir computing (DFRC). Our DFRC accelerator leverages the rich non-
linearity of the active MR to realize the nonlinear node in the reservoir layer of the
accelerator. Moreover, it uses a photonic waveguide as the feedback delay loop to
enable fully on-chip integration of the reservoir layer. Evaluation with benchmark
tasks shows that our MR-based DFRC accelerator achieves 35% and 98.7% lower
NRMSE, up to 58.8% less average SER, and up to 93x faster training time compared
to a photonic DFRC accelerator from prior work. Thus, our MR-based DFRC accel-
erator represents an attractive solution for realizing scalable reservoir computing for
integrated applications.
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Chapter 3 Rule-Based Self-Adaptation in Photonic NoCs for Loss-Aware
Co-Management of Laser Power and Performance

3.1 Introduction

To support the increasing demand for on-chip data communication in modern multi-
core processors, the use of electrical networks-on-chip (ENoCs) has become a norm.
However, the performance of the state-of-the-art ENoCs is projected to scale poorly
for the emerging data-centric applications (e.g., internet-of-things (IoT) related ap-
plications), primarily due to the energy-constrained bandwidth of ENoCs. To this
end, with the recent advancements in silicon photonics, photonic networks-on-chip
(PNoCs) are being considered as potential replacements for ENoCs. This is because
PNoCs can provide several advantages over ENoCs, such as distance-independent
higher datarates and lower dynamic energy consumption. However, the state-of-the-
art PNoC architec-tures (e.g., [124], [80]) require a non-trivial amount of optical
power from their laser source, mainly because of the high insertion loss of photonic
devices in their constituent pho-tonic links [66]. The high laser power overheads
can offset the high aggregated datarate and energy-efficiency advantages of PNoCs.
Therefore, it is imperative to innovate new techniques that can reduce the optical
power consumption in future PNoC architectures.

Several techniques have been proposed in prior works (e.g., [212, 121, 33, 32,
84, 194, 172, 182, 23]) that aim to reduce the laser power consumption in PNoCs.
Some of these techniques dynamically adjust the optical power extracted from the
off-chip laser sources, in response to either the temporal and spatial variations in the
network traffic (e.g., [212, 121, 33, 32, 84]) or the change in the insertion loss for every
photonic data packet transfer (e.g., [194, 172]). In addition, recent works [182] and
[23] take a holistic approach and use machine learning predictors for leveraging the
variations in both the network traffic and insertion loss, to achieve greater savings in
laser power consumption. However, all these techniques can incur dauntingly high
overheads for dynamic monitoring of the network traffic (e.g., in [212, 121, 33, 32, 84]),
integration of costly on-chip optical amplifiers (e.g., in [172]), runtime execution of
NP-hard optimization heuristics (e.g., in [194]), or runtime inference of the machine
learning models (e.g., in [182], [23]). Moreover, these techniques do not consider the
effects of bit-error rate (BER) penalty due to various sources of errors (e.g., cross-
talk) on the laser power utilization and performance of photonic links and PNoCs.
As a result, these techniques are not able to achieve the required practical balance
between the reduction in laser power and achieved performance in PNoCs. To achieve
such power-performance balance in PNoCs, recent works [98] and [158] employ data
approximation techniques to opportunistically trade the communication reliability
for reduced laser power and/or improved performance in PNoCs. However, to gain
substantial benefits, these techniques require the accuracy or reliability goals of target
applications to be relaxed, which can be achieved only for a select few inherently error-
tolerant applications. This constraint limits the applicability of such techniques.
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In contrast to these dynamic techniques from prior work, we advocate for a hy-
brid (static + dynamic) solution in this Chapter as part of our proposed PROTEUS
framework. Instead of dynamically tuning the optical power extracted from the laser
source, our PROTEUS framework statically minimizes the required optical power
extraction from the laser source at the design-time, by optimizing two key photonic
link configuration parameters to minimize the BER power penalty in PNoCs without
reducing the reliability of communication. Then, at the runtime, PROTEUS dynam-
ically adapts the photonic link configuration in response to the changing insertion
loss for every photonic packet trans-fer, to achieve and maintain the balance between
the reduction in laser power and achieved performance. For dynamic adaptation,
PROTEUS relies on simple rules that are derived from an offline search heuristic.
PROTEUS stores these rules in lookup tables to enable their easy reference dur-
ing the runtime of PNoCs. Our novel contributions in this Chapter are summarized
below:

• We present a design-time technique that minimizes the crosstalk related BER
power penalty in PNoCs by opti-mizing two key photonic link configuration
parameters, to ultimately reduce the requirement of laser power in PNoCs;

• We present light-weight techniques for implementing self-adaptation of photonic
link configuration, and provide detailed overhead analysis of these techniques;

• We integrate these design-time optimization and runtime self-adaptation tech-
niques into a holistic framework called PROTEUS, to achieve a loss-aware bal-
ance be-tween the laser power consumption and performance of PNoCs;

• We evaluate PROTEUS by implementing it on a well-known PNoC architecture
and compare it with other laser power management techniques from prior works
[33] and [172].

3.2 Fundamentals of Photonic NoCs (PNoCs)

3.2.1 Physical-Layer Architecture and Operation of PNoCs

In this subsection, we explain the physical-layer design and operation of PNoC ar-
chitectures. We use the crossbar-based PNoC from [35] as an example PNoC archi-
tecture in this Chapter, the physical-layer layout of which is illustrated in Fig. 3.1.
The PNoC in Fig. 3.1 consists of serpentine links as its building blocks. Every such
link in the PNoC consists of one or more photonic waveguides spanning the PNoC
chip, depending on the specific variant of the physical-layer architecture [25]. In this
Chapter, we consider one photonic wave-guide per link. Every such single-waveguide
photonic link in the PNoC connects multiple gateway interfaces (GIs) with one an-
other. A GI connects to multiple parallelly laid-out photonic links, and interfaces a
cluster of processing cores (e.g., a cluster of four cores in Fig. 3.1) with the links.
Typically, out of all the GIs that are connected to a single link, some GIs can write
photonic data into the link and the others can read photonic data from the link, to
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Figure 3.1: Schematic physical-layer layout of the PNoC architecture from [35]. This
figure also explains the concepts of packet frame delay and changing insertion loss
(ILdB) for every packet transfer

enable the multiple-writer-multiple-reader (MWMR) type of crossbar con-figuration
[124] in the PNoC.

Each of the photonic links in the PNoC receives some amount of multi-wavelength
optical power from an on-chip power waveguide via a power splitter. The power
waveguide receives the multi-wavelength optical power from an off-chip laser source
via an optical coupler. The input multi-wavelength optical power traverses the indi-
vidual links to all individual GIs on the chip. Each GI can utilize the wave-lengths
of input light as parallel dense-wavelength-division-multiplexed (DWDM) carriers
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for data signals, to enable data communication with one or more other GIs. At a
sender GI of the PNoC, every incoming data packet from the source processing core
is converted into multiple parallel electrical data signals (a signal is defined here as a
sequence of ‘1’s and ‘0’s), which are then modulated onto the DWDM carriers using
a bank of modulator MRs (not shown in Fig. 3.1) to convert them into parallel pho-
tonic data signals. These DWDM data signals constitute a photonic data packet that
traverses a single-waveguide link to a receiver GI. At the receiver GI, a set of MR
filters drops the constituent photonic signals of the photonic data packet onto the
adjacent photodetectors, to regenerate the electrical data signals, and consequently,
the electrical data packet. This regenerated electrical data packet is then passed on
to the destination processing core. Thus, in a PNoC, every data packet is transferred
as multiple DWDM data signals.

The transfer of every photonic data packet as multiple DWDM data signals (re-
ferred to as Nλ) in the PNoC enables wrapping of the data packet (packet size is re-
ferred to as PS) into a short timeframe. This packet timeframe (i.e., |(PS/Nλ)|×(1/BR),
where BR is signal bitrate) is referred to as frame delay in Fig. 3.1. This frame delay,
when added to the waveguide propagation delay (Fig. 3.1), constitutes the latency of
transferring the packet between the sender and receiver GIs. It can be reasoned that
this transfer latency for a fixed size of the data packet can be reduced by decreas-ing
the packet frame delay (i.e., |(PS/Nλ)|×(1/BR)), which in turn can be achieved in
three different ways: (i) by in-creasing Nλ in the waveguide, (ii) by increasing the
bitrate (i.e., BR) of each data signal, and (iii) by increasing both Nλ and BR. Each
of these three ways can enable wrapping of the data packet into a shorter timeframe,
to reduce the packet frame delay, and hence, the packet transfer latency. However,
increasing Nλ and/or BR requires judicious consid-eration of the inherent tradeoffs
among the achievable per-formance, reliability, and required optical power in the
PNoC. Failing to do so can lead to significantly harmed optical power efficiency or
nonviable operation of the photon-ic links and PNoC, as discussed next.

3.2.2 Power-Reliability-Performance Tradeoffs in PNoCs

Designing a photonic link of a PNoC is subject to inherent tradeoffs among the achiev-
able performance (aggregated datarate (Nλ×BR), and hence, frame delay
(|(PS/Nλ)|×(1/BR), where PS is packet size), required optical power, and relia-
bility [19]. Optimizing these design tradeoffs often involves finding the sweet spot
that balances the link’s aggregated datarate and power-reliability behavior [19]. The
tenacity of this balance depends on how efficiently the provisioned optical power from
the off-chip laser source is utilized. The utilization of the provisioned laser power in
the link is governed by four different factors, which are formulated in Eq. 3.1.

PMax ≥ PLaser ≥ ILdB + PP dB{Nλ, BR,Q}+ 10log
(Nλ)
10 + S{BR} (3.1)

Here, PLaser is the provisioned optical power (in dBm) in the link from the power-
waveguide splitter (Fig. 3.1), the utilization of which depends on the following four
factors, as evident from Eq. 3.1: (i) total insertion loss ILdB in dB faced by a single
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photonic signal in the link, which includes the total propagation and bending loss in
the link’s waveguide and the total insertion loss of the MR modulators, MR filters,
splitters, and couplers; (ii) total bit-error rate (BER) power penalty PP dB, which is
defined as the required increase in the provisioned optical power of a photonic signal
to compensate for the reduced bit-error rate (BER) due to various signal degradation
phenomena, including intermodulation crosstalk and inter-signal crosstalk at filter
MRs [17]; (iii) number of DWDM data signals Nλ per waveguide; and (iv) the pho-
todetector sensitivity S which is a function of BR, which gives the minimum required
power of a photonic da-ta signal at the photodetector for the error-free detection of
the signal. In addition, the peak value of PLaser in a link should be less then PMax

(Eq. 3.1), where PMax gives the optical nonlinearity limited maximum allowable op-
tical power in the waveguide (typically, PMax = 20dBm [175], [19]). Thus, PLaser in
the link should be not only greater than or equal to the sum of the optical power
requirements of all the above four factors, but also less than or equal to PMax.

From [19], S depends on the BR of the photonic signal. Similarly, from [18] and
[17], the total power penalty PP dB of a link, as well as the insertion loss values
for the modulator and filter MRs (which are part of the total ILdB value for the
link), also depend on BR. In addition, PP dB of a link also depends on various link
configuration parameters, such as quality factor (Q) of the MRs, free spectral range
(FSR), and wavelength spacing between the adjacent photonic signals in the link [66].
The parameters wavelength spacing and FSR have limited design flexibility due to
the limitations imposed by the utilized devices and fabrication technology [19]. For
instance, commonly used comb laser sources typically produce output wavelengths
with precisely fixed spacings [136], and require additional area-consuming interleavers
(e.g., [134]) to provide limited flexibility for tuning their output wavelength spacings.
Along the same lines, the state-of-the-art CMOS-compatible MR fabrication tech-
nology limits the maximum achievable FSR to 20nm (e.g., [141]). Because of these
reasons, for the system-level design of PNoCs, the values of parameters FSR and
wavelength spacing can be assumed to be fixed, and consequently, PP dB can be op-
timized as the function of BR and Q of MRs (see Section 3.2.3). As a result, the
required PLaser and its utilization in the photonic link ultimately depends on the link
configuration parameters Nλ, Q, and BR. Thus, for the given value of ILdB in the link,
only a finite set of unique values of the (Nλ, BR, Q) triplet can satisfy the condition
for PLaser given in Eq. 3.1. From [174] and [175], out of all such values of triplet (Nλ,
BR, Q), only one triplet value can optimally balance the inherent tradeoffs among
the aggregated datarate (Nλ×BR), frame delay (packet size/(Nλ×BR)), and optical
power efficiency (PLaser/(Nλ×BR)). Thus, any injudicious attempt to increase Nλ for
improving the packet frame delay can lead to an increased PLaser value, which in turn
can result not only in a decreased optical power efficiency (PLaser/(Nλ×BR)), but
also in a nonviable PLaser value that is greater than PMax.

3.2.3 Modeling of PP dB and ILdB as Functions of BR and Q

From [13], Eq. 3.2 below gives the formula for PP dB (from Eq. (3.1)) for a photonic
signal as the sum of the modulator crosstalk penalty (PPMod

Xtalk), filter crosstalk penalty
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(PP Fil
Xtalk), and power penalty due to the finite Extinction ratio (ER) of modulation

(i.e., the first term in Eq. 3.2). From [18], PPMod
Xtalk for a signal does not depend on

its BR, and for a moderate wavelength spacing of greater than 0.3nm (as assumed
for this work), it can be limited below 1dB. Therefore, we take the fixed 1dB value of
PPMod

Xtalk in this Chapter. On the other hand, PP Fil
Xtalk at a filter MR can be evaluated

using Eq. 3.3 and Eq. 3.4 given below [18].

PP dB = −10log10(
r − 1

r + 1
) + PPMod

Xtalk + PP Fil
Xtalk (3.2)

PPMod
Xtalk ≈ −10log10(1− 2

Nλ∑
i=1

√
γi) (3.3)

γi =
1

1 + β2
− 1

2πv
Re(

1− exp(−2πv(1− jβ))

(1− jβ)2
) (3.4)

Here, r extinction power ratio, γi is the crosstalk power ratio at the filter MR from
the ith signal of total Nλ signals, v=f0/(2Qrb) , β=2Qfδ/f0, with Q = MR Q, rb =
BR of the ith signal, f0 is resonance frequency of the MR filter, and fδ denotes the
frequency detuning between the ith signal and f0. Fig. 3.2 gives the modeled PP Fil

Xtalk

values as a function of BR and Q. From the figure, for a given value of BR, only a
unique value of Q (as indicated by the optimal curve) can minimize PP Fil

Xtalk.
In addition, from [18], the insertion losses of MR modulators and filters can be

modeled to depend on their Q using the Lorentzian shaped transfer function of MRs.
The inclusion of these Q-dependent insertion loss values of MR modulators and filters
in the total ILdB value for the link makes ILdB to depend on the MRs’ Q as well.Thus,
only a unique combination of Q and BR can minimize both PP dB and ILdB for a
photonic link.

3.2.4 Variation in ILdB for Every Photonic Packet Transfer

In a PNoC, different photonic data packets face different values of the insertion loss
ILdB. This is because different photonic packets traverse different distances between
their sender and receiver GIs. For example, in Fig. 3.1, a source processing core is
highlighted as SR. The photonic packets from SR traverse paths P1 and P2, respec-
tively, to the destination processing cores D1 and D2. Based on the physical layout
of the PNoC shown in Fig. 3.1 on a 2cm×2cm photonic chip for the 22nm technology
node, the lengths of paths P1 and P2 are 1.74cm and 2.61cm respectively. Moreover,
path P2 also has a waveguide bend. Therefore, based on the various loss model val-
ues from Table 1, paths P1 and P2 incur waveguide propagation loss of 0.94dB and
1.41dB respectively. This in turn makes the insertion loss ILdB value (that includes
the waveguide propagation loss in addition to some other loss parameters [66]) to
change for each data packet transfer in the PNoC. This observation opens new op-
portunities for dynamically changing for every packet transfer either the PLaser value
or the utilization (in terms of PP dB and/or Nλ) of the fixed design-time PLaser value.
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Figure 3.2: Filter Crosstalk Penalty (PP Fil
Xtalk) as a function of quality factor (Q) for

various values of signal Bitrate (BR). Evaluation is done using Eq .3.2 and Eq. 3.3
for 0.37nm wavelength spacing and Nλ=55 at 1550nm operating wavelength

3.3 Related Work And Motivation

Because of the high insertion loss and power penalty in the constituent photonic links
[18, 175, 66], the state-of-the-art PNoC architectures require a non-trivial amount
of optical power from their laser source. The high optical power overheads from
the laser source can offset the high aggregated datarate, low packet frame delay,
and optical power efficiency advantages of PNoCs. Therefore, it is imperative to
innovate new techniques that can reduce the optical power consumption in future
PNoC architectures. Several prior works have addressed this problem, as discussed
next.

3.3.1 Prior Works on Laser Power Management

Several techniques have been proposed in prior works (e.g., [212, 121, 33, 32, 84, 194,
172, 182, 23]), that aim to reduce the optical power consumption, and hence, the
power consumption of laser sources in PNoCs. To achieve the power savings, a few
of these techniques (e.g., [212, 121, 33, 32, 84]) leverage the temporal and spatial
variations in network traffic to opportunistically adjust the PLaser value (i.e., optical
power extracted from laser sources) by tuning or distributing the available Nλ in the
network. These methods tend to notably reduce the power in laser sources during
low network load conditions. However, if the losses encountered by optical signals
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in the network between the sender and receiver GIs are high, these methods would
still require excessive optical power from laser sources to compensate for the high
losses, even under low network load conditions. In contrast, a few other techniques
focus (e.g., [194], [172]) on leveraging the inherent change in ILdB per packet transfer
to tune the PLaser value (output optical power from laser sources). The amount of
optical power savings achieved by these methods depends on how often the PLaser
value can be tuned in response to the changing ILdB. In addition, recent works
[182] and [23] take a holistic approach and focus on both adapting Nλ and leveraging
the change in ILdB using machine learning predictors, to achieve greater savings in
optical power consumption.

In addition, recent works [98] and [158] employ data approximation techniques to
opportunistically trade the communication reliability for reduced laser power and/or
improved performance in PNoCs. However, to gain substantial benefits, these tech-
niques require the accuracy or reliability goals of target applications to be relaxed,
which can be achieved only for a select few inherently error-tolerant applications.
This constraint limits the applicability of such techniques.

3.3.2 Motivation for Rule-Based Self-Adaptation in PNoCs

Techniques from prior work that look to dynamically adapt Nλ in response to the
changing network traffic conditions need to incorporate extra mechanisms with PNoCs
to (i) monitor the network traffic conditions at runtime, (ii) distribute the available
Nλ in the network, and (iii) communicate the tuning decisions to the off-chip laser
sources. The overheads of such extra mechanisms can offset the achieved optical
power benefits. Along the same lines, among the techniques that look to leverage
the change in ILdB, [172] requires an integration of costly on-chip optical amplifiers,
whereas [194] requires runtime execution of optimization heuristics. Moreover, the
machine learning based self-adaptation techniques from [182] and [23] can also incur
high overheads of runtime inference of the machine learning models. In addition, all
these techniques do not consider the power penalty (PP dB) as an important factor
that can affect the utilization of PLaser in PNoCs in terms of supported Nλ. As
a result, these techniques often render inviably high Nλ values, failing to obtain the
practical balance between the optical power efficiency and packet frame delay (packet
transfer latency).

In contrast to these dynamic techniques from prior work, we advocate for a hybrid
(static + dynamic) solution as part of our proposed PROTEUS framework that can
achieve and maintain a balance between the optical power efficiency and performance
of PNoCs. The details of our proposed PROTEUS framework are discussed in the
next section.
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3.4 Proposed PROTEUS Framework

3.4.1 Overview

Our proposed PROTEUS framework enables rule-based self-adaptation in PNoCs for
dynamic management of PLaser and performance (in terms of packet transfer latency).
PROTEUS includes two steps. In the first design-time step (Section 3.5.2), PRO-
TEUS performs a search heuristic based optimization to find the optimal combination
of Q and BR that minimizes the PP dB and ILdB values for the link. This step allows
PROTEUS to statically reduce the PLaser value at the design time, compared to the
techniques from prior works [172] and [33], and balance the optical power efficiency
of the PNoC with its packet transfer latency. Then, during the second runtime step
(Section 3.5.3), PROTEUS readjusts the BR, and Q duplet in response to the chang-
ing ILdB for every packet transfer, (i) to ensure that the provisioned PLaser is always
utilized as fully as possible, and (ii) to maintain the balance between the achieved
optical power efficiency and packet frame delay (packet transfer latency) for every
packet transfer. To enable dynamic readjustments (adaptation) of Q, PROTEUS
incorporates the MR modulator/filter design with adaptable Q from [146], after en-
hancing it for a faster response. Similarly, to enable adaptation in BR, PROTEUS
allows a light-weight reconfiguration of the serialization and deserialization modules
in each GI to enable the scaling of photonic clock rate (that directly corresponds to
signal BR) between the baseline value of 5GHz and four discrete up-scaled values
(10GHz, 15GHz, 20GHz, and 25GHz). An exhaustive search-based analysis is per-
formed offline, to find the best combinations of Q and BR for all possible ILdB values
in the PNoC. From this offline analysis, simple rules are derived about what should
be the change in the control parameters (e.g., reconfiguration parameters that control
the dynamic clock rate scaling) to adapt BR and Q combination for each transferred
packet, as ILdB changes for each packet transfer as discussed in Section 3.2.4. These
rules (i.e., new control parameter values) are stored in a lookup table at every GI
of the PNoC, which PROTEUS refers to at runtime before each packet transfer to
enable adaptation of Q and BR.

3.4.2 Search Heuristic Based Design-Time Optimization

In a PNoC, ILdB varies for different sender-receiver pairs, as illustrated in Fig. 3.1
(Section 3.2.4). We model all unique ILdB values that a photonic packet can experi-
ence across all possible sender-receiver combinations. For our PNoC in Fig. 3.1, the
best-case ILdB is 0.47dB and the worst-case ILdB is10dB. Note that we consider only
the waveguide propagation loss as ILdB for our analysis presented in this section.
Prior works [172] (henceforth identified as OPA) and [33] (identified as ABM), with
which we compare our PROTEUS framework, do not consider the impact of PP dB

on PLaser utilization, as inferred from the fact that the assumed Q or BR values are
not reported in [172] and [33]. As a result, OPA and ABM assume inviably high
value of Nλ = 64 that leads to PLaser to be greater than PMax = 20dBm [197], for
commonly used fixed values of Q = 7000 [19] and BR = 10 Gb/s [19][182]. Therefore,
to make the implementations of OPA and ABM techniques viable, first, we identify
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the viable value of Nλ (using Eq. (3.1)) for the worst-case ILdB of 10dB. For that,
we consider Q=7000, BR=10Gb/s, S = 20dBm [19], PLaser=PMax =20dBm, and
PP dB as evaluated from Eq. (3.2)-(3.4). We found the maximum supported Nλ to
be 55, and we consider this as the design value for OPA and ABM. As our PROTEUS
framework aims to achieve loss-aware power savings, we consider another loss-aware
technique, i.e., OPA, as the baseline comparison in this section. Fig. 3.3 gives the
packet frame delay and optical power efficiency (triangle shaped points) for different
ILdB values (shown in different colors) for OPA. As evident, OPA reduces PLaser as
ILdB decreases. As a result, the optical power efficiency values for OPA also reduce
as ILdB decreases. However, as Nλ=55 and BR=10Gb/s are fixed for all ILdB cases
for OPA, all ILdB cases achieve the same packet frame delay (Fig. 3.3). From these
results for OPA, the goal of PROTEUS framework becomes to statically reduce the
required PLaser to a value below 20dBm that can support the unchanged aggregated
datarate (Nλ×BR=55×10Gb/s=550Gb/s) for all possible ILdB cases. Intuitively, if
a PLaser value that is less than 20dBm can support Nλ=55 for the worst-case ILdB of
10dB, then that PLaser value can support Nλ=55 for all other ILdB values lower than
10dB as well. To find such PLaser value, PROTEUS aims to reduce PP dB for the
worst-case ILdB = 10dB, by optimizing Q for the given BR = 10Gb/s (unchanged
compared to OPA), using a search heuristic. The search heuristic takes 28 different
Q values (i.e., from 5000 to 12000 with step increment of 250) and finds Q = 9750
to provide minimal PP dB for BR = 10Gbps, which corroborates with Fig. 3.2 where
the optimum curve for BR = 10Gbps falls at the same value of Q = 9750. Thus, at Q
= 9750 we have the least PP dB, which gives us the opportunity to statically reduce
PLaser.

3.4.3 Impact of Varying Q and BR

From Section 3.4.2, intuitively any ILdB that is less than the worst-case value of 10dB
should require less than PLaser=16dBm. But PROTEUS keeps PLaser to be fixed at
16dBm for each packet transfer, irrespective of ILdB. This provides an opportunity
to increase BR for smaller ILdB val-ues, by allowing the accommodation of a larger
PP dB value to fully utilize the provisioned PLaser of 16dBm. For fully utilizing the
provisioned PLaser for different ILdB values, PROTEUS adaptively varies Q and BR
for different ILdB value (i.e., for each different packet). For that, PROTEUS uses
the offline search heuristic to find the optimal values of Q, BR that provides the
minimum positive value of e = (PLaser – ILdB – PP dB – 10log(Nλ) – S ) (derived
from Eq. (3.1)), as the minimum value of e means that PLaser is fully utilized for that
BR and Q combination. Such optimal BR and Q values are found for each possible
ILdB value in the PNoC. As inputs to the search heuristic, we use the same values of Q
as used in Section 3.4.2, whereas we limit BR to only four discrete values of 10Gbps,
15Gbps, 20Gbps, and 25Gbps to enable a viable BR adaptation control mechanism as
dis-cussed in Section 3.5.1. From Fig. 3.3, as the ILdB values reduce from 10dB, the
optimal Q and BR values for PROTEUS change, yielding increasingly better (lower)
frame delay and optical power efficiency values. To understand the reason behind
that, consider Fig. 3.3 that plots the breakdown of PLaser utilization and aggregated
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datarate values for OPA and PROTEUS for various inser-tion loss (ILdB) values. In
Fig. 3.3, PLaser decreases for OPA as the insertion loss (ILdB) decreases. In contrast,
for PROTEUS, PLaser remains constant for all insertion loss val-ues. However, the
detector sensitivity increases as the insertion loss increases. This is because, the
detector sensitivity typically increases with the increase in BR [19], and from Fig. 3.3,
BR increases as the insertion loss (ILdB) decreases for PROTEUS (circular points).
Despite this increase in BR with the decrease in insertion loss for PROTEUS, the
utilization of PLaser for PP dB for PROTEUS remains at the mini-mum possible value
for all insertion loss values. This contrasts with what happen for OPA (Fig. 3.3).
Such minimization of PP dB for all insertion loss values allows for larger BR values
at smaller insertion loss values for PROTEUS, yielding greater aggregated datarate
(green columns in Fig. 3.3) for PROTEUS for smaller insertion loss values. Thus,
dynamic adaptation of BR and Q with changing insertion loss values for each packet
transfer allows PROTEUS to opportunistically improve the frame delay and optical
power efficiency for different packet transfers.

3.5 Implementation Of PROTEUS Framework

Our proposed PROTEUS framework uses the offline search heuristic analysis de-
scribed in Section 3.4.3 to find the optimal combination of BR and Q for different
ILdB values. Using this offline information, PROTEUS dynamically adapts Q and
BR to the optimum values to co-optimize optical power efficiency and frame latency,
for each photonic packet transfer. PROTEUS incorporates a lookup table at each GI,
which stores the rules in terms of the required control parameter values for adapt-
ing Q and BR. We propose to adapt Q by incorporating an MR modulator/filter
design from [146], and adapt BR by implementing a light-weight reconfiguration of
the serialization and deserialization modules at each GI. We discuss the operation of
these adaptive designs and their incurred overheads in the next subsections. We also
discuss how we derive the rules required to enable the lookup table based adaptation.

3.5.1 Dynamic Adaptation of BR

To enable dynamic reconfiguration of the BR, we propose to use reconfigurable seri-
alizer and deserializer modules at each GI, as illustrated in Fig. 3.4. In the design
shown in Fig. 3.4, at each GI, the clock distribution H-tree (implementation of which
is explained in Section 3.5.3) supplies a discrete set of upscaled clocks rate (10GHz,
15GHz, 20GHz and 25GHz). Each of these upscaled clock rates corresponds to the
spe-cific BR, e.g., the clock rate of 10GHz corresponds to BR of 10Gb/s. In Fig.
3.4, each GI has multiple copies of both serializer and deserializer units, with each
copy enabling the clock rate scaling between the baseline rate of 5GHz (not shown in
Fig. 3.4) and a specific upscaled rate. For example, the ‘5GHz to 10GHz’ (‘10GHz to
5GHz’) serializer (deserializer) unit enables clock-rate scaling from (to) the baseline
value of 5GHz to (from) the upscaled value of 10GHz. The selection of the serializer
and deserializer units to be used for transmission of a photonic packet is controlled
by the switches S1, S2, S3 and S4. The switches S1 to S4 are also used to gate the up-
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(a)

(b)

Figure 3.3: (a) Frame Delay and Optical Power Efficiency for different inser-tion
loss values (indicated by different colors) for OPA and PROTEUS (indicated with
different shapes); (b) Utilization of PLaser and Aggregated Datarate for OPA and
PROTEUS across different insertion loss values.



Figure 3.4: The schematic of the reconfigurable serializer and deserializer units at
the sender and receiver gateway interfaces. These units along with the upscaled clock
rates provided from the clock distri-bution H-tree and switches S1, S2, S3 and S4

enable dynamic adaptation BR.

scaled clock signals, so that the idle serializer and deserializer units can be turned off.
For instance, in Fig. 3.4, the sender GI can serialize the input data bits (D0 to Dn)
of a packet with BR=10Gb/s by configuring the switches S1, S2, S3, and S4 to ‘1’,
‘0’, ‘0’, and ‘0’ states respectively, which means that switch S1 is closed and switches
S2 to S4 are open. These states of the switches can be collectively represented with
the switch-state vector S1S2S3S4 = ‘1000’. This ‘1000’ switch-state vector basically
selects the ‘5GHz to 10GHz’ serializer unit at the sender GI and the ‘10GHz to 5GHz’
deserializer unit at the receiver GI. It also gates the remaining three serializer and
deserializer modules at the sender-receiver GIs to the power down mode. Thus, PRO-
TEUS can use this switch-state vector S1S2S3S4 as the control parameter before each
packet transfer at the sender and receiver GIs involved with the packet transfer, to
select the appropriate serializer-deserializer pair and to consequently control the BR
for the packet transfer. The overheads of this BR control mechanism are discussed
next.

1. Area and Power Overhead Analysis:
The dynamic adaptation of BR incurs overhead for the generation and dis-
tribution of various upscaled clock signals. In addition, the dynamic power
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overhead of the serializer and deserializer modules change with the selection of
the upscaled BR. We consider the power values for the serializer and deserializer
units from [154] for the 45nm CMOS SOI platform, and scale them for different
upscaled BR values. Accordingly, the serializer modules corresponding to the
upscaled BR values of 10Gb/s, 15Gb/s, 20Gb/s, and 25Gb/s, respectively, con-
sume 1.4mW, 2.4mW, 3.3mW, and 4.2mW power. From [55], the deserializer
units also have approximately the same power values as the serializer units.
Moreover, we consider the power and area consumption of the clock generator
per upscaled clock rate to be 0.5mW and 180 µm2. Further, the clock distri-
bution H-tree also incurs similar area (for the required clock buffers across the
H-tree network) and power overheads of 0.504mW and 320µm2 per upscaled
clock rate [48]. In addition, we assume that the serializer and deserializer units
can be woken-up from the power-down mode in ∼200ps, which we think is the
reasonable value as the critical path for these units can be reasonably short
[115]. We include these power overhead values in our system-level simulations
in Section 3.4.

3.5.2 Dynamic Tuning of Q

To enable dynamic tuning of Q, we extend the two-point coupled MZI-based MR
modulator design from [146] for a faster response. Fig 3.5(a) and 3.5(b), respectively,
show our utilized MR modulator and MR filter designs. In these designs, the regular
coupling waveguide, which generally supports the input and through ports of the MR
device, is extended to have a long coupler arm that couples with the MR at two points
C1 and C2. In the original design from [146], this coupler arm is integrated with a
microheater that can thermo-optically change the coupler optical path-length l1 with
respect to the MR optical path length l2 to modulate the coefficients of light coupling
at points C1 and C2, which in turn results in the modulation of quality factor (Q)
for the MR. Using this method, a wide range of Q tuning has been demonstrated
in [146]. However, the use of microheater results in a very slow response time for
tuning Q (in the order of milliseconds). Therefore, to improve the response time, we
embed a reverse-biased PN-junction based phase-shifter in the coupler arm, instead
of the heater based approach in [146]. From Fig. 3.5(a), by changing the reverse
bias voltage VR across the PN-junction, the depletion layer width can be changed
in the PN-junction to change the effective index of the coupler arm, which in turn
can change the optical path length l1 of the coupler arm, resulting in the change in
the coupling coefficients and Q of the MR. Thus, PROTEUS can use the applied
reverse-bias voltage across the coupler arm as the control parameter to tune the Q
values for individual MR modulators and filters in the PNoC.

1. Power Overhead and Response Time Analysis:
We model our designed MRs, along with the PN-junction based phase-shifter
in the coupler arms of the MRs, using the phase-shifter model given as part of
the open-source modeling framework [73]. In our model, we use the nominal
carrier concentration values for the P+, N+, P++, and N++ doping regions
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Figure 3.5: (a) Two-point coupler arm based MR modulator; (b) Two-point coupler
arm based MR filter; (c) Cross-sectional view along AA‘ of the PN-junction embedded
in the coupler arms of the MRs.

and PN-junction dimensions from [146]. From our modeling, we find that the Q
of our designed MRs can be adapted with the response time to be in the range
of 20-30ps.

In addition, the adaptation of Q incurs Q-tuning power overhead. Fig .3.6 gives
the variation of Q with respect to the Q-tuning power, which is associated with
VR across the PN-junction. From Fig .3.6, tuning of Q values over a wide range
can be achieved. From the figure, the highest Q-tuning power value is 6.1µW
per MR. This value translates into total 0.03W power overhead, if the Q values
for all 6457 MRs in our considered enhanced Flexishare PNoC architecture [124]
are tuned.
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Figure 3.6: Variation of Q (Q-factor) and extinction ratio in our considered MR
designs from Fig. 3.5 with applied Q-Tuning Power.

Further, Fig .3.6 also captures the dependency of the change in extinction ratio
with the change in Q. This dependency results in the power penalty in MR modulators
due to the limited extinction ratio of modulated signals. This power penalty can be
modeled using the first term in Eq. 3.2. For that, we evaluate r from the extinction
ratio value ob-tained from Fig .3.6. For example, the horizonal brown line shown
in Fig .3.6 corresponds to Q=6000 and extinction ratio = 17.5dB, which in turn
corresponds to r = 10(17.5/10) ≈56.2. Using this r value in the first term of Eq. (3.2)
yields the power penalty of 0.154dB. We evaluate this power penalty as part of our
offline search heuristic described in Section 3.4.3. Therefore, our selected Q and BR
values for different ILdB values (3.4.3) already reflect this power penalty overhead.

3.5.3 Putting All Together with Rule-Based Lookup

Fig .3.7 shows the schematic implementation of our PROTEUS framework. From
the figure, the upscaled clock signals required for BR adaptation (not shown in Fig
.3.7) are generated in the centralized clock generator, and then these clock signals are
delivered to the individual GIs in the PNoC through the clock distribution H-tree.
In addition, each GI in the PNoC uses an SRAM-based lookup table to stores the
control parameters (i.e., the switch-state vectors S1S2S3S4 for BR and VR values for
Q) that enable the adaptation of BR and Q for every packet transfer. Every entry
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Figure 3.7: Schematic implementation of our PROTEUS framework on the enhanced
Flexishare PNoC architecture from [35].

in the lookup table is indexed using an ID that identifies the sender-receiver GI pair
to be involved for the packet transfer associated with the entry. Before each packet
transfer, the associated sender and receiver GIs access the control parameters from
the lookup table and adapt the BR and Q accordingly, all during the arbitration and
receiver selection phases [35] that are required for successful transfers of data packets
over the crossbar based PNoCs (e.g., [124], [35]).

1. Overheads of Rule-Based Lookup
The access latency of lookup table indexing is evaluated to be 40ps, using
CACTI 7.0 [21] based modeling and analysis. This latency, when added to the
Q-adaptation response time of 20-30ps and the wake-up time for the serializer-
deserializer units of 200ps, gives the total latency for Q and BR adaptation to
be 270ps, which is about half the typical processing core operating clock period
of 500ps (i.e., 2GHz clock rate). Moreover, each lookup table has 64 entries
(corresponding to 64 sender-receiver GI pairs) of 24-bits each, to support the
storing of sender-reciever IDs, VR values and S1S2S3S4 vectors. The total area
overhead of all lookup tables in the PNoC is 0.09mm2.

3.6 Evaluation

3.6.1 Evaluation Setup

For evaluating our PROTEUS framework, we simulate a 256-core system with a
PNoC that has 32 GIs and 32 clusters, with each cluster having 8 cores. We targeted
a 22nm process node and 5 GHz clock frequency for the 256-core system. We consider
the recently proposed variant [35] of the well-known Flexishare PNoC architecture
[124], which employs the overlapped concurrent token stream arbitration method.
Fig. 3.1 shows the physical-layer schematic of the scaled down version (i.e., 64 cores,

53



Table 3.1: Various Loss And Power Parameters

Parameter Value

Laser wall-plug efficiency 10% [19]
Sensitivity at 10Gb/s -20dBm [19]
Waveguide Insertion Loss 0.54dB/cm [31]
Waveguide Bending Loss 0.005 dB/900 [66]
Splitter Loss 0.5dB [66]
Coupler Loss 2dB [66]
Free Spectral Range (FSR) 20 nm [141]
Thermal tuning power 800 µ W/nm [155]

16 clusters, 16 GIs, 4 cores per cluster) of our considered PNoC. Our considered
PNoC architecture implements intra-cluster communication in the electronic domain
and inter-cluster communication in the photonic domain, as done in the PNoC from
[26]. Our considered PNoC uses 32 multiple-writer-multiple-reader (MWMR) type
of crossbar waveguides, with each wave-guide employing total 55 DWDM photonic
signals (i.e., Nλ = 55). We consider a packet size (PS) of 512 bits, therefore, the
frame delay for our PNoC becomes |(PS/Nλ)|×(1/BR) = 10/BR. We modeled and
simulated the architectures at cycle-accurate granularity with a SystemC-based in-
house NOC simulator. We used real world traffic from applications in the PARSEC
benchmark suite [154]. The traces of PARSEC benchmark applications were gener-
ated from gem5 full-system simulations, and then were fed into our NoC simulator.
We adequately warmed up our Gem5 simulations to consequently extract the traces
from the regions-of-interest (ROIs) [25] of the applications.

To compute laser power, we considered the values listed in Table 3.1 for calculating
the total optical power coupled to the PNoC chip. Then, we considered the wall-plug
efficiency of 10% to evaluate the electrical input power in the off-chip laser source
(referred to as electrical laser power). In addition to the electrical laser power, we also
evaluated the average packet latency and aggregated energy-per-bit (EPB) values. We
evaluate aggregate EPB as the sum of electrical laser EPB, thermal tuning EPB, and
overhead EPB. To evaluate EPB, we divide average power value with the average
throughput of the PNoC, e.g., to evaluate electrical laser EPB, we divide electrical
laser power with the average throughput, and vice versa. We take our overhead power
values from Section 3.5, and thermal tuning power from Table 3.1.

We compared PROTEUS with two dynamic laser power (LP) management tech-
niques from prior work: Adaptive Bandwidth Management technique (ABM) from
[33], and On-chip Semiconductor Amplifier (OPA) based technique from [172]. ABM
performs a weighted time-division multiplexing of the photonic network bandwidth
and leverages the temporal fluctuations in network bandwidth to opportunistically
save LP. ABM is designed to perform LP management in MWMR waveguides [33].
On the other hand, OPA uses on-chip semiconductor amplifiers to achieve traffic-
independent and loss-aware savings in LP. We consider Flexishare with ABM as
our base case for comparison. For comparison with ABM, it is necessary to en-
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Figure 3.8: Total power (electrical laser, thermal tuning, and overhead power) dissi-
pation results for the ABM, OPA, and PROTEUS enabled var-iants of our considered
enhanced Flexishare PNoC architecture. Overhead is for adapting Q and BR.

able weighted time division multiplexing of the network bandwidth in the Flexishare
PNoC. Therefore, we enhanced the Flexishare PNoC [124] with the overlapped con-
current token stream arbitration method from [35], to enable weighted time-division
multiplexing of the network bandwidth. We ana-lyzed the power dissipation, average
packet latency and aggregate EPB for OPA, ABM and PROTEUS, when these frame-
works were integrated with our considered enhanced Flexishare PNoC architecture.

3.6.2 Comparative Analysis Results

Fig .3.8 presents total power dissipation (sum of electrical laser power, thermal tun-
ing power, and overhead power) results for ABM, OPA and PROTEUS. ABM does
not have any power overheads involved [33], whereas OPA has the power overhead
of tuning OPAs [172] and PROTEUS has the overhead of adapting Q and BR. De-
spite of this fact, the total power consumption for PROTEUS is less than ABM by
17.89%. This is because the static reduction in optical PLaser to 16dBm for PROTEUS
turns out to be significant than the dynamic and traffic-dependent reduction in op-
tical PLaser for ABM, which in turn reduces the electrical laser power for PROTEUS
by 24.5%, contributing to the reduction in total power consumption. In contrast,
PROTEUS consumes 5.13% more total power than OPA, despite OPA consuming
significantly more overhead power than PROTEUS. This is because the optical PLaser
is modulated to its minimum re-quired value for every packet transfer in OPA, which
proves to be better than the static reduction in PLaser achieved by PROTEUS, result-
ing in less total power consumption for OPA than PROTEUS. Nevertheless, PRO-
TEUS achieves better average latency and EPB results, as discussed next. Fig .3.9
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Figure 3.9: Normalized average latency for the ABM, OPA, and PROTEUS enabled
variants of our considered enhanced Flexishare PNoC architecture. Results are nor-
malized with respect to the ABM technique.

shows the average packet latency results, with all values normalized with respect to
the ABM technique. As evident from Fig .3.8, it can be observed that on average,
PROTEUS achieves 31% and 21.5% lower latency than ABM and OPA, respectively.
The lower latency for PROTEUS is due to the dynamic adaptation of Q and BR,
which decreases the PP dB to increase the aggregated data-rate and reduce the frame
delay, resulting in reduced latency. In contrast, ABM and OPA techniques do not
aim to reduce average packet latency at all. Furthermore, ABM experiences higher
latency compared to OPA, as ABM incurs additional latency for switching ON and
OFF the off-chip laser sources [33].

Fig. 3.10 gives aggregate EPB (sum of electrical laser EPB, thermal tuning EPB,
and overhead EPB) results for ABM, OPA, and PROTEUS. PROTEUS consumes
20% and 13.6% less aggregate EPB than ABM and OPA, respectively. As seen
earlier, PROTEUS has the least average latency, which yields the highest throughput,
resulting in the least EPB, compared to ABM and OPA. Moreover, as the average
la-tency and total power for ABM are higher than OPA, ABM has greater aggregate
EPB than OPA. Thus, our proposed PROTEUS framework is able to strike a balance
between the total power consumption and performance (in terms of average packet
latency) of the PNoC, and therefore, it can achieve more energy-efficiency in terms
of energy-per-bit.
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Figure 3.10: Aggregate energy-per-bit (EPB) results for the ABM, OPA, and PRO-
TEUS enabled variants of our considered enhanced Flexishare PNoC architecture.

3.7 Summary

This Chapter presented an insertion loss aware framework PROTEUS that enables
rule-based dynamic adaptation of the key photonic link configuration parameters,
such as Q-factor of microrings and bitrate of photonic data signals, to statically re-
duce the laser power consumption and oppor-tunistically improve the packet transfer
latency in PNoCs. PROTEUS exploits the dependence of BER power penalty in
PNoCs on Q-factor and bitrate to balance the reduction in laser power consumption
in PNoCs with the achieved aggregated datarate and packet latency. Evaluation with
PARSEC benchmarks shows that the PROTEUS framework can achieve up to 24.5%
less laser power consumption, up to 31% less average packet latency, and up to 20%
less energy-per-bit, compared to two other laser power man-agement techniques from
prior work. Thus, PROTEUS represents an attractive solution for co-optimizing the
laser power consumption and performance of emerging PNoCs.
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Chapter 4 Photonic Reconfigurable Accelerators for Efficient Inference of
CNNs with Mixed-Sized Tensors

4.1 Introduction

Convolutional Neural Networks (CNNs) have shown record-breaking performance for
implementing various real-world artificial intelligence tasks such as image recogni-
tion, language translation, and autonomous driving [202, 128, 118, 149]. The ever-
increasing complexity of CNNs has pushed for highly customized CNN hardware
accelerators [20]. Among them, silicon-photonic CNN accelerators have shown great
promise to provide unparalleled throughput, ultra-low latency, and high energy ef-
ficiency [129, 164, 167, 109, 201, 157]. Typically, a silicon-photonic CNN accelera-
tor consists of multiple Tensor Product Cores (TPCs) that perform multiple tensor
products in parallel. Several TPC-based photonic CNN accelerators have been pro-
posed in prior works based on various silicon-photonic devices, such as Mach Zehnder
Interferometer (MZI) (e.g., [144],[131],[16]) and Microring Resonator (MRR) (e.g.,
[201, 157, 22],[111]).

Among these TPC-based photonic CNN accelerators from prior work, the MRR-
enabled TPC-based accelerators (e.g., [166, 111, 201, 157, 22]) have shown disrup-
tive performance and energy efficiencies for processing CNN tensor products, due
to the MRRs’ compact footprint, low dynamic power consumption, and compati-
bility with cascaded Dense-Wavelength-Division-Multiplexing (DWDM). The MRR-
enabled TPCs of these accelerators transform CNN tensor products into Vector Dot
Products (VDPs) by decomposing the input tensors into vectors (1D tensors). The
VDP operations are performed on the individual VDP Elements (VDPEs), which are
the main MRR-enabled hardware components in a TPC. Multiple VDPEs in a TPC
can perform multiple VDP operations in parallel. The results of these VDP operations
can be summed together (when needed) using a partial-sum (psum) reduction net-
work, which can be employed outside of the TPCs as part of the post-processing com-
ponents of the CNN accelerator. The functioning of the TPCs and their constituent
VDPEs in the ultra-high-speed photonic domain results in disruptive throughput for
processing tensors.

However, the existing MRR-enabled TPC-based accelerators are not efficient in
processing modern CNNs with mixed-sized tensors, such as Xception [36] and Mo-
bileNetV1 [69]. This is because these modern CNNs utilize depthwise separable con-
volutions in addition to the standard convolutions. Depthwise separable convolutions
in a CNN employ reduced sized tensors compared to the standard convolutions, to
reduce the overall computational load of processing the CNN. For instance, Mo-
bileNetV1 shows 8-9× reduction in its computational load with only 1% accuracy
drop [69]. But the existing MRR-enabled TPCs and their constituent VDPEs have
fixed sizes. Therefore, mapping the processing of the modern CNNs with mixed-sized
tensors [42] on such fixed-sized TPCs often leads to a low hardware utilization in
the TPCs. This in turn diminishes the achievable performance and energy efficiency
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from such fixed-sized TPCs-based accelerators. This is because the low hardware
utilization incurs non-amortizable area and static power overheads while also idling
away the opportunity for increasing the processing throughput.

To address this shortcoming, in this Chapter, we present a novel way of introduc-
ing reconfigurability in the MRR-enabled TPCs-based CNN accelerators, to enable
efficient support for both depthwise separable convolutions and standard convolu-
tions. To enable this reconfigurability, we invent reconfigurable VDPEs that employ
MRR-based comb switches to allow re-aggregation of the CNN vectors (decomposed
1D tensors) to consequently enable dynamic resizing of the produced VDP results.
Our evaluations show that our invented reconfigurable VDPEs can (1) substantially
improve the hardware utilization, (2) enhance the flexibility of processing CNN ten-
sors of various sizes, (3) improve the opportunities for parallel tensor processing, and
(4) significantly enhance the energy efficiency, for CNN inference acceleration.

Our key contributions in this Chapter are summarized below:

• We review several state-of-the-art MRR-enabled TPC-based CNN accelerators
from prior work and then classify the circuit-level TPC organizations used in
these accelerators into two categories, namely AMM and MAM (Section 4.3.1);

• We perform the scalability analysis of TPCs of AMM and MAM categories to
capture the inter-dependence of the maximum achievable TPC size, bit preci-
sion, and operating data rate (Section III-B);

• We map the processing of four state-of-the-art CNNs with mixed-sized tensors
on the TPCs of AMM and MAM categories to evaluate the hardware utilization
of the TPCs, to consequently establish the need for reconfigurability in the
AMM and MAM-styled TPCs (Section 4.4);

• We invent a novel reconfigurable structure for VDPEs, and utilize these VDPEs
to modify the AMM and MAM TPCs, to render these TPCs with the capabili-
ties of dynamic re-aggregation of vectors for adaptive resizing of the processed
VDPs (Section 4.5);

• We evaluate the performance of our designed reconfigurable MAM and AMM
TPC organizations for the inference of four modern CNNs in terms of Frames-
Per-Second (FPS), FPS/W, and compare it with three different AMM- and
MAM-styled CNN accelerators from prior work, with area proportionate out-
look for which we set the area of all our evaluated accelerators to be equal
(Section 4.6).

4.2 Preliminaries

4.2.1 CNNs with Mixed-Sized Tensors

It has been established that the efficiency of executing CNNs can be improved by
drastically reducing the computation, communication, and memory requirements of
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the CNNs. To achieve this, there has been a growing trend of employing com-
pressed, mixed-sized tensors in CNNs. For example, to compress the size of the
utilized tensors, the Xception CNN model [36] introduced depthwise separable con-
volutions. Typically, a Depthwise Separable Convolution (DSC) breaks up a Standard
Convolution (SC) into a Depthwise Convolution (DC) and a subsequent Pointwise
Convolution (PC). Fig. 4.1 demonstrates how a Standard Convolution (SC), Depth-
wise Convolution (DC), and Pointwise Convolution (PC) work. An SC performs the
channel-wise and spatial-wise tensor product computation in a single step by apply-
ing a single 3D kernel (convolutional filter) tensor to all the channels of the input
tensor. In contrast, a DSC splits the tensor product computation into two steps. In
the first step, the constituent DC applies a dedicated 2D kernel tensor per channel
of the input tensor, and the channel-wise outputs are stacked to produce a single
intermediate tensor. Then, in the second step, the subsequent PC is used to create
a linear combination of all the channels of the intermediate tensor by applying a 1D
kernel tensor for each spatial point of the intermediate tensor, to consequently pro-
duce the final output tensor. This can be better understood by referring to Fig. 4.1,
as explained next.

Standard Convolutions (SCs)

From Fig. 4.1(a), in SC, the input tensor is H×W×D in size, where H is the height,
W is the width and D is the number of channels (i.e., the depth). The kernel tensor
has dimensions K×K×D, which is convolved over the input tensor to generate a single
output tensor with dimensions HOut ×WOut × 1. If there are F such kernel tensors
convolved over the input tensor, then the output tensor will have the dimensions
HOut ×WOut × F (Fig. 4.1(a) shows F=1). If we define the tensor as a multidimen-
sional array of points, then each point in the output tensor is obtained by performing
a tensor product (sum of point-wise products) of the K×K×D kernel tensor and the
corresponding K×K×D part of the input tensor (part of the input tensor highlighted
in gray in Fig. 4.1(a)).

Depthwise Separable Convolutions (DSCs)

As mentioned earlier, each DSC is typically split into a DC and a subsequent PC.
From Fig. 4.1(b), in DC, each channel of the input tensor has a corresponding 2D
kernel tensor with dimensions K×K×1. Since there are D channels in the input
tensor, there are D such kernel tensors. Convolving these channel-wise kernel tensors
across the spatial dimensions of their respective input channels generate a total of D
channels of the intermediate tensor with each channel being of dimensions HOut ×
WOut × 1. Subsequently, in PC (Fig. 4.1(c)), the intermediate tensor is convolved
with a pointwise kernel tensor of dimensions 1×1×D to generate one output tensor of
dimensions HOut ×WOut × 1. The use of DSCs (DCs+PCs) results in a reduction in
the required number of weight points and point-wise multiplication operations [69].
Because of this advantage, several state-of-the-art CNN models, such as EfficientNet
[170], ShuffleNetV2 [208] and MobileNetV2 [138], adopt DSCs.
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Figure 4.1: Illustration of various types of convolutions.

4.2.2 Accelerating CNN Tensor Products

Modern CNNs employ a large number of input and kernel tensors across all their con-
stituent standard convolutional, depthwise seperable convolutional and fully-connected
layers. These CNN tensors are often irregular in size. For example, ResNet50[65]
(EfficientNetB7[170]) CNN employs kernel tensors of at least 12 (26) different sizes
(see the sizes in Table 4.3). Accelerating the inference of such CNNs having mixed-
sized tensors requires efficient hardware implementations of the Products (a.k.a. Gen-
eral Matrix Multiplications (GEMMs)) of their input and kernel (weight) tensors. To
make the hardware implementations of such CNN Tensor Products feasible, the in-
volved input and kernel tensors are typically decomposed into vectors (1D tensors).
These vectors are referred to as Decomposed Input Vectors (DIVs) and Decomposed
Kernel Vectors (DKVs), henceforth. Decomposing into DIVs and DKVs in turn trans-
forms the Tensor Products into decomposed vector dot products (VDPs), which can
be efficiently performed on VDP hardware accelerators [144]. When implemented
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on hardware, these decomposed VDPs produce partial results (psums), which can
then be post-processed to achieve the final Tensor Product results using the psum
reduction networks employed in the hardware accelerators [144].

Figure 4.2: Example decomposition of CNN tensors for tensor product acceleration,
for (a) standard convolution (SC), and (b) depthwise convolution (DC).

To conceive this process of Tensor Product acceleration, consider Fig. 4.2, which
illustrates tensor products between the input and kernel tensors, for a SC (Fig. 4.2(a))
and a DC (Fig. 4.2(b)). In Fig 4.2(a), the tensor product between an input tensor
of dimension (H, W, D) = (3, 3, 3) and a single kernel tensor (F = 1) of dimen-
sion (K, K, D) = (3, 3, 3) is illustrated. To make this tensor product amenable to
hardware acceleration, these input and kernel tensors are respectively flattened into
a DIV (DIV 1) and a DKV (DKV 1) of 27 points each (corresponding to K×K×D
= 3×3×3). Consequently, the tensor product is converted into a VDP operation
between the DIV 1 and DKV 1, which produces V DP 1 as the result. Producing this
V DP 1 can be simplified into 27 point-wise multiplication operations to produce 27
point-wise products, which are then summed together using 27 accumulation oper-
ations. This makes producing V DP 1 amenable to acceleration on any computing
hardware that can support multiple parallel multiplications and accumulations (e.g.,
[114], [79], [148], [204], [117]). If the number of supported, in-parallel multiplications
and accumulations in the employed accelerator hardware is less than the size of the
VDP operation (27 in our example), the result V DP 1 has to be decomposed into
multiple psum results. These psum results are then summed together using the psum
reduction network (Fig. 4.2), to produce the final tensor product result, at the cost
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of extra latency. Note that for the example illustrated in Fig. 4.2, we assume that
the accelerator hardware size matches with the VDP operation size.

In contrast, as discussed earlier, performing a DC operation on the same input
tensor of dimension (H, W, D)=(3, 3, 3) requires 3 channel-wise kernel tensors (F=3)
of dimension (K, K, D) = (3, 3, 1) each. The need to use 3 channel-wise kernel ten-
sors necessitates that a total of 3 tensor products are obtained. For that, as shown
in Fig. 4.2(b), the 3 channels of the input tensor are flattened into 3 DIVs (DIV 1,
DIV 2, DIV 3), and the 3 channel-wise kernel tensors are flattened into 3 DKVs
(DKV 1, DKV 2, DKV 3), of 9 points each (corresponding to K×K×D = 3×3×1).
Performing VDP operations between respective DIVs and DKVs produces 3 VDP
results (V DP 1, V DP 2, V DP 3). Thus, compared to an SC operation, a DC oper-
ation renders smaller sized DIVs and DKVs. This in turn reduces the parallelism
requirement per VDP result in the employed accelerator hardware, because imple-
menting the VDP operations between the reduced sized DIVs and DKVs requires the
hardware support for a less number of in-parallel multiplications and accumulations
per VDP result (only 9 in our example of DC). If the employed accelerator hard-
ware supports more parallelism than necessary for implementing a DC operation, it
can lead to lower hardware utilization efficiency. Similar to the SC and DC oper-
ations, it is also common to convert a PC operation into multiple VDP operations
to make it amenable to hardware acceleration. In summary, to make processing of
CNN tensor products amenable to hardware-based acceleration, this process of tensor
flattening and decomposition remains consistent for the input and kernel tensors of
arbitrary sizes (for sizes other than considered in Fig. 4.2 as well), across all types of
convolutional and fully-connected CNN layers.

4.2.3 Related Work on Photonic CNN Accelerators

To accelerate machine learning tasks with low latency and low energy consumption,
prior works have proposed various accelerators based on Photonic Integrated Cir-
cuits (PICs) (e.g., [20, 140, 116, 7, 144, 16, 206, 187]). Among these, the CNN
accelerators employ PIC-based TPCs to perform CNN tensor products. Some accel-
erators implement digital TPCs (e.g., [34, 94]), whereas some others employ analog
TPCs (e.g., [144, 38, 20, 166]). Different TPC implementations employ MRRs (e.g.,
[116, 7, 144, 111, 51]) or MZIs (e.g., [163, 16, 206]) or both (e.g., [34]). The analog
TPCs can be further classified as incoherent (e.g., [144, 116, 20]) or coherent (e.g.,
[163, 63, 211, 199, 210, 107, 213]). To set and update the values of the individual
input and kernel tensors used for tensor products, the incoherent TPCs utilize the
analog optical signal power, whereas the coherent TPCs utilize the electrical field am-
plitude and phase. The coherent TPCs achieve low inference latency, but they suffer
from control complexity, high area overhead, low scalability, low flexibility, high en-
coding noise, and phase error accumulation issues [164]. In contrast, the incoherent
TPCs based accelerators achieve better scalability and lower footprint, because they
use MRR-based compact PICs [144], unlike the coherent TPCs that use MZI-based
bulky PICs.

Various state-of-the-art photonic CNN accelerators are well discussed in a survey
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paper [211]. Because of the inherent advantages of MRR-enabled incoherent TPCs,
there is impetus to design more energy-efficient and scalable CNN accelerators em-
ploying MRR-enabled incoherent TPCs. However, the CNN accelerators from prior
works have mainly focused on designing their constituent TPCs only for the standard
convolutional layers of CNNs. Prior works have paid very little attention to acceler-
ate the processing of the depthwise separable convolutional layers of CNNs. In this
Chapter, we contribute towards making the MRR-enabled incoherent TPCs more ef-
ficient by enabling them to dynamically adapt to process the standard convolutional
and depthwise separable convolutional layers of CNNs.

Figure 4.3: Illustration of common TPC organizations. (a) AMM organization, (b)
MAM organization, and (c) Summation Element.

4.3 Classification and Scalability Analysis of TPC Organizations

4.3.1 Classification

Most of the photonic MRR-enabled analog, incoherent CNN accelerators from prior
works employ multiple analog TPCs that work in parallel. Typically, an analog TPC
implements the decomposed VDP operations of a tensor product (Fig. 4.2; Section
4.2.2). For that, the TPC typically employs a total of five blocks (Fig. 4.3(a)): (i)
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Table 4.1: List of abbreviations and their full forms used in this Chapter. Definition
and values of various parameters (obtained from [22]) used in Eq. 4.1, Eq. 4.2, and
Eq. 4.3 for the scalability analysis of AMM and MAM TPCs.

Abbreviations Full form Parameter Definition Value
TPC Tensor Processing Core PLaser Laser Power Intensity 10 dBm
DSC Depthwise Separable Convolution R PD Responsivity 1.2 A/W
SC Standard Convolution RL Load Resistance 50 Ω
PC Pointwise Convolution Id Dark Current 35 nA
DC Depthwise Convolution T Absolute Temperature 300 K

DKV Decomposed Kernel Vector DR Data Rate 10 GS/s
DIV Decomposed Input Vector RIN Relative Intensity Noise -140 dB/Hz
VDP Vector Dot Product ηWPE Wall Plug Efficiency 0.1

S Size of DKV ILSMF (dB) Single Mode Fiber Insertion Loss 0
DKVS DKV of size S ILEC(dB) Fiber to Chip Coupling Insertion Loss 1.6
FS Set of DKVs with size S ILWG(dB/mm) Silicon Waveguide Insertion Loss 0.3
DR Data rate ELSplitter(dB) Splitter Insertion Loss 0.01

VDPE Vector Dot Product Element ILMRM(dB) Microring Modulator (MRM) Insertion Loss 4
N Size of VDPE OBLMRM(dB) Out of Band Loss MRM 0.01
M Number of VDPEs per TPC Unit ILMRR(dB) Microring Resonator (MRR) Insertion Loss 0.01
SE Summation Element ILpenalty(dB) (MAM) Network Penalty 4.8
CS Comb Switch ILpenalty(dB) (AMM) Network Penalty 5.8
y Number of Comb Switches dMRR Gap between two adjacent MRRs 20 µm

x
Re-aggregating or Filtering

wavelength count
delement (MAM) 0 µm

L Set of re-aggregated wavelengths delement (AMM)
Thermal isolation spacing

between DIV and DKV elements 100 µm

a laser block that employs N Laser Diodes (LDs) to generate N optical wavelength
channels; (ii) an aggregation block that aggregates the generated optical wavelength
channels into a single photonic waveguide through DWDM (using an N×1 multi-
plexer) and then splits the optical power of these N wavelength channels equally into
M separate waveguides (using a 1×M splitter); (iii) a modulation block, also referred
to as DIV block, that employs M arrays of MRRs (one array per waveguide, with each
array having N MRRs; each array referred to as DIV element) to imprint M DIVs of
N points each onto the N×M wavelength channels by modulating the analog power
amplitudes of the wavelength channels; (iv) another modulation block, referred to as
DKV block, that employs another M arrays of MRRs (one array per waveguide, with
each array having N MRRs; each array referred to as DKV element) to further modu-
late the N×M wavelength channels with DKVs, so that the analog power amplitudes
of the individual wavelength channels then represent the point-wise products of the
utilized DKVs and DIVs; and (v) a Summation Block (SB) that employs a total of M
Summation Elements (SEs), with each SE having two balanced Photodiodes (PDs)
upon which the point-wise-product-modulated N wavelength channels are incident
to produce the output current that is proportional to the VDP result (i.e., the sum of
the N input point-wise products). The laser block and SB are typically positioned at
the two ends of the TPC, with the aggregation, modulation (DIV), and modulation
(DKV) blocks placed in between them.

Based on the order in which these intermediate blocks (aggregation, modulation
(DIV), modulation (DKV) blocks) are positioned between the laser block and SB, we
classify the MRR-based TPC organizations from prior work as MAM (Modulation,
Aggregation, Modulation) [144] or AMM (Aggregation, Modulation, Modulation)
[140]. Fig. 4.3 illustrates MAM and AMM TPC organizations. From Fig. 4.3(a), the
AMM TPC organization positions the aggregation block first, and then the DIV block
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followed by the DKV block. In contrast, the MAM TPC in Fig. 4.3(b) positions the
DIV block first, and then positions the aggregation block followed by the DKV block.
Note that the MAM-styled DIV block is structurally different from the AMM-styled
DIV block. The MAM-styled DIV block employs only one MRR per waveguide, and
as a result, it can imprint only 1 DIV of N points onto the N wavelength channels.
This 1 DIV is shared among all DKVs in the MAM TPC, whereas each DKV can
have a different DIV corresponding to it in the AMM TPC.

Moreover, note that each DKV element in both MAM and AMM TPCs have two
waveguides (shown but not labelled in the figures). First, the drop waveguide, cou-
pling with the MRRs at the top. Second, the through waveguide, coupling with the
MRRs at the bottom. The wavelengths that carry negatively-signed pointwise prod-
ucts have more guided optical power in the drop waveguide, whereas the wavelengths
that carry positively-signed pointwise products have more guided optical power in
the through waveguide. The drop waveguide makes its guided power incident upon
the top-side PD in the corresponding SE, whereas the through waveguide makes its
guided power incident upon the bottom-side PD. This enables a signed accumulation
of the pointwise products carried by the guided wavelengths, because the top-side and
bottom-side PDs in the SE are balanced [140]. In both the AMM and MAM TPC
organizations, we refer to the combination of a DKV element and the corresponding
SE as VDP element (VDPE). A VDPE size (i.e., N ) should match the DKV size for
efficient, low-overhead implementation of the VDP operation.

4.3.2 Scalability Analysis

Prior works [22] and [94] have shown that the scalability of photonic accelerator
architectures, in terms of the achievable VDPE size N, decreases with the increase in
the required bit precision. However, these prior works lack in two ways. First, they
do not capture the impact of the utilized data rate on the inter-dependence between
N and bit precision. Second, they do not provide the scalability analysis for AMM
TPC architectures (they only analyze MAM TPCs). To address these shortcomings,
we extend the methodology from [22] to perform the scalability analysis of the AMM
and MAM TPCs to capture the inter-dependence of VDPE size N, number of VDPEs
per TPC M, bit precision, and data rate. From [22], it is known that the bit precision
of an MRR-based VDPE depends on the output photodetector sensitivity (PPD−opt)
and data rate (DR) [22]. In this Chapter, we evaluate the required PPD−opt for various
bit precision values and DRs by solving Eq. 4.1 [22]. We sweep for DRs of 1, 3, 5,
and 10 GS/s (Giga-Symbols per sec), and sweep for bit precision values of 1-bit to
8-bit, and consider M = N for our analysis. The value of N is obtained by solving
Eq. 4.3 [22], along with PPD−opt for a given bit precision and DR obtained from Eq.
4.1 and Eq. 4.2 [22].

Table 4.1 reports the definitions of the parameters and their values from Eq. 4.1,
Eq. 4.2, and Eq. 4.3, as used for our analysis. In Table 4.1, Ppenalty represents
the impairments due to extinction ratio, crosstalk, inter-symbol interference (ISI),
and laser relative intensity noise (RIN). We perform this analysis for both AMM
and MAM TPC architectures. As discussed in section 6.3, AMM and MAM TPCs
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differ in the placement of the DKV and DIV elements. In MAM TPCs, all DKV
elements share a single DIV element, whereas in AMM TPCs all DKV elements have
their individual DIV elements. Therefore, to avoid thermal crosstalk in AMM TPCs,
the DKV elements need to be placed sufficiently farther from their respective DIV
elements [34], which in turn increases the required delement for AMM TPCs (Table
4.1), thereby increasing the optical lengths of the waveguides in AMM TPCs. Due
to the longer waveguides, the ILpenalty increases for AMM TPCs compared to MAM
TPCs (Table 4.1). This in turn affects the achievable VDPE size N, DR, and bit
precision for AMM TPCs, as confirmed by our below-presented analysis results.

ni/p =
1

6.02

[
20log10(

R× PPD−opt
β
√

DR√
2

− 1.76

]
(4.1)

β =

√
2q(RPPD−opt + Id) +

4kT

RL

+R2P 2
PD−optRIN (4.2)

PLaser =
10

ηWG(dB)[N(dMRR)+delement]

10 M

ηSMFηECILi/p−MRM

× PPD−opt
ηWPEILMRR

× 1

(OBLMRM)N−1(ELsplitter)log2M

× 1

(OBLMRR)N−1(ILpenalty)

(4.3)

Fig. 4.4 and Fig. 4.5 show the inter-dependence of VDPE size N, bit precision,
and DR for MAM and AMM TPCs respectively. From Fig. 4.4, for MAM TPCs, the
maximum VDPE size N significantly decreases from N = 159 for 1-bit precision to
N = 1 for 8-bit precision. Similarly, from Fig. 4.5, for AMM TPCs, the supported
N drops from N = 99 for 1-bit precision to N = 1 for 8-bit precision. This trend of
decreasing N with increasing bit precision is in line with the similar trend observed in
recent work Albireo [94], although note that the accelerator architecture of Albireo is
different from our considered AMM and MAM architectures. Moreover, we can also
observe from Fig. 4.4 and Fig. 4.5 that the supported N also varies with DR. With
the increase in DR, the supported N decreases in both MAM and AMM TPCs. For
instance, MAM TPCs’ supported N for 4-bit precision drops from N = 44 at 1 GS/s
to N = 16 at 10 GS/s. In case of AMM TPCs, at 4-bit precision, the supported N
drops from N = 31 at 1 GS/s to N = 12 at 10 GS/s. For given bit precision and
DR values, AMM TPCs support lower N compared to MAM TPCs. This is because,
as discussed earlier, AMM TPCs incur higher ILpenalty. From our analysis, it can
be inferred that AMM and MAM TPCs cannot support any N for 8-bit precision;
therefore, we advocate that AMM and MAM TPCs should be utilized to achieve
4-bit precision at the highest, to select such a power-of-two precision value below
the unattainable 8-bit precision that can support a tangible N value. Our obtained
values of N for different DRs are given in Table 4.2.
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CHAPTER 4. PHOTONIC RECONFIGURABLE ACCELERATORS FOR
EFFICIENT INFERENCE OF CNNS WITH MIXED-SIZED TENSORS 68

Figure 4.4: Supported VDPE size N and the optical received power (dBm) for bit
precision ={1, 2, 3, 4, 5, 6, 7, 8}bits at data rates (DRs) = {1, 3, 5, 10}GS/s, for
MAM TPCs.

Table 4.2: VDPE size (N ) at 4-bit precision across various DRs for different TPC
architectures.

TPC Architectures DR (GS/s)
1 3 5 10

RMAM 43 27 22 16
RAMM 31 20 16 12

MAM (HOLYLIGHT [144]) 44 28 22 16
AMM (DEAPCNN [140]) 31 20 16 12



Figure 4.5: Supported VDPE size N and the optical received power (dBm) for bit
precision ={1, 2, 3, 4, 5, 6, 7, 8}bits at data rates (DRs) = {1, 3, 5, 10}GS/s, for
AMM TPCs.

4.4 Need for Reconfigurability in TPCs

A feasible acceleration of CNN tensor products on MRR-enabled incoherent, analog
TPCs mandates that a CNN kernel tensor of shape (K, K, D) is decomposed/flattened
into a 1D DKV of size S = K×K×D. From Fig. 4.2, the corresponding DIV should
also be of size S. In modern CNNs, the value S corresponding to various kernel
tensors vary drastically. Table 4.3 provides kernel tensor shapes and corresponding
DKV sizes (S ) for EfficientNetB7 [170]. We selected EfficientNetB7 as an example of
CNNs with a large number of DCs, PCs, and SCs. From Table 4.3, DCs have a small
set of DKV sizes (S ∈ {9, 25}). In contrast, in Table 4.3, PCs have a wide range of
S values, from as small as 8 to as large as 3840. As discussed earlier (Section II-B),
for the processing of PCs and DCs using TPCs to produce the final tensor products,
their corresponding DKVs are mapped onto the constituent VDPEs of the TPCs so
that the tensor products are converted into VDP operations. Therefore, depending
on how the size S of a DKV compares with the size N of a VDPE, the following three
scenarios arise for the mapping of the DKV onto the VDPE to produce the final VDP
result:

• Scenario 1, S=N : For this case, all the DKV points have one-to-one mapping
with all the MRRs of the VDPE, and there are no idle MRRs in the VDPE.
The VDP result will be the final tensor product result.
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• Scenario 2, S>N : In this case, a single VDPE cannot produce the final
tensor product result, as it cannot process the entire DKV. Therefore, the
DKV needs to be further decomposed into a total P partial DKVs requiring
a total of P = Ceil(S/N ) VDPEs to produce the final tensor product result.
All P VDPEs produce partial VDP results called psums, and during post-
processing, a reduction network accumulates these psums to generate the final
tensor product result. Although this accumulation of psums incurs additional
latency, which can be efficiently hidden by employing a pipelined design of the
psum reduction network with non-blocking bandwidth [93]. One drawback,
however, is that if S is not an integer multiple of N, then this scenario leads to
some unutilized MRRs in the VDPEs across P partial VDP operations.

• Scenario 3, S<N : In this case, the result of the single VDP operation provides
the final tensor product result, but some MRRs in the VDPE remain unutilized.
The count of unutilized MRRs depends on the size difference between the DKV
and VDPE (i.e., between S and N ).

For the last two scenarios (for which S 6=N ), the unutilized MRRs cause under-
utilization in the VDPEs. This hampers the performance and efficiency of processing
modern CNNs with mixed-sized tensors. This is because the unutilized MRRs incur
area and static power overheads while also idling away the opportunity for increasing
the processing throughput. Therefore, how well N matches with S plays a crucial
role in determining the performance and efficiency of a TPC. To that end, we rea-
son that dynamic flexibility in the supported value of N in the VDPEs is required to
efficiently support processing of various sizes of DCs, PCs, and SCs of modern CNNs.

4.4.1 Perils of Fixed VDPE Size (N) in TPCs from Prior Work

To validate our reasoning presented just before this subsection, we evaluated the
hardware utilization values for various TPC architectures (with fixed N ) from prior
works. For example, MAM (HOLYLIGHT [144]), AMM (DEAPCNN [140]) have
N =43 and N =31, respectively. For these TPCs, Fig. 4.6 shows hardware (MRR)
utilization per-VDPE in terms of the ratio (in %) of the utilized VDPE area over
the total (utilized+idle) area. The figure also shows the utilization for our proposed
Reconfigurable MAM (RMAM) and Reconfigurable AMM (RAMM) TPCs. But we
introduce and discuss our RAMM and RMAM TPCs in Section 4.5, so please look
past their excellent utilization results for now. From Fig. 4.6, MAM (HOLYLIGHT
[144]), and AMM (DEAPCNN [140]) yield significantly low per-VDPE utilization (as
low as 8%). This is because of the huge mismatch between N and S (i.e., S<N )
while processing DCs and PCs. Such low VDPE utilization can hamper performance
and efficiency of the TPCs, as discussed earlier.

These results motivate the need to design a VDPE that can dynamically adapt
to various DKV sizes. Therefore, we invented a novel reconfigurable VDPE design,
which is described in the next section.

70



CHAPTER 4. PHOTONIC RECONFIGURABLE ACCELERATORS FOR
EFFICIENT INFERENCE OF CNNS WITH MIXED-SIZED TENSORS 71

Table 4.3: Kernel tensor shapes (K, K, D), the total number of such kernels (F)
and corresponding DKV sizes (S ) for EfficientNet B7[170], as an example CNN with
a large number of DSCs. (FC=Fully Connected Layer and other abbreviations are
defined in Table 4.1). The K, D, F values were extracted from Keras Applications
[37].

Model Convolution
Tensor Shape

(K, K, D)
F S

EfficientNet B7

DC (3, 3, 1) 25024 9
DC (5, 5, 1) 45216 25
PC (1, 1, 8) 288 8
PC (1, 1, 12) 2016 12
PC (1, 1, 16) 64 16
PC (1, 1, 20) 3360 20
PC (1, 1, 32) 312 32
PC (1, 1, 40) 9600 40
PC (1, 1, 48) 2016 48
PC (1, 1, 56) 13440 56
PC (1, 1, 64) 48 64
PC (1, 1, 80) 3360 80
PC (1, 1, 96) 29952 96
PC (1, 1, 160) 21120 160
PC (1, 1, 192) 56 192
PC (1, 1, 224) 13440 224
PC (1, 1, 288) 452 288
PC (1, 1, 384) 29952 384
PC (1, 1, 480) 780 480
PC (1, 1, 640) 14080 640
PC (1, 1, 960) 2064 960
PC (1, 1, 1344) 2960 1344
PC (1, 1, 2304) 6496 2304
PC (1, 1, 3840) 2400 3840
SC (3, 3, 3) 64 27
FC (2560, 1, 1) 1 2560



Figure 4.6: VDPE utilization % (utilized VDPE area/total area) for MAM
(HOLYLIGHT[144],N=44), AMM (DEAPCNN[140],N=31), RAMM (N=31), and
RMAM (N=43) at DR=1GS/s and 4-bit precision for various DKV sizes correspond-
ing to DCs and PCs.

4.5 MRR-based Reconfigurable TPC Architectures

In this section, we present a novel reconfigurable VDPE which serves as the backbone
of our proposed MRR-based reconfigurable TPC architectures. This reconfigurable
VDPE adds the following two desirable attributes to the AMM and MAM types of
TPCs. First, it introduces the flexibility to the TPCs so that the processing of the
DKVs of various sizes can be efficiently mapped onto them, regardless of the fixed
VDPE size N for the TPCs. Second, it introduces opportunities for increasing the
processing parallelism and MRR utilization efficiency. This reconfigurable VDPE can
directly replace the VDPEs of the MAM and AMM TPCs (Fig. 4.3), to convert them
into reconfigurable MAM (we refer to it as RMAM, henceforth) and reconfigurable
AMM (we refer to it as RAMM, henceforth) TPCs. The structure and operation of
our invented reconfigurable VDPE are discussed in the following subsections.

4.5.1 Reconfigurable VDPE: Structure and Layout

Fig. 4.7 illustrates our proposed reconfigurable VDPE. It consists of a DKV element,
which is an array of N modulation MRRs that can imprint N pointwise products
onto the incoming N wavelength channels, similar to the DKV elements of the MAM
and AMM TPCs from Fig. 4.3. This DKV element is followed by a group of a total
of y pairs of MRR comb switches (CSs). These y CS pairs can re-aggregate the
incoming N pointwise-product-modulated wavelength channels (incoming from the
DKV element) into a total of y distinct sets, with each set L (Fig. 4.7) having a
total of x distinct wavelength channels. In other words, each CS pair filters a comb
(set L; Fig. 4.7) of x distinct wavelength channels from the incoming N wavelength
channels. Each CS pair is able to do this because of its innate spectral response
that allows it to be in resonance with x distinct wavelengths simultaneously (more
on the design of CSs in Section V.C). Each CS pair then sends its corresponding
x wavelength channels to its dedicated summation element (SE), which performs a
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signed accumulation of the data carried on the x wavelength channels to produce a
VDP result. To enable the signed accumulation, similar to the SEs of the AMM and
MAM TPCs (Fig. 4.3), the SEs corresponding to the CS pairs also employ balanced
PDs. Thus, the group of y CS pairs per reconfigurable VDPE enables y VDP results
of size x each to be produced in parallel.

Note that here x, y, and N are integers, and their relation is given by this equation:
y = N>2x ? floor(N/x) : 0. Henceforth, we refer to x as re-aggregation size.
Also note that for the group of CS pairs to produce y in-parallel VDP results, each
CS pair in the group has to be switched ON by electro-optically tuning its spectral
resonance passbands to align with its corresponding set of x wavelength channels
[97]. In contrast, it is also possible to switch OFF a CS pair by tuning its resonance
passbands out of alignment with the corresponding x wavelength channels. When the
CS pairs are switched OFF, all of the N incoming wavelength channels are allowed to
pass by the CS pairs to be eventually accumulated at the summation element SEN .
Thus, depending on whether the CS pairs are ON or OFF, the reconfigurable VDPE
can operate in two different modes. These modes are further explained in the next
section.

Figure 4.7: Schematic of our invented reconfigurable VDPE, employing a DKV ele-
ment and one group of comb switch (CS) pairs corresponding to the reconfiguration
Mode 2.

4.5.2 Reconfigurable VDPE: Operation

The reconfigurable VDPEs of our RMAM and RAMM TPC architectures support
two operational modes, i.e., Mode 1 and Mode 2 (Fig. 4.7). Mode 1 is the non-
reconfiguration mode, in which all the CS pairs of a reconfigurable VDPE are switched
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Figure 4.8: Example operation of our reconfigurable VDPE for various cases depend-
ing on the S and N values, for x=9. Here, ON and OFF CS pairs, respectively,
represent Mode 2 and Mode 1 of operation.

OFF, so that the reconfigurable VDPE operates like a regular VDPE to produce a
VDP result of size N. In contrast, Mode 2 is the reconfiguration mode, in which all
the CS pairs of a reconfigurable VDPE are switched ON so that a total of y in-
parallel VDP results can be produced with each result being of size x. We determine
the re-aggregation size x to be 9 because the DKV size s=9 is the most common,
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frequently used, smallest DKV size across various CNNs (Table 4.3). We reason that
determining the value of x based on the most common, smallest DKV size maximizes
the opportunities for increasing processing parallelism and utilization efficiency.

Since the reconfigurable VDPEs simply replace the regular VDPEs of the MAM
and AMM TPCs, an RAMM/RMAM TPC is analogous in structure to an AMM/MAM
TPC. From Fig. 4.3 in Section III, an AMM/MAM TPC contains a VDPE block
(containing multiple VDPEs), which is basically the structure that remains in the
TPC if we mask off the DIV element of the TPC. Similarly, an RAMM/RMAM TPC
would also typically contain a block of M reconfigurable VDPEs. Since each recon-
figurable VDPE is of size N, such reconfigurable VDPE block would basically be of
M ×N dimensions.

From Section II and III, the input kernel tensors are flattened into DKVs of
size S and then mapped onto the VDPE block of a TPC for processing. In that
vein, to further explain our method of mapping for RAMM/RMAM TPCs, typically,
a matrix F(H,S), which has H rows with each row containing a DKV of size S, is
mapped onto one or multiple M × N sized reconfigurable VDPE blocks. This ma-
trix F(H,S) can be written as a set of a total of H 1 × S sized DKVs, i.e., F(H,S) =
{DKV(1,S)|1|, {DKV(1,S)|2|, ..., DKV(1,S)|H|}. Each individual DKV in this set is ba-
sically a flattened kernel tensor. When matrix F(H,S) is mapped onto reconfigurable
VDPE blocks, this set of DKVs is mapped onto the individual reconfigurable VDPEs
of the blocks. After this mapping, the individual reconfigurable VDPEs operate in ei-
ther Mode 1 or Mode 2, depending on how the size S of the DKVs compares with the
size N of the reconfigurable VDPEs, given that the VDPEs have the re-aggregation
size x=9.

We advocate for selecting the most appropriate mapping and mode of operation
(from Mode 1 or Mode 2) that can maximize the MRR utilization and processing
throughput of the RAMM/RMAM TPCs. We identify three cases for the relation
among N, S, and x=9 that drive the selection of the appropriate mapping and mode of
operation. The mappings and modes of operation for these three cases are illustrated
in Fig. 4.8. For Fig. 4.8, we selected the example RAMM TPC architecture from
Table 4.2 with N=20 for DR = 3 GS/s. These illustrations are further explained
below.

Case 1, S>N>x : For this case, the reconfigurable VDPEs operate in Mode
1. In this case, before mapping the DKV matrix F(H,S) on the reconfigurable VD-
PEs, matrix F(H,S) is divided into multiple slices along the dimension S. Since S can
be written as S=b×N+c, the matrix F(H,S) is divided into a total of b+1 slices,
with b slices of size (H, N ) each and one slice of size (H, c). Hence, F(H,S) can
be written as {F 1

(H,N) + .. + F b
(H,N) + F 1

(H,c)}, where F 1
(H,N),.., F

b
(H,N), and F 1

(H,c) are
the slices of matrix F(H,S). Here, ’+’ represents the concatenation operator. Since
matrix F(H,S) can be written as {DKV(1,S)|1|, .., DKV(1,S)|H|} (as discussed earlier),
slicing of F(H,S) in turn means slicing of all the DKV components of F(H,S). Conse-
quently, every component DKV DKV(1,S)|H| of F(H,S) is also divided into b+1 slices
along the dimension S. Hence, DKV(1,S)|H| can be written as {DKV 1

(1,N)|H|+.. +

DKV b
(1,N)|H|+DKV 1

(1,c)|H|}. Similarly, each DKV of matrix F(H,S) can be re-written
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as the concatenation of DKV slices. After the matrix F(H,S) has been sliced, each
individual slice of every DKV of F(H,S) is mapped onto one reconfigurable VDPE run-
ning in Mode 1 operation. Each VDPE generates a partial VDP result corresponding
to the mapped DKV slice. The partial VDP results from all the DKV slices that
originated from a single original DKV (a component of F(H,S)) are then accumulated
at the psum reduction network (not shown in the figure), to generate the final VDP
result. Case 1 is shown in Fig. 4.8(a), where input matrix F(H,S) with H=1 and S=32
is sliced based on b=1, c=12. The consequently generated individual DKV slices are
then mapped on to reconfigurable VDPE1 and VDPE2 operating in Mode 1. The
two VDPEs produce two partial VDP results V DP 1

(1,20)|1| and V DP 1
(1,12)|1|. These

partial VDP results are then summed together.
Case 2, N>S>x : For this case, the reconfigurable VDPEs operate in Mode

2. In this case, before mapping the DKV matrix F(H,S) onto the reconfigurable
VDPEs, matrix F(H,S) is divided into multiple slices along the dimension S. Since
S can be written as S=b×x+c (the values b and c here are often different from
Case 1), the matrix F(H,S) is divided into a total of b+1 slices, with b slices of
size (H, x ) each and one slice of size (H, c). Hence, F(H,S) can be written as
{F 1

(H,x) + ..+F b
(H,x) +F 1

(H,c)}, where F 1
(H,x),.., F

b
(H,x), and F 1

(H,c) are the slices of matrix
F(H,S). Here, ’+’ represents the concatenation operator. Since matrix F(H,S) can be
written as {DKV(1,S)|1|, .., DKV(1,S)|H|} (as discussed earlier), slicing of F(H,S) in turn
means slicing of all the DKV components of F(H,S). Consequently, every component
DKV(1,S)|H| of F(H,S) is also divided into b+1 slices along the dimension S. Hence,
DKV(1,S)|H| can be re-written as {DKV 1

(1,x)|H|+..+DKV b
(1,x)|H|+DKV 1

(1,c)|H|}. Af-
ter the matrix F(H,S) has been sliced, the total of H DKV slices that belong to
every matrix slice F 1

(H,x) are mapped onto a total of (H/y) different reconfigurable

VDPEs, where each reconfigurable VDPE processes a total of y slices (y = N ≥
2x? floor(N/9) : 0). Hence, each reconfigurable VDPE in this case produces a total
of y VDP results in parallel, which basically renders a ytimes throughput improve-
ment for each reconfigurable VDPE, compared to Mode 1 of operation. In this case,
once a given matrix slice has been mapped onto the total of (H/y) VDPEs, the partial
VDP results are produced for all DIVs from the input CNN layer that correspond to
the mapped matrix slice in a stationary weight dataflow, before the next matrix slice
is mapped for a new pass of all the DIVs. The partial VDP results from all the DKV
slices that originated from a single original DKV (a component of F(H,S)) are then
accumulated at the psum reduction network, to generate the final VDP result. Case 2
is shown in Fig. 4.8(b), where input matrix F(H,S) with H=2 and S=16 is sliced based
on b=1, c=7. The consequently generated individual DKV slices are then mapped on
to a single VDPE operating in Mode 2 in two passes. Pass 1 generates V DP 1

(1,9)|1|
and V DP 1

(1,9)|2|, Whereas Pass 2 generates V DP 1
(1,7)|1| and V DP 1

(1,7)|2|. The partial
VDP results from Pass 1 are then summed together with respective partial VDP
results from Pass 2 to generate two final VDP results.

Case 3, N>S≤x : For this case, the reconfigurable VDPEs operate in Mode
2. The input matrix F(H,S) is directly mapped onto the individual reconfiguration
VDPEs, after writing it in terms of DKVs as F(H,S) = {DKV(1,S)|1|, .., DKV(1,S)|H|}.
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Here, H DKVs corresponding to matrix F(H,S) are mapped onto a total of (H /y)
reconfigurable VDPEs operating in Mode 2, where each VDPE processes a total of y
DKVs in parallel. Case 3 is shown in Fig. 4.8(c), where input matrix F(H,S) with H=2
and S=8 is mapped on to a reconfigurable VDPE operating in Mode 2. The VDPE
processes y=2 DKVs, generating y=2 VDP final results V DP(1,8)|1| and V DP(1,8)|2|.

Discussion: Compared to Mode 1, Mode 2 operation of the reconfigurable VDPE
increases the hardware/MRR utilization, while simultaneously increasing the process-
ing throughput by up to y×. This throughput improvement makes it tolerable to have
the extra area overhead of additional y CS pairs per reconfigurable VDPE for Mode 2
operation. It can be argued that y× improvement in throughput can also be achieved
by employing y× more VDPEs (without CS pairs) in Mode 1 operation. However,
employing y× more VDPEs in Mode 1 operation incurs the area overhead of addi-
tional N×y MRRs (as each VDPE has N MRRs), whereas employing y CS pairs
in one reconfigurable VDPE incurs the area overhead equivalent to additional 6×y
MRRs (as the area of 1 CS pair = area of 6 MRRs). Since for all TPCs from Table 4.2,
6×y is less than N×y, Mode 2 operation turns out to be highly efficient than Mode
1 operation. As for modern CNNs, more than 40% of the DKVs (Table 4.3) belong
to Case 2 (N>S>x ) and Case 3 (N>S≤x ) above, the substantially improved effi-
ciency for Mode 2 operation also translates in up to 78.2% and 54.71% higher VDPE
utilization, respectively, for our RAMM and RMAM TPCs in Fig. 4.6, compared to
their respective baseline AMM (DEAPCNN) and MAM (HOLYLIGHT) TPCs.

4.5.3 Design of MRR Comb Switches

From Section V.A, a CS has the capability of filtering a comb of x wavelength channels
from the incoming N wavelength channels [97]. Generally, the resonance passband of a
modulation MRR periodically repeats at the spectral distance known as Free Spectral
Range (FSR). Therefore, to filter x distinct wavelength channels simultaneously, the
FSR of the CS needs to match with the inter-channel spacing so that the periodic
passbands of the CS overlap with the x wavelength channels. Since N and inter-
channel spacing vary for our RAMM and RMAM TPCs across different DRs (Table
4.2), the required FSR for the CSs would also vary across different DRs. The FSR
for a CS can be defined by appropriately defining its radius [97]. Therefore, we
designed the CSs with desired FSRs required for our RAMM and RMAM TPCs
for various DRs by appropriately defining the radius of a primitive MRR. For that,
we used the photonics foundry-validated MODE and INTERCONNECT tools from
Ansys/Lumerical [72]. Table 4.4 lists the design parameters of our designed CSs.
From Table 4.4, a CS can incur insertion losses. This can impact the achievable N
for a TPC. Our scalability analysis in Section 4.3.2 accounts for this fact.

4.5.4 System Level Implementation

Fig. 4.9 illustrates the system level implementation of our accelerators. It consists of
a global memory for storing CNN parameters, a pre-processing and mapping unit for
decomposing the tensors into DIVs/DKVs and mapping them onto the DIV/DKV
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elements. It has a mesh of tiles connected to routers and this mesh network facilitates
parameter communication among tiles. Each tile consists of 4 RMAM/RAMM TPCs
interconnected (via H-tree network) with output buffer, activation and pooling units.
Due to their analog nature, the RMAM/RAMM TPCs require DACs and ADCs as
well. In addition, each tile also contains psum reduction network to enable summing
up of the intermediate psums. Depending on the type of convolution operations
being processed (SC/DC/PC) and their tensor sizes (Table 4.3), the mapping unit
sends control signals to the individual RAMM/RMAM TPCs to reconfigure their
operational modes (Mode 1/Mode 2).

Figure 4.9: System level overview of a CNN accelerator that employs our
RMAM/RAMM TPCs.

4.6 Evaluation

4.6.1 Simulation Setup

To evaluate our designed RAMM and RMAM accelerator architectures, we simulated
the inference of various depthwise separable convolutions based CNNs such as Effi-
cientNetB7 [170], Xception [36], NASNetMobile[216], and ShuffleNetV2 [208] with
input batch size of 1. These CNNs comprehensively cover wide variations seen in
CNNs in terms of tensor sizes. We developed a custom, transaction-level, cycle-true
python-based simulator to model CNN inference on MRR-based TPC accelerators
with weight-stationary dataflow.

We compared our RAMM and RMAM accelerator architectures with the baseline
AMM (DEAPCNN [140]), MAM (HOLYLIGHT [144]) and the latest variant of AMM
design (CROSSLIGHT [116]). We evaluate these accelerators at 4-bit precision and
across different DRs such as 1 GS/s, 3 GS/s, and 5 GS/s. The N values corresponding
to different DRs are taken from Table 4.2 for our system level analysis. Table 4.5 and
Table 4.6 give the parameters used for evaluating the overheads of the peripherals.
We consider each laser diode to emit input optical power of 10 mW (10 dBm) (Table
4.1) [140]. Multiplexer and splitter parameters are taken from [144], and other VDP
element parameters are listed in Table 4.7.
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We performed area proportionate (AP) analysis, for which, we altered the VDPE
count of each accelerator so that the accelerators’ area matched with the area of
the RMAM accelerator with VDPE count of 512. Table 4.8 reports our obtained
area-proportionate VDPE counts for all our considered accelerators. We evaluate the
metrics such as Frames Per Second (FPS) and FPS/W (energy efficiency) for our
considered accelerator architectures.

4.6.2 Evaluation Results

Fig.4.10 shows the FPS results for various accelerators at different DRs, normalized
to RMAM at 1 GS/s. Our RMAM accelerator on gmean outperforms MAM (HOLY-
LIGHT), AMM (DEAPCNN), and CROSSLIGHT for all DRs, such as 1 GS/s, 3
GS/s, and 5 GS/s. At 1 GS/s, RMAM achieves 1.8×, 17.1×, and 65× better FPS
than MAM (HOLYLIGHT), AMM (DEAPCNN), and CROSSLIGHT, respectively,
on gmean across the CNNs. From Section 4.3.2, the N values decrease with increase
in DR, which leads to lower throughput with increase in DR for various accelerators.
For instance, RMAM’s FPS drops by 5.3× and 8× at 3 GS/s and 5 GS/s respec-
tively, compared to its FPS at 1 GS/s. Therefore, compared to the 3-GS/s (5-GS/s)
variants of MAM (HOLYLIGHT), AMM (DEAPCNN), and CROSSLIGHT, respec-
tively, our 1-GS/s RMAM variant achieves 8.3× (10.2×), 52.57× (79.8×), and 86×
(106×) better FPS. These FPS benefits are because of our RMAM variants’ higher
throughput and more efficient processing through reconfiguration (Mode 2 opera-
tion). Our other accelerator RAMM, at 1 GS/s, achieves 1.54× and 5.8× better FPS
compared to AMM (DEAPCNN) and CROSSLIGHT, respectively. Even at higher
DRs, RAMM performs better than AMM (DEAPCNN) and CROSSLIGHT. How-
ever, at 5 GS/s, because of low N, reconfiguration is not supported in RAMM due
to the condition y = N ≥ 2x? floor(N/9) : 0. Therefore RAMM is exactly identical
to AMM (DEAPCNN) at 5 GS/s. Overall, our RMAM accelerator gives better FPS
compared to other accelerators across all DRs.

Fig. 4.11 shows the FPS/W (energy efficiency) results for various accelerators
across different DRs, normalized to RMAM at 1 GS/s. Our RMAM and RAMM
accelerators also achieve better FPS/W compared to the other accelerators. At 1
GS/s, RMAM achieves 1.5×, 27.2×, and 171× better FPS/W than MAM (HOLY-
LIGHT), AMM (DEAPCNN), and CROSSLIGHT, respectively, on gmean across
various CNNs. Similar to the FPS results, when compared to the 3-GS/s (5-GS/s)
variants of MAM (HOLYLIGHT), AMM (DEAPCNN), and CROSSLIGHT, our 1-
GS/s RMAM variant achieves 4.2× (4×), 46.4× (29.6×), and 80.7× (54×) better
FPS/W, respectively. These energy efficiency benefits are also because of the im-
proved VDPE utilization achieved from the superior reconfigurability of our RMAM
accelerator. The improved VDPE utilization better amortizes the static power con-
sumption of the constituent hardware components (e.g., MRRs, CSs, ADCs, DACs)
to yield better energy efficiency. Our other accelerator RAMM, at 1 GS/s, achieves
1.5× and 9.7× better FPS/W compared to AMM (DEAPCNN) and CROSSLIGHT,
respectively. Even at higher DRs, RAMM performs better than AMM (DEAPCNN)
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and CROSSLIGHT. However, at 5 GS/s, RAMM and AMM (DEAPCNN) have equal
energy efficiency. Overall, our RMAM provides better energy efficiency compared to
the other accelerators across different DRs.

4.7 Summary

In this Chapter, we presented the use of our invented reconfigurable VDPEs as a
novel way of introducing flexibility in the photonic MRR-based CNN accelerators.
Our reconfigurable VDPEs employ a set of comb switches to enable dynamic max-
imization of the size compatibility between the VDPEs and the CNN tensors that
are processed using the VDPEs. We then used our reconfigurable VDPEs to enhance
the MRR-based CNN accelerators of the AMM and MAM categories. Consequently,
we derived different variants of Reconfigurable MAM (RMAM) and Reconfigurable
AMM (RAMM) accelerators that operate at different data rates. We evaluated dif-
ferent variants of our RMAM and RAMM accelerators against three prior works, for
the inference of four modern CNNs with mixed-sized tensors. Our evaluation indi-
cates that our RMAM and RAMM accelerators are significantly better at striking a
balance between the hardware utilization and CNN processing latency, which in turn
provides them with substantial improvements in FPS and FPS/W, with equal area
consumption, compared to the photonic MRR-based accelerators from prior works.
These results promote the use of our RMAM and RAMM accelerators for efficient
processing of future CNNs having a wide variety in their employed tensor sizes.
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Table 4.4: Design parameters of various comb switch (CS) designs used in our RMAM
and RAMM TPCs for various DRs.

Data Rate (DR) (GS/s) 1 3 5

RAMM TPC
N 31 20 16

CSFSR 4.83nm 5 nm NA
Radius 18.17 µm 17.5 µm NA

No of CS Pairs 3 2 0
Insertion Loss (dB) 0.029 0.028 0

RMAM TPC
N 43 28 22

CSFSR 4.65 nm 5.35nm 4.54 nm
Radius 18.98 µm 16.2 µm 19.49 µm

No of CS Pairs 4 3 2
Insertion Loss (dB) 0.029 0.026 0.031

Table 4.5: ADC area and power overheads.

ADC Area (mm2) Power
1 GS/s [122] 0.002 2.55 mw
3 GS/s [147] 0.021 11mw
5 GS/s [60] 0.103 29 mw

Table 4.6: Accelerator Peripherals Parameters [144].

Power(mW) Area(mm2) Latency
DAC [82] 30 0.034 0.78ns

Reduction Network 0.05 0.03E-3 3.125ns
Activation Unit 0.52 0.6E-3 0.78ns

IO Interface 140.18 24.4E-3 0.78ns
Pooling Unit 0.4 0.24E-3 3.125ns

eDRAM 41.1 166E-3 1.56ns
Bus 7 9E-3 5 cycles

Router 42 0.151 2 cycles

Table 4.7: VDP Element Parameters [116].

DKV/DIV MRR Q-factor 8000
DKV/DIV MRR FWHM 0.2 nm

Sensitivity of PD -20 dBm
Power (mW) Latency

EO Tuning 80 µW/FSR 20 ns
TO Tuning 27.5 mW/FSR 4 µs

TIA 7.2 mW 0.15 µs
Photodetector 2.8 mW 5.8 ps
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Table 4.8: VDPE counts of various accelerators.

Accelerators
DR (GS/s)
1 3 5

RMAM 512 512 512
RAMM 587 576 567

MAM (HOLYLIGHT [144]) 568 562 547
AMM (DEAPCNN [140]) 656 629 620

Figure 4.10: Area proportionate comparison of FPS for various accelerators across
different CNNs and data rates (DRs). Results are normalized with respect to RMAM
at 1 GS/s.

Figure 4.11: Area proportionate comparison of FPS/W for various accelerators across
different CNNs and data rates (DRs). Results are normalized with respect to RMAM
at 1 GS/s.



Chapter 5 An Optical XNOR-Bitcount Based Accelerator for Efficient
Inference of Binary Neural Networks

5.1 Introduction

Convolutional Neural Networks (CNNs) have revolutionized the implementation of
various artificial intelligence tasks, such as image recognition, language translation,
and autonomous driving [96, 47], due to their high inference accuracy. However, the
heavy computation and storage requirements of CNNs still limit their application
in practice. Therefore, to improve the speed and efficiency of CNN inference, model
compression techniques such as quantization are widely employed [61, 214, 56]. Quan-
tization techniques create compact CNNs compared to their floating-point counter-
parts by representing the weights/inputs of CNNs with lower precision. The extreme
end of the quantization is binarization, i.e., a 1-bit quantization, that allows only two
possible values for both inputs and weights, either -1(0) or +1.

Binarization replaces the heavy floating-point vector-dot-product operations (which
constitute convolution operations in CNNs) with simple bit-wise XNOR and bitcount
operations [132]. Since bit-wise XNOR and bitcount are lightweight operations, bina-
rized CNNs, referred to as binary neural networks (BNNs), provide efficient hardware
implementations. Among the BNN hardware implementations from prior works, the
silicon-photonic accelerators have shown great promise to provide unparalleled par-
allelism, ultra-low latency, and high energy efficiency [215, 160]. Prior work [215]
utilizes microdisks to realize XNOR-Bitcount processing cores (XPCs) that process
the input and weight vectors, whereas [160] uses Microring Resonators (MRRs) in its
XPCs to perform XNOR-Bitcount operations. However, these prior works face two
shortcomings. First, they use at least two MRRs or microdisks to achieve 1-bit XNOR
operation, which increases their area and energy consumption. Second, because of the
limited scalability of their XNOR and bitcount circuits, they are forced to decompose
the input and weight vectors into a large number of smaller slices before processing
them. This generates a large number of partial sums (psums). Accumulating such
a large number of psums to obtain the final result, using a psum reduction network,
can incur a very high latency overhead.

To address these shortcomings, this Chapter presents a novel Optical XNOR-
Bitcount based Binary Neural Network Accelerator (OXBNN). OXBNN employs a
novel design of optical XNOR gates (OXGs). Our OXG uses a single MRR to perform
a 1-bit XNOR operation, thereby reducing the area and energy consumption com-
pared to prior works. Moreover, OXBNN employs a novel bitcount circuit, referred to
as Photo-Charge Accumulator (PCA), which inherently supports the accumulation of
a very high number of psums, thereby eliminating the need of using external psum re-
duction networks, to consequently reduce the overall latency and energy consumption
of BNN processing.

Our key contributions in this Chapter are summarized below.
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• We present our invented, novel BNN accelerator called OXBNN, which employs
an array of single-MRR-based optical XNOR gates (OXGs) and highly scalable
bitcount circuits called Photo-Charge Accumulators (PCAs);

• We perform detailed modeling and characterization of our invented OXGs and
PCAs using photonics foundry-validated, commercial-grade, photonic-electronic
design automation tools (Section III);

• We perform a scalability analysis for our OXBNN and describe a pertinent
mapping scheme (Section IV);

• We implement and evaluate OXBNN at the system- level with our in-house
simulator (https://github.com/uky-UCAT/B_ONN_SIM), and compare its per-
formance with two well-known photonic BNN accelerators from prior works, for
the inferences of four state-of-the-art BNNs (Section V).

5.2 Preliminaries

5.2.1 Binary Neural Networks (BNNs)

BNNs are specific types of CNNs that employ quantization techniques [205] to quan-
tize the weights and inputs to 1-bit values, reducing the storage requirements and
computational effort for improved energy efficiency of model inference. With binary
quantization, the weights and inputs can only assume two possible values, either -1 or
1 [40, 132]. In general, the sign function is the most widely used binary quantization
function (Q):

Q(x) = sign(x) = x ≥ 0 ? +1 : −1 (5.1)

Like for CNNs [22], a convolution operation for BNNs is also typically decomposed
into multiple vector-dot-product (VDP) operations. Each VDP operation of a BNN
occurs between two vectors, the individual elements of which are first binarized using
Eq. (1). Then, the VDP operation between a binarized weight vector W and a
binarized input vector I can be realized in two steps, in this given order: (i) element-
wise (i.e., bit-wise) XNOR of I and W that produces an XNOR vector; (ii) bitcount
of the XNOR vector. This VDP operation is captured in Eq. 5.2.

z = W � I =
S∑
i=1

Wi � Ii (5.2)

Here, Wi and Ii, respectively, are the individual bit-elements at index i of the
binarized vectors W and I of size S each; � denotes the VDP operation (XNOR
operation) between binarized vectors I and W (bit-elements Wi and Ii);

∑
represents

the bitcount operation.
Using {0,1} instead of {-1,1}: If binary value set {-1,1} is used, obtaining

the activation values for the next BNN layer after a convolution operation requires
sign(z) for each bitcount result z. On the other hand, if binary value set {0,1} is used,
obtaining the activation values for the next BNN layer after a convolution operation
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requires compare(z, 0.5×zmax)=z > 0.5×zmax? 1 : 0 for each bitcount result z, where
zmax is the size of the binarized vectors I and W.

5.2.2 Processing of BNNs on Hardware

Fig. 5.1(a) illustrates the convolution between a 3×3 weight channel and a 5×5 input
channel. During the convolution, based on the stride parameter, the weight channel
slides over the input channel and performs inner products with multiple input channel
windows (e.g., four input channel windows are shown in Fig. 5.1(a) with red, blue,
yellow, and green borders), generating one output value per input channel window.
From Fig. 5.1(b), to perform one such inner product (i.e., corresponding to the input
channel window highlighted in green in Fig 5.1(a)), the input channel window and
weight channel are flattened into input and weight vectors of size S=9 each. Then, a
bitwise XNOR circuit, with a total of N =S=9 XNOR gates, is employed to generate
an XNOR vector. A bitcount circuit then counts the bits in the XNOR vector to
evaluate the corresponding inner product output. However, the hardware size N 6=S
often. For example, in Fig. 5.1(c), S=9 and N =5. In this case, both the input and
weight vectors (S=9 each) are decomposed into two slices each: Slice 1 with S=5 and
Slice 2 with S=4. These slices are then mapped onto two bitwise XNOR circuits with
N =5 each, as shown in Fig. 5.1(c), to consequently produce two XNOR vector slices.
Applying bitcount on these XNOR vector slices generates two partial sums (psums),
i.e., psum1 and psum2. psum1 and psum2 are then sent to a psum reduction network
to generate the corresponding inner product output. The addition of the psums by
the psum reduction network incurs additional latency and energy overheads while
processing BNNs.

5.2.3 Related Work on Optical BNN Accelerators

To accelerate CNN inferences with low latency and low energy consumption, prior
works proposed various accelerators based on photonic integrated circuits (PICs) (e.g.,
[109, 157, 206]). These accelerators can be classified as incoherent (e.g., [109, 157,
22]) or coherent (e.g., [44, 107]). Because of the inherent advantages of incoherent
accelerators [157][152], the BNN-specific incoherent accelerators [160] and [215] were
reported. These optical BNN accelerators from prior works employ binary value set
{0,1}. [160] proposes broadcast and weight styled [34] XNOR-Bitcount circuits, which
use heterogeneous MRRs to mitigate fabrication process variations. In contrast, the
microdisk-based accelerator [215] proposes an all-optical XNOR-Bitcount circuit that
uses optical XNOR gates, optical analog-to-digital converters (ADCs), and PCM-
based racetrack memory to enable processing at a very high datarate. However,
both [160] and [215] require at least two MRRs or microdisks to perform a 1-bit
XNOR operation (in [215], one additional MRR/microdisk is required to modulate
the optically applied input operand). Therefore, their XNOR circuits occupy high
area and consume high energy. In addition, the bitcount circuits of these prior works
can evaluate only one psum at a time by counting the bits of one XNOR vector slice
at a time. Therefore, these circuits have to store the individual psums temporarily in
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Figure 5.1: (a) Illustration of a convolution between a weight and input channel in a
Binary Neural Network. Bit-wise XNOR and bitcount operations between a flattened
weight vector and input vector, (b) when S=N =9, and (c) when N =5, S=9; each
input and weight vector of S=9 is split into two slices (Slice 1 with S=5 and Slice 2
with S=4). Binary value set {-1,1} is used in this example.



Figure 5.2: Schematic of an XNOR-Bitcount Processing Core (XPC) of our OXBNN
accelerator. Our OXBNN employs binary value set {0,1}.

memory. Once sufficient psums are collected, they can be sent to a psum reduction
network to produce the final result. Thus, the bitcount circuits from prior works incur
high memory footprint for storing psums, and high latency and energy for processing
psums. Our OXBNN accelerator addresses these shortcomings of prior works.

5.3 Our Proposed OXBNN Architecture

5.3.1 Overview

The main processing unit of our OXBNN architecture is an XNOR-Bitcount Pro-
cessing Core (XPC), which is illustrated in Fig. 5.2. Our XPC has an array of total
N single-wavelength laser diodes (LDs), with each LD sourcing optical power of P in

λi

amount at a distinct wavelength λi. The total power from all N LDs (at wavelengths
λ1 to λN) multiplex into a single photonic waveguide through wavelength division
multiplexing (WDM). The optical power containing all these N wavelengths is split
into M input waveguides, each of which connects to an XNOR-Bitcount Processing
Element (XPE) (Fig. 5.2). An XPC contains a total of M XPEs.

5.3.2 XNOR-Bitcount Processing Element (XPE)

From Fig. 5.2, an XPE in our OXBNN architecture contains two parts: (i) an array
of a total of N Optical XNOR Gates (OXGs) that generates an XNOR vector (or an
XNOR vector slice) containing N optical bits, and (ii) our invented Photo-Charge Ac-
cumulator (PCA) that performs bitcount on the generated XNOR vector (or XNOR
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vector slice). The value N here, which is equal to the number of wavelengths and
number of OXGs per XPE, is referred to as the size of the XPE.

Array of Optical XNOR Gates (OXGs)

In an XPE, an array of a total of N OXGs couples to an input waveguide as shown
in Fig. 5.2. Each OXG operates upon a unique wavelength λi traversing the input
waveguide. Each OXG in the array electrically receives two binary operands (i.e.,
input bit iN1 and weight bit wN

1 ) from its corresponding drivers (not shown in the
figure). The array of OXGs performs a bit-wise logical XNOR between an N -bit input
vector slice I1 = {i11, i21, .., iN1 } and an N -bit weight vector slice W1 = {w1

1, w
2
1, .., w

N
1 }

to produce a resultant N -bit XNOR vector slice. Each OXG in the array produces one
bit of the resultant XNOR vector slice, and it imprints this bit on its corresponding
λi (by modulating the optical transmission at λi) to be consequently guided to the
bitcount circuit (i.e., PCA) via the output waveguide. As a result, the PCA receives
the N individual optical bits of the N -bit XNOR vector slice concurrently on N
distinct wavelengths. The PCA performs bitcount on these optical bits, as explained
later. This entire processing step, from the bit-parallel application of the binary input
and weight vector slices at the electrical input terminals of the array of N OXGs to
the generation of the bitcount result by the PCA, takes very low latency because of
the light-speed operation of the XPE. We refer to this processing step mapped on an
XPE as a PASS and the corresponding latency as τ . Thus, our XPE can produce
one bitcount result for one XNOR vector slice in every single PASS with τ latency.
Since τ can be very low (as low as 20 ps), our XPE can achieve very high processing
throughput by completing one PASS every τ period. For that, multiple input and
weight vector slices {I1, I2, .., Iα} and {W1,W2, ..,Wα} can be applied to the array

of OXGs of an XPE in a serial manner at the predefined data rate (DR) of
1

τ
. The

design and operation of an OXG and PCA are explained next.
Design of an Optical XNOR Gate (OXG): The design of our invented Optical

XNOR Gate (OXG) is illustrated in Fig. 5.3(a). It is an add-drop microring resonator
(MRR), which has two operand terminals (realized as embedded PN-junctions) that
can take two operand bits i and w as inputs for a predefined time-width (usually
a little less than the τ period). Fig. 5.3(b) shows the passbands of the MRR for
different operand inputs and temperature conditions. The MRR’s temperature can
be increased using the integrated microheater (Fig. 5.3(a)), to consequently tune its
operand-independent resonance from its fabrication-defined initial position η to its
programmed position κ (blue passband; Fig. 5.3(b)), relative to the input optical
wavelength position λin. For each bit combination at the operand terminals ((i,w) =
(0,1), (1,0), or (1,1)), the MRR’s resonance passband electro-refractively moves to an
operand-driven position (red and magenta passbands in Fig. 5.3(b)). Based on the
MRR resonance passband’s programmed position κ relative to λin, the through-port
transmission (T(λin)) of the MRR provides bit-wise logical XNOR operation between
the input bits i and w.

To validate the operation of our OXG, we performed the transient analysis, as
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Figure 5.3: (a) Schematic of our Optical XNOR Gate (OXG). (b) Spectral operation
of OXG. (c) Transient analysis of OXG.

shown in Fig. 5.3(c). For that, we modelled and simulated our OXG using the
foundry-validated tools from Ansys/Lumerical’s DEVICE, CHARGE, and INTER-
CONNECT suites [6]. Fig. 5.3(c) shows two input bit-streams I = {i11, i12, .., i18} and
W = {w1

1, w
1
2, .., w

1
8} applied to the two PN junctions of our OXG at a DR = 10 GS/s.

By looking at the output optical trace T(λin) in Fig. 5.3 (c), we can say T(λin) =
{i11�w1

1,..,i
1
8�w1

8}, which validates the functionality of our OXG as a logical XNOR
gate. From our validation, our OXG has a full passband width at half maximum
(FWHM) of 0.35 nm and it can operate at DR of up to 50 GS/s. Our XNOR gate
consumes energy of 0.032nJ with an area footprint of 0.011mm2.

Photo-Charge Accumulator (PCA)

From Section 5.3.1, the XNOR vector bits generated by an array of OXGs are guided
to a PCA circuit, where a bitcount is performed on the XNOR vector bits to generate
an output result. Our PCA circuit employs a photodetector and two time integrating
receiver (TIR) circuits [150] (one of the TIR1 and TIR2 circuits remains redundant,
enabled by the demux and mux; Fig 5.4). The photodetector generates a current
pulse for each optical logic ‘1’ incident upon it. The amplitude of a current pulse
generated for an optical logic ’0’ remains under the noise limit; therefore, a logic ’0’
remains statistically undetected. The current pulse generated by an optical logic ’1’
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Figure 5.4: Photo-Charge Accumulator (PCA) Circuit. VREF is the threshold re-
quired in the compare() function discussed in Section 5.2.1. Typically, VREF = 2.5V
because we consider the dynamic range of TIR to be 5V.

accumulates a certain statistically significant amount of charge on the capacitor of
the active TIR circuit (e.g., the circuit with C1 capacitor); as a result, the TIR circuit
outputs a detectable analog voltage level [150]. Hence, when more optical ’1’s are
incident upon the photodetector, the total accumulated charge on the active capacitor
(e.g., C1), and thus, the accrued output analog voltage level, grows proportionally to
the total number of optical ‘1’s that are incident [150]. This is because a current source
(a sequence of current pulses) can charge a capacitor linearly following this equation:

δV=
iδt

C
, where i is an incident current pulse, δt is the time-width of the current

pulse, C is the capacitance, and δV is the accrued voltage. The final analog voltage
accrued at the TIR output, thus, represents the bitcount result (accumulation result)
of the incident optical ’1’s. However, the number of ’1’s that can be accumulated in
such a manner might be limited, as the output of the TIR circuit (Fig. 5.4) might
saturate. Once the output of a TIR circuit saturates, the ongoing accumulation phase
ends and the bitcount result (i.e., the final TIR output voltage) is passed through
a comparator to generate the activation value for the next BNN layer (as explained
in Section 5.2.1). After one accumulation phase, a discharge of the active capacitor
(e.g., C1) is needed to prepare the circuit for the next accumulation phase. While
capacitor C1 is discharging, the redundant TIR2 circuit with capacitor C2 mitigates
the discharge latency by allowing a continuation of a concurrent bitcount.
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5.4 Scalability Analysis and Mapping

5.4.1 Scalability of XNOR-Bitcount Processing Cores (XPCs)

To determine the achievable size N for our XPC, we adopt scalability analysis equa-
tions (Eq. 5.3, Eq. 5.4, and Eq. 5.5) from [9] and [152]. Table 5.1 reports the
definitions of the parameters and their values used in these equations. We consid-
ered Free Spectral Range (FSR=50nm) [9], FWHM=0.35nm (refer Section 5.3.2),
and inter-wavelength gap of 0.7nm. For these spectral conditions, we observed mini-
mal crosstalk power penalty for the OXGs operating at DR=50GS/s (<1 dB penalty
[17, 87, 189], which is accounted for as part of parameter ILpenalty in the equations
(Table 5.1)). Since the XPC of our OXBNN accelerator processes binarized vectors,
it requires the bit precision of B=1-bit in the equations. We consider M=N and first
solve Eq. 5.3 and Eq. 5.4 for a set of DRs={3, 5, 10, 20, 30, 40, 50} GS/s, to find
a corresponding set of PPD−opt. Then, we solve Eq. 5.4 for N with the obtained set
of PPD−opt values across the set of DRs. Table 5.2 reports the achievable N for our
XPC across various DRs. As evident, the supported N value decreases from N=66
at 3 GS/s to N=19 at 50 Gs/s. This achievable N value defines the feasible number
of OXGs per XPE; thus, this N also defines the maximum size of the XNOR vec-
tor slice that can be generated in our XPC. Because we consider FSR of 50nm and
inter-wavelength gap of 0.7nm, we verify that the maximum N =66 can be supported
within the FSR (i.e., N =66<(FSR/0.7nm)).

B =
1

6.02

[
20log10(

Rs × PPD−opt
β
√

DR√
2

− 1.76

]
(5.3)

β =

√
2q(RsPPD−opt + Id) +

4kT

RL

+R2
sP

2
PD−optRIN (5.4)

PLaser =
10

ηWG(dB)[N(dOXG)+delement]

10 M

ηSMFηECηWPEILi/p−OXG
× PPD−opt
ILpenalty

× 1

(OBLOXG)N−1(ELsplitter)log2M

(5.5)

Analysis of PCA’s Accumulation Capacity: We modeled the photodetector (PD)
of our PCA circuit using the INTERCONNECT tool from Ansys/Lumerical [6] for PD
responsivity = 1.2 A/W across different PPD−opt values corresponding to the N values
in Table 5.2. We extracted the current pulse values generated by the photodetector
for the incident optical ‘1’s and ‘0’s corresponding to each PPD−opt. We then imported
these values in our MultiSim [2] based model of the PCA with C1=C2=10pF [150],
and the TIR gain=50. For these parameters, we simulated the analog output voltage
at the PCA’s TIR for different bitcount results (i.e., different values of the total
number of accumulated ‘1’s). From this analysis, we observed that the maximum
number of ’1’s that can be accumulated by our PCA is limited by the available
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Table 5.1: Definition and values of various parameters used in Eq. 5.3, Eq. 5.4, and
Eq. 5.5 (from [9]) for the scalability analysis. Definitions of PCA parameters γ and
α.

Parameter Definition Value
PLaser=P

in
λi

Laser Power Intensity 5 dBm
Rs PD Responsivity 1.2 A/W
RL Load Resistance 50 Ω
Id Dark Current 35 nA
T Absolute Temperature 300 K

RIN Relative Intensity Noise -140 dB/Hz
ηWPE Wall Plug Efficiency 0.1
ILSMF Single Mode Fiber Insertion Loss 0 dB

ILEC
Fiber to Chip Coupling

Insertion Loss
1.6 dB

ILWG
Silicon Waveguide

Insertion Loss
0.3 dB/mm

ELSplitter Splitter Insertion Loss 0.01 dB

ILOXG
Optical XNOR Gate (OXG)

Insertion Loss
4 dB

OBLOXG Out of Band Loss OXG 0.01 dB
ILpenalty Network Penalty 4.8 dB
dOXG Gap between two adjacent OXGs 20 µm
PPD−opt Output Photodetector Sensitivity Table 5.2

α
PCA’s Accumulation Capacity
(# of XNOR Vectors Slices)

Table 5.2

γ
PCA’s Accumulation Capacity

(# of accumulated ‘1’s)
Table 5.2

operating dynamic range of the TIR of our PCA. We considered the TIR’s operating
dynamic range to be 5V (0V to 5V) and evaluated our PCA’s accumulation capacity
γ, which we define as the maximum number of ‘1’s that can be accumulated by the
PCA within the TIR’s operating dynamic range. Our evaluated γ values, for each
pair of N and corresponding PPD−opt, are reported in Table 5.2. Since our PCA can
accumulate a total of γ bits and since each XNOR vector slice in our XPC has a total
of N bits, our PCA can accumulate a total of α XNOR vector slices, where α = γ

N
.

Table 5.2 also reports the values of α. As evident, the γ and α values for our PCA
can be very large, which provides several substantial benefits as discussed in Section
5.4.3.

5.4.2 Mapping Convolutions on an XPC

As described in Section 5.2.1, for processing a BNN convolution on hardware, both
the weight and input channels are flattened into binarized vectors. For mapping of
a binary convolution on an XPC (or XPE), these binarized input and weight vec-
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Table 5.2: XPC Size N, PCA bitcount capacity values (γ and α), for different data
rates (DRs).

Datarate (DR) (GS/s) PPD−opt(dBm) N γ α
3 -24.69 66 39682 601
5 -23.49 53 29761 561
10 -21.9 39 19841 508
20 -20.5 29 14880 513
30 -19.5 24 10822 450
40 -18.9 21 9920 472
50 -18.5 19 8503 447

tors are represented as matrices. For instance, the input matrix I(H, S) has H rows
corresponding to H binarized input vectors of size S each. Similarly, the weight
matrix W(H, S) can also be defined. These matrices W(H, S) and I(H, S) are
mapped onto an XPC containing a total of M XPEs of size N each. Depending
on the relation between S and N, two cases drive the selection of the appropriate
mapping. These cases and their corresponding mappings are illustrated in Fig. 5.5,
for M =2, H =2, N =9, and two distinct values of S . These cases are explained be-
low:

Case 1, S=15, S>N, Fig. 5.5(a) and 5.5(b): Matrices I and W consist of
two vectors each, {I1, I2} and {W1, W2}, respectively. To make the size S=15 of
these vectors {I1, I2} and {W1, W2} amenable to the XPE size N=9, each of these
vectors is split into two slices to yield a set of input vector slices {I11 , I21 , I12 , I22}
and a set of weight vector slices {W 1

1 , W 2
1 , W 1

2 , W 2
2 }. Since M=2 is less than the

total number of vector slices (i.e., H × ceil(S/N) = 4), multiple passes are required
to complete the processing of these vector slices. Mappings of these vector slices
differ between our PCA and the bitcount circuit from prior works [160] and [215], as
discussed next.

Mapping for the bitcount circuit from [160] and [215] (Fig. 5.5(a)):
Since M=2, there are two XPEs, namely XPE 1 and XPE 2. During PASS 1 of
these XPEs (the definition of a PASS is given in Section 5.3.2), we map {I11 , W 1

1 }
onto XPE 1, and {I21 , W 2

1 } onto XPE 2. XPE 1 generates the corresponding XNOR
vector, which is accumulated using the bitcount circuit to produce psum I11 �W 1

1 .
Similarly, XPE 2 generates psum I21�W 2

1 . The generated psums are reduced (further
accumulated) at the psum reduction network, to produce Final Result 1. Similarly,
during PASS 2, vector slices {I12 , I22 , W 1

2 , W 2
2 } are mapped to generate corresponding

psums, which are then sent to the psum reduction network to produce Final Result
2. Thus, for the bitcount circuits from prior works, there is a need for employing a
psum reduction network, which leads to a high latency overhead.

Mapping for our OXBNN with PCAs, Fig. 5.5(b): Our OXBNN maps
all the slices of a particular vector to the same XPE. During PASS 1, OXBNN maps
{I11 , W 1

1 } to XPE 1, and {I12 , W 1
2 } to XPE 2. XPE 1 charges its PCA’s capacitor

to generate an analog voltage level that represents psum I11 �W 1
1 , whereas XPE 2
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Figure 5.5: Example mappings and related operation of our XPC for various cases
of the S and N values. A comparison of our PCA with the bitcount circuit from prior
works is also illustrated.



charges its PCA’s capacitor to generate an analog voltage level that represents psum
I12 �W 1

2 . Because a PCA can accumulate a total of α vector slices (Section 5.3.2),
the PCAs of XPE 1 and XPE 2 can be made to hold the charge and analog voltage
accrued during PASS 1. Then, during PASS 2, XPE 1 and XPE 2 can further grow
these held analog voltage levels by the amounts proportional to I21�W 2

1 and I22�W 2
2 ,

respectively. Thus, at the end of PASS 2, the total accrued analog voltage on the
PCA of XPE 1 (XPE 2) would be proportional to I11 �W 1

1 + I21 �W 2
1 (I12 �W 1

2 +
I22 �W 2

2 ). Thus, the PCAs of our OXBNN can accumulate multiple psums (a total
of α psums) inherently. This eliminates the need to employ psum reduction networks
to consequently yield substantial benefits, as further explained in Section 5.4.3.

Case 2, S=9, S≤N, Fig. 5.5 (c): The size S=9 of the vectors {I1, I2} and
{W1, W2} matches with the XPE size N=9. Thus, in a single pass (PASS 1), our
OXBNN maps {I1, W1} to XPE 1, and {I2, W2} to XPE 2. XPE 1 and XPE 2
produce Final Result 1 and Final Result 2 corresponding to I1 �W1 and I1 �W1,
respectively. In this case, the mapping is identical for our PCA and the bitcount
circuits from prior work.

5.4.3 Latency and Energy Benefits of PCA

Our PCA provides manifold benefits in terms of both the latency and energy con-
sumption. The latency benefits accrue because our PCA eliminates the need of em-
ploying psum reduction networks to temporarily store and accumulate psums. From
Section 5.4 and Table 5.2, our PCA can achieve γ=8503 and α=447 at DR=50
GS/s, which means that our PCA, before it saturates, can accumulate a total of
γ=8503 ’1’s across a total of α=447 XNOR vector slices. As a result, if we oper-
ate the OXGs of our OXBNN at DR=50 GS/s, our PCA can inherently accumulate
(perform bitcount on) any XNOR vector whose size S is less than γ=8503. Since
the maximum XNOR vector size is observed to be S=4608 across all major mod-
ern CNNs (e.g., ResNet18, ResNet50, DenseNet121, VGG16, VGG19, GoogleNet,
Inception V3, EffiecientNet B7, NASNetMobile, MobileNet V2, and ShuffleNet) [37],
our PCA eliminates the need to employ dedicated psum reduction networks in our
OXBNN accelerator.

5.5 Evaluation

5.5.1 System-Level Implementation of OXBNN.

Fig. 5.6 illustrates the system-level implementation of our OXBNN accelerator. It
consists of global memory that stores BNN parameters and a pre-processing and map-
ping unit. It has a mesh network of tiles. Each tile contains 4 XPCs interconnected
(via H-tree) with an output buffer as well as pooling units.

5.5.2 Simulation Setup

For evaluation, we model our OXBNN accelerator from Fig. 5.6 using our custom-
developed, transaction-level, event-driven python-based simulator (https://github.
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Figure 5.6: System-level overview of our OXBNN accelerator.

Table 5.3: Accelerator Peripherals and XPE Parameters [152]

Power(mW) Latency Area(mm2)
Reduction Network 0.050 3.125ns 3.00E-5

Activation Unit 0.52 0.78ns 6.00E-5
IO Interface 140.18 0.78ns 2.44E-2
Pooling Unit 0.4 3.125ns 2.40E-4

eDRAM 41.1 1.56ns 1.66E-1
Bus 7 5 cycles 9.00E-3

Router 42 2 cycles 1.50E-2
EO Tuning 80 µW/FSR 20ns -
TO Tuning 275 mW/FSR 4µs -

com/uky-UCAT/B_ONN_SIM). We simulated the inference of four BNNs (batch size=1):
VGG-small[205], ResNet18[65], MobileNet V2 [138], and ShuffleNet V2 [208]. We
binarized all the weights and inputs using the LQ-Nets technique[205]. We evaluate
frames-per-second (FPS) and FPS/W (energy efficiency).

We compared our OXBNN with ROBIN [160] and LIGHTBULB [215]. ROBIN
and LIGHTBULB operate at different DRs; therefore, we consider two variants of
our OXBNN: (1) OXBNN 5 with DR=5GS/s (matching with ROBIN) and N=53
(Table 5.2), (2) OXBNN 50 with DR=50GS/s (matching with LIGHTBULB) and
N=19 (Table 5.2). We consider two variants of ROBIN: ROBIN Energy-Optimized
(ROBIN EO) and ROBIN Performance-Optimized (ROBIN PO)[160]. For fair com-
parison, we perform area proportionate analysis, wherein we altered the XPE count
for each photonic BNN accelerator across all of the accelerator’s XPCs to match with
the area of OXBNN 5 having 100 XPEs. Accordingly, the scaled XPE counts of
OXBNN 50 (N=19 ), ROBIN PO (N=50 ), ROBIN EO (N=10 ), and LIGHTBULB
(N=16 ) are 1123, 183, 916, and 1139, respectively. Table 5.3 gives the parameters
used for our evaluation.
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5.5.3 Evaluation Results

Fig. 5.7(a) compares FPS values (log scale). OXBINN 50 achieves 62×, 8×, and 7×
better FPS than ROBIN EO, ROBIN PO, and LIGHTBULB, respectively, on gmean
across the BNNs. Similarly, OXBNN 5 also outperforms ROBIN EO, ROBIN PO,
and LIGHTBULB by 54×, 7×, and 16×, respectively, on gmean across the BNNs.
OXBNN 5 and OXBNN 50 mainly benefit from the elimination of psum reduction
networks. They also benefit from their larger N, compared to the other accelerators.
Larger N renders them with higher parallelism and lower α to consequently increase
(decrease) their processing throughput (latency).

Figure 5.7: (a) FPS (log scale) (b) FPS/W for OXBNN versus ROBIN and LIGHT-
BULB accelerators.

Fig. 5.7(b) gives the energy efficiency (FPS/W) achieved by each accelerator
across various BNNs. Our OXBINN 5 gains 6.8×, 7.6×, and 2.14× better FPS/W
than ROBIN EO, ROBIN PO, and LIGHTBULB, respectively, on gmean across
the BNNs. Similarly, our accelerator OXBNN 50 also outperforms ROBIN EO,
ROBIN PO, and LIGHTBULB by 4.9×, 5.5×, and 1.5×, respectively, on gmean
across the BNNs. The energy benefits of OXBNN 5 and OXBNN 50 are due to the
novel OXGs. Due to their single-MRR design, these OXGs consume less energy and
static power, compared to the OXGs (containing at least two MRRs or microdisks
per OXG) from ROBIN and LIGHTBULB. Moreover, the elimination of the ded-
icated psum reduction network (Section 5.4.3) also eliminates related high energy
consumption. Thus, these benefits collectively render better FPS/W for OXBNN 5
and OXBNN 50.
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5.6 Summary

In this Chapter, we present a single-MRR-based optical XNOR gate (OXG) and
a novel bitcount circuit Photo-Charge Accumulator (PCA). We employ OXGs and
PCAs to forge a novel accelerator, called OXBNN, to process the inferences of BNNs.
We performed a comprehensive analysis to show the throughput and energy efficiency
advantages of OXBNN. Our evaluation results show that OXBNN provides improve-
ments of up to 62× and 7.6× in throughput (FPS) and energy efficiency (FPS/W),
respectively, on geometric mean over two state-of-the-art photonic BNN accelerators
from prior works.
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Chapter 6 A Stochastic Computing Based Optical Accelerator for
Ultra-Fast, Energy-Efficient Inference of Integer-Quantized CNNs

6.1 Introduction

Deep Neural Networks (DNNs) have revolutionized the implementation of various ar-
tificial intelligence tasks, such as image recognition, language translation, autonomous
driving [96, 47], due to their high inference accuracy. Convolutional Neural Networks
(CNNs) are specific types of DNNs [105]. CNNs are computationally intensive, and
hence, require a long inference time. In CNNs, around 80% of the total process-
ing time is taken by convolution operations that can be decomposed into vector
dot product (VDP) operations [198]. The ever-increasing complexity of CNNs has
pushed for highly customized CNN hardware accelerators [20]. Often, for efficient
and swift hardware-based acceleration, CNNs are typically quantized to have integer
input/weight parameters [91]. Among CNN hardware accelerators, silicon-photonic
accelerators have shown great promise to provide unparalleled parallelism, ultra-low
latency, and high energy efficiency [109, 58, 22, 34, 201, 157]. Typically, a silicon-
photonic CNN accelerator consists of multiple Vector Dot Product Cores (VDPCs)
that perform multiple VDP operations in parallel. Several VDPC-based optical CNN
accelerators have been proposed in prior works based on various silicon-photonic
devices, such as Mach Zehnder Interferometer (MZI) (e.g., [16], [206], [44]) and Mi-
croring Resonator (MRR) (e.g., [22], [157], [164], [166]).

Among these optical VDPC-based CNN accelerators from prior work, the MRR-
enabled VDPC-based accelerators (e.g., [109, 22, 58, 145, 157, 166]) have shown
disruptive performance and energy efficiencies, due to the MRRs’ compact footprint,
low dynamic power consumption, and compatibility with cascaded dense-wavelength-
division-multiplexing (DWDM). Among these MRR-enabled accelerators, some accel-
erators utilize digital VDPCs (e.g., [145]), whereas some others employ analog VDPCs
(e.g., [157, 22, 166]). In general, a VDPC (analog or digital) transforms convolution
operations into vector dot product (VDP) operations by decomposing the input ten-
sors into vectors (1D tensors). In an analog VDPC, such VDP operations are also
analog in nature, and they are performed on the individual VDP elements (VDPEs),
which are the main MRR-enabled hardware components in the VDPCs. Multiple
VDPEs in an analog VDPC can perform multiple analog VDP operations in parallel.
The results of these analog VDP operations are converted into the digital format
using analog-to-digital converters (ADCs). These results can be summed together
(if and when needed) using a partial-sum (psum) reduction network, which can be
employed outside of the VDPCs as part of the post-processing components of the
CNN accelerator. The functioning of the analog VDPCs and their constituent VD-
PEs in the ultra-high-speed, analog-optical domain results in disruptive throughput
for performing analog VDP operations.

We observe that two factors govern the performance of such analog optical VDPCs:
(1) the achievable bit-precision (B) and (2) the achievable scalability of the VDPCs,
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i.e., the achievable count of the individual VDPEs per VDPC (M ) and the individual
VDPE size (the number of multiplications that can be generated and summed up
per VDPE) (N ). In an analog VDPC, the achievable B affects the inference accuracy
of the processed CNNs, whereas the achievable VDPC scalability (i.e., N and M )
directly defines the throughput of the VDPC for processing CNNs. Prior works [9]
and [70] studied various factors such as optical power budget in waveguides, inter-
channel spacing of wavelengths, crosstalk at cascaded MRRs, resolution of ADCs,
and photodetector responsivity, to determine the bounds of the achievable B and
scalability in analog optical VDPCs. Furthermore, prior work [152] characterized the
very strong trade-off between the maximum achievable VDPC size N and B in analog
optical VDPCs. From [152], the analog optical VDPCs from prior works cannot
support N greater than 44 for B>=4-bit [152]. Achieving such low N can seriously
hurt the performance for processing modern CNNs. This is because modern CNNs
employ tensors with as high as 4608 points (parameters) per tensor [65]. Processing
such large tensors on a VDPC with N≤44 results in a large number of psums, resulting
in a very high latency overhead in the psum reduction network.

To avoid this undesired outcome, we advocate for such an architecture of MRRs-
based CNN accelerator that achieves significantly larger VDPC size N along with
weakened interdependence between N and B. To that end, for the first time, we lever-
aged the inherent precision flexibility of stochastic computing to come up with a novel,
MMRs-enabled Stochastic Computing based Optical Neural Network Accelerator
(SCONNA). SCONNA employs our invented MRR-based Optical Stochastic Multipli-
ers (OSMs) to realize manifold improvements in the throughput and energy efficiency
of processing integer-quantized CNNs.

Our key contributions in this Chapter are summarized below:

• To enable stochastic computing in the optical domain, we present (i) a novel
design of optical stochastic multiplier (OSM), and (ii) a novel photo-charge
accumulator (PCA) circuit (Section 6.4);

• We present detailed modeling and characterization of our invented OSM and
PCA using foundry-validated, commercial-grade, photonic-electronic design au-
tomation tools (Section 6.4);

• We employ our designed OSMs and PCAs to forge a highly scalable CNN accel-
erator named SCONNA, which employs OSM and PCA-based scalable VDPCs
(Section 6.4);

• We perform a comprehensive scalability analysis for our SCONNA VDPCs,
to determine their achievable maximum size N, operating speed, and error
susceptibility (Section 6.5);

• We implement and evaluate SCONNA at the system-level using our in-house
simulator (https://github.com/uky-UCAT/SC_ONN_SIM.git), and compare its
performance and inference accuracy for processing 8-bit integer-quantized CNNs
with two widely-known MRR-based analog CNN accelerators from prior works
(Section 6.6).
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Figure 6.1: Illustration of a convolution operation.

6.2 Preliminaries

6.2.1 Convolutional Neural Networks (CNNs)

CNNs are specific types of DNNs that have shown remarkable accuracy for image
classification. In general, a CNN consists of multiple convolutional layers, pooling
layers, and fully connected layers. As shown in Fig. 6.1, a typical convolutional layer
consists of one input tensor I(H,W,D) and L kernel tensors F(K,K,D). All of the L
kernel tensors convolve over the input tensor using stride (ψ) to produce the output
tensor O(HOut,WOut,L).

The computation required to produce each point O(i, j, l) in the output tensor
O(Hout,Wout,L) can be given as Eq. 6.1.

O(i, j, l) =
D∑
d=1

K∑
q=1

K∑
r=1

F (r, q, d)I(i× ψ + r, j × ψ + q, d) (6.1)

Here, d=[1,D ], q=[1,K ], r=[1,K ], i=[1,HOut], l=[1,L], and j =[1,WOut] are various
indices and their value ranges for the kernel and output tensors. O(i,j,l) in Eq. 6.1 is
the sum of a total of K×K×D products (products of the individual points of tensors
F and I(K,K,D); I(K,K,D) is the gray-highlighted part of I(H,W,D) in Fig. 6.1).
Thus, producing O(i,j,l) requires K×K×D point-wise multiplications (to produce
K×K×D point-wise products) and one sum-of-products operation. The combination
of these point-wise multiplications and the corresponding sum-of-products operation
is mathematically equivalent to a Vector Dot Product (VDP) operation. A VDP
operation typically occurs between two vectors. This implies that I and F in Eq. 6.1
are vectors, which are basically flattened (in 1D) versions of tensors I(K,K,D) and
F(K,K,D) respectively. Note that vectors I and K have a total of S = K × K × D
points each. Henceforth, We refer to I and K as input vector and kernel vector,
respectively.
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6.2.2 Processing Convolutions on VDPCs

Producing the output tensor O(HOut,WOut,L) (Fig. 6.1) requires that the VDP oper-
ation shown in Eq. 6.1 is implemented multiple times, i.e., a total of HOut×WOut×L
times. In Eq. 6.1, the output O(i,j,l) is the result of the VDP operation between the
corresponding input vector and kernel vector, each of size S = K × K × D (Section
II.A). Typically, for a CNN, the values K and D vary dramatically across different
kernel tensors of the CNN. Therefore, S = K× K× D also varies dramatically. The
value S for CNNs can be as large as 4608 (e.g., ResNet50 [152]). Because of such
large S, to accelerate VDP operations on a VDPC, it is intuitive to have the size N of
the constituent VDPEs of the VDPC (defined as the number of point-wise multipli-
cations a VDPE can concurrently perform) to be as large as S. However, it is hardly
possible to have N to be equal to S in optical MRR-based analog VDPCs. Therefore,
input vector and kernel vector are generally divided into multiple decomposed input
vectors (DIV s) (this and other abbreviations are defined in Table 6.3) and decom-
posed kernel vectors (DKV s) first, and then these DIV s and DKV s are processed on
the VDPEs (Section III.A). Having to decompose the input vector and kernel vector
into multiple DIV s and DKV s raises several challenges as discussed in Section III.A.

6.2.3 Optical Analog VDPC-Based CNN Accelerators

Most of the optical MRR-enabled analog, incoherent CNN accelerators from prior
work employ multiple optical analog VDPCs that work in parallel. A brief review of
prior works on optical accelerators is provided in Section 6.7. Typically, an analog
VDPC implements the decomposed VDP operations of a convolution operation us-
ing DKVs and DIVs (Section II.A). In general, a VDPC consists of five blocks (Fig.
6.2(a)): (i) a laser block that consists of N laser diodes (LDs) to generate N optical
wavelength channels; (ii) an aggregation block that aggregates the generated optical
wavelength channels into a single photonic waveguide through dense wavelength di-
vision multiplexing (DWDM) (using an N×1 multiplexer) and then splits the optical
power of these N wavelength channels equally into M separate waveguides (using
a 1×M splitter); (iii) a modulation block, also referred to as DIV block, that em-
ploys M arrays of MRRs (one array per waveguide, with each array having N MRRs;
each array referred to as DIV element) to imprint M DIVs of N points each onto
the N×M wavelength channels by modulating the analog power amplitudes of the
wavelength channels; (iv) another modulation block, referred to as DKV block, that
employs another M arrays of MRRs (one array per waveguide, with each array hav-
ing N MRRs; each array referred to as DKV element) to further modulate the N×M
wavelength channels with DKV s, so that the analog power amplitudes of the individ-
ual wavelength channels then represent the point-wise products of the utilized DKV s
and DIV s; and (v) a summation block (SB) that employs a total of M summation
elements (SEs), with each SE having two balanced photodiodes (PDs) upon which
the point-wise-product-modulated N wavelength channels are incident to produce the
output current that is proportional to the result of the VDP operation between the
corresponding DKV and DIV. The laser block and SB are typically positioned at the
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two ends of the VDPC, with the aggregation, modulation (DIV ), and modulation
(DKV ) blocks placed in between them.

Based on the order in which these intermediate blocks (aggregation, modulation
(DIV ), modulation (DKV ) blocks) are positioned between the laser block and SB,
we classify the MRR-based VDPC organizations from prior work as MAM (Modula-
tion, Aggregation, Modulation) (e.g., [109], [9]) or AMM (Aggregation, Modulation,
Modulation) (e.g., [201], [58], [22]). Fig. 6.2 illustrates MAM and AMM VDPC orga-
nizations. From Fig. 6.2(a), the AMM VDPC organization positions the aggregation
block first after the laser block, and then the DIV modulation block followed by the
DKV modulation block. In contrast, the MAM VDPC in Fig. 6.2(b) positions the
DIV modulation block first after the laser block, and then positions the aggregation
block followed by the DKV modulation block. Note that the MAM DIV block is
structurally different from the AMM DIV block. The MAM DIV block employs
only one MRR per waveguide, and as a result, it can imprint only one DIV with N
points onto the N wavelength channels. This one DIV is shared among all DKVs in
the MAM VDPC, whereas each DKV can have a different DIV corresponding to it
in the AMM VDPC. Most MAM and AMM VDPCs from prior works have M=N.

In both the AMM and MAM VDPC organizations, we refer to the combination of
a DKV element and the corresponding SE as VDP element (VDPE). However, the
size and point-wise product precision of MRR-based VDPEs have certain limitations
(discussed in Section 6.3). These limitations demand exploration of new computing
options to improve MRR-based VDPCs, and stochastic computing is an attractive
option.

6.2.4 Stochastic Computing

Stochastic Computing (SC) is an unconventional form of computing that represents
and processes data in the form of probabilistic values called stochastic numbers (SNs)
[54, 10, 15]. In SC’s unipolar format, an SN W is a bit-stream of N bits that represents
a real-valued variable υ ∈ [0, 1] by encoding υ through the ratio N1/N , whereN1 is the
number of 1’s in W. SC offers several advantages over conventional binary computing
such as high error tolerance, low power consumption, small circuit area, and low-
cost arithmetic operations consisting of standard digital logic components [15]. For
example, multiplication can be performed by a stochastic circuit consisting of a single
AND gate.

Fig. 6.3 illustrates a multiplication between two unipolar stochastic bit-streams I
and W using an AND gate. The probabilities of seeing ’1’s in the bit-streams I and
W are (4/8) and (6/8), respectively. The AND gate performs bit-wise logical AND
operation on the bit-streams to produce the output bit-stream A. In A, the probability
of seeing ’1’s is (3/8), which is equal to (4/8)×(6/8), i.e., the multiplication (or
product) of the input probabilities. Note that for the AND gate to produce an error-
free multiplication output, the marginal probability of one bit-stream (i.e., I or W )
should be equal to its conditional probability given the other bit-stream (i.e., I given
W or W given I )[196]. Also note that, because of its advantages, SC has been
adopted in stochastic deep CNNs [133, 100, 104], GEMM computation [196], and
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Figure 6.2: Illustration of common analog optical VDPC organizations: (a) AMM
VDPC, (b) MAM VDPC. (c) Summation Element.

Figure 6.3: Multiplication between unipolar stochastic numbers I and W.

image processing [101]. We use stochastic computing in this Chapter to relax the
inherently strong scalability-precision trade-off in the optical VDPCs. This trade-off
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is explained in the next section.

6.3 Motivation

6.3.1 Scalability Limitations of MRR-Based Analog VDPCs

Prior works [94], [152], and [9] have analysed the scalability (i.e., achievable value of
VDPE size N under the constraints of bit precision and data rate) of AMM and MAM
VDPCs. Table 6.1 reproduces the supported values of VDPE size N (considering
M=N ) for AMM and MAM VDPCs at various data rates (DRs) and bit precision
from [152]. From Table 1, the maximum N =44 is obtained for MAM VDPC across
all tested DR and B values. For MAM VDPC for 1 GS/s, maximum N reduces from
44 to 12 as we increase the input/weight precision from 4-bit to 6-bit. The reason
for such strong trade-off between N and achievable input/weight precision (referred
to as B, henceforth) in MAM and AMM VDPCs is that both B and N strongly
depend on the number of distinguishable analog optical power levels [152][94], which
is proportional to N×2B. Hence, for a fixed number of distinguishable analog optical
power levels, which is defined by the analog optical power resolution of the utilized
summation elements (SEs) (see SEs in Fig. 6.2) the supported N drastically decreases
with an increase in B. As a result, N decreases all the way to 1 when B increases to
8-bit [152].

Due to such strong trade-off between N and B, the MAM and AMM type of analog
VDPCs face two consequences. First, they produce high number of partial sums and
incur significantly high latency for partial sum reduction. For example, a VDPE
with N =44 for B=4-bit can only produce a VDP operation between two 44-point
vectors. Therefore, producing a VDP operation between an input vector and kernel
vector with S=4608 (e.g., ResNet50 [65][152]) requires that the input vector is first
decomposed into a total of C =Ceil(S/N)=105 DIV s of N =44 points each. Similarly,
the kernel vector also needs to be decomposed into a total of C =Ceil(S/N)=105
DKV s of N =44 points each. Then, a total of 105 VDPEs can be employed to perform
105 VDP operations between 105 pairs of DKV s and DIV s, to consequently produce
a total of 105 intermediate VDP results (i.e., partial sums (psums)). Although these
105 VDP operations can be parallelized over 105 VDPEs, producing the final VDP
result of S=4608 would require the accumulation of the 105 psums. Doing so can
incur very high latency and energy consumption, which should be avoided using a
more efficient VDPC design.

As the second consequence, the throughput of the MAM and AMM VDPCs de-
creases at higher bit precision (higher value of B). This is because to avoid a drastic
decrease in N as B increases beyond 4-bit, the AMM and MAM type of analog VDPCs
typically operate at B=4-bit [152]. However, using at least 8-bit precision (B=8-bit)
for the integer-quantized CNN models is recommended to achieve competitive infer-
ence accuracy, while also reducing the computational effort, memory requirements,
and energy consumption [91]. To meet this requirement, analog VDPCs from [109]
(an MAM VDPC) and [22] (an AMM VDPC) employ bit-slicing of input/weight pa-
rameters. They slice each 8-bit integer input/weigh parameter into two slices of 4-bit
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Table 6.1: VDPE size N for input/weight precision={4,6}-bit at data rates
(DRs)={1,3,5,10}GS/s, for AMM and MAM VDPCs.

VDPC Precision
Datarate(DR)

1 GS/s 3 GS/s 5 GS/s 10 GS/s

AMM
4-bit 31 20 16 11
6-bit 6 3 2 1

MAM
4-bit 44 29 22 16
6-bit 12 7 5 3

Table 6.2: Total number of kernels (TL) of different DKV sizes (S ) for various CNNs.
The TL values were extracted for trained CNN models from Keras Applications [37].

Model TL S Model TL S

ResNet50
1 S≤44

GoogleNet
13 S≤44

26562 S>44 7554 S>44

VGG16
69 S≤44

DenseNet
1 S≤44

4168 S>44 10242 S>44

each. Then, they employ two VDPCs in parallel; each VDPC processes one 4-bit slice
of the input/weight parameters. The corresponding 4-bit VDP results from these two
4-bit VDPCs are then combined using shifters and adders to produce the final 8-bit
results. Thus, performing VDP operations using bit slices reduces the total number
of VDP results that can be produced by a fixed number of VDPCs, because mul-
tiple VDPCs are needed to produce a single set of VDP results. This can severely
degrade the throughput of such VDPCs. Such undesired outcome should be avoided
by designing a more efficient VDPC.

6.3.2 Need for Stochastic Computing

Table 6.2 reports the counts of kernel tensors according to their sizes S (S<=44
and S>44) for four modern CNN models. From Table 6.2, more than 98% of the
kernel tensors across all four CNNs have S>44, and thus, they require VDPEs with
size N>44 to process their corresponding VDP operations. But, from Table 6.1, the
maximum achievable N for analog VDPCs at 4-bit precision (B=4-bit) is limited
to 44; therefore, processing the VDP operations corresponding to more than 98%
of kernel tensors that have S>44 would lead to high psum reduction latency (see
Section 6.3.1). However, reducing this psum reduction latency in analog VDPCs is
challenging, as they have a strong trade-off between N and B, and this is because
the required number of analog optical power levels (i.e., 2B) to support a specific
B consumes a large part of the available dynamic range of optical power in analog
VDPCs. To this end, the remaining dynamic range of optical power within the total
allowable optical power budget restricts the supported N in analog VDPCs. This
limitation can be addressed by performing VDP operations in the digital domain [145].
There is no need to support any analog optical power levels in the digital domain;
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therefore, most of the available dynamic range of optical power in a digital VDPC
can be used to support a higher N. But, the MRR-based binary digital VDPCs (e.g.,
[145, 85]) suffer from very high hardware complexity, and their multiply-accumulate
and bit-shifting circuits consume huge area. These drawbacks motivate the need to
examine new options for realizing optical digital VDPCs.

One such option is stochastic computing. In stochastic computing, multiplications
can be replaced with simple bitwise AND operations [15]. This can be leveraged to
perform point-wise multiplications between DKV s and DIV s (Section 6.2.3) with
less hardware complexity than binary digital VDPCs. In addition, since stochas-
tic computing is also implemented in the digital domain (non-binary), a stochastic
computing based optical VDPC can support a large N due to the large available
dynamic range of optical power, just as discussed above for a binary digital VDPC.
Moreover, a stochastic computing based optical VDPC can attain different precision
levels by merely changing the number of bits in the stochastic bit-streams, without
requiring different analog optical power levels. Therefore, to utilize these advantages
of stochastic computing, prior works [209] and [49] proposed stochastic computing
based photonic acceleration. [209] reports acceleration of Markov Random Field
Inference and [49] employs photonic crystals and MZIs to build an edge detection
filter. However, none of the prior works have employed stochastic computing based
photonic acceleration for neural network inference. To fill this gap, we invent an
MRR-based optical stochastic multiplier (OSM) and employ multiple OSMs to forge
a novel Stochastic Computing Optical Neural Network Accelerator (SCONNA). The
following section discusses our SCONNA architecture.

6.4 Our Proposed SCONNA Architecture

6.4.1 Overview of SCONNA VDPC

Fig. 6.4(a) illustrates the VDPC organization of our SCONNA architecture. Like the
VDPCs of analog optical accelerators, a SCONNA VDPC also implements multiple
VDP operations in parallel. For that, an array of total N single-wavelength laser
diodes (LDs) are used, with each LD sourcing optical power of P in

λi
amount at a

distinct wavelength λi. The total power from all N LDs (λ1 to λN) multiplexed
into a single photonic waveguide through wavelength division multiplexing (WDM).
These multiplexed wavelengths split into M input waveguide arms (IWAs). Every
IWA receives N -wavelength optical power and guides it to a VDPE. There are a total
of M IWAs and M VDPEs in the SCONNA VDPC (Fig. 6.4(a)).

Each VDPE consists of three components: (i) a cascade of N Optical Stochastic
Multipliers (OSMs); (ii) a bank of filter MRRs; (iii) a Photo-Charge Accumulator
(PCA) pair. Each OSM performs stochastic multiplication between an input bit-
stream I (corresponding to a point in an N -point DIV) and weight bit-stream W
(corresponding to a point in an N -point DKV). Each OSM receives its bit-streams I
and W from its corresponding peripherals at a supported bitrate (BR). Bit-stream
W provides a weight value along with a sign bit. Bit-stream I provides the RELU-
activated output value from the previous CNN layer, without a sign bit as RELU has a
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Figure 6.4: Schematics of (a) Our SCONNA VDPC (b) Photo-Charge Accumulator
(PCA) Circuit.

non-negative output. The detailed design of OSM s and their peripherals is explained
in Section 6.4.2. Each OSM performs a bit-wise logical AND operation between
the I and W bit-streams to produce a resultant optical bit-stream that represents
the stochastic multiplication between the I and W bit-streams. The N optical bit-
streams from the cascade of N OSMs, with each bit-stream carrying a stochastic
multiplication result, reach the bank of filter MRRs. In this bank, each filter MRR
operates on a distinct optical bit-stream λi. Each filter MRR receives the sign bit from
the peripheral W of its corresponding OSM (Fig. 6.4(a)). The sign bit operates the
filter to steer the incoming optical bit-stream λi to the output waveguide arm OWA
(if the sign bit is ’0’) or OWA’ (if the sign bit is ’1’). Thus, the OWA and OWA’ of
a VDPE guide the optical bit-streams, carrying the stochastic multiplication results,
to PCAs. A PCA is a circuit that collects all the optical bit-streams (i.e., stochastic
multiplication results) from its corresponding OWA (or OWA’) and generates the
accumulation result in the binary format (details about PCA in Section 6.4.3). In
a VDPE, the OWA-coupled PCA combines with the corresponding OWA’-coupled
PCA to generate a signed accumulation result.
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6.4.2 Optical Stochastic Multiplier

Our Optical Stochastic Multiplier (OSM) consists of peripherals and an Optical
’AND’ Gate (OAG) (Fig. 6.5). The peripherals convert a binary input value Ib
and binary weight value Wb into unipolar stochastic bit-streams I and W, and OAG
performs multiplication-equivalent bitwise AND operation between the stochastic bit-
streams I and W.

From Fig. 6.5, the peripherals of our OSM use a lookup table and serializers to
generate a combination of unipolar stochastic bit-streams I and W. From [196], two
unipolar stochastic bit-streams, for their eventual error-free multiplication using an
AND gate, should be generated in combination with each other, so that they are
uncorrelated, i.e., the marginal probability of one bit-stream (i.e., I or W ) is equal
to its conditional probability given the other bit-stream (i.e., I given W or W given
I ). For our OSM, we propose to generate all possible combinations of uncorrelated
bit-streams I and W a priori (offline) using the unipolar circuit from [196], and then
store these bit-streams in the bit-vector (bit-parallel) format in the lookup table (Fig.
6.5). As a result, each entry in the lookup table stores a combination of uncorrelated
bit-vectors Iv and Wv. To index into this lookup table, our OSM creates a unique
identifier for each combination of binary values Ib and Wb (that are accessed from a
buffer (a scratchpad memory); Fig. 6.5) by performing an XOR-based hash function
Ib⊕Wb. Thus, our OSM uses a Ib⊕Wb value to fetch the desired combination of Iv and
Wv from the lookup table. Then, it pushes these Iv and Wv through dedicated high-
speed serializers, to generate bit-streams I and W. Lookup table size: If precision

B=8-bit for binary Ib and Wb, there are 2B entries in the lookup table, with each
entry storing two 2B-bits long bit-vectors.

The stochastic bit-streams I and W, generated by the peripherals of our OSM, are
then fed to the OAG via high-speed drivers for their stochastic multiplication (Fig.
6.5). The design of our OAG is illustrated in Fig. 6.6(a). Our OAG is an add-drop
microring resonator (MRR), which has two operand terminals (realized as embedded
PN-junctions) that can take two stochastic bit-streams I and W (Fig. 6.6(a)) as
inputs at a predefined bitrate (BR). Fig. 6.6(b) shows the passbands of the MRR for
different operand inputs and temperature conditions. The MRR’s temperature can
be increased using the integrated microheater (Fig. 6.6(a)), to consequently tune its
operand-independent resonance from its fabrication-defined initial position γ to its
programmed position η, relative to the input optical wavelength position λin (Fig.
6.6(b)). For each bit combination at the operand terminals ((I,W ) = (0,1), (1,0),
or (1,1)), the MRR’s resonance passband electro-refractively moves to an operand-
driven position (red and blue passbands in Fig. 6.6(b)). Based on the MRR resonance
passband’s programmed position η relative to λin, the drop-port transmission (T(λin))
of the MRR provides bit-wise logical AND operation between the inputs I and W.

To validate our OAG, we performed transient analysis with two pseudo-random
numbers as shown in Fig. 6.6(c). For that, we modelled and simulated our OAG
using the foundry-validated tools from the Ansys/Lumerical’s DEVICE, CHARGE,
and INTERCONNECT suites [6]. Fig. 6.6(c) shows two input bit-streams (I, W )
applied to the two PN junctions of our OAG at BR=10 Gbps. By looking at the
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Figure 6.5: Schematic of our Optical Stochastic Multiplier (OSM).

output optical bit-stream T(λin) in Fig. 6.6 (c), we can say T(λin) = I AND W,
which validates the functionality of our OAG as a logical AND gate. Thus, since the
input bit-streams I and W are in the unipolar stochastic format, the output optical
bit-stream at the drop port of the OAG provides the unipolar stochastic multiplication
between I and W.

6.4.3 Photo Charge Accumulator (PCA)

From Section 6.4.1, the stochastic multiplication bit-streams generated by OSMs are
guided to a PCA, where they are accumulated to generate a binary output value
equivalent to the VDP result. Our PCA is inspired from the time integrating re-
ceiver (TIR) design from [150] and the photodetector-based optical-pulse accumu-
lator design from [29]. A PCA circuit, shown in Fig 6.4(c), has two stages: (i) a
stochastic-to-analog conversion stage; (ii) an analog-to-binary conversion stage. The
stochastic-to-analog stage employs a photodetector and two TIR circuits (one TIR
circuit remains redundant, enabled by the demux and mux; Fig 6.4(b)). The pho-
todetector generates a current pulse for each optical logic ‘1’ incident upon it. This
current pulse accumulates a certain amount of charge on the capacitor of the active
TIR circuit (e.g., the circuit with C1 capacitor); as a result, the capacitor accrues an
analog voltage level. Hence, when one or more output optical bit-streams are incident
upon the photodetector, the total accumulated charge (and thus, the accrued analog
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Figure 6.6: (a) Schematic of our Optical AND Gate (OAG), (b) operation of OAG,
(c) results of OAG’s transient analysis.

voltage level) on the active capacitor (e.g., C1) is proportional to the total number
of ‘1’s in the incident bit-streams. The number of 1’s that can be accumulated in
such manner might be limited, as the charge across the capacitor of TIR circuit (Fig.
6.4(b)) might saturate (this is further analysed in section 6.5.3). Once the TIR out-
put saturates, a discharge of the active capacitor (e.g., C1) is needed to prepare the
circuit for the next accumulation phase. While capacitor C1 is discharging, capacitor
C2 of the redundant TIR circuit mitigates the discharge latency by allowing a contin-
uation of a concurrent accumulation phase. The output analog voltage computed by
the stochastic-to-analog conversion stage represents the unipolar unscaled addition
[196] of the stochastic bit-streams. To convert this analog voltage into a binary value,
the analog-to-binary stage of the PCA circuit employs an analog-to-digital converter
(ADC). This binary value is the VDP result.

6.5 Scalability Analysis of SCONNA Architecture

To understand the scalability of our SCONNA architecture, in this section, we analyze
the achievable operating speed of the OSMs, achievable size N of the SCONNA
VDPC, and the accumulation capacity of the PCA circuits.
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6.5.1 Operating Speed and Latency Overhead of OSM

The peripherals of an OSM can incur some latency for accessing the scratchpad buffer
and eDRAM-based lookup table. We consider 2ns latency each for the scratchpad
buffer [21] and eDRAM-based lookup table [108]. Beyond this latency, the speed of
an OSM depends on the achievable operating speed (bit-rate (BR)) of the constituent
OAG. Analysis of OAG’s BR: For the output optical bit-stream T(λin) in Fig. 6.6(c),
the optical modulation amplitude (OMA) is the output power difference between the
highest logic ’0’ power level and the lowest logic ’1’ power level. OMA should be at
least equal to or greater than the sensitivity of the photodetector in the PCA circuit,
to ensure that the photodetector in the PCA circuit can produce a distinguishably
higher-amplitude current pulse for an optical logic ’1’ bit compared to an optical logic
’0’ bit. Keeping the OMA to be greater than or equal to the given photodetector
sensitivity (PPD−opt=-28dBm; Section 6.5.2) depends on the OAG’s BR and FWHM
(full passband width at half maximum). Therefore, to analyze this dependency,
we simulated BR and FWHM duplets for which OMA = -28 dBm, as shown in
Fig. 6.7(a). As evident, supported BR increases as FWHM increases. However, at
(FWHM≈0.8nm), BR saturates at 40 Gbps. Therefore, we aim to operate our OAG
at BR<=40Gbps for FWHM<=0.8nm.

6.5.2 Achievable Size of SCONNA VDPC

We consider optimistic free-spectral range (FSR) of 50 nm [9] for the constituent
MRR-based OAGs of our SCONNA VDPC. In addition, we consider the inter-
wavelength gap of 0.25 nm. This allows the N for our SCONNA VDPC to be 200
(=FSR/0.25nm), theoretically. However, even if we consider FSR=50nm to be prac-
tically achievable for our OAGs, achieving N =200 for our SCONNA VDPC might
not be possible in practice. This is because when we aim to operate our OAGs at
a high BR of <= 40 Gbps, for FWHM <= 0.8 nm, the total power penalty for our
SCONNA VDPC might increase significantly owing to the increased impacts of op-
tical crosstalk effects at OSMs, signal truncation at MRR filters, and BR-dependent
increase in the photodetector sensitivity [17, 18, 19]. This increase in power penalty
can reduce N to be less than 200. Therefore, to determine the achievable N for our
SCONNA VDPC at B=8-bit precision, we adopt the scalability analysis equations
(Eq. 6.2, Eq. 6.3, and Eq. 6.4) from [152, 9]. Table III reports the definitions of
the parameters and their values used in these equations. Since our SCONNA VDPC
processes stochastic bit-streams, which are digital in format, it requires the bit resolu-
tion of BRes = 1-bit in the equations. Moreover, we conservatively choose to operate
OSMs/OAGs at BR=30Gbps. We consider M=N. We first solve Eq. 6.2 and Eq. 6.3
for datarate (DR)=BR∗2B, to find PPD−opt to be -28 dBm. Then, we solve Eq. 6.4
for N, to find N =M =176, which is a very large N compared to analog VDPCs that
have N<=44. Such large N significantly improves the overall throughput and energy
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Figure 6.7: (a) Bitrate versus FWHM for our OSM/OAG, (b) Our PCA’s analog
output voltage versus α
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efficiency (Section 6.6).

BRes =
1

6.02

[
20log10(

R× PPD−opt
β
√

DR√
2

− 1.76

]
(6.2)

β =

√
2q(RPPD−opt + Id) +

4kT

RL

+R2P 2
PD−optRIN (6.3)

PLaser =
10

ηWG(dB)[N(dOSM )]

10 M

ηSMFηECILi/p−OSM
× PPD−opt
ηWPEILMRR

× 1

(OBLOSM)N−1(ELsplitter)log2M

× 1

(OBLMRR)N−1(ILpenalty)

(6.4)

113



Table 6.3: List of abbreviations and their full forms used in this Chapter. Definition
and values of various parameters (obtained from [9]) used in Eq. 4.3, Eq. 6.3, and
Eq. 6.4 for the scalability analysis of our SCONNA VDPCs.

Abbreviations Full form Parameter Definition Value
VDPC Vector Dot Processing Core PLaser Laser Power Intensity 10 dBm
PCA Photo Charge Accumulator RPD PD Responsivity 1.2 A/W
OAG Optical AND Gate RL Load Resistance 50 Ω
SE Summation Element Id Dark Current 35 nA
SC Stochastic Computing T Absolute Temperature 300 K

DKV Decomposed Kernel Vector BR Bitrate 30 Gbps
DIV Decomposed Input Vector RIN Relative Intensity Noise -140 dB/Hz
VDP Vector Dot Product ηWPE Wall Plug Efficiency 0.1

S Size of DKV ILSMF (dB) Single Mode Fiber Insertion Loss 0
psum Partial Sum ILEC(dB) Fiber to Chip Coupling Insertion Loss 1.6
OSM Optical Stochastic Multiplier ILWG(dB/mm) Silicon Waveguide Insertion Loss 0.3
DR Data rate ELSplitter(dB) Splitter Insertion Loss 0.01

VDPE Vector Dot Product Element ILOSM(dB) Optical Stochastic Multiplier (OSM) Insertion Loss 4
N Size of VDPE OBLOSM(dB) Out of Band Loss Optical Stochastic Multiplier 0.01
M Number of VDPEs per VDPC Unit ILMRR(dB) Microring Resonator(MRR) Insertion Loss 0.01

OMA Optical Modulation Amplitude ILpenalty(dB) Network Penalty 7.3
B Binary Bit Precision dOSM Gap between two adjacent OSMs 20 µm
BRes Bit Resolution PPD−opt Output Photodetector Sensitivity -

6.5.3 Accumulation Capacity and Error Susceptibility of PCA

From Section 6.5.2, our SCONNA VDPC has N =176. For precision B=8, each
optical bit-stream in a SCONNA VDPC has 2B=256 bits. Therefore, each PCA in
a SCONNA VDPC needs to be able to accumulate a total N × 2B=176×256 optical
’1’ bits, at the least. We modeled the photodetector of our PCA circuit using the
INTERCONNECT tool from Ansys/Lumerical [6] for RPD=1.2 A/W and PPD−opt=-
28 dBm, and extracted the current pulse values corresponding optical ’1’s and ’0’s
that are consumed by the photodetector. We then imported these values in our
MultiSim [2] based model of the TIR circuit of the PCA, to find out that our PCA
should have R=50Ω, C=250pF, and voltage amplifier gain=80. For these parameters,
we simulated to the analog output voltage at the PCA using MultiSim [2] for different
valus of α=(actual # of ’1’s in incident bit-streams/176×256)×100%. The results are
shown in Fig. 6.7(b). As evident, the analog output voltage increases linearly with
α without saturating at α=100%. This outcome shows that our PCA can efficiently
support the accumulation of N =176 bit-streams. Note that the analog output voltage
from the amplifier of the PCA circuit does not incur any errors in computation. But,
the ADC introduces errors in the generated binary result (we evaluate mean absolute
percentage error to be 1.3% for the ADC), and we later evaluate the impact of these
errors on the CNN inference accuracy (Section 6.6).

6.6 System-Level Implementation and Evaluation

6.6.1 System-Level Implementation of SCONNA

Fig. 6.8 illustrates the system-level implementation of our SCONNA accelerator.
It consists of global memory for storing CNN parameters, and a preprocessing and
mapping unit for decomposing the tensors into DIVs/DKVs and mapping them onto
VDPEs. It has a mesh of tiles connected to routers, and this mesh network facilitates
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Table 6.4: Peripherals Parameters for Accelerators [6].

Power (mW) Area (mm2) Latency
Reduction Network 0.05 3.00E-05 3.125ns

Activation Unit 0.52 6.00E-04 0.78ns
IO Interface 140.18 2.44E-02 0.78ns
Pooling Unit 0.4 2.40E-04 3.125ns

eDRAM 41.1 1.66E-01 1.56ns
Bus 7 9.00E-03 5 cycles

Router 42 0.151 2 cycles
AMM/MAM

DAC [82] 30 0.034 0.78ns
ADC [60] 29 0.103 0.78ns

SCONNA
ADC [122] 2.55 0.002 0.78ns

Serializer per OSM [154] 5 5.9 0.03ns
LUT per OSM [203] 0.06 0.09 2ns

PCA [2] 0.02 0.28 -

Figure 6.8: System-level overview of our SCONNA CNN accelerator.

parameter communication among tiles. Each tile consists of 4 SCONNA VDPCs
interconnected (via H-tree network) with output buffer, activation, and pooling units.
In addition, each tile also contains a psum reduction network.

6.6.2 Simulation Setup

For evaluation, we model our SCONNA accelerator from Fig. 6.8 using our developed
custom, transaction-level, event-driven python-based simulator (https://github.
com/uky-UCAT/SC_ONN_SIM.git). Using the simulator, we simulated the inference
four CNN models (with batch size of 1): GoogleNet[162], ResNet50[65], MobileNet V2
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[138], and ShuffleNet V2 [208]. We evaluate the metrics such as Frames per second
(FPS), FPS/W (energy efficiency) and FPS/W/mm2 (area efficiency). We also eval-
uate the impact of PCA error on Top-1 and Top-5 inference accuracy of the CNN
models for ImageNet validation dataset [45].

We compared our accelerator with the analog optical accelerators AMM (DEAPCNN
[22]) and MAM (HOLYLIGHT [109]) at 8-bits integer quantization for CNN inference.
We omitted comparison with CMOS-based digital CNN accelerators as prior analog
optical photonic CNN accelerators have outperformed them [22, 157]. We simulate
analog optical accelerators for 5 GS/s [94] and from Section 6.3.1, at B=4-bit pre-
cision, we set N=16 for AMM (DEAPCNN), and N=22 for MAM (HOLYLIGHT).
Prior works, AMM (DEAPCNN) and MAM (HOLYLIGHT) employ weight station-
ary dataflow, therefore our evaluation is based on weight stationary dataflow. For
fair comparison, we perform area proportionate analysis. In the area proportionate
analysis, we altered the VDPE count of each analog optical accelerator, across all
of the accelerator’s VDPCs, to match with the area of the SCONNA accelerator
having 1024 VDPEs. The scaled VDPE count of MAM (HOLYLIGHT) and AMM
(DEAPCNN) are 3971 and 3172, respectively.

Table 6.4 gives the parameters used for evaluating the overhead of the peripherals
in our evaluated accelerators. We consider each laser diode to emit input optical
power of 10 mW (10 dBm) (Table 6.3)[22], multiplexer and splitter parameters are
taken from [109].

6.6.3 Evaluation Results

Fig. 6.9(a) compares the FPS values (log scale) achieved by each accelerator across
various CNNs. SCONNA significantly outperforms the analog optical accelerators
MAM (HOLYLIGHT) and AMM (DEAPCNN) by 66.5× and 146.4×, respectively,
on gmean across the CNNs. These benefits are mainly associated with the superior
N and higher BR of SCONNA compared to the analog optical accelerators. Because
of the high N, SCONNA requires less number of psums for DKVs with S>44 (refer
Table 6.2), while generating the final VDP result. The reduced psums drastically
reduces the psum reduction latency. The higher operating BR=30Gbps compensates
for the lengthy stochastic bit-streams of 2B=256 bits used by SCONNA. The im-
provements for SCONNA are more evident for large CNNs such as GoogleNet[162]
and ResNet50[65] compared to smaller CNNs such as MobileNet V2[138] and Shuf-
fleNet V2[208]. This is due to the fact that MobileNet V2[138] and ShuffleNet V2[208]
employ depthwise separable convolutions which use DKVs with S<44 more frequently
than large CNNs. Overall, SCONNA gives exceedingly better FPS compared to the
analog optical accelerators.

Fig. 6.9(b) gives the energy efficiency (FPS/W) values for each accelerator across
various CNNs. It is evident that SCONNA attains substantially better energy ef-
ficiency than the analog optical accelerators. Our SCONNA gains 90× and 183×
better FPS/W against analog MAM (HOLYLIGHT) and AMM (DEAPCNN), re-
spectively, on gmean across the CNNs. These energy efficiency benefits are due to
the improved throughput and flexible precision support of SCONNA VDPCs. The
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Figure 6.9: (a) FPS (Log Scale) (b) FPS/W (c) FPS/W/mm2 for SCONNA versus
MAM and AMM accelerators for B=8-bits.

analog MAM (HOLYLIGHT) and AMM (DEAPCNN), due to their limited 4-bit
precision, employ two VDPEs to attain an 8-bit precision using bit-slicing. This
decreases the throughput and also increases the energy consumption compared to
SCONNA VDPCs. In addition, during area proportionate analysis, MAM (HOLY-
LIGHT) and AMM (DEAPCNN) get scaled to large VDPE counts (3971 and 3172),
leading to overall higher static power consumption compared to SCONNA. There-
fore, SCONNA achieves better energy efficiency compared to all the other tested
accelerators.

Fig. 6.9(c) shows the area efficiency values (FPS/W/mm2) for each accelerator
across various CNNs. The area efficiency results look similar to energy efficiency as
we match the area of all the accelerators to SCONNA (for the area proportionate
analysis). SCONNA gains 91× and 184× better FPS/W/mm2 against analog MAM
(HOLYLIGHT) and AMM (DEAPCNN), respectively, on gmean across the CNNs.
Overall, SCONNA significantly improves the throughput, energy efficiency and area
efficiency compared to the tested analog optical accelerators.
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Table 6.5: Top-1 and Top-5 inference accuracy comparison of SCONNA versus MAM
for 8-bit quantized CNNs {GoogleNet (GNet), ResNet50 (RNet50), MobileNet V2
(MNet V2), ShuffleNet V2 (SNet V2)} and ImageNet dataset [45].

SCONNA
ACCURACY
DROP (%)

GNet
[162]

RNet
[65]

MNet V2
[138]

SNet V2
[208]

Gmean

TOP-1 0.1 0.4 1.5 0.5 0.4
TOP-5 0.1 0.3 0.7 0.4 0.3

6.6.4 Inference Accuracy Results

As discussed in Section 6.4.3, the ADC in the PCA circuits of our SCONNA VDPCs
incurs the mean absolute percentage error of 1.3% on the computed binary results. To
evaluate the impact of these errors on the CNN inference accuracy, we simulated the
inference of four CNNs on SCONNA and analog optical accelerator MAM (HOLY-
LIGHT). We integrated our custom simulator with ML-framework PyTorch [126] and
performed the inference using ImageNet validation dataset [171] (50k images and 1k
classes). Table 6.5 reports the Top-1 and Top-5 inference accuracies obtained for our
SCONNA and MAM for four 8-bit integer-quantized CNNs. As evident, SCONNA
yields Top-1 and Top-5 accuracy drop of only 0.4% and 0.3%, respectively, on gmean
across the tested CNNs. The large CNN models ResNet50[65] and GoogelNet[162]
have more tolerance to the errors, and hence, they show minimal to zero drop in
accuracy for SCONNA. Furthermore, SCONNA’s accuracy drop can be improved by
performing stochastic computing aware training of the CNN models on SCONNA [24].
Our SCONNA accelerator’s significant gains in the FPS, FPS/W, and FPS/W/mm2,
overshadows the minor drop in the CNN inference accuracy.

6.7 Related Work on Optical CNN Accelerators

To accelerate CNN inferences with low latency and low energy consumption, prior
works proposed various accelerators based on photonic integrated circuits (PICs)
(e.g., [109, 157, 201, 16, 206]). These accelerators employ PIC-based Vector Dot
Product Cores (VDPCs) to perform multiple parallel VDP operations. Some acceler-
ators implement digital VDPCs (e.g., [145, 94]), whereas some others employ analog
VDPCs (e.g., [109, 157, 22, 166]). Different VDPC implementations employ MRRs
(e.g., [109, 22, 157, 111, 51]) or MZIs (e.g., [44, 16, 206]) or both (e.g., [145], [94]).
The analog VDPCs can be further classified as incoherent (e.g., [109, 157, 22]) or
coherent (e.g., [63, 211, 199, 210, 107, 213]). To set and update the values of the indi-
vidual input and kernel tensors used for vector dot product operations, the incoherent
VDPCs utilize the analog optical signal power, whereas the coherent VDPCs utilize
the electrical field amplitude and phase. The coherent VDPCs achieve low inference
latency, but they suffer from control complexity, high area overhead, low scalabil-
ity, low flexibility, high encoding noise, and phase error accumulation issues [119].
In contrast, the MRRs-enabled incoherent VDPCs based accelerators achieve better
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scalability and lower footprint, because they use PICs that are based on compact
MRRs [22], unlike the coherent VDPCs that use PICs based on bulky MZIs. Various
state-of-the-art PIC-based optical CNN accelerators are well discussed in a survey
Chapter [43]. Because of the inherent advantages of MRR-enabled incoherent VD-
PCs, there is impetus to design more energy-efficient and scalable CNN accelerators
employing MRR-enabled incohorent VDPCs.

6.8 Summary

To mitigate the very strong scalability versus bit-precision trade-off innately present in
analog optical CNN accelerators, we demonstrated a merger of stochastic computing
and MRR-based CNN accelerators for the first time in this Chapter. We invented
an MRR-based optical stochastic multiplier (OSM) and employed multiple OSMs
to forge a novel stochastic computing based CNN accelerator called SCONNA. Our
evaluation results for four CNN models show that SCONNA provides improvements
of up to 66.5×, 90×, and 91× in throughput, energy efficiency, and area efficiency,
respectively, compared to two analog optical accelerators AMM and MAM, with Top-
1 accuracy drop of only up to 0.4% for large CNNs and up to 1.5% for small CNNs.
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Chapter 7 A Comparative Analysis of Microrings Based Incoherent
Photonic GEMM Accelerators

7.1 Introduction

Deep Neural Networks (DNNs) achieve high inference accuracy, which has revolu-
tionized their use in various artificial intelligence tasks, such as image recognition,
language translation, and autonomous driving [96, 47]. However, DNNs are com-
putationally intensive because they are typically composed of inherently abundant
linear functions such as general matrix-matrix multiplication (GEMM). The need to
tackle the rapidly increasing computing demands of the abundant GEMM functions
of DNNs has pushed for highly customized hardware GEMM accelerators [20, 161].
Among GEMM accelerators in the literature, silicon-photonic GEMM accelerators
have shown great promise to provide unparalleled parallelism, ultra-low latency, and
high energy efficiency [109, 58, 22, 34, 157]. A silicon-photonic GEMM accelerator
typically consists of multiple Dot Product Units (DPUs) that perform a total of M dot
product operations in parallel of N -size each. Several DPU-based optical GEMM ac-
celerators have been proposed in prior works. Among them, the Microring Resonator
(MRR)-enabled analog DPU-based accelerators (e.g., [109, 22, 58, 145, 157, 166])
have shown disruptive performance and energy efficiencies, due to the MRRs’ com-
pact footprint, low dynamic power consumption, and compatibility with cascaded
dense-wavelength-division multiplexing (DWDM).

A typical DPU employs five blocks of optical components to manipulate optical
signals in five different ways. (1) A splitting block for splitting (copying) N optical
signals in M ways to achieve a fan-out of M per optical signal; (2) An aggregation
block for aggregation (multiplexing) of N optical signals per waveguide to achieve a
fan-in of N per waveguide; (3) A modulation block for modulation of optical signals
to imprint input values onto them; (4) A weighting block for weighting of modulated
optical signals to achieve analog input-weight multiplication; (5) A summation block
to perform summation of optical signals. Prior accelerators arrange these optical
signal manipulation blocks within a DPU in an arbitrary order, resulting in different
DPU organizations. Different DPU organizations incur different severity levels of
various optical crosstalk effects and signal losses, causing different amounts of optical
power penalty across different DPU organizations. This variation in optical power
penalty causes different DPU organizations to achieve different values of N (fan-in
degree/DPE size) and M (fan-out degree/count of parallel DPEs). This is because
the achievable peak values of N and M highly depend on the available optical power
budget in the DPU, which in turn is determined by the incurred power penalty in the
DPU [152]. It can be intuitively hypothesized that different values of N and M would
render different DPU organizations with different levels of processing parallelism at
the circuit level, and different magnitudes of throughput and energy-area efficiency
at the system level. However, no prior work has tested this hypothesis. We address
this shortcoming in this Chapter.
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To address these shortcomings, we categorize previous analog optical MRR-based
DPUs into three groups based on the organization order of optical signal manipulation
blocks. We then conduct a comprehensive circuit-level analysis to assess the impact
of the organization on overall losses within a DPU. Leveraging the insights from our
analysis, we evaluate the scalability limits of each organization at the circuit level and
assess system-level performance, including throughput and energy-area efficiency.

Our key contributions in this Chapter are summarized below.

• We classify the DPU organizations from prior work into three categories, namely
ASMW, MASW, and SMWA;

• We analyze and discuss the impact of different DPU organizations on various
optical crosstalk effects and signal losses;

• We perform a comparative analysis of the impact of different DPU organizations
on the scalability of achievable N and M values at different bit precision values;

• We implement and evaluate ASWM, MASW, and SMWA organizations at
the system- level with our in-house simulator, and report the performance
in terms of throughput (FPS), energy-efficiency (FPS/W), and area-efficiency
(FPS/W/mm2), for the inferences of four CNNs.

7.2 Preliminaries

7.2.1 Processing of CNNs on Hardware Accelerators

In CNNs, the major computational requirement arises from convolutional layers.
These layers involve convolution operations that can be converted to General Matrix-
Matrix Multiplication (GEMM) operations using the Toeplitz matrix or the im2col
transformation [161, 3]. As shown in Fig. 7.1, the input feature map (Fmap) belong-
ing to a convolution layer is unfolded into the matrix I . The weight filters of the con-
volution layer are flattened and stacked to form the weight matrix (W ). The GEMM
operation between I and W gives the resultant output matrix (O). On conven-
tional CPUs/GPUs, GEMM operations are mapped and executed using basic linear
algebra subprograms (BLAS) or Cuda BLAS (cuBLAS) [27, 50]. However, conven-
tional CPUs/GPUs cannot efficiently meet the exponentially growing computational
demand of modern CNNs. To meet this demand, both industry and academia have
proposed various dedicated GEMM accelerators [81, 157, 22, 94], tailored to process
CNNs with better performance and energy efficiency.

7.2.2 Related Work on Optical GEMM Accelerators

To accelerate CNN inferences with low latency and low energy consumption, prior
work has demonstrated various GEMM accelerators based on photonic integrated
circuits (PICs) (e.g., [109, 157, 22, 44, 186]). Typically, PIC-based GEMM acceler-
ators consist of multiple dot product units (DPUs), and each DPU can perform a
GEMM operation on multiple constituent dop product elements (DPEs) as parallel
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Figure 7.1: Convolution operation at a convolution layer with two weight filters and
one input feature map (Fmap) having two channels is transformed into a GEMM
operation between input matrix I and weight matrix W.

dot product operations among the rows of the matrix I and the columns of the matrix
W. Some accelerators implement digital DPUs (e.g., [145, 94, 186]), whereas some
others employ analog DPUs (e.g., [109, 157, 22, 152]). Different DPU implementa-
tions employ MRRs (e.g., [109, 22, 157, 111, 186]) or MZIs (e.g., [44, 206]) or both
(e.g., [145], [94]). Among these, the accelerators based on MRRs-enabled incoherent
DPUs achieve better scalability and lower footprint, because they use PICs that are
based on compact MRRs [22], unlike the coherent DPUs that use PICs based on
bulky MZIs. Various state-of-the-art PIC-based optical GEMM accelerators are well
discussed in survey papers [43, 159, 127].

7.3 Organizations of MRR-based GEMM Accelerators

S. S. Vatsavai et al. in [152] categorized the organizations of optical MRR-based ana-
log DPUs from prior works into two groups: Aggregate-Modulate-Modulate (AMM)
and Modulate-Aggregate-Modulate (MAM) [152]. Here, the term ”aggregate” refers
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Figure 7.2: (a) Common optical signal manipulation blocks found in optical DPUs.
Illustration of common incoherent photonic DPU organizations; (b) AMSW DPU,
(c) MASW DPU, and (d) SMWA DPU.

to the aggregation of multiple wavelength channels into a single photonic waveguide
through wavelength division-multiplexing (WDM). The first ’Modulate’ refers to the
modulation of optical wavelength channels with input values, and the second ’Mod-
ulate’ refers to the modulation (weighting) of input-modulated optical wavelength
signals with weight values. This categorization classifies prior MRR-based DPUs into
AMM [22, 160, 157] and MAM [109, 201, 9] classes. However, this categorization
does not consider the spectrally hitless DPU organization proposed in [34]. In this
Chapter, we bridge this gap and also improve the comprehensibility of classification
categories based on the order of various optical channel manipulation blocks present
in MRR-based GEMM accelerators. The details of these manipulation blocks and
their different organizations are discussed next.

7.3.1 Description of Various Blocks that Maniplate Optical Channels in
MRR-based GEMM Accelerators

Every DPU in an optical GEMM accelerator employs a total of N laser diodes that
generate N optical wavelength channels (λ1−λN). These optical wavelength channels
are manipulated by five different blocks in the DPU, as shown in Fig. 7.2(a). (i) The
splitting block ( S ) splits the optical power of the N optical wavelength channels in M
copies, with each copy supporting one DPE. Thus, a total of M DPEs are supported.
(ii) Aggregation block ( A ) multiplexes N wavelength channels into a single waveg-
uide within a DPE to achieve fan-in of N to send N wavelength channels concurrently
toward a balanced photodetector (BPD). (iii) Modulation block M modulates N or
N×M wavelength channels to imprint a sequence of input values on each of the chan-
nels. These input-sequence-imprinted wavelength channels are referred to as optical
signals. Each optical signal will thus be a temporal train of optical symbols, with
each symbol representing a value from the input sequence. (iv) Weighting block ( W )
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applies weighting to the input-imprinted wavelength channels (i.e., optical signals).
After weighting, each symbol carried in an optical signal represents the product of
an input value and a weight value. Therefore, each such weighted optical signal is
referred to as an optical product signal, with each temporal symbol of the signal
representing a product value. (v) Summation block ( Σ ) employs incoherent super-
position at each BPD to perform symbol-wise summation of the N optical product
signals that are sent to the BPD. The BPD generates a resultant photocurrent signal,
each temporal symbol of which provides a dot product of size N (i.e., summation of
N product symbols/values). This photocurrent signal is fed to a transimpedance am-
plifier, followed by an analog-to-digital converter, to obtain the sequence of N -sized
dot-product results in the digital format [152]. The Σ block involves a total of M
BPDs corresponding to M DPEs, thereby generating M parallel dot product results
every symbol cycle. In a DPU, generally, the five blocks in the DPU are arranged in
a way so that the Σ block comes towards the end of the input-to-output propagation
path of optical channels/signals within the DPU, and the M block always comes

before the W block. However, different DPU organizations can differ in the way the

permutational order of the blocks M , W , S , and A appear in them. Based on this
order of these blocks, we classify different DPU organizations found in prior works on
MRR-based GEMM accelerators into three categories: ASMW, MASW, and SMWA.
Each of these organizations is explained below.

ASMW DPU Organization

Fig. 7.2(b) illustrates a DPU of ASMW organization. First, the A block appears,
wherein N wavelength channels (λ1 − λN) from LDs are multiplexed into a single
waveguide. Then, in the S block, the power of each wavelength channel is equally
split into M waveguides to generate a total of N×M parallel wavelength channels.
These wavelength channels then encounter the M and W blocks in that order. The

M block ( W block) employs one array of N input MRMs (N weight MRRs) per

waveguide. At the output of the W block, a total of N×M optical product signals
emerge (N signals per waveguide in M parallel waveguides), which are sent to the Σ
block containing M parallel BPDs.

MASW DPU Organization

Fig. 7.2(c) illustrates a DPU of MASW organization. Here, the N optical wavelength
channels generated by LDs are coupled into N parallel waveguides (one channel per
waveguide). Then, the M block appears wherein each of the N waveguides couples

with one input MRM. These N input MRMs in the M block generate N optical
signals, which are then aggregated into a single waveguide in the subsequently ap-
pearing A block. Then, in the S block, these N optical signals are split into M
waveguides to generate their M copies, with each copy feeding a DPE. These N×M
parallel optical signals then encounter the W block, which employs an array of N

weighting MRRs per waveguide. Consequently, at the output of the W block, a total
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Table 7.1: Classification of prior MRR-based analog accelerators based on their DPU
organization

DPU Organization MRR-based DPU Architectures
ASMW Crosslight[157], DEAPCNN [22], Robin [160]
MASW Holylight [109], Yang [201], Al-Qadasi[9]
SMWA Hitless [34]

of N×M optical product signals emerge, which are sent to the Σ block containing
M parallel BPDs.

SMWA DPU Organization

Fig. 7.2(d) illustrates a DPU of SMWA organization. In this organization, the S
block appears first which splits the optical power of each of the N wavelength channels
from LDs equally into M separate waveguides by using a total of N 1×M splitters.
Thus, a total of N×M wavelength channels and N×M waveguides emerge, with
each waveguide propagating only a single wavelength channel. Then, the M and

W blocks appear in that order, with both blocks containing a single MRM-MRR

pair coupled to each of the N×M waveguides. At the output of the W block, a
total of N×M optical product signals emerge (each signal in a dedicated waveguide),
which are sent to the A block. There, a total of M N×1 multiplexers are used to
aggregate the optical product signals in a total of M pairs of aggregation lanes (each
pair propagating N optical product signals). These M pairs of aggregation lanes feed
the Σ block containing M parallel BPDs.Table 7.1 reports the classification of prior
MRR-based GEMM accelerators based on their DPU organization.

7.3.2 Motivation

The performance achieved by the MRR-based DPUs is largely dependent on three
parameters (1) The maximum achievable value of N (fan-in degree/DPE size). Of-
ten, the achievable value of N for photonic DPUs is less than the dot product size
requirement of GEMM operations corresponding to CNN models [152]. In that case,
a DPU breaks the dot product into smaller DPU-compatible chunks and generates
intermediate results known as partial sums (psums). These psums are later accumu-
lated using electronic reduction networks [93], to generate the final result. The psum
reduction latency and energy consumption are non-trivial components of overall la-
tency and energy consumption [120]. Therefore, the value of N plays a crucial role
in governing the overall performance of DPUs. (2) The maximum achievable values
of M (fan-out degree/count of parallel DPEs). The value of M directly decides the
parallelism and consequently achieved throughput by a DPU. (3) The bit precision
(B) of input and weight values. If the supported value of B is less than the precision
requirement of GEMM operations, bit-slicing is applied to input and weight values
[156]. Due to bit-slicing, the overall count of dot product operations increases, de-
grading the throughput and energy efficiency [186]. Therefore, the fundamental driver
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for achieving high performance from optical DPUslies in maximizing the values of N,
M, and B.

Figure 7.3: Conceptual breakdown of optical power budget usage and dependency of
DPU size N on supported bit precision B for different values of B={2, 3}-bits across
datarates DR={1, 5} GS/s.

In analog DPUs, a strong trade-off exists among supported values of N, M, and B
[9, 152]. The achievable values of M, N, and B also strongly depend on the available
optical power budget in the DPUs [9, 152]. This is illustrated in Fig. 7.3, assuming
N =M, which is a common assumption in the literature [9, 152]. For the bit precision
B=2, 2B=4 analog optical power levels are required that consume a large part of the
available power budget, and the remaining power budget is used to support N and
power penalty (incurred due to crosstalk effects and signal losses) in the DPU. As
B increases to 3-bits, a larger part of the power budget is used to support B, and
the available power budget to support N and power penalty further decreases. As a
result, the supported value of N decreases too. Similar impact can be observed when
the operating datarate of DPUs increases (Fig. 7.3). Low N=M decreases fan-in
and fan-out degrees in the DPU, hampering the achievable throughput and energy
efficiency. No prior work has characterized this impact, which has motivated this
work.

7.4 Circuit-Level Comparative Analysis

In this section, we discuss the impact of DPU organization on power penalties due
to various crosstalk effects and optical signal losses.
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7.4.1 Impacts on Power Penalty Due to Crosstalk Effects

Inter-modulation crosstalk

From Fig. 7.4(a), inter-modulation crosstalk exists at the M block. Inter-modulation
crosstalk occurs when an MRM unexpectedly modulates a neighboring wavelength
channel instead of its assigned wavelength channel [123, 86]. Therefore, it is possible
only if there are multiple wavelength channels present in the waveguide at a narrow
channel spacing when the MRM is modulating its assigned wavelength channel (Fig.
7.4(b)). Hence, the necessary condition for inter-modulation crosstalk to occur is
that the M block should appear after the A block in a DPU organization because,
then only, the MRMs could have accessible neighboring wavelength channels to un-
expectedly modulate them. Therefore, from Table 7.2, inter-modulation crosstalk is
present only in the ASMW DPUs.

Cross-weight penalty

The MRR weight arrays in the W block can exhibit cross-weight penalty [165],
as shown in Fig. 7.4(a). Due to an insufficient channel gap between the adjacent
optical wavelength channels, a weight MRR could perform undesired weighting on
the neighboring optical wavelength channels leading to cross-weight penalty [165].
The additional power required to compensate for this crosstalk noise (to keep the
signal-to-noise ratio intact) provides quantification of the cross-weight penalty [165].
Similar to inter-modulation crosstalk, the necessary condition for cross-weight penalty
to occur is that the W block should appear after the A block in a DPU organization
because, then only, the weight MRRs could have accessible neighboring wavelength
channels to unexpectedly apply weighting to them. Therefore, from Table 7.2, cross-
weight penalty is present only in the ASMW and MASW DPUs.

MRR Filter Penalty

In general, the MRR filter penalty consists of two components [18]: (1) Optical losses
due to signal truncation, and (2) inter-channel crosstalk. However, the inter-channel
crosstalk component manifests only when an MRR filter is utilized in the demulti-
plexing configuration to demultiplex a signal from a waveguide containing multiple
signals. Since demultiplexing is not required in our considered DPU organizations,
the inter-channel crosstalk component remains absent from the MRR filter penalty
discussed/analyzed in this Chapter. On the other hand, the optical losses due to
signal truncation occur when a modulated optical signal is only partially transmitted
through the MRR filter used as a multiplexer[18]. From Fig. 7.4(a), this phenomenon
exists at the A block. Each N×1 multiplexer consists of multiple MRR filters, and
when the passband of a filter does not overlap perfectly with the passband of its
corresponding modulated optical signal, it leads to the truncation of the signal side-
lobes. Signal truncation is illustrated in Fig. 7.4(c) (on the left); when the filter has
a high-quality factor (Q), its passband only partially overlaps with the passband of
the modulated optical signal, resulting in signal truncation. Signal truncation occurs
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Figure 7.4: (a) Types of losses and power penalties at different optical signal ma-
nipulation blocks of optical DPUs. Illustration of (b) Inter-Modulation crosstalk at
MRM input arrays [123, 86], and (c) Filter crosstalk and signal truncation at filters
[18].

on modulated optical signals only; it does not occur on unmodulated optical wave-
length channels. This is because unmodulated wavelength channels do that have any
spectral sidelobes. Therefore, the necessary condition for filter penalty to occur is
that the A block should appear after the M block in a DPU organization. The A

block is organized after the M block in both MASW and SMWA DPUs, therefore
signal truncation is present in these organizations (Table 7.2).
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Table 7.2: Crosstalks effects present in various DPU organizations.

ASMW MASW SMWA
Inter-modulation Crosstalk X X X

Cross-Weight Penalty X X X
Signal Truncation at Filters X X X

7.4.2 Impacts Due to Optical Signal Losses

Through losses

The through losses are the optical power losses experienced by a wavelength channel
as it traverses through MRMs and MRRs that are out-of-resonance to the wavelength
channel in interest but operate on adjacent wavelength channels. From Fig. 7.4(a),

through losses are present in blocks M , W , and A . The total amount of through loss
experienced by a wavelength channel depends on the number of devices it traverses
before reaching BPD. For instance in Fig. 7.2(b), after the splitter, the wavelength
λ1(indicated with the color red) passes through (N-1) out-of-resonance MRMs and
(N-1) out-of-resonance MRRs before reaching the BPD. The reduction in optical
power of λ1 as it interacts with these devices is termed as its through loss. The total
through losses can be determined by summing the individual through losses caused
by individual MRRs and MRMs. The through losses vary across DPU organizations
as reported in Table 7.3. For example, from Fig. 7.2(b), Fig. 7.2(c), and Fig. 7.2(d)
the total number out-of-resonance MRMs and MRRs traversed by λ1 are 2(N-1),
N, and 2 in ASMW, MASW, and SMWA DPUs respectively. Therefore, λ1 incurs
higher through losses in ASMW DPUs than MASW and SMWA DPU organizations.
Similarly, other optical wavelength channels λ2 − λN also experience higher through
losses in ASMW DPUs.

Insertion losses

The insertion losses are the optical power losses encountered by a wavelength channel
while devices such as MRMs, MRRs, and filters operate on it. The total insertion
losses experienced by wavelength channels are approximately the same across DPU
organizations.

Waveguide Propagation Losses

Propagation losses are the sum of scattering losses (due to the sidewall roughness of
the waveguide) and absorption losses (due to the material and free-carrier absorption
mechanisms in the waveguide). From Fig.7.4(a), propagation losses are present in
all the blocks. Propagation losses increase proportionally with the length of the
waveguide. The SMWA DPUs, because of their spectrally hitless architecture, employ
a larger number of longer waveguides [34], resulting in increased propagation losses
compared to ASMW and MASW DPUs. Additionally, MASW DPUs experience lower
propagation losses than ASMW DPUs. This is because the MRR weight arrays in
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Table 7.3: Optical losses present in various DPU organizations.

ASMW MASW SMWA
Through Losses High Moderate Low

Propagation Losses Moderate Low High

Table 7.4: Definition and values of various parameters used in Eq. 7.1, Eq. 7.2, and
Eq. 7.3 (from [9]) for the scalability analysis.

Parameter Definition Value
PLaser Laser Power Intensity 10 dBm
Rs PD Responsivity 1.2 A/W
RL Load Resistance 50 Ω
Id Dark Current 35 nA
T Absolute Temperature 300 K

RIN Relative Intensity Noise -140 dB/Hz

PEC−IL
Fiber to Chip Coupling

Insertion Loss
1.44

PMRR−W−IL
Silicon Waveguide

Insertion Loss
0.3 dB/mm

Psplitter−IL Splitter Insertion Loss 0.01 dB

PMRM−IL
Optical Microring Modulator

Insertion Loss
4 dB

PMRR−IL
Optical Microring Resonator

Insertion Loss
0.01 dB

PMRM−OBL Out of Band Loss 0.01 dB

PPenalty

MASW Network Penalty 4.8 dB
ASMW Network Penalty 5.8 dB
SMWA Network Penalty 1.8 dB

MASW DPUs share a single MRM input array, which reduces the overall waveguide
length and corresponding propagation losses.

7.4.3 Scalability Analysis

To determine the achievable size N for our ASMW, MASW, and SMWA DPU organi-
zations, we adopt scalability analysis equations (Eq. 7.1, Eq. 7.2, and Eq. 7.3) from
[9] and [152]. Table 7.4 reports the definitions of the parameters and their values used
in these equations. The reported PPenalty includes the summation of inter-modulation
crosstalk, cross-weight penalty, filter penalty, and propagation losses. We consider op-
timistic values for these parameters, with inter-modulation crosstalk of ≤1dB, cross-
weight penalty of ≤3dB, and filter penalty of ≤0.5dB. To achieve such optimistic
inter-modulation crosstalk and cross-weight penalties the channel spacing should be
equal to 0.4×FWHM [165]. We considered Free Spectral Range (FSR=50nm) [9]
with FWHM=0.7nm, resulting in channel spacing of 0.25nm(=0.4×0.7). Then, the
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FSR limited N value is 200(=FSR/0.25). We consider M=N and first solve Eq. 7.1
and Eq. 7.2 for a set of DRs={1, 5, 10} GS/s, to find a corresponding set of PPD−opt.
Then, we solve Eq. 7.3 for the maximum value of N that achieves PO/p greater than
obtained PPD−opt values across the set of DRs. Fig. 7.5 reports the achievable N of
ASMW, MASW, and SMWA DPUs for different bit-precision levels (B) across var-
ious DRs. The achievable N value defines the feasible number of MRRs per DPE;
thus, this N also defines the maximum size of the dot product that can be generated
in our DPU. As evident from Fig.7.5, SMWA can support larger N value compared
to ASMW and MASW at all bit-precision levels across different DRs. For instance,
SMWA achieves larger N=83 for 4-bit precision at 1 GS/s, compared to ASMW and
MASW, which achieve N=36 and N=43, respectively. This is because of SMWA’s
DPU architecture, as reported in Table 7.2, SMWA significantly reduces crosstalk-
related power penalty reducing Ppenalty. This enables SMWA to support larger N
compared to ASMW and MASW at the same input laser power.

B =
1

6.02

[
20log10(

R× PPD−opt
β
√

DR√
2

− 1.76

]
(7.1)

(7.2)β =

√
2q(RPPD−opt + Id) +

4kT

RL

+R2P 2
PD−optRIN +

√
2qId +

4kT

RL

(7.3)
PO/p(dBm) = PLaser − PSMF−att − PEC−IL − PSi−att ×N × dMRR

− PMRM−IL − (N − 1)PMRM−OBL − Psplitter−IL × log2(M)

− PMRR−W−IL − (N − 1)PMRR−W−OBL − Ppenalty − 10log10(N)

Figure 7.5: Supported DPU size N (=M) for bit precision={1, 2, 3, 4, 5, 6, 7, 8} bits
at data rates (DRs)={1, 5, 10} GS/s, for AMW, MAW, and MWA DPUs.
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Table 7.5: DPU size (N) and DPU Count (#) at 4-bit precision across various DRs
for different accelerators architectures.

Datarate
1 GS/s 5 GS/s 10 GS/s

DPU N # N # N #
ASMW 36 160 17 265 12 291
MASW 43 186 21 275 15 295
SMWA 83 50 42 147 30 198

7.5 Evaluation

7.5.1 System Level Implementation

Fig. 7.6 illustrates the general system-level implementation of incoherent photonic
GEMM accelerators. It consists of global memory that stores CNN parameters and a
pre-processing and mapping unit. It has a mesh network of tiles. Each tile contains
4 DPUs interconnected (via H-tree) with a unified buffer as well as pooling and
activation units. Each DPU consists of multiple DPEs and each DPE is equipped
with a dedicated input and output FIFO buffer [192] to store intermittent weights,
inputs, and psums values. In addition, each tile also contains a psum reduction
network.

Figure 7.6: System-level overview of Photonic GEMM accelerator.

7.5.2 Simulation Setup

For evaluation, we model system-level implementation of AMSW, MASW, and SMWA
GEMM accelerator architectures using our developed custom, transaction-level, event-
driven Python-based simulator. Using the simulator, we simulated the inference
of four CNN models (with a batch size of 1): GoogleNet[162], ResNet50[65], Mo-
bileNet V2 [138], and ShuffleNet V2 [208]. We evaluate the metrics such as Frames
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Table 7.6: Accelerator Peripherals and DPU Parameters [152]

Power(mW) Latency Area(mm2)
Reduction Network 0.050 3.125ns 3.00E-5

Activation Unit 0.52 0.78ns 6.00E-5
IO Interface 140.18 0.78ns 2.44E-2
Pooling Unit 0.4 3.125ns 2.40E-4

eDRAM 41.1 1.56ns 1.66E-1
Bus 7 5 cycles 9.00E-3

Router 42 2 cycles 1.50E-2
DAC [181] 12.5 0.78ns 2.50E-3

ADC(1 GS/s) [122] 2.55 0.78ns 2E-3
ADC(5 GS/s) [147] 11 0.78ns 21E-3
ADC(10 GS/s) [60] 30 0.78ns 103E-3

EO Tuning 80 µW/FSR 20ns -
TO Tuning 275 mW/FSR 4µs -

per second (FPS), FPS/W (energy efficiency), and FPS/W/mm2 (area efficiency).
We opted not to evaluate the inference accuracy of the optical GEMM accelerators
as prior works [22, 109, 157] indicate minimal or no loss in inference accuracy.

We compared AMSW, MASW, and SMWA accelerator architectures for inference
of 8-bit integer quantized CNN models. All accelerators are operated for 4-bit inte-
ger precision across data rates 1GS/s, 5GS/s, and 10GS/s, from Fig. 7.5, for these
parameters SMWA, ASMW, and MASW achieve N reported in Table 7.5, respec-
tively. We omitted comparison with CMOS-based digital CNN accelerators as prior
analog optical photonic CNN accelerators have outperformed them [22, 109, 157].
Our evaluation is based on output stationary dataflow. For a fair comparison, we
performed area proportionate analysis, wherein we altered the DPU count for each
photonic CNN accelerator across all of the accelerator’s DPUs to match with the
area of SMWA (N=83 ) having 50 DPUs. Table 7.5 reports the scaled DPU count of
ASMW, MASW, and SMWA across various datarates.

Table 7.6 gives the parameters used for evaluating the overhead of the peripherals
in our evaluated accelerators. We consider each laser diode to emit input optical
power of 10 mW (10 dBm) (Table 7.4)[22], multiplexer and splitter parameters are
taken from [109].

7.5.3 Evaluation Results

Fig. 7.7(a) shows Normalized FPS results for various accelerators with batch size=1 at
different datarates (DRs), normalized to ASMW for ResNet50 at 10 GS/s. SMWA ac-
celerator outperforms MASW and ASMW accelerators, respectively, on gmean across
four CNN models for all data rates. At 1 GS/s, SMWA achieves up to 2.5× and 2.3×
better FPS than ASMW and MASW, respectively. As DR increases to 5 GS/s and
10 GS/s, SMWA shows better improvements in FPS, achieving up to 3.9× and 4.4×
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better FPS than ASMW, respectively. Similarly, SMWA achieves up to 3.6× and
3.9× better FPS than MASW at 5 GS/s and 10 GS/s.

These significant improvements in throughput for SMWA are due to two reasons.
First, inter-modulation crosstalk and cross-weight related power penalties are absent
in SMWA (refer Table. 7.2) due to its hitless architecture. This allows SMWA to
support a larger DPU size (N=83 ), i.e., the size of the dot product operation N (refer
Table 7.5) and the number of parallel dot product operations M (=N ). Consequently,
the overall throughput is increased with improved parallelism. Secondly, larger N
generates less number of psums which reduces the use of a partial sum reduction
network. This, in turn, reduces the latency associated with psum reductions and
improves FPS. Among ASMW and MASW, MASW performs slightly better than
ASMW at all datarates. MASW with input array sharing mitigates inter-modulation
crosstalk power penalty at MRM input array and also incurs lower through losses
compared to ASMW (refer Table 7.3), due to these benefits MASW achieves slightly
better N compared to ASMW (refer Table 7.5). MASW with higher N achieves
better parallelism and decreases reduction latency, resulting in better FPS.

Furthermore, as datarate increases the FPS of each accelerator decreases, at 5GS/s
and 10 GS/s, the value of N decreases for all the accelerators (refer Table 7.5) which
results in a higher number of psums. Therefore, the latency corresponding to psum
reduction increases with an increase in datarate and leads to lower FPS for acceler-
ators. Overall, SMWA architecture with higher N achieves better throughput than
ASMW and MASW architectures.

Fig. 7.7(b) shows FPS/W (log scale) results for ASMW, MASW, and SMWA
accelerator with batch size=1 at different DRs, normalized to ASMW for ResNet50
at 10 GS/s. It is evident that the SMWA accelerator attains better energy efficiency
than the MASW and ASMW accelerators. At 1 GS/s, SMWA gains 1.9× and 2.5×
better FPS/W against analog MASM and ASMW, respectively, on gmean across the
CNNs. As the datarate increases to 5 GS/s and 10 GS/s, SWMA achieves 3.17× and
3.3× improvements in FPS/W when compared to MASW. SMWA also exhibits a sig-
nificant 4.4× and 5× improvement in FPS/W when compared to ASMW at 5 GS/s
and 10 GS/s. These energy efficiency benefits of SMWA are due to the improved
throughput and decreased energy consumption of psum reductions. As discussed ear-
lier, superior N supported by SMWA improves parallelism which decreases dynamic
energy consumption with improved throughput. In addition, SMWA also requires the
least number of psum reductions and this provides energy savings by reducing the
usage of psum reduction network. At higher datarates of 5 GS/s and 10 GS/s, the N
value decreases, consequently requiring more psum reductions and psum reduction en-
ergy consumption. Furthermore, as datarate increases the accelerator peripherals like
ADCs consume more static power (refer Table 7.6) which also decreases the FPS/W
achieved by each accelerator. Thus, as datarate increase the FPS/W decreases for
ASMW, MASW, and SMWA accelerators. Overall, SMWA provides better energy
efficiency compared to the other accelerators across different DRs.

Fig. 7.7(c) shows the area efficiency values (FPS/W/mm2) for each accelerator
across various CNNs. The area efficiency results look similar to energy efficiency as we
match the area of all the accelerators to SMWA (for the area proportionate analysis).
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Figure 7.7: (a) Normalized FPS (log scale) (b) Normalized FPS/W (log scale) (c)
Normalized FPS/W/mm2 (log scale) for AMW, MAW, and MWA accelerators with
input batch size=1. Results of FPS, FPS/W, FPS/W/mm2 are normalized with
respect to AMW executing ResNet50 at 10 GS/s.

SMWA gains up to 5.2 × and 3.4× better FPS/W/mm2 against ASMW and MSAW,
respectively, on gmean across four CNN models for all data rates. Overall, the SWMA
accelerator achieves better throughput, energy efficiency, and area efficiency compared
to the MSAW and ASMW accelerators.

7.6 Summary

In this Chapter, we introduced a systematic approach for classifying prior incoherent
MRR-based GEMM accelerators into three distinct categories based on their organi-
zation of optical signal manipulation blocks: (1) Modulation-Aggregation-Splitting-
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Weighting (MASW), (2) Aggregation-Splitting-Modulation-Weighting (ASMW), and
(3) Splitting-Modulation-Weighting-Aggregation (SMWA). We performed a compre-
hensive circuit-level comparative analysis of MASW, ASMW, and SMWA organiza-
tions and identified that each organization incurs different magnitudes of crosstalk
noise and optical signal losses. As a result, our scalability analysis at the circuit
level demonstrated that each organization achieves different levels of processing par-
allelism. At the system level, our evaluation results for four CNN models show that
SMWA organization achieves up to 4.4×, 5×, and 5.2× better throughput, energy
efficiency, and area-energy efficiency, respectively, compared to ASMW and MASW
organizations on average.
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Chapter 8 A Hybrid Time-Amplitude Analog Optical Accelerator with
Flexible Dataflows for Energy-Efficient CNN Inference

8.1 Introduction

Deep Neural Networks (DNNs) achieve high inference accuracy, which has revolu-
tionized their use in various artificial intelligence tasks, such as image recognition,
language translation, and autonomous driving [96, 47]. Convolutional Neural Net-
works (CNNs) are specific types of DNNs [105]. CNNs are computationally intensive,
and hence, require a long inference time. In CNNs, around 80% of the total process-
ing time is taken by convolution operations. The need to tackle the ever-increasing
complexity and inference time of CNNs has pushed for highly customized CNN hard-
ware accelerators [20]. For hardware acceleration of convolution operations, they can
be converted into general matrix-matrix multiplication (GEMM) operations [161].
The GEMM operations can be further decomposed into dot product operations to
be efficiently mapped onto the hardware for acceleration. Often, for efficient and
swift hardware-based acceleration, CNNs are quantized to have integer input/weight
parameters [91].

Among the CNN hardware accelerators from the literature, silicon-photonic ac-
celerators have shown great promise to provide unparalleled parallelism, ultra-low
latency, and high energy efficiency [109, 58, 22, 34, 157]. Typically, a silicon-photonic
CNN accelerator consists of multiple Dot Product Units (DPUs) that perform multi-
ple dot product operations in parallel. Several DPU-based optical CNN accelerators
have been proposed in prior works based on various silicon-photonic devices, such
as Mach Zehnder Interferometer (MZI) (e.g., [206], [44]) and Microring Resonator
(MRR) (e.g., [22], [157]).

Among these optical DPU-based CNN accelerators from prior work, the MRR-
enabled analog DPU-based accelerators (e.g., [109, 22, 58, 145, 157, 166]) have shown
disruptive performance and energy efficiencies, due to the MRRs’ compact footprint,
low dynamic power consumption, and compatibility with cascaded dense-wavelength-
division-multiplexing (DWDM). However, these accelerators face several challenges
that hinder their scalability, throughput, and energy efficiency. These prior acceler-
ators employ a combination of microring modulators (MRM) input array and MRR
weight bank to perform dot product operation between input and weight values. The
inter-modulation crosstalk in MRM input array and inter-spectral, electrical, and
thermal crosstalk effects in MRR weight banks reduce the available optical power
budget in DPUs. The reduction in the optical power budget significantly reduces
the achievable DPU size and supported bit-precision [9, 152]. Moreover, the pres-
ence of crosstalk and high spectral sensitivity in MRR weight banks and MRM input
arrays needs two separate feedback control units per MRM/MRR [167, 52], one for
parameter (input/weight) tuning and one for thermal stability. This increases the
static power consumption, diminishing the energy efficiency advantages. Further-
more, none of the prior works have leveraged the ability of balanced photodetectors

137



(BPDs) as in-situ spatio-temporal accumulators to enable flexible support for various
dataflow and to reduce the required buffer accesses and corresponding latency and
energy overheads.

To address these shortcomings, this Chapter presents a novel Hybrid Time-
Amplitude aNalog optical Accelerator called HEANA. HEANA employs a novel
design of hybrid Time-Amplitude Analog Optical Modulator (TAOM) in a spectrally
hitless arrangement to eliminate spectral-interference and various crosstalk effects.
Our TAOM uses a single active MRR to perform multiplication operations, thereby
allowing electro-optic tuning of both input and weight values. Moreover, due to the
single-MRR implementation of TAOMs, HEANA achieves a significant reduction in
number of active MRR devices compared to prior works. This reduces not only the
area consumption but also the insertion losses in HEANA, thereby increasing its en-
ergy efficiency. Moreover, HEANA employs Balanced Photo-Charge Accumulators
(BPCAs), which inherently support the temporal accumulation of a very high num-
ber of partial sums (psums) in situ, supporting input stationary, weight stationary,
and output stationary dataflows. This eliminates the need for frequent analog to
digital conversions and buffer accesses for psums, to consequently reduce the overall
latency and energy consumption of CNN processing.

Our key contributions in this Chapter are summarized below.

• We present our invented, novel, dataflow-flexible CNN accelerator called HEANA,
which employs an array of hybrid time-amplitude analog optical modulators
(TAOMs) in spectrally hitless DPU architecture and highly scalable in-situ
spatio-temporal accumulators called Balanced Photo-Charge Accumulators (BP-
CAs);

• We perform detailed modeling and characterization of our invented TAOM and
BPCA using photonics foundry-validated, commercial-grade, photonic-electronic
design automation tools;

• We perform a comprehensive scalability analysis of our HEANA DPUs, to de-
termine their achievable maximum size (degree of achievable spatial parallelism)
and supported bit-precision;

• We implement and evaluate HEANA for input stationary, output stationary,
and weight stationary dataflows at the system- level. We compare its perfor-
mance with two well-known photonic CNN accelerators from prior works for
the inference of four state-of-the-art CNNs with two different batch sizes.

8.2 Preliminaries

8.2.1 Processing of CNNs on Hardware

In deep CNNs, the major computation requirement arises from convolutional lay-
ers. The convolution operations involved in these layers can be converted to General
Matrix-Matrix Multiplications (GEMMs) using a relaxed form of the Toeplitz matrix
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Figure 8.1: Comparison of CNN dataflow schemes: (a) Output Stationary (b) Input
Stationary (c) Weight Stationary. Table reports the buffer accesses required by DPU
to process layer 5 of GoogleNet[162].

Figure 8.2: Illustration of common analog optical DPU organizations.(a) AMW DPU
(b) MAW DPU.

[161]. The Toeplitz matrix I of the input tensor of a convolution layer can be ob-
tained with the im2col method (equivalent to the PyTorch’s unfold method) [3]. The
weights of the convolution filter tensors are flattened and stacked to form the weight
matrix (W ). The GEMM operation between I and W gives the resultant output
matrix (O). On conventional CPUs/GPUs, GEMMs are mapped and executed using
basic linear algebra subprograms (BLAS) or Cuda BLAS (cuBLAS) [27, 50]. For ded-
icated CNN hardware accelerators, the mapping and execution dataflow of a GEMM
function is determined by the loop ordering used for implementing the function. From
Fig. 1(a), a GEMM function requires three nested loops involving the dimensions C,
K, and D of the matrices I and W . The order of these dimensions in the nested loops
determines the frequency of accesses to the I , W, and O matrices. For example, in
Fig. 1(b), the given loop order forces the indexes of matrix W (i.e., k and d) to
change less frequently compared to indexes of matrix I (i.e., c and k) and matrix O
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(i.e., c and d). Therefore, the data values of the matrix W are accessed in a more
stationary manner compared to matrices I and O ; hence, this execution is known as
weight stationary (WS ) dataflow. Similarly, the output stationary (OS ) and input
stationary (IS ) dataflows are illustrated in Fig. 1(a) and Fig. 1(c), respectively.

In CNN accelerators, the data values of matrices I , W , and O are typically
read from and written into a unified buffer [93]. The number of accesses to this
unified buffer plays a significant role in the overall throughput and energy efficiency
achieved by the accelerator. The total number of buffer accesses corresponding to a
GEMM function changes based on the choice of dataflow. In Fig. 8.1, the table inset
reports the total buffer accesses (reads plus writes) required to finish the execution
of the GEMM function corresponding to layer 5 of GoogleNet [162]. The total buffer
accesses in the table include accesses to the values of matrices I , W , and O . An
output write access is generally performed when the accelerator produces an output
value. However, accelerators often produce multiple intermediate results towards a
single output value. These intermediate results are known as psums (a shorthand for
partial sums), which have to be accumulated together (often using a psum reduction
network [93, 130, 81]) to calculate the final output value. In case psums are required,
the output accesses would involve buffer accesses for both the final output values and
psums. As shown in the table inset of Fig 8.1, the total buffer accesses vary across
the WS, IS, and OS dataflows. The WS and IS dataflows result in the least number
of weight and input accesses, respectively, from the unified buffer. Similarly, the OS
dataflow results in the least output accesses. Atop dataflows, the total access count
also depends on the dimensions C, K, and D of the matrices.

8.2.2 Related Work on Optical CNN Accelerators

Electronic ASICs have traditionally been the preferred choice for implementing CNN
accelerators [81]. In light of the deceleration of Moore’s Law, coupled with the expo-
nential growth in CNN complexity [20], electronic ASIC accelerators are struggling
to meet the processing speed and energy efficiency demands for large-scale deploy-
ment of complex CNN models. To tackle this challenge, both industry and academic
researchers are now investigating innovative more-than-Moore technologies that can
offer consistently faster and energy-efficient hardware solutions for CNN acceleration
in the foreseeable future. Among various technologies, silicon photonics stands out as
a promising candidate, offering unparalleled parallelism, ultra-low latency, and high
energy efficiency [44, 94, 157]. Silicon photonics-based accelerators harness linear
photonic phenomena, such as optical transmission and optical signal superposition
within photonic integrated circuits [44, 22], to accelerate CNN inference. This acceler-
ation results in remarkably fast processing speeds and subnanosecond input-to-output
latency, following an O(1) scaling law.

To accelerate CNN inferences with low latency and low energy consumption, prior
works proposed various accelerators based on photonic integrated circuits (PICs)
(e.g., [109, 157, 22, 44, 186]). These accelerators employ PIC-based Dot Product
Units (DPUs) to perform multiple parallel dot product operations. Some accelerators
implement digital DPUs (e.g., [145, 94, 186]), whereas some others employ analog
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DPUs (e.g., [109, 157, 22, 152]). Different DPU implementations employ MRRs (e.g.,
[109, 22, 157, 111, 186]) or MZIs (e.g., [44, 206]) or both (e.g., [145], [94]). The analog
DPUs can be further classified as incoherent (e.g., [109, 157, 22]) or coherent (e.g.,
[63, 211, 199]). To set and update the values of the individual input and weights
used for vector dot product operations, the incoherent DPUs utilize the analog power
amplitudes of optical signals, whereas the coherent DPUs utilize the electrical field
amplitude and phase. The coherent DPUs achieve low inference latency, but they
suffer from control complexity, high area overhead, low scalability, low flexibility,
high encoding noise, and phase error accumulation issues [119]. In contrast, the
accelerators based on MRRs-enabled incoherent DPUs achieve better scalability and
lower footprint, because they use PICs that are based on compact MRRs [22], unlike
the coherent DPUs that use PICs based on bulky MZIs. Various state-of-the-art PIC-
based optical CNN accelerators are well discussed in survey papers [43, 159, 127].
Because of the inherent advantages of MRR-enabled incoherent DPUs, there is an
impetus to design more energy-efficient and scalable CNN accelerators employing
MRR-enabled incoherent (analog) DPUs.

Organizations of optical incoherent analog DPUs:

S. S. Vatsavai et al. in [152] categorized the organizations of optical analog DPUs
from prior works into two groups: Aggregate Modulate Modulate (AMM) and Mod-
ulate Aggregate Modulate (MAM) [152]. Here, ’Aggregate’ refers to an aggregation
of multiple wavelength signals into a single photonic waveguide through wavelength-
division-multiplexing (WDM). The first ’Modulate’ refers to the modulation of op-
tical wavelength signals with input values, and the second ’Modulate’ refers to the
modulation (weighting) of input-modulated optical wavelength signals with weight
values. To avoid confusion between two ’Modulate’ terms, we propose to replace the
second ’Modulate’ with ’Weight’ to imply the weighting of input-modulated signals.
Thus, we categorize DPU organizations as Aggregate Modulate Weight (AMW) and
Modulate Aggregate Weight (MAW).

Fig. 8.2 illustrates the schematics of DPU organizations of AMW and MAW cate-
gories. In general, these DPUs employ microring modulator (MRM) input arrays and
MRR weight banks. In a DPU, inputs are modulated as analog power amplitudes
of optical wavelength signals using the MRM input arrays. The individual MRMs of
an MRM input array are parallel coupled to a photonic waveguide that carries the
multiplexed optical wavelength signals. These optical wavelength signals, after being
modulated and multiplexed into the waveguide by the MRM input array, are sent to
MRR weight banks. Each MRR in an MRR weight bank is a tunable spectral filter,
which consists of an add-drop microring (i.e., a microring coupled to two parallel bus
waveguides; one input-through waveguide, and another add-drop waveguide). Each
MRR independently controls the transmission of exactly one optical wavelength signal
to generate a weighted optical wavelength signal. Each weighted optical wavelength
signal is basically a temporal train of optical amplitude symbols carried on an optical
wavelength propagating in the waveguide. This amplitude symbol represented the
product of the corresponding input and weight values. In a DPU, each waveguide in
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fact propagates multi-wavelength weighted optical signals, which are multiplexed by
the MRM input array, to a balanced photodetector (BPD) implemented at the end
of the waveguide. The BPD Balanced photodetection of these weighted, mutually
incoherent WDM signals, through the in Figure 8.2, The BPD produces an electri-
cal current signal, which is a temporal train of electrical current amplitudes. Each
current amplitude represents the signed sum of the multi-wavelength temporally co-
incident optical amplitude symbols that are part of the incident multi-wavelength
weighted optical signals [167]. In other words, each current amplitude represents the
dot product of the incident wavelength-parallel input and weight vectors, and hence,
the electrical current signal at the output of each BPD represents a dot-product signal
(i.e., a temporal train of dot-product results). Since a total of M BPDs are employed
in a DPU (Fig. 8.2), each DPU generates a total of M parallel dot-product signals.
Each symbol of a dot-product signal could be either the final output value or a psum.

8.2.3 Motivation

The CNN accelerators from prior works, which are based on incoherent analog DPUs,
have three shortcomings. First, the inter-modulation crosstalk in MRM input arrays
[152, 88] and inter-spectral, electrical, and thermal crosstalk effects in MRR weight
banks [167] put forth a strong trade-off between the achievable DPU size (N) (deter-
mined by the achieved wavelength parallelism - Fig. 8.2) and supported bit-precision
(B) of AMW and MAW DPUs [9, 152]. This is because the collective power penalty
induced by these crosstalk effects can substantially reduce the available optical power
budget in DPUs, which can significantly reduce (i) the tolerance to high optical losses
caused by large DPU sizes, and (ii) the dynamic range of optical power required
to support large bit-precision. As a result, it is shown that MAW DPUs cannot
achieve larger than 44×44 size for >4-bit precision [152]. Second, the presence of
various crosstalk effects and high spectral sensitivity in the MRR weight banks re-
quires the use of extremely complex control procedures for the actuation of weight
values [167, 52]. Such control procedures often employ binary search algorithms[167]
or need a feedback control circuit [52]. This requirement increases the implemen-
tation complexity, mandating the weight actuation control to be separate from the
required thermal stability control per MRR. Thus, each MRR requires two feedback
control circuits, one for weight actuation and one for thermal stabilization. Similarly,
each MRM already requires a separate input actuation control due to its high-speed
operation (typically ¿1 gigasybols per second). This would increase the number of
required feedback control units per weighted optical signal to four because both the
input MRM and weighting MRR would require one feedback control unit each for
thermal stabilization and another unit each for value actuation. Each control circuit
consumes a significant amount of static power [52]. As a result, the generation of each
N-sized dot-product at a BPD would increase the total static power consumption by
4N×, diminishing the overall energy efficiency of the DPUs. Third, the AMW and
MAW DPUs from prior works fail to fully leverage the ability of BPDs to accumu-
late psums in situ temporally. This ability endows the BPDs with the potential of
eliminating the need to use psum buffers and dedicated psum reduction networks
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[93, 130, 94]. Failing to leverage this ability significantly increases the latency and
energy consumption of the AMW and MAW DPUs from prior works because of their
necessity to frequently read and write psums into a buffer and to employ dedicated
psum reduction networks. Our proposed accelerator, HEANA, tackles these short-
comings, as summarized in Chapter 8.7.

8.3 Our proposed HEANA Architecture

8.3.1 Overview

The main processing unit of our HEANA architecture is a dot product unit (DPU),
which is illustrated in Fig. 8.3. A HEANA DPU consists of a comb laser source
[88, 193] that emits optical power at a total of N distinct wavelengths (i.e., from λ1
to λN). The N-wavelength (N-chromatic) optical power sourced from the comb laser
is split into a total of M waveguide. Each waveguide carries the N-wavelength optical
power to a dot product element (DPE).

8.3.2 HEANA’s Dot Product Element (DPE)

From Fig. 8.3, a HEANA DPE employs two artifacts: (i) a spectrally hitless array
of a total of N hybrid time-amplitude analog optical modulators (TAOMs), and (ii)
a balanced photo-charge accumulator (BPCA). A TAOM generates a weighted op-
tical wavelength signal as a temporal sequence of pulse-width-amplitude-modulated
(PWAM) symbols. The total optical energy contained in a PWAM symbol generated
by a TAOM represents the analog product of one input and one weight value. The
BPCA circuit leverages the temporal charge accumulation and incoherent superpo-
sition abilities of photodetectors [29][150] to generate a signed summation of a large
number of temporally and spatially arriving PWAM symbols. This signed summation
represents the final dot product result, i.e., a value in the final output matrix. The
value N here represents the degree of spatial (wavelength) parallelism, which is equal
to the number of optical wavelength signals and the number of TAOMs per DPE.
The value N is also referred to as the size of the DPE. The arrangements of TAOMs
and BPCA, along with their structures and operations, are described in the following
subsections.

Spectrally Hitless Array of N TAOMs:

In a DPE, the spectrally hitless array of N TAOMs receives N-wavelength optical
power from a waveguide fed from the splitter (Fig. 8.3). On this waveguide, a total
of N mono-wavelength filters filter a total of N wavelengths individually, and then
drop them onto the respective waveguides of N TAOMs. Thus, each TAOM operates
on a unique optical wavelength signal λi as discussed in Chapter 8.3.2. This arrange-
ment of TAOMs is spectrally hitless [34] because each TAOM waveguide employs
only a single optical wavelength signal. This avoids inter-wavelength interference [17]
known as crosstalk from TAOMs operating on adjacent optical wavelength signals.

143



Figure 8.3: Schematic of the Dot Product Unit (DPU) of our HEANA accelerator.

On the contrary, the AMW and MAW DPEs from prior works [109, 22, 152] typi-
cally face such crosstalk because they employ a parallel-coupled array of MRMs and
MRRs. This arrangement in an N-sized AMW/MAW DPE causes each of the N
optical wavelength signals to interact with a total of N MRMs as well as N MRRs,
resulting in a substantial amount of crosstalk noise. To minimize this crosstalk noise,
AMW/MAW DPEs typically maintain a wide spectral spacing between adjacent opti-
cal wavelength signals. However, this restricts the achievable N in the DPEs because
a wide wavelength spacing reduces the number of optical wavelength signals that can
be spectrally multiplexed within the stringently limited Free Spectral Range (FSR)
of the MRMs and MRRs employed in these AMW/MAW DPEs [9, 152]. In contrast,
the spectrally hitless arrangement of TAOMs in HEANA completely eliminates the
crosstalk noise at TAOMs, which allows for a narrow wavelength spacing to increase
the achievable N for HEANA at a given bit precision (more on this in Chapter 8.4).

Each spectrally hitless TAOM receives two operands, i.e., input/activation aMi and
weight wM

i , from corresponding FIFO buffers. The activation and weight values are
loaded into the FIFO buffers from the unified buffer via a distribution network based
on the selected dataflow. Each TAOM is driven by an electrical pulse width ampli-
tude modulated (PWAM) signal. This signal is electro-optically modulated onto the
TAOM’s corresponding optical wavelength λi to generate an optical PWAM signal.
Each PWAM symbol of this signal encodes the input aMi as its pulse-width and weight
wM
i as its amplitude so that the total optical energy packetized in the PWAM symbol

represents the multiplication result between aMi and wM
i . This multiplication result,

depending on its sign, is encoded in the form of a balanced PWAM optical symbol at
the through and drop ports of the TAOM. The multiplication results (i.e., balanced
PWAM optical symbols) from a total of N TAOMs are then dropped into the pos-
itive and negative aggregation lanes via a set of mono-wavelength filters [168] (Fig.
8.3). These aggregation lanes further guide the multiplication results to the BPCA
for accumulation. The BPCA, in each symbol cycle, receives N individual multipli-
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cation results concurrently (i.e., N PWAM symbols), incoming from N TAOMs on
N parallel wavelengths. The BPCA transduces the total optical energy packetized in
the N multiplication results (PWAM symbols) arriving at the BPCA into an analog
voltage amplitude, which represents a psum of the final dot product result (a value in
the output matrix O in Fig. 8.1). Depending on the selected dataflow, a specific ca-
pacitor in our BPCA circuit is utilized to transduce and temporarily store the psum.
The use of capacitors in the BPCA also allows bufferless temporal accumulation of
subsequently arriving psums. The design and operation of TAOM and BPCA are
explained next.

Figure 8.4: (a) Structure of our microring modulator (MRM) based hybrid time-
amplitude analog optical modulator (TAOM) connected to a balanced photocharge
accumulator (BPCA) and (b) representation of analog signals (optical and electrical)
at different stages of TAOM.

Design of Hybrid Time-Amplitude Analog Optical Modulator (TAOM):

Fig. 8.4(a) depicts the schematic of our invented TAOM when it is connected to
a balanced photo-charge accumulator (BPCA) unit. As illustrated, our TAOM is
basically an add-drop Microring Modulator (MRM) with an embedded lateral PN
junction that operates in the forward bias condition. The MRM’s peripheral circuitry
consists of two queues of FIFO buffers, in which one of them stores the input values
(from the input matrix shown in Fig. 8.1) and the other one stores the weight values
(from the weight matrix shown in Fig. 8.1), both in the digital binary-radix number
format. The FIFO queue for inputs connects to a pulse width signal (PWS) generator
and the FIFO queue for weights connects to a pulse amplitude signal (PAS) generator.
The output of the PWS is split into two parts: one part is directed to the pre-emphasis
scheme, whereas the other part is provided as a reference to the PAS generator.
Subsequently, the output of the PAS generator and the output of the pre-emphasis
scheme are combined through a current-mode mixer, and the resulting output is a
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pulse-width-amplitude-modulated (PWAS) signal. For a complete understanding of
the generation of PWAM signals and the underlying circuitry, we direct the readers
to [90, 200]. This PWAS signal is routed to a driver circuit. The output of the driver
circuit is provided as an electrical bias to the PN junction of the MRM. The output
of the MRM (TAOM) is connected to a balanced photo charge accumulator (BPCA)
circuit.

Balanced Photocharge Accumulator (BPCA)

Our BPCA circuit is collectively inspired by the time integrating receiver (TIR) de-
sign from [150, 1] and the photodetector-based optical pulse accumulator design from
[29]. As illustrated in Fig. 8.4(a), a BPCA circuit employs two photodiodes, each con-
nected to the drop and through ports of the MRM. These photodiodes are interlinked
in a balanced configuration, commonly referred to as a balanced photodiode (BPD)
configuration. The BPD is connected to a TIR via a switch (S0). The TIR comprises
an amplifier and a feedback capacitor/switch (S1) pair (Fig. 8.4). It functions as a
current-to-voltage converter circuit by integrating the incoming electrical current over
a period. This ensemble of the BPD and TIR makes the BPCA capable of performing
temporal and spatial accumulations (this will be explained in upcoming subsections).
Subsequently, the output of the TIR is connected to an analog-to-digital converter
(ADC) and an equalizer.

Operation of Integrated TAOM-BPCA Circuit

Figure 8.4(b) illustrates the sequential processing of electrical and optical signals at
various stages within our integrated TAOM-BPCA circuit, demonstrating the effec-
tive execution of the multiplications and temporal accumulations. As illustrated, the
FIFO queue for weight values feeds into the PAS generator, which converts the in-
coming sequence of digital weight values into a sequence of analog pulse amplitude
symbols. This sequence is also called a pulse amplitude signal ((see 1 in Figs. 8.4(a)
and 8.4(b))). Similarly, the FIFO queue for input values feeds the PWS generator,
which converts the incoming sequence of digital input values into a sequence of ana-
log pulse-width-modulated symbols. This sequence is called a pulse width signal (see
2 in Figs. 8.4(a) and 8.4(b)). The PWS output is divided, with one part directed
to the pre-emphasis scheme, while the other part serves as a reference for the PAS
generator. The output of the PAS generator (current-mode DAC), when mixed with
the output of the pre-emphasis scheme, produces a sequence of pulse width ampli-
tude modulated (PWAM) symbols ((see 3 in Fig. 8.4(b))). This sequence is called
PWAM signal. For a complete understanding of the generation of PWAM signals
and the underlying circuitry, we direct the readers to [90, 200]. The PWAM signal is
fed to a driver circuit, as shown in Fig. 8.4(a). From the driver circuit, the PWAM
signal is provided as an electrical input to the PN junction of the MRM.

This input PWAM signal induces free-carrier plasma dispersion in the MRM,
which enables the MRM to dynamically adjust the transmission characteristics of the
incoming wavelength channel from an external laser source. This action converts the
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input electrical PWAM signal into a balanced optical PWAM signal. Here, a balanced
optical PWAM signal implies that the original electrical PWAM signal is encoded into
optical transmissions simultaneously at both the drop and through ports of the MRM
((See 4 in Fig. 8.4(b))). For each symbol of this balanced optical PWAM signal, the
amount of transmission at the through and drop ports of the MRM depends on the
amplitude level of each symbol relative to the threshold level in the electrical PWAM
signal (LTH in 3 of Fig. 8.4(b)). For instance, the amplitudes of symbols X1 and
X2 in 3 of Fig. 8.4(b) are below the defined threshold level (LTH). Therefore, for
symbols X1 and X2 in 4 of Fig. 8.4(b), the transmission at the drop port of the MRM
is lower than the transmission at the through port. As a result, the net transmission,
represented as the difference in transmission between the drop and through ports of
the MRM (X1 and X2 in 5 of Fig. 8.4(b)), is negative for these symbols. On the
other hand, the amplitudes of symbols X3 and X4 in 3 of Fig. 8.4(b) are above the
defined threshold level (LTH). Therefore, for the symbols X3 and X4 in 4 of Fig.
8.4(b), the transmission at the drop port of the MRM is higher than the transmission
at the through port. As a result, the net transmission (X3 and X4 in 5 of Fig.
8.4(b)), is positive for these symbols. Each such symbol of a balanced optical PWAM
signal (such as X1 in 4 of Fig. 8.4(b)) packetizes certain optical energy that is
proportional to the analog product of the corresponding input (a) and weight values
(w). For example, the energy packetized in symbol X1 represents a1*w1 (or) L1*t1
in Fig. 8.4(b). This balanced optical PWAM signal at the output of the TAOM is
fed into the BPCA circuit.

Within the BPCA circuit, the BPD transduces the incoming optical pulse se-
quence (X1,...,X4 in 5 of Fig. 8.4(b)) from the MRM into a series of differential
electrical current amplitudes ( 6 in Fig.8.4(b)). Here, the differential electrical cur-
rent amplitude corresponding to each symbol is proportional to the net transmission
of the respective optical PWAM symbol ( 5 in Fig. 8.4(b)). Moreover, the multiplica-
tion magnitude corresponding to each symbol is encoded as the area under the curve
of the differential electrical current symbol. The direction of the electrical current
symbol (incoming to the BPD and outgoing from the BPD) represents the sign of
the multiplication. This series of differential electrical current symbols is directed to-
wards the TIR via the switch S0. The integration of TIR with the BPD introduces a
distinctive versatility that enables us to operate our integrated TAOM-BPCA circuit
in one of the two distinct modes: (i) multiplier mode or (ii) multiplier and temporal
accumulator mode. These modes are explained next.

(i) Multiplier Mode: For this mode, the TIR’s sampling speed is matched to
the arrival rate of the incoming differential electrical current symbols. At the be-
ginning of each symbol period, opening the switch S1 allows the electrical current
symbol corresponding to that period to linearly charge the feedback capacitor C1 of
the TIR circuit. This linear charging continues for a duration equal to the pulse
width of the electrical current symbol. Consequently, the accumulated charge, and
therefore, the analog voltage accrued across the feedback capacitor C1 of the TIR for
that symbol period represents the multiplication result related to the corresponding
optical PWAM symbol (see 7 in Fig. 8.4(b)). Notably, the polarity of the incom-
ing differential electrical current pulse indicates the sign of the multiplication result;
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therefore, the polarity of the accrued analog voltage across the TIR’s feedback capac-
itor becomes negative if the incoming electrical current has negative polarity. Once
the accrued analog voltage is stable, it is sampled and sent to an analog-to-digital
converter (ADC). Then, at the end of the symbol period, closing the switch S1 allows
resetting the charge and voltage on the feedback capacitor to be zero, to prepare the
TIR for the next symbol period.

For example, consider the symbol X1 in 7 of Fig. 8.4(b). The feedback capacitor
of the TIR circuit linearly charges until it reaches an analog voltage level of (L1*t1),
which represents the signed multiplication result of the symbol X1. After the analog
voltage level on the capacitor reaches (L1*t1) for the symbol X1 and the capacitor
reaches a steady state, the accrued analog voltage is sampled and then sent to the
ADC and equalizer for further processing, before the capacitor is made to discharge
(reset) by closing the switch S1. Here, since the polarity of the differential electrical
current corresponding to symbol X1 is negative, the accrued analog voltage on the
TIR’s feedback capacitor is also negative, as shown for symbol X1 in 7 of Fig. 8.4(b).
On the other hand, if the polarity of the incoming differential electrical current pulse is
positive, the accrued analog voltage on the TIR’s feedback capacitor is also positive,
which is illustrated for symbol X3 in 7 of Fig. 8.4(b). Thus, in this mode, the
TAOM-BPCA circuit acts as a multiplier that can produce multiplication results at
a fast speed.

(ii) Multiplier and Temporal Accumulator mode: For this case, the TIR’s
sampling speed is set to be very low compared to the arrival rate of the incoming
differential electrical current symbols. Therefore, the series of differential electrical
current symbols arriving at the TIR can sequentially charge the TIR’s capacitor so
that the net accumulated charge and, consequently, the analog voltage accrued on
the capacitor over multiple symbol periods provides the signed sum of the individ-
ual multiplication results corresponding to different symbols. Thus, this operation
essentially performs a temporal accumulation of multiplication results (products).
This operation is depicted in 8 of Fig. 8.4(b), where the charge accumulates over
time based on the incoming electrical current symbols(X1,...,X4 in 6 of Fig. 8.4(b)),
and consequently, the resulting analog voltage accrued on the TIR’s capacitor signi-
fies the temporal accumulation result (i.e., X1+...+X4). Moreover, if the incoming
differential electrical current pulses to the TIR circuit include both positive and neg-
ative polarities, the resultant analog voltage accumulated on the capacitor over time,
representing the temporal accumulation operation, is a summation of positive and
negative voltages. The temporal accumulation operation illustrated in 8 of Fig.
8.4(b) is a summation of both negative and positive voltages. The first two symbols
of the incoming current signal (i.e., X1 and X2 in 6 of Fig. 8.4(b)) have negative
polarity. Therefore, in 8 of Fig. 8.4(b), the net accrued voltage on the capacitor at
the end of the second symbol period has negative polarity. The magnitude of this
voltage represents X1+X2. This is because, unlike multiplier mode, the switch S1

is not closed every symbol period (rather it is kept open) during the operation of
this multiplier+temporal accumulator mode. As a result, the accrued voltage does
not return to zero at the end of every period; rather, it builds on top of the voltage
level accrued in the previous period. In 6 of Fig. 8.4(b), the collective magnitude

148



of the differential electrical current corresponding to the symbols X3 and X4 is high
compared to that of the symbols X1 and X2. Therefore, the resultant voltage accrued
on the capacitor has positive polarity after all four symbol periods have elapsed. This
voltage corresponds to the result of the temporal accumulation of incoming PWAM
symbols. Since each PWAM symbol encodes a multiplication result, this temporal
accumulation result is basically a temporal dot-product result. This dot-product re-
sult can be collected by sampling the accrued voltage and then directing it to the
ADC and equalizer for further processing. After the desired number of periods for
the temporal accumulations have elapsed, the switch S1 is closed to reset/discharge
the capacitor, to prepare the circuit for the next temporal accumulation.

Figure 8.5: HEANA DPE consisting of two spectrally hitless TAOMs, connected to
our BPCA circuit. The inset showcases analog representations of signals (both optical
and electrical) at various stages of our DPE

Spatio-Temporal Multiply-Accumulate Operations in HEANA DPE:

Previously, we demonstrated that the ensemble of one TAOM and one BPCA can
be used to perform temporal multiply-accumulate operations. In this subsection,
we extend that idea and demonstrate that an ensemble of multiple TAOMs and
a shared BPCA, which creates a HEANA DPE by employing wavelength-division-
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multiplexing, can be used to perform spatio-temporal multiply-accumulate opera-
tions. To understand this, consider Fig. 8.5 that illustrates the functioning of an
example HEANA DPE comprised of an ensemble of two spectrally hitless TAOMs
(TAOM1 and TAOM2) and a shared BPCA. From what we know about TAOM-
BPCA ensemble discussed earlier in Chapter 8.2.4 with respect to Fig. 8.4, TAOM1

and TAOM2 in the HEANA DPE of Fig. 8.5 generate balanced optical PWAM sig-
nals that are carried onto the dedicated optical wavelengths λ1 and λ2 respectively.
Both of these balanced optical PWAM signals (shown as optical transmissions in 1
and 2 of Fig. 8.5) are multiplexed into the positive and negative accumulation lanes
(lanes are waveguides) using mono-wavelength filters. The aggregation lanes guide
these balanced optical PWAM signals to the shared BPCA. During each symbol cycle,
the BPD of the BPCA performs a balanced incoherent superposition (signed sum-
mation) of all the balanced optical PWAM symbols that arrive during the symbol
cycle. Consequently, the balanced incoherent superposition first enables the creation
of a net optical signal (see 3 in Fig. 8.5), and then, allows this net optical signal to
be transduced to generate a balanced photocurrent signal (see 4 in Fig. 8.5). The
area under the curve of every balanced photocurrent symbol in 4 of Fig. 8.5 gives
a spatial accumulation result (a spatial sum) of the PWAM symbols incident during
the corresponding symbol cycle. The polarity of each balanced photocurrent symbol
gives the sign of the corresponding spatial sum. Thus, the BPD of the BPCA enables
spatial accumulation of incident PWAM symbols. Since all PWAM symbols are mul-
tiplication results, their spatial accumulation at the BPCA can also be referred to as
spatial multiply-accumulate (MAC) operation or spatial dot-product operation.

This balanced photocurrent signal (which can also be called photocurrent-based
spatial MAC signal) produced by the BPD of the BPCA is sent to the TIR of the
BPCA, where it can be further processed in two different ways. First, if the sampling
rate of the TIR is kept equal to the symbol rate of the incoming balanced photocurrent
signal, the TIR simply converts the photocurrent-based spatial MAC signal into a
voltage-based spatial MAC signal. In this signal, each symbol simply is a voltage level
representing a spatial dot-product result. Second, if the sampling rate of the TIR is
kept to be an integer multiple of the symbol rate of the incoming photocurrent signal,
the TIR enables the gradual integration (temporal accumulation) of the individual
symbols of the photocurrent-based spatial MAC signal to provide a single voltage level
as the final output that represents the temporal sum of all the individual symbols
(spatial dot-product results) of the spatial MAC signal. This occurs due to the same
operational characteristics of the TIR as discussed in Section 8.2.4-(ii). Thus, the
BPCA (BPD + slowly sampled TIR) enables spatio-temporal MAC or dot-product
(i.e., temporal accumulations of spatial dot-product results) in the HEANA DPE.

This spatio-temporal accumulation capability of HEANA DPE is clearly illus-
trated in 5 of Fig. 8.5. During the first symbol cycle, X1 and Y1 are spatially
accumulated resulting in an accrued Vout that is proportional to (X1 + Y1). Here,
the cumulative polarity of (X1 + Y1) is negative, thereby resulting in negative Vout.
In the next symbol cycle, the balanced photocurrent generated during the cycle cor-
responds to spatially accumulated symbols (X2 + Y2). This balanced photocurrent
accrues voltage on top of the Vout accrued in the previous cycle, resulting in updated
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Figure 8.6: Colormap plots that depict the (a) accuracy and (b) precision of our
TAOM for different values of input optical power, sample rate and step size/time
interval between the time-analog signals

Vout that is proportional to (X1 + Y1 + X2 + Y2). Thus, the temporal accrual of
Vout over all four symbol cycles enables the final result to be (X1 + Y1 + X2 + Y2

+ X3 + Y3 + X4 + Y4). The polarity of Vout depends on the net polarity of the
final result. The final Vout from the BPCA circuit is given as input to an ADC to
produce the final output in the digital format.

A HEANA DPE can be an ensemble of a shared BPCA and a large number of
TAOMs; the number of TAOMs per HEANA DPE is not limited to two. Therefore,
this spatio-temporal accumulation capability of HEANA DPE can essentially enable
the processing of very large-sized dot-products both spatially as well as temporally.
In addition, as shown in Fig. 8.5, the TIR in the BPCA of a HEANA DPE contains
a total of p independently operable capacitors. Each HEANA DPE, while leveraging
its spatio-temporal accumulation capability, can intermittently switch among these p
capacitors by orchestrating the closing and opening of respective switches to facilitate
efficient execution of various dataflows. A detailed explanation of this functionality
is provided in Section 8.4.

Furthermore, We model our TAOM unit using photonics foundry-validated simu-
lation tools from ANSYS/Lumerical [6]. Here, we perform a time-domain (transient)
analysis to evaluate the performance of our TAOM in terms of accuracy and precision
for different values of optical power and sample rates. A detailed discussion of this
analysis is provided in the next subsection.

Performance Analysis of TAOM:

We evaluate the performance of our TAOM in terms of accuracy and precision. To
measure the accuracy of our TAOM, we calculated the logarithmic transformation
of the inverse of the normalized mean absolute error (MAE) ((log2(1/(MAE)))) be-
tween the actual voltages (i.e., the voltages across the capacitor (C1) in the BPCA
for different multiplication operations that are extracted from simulations) and the
commanded/targeted voltages for different multiplication operations.. We represent
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accuracy in terms of bits by considering various input optical pulse amplitudes and
bit resolution values. we considered four values of bit resolution (2, 4, 6, 8-bits) and
three unit sizes of pulse widths (16ps, 32ps, 48ps). If the unit size of pulse width is
16 ps, the input values of unity would be represented as a 16 ps wide pulse. The col-
ormap plot in Fig. 8.6(a) illustrates the accuracy evaluated for different combinations
of optical pulse amplitudes and pulse widths. Additionally, we evaluated precision
for these combinations using equations provided in [9]. The corresponding colormap
plot for precision can be found in Fig. 8.6(b).

As depicted in the accuracy and precision colormap plots (Fig. 8.6), for a given
bit resolution and pulse width for a unity input value, the accuracy and precision of
our TAOM increase when the input optical pulse amplitude increases from 0 dBm
to 10 dBm. This is because the optical pulse amplitude is basically representative
of the optical power signal, and the increase in the input optical pulse amplitude
means an increase in the optical power signal. This improves the signal-to-noise
ratio, leading to better accuracy and precision for our TAOM. Similarly, for a given
input optical pulse amplitude, the precision of our TAOM increases when the pulse
width of a unity input value increases. Furthermore, for a given input optical pulse
amplitude and a unit pulse width, the accuracy and precision of our TAOM increase
with the increase in bit resolution. These results imply that it is possible to achieve
accuracy of as high as 16-bit and precision of as high as 10-bit with our TAOM. These
accuracy and precision values for our TAOM are highly competitive compared to the
values achievable by analog-only photonic incoherent multipliers (or weight banks)
from prior works [52][207].

8.4 Mapping of Different Dataflows on HEANA DPU

The mapping and execution dataflow of a GEMM operation is determined by the
loop order, as discussed in Section 8.2.1. A GEMM operation requires three nested
loops involving the dimensions C, K, D of the matrices I and W (Section 8.2.1).
The GEMM operation between matrices I and W basically requires a total of C×D
K -sized dot products. Fig. 8.7 illustrates the loops used for mapping the GEMM
operation between I and W onto a HEANA DPU consisting of M DPEs, where
each DPE can perform a dot product operation of size N. Here, M also determines
the number of parallel dot product operations that can be implemented on the DPU.
The supported size N of the DPEs is often less than the required dot product size
K for implementing GEMM-converted convolutions [152]. In the wake of such size
mismatch between the hardware and mapped matrices, to make the required dot
products amenable to hardware implementation, the input and weight matrices (I
and W ) are mapped to the hardware in smaller blocks by tiling them. The M and
N parameters of the DPU along with the execution dataflow (loop order) determine
the shape of the input and weight tiles. These tiles are mapped both temporally
and spatially onto the DPEs to compute blocks of output values as output tiles and
facilitate the completion of the GEMM operation. In Fig. 8.7, the innermost loop
of each dataflow illustrates how the tile shapes are determined for the input, weight,
and output tiles. For the output stationary dataflow illustrated in Fig. 8.7(a), the
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Figure 8.7: Loops involved in GEMM operation between input I and weight W ,
mapped onto a photonic DPU, with (a) Output Stationary Dataflow (b) Input Sta-
tionary Dataflow (c) Weight Stationary Dataflow. DPU consists of 2 DPEs (M=2),
and each DPE can perform dot product operation of size N=2. For output sta-
tionary dataflow and input stationary dataflow the loops are unrolling to show the
computations involved in the evaluation of output O row 1 whereas for weight sta-
tionary dataflow evaluation of output O column 1 is shown. Note that each DPU
call performs two dot product operations simultaneously employing the two DPEs.
Scheduling order of computation frames for the last three iterations of outermost
loops are omitted for brevity

input tile shape is 1×N, whereas for the weight stationary dataflow shown in Fig.
8.7(c), the input tile shape is M×N. Similarly, the shape of the weight and output
tiles vary between the output stationary and weight stationary dataflows. Thus, the
choice of execution dataflow has an impact on the tiling of I, W, and O matrices of
the GEMM operation.

The choice of execution dataflow (i.e., loop order) for a given M and N parameters
also determines the computation order for output tiles. In Fig. 8.7, for each dataflow,
the loops are unrolled for DPU with parameters M=2 and N=2 for input matrix I
(with dimensions C×K =4×4) and weight matrix W (with dimensions K×D=4×4).
After unrolling, each iteration of the outermost loop involves four computation frames
( 1 , 2 , 3 , and 4 ). A computation frame is comprised of dot product operations that
can be mapped onto a single DPU in a parallel manner. The number of compu-
tation frames involved in each iteration of an outermost loop can be derived using
#ComputationFrames=(ceil(D/M) × ceil(K/N)). For each computation frame,
the input and weight tiles are mapped onto a single DPU to perform parallel dot
product operations toward computing a single output tile. The DPU employs two
DPEs (DPE1 and DPE2) to perform two dot product operations in parallel. In Fig.
8.7(a), for computation frame 1 , the output stationary dataflow computes partial
output values of O [0,0] at DPE1 and O [0,1] at DPE2. These output values (O [0,0]
and O [0,1]) belong to row 1 of output matrix O. In contrast, computation frame 1
of weight stationary dataflow shown in Fig. 8.7(c) computes output values O [0,0]
at DPE1 and O [1,0] at DPE2, which belong to the column 1 of the matrix O. Fur-
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thermore, among the output stationary and input stationary dataflows, an identical
computation frame can involve the computation of different output values belonging
to the same output row of the matrixO. For instance, in Fig. 8.7(a) and Fig. 8.7(b),
computation frame 2 for both the output stationary and input stationary dataflows
compute the output values corresponding to the row 1 of matrix O ; however, the
output stationary dataflow computes the output values O [0,0] and O [0,1], whereas
the input stationary dataflow computes different output values O [0,2] and O [0,3]
belonging to the same row. Thus, the computation order of output tiles varies with
the choice of execution dataflow. This emphasizes the critical role of the dataflow in
shaping the execution order of the GEMM operation.

In the next three subsections, we will present a detailed explanation and a com-
prehensive comparison of GEMM operations’ mapping onto HEANA and AMW [22]
architectures. We will consider output stationary (OS ), input stationary (IS ), and
weight stationary (WS ) dataflows. Important Definitions: To help with our ex-
planation, we introduce two tiling directives: temporal switching (ts) and temporal
folding (tf ) to elucidate the temporal mapping of input and weight tiles. Both the
temporal switching and temporal folding of input/weight tiles mean that the in-
put/weight tiles that are mapped onto the DPU change over time in a pipelined
manner. The unit amount of time for which the input/weight tiles are held in the
DPU for processing before folding (switching) in a pipelined manner is referred to
as a folding (switching) cycle. Temporal switching and temporal folding, however,
differ in the way that they impact the mapping and processing of the output tile.
Temporal switching of the input/weight tile alters the output tile being computed at
each switching cycle. In contrast, employing temporal folding means that the com-
putation of the same output tile is folded across multiple cycles, with each folding
period generating partial results for each value in the output tile. The lengths of the
switching and folding cycles may differ across different dataflows as well as between
input and output tiles.

Example DPU and GEMM configurations for explanation of dataflow
mappings: For our explanation of various dataflow mappings in the following sub-
sections, we assume the availability of a single DPU composed of 2 DPEs (M =2),
where each DPE has a size of N =2. Each DPE is equipped with one BPCA containing
2 capacitors (p=2) to facilitate in-situ spatio-temporal accumulations (as discussed
earlier). Furthermore, We consider GEMM operation between input matrix I (with
dimensions C×K =4×4) and weight matrix W (with dimensions K×D=4×4) to
generate output matrix O (with dimensions C×D=4×4).

8.4.1 Output Stationary Dataflow

Fig. 8.8(a) illustrates the OS dataflow mapping. The tiling of the inputs and weights
allows the computing of row 1 (O1) of the matrix O. Evaluating row 1 of the matrix O
involves dot product operations between row 1 of the matrix I and all the columns of
the matrix W. These dot products are broken down into multiple computation frames
for scheduling/mapping on the DPU. The scheduling order of the computation frames
is defined in Fig. 8.7(a). To map the computation frames, each DPU offers spatial
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parallelism at two levels, in general, one at the wavelength level and the other at
the DPE level. The parameter N governs the wavelength-level parallelism, while M
governs the DPE-level parallelism. For the input matrix I, the OS dataflow exploits
the wavelength-level parallelism in the DPEs by tiling the inputs according to N =
2 so that the input tile of shape 1×N=1×2 is spatially mapped on the wavelengths
λ1 and λ2 of the DPEs. The same input tile is broadcasted to both the DPEs for
spatial reuse of the input values. For the weight matrix W, both the wavelength-
level and DPE-level parallelisms are leveraged, and according to the parameters N=2
and M=2, the shape of the weight tile is determined as N×M=2×2. Consequently,
weights are spatially mapped to wavelengths as well as DPEs. The weight tile is
unicast to two DPEs, with each DPE receiving different weight values while using
the shared input values to compute different output values. To compute the output
row 1 (O1), the input and weight tiles undergo temporal switching and folding as
shown in Fig. 8.8(a), to evaluate computation frames ( 1 , 2 , 3 , and 4 ). According
to the computation order of OS dataflow, the mapped output tiles are changed fewer
times compared to the input and weight tiles.

To understand this mapping, consider the example illustrated in Fig. 8.8(a).
In the figure, for computation frame 1 , an input tile (yellow tile) is broadcasted
whereas the weight tile (yellow tile) is unicasted to DPEs. Therefore, DPE1 and
DPE2 both receive inputs (i11, i

2
1) while DPE1 receives weights (w1

1,w
1
2) and DPE2

receives weights (w2
1,w

2
2). For computation frame 1 , DPE1 and DPE2 compute

partial sum (psum) results towards output values o11 and o21, respectively. Then,
computation frame changes from 1→ 2 . For computation frame 2 , the temporal
folding (tf1→tf2) of input and weight tiles from yellow to pink tiles takes place as
shown in Fig. 8.8(a). The updated input and weight tiles (pink tiles) are broadcasted
and unicasted to DPEs, respectively. Subsequently, the DPE1 and DPE2 generate
the remaining psum results (i31w

1
3 + i41w

1
4) and (i31w

2
3 + i41w

2
4) towards output values

o11 and o21, respectively. Thus, the output tile being computed remains constant while
the input and weight tiles are changed to evaluate the psum results of o11 and o21. To
obtain the final values of o11 and o21, there is a need to accumulate the psum results
generated in DPE1 and DPE2 via computation frames 1 and 2 .

After accumulation, the temporal switching of weights (tsw1
1→tsw2

1) along with
the resetting of the temporal folding to tf1 is carried out to implement the compu-
tation frame 3 . This switching of weights moves the weight tile to columns 3 and
4 of the matrix W, thus resulting in the changing of the output tile to o31 and o41.
Computation frame 3 evaluates psum results for the newly changed output tile. Af-
ter completion of computation frame 3 , the temporal folding (tf1→tf2) of input and
weight tiles from yellow to pink tiles is again carried out to evaluate computation
frame 4 . Computation frame 4 generates the residual psum results for o31 and o41.
The accumulation of psum results from computation frame 3 and computation frame
4 generates the final values of o31 and o41. This accumulation is performed in HEANA
temporally by leveraging the temporal accumulation capability of the BPCA-based
design (as explained in Sections 3.2.4 and 3.2.5). With this accumulation, all the
values of output row 1 are evaluated. In Fig. 8.8(a), the arrows connecting the tiles
illustrate the direction of tile switching (changing), and the count of arrows between
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tiles signifies the number of switchings (changes). Thus, from Fig. 8.8(a), it is evident
that for the OS dataflow the output tiles are switched (changed) the least number of
times compared to the input or weight tiles.

Here, it’s important to note that the psum results generated by DPEs for evalu-
ating computation frames are in analog form, requiring subsequent analog-to-digital
conversion. HEANA and prior optical accelerators differ in the required number of
analog-to-digital conversions and the nature of the involved psum reduction (psum
accumulation) process. This is discussed next.

Figure 8.8: Mapping of GEMM operation between I and W with output stationary
dataflow on HEANA DPU compared to AMW DPU. (a) Temporal and Spatial tiling
of I , W , and O depending on DPU parameters M and N (b) Evaluation of output
row 1 (01) by HEANA DPU with BPCA (c) Evaluation of output row 1 (01) by AMW
DPU without BPCA.

Fig. 8.8(b) and Fig. 8.8(c) illustrate the processing of output row 1 O1 on HEANA
and AMW architectures, respectively. As described in Section 8.3.2, HEANA is in-
tegrated with BPCA consisting of capacitors that enable spatio-temporal in-situ ac-
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cumulations. During temporal switching cycle tsi1, two temporal switching cycles
of weights (tsw1

1 and tsw2
1) take place. Within tsw1

1 cyle, the DPU calculates out-
put values o11 and o21 involving computation frames 1 and 2 . As explained above,
for the computation frame 1 , during tf1, DPE1 and DPE2 generate analog psums
(i11w

1
1+i

2
1w

1
2) and (i11w

2
1+i

2
1w

2
2) towards o11 and o21, respectively. In HEANA, analog

psum values are stored in analog format as proportional voltage levels on capacitors
CDPE1

1 and CDPE2
1 of BPCAs. Subsequently, for frame 2 , during tf2 cycle, weight

values (w1
3, w

1
4) are mapped to DPE1, and weight values (w2

3, w
2
4) are mapped to

DPE2. Both DPE1 and DPE2 receive input values (i13, i
2
4) to generate residual psum

results towards output values o11 and o21. HEANA accrues the generated residual
psum results by incrementing a proportionate analog voltage on capacitors CDPE1

1

and CDPE2
1 atop the voltage level stored during the tf1 cycle. The final voltage ac-

crued on capacitors CDPE1
1 and CDPE2

1 is proportional to the final output values o11
and o21. Thus, HEANA employs in-situ temporal accumulation of psums. Finally,
the analog to digital conversion of o11 and o21 is carried out to produce final results as
shown in Fig. 8.8(b). In contrast, the AMW architecture lacks BPCAs, and there-
fore converts the analog psum results generated during tf1 and tf2 to digital format
using ADCs, before storing these results in buffers. Then, it employs an electronic
reduction network such as S Tree [93], to accumulate the psum results from tf1 and
tf2 to generate the final values for outputs o11 and o21. Thus, AMW requires more
analog-to-digital conversions and needs an external reduction network for performing
psum accumulations. Similarly, tsw2

1 computes o31 and o41 involving 3 and 4 , next
tsi1 gets updated to tsi2 for generating output pixels of output row 2 O2.

In summary, HEANA BPCAs offer several advantages. First, it significantly re-
duces the required count of analog-to-digital conversions, as psum results are inter-
mittently stored in BPCA capacitors. This reduction in analog-to-digital conversion
count translates into lower power consumption. Second, HEANA leverages the in-situ
temporal accumulation capabilities of BPCA, which eliminates the requirement of a
reduction network altogether. This elimination leads to a substantial reduction in
psum reduction latency and the associated energy consumption.

8.4.2 Input Stationary Dataflow

Fig. 8.9(a) illustrates the IS dataflow mapping. The input and weight matrices are
tiled similar to the tiling for the OS dataflow. However, the IS dataflow maps with
the least number of changes in input tiles. As a result, as shown in Fig. 8.7(b), the
computing functions performed during various computation frames differ between the
IS and OS dataflows. For computation frame 1 , in Fig. 8.9(a), the input tile (yellow
tile) is broadcasted, while the weight tile (yellow tile) is unicasted to DPEs. DPE1
and DPE2 compute the psum results toward output pixels o11 and o21, respectively.
Then, keeping the input tile (yellow tile) unchanged, temporal switching of the weight
tile is carried out (tsw1

1→tsw2
1) to evaluate computation frame 2 , resulting in the

generation of psum results belonging to o31 and o41 at DPE1 and DPE2, respectively.
After completion of computation frame 2 , all computation frames involving the in-
put tile (yellow tile) are completed. Subsequently, temporal switching of weight tile
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is again carried out (tsw2
1→tsw3

1) (labels are not depicted in Fig. 8.9(a)) along with
temporal folding (tf1→tf2) to perform computation frame 3 for generating the resid-
ual psum results belonging to output values o11 and o21. Finally, temporal switching
of weight tile is carried out (tsw3

1→tsw4
1)(labels are not depicted in Fig. 8.9(a)) to

compute computation frame 4 , generating residual psum results belonging to output
pixels o31 and o41. In the IS dataflow, as evident from the number of arrows between
the tiles shown in Fig. 8.9(a), the weight and output tiles are changed more often
than the input tiles.

Fig.8.9(b) and Fig.8.9(c) illustrate the processing of output row 1 (O1) on HEANA
and AMW architectures, respectively. In this IS dataflow, the order of temporal
weight switching cycle (tsw) and temporal folding cycle (tf) differ from the OS
dataflow. Initially, tsw1

1 and tf1 cycles are scheduled to perform computations of
frame 1 at DPE1 and DPE2, generating psum results toward o11 and o21 which in-
volve inputs i11 and i21. This textitpsum results are generated in the analog format
and they are stored as the accrued analog voltage levels on the capacitors CDPE1

1 and
CDPE2

1 using the BPCAs, as from Fig. 8.9(b). Then, by keeping i11 and i21 stationary, a
temporal switching of weights to cycle tsw2

1 is carried to schedule computation frame
2 to generate psum results belonging to o31 and o41. In this case, HEANA stores the
generated psum results in different capacitors, namely CDPE1

2 and CDPE2
2 , within the

BPCAs. This selection of a different set of capacitors is necessary as the psum results
generated during cycle tsw1

1 for frame 1 and cycle tsw2
1 for frame 2 belong to differ-

ent output tiles, and therefore they cannot be accumulated on the same capacitors.
This is the reason why our BPCAs incorporate multiple feedback capacitors; multi-
ple capacitors enable the spatio-temporal accumulation and storage of multiple psum
results corresponding to different output tiles to meet the requirement of different
dataflow.

During cycles tsw2
1 and tf1, all computations involving i11 and i21 are completed.

Following this, cycle tsw3
1 is scheduled in conjunction with cycle tf2, aimed at mapping

inputs i31 and i41 for the computation of frame 3 which generates residual psum results
associated with o11 and o21. In this process, HEANA utilizes capacitors CDPE1

1 and
CDPE2

1 to store psum results generated during cycles tsw1
1 and tf1. The generated

psum results for frame 3 are temporally accumulated on top of the psum results
stored on the capacitors during frame 1 . At the end, the total voltage accrual
provides final output values o11 and o21, which are converted using analog-to-digital
conversion. In contrast to HEANA, in Fig. 8.9(c), the AMW architecture needs
multiple analog-to-digital conversions and the utilization of a reduction network to
reduce the psums associated with o11 and o21.

Likewise, cycles tsw4
1 and tf2 are utilized to compute frame 4 for generating o31

and o41. For that, HEANA utilizes capacitors CDPE1
2 and CDPE2

2 for in-situ temporal
accumulations of psums, whereas AMW once again relies on a reduction network for
the accumulation of psums.
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Figure 8.9: Mapping of GEMM operation between I and W with input stationary
dataflow on HEANA DPU compared to AMW DPU. (a) Temporal and Spatial tiling
of I , W , and O depending on DPU parameters M and N (b) Evaluation of output
row 1 (01) by HEANA DPU with BPCA (c) Evaluation of output row 1 (01) by AMW
DPU without BPCA.

8.4.3 Weight Stationary Dataflow

Fig. 8.10(a) depicts the WS dataflow mapping and tiling while computing column
1 (O1) of output matrix O. Unlike the IS and OS tiling, in the WS dataflow, the
inputs are spatially mapped onto both wavelengths and DPEs, while weights are
spatially mapped to wavelengths and reused across DPEs. As shown in Fig. 8.10,
the shape of the weight tile depends on N, and the input tile shape is determined
based on N and M. In the WS dataflow, the required counts of temporal switching
for input and output tiles are more compared to the required count of switching of
weight tiles. Therefore, the computation order of the tiles in the WS dataflow differs
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when compared to the IS and OS dataflows. In the WS dataflow, for computation
frame 1 (see Fig. 8.10(a)), the input tile (yellow tile) is unicasted, while the weight
tile (yellow tile) is broadcasted to DPEs. While processing computation frame 1 ,
DPE1 and DPE2 compute the psum results belonging to output values o11 and o12,
respectively. Next, to process computation frame 2 , temporal switching of input tile
is carried out (tsi11→tsi21) to evaluate psum results belonging to o13 and o14 at DPE1
and DPE2, respectively. During frame 2 , all computing functions involving weight
tile (yellow tile) are completed. Subsequently, temporal switching of the input tile
is again carried out (tsi21→tsi31) (labels are not depicted in Fig. 8.10(a)) along with
temporal folding (tf1→tf2) to change the yellow tiles to the pink tiles. Here, DPE1
and DPE2 process computation frame 3 for generating the residual psum results
toward output values o11 and o12. Finally, temporal switching of input tile is carried
out (tsi31→tsi41)(labels are not depicted in Fig. 8.10(a)) to process computation frame
4 to generate residual psum results toward output values o13 and o14. As evident from
Fig. 8.10(a), the input and output tiles are changed more often than the weight tiles
in the WS dataflow.

Fig. 8.10(b) and Fig. 8.10(c) illustrate the processing of output column 1 O1

on HEANA and AMW architectures employing the WS dataflow, respectively. The
WS dataflow uses temporal input switching (tsi) and temporal folding (tf). The tsi11
and tf1 cycles are scheduled for processing computation frame 1 , to generate psum
results toward o11 and o12. This involves weights w1

1 and w1
2. The generated psum

results are stored in analog format on capacitors CDPE1
1 and CDPE2

1 by HEANA
(Fig. 8.10(c)). Subsequently, by keeping weights w1

1 and w1
2 stationary, a temporal

switching to cycle tsi21 is executed for computation frame 2 to generate psum results
toward output values o13 and o14. To store these psum results, capacitors CDPE1

2 and
CDPE2

2 within the BPCAs are used by HEANA. After cycle tsi21, all computations
involving w1

1 and w1
2 are completed. Then, computation frame 3 is executed with

cycles tsi31 and tf2 by mapping weights w1
3 and w1

4, to generate the residual psum
results associated with output values o11 and o12. HEANA performs in-situ temporal
accumulation of psum results generated during computation frames 1 and 3 by using
capacitors CDPE1

1 and CDPE2
1 . This accumulation process results in the final voltage

levels on the capacitors that are proportional to the final output values o11 and o12.
On the other hand, from Fig. 8.10(c), AMW architecture derives final output values
o11 and o12 using multiple analog-to-digital conversions and partial sum reduction at
the reduction network. Similarly, to map computation frame 4 , the combination of
cycles tsi41 and tf2 is utilized to generate output values o13 and o14. Here, HEANA
utilizes capacitors CDPE1

2 and CDPE2
2 for in-situ temporal accumulations of psum

results corresponding to o13 and o14, whereas AMW once again relies on a reduction
network for the accumulation of psum results.

As evident from the examples shown in Fig. 8.8, Fig. 8.9, and Fig. 8.10, HEANA
requires fewer analog-to-digital conversions to generate an output value. Table 8.1
reports the number of analog-to-digital conversions needed by a DPU to compute
all the output values of a GEMM operation. From the table, the AMW and MAW
architectrues require ceil(K/N)× more conversions than HEANA. Hence, HEANA
can significantly reduce the energy and latency of analog-to-digital conversions as
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Figure 8.10: Mapping of GEMM operation between I and W with weight stationary
dataflow on HEANA DPU compared to AMW DPU. (a) Temporal and Spatial tiling
of I , W , and O depending on DPU parameters M and N (b) Evaluation of output
column 1 (01) by HEANA DPU with BPCA (c) Evaluation of output column 1 (01)
by AMW DPU without BPCA.

shown in our system-level analysis (see Section 8.6.3). Furthermore, it is worth noting
that HEANA is not only more efficient in terms of energy consumption and latency
but also more flexible and compatible with a wide range of input dimensions.

8.4.4 Operational Logistics and Benefits of HEANA

Capacitor Selection Based on Dataflows: For the OS dataflow, the psum results gen-
erated by the BPCA in consecutively scheduled computation frames belong to the
same output value. Therefore, the same capacitor is selected for several continuous
frames until the accumulation of all the psum results belonging to the same output

161



Table 8.1: Number of analog-to-digital (AtoD) conversions required by various optical
DPUs for a GEMM operation. C and D are the height and width of the output matrix,
where K is the width (height) of the input (weight) matrix. N=DPE size.

DPU Dataflow
AtoD

Conversions

HEANA
OS C×D
WS C×D
IS C×D

AMW/MAW
OS C×D×ceil(K/N)
WS C×D×ceil(K/N)
IS C×D×ceil(K/N)

value has been completed (Fig. 8.8(b)). In contrast, for the IS dataflow (Fig. 8.9(b))
and the WS dataflow (Fig. 8.10(b)), the psum results generated by the BPCA in
consecutive frames belong to different output values. Therefore, a different capaci-
tor is selected for every frame by controlling the corresponding switches (Fig. 8.3)
using a demux. From the sizes of the Toeplitz matrices of the state-of-the-art CNNs
[37], we have determined that the BPCA in our HEANA architecture may require up
to p=4608 capacitors to support seamless accumulation of psum results during the
execution of the IS and WS dataflow.

Accumulation Benefits of HEANA: In HEANA, a psum result is accumulated as
a voltage level accrued on a capacitor of a BPCA. After each frame, the capacitor
can hold on to the accrued voltage for a significant amount of time, thus eliminating
the need to convert the psum result in the digital format via ADC and store it in a
buffer temporarily. This eliminates the latency and energy overheads related to ADC
conversions and digital buffering (read+write) of psum results. Several of such psum
results might be required to be accumulated together to produce one value in the
output matrix O (Fig. 8.1). The use of TIR in our BPCA enables the accumulation
of several such psum results temporally over multiple frames (over continuously, in-
termittently, or sporadically scheduled frames, depending on the utilized dataflow),
by allowing a linear increment of the accrued voltage on the capacitor proportion to
the psum result arriving at each frame. This eliminates the need to employ dedicated
psum reduction networks, thereby eliminating related latency and energy overheads
as well.

8.5 Scalability Analysis

To determine the achievable size N for our HEANA DPU, we adopt the scalability
analysis equations (Eq. 8.1, Eq. 8.2, and Eq. 8.3) from [9] and [152, 186]. Table 8.2
reports the definitions of the parameters and their values used in these equations. We
consider M=N and first solve Eq. 8.1 and Eq. 8.2 for a set of DRs={1, 5, 10} GS/s,
to find a corresponding set of PPD−opt. Then, we solve Eq. 8.3 for the maximum
value of N that achieves PO/p greater than obtained PPD−opt values across the set
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of DRs. Fig. 7.5 reports the achievable N of HEANA, AMW and MAW DPUs for
different bit-precision levels (B) across various DRs. The achievable N value defines
the feasible number of multipliers per DPE; thus, this N also defines the maximum
size of the spatial dot product that can be generated in our DPU. As evident from
Fig.7.5, our HEANA can support larger N value compared to AMW and MAW at all
bit-precision levels across different DRs. For instance, HEANA achieves larger N=83
for 4-bit precision at 1 GS/s, compared to AMW and MAW, which achieve N=36
and N=43, respectively. This is due to HEANA’s spectrally hitless DPE architecture
(as discussed earlier in Section 8.3.2) due to which HEANA significantly reduces the
crosstalk-related power penalty contributing to Ppenalty. This enables HEANA to
support larger N compared to AMW and MAW at the same input laser power.

B =
1

6.02

[
20log10(

R× PPD−opt
β
√

DR√
2

− 1.76

]
(8.1)

β =

√
2q(RPPD−opt + Id) +

4kT

RL

+R2P 2
PD−optRIN +

√
2qId +

4kT

RL

(8.2)

(8.3)
PO/p(dBm) = PLaser − PSMF−att − PEC−IL − PSi−att ×N × dMRR

− PMRM−IL − (N − 1)PMRM−OBL − Psplitter−IL × log2(M)

− PMRR−W−IL − (N − 1)PMRR−W−OBL − Ppenalty − 10log10(N)

Figure 8.11: Supported DPU size N (=M) for bit precision={1, 2, 3, 4, 5, 6, 7, 8}
bits at data rates (DRs)={1, 5, 10} GS/s, for AMW, MAW, and HEANA DPUs.

8.6 Evaluation

8.6.1 System Level Implementation of HEANA

Fig. 8.12 illustrates the system-level implementation of our HEANA accelerator. It
consists of global memory that stores CNN parameters and a preprocessing and map-
ping unit. It has a mesh network of tiles. Each tile contains 4 DPUs interconnected
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Table 8.2: Definition and values of various parameters used in Eq. 8.1, Eq. 8.2, and
Eq. 8.3 (from [9, 152, 186]) for the scalability analysis.

Parameter Definition Value
PLaser Laser Power Intensity 10 dBm
Rs PD Responsivity 1.2 A/W
RL Load Resistance 50 Ω
Id Dark Current 35 nA
T Absolute Temperature 300 K

RIN Relative Intensity Noise -140 dB/Hz

PEC−IL
Fiber to Chip Coupling

Insertion Loss
1.44

PMRR−W−IL
Silicon Waveguide

Insertion Loss
0.3 dB/mm

Psplitter−IL Splitter Insertion Loss 0.01 dB

PMRM−IL
Optical Microring Modulator

Insertion Loss
4 dB

PMRR−IL
Optical Microring Resonator

Insertion Loss
0.01 dB

PMRM−OBL Out of Band Loss 0.01 dB

PPenalty

MAW Network Penalty 4.8 dB
AMW Network Penalty 5.8 dB

HEANA Network Penalty 1.8 dB

Figure 8.12: System-level overview of our HEANA accelerator.

(via H-tree) with a unified buffer, as well as pooling and activation units. Each DPU
consists of multiple DPEs and each DPE is equipped with a dedicated input and
output FIFO buffer [192] to store intermittent weights, inputs, and psum results.
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Table 8.3: DPU size (N) and DPU Count (#) at 4-bit precision across various DRs
for different accelerators.

Datarate
1 GS/s 5 GS/s 10 GS/s

DPU N # N # N #
AMW 36 207 17 900 12 1950
MAW 43 280 21 1100 15 1610

HEANA 83 50 42 180 30 320

Table 8.4: Accelerator Peripherals and DPU Parameters [152]

Power(mW) Latency Area(mm2)
Reduction Network 0.050 3.125ns 3.00E-5

Activation Unit 0.52 0.78ns 6.00E-5
IO Interface 140.18 0.78ns 2.44E-2
Pooling Unit 0.4 3.125ns 2.40E-4

eDRAM 41.1 1.56ns 1.66E-1
Bus 7 5 cycles 9.00E-3

Router 42 2 cycles 1.50E-2
DAC (ALL)1 [181] 12.5 0.78ns 2.50E-3

DAC(HEANA)2[82] 26 0.78ns 6.00E-3
EO Tuning 80 µW/FSR 20ns -
TO Tuning 275 mW/FSR 4µs -

8.6.2 Simulation Setup

For evaluation, we modeled our HEANA accelerator from Fig. 8.12 using our custom-
developed, transaction-level, event-driven, python-based simulator. We simulated
the inference of four CNNs (batch size=1 and batch size=256): GoogleNet [162],
ResNet50 [65], MobileNet V2 [138], and ShuffleNet V2 [208]. We evaluate frames-
per-second (FPS) and FPS/W (energy efficiency).

We compared our HEANA with the AMW [22] and MAW [109] accelerators. Our
BPCA can be easily integrated into AMW and MAW accelerators. Therefore, we
have considered two variants of AMW and MAW: (1) AMW and MAW (2) AMW
integrated with BPCA (AMWBPCA) and MAW integrated with BPCA (MAWBPCA).
Each accelerator variant is evaluated for the weight stationary (WS ), input stationary
(IS ), and output stationary (OS ) dataflows. All accelerators are operated for 4-bit
integer precision across datarates 1GS/s, 5GS/s, and 10GS/s. From Fig. 8.11, for
these parameters HEANA, AMW, and MAW achieve N reported in Table 8.3. For
a fair comparison, we performed area proportionate analysis, wherein we scaled the
DPU count for each photonic CNN accelerator so that the total area of DPUs in each
accelerator matches with the area of HEANA (N=83 ) having 50 DPUs. Table 8.3
reports the scaled DPU count of AMW, MAW, and HEANA at various data rates.
Table 8.4 gives the parameters used for our evaluation.
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Figure 8.13: (a) Normalized FPS (log scale) (b) Normalized FPS/W for HEANA
versus AMW and MAW accelerators with input batch size=1. Results of FPS and
FPS/W are normalized with respect to AMW executing weight stationary dataflow
(AMW-WS) for ResNet50 at 10 GS/s.

8.6.3 Evaluation Results

Fig. 8.13(a) shows normalized FPS results for various accelerators with batch size=1
at different datarates (DRs), normalized to AMW-WS for ResNet50 at 10 GS/s. Our
accelerator HEANA outperforms MAW and AMW for the IS, OS, and WS dataflows
across all data rates. At 1 GS/s, HEANA-OS achieves up to 30× and 25× better FPS
than AMW and MAW, respectively, across all dataflows. As DR increases to 5 GS/s
and 10 GS/s, our HEANA-OS further improves FPS, achieving up to 69× and 113×
better FPS than AMW, respectively, across all dataflows. HEANA-OS achieves up
to 55× and 83× better FPS than MAW at 5 GS/s and 10 GS/s, across all dataflows.

These significant improvements in throughput for HEANA are due to two reasons.
First, our HEANA with spectrally hitless architecture supports a larger DPU size
(N=83 ), i.e., the size of the spatial dot product operation N (refer Table 8.3) and
the number of parallel dot product operations M (=N ), which increases the overall
throughput with improved parallelism. Second, our BPCA eliminates the latency
corresponding to psum reductions and corresponding buffer accesses for all dataflows
as discussed in Sections 8.3.2 and 8.4.4.

Among dataflows, the OS dataflow achieves better throughput for HEANA com-
pared to the WS and IS dataflows. For HEANA-OS, our BPCA activates the incoher-
ent superposition [29] at BPD for accumulation (see Section 8.3.2), allowing TAOMs
to operate at least 10× faster than the sample rate of the BPCA. Thus, HEANA-
OS achieves FPS of up to 2.3× and 6.2× better than HEANA-IS and HEANA-WS,
respectively, across all DRs.
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Figure 8.14: (a) Normalized FPS (log scale) (b) Normalized FPS/W for HEANA
versus AMW and MAW accelerators with input batch size=256. FPS and FPS/W
results are normalized with respect to AMW executing weight stationary dataflow
(AMW-WS) for ResNet50 at 10 GS/s.

In the case of AMW and MAW architectures, the OS dataflow outperforms the
WS and IS dataflow. The OS dataflow requires the fewest number of output buffer
accesses compared to IS and WS. Additionally, the OS dataflow allows for the tem-
poral accumulation of psums at a reduction network; therefore, consecutively arriving
psums can be added together using a temporal accumulator [93] without having to
store them temporarily in a buffer. Therefore, for AMW and MAW, the OS dataflow
is better than the IS and WS dataflows. Furthermore, the WS dataflow achieves a
lower FPS than the IS dataflow for AMW and MAW, as it incurs a higher buffer
access latency due to more frequent buffer accesses.

Fig. 8.13(b) shows FPS/W (log scale) results for various accelerators with batch
size=1 at different DRs, normalized to AMW-WS for ResNet50 at 10 GS/s. Our
HEANA accelerator on gmean achieves better FPS / W across four CNNs and outper-
forms MAW and AMW for IS, OS, and WS dataflows across all datarates. At 1 GS/s,
HEANA-OS on gmean achieves up to 36× and 32× better FPS/W than AMW and
MAW, respectively, across all the dataflows. Similarly, at 5 GS/s and 10 GS/s, our
HEANA-OS achieves up to 120× and 244× better FPS/W compared to AMW, across
all dataflows. HEANA-OS achieves up to 104× and 204× better FPS/W compared
to MAW at 5 GS/s and 10 GS/s, across all dataflows. HEANA-IS and HEANA-WS
also achieve up to 137× and 54× better FPS/W compared to AMW and MAW across
all the datarates. Our HEANA consumes less energy and static power compared to
AMW and MAW. In HEANA, energy consumption related to psum buffer accesses
is significantly reduced because of BPCA’s in-situ spatio-temporal accumulations.
The use of BPCA in HEANA also eliminates the energy consumption of the exter-
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nal psum reduction network. As discussed in section 8.4, HEANA requires fewer
ADC conversions, contributing to energy savings. Additionally, while AMW and
MAW employ two MRRs to perform a single multiplication, HEANA employs a sin-
gle MRR-based TAOM, thereby reducing static power consumption. These benefits
collectively result in better FPS/W for HEANA-OS, HEANA-WS, and HEANA-IS.
HEANA-OS achieves at least 2.1× and 6× better FPS/W than HEANA-WS and
HEANA-IS across all the datarates. As DR increases, the FPS/W decreases across
all the architectures due to increased energy consumption of ADCs and DACs [152].

Fig. 8.14(a) and Fig. 8.14(b) shows FPS (log scale) and FPS/W (log scale)
results for various accelerators with batch size=256 at different DRs, normalized to
AMW-WS for ResNet50 at 10 GS/s. Larger batch sizes yield significantly better
benefits from HEANA, as HEANA-OS on gmean achieves up to 347× better FPS
than other architectures across all datarates. Similarly, as the batch size grows, the
advantages of HEANA become more pronounced in FPS/W results. HEANA-OS on
gmean achieves up to 952× better FPS/W than other architectures across all the
datarates. We found that the impact of dataflow choice is similar to that of batch
size=1. Next we discuss the results of HEANA when MAW and AMW are integrated
with BPCA.

Figure 8.15: (a) Normalized FPS (log scale), (b) Normalized FPS/W for HEANA
versus BPCA-integrated versions of AMW and MAW accelerators with input batch
size=1. Results of FPS and FPS/W are normalized with respect to AMW executing
input stationary dataflow (AMWBPCA-WS) for ResNet50 at 10 GS/s.

Fig. 8.15 (a) shows FPS (log scale) results for HEANA versus BPCA integrated
AMWBPCA and MAWBPCA accelerators with batch size=1 at different DRs, normal-
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Figure 8.16: (a) Normalized FPS (log scale), (b) Normalized FPS/W for HEANA
versus BPCA-integrated versions of AMW and MAW accelerators with input batch
size=256. Results of FPS and FPS/W are normalized with respect to AMW executing
input stationary dataflow (AMWBPCA-WS) for ResNet50 at 10 GS/s.

ized to AMW-WS for ResNet50 at 10 GS/s. Our accelerator HEANA on gmean across
four CNNs, outperforms AMWBPCA and MAWBPCA for IS, OS, and WS dataflows
across all datarates. At 1 GS/s, HEANA-OS on gmean achieves up to 6.3× and 4.6×
better FPS than AMWBPCA and MAWBPCA, respectively, across all the dataflows.
At higher datarates such as 5 GS/s and 10 GS/s, our HEANA-OS achieves up to
8× and 9× better FPS than AMWBPCA and MAWBPCA, across all dataflows. We
can observe that the throughput gap between HEANA and BPCA-integrated AMW
and MAW architectures decreases, with the integration of BPCA, AMWBPCA and
MAWBPCA architectures leverage in-situ temporal accumulations at BPCA reducing
the latency corresponding to the reduction of psums. Therefore, AMWBPCA and
MAWBPCA achieve better FPS than baseline AMW and MAW. With the integration
of BPCA, the throughput order of dataflows remains unchanged in AMWBPCA and
MAWBPCA. Although IS and WS dataflow exploit BPCA in-situ accumulation, they
still need frequent switching of capacitors at BPCA to reduce psums corresponding
to various output pixels. In contrast, OS dataflow performs temporal accumulation
without requiring capacitor switching at BPCA (refer Section 8.4), thus giving better
throughput than IS and WS dataflow.

Fig. 8.15(b) shows FPS/W (log scale) results for HEANA versus BPCA integrated
AMWBPCA and MAWBPCA accelerators with batch size=1 at different DRs, normal-
ized to AMW-WS for ResNet50 at 10 GS/s. Our accelerator HEANA on gmean
achieves better FPS/W across four CNNs, outperforms AMWBPCA and MAWBPCA
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for IS, OS, and WS dataflows across all datarates. At 1 GS/s, HEANA-OS on gmean
achieves up to 5.4× and 3.6× better FPS/W than AMWBPCA and MAWBPCA, re-
spectively, across all the dataflows. At higher datarates such as 5 GS/s and 10
GS/s, our HEANA-OS achieves up to 35× and 26× better FPS than AMWBPCA and
MAWBPCA, across all dataflows. As mentioned before, HEANA’s TAOMs reduce the
static power consumption of MRRs by using a single MRR design which significantly
reduces the power consumption.

Fig. 8.16(a) and Fig. 8.16(b) show FPS (log scale) and FPS/W (log scale) results
for HEANA versus BPCA-integrated versions of AMWBPCA and MAWBPCA acceler-
ators with batch size=256 at different DRs, normalized to AMW-WS for ResNet50
at 10 GS/s. HEANA-OS on gmean achieves up to 23× better FPS than other ar-
chitectures across all datarates. Similarly, HEANA also achieves higher FPS/W for
batch size=256. HEANA-OS on gmean achieves up to 92× better FPS/W than other
architectures across all the datarates. We found that the impact of dataflow choice
is similar to that of batch size=1.

The area efficiency values (FPS/W/mm2) for each accelerator across various CNNs
are similar to the energy efficiency (FPS/W) values for area proportional analysis
(when the area of all the accelerators is matched to the area of HEANA). There-
fore, we have not reported area efficiency results. Overall, HEANA significantly
improves throughput (FPS) and energy efficiency (FPS/W) across various data rates
and dataflows compared to the tested analog optical accelerators.

8.6.4 Inference Accuracy Results

As discussed in Section 8.3.2, HEANA provides several advantages compared to prior
analog accelerators, but TAOMs of HEANA incur some inaccuracies in dot prod-
uct computation (see Section 8.3.2) due to the possible calibration errors and analog
noise. To evaluate the impact of these inaccuracies on CNN inference, we evaluated
the inference accuracy of CNN models on HEANA. We integrated our custom sim-
ulator with ML-framework PyTorch [126] and incorporated a mean absolute error
model of TAOM-based multiplication operation (see Section 8.3.2) in the simulator.
Then, using this simulator, we performed inference on ImageNet validation dataset
[171] (50k images and 1k classes). Table 8.5 reports the Top 1 and Top 5 inference
accuracy across various 8-bit quantized CNN models on the analog architectures and
HEANA. Our HEANA accelerator results in Top 1 and Top 5 errors of 0.1% and
0.1%, respectively, on average across CNN models. Our HEANA accelerator’s ex-
cellent gains in FPS and FPS/W make this minor drop in CNN inference accuracy
tolerable.

8.7 Discussion

HEANA presents several innovations at the circuit level and architecture level to miti-
gate the shortcomings of prior optical CNN accelerators. At the circuit level, HEANA
employs a novel time-amplitude analog optical modulator (TAOM) that generates the
product of one input value and weight value as a pulse-width-amplitude-modulated
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Table 8.5: Top-1 and Top-5 inference accuracy comparison of HEANA versus MAW
for 8-bit quantized CNNs {GoogleNet (GNet), ResNet50 (RNet50), MobileNet V2
(MNet V2), ShuffleNet V2 (SNet V2)} and ImageNet dataset [45].

HEANA
ACCURACY
DROP (%)

GNet
[162]

RNet
[65]

MNet V2
[138]

SNet V2
[208]

Gmean

TOP-1 0 0 0.1 0.1 0.1
TOP-5 0.1 0.1 0.1 0.1 0.1

(PWAM) symbol whose optical energy is proportional to the product result. TAOM
achieves this by employing a single microring as opposed to the dual microrings used
by prior works[22, 157, 109]. By using a single microring for each multiplication,
HEANA reduces the needed feedback control units to half, which decreases the static
power consumption and improves the energy efficiency. Use of single microring per
multiplication also reduces the overall optical losses and power penalties, furthering
the energy efficiency advantage. In addition, HEANA also employs a balanced photo-
charge accumulator (BPCA) which leverages the capabilities of a balanced photode-
tector to perform in-situ spatio-temporal accumulations. As discussed in Section 8.4,
BPCA improves power consumption by reducing the analog-to-digital conversions and
buffer accesses, and by completely eliminating the use of a reduction network for ac-
cumulations. With all these cumulative advantages HEANA gains at least 32× better
energy efficiency than prior optical accelerators. At the architectural level, HEANA
presents a spectrally hitless architecture that mitigates inter-modulation crosstalk
which reduces the power penalty, increasing the available power budget. The saved
power budget allows HEANA to improve the DPU size from 44×44 to 83×83 at
4-bit precision, this improves spatial parallelism and decreases the number of psum
reductions required. This in turn significantly decreases the latency corresponding to
the analog-to-digital conversions and psum reductions to complete the computations
by reducing the required analog-to-digital conversions and psum reductions. These
benefits allow HEANA to achieve at least 23× better throughput than prior optical
accelerators. Thus, due to these cross-layer innovations, HEANA achieves superior
performance compared to prior optical CNN accelerators.

8.8 Summary

In this Chapter, we presented HEANA, a novel hybrid time-amplitude analog optical
GEMM accelerator. The dot product element of our HEANA employs a spectrally
hitless array of novel hybrid time-amplitude analog optical modulators (TAOM) that
perform multiplication operations, combined with a balanced photo-charge accumu-
lator (BPCA) that performs spatio-temporal accumulation of the individual multipli-
cation results from TAOMs. Each TAOM utilizes a single active microring resonator
(MRR) to perform multiplication operations, allowing for the electro-optic tuning
of both input and weight values. This enables the flexibility of executing various
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CNN dataflows namely input stationary, output stationary, and weight stationary
dataflows. Moreover, The spectrally hitless arrangement of TAOMs in HEANA elim-
inates spectral-interference and various crosstalk effects encountered by current MRR-
enabled analog photonic accelerators. In addition, the single MRR implementation
of TAOMs substantially reduces the area consumption and the insertion losses in
HEANA, thereby increasing its energy efficiency. Also, the BPCA circuit in HEANA
enables in-situ accumulation of a large number of partial sums, thereby reducing the
overall latency and energy consumption of CNN processing.

We performed detailed modeling and characterization of our TAOM unit us-
ing photonics foundry-validated tools from ANSYS/Lumerical. Here, we performed
time-domain simulations from which we evaluated the performance of our TAOM in
terms of accuracy and precision. We have also performed a scalability analysis of
our HEANA’s dot product units, to determine their achievable maximum size and
supported bit-precision. Finally, we evaluated HEANA for input stationary, output
stationary, and weight stationary dataflows at the system-level, and compared its
performance with two well-known photonic CNN accelerators from prior works. Our
system-level evaluation results for four CNN models show that HEANA provides im-
provements of up to 25× and 32× in throughput, and energy efficiency, respectively,
compared to two prior optical analog accelerators AMM and MAM, with Top-1 ac-
curacy drop of only up to 0.1%.
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Chapter 9 Stochastic Computing based Optical Accelerator with
Functional Reconfigurability for efficient inference of Heterogeneous
Quantized CNNs

9.1 Introduction

Convolutional Neural Networks (CNNs) have transformed various artificial intelli-
gence tasks, including image recognition, language translation, and autonomous driv-
ing [96, 47], due to their exceptional inference accuracy. As CNNs are applied to tackle
progressively intricate tasks, their demand for computational power and memory has
correspondingly escalated. The substantial computational and storage demands of
CNNs hinder their practical application. Thus, to enhance the speed and efficiency of
CNN inference, model compression methods such as quantization are widely utilized
[61, 214, 56]. Quantization techniques enable the creation of compact CNNs com-
pared to their floating-point equivalents by representing the weights/inputs of CNNs
with lower precision. These quantized techniques can be categorized into three main
types: homogeneous quantization, heterogeneous quantization, and binary quantiza-
tion. Homogeneous quantization assigns the same fixed precision to most or all layers
of a CNN, simplifying implementation but potentially sacrificing accuracy. Heteroge-
neous quantization adjusts the precision of each layer based on its impact on accuracy,
aiming to balance model size and inference accuracy. Binary quantization reduces
both input and weight precision to 1-bit, significantly reducing memory footprint
and computational complexity but potentially compromising accuracy, particularly
for complex tasks. Overall, quantization offers a dual benefit by reducing both mem-
ory usage and energy requirements for CNN inference.

In addition to these techniques, the ever-increasing complexity and inference time
of CNNs has pushed for highly customized CNN hardware accelerators [20]. Among
the CNN hardware accelerators from the literature, silicon-photonic accelerators have
shown great promise to provide unparalleled parallelism, ultra-low latency, and high
energy efficiency [109, 58, 186, 22, 34, 157]. Typically, a silicon-photonic CNN accel-
erator consists of multiple Processing Units (PUs) that perform multiple dot product
operations in parallel. Several optical CNN accelerators have been proposed in prior
works based on various silicon-photonic devices, such as Mach Zehnder Interferometer
(MZI) (e.g., [206], [44]) and Microring Resonator (MRR) (e.g., [22], [157]).

Among these optical CNN accelerators from prior work, the MRR-enabled analog
optical accelerators (e.g., [109, 22, 58, 145, 157, 166]) have shown disruptive perfor-
mance and energy efficiencies, due to the MRRs’ compact footprint, low dynamic
power consumption, and compatibility with cascaded dense wavelength division mul-
tiplexing (DWDM). However, these accelerators face several challenges that hinder
their scalability, throughput, and energy efficiency. These prior accelerators em-
ploy a combination of microring modulators (MRM) input array and MRR weight
bank to perform dot product operation between input and weight values. The inter-
modulation crosstalk in MRM input array and inter-spectral, electrical, and thermal
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crosstalk effects in MRR weight banks reduce the available optical power budget in
PUs. The reduction in the optical power budget significantly reduces the achievable
PU size and supported bit-precision [9, 152]. In addition, in these accelerators, cas-
caded dense wavelength division multiplexing also limits the scalability due to limited
free spectral range [9]. Moreover, the proposed accelerators were tailored for either
homogeneous quantized CNNs or binary quantized CNNs, making them unsuitable for
executing the alternative type of CNNs due to differing computational requirements.
Binarized CNNs a.k.a Binary neural networks (BNNs) necessitate XNOR operations,
while homogeneous quantized CNNs rely on dot product operations, leading to a mis-
match in functionality. Furthermore, the development of accelerators for processing
heterogeneous quantized CNNs has largely been overlooked in the literature [156].
Accelerators designed for homogeneous quantized CNNs are inefficient at processing
heterogeneous quantized CNNs because they do not effectively utilize the advantages
of low precision layers, instead they process them at high precision. Additionally,
none of the MRR-based CNN accelerators proposed to date support the execution
of all types of quantized CNN models: homogeneously quantized, heterogeneously
quantized, and binary quantized. Besides, prior accelerators have not exploited the
application of homodyne incoherent superposition at photodetectors for accumula-
tion.

To address these shortcomings, this Chapter presents a novel Stochastic Comput-
ing based Optical Accelerator with Functional Reconfigurability (SCOAR). SCOAR
employs a novel design of reconfiguarble MRR-based logic gates (RLGs) in a spec-
trally hitless arrangement to eliminate spectral-interference and various crosstalk ef-
fects. Our RLG uses a single MRR to perform stochastic multiplication or XNOR
operation depending on the quantized CNN requirements. SCOAR also employs pre-
cision adaptive input peripherals to dynamically change the supported precision to
efficiently process heterogenously quantized CNNs. Moreover, SCOAR employs a
balanced photocharge accumulator, which inherently supports the accumulation of a
very high number of psums, thereby eliminating the need of using external psum re-
duction networks, to consequently reduce the overall latency and energy consumption
of quantized CNN processing.

Our key contributions in this Chapter are summarized below:

• We present our invented, novel, functionally flexible CNN accelerator called
SCOAR, which employs an array of MRR based reconfigurable logic gates
(RLG) in spectrally hitless PU architecture and highly scalable in-situ spatio-
temporal accumulators called Balanced Photo-Charge Accumulators (BPCAs);

• We present detailed modeling and characterization of our invented RLG us-
ing foundry-validated, commercial-grade, photonic-electronic design automa-
tion tools (Section 9.4.3);

• We employ our designed RLGs and BPCAs to forge a highly scalable and
functionally flexible CNN accelerator named SCOAR, which employs RLG and
BPCA-based scalable PUs (Section 9.4);
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• We perform a comprehensive scalability analysis for our SCOAR PUs, to deter-
mine their achievable maximum size N, operating speed, and error susceptibility
(Section 9.5);

• We implement and evaluate SCOAR at the system-level using our in-house
simulator, and compare its performance and inference accuracy for processing
all types of quantized CNNs with four MRR based CNN accelerators from prior
works (Section 8.6.3).

9.2 Preliminaries

9.2.1 Quantization of Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have become the standard deep learning ar-
chitecture for achieving remarkable accuracy in computer vision tasks. However, the
continual growth in model sizes poses significant challenges for hardware resources,
including storage and computational requirements, during both training and infer-
ence stages [20]. In recent years, research efforts in both software and hardware have
focused on the quantization of CNNs [106] to perform low-precision inference. Gener-
ally, 32-bit (full-precision) floating point numbers are used to represent weights (W )
and inputs (I ) of CNNs. Quantization converts the full-precision weights and inputs
to fixed-point numbers with lower bit-precision, such as 8, 4, and 1-bit [74]. The
conversation reduces memory usage by storing values in low bit-precision, and it also
decreases FLOPs by replacing high-cost floating-point operations with low-cost fixed-
point operations. Homogeneous quantization methods use the fixed precision for
all (or most of) the layers of CNNs. However, such uniform bit-precision assignment
can be suboptimal since quantizing different layers can have a different impact on
the accuracy and efficiency of the overall network. For example, among all the layers
of a CNN, the first and last layers cause more accuracy drop in quantization [205]
whereas other layers are less sensitive to quantization. Heterogeneous quantiza-
tion methods, consider this variation of sensitivity towards quantization in layers
and quantize different layers to lower bit widths based on their impact on accuracy.
Such quantization methods [195] result in mixed-precision heterogeneous quantized
CNNs with variations in inter-layer bit-precision requirements. These heterogenous
quantized CNNs [195] require lower memory and computation requirements than
fixed precision quantized CNNs. Furthermore, binary quantization represents an
extreme form of quantization wherein both input and weight values are quantized to
1-bit precision [132]. This approach significantly reduces memory usage and simplifies
computation by relying on basic logical XNOR operations. Networks employing this
technique are often termed Binary Neural Networks (BNNs). However, it’s important
to note that not all Convolutional Neural Network (CNN) models can be effectively
binarized or heterogeneously quantized without experiencing a notable decrease in
accuracy.
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9.2.2 Processsing Quantized CNNs on Hardware

In CNNs, the major computational requirement arises from convolutional layers.
These layers involve convolution operations that can be converted to General Matrix-
Matrix Multiplication (GEMM) operations using the Toeplitz matrix or the im2col
transformation [161, 3]. As shown in Fig. 8.1, the input feature map (Fmap) belong-
ing to a convolution layer is unfolded into the matrix I . The weight filters of the con-
volution layer are flattened and stacked to form the weight matrix (W ). The GEMM
operation between I and W gives the resultant output matrix (O). On conven-
tional CPUs/GPUs, GEMM operations are mapped and executed using basic linear
algebra subprograms (BLAS) or Cuda BLAS (cuBLAS) [27, 50]. However, conven-
tional CPUs/GPUs cannot efficiently meet the exponentially growing computational
demand of modern CNNs. To meet this demand, both industry and academia have
proposed various dedicated GEMM accelerators [81, 157, 22, 94], tailored to process
CNNs with better performance and energy efficiency.

The dedicated GEMM accelerators decompose GEMM operations into dot prod-
ucts between the rows of the input matrix and the columns of the weight matrix.
These dot products, of size (S ), are then mapped onto the accelerators based on the
supported size (N ) of the accelerator. For layers where S>N, the accelerators decom-
pose the dot product into multiple dot products each of size N. These dot products
generate partial sums (psums), which are later added using a reduction network to
obtain the final dot product result of size S. In addition to the size requirement, the
accelerators also need to consider the precision requirement of CNNs. To perform
inference on homogeneously quantized CNNs, the accelerators can process these dot
products without preprocessing when the required precision of the quantized CNN is
supported by the accelerator. Otherwise, the accelerator employs different preprocess-
ing techniques such as bit slicing to achieve the required precision. However, these
preprocessing steps incur additional overhead in terms of latency and energy con-
sumption. In the case of heterogeneously quantized CNNs, the precision requirement
can vary from layer to layer of the CNN. To support such variations, accelerators with
flexible precision can reconfigure to meet the requirement, while accelerators with-
out precision reconfigurability will process the layers at their maximum supported
precision, thereby diminishing the benefits of heterogeneously quantized CNNs. Fur-
thermore, for binary quantized BNNs, the computation requirement shifts from dot
products to XNOR-bit count operations [132].

9.2.3 Related Work on Optical CNN Accelerators

To accelerate CNN inferences with low latency and low energy consumption, prior
works proposed various accelerators based on photonic integrated circuits (PICs)
(e.g., [109, 157, 22, 44, 186]). These accelerators employ PIC-based Processing
Units (PUs) to perform multiple parallel dot product operations. Some accelera-
tors implement digital PUs (e.g., [145, 94, 186]), whereas some others employ analog
PUs (e.g., [109, 157, 22, 152]). Different PU implementations employ MRRs (e.g.,
[109, 22, 157, 111, 186]) or MZIs (e.g., [44, 16, 206]) or both (e.g., [145], [94]). The
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Figure 9.1: Convolution operation at a convolution layer with two weight filters and
one input feature map (Fmap) having two channels is transformed into a GEMM
operation between input matrix I and weight matrix W.

analog PUs can be further classified as incoherent (e.g., [109, 157, 22]) or coherent
(e.g., [63, 211, 199]). To set and update the values of the individual input and weights
used for dot product operations, the incoherent PUs utilize the analog optical sig-
nal power, whereas the coherent PUs utilize the electrical field amplitude and phase.
The coherent PUs achieve low inference latency, but they suffer from control com-
plexity, high area overhead, low scalability, low flexibility, high encoding noise, and
phase error accumulation issues [119]. In contrast, the MRRs-enabled incoherent PUs
achieve better scalability and lower footprint, because they use PICs that are based
on compact MRRs [22], unlike the coherent PUs that use PICs based on bulky MZIs.
Various state-of-the-art PIC-based optical CNN accelerators are well discussed in a
survey paper [43]. Because of the inherent advantages of MRR-enabled incoherent
PUs, there is an impetus to design more energy-efficient and scalable CNN accelera-
tors employing MRR-enabled incoherent PUs.

The prior MRR-enabled incoherent PUs proposed in [22, 109] exhibit a significant
trade-off between achievable precision (b) and PU size (N ). It has been demonstrated
in [152] that the feasible size of analog DPUs is constrained to N<44 for bit precision
B>4. Typically, state-of-the-art homogeneously quantized CNNs adopt 8-bit integer
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precision for both weights (W ) and inputs (I ) to maintain accuracy. However, analog
PUs cannot support b=8 for N > 1 [152], hence they are designed with b=4 and N bit-
slicing to facilitate dot product operations for models with W and I values exceeding
b. Previous works [152, 22, 109] employ bit-slicing of weights and inputs, along with
bit shifting and accumulation, to achieve high-precision multiplication with analog
PUs supporting low precision.

For the processing of homogeneously quantized CNNs, SCONNA [186] addressed
the trade-off challenge between b and N in analog incoherent MRR-based PUs by in-
tegrating stochastic computing with photonic computing. Additionally, several MRR-
enabled incoherent PUs specialized in processing BNNs were proposed [215], [188],
and [160]. Furthermore, to efficiently handle heterogeneous quantized CNNs, an
MRR-enabled incoherent PU with a time division multiplexing scheme was proposed
in HQNNA [156]. However, none of the MRR-based accelerators from previous works
effectively process all homogeneously, heterogeneous, and binary quantized CNNs.

9.2.4 Stochastic Computing

Stochastic Computing (SC) is an unconventional form of computing that represents
and processes data in the form of probabilistic values called stochastic numbers (SNs)
[54, 10, 15]. In SC’s unipolar format, an SN W is a bit-stream of N bits that represents
a real-valued variable υ ∈ [0, 1] by encoding υ through the ratio N1/N , whereN1 is the
number of 1’s in W. SC offers several advantages over conventional binary computing
such as high error tolerance, low power consumption, small circuit area, and low-
cost arithmetic operations consisting of standard digital logic components [15]. For
example, multiplication can be performed by a stochastic circuit consisting of a single
AND gate.

Figure 9.2: Multiplication between unipolar stochastic numbers I and W.

9.3 Motivation

Research on MRR-based incoherent processing units has primarily focused on the
inference of homogeneous quantized CNN models [157, 22, 186, 145]. Optical accel-
erators designed for executing homogeneous quantized models [22, 157, 186] fail to
leverage the advantages of heterogeneous quantized models due to their fixed precision
of PUs. With fixed precision support, these accelerators end up using resources neces-
sary for processing the highest supported precision, thereby diminishing the benefits
in latency and power consumption offered by heterogeneous quantized models. Nev-
ertheless, few works have proposed specific accelerators for efficiently executing BNN
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models [188, 160, 215]. However, these accelerators either cannot execute models with
precision higher than 1-bit or require significant preprocessing involving bit slicing,
resulting in low throughput and energy efficiency for the execution of heterogeneous
quantized CNNs.

Furthermore, to our knowledge, only one incoherent MRR-based optical acceler-
ator has been proposed to execute heterogeneous quantized CNNs [156]. Although
[156] can support the execution of heterogeneous quantized models with a time di-
vision multiplexing scheme, the scheme requires frequent use of ADCs, shifters, and
adders, which contribute significantly to energy consumption and latency. Addition-
ally, all these accelerators, except [188], have two common shortcomings. Firstly,
they consist of analog PUs, which inherently limit the achievable size of PUs due to
the tradeoff between achievable size and supported precision [9, 152], thus limiting
parallelism. Secondly, due to the lack of in-situ temporal accumulators, they convert
each analog psum into digital and perform accumulation in the digital domain. This
kind of psum accumulation increases latency and energy consumption due to the in-
volved ADC conversions and digital psum accumulations with an electronic reduction
network.

To address these challenges, prior work [186] designed a stochastic computing inte-
grated digital optical accelerator with photo charge accumulators. With the integra-
tion of stochastic computing, SCONNA improved the achievable size limit of optical
MRR-based accelerators and performed in-situ temporal accumulations. However,
SCONNA is also designed for the inference of homogeneous quantized CNNs at 8-
bit fixed precision and hence ends up using full precision resources while processing
heterogeneous quantized CNNs. Moreover, it cannot process BNNs due to its func-
tionally fixed processing elements (PEs) that cannot perform the XNOR operation
required by BNNs. Additionally, SCONNA and all prior works fail to address two
shortcomings of optical accelerators. Firstly, all these accelerators use dense wave-
length division multiplexing with cascaded MRRs in their PUs, which incurs a high
power penalty due to inter-modulation crosstalk in MRM input arrays [152, 88] and
inter-spectral, electrical, and thermal crosstalk effects in MRR weight banks [167],
ultimately reducing the available optical power budget in PUs. A reduced power
budget limits scalability and thus the parallelism obtained by MRR-based optical
accelerators. Besides, the cascaded DWDM based PE also enforces the FSR limited
N on scalability .Secondly, prior works propose to employ on-chip laser diodes as the
source of optical wavelengths used for DWDM; however, integrating a total of 176
LDs as proposed in SCONNA [186] or 50 LDs as proposed in HQNNA[156] onto a
photonic integrated circuit is highly challenging and practically infeasible.

To address all these challenges in processing all types of quantized CNNs, we
propose an MRR-based optical reconfigurable logic gate (RLG) and employ multi-
ple RLGs to develop a novel Stochastic Computing-based optical accelerator with
functional reconfigurability (SCOAR). The following section discusses our SCOAR
architecture.
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9.4 Our Proposed Architecture

Figure 9.3: Schematics of (a) Our SCOAR-Stochastic Computing based Optical Ac-
celerator with functional reconfigurability (b) Pheriperals of reconfigurable logic gate
(c) Balanced Photocharge Accumulator.

9.4.1 Overview of our SCOAR Processing Unit

Fig. 9.3(a) illustrates the processing unit organization of our SCOAR architecture. A
SCOAR processing unit consists of multiple processing elements that are polymorphic
and reconfigurable in nature. Each processing unit carries out operations in parallel.
For that, a single-on-chip comb source laser with a total N comb wavelengths is used,
with each wavelength of power P in

λi
. These comb wavelengths get filtered into M input

waveguide arms (IWAs). Every IWA receives single wavelength optical power λi with
the help of filter MRRs and each IWA further splits the optical power of λi into N
λi

1 − λiN signals and feeds N spectrally hitless reconfigurable logic gates. There are
a total of M IWAs and M polymorphic processing elements (PPEs) in the SCOAR
PU(Fig. 9.3(a)).

Each PPE consists of four components: (i) an array of N reconfigurable MRR
logic gates (RLGs) arranged in a spectrally hitless manner; (ii) adaptive precision
enabling stochastic peripherals; (iii) a bank of filter MRRs; and (iv) a Balanced
Photo-Charge Accumulator (BPCA). According to the processing requirements of
the quantized CNN, each PPE can operate in two modes: dot product operation
mode for homogeneous and heterogeneous quantized CNNs, and XNOR-bit count
operation mode for BNNs. Depending on the operation mode, each RLG performs
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stochastic multiplication or XNOR operation between an input bit-stream I and
weight bit-stream W.

Each RLG receives its bit-streams I and W from its corresponding peripherals at
a supported bitrate (BR). Bit-stream W provides a weight value along with a sign
bit. Bit-stream I provides the RELU-activated output value from the previous CNN
layer, without a sign bit as RELU has a non-negative output. The detailed design
of RLGs and their peripherals is explained in Section 9.4.3. Each RLG performs a
bit-wise logical AND (or logical XNOR) operation between the I and W bit-streams
to produce a resultant optical bit-stream that represents the stochastic multiplica-
tion (XNOR operation) between the I and W bit-streams. The optical bit-streams
from the RLGs, with each bit-stream carrying a stochastic multiplication (XNOR
operation) result, reach the filter MRRs on drop port(through port) of RLGs. The
application of filter MRRs is determined based on an operation mode, for dot prod-
uct operation mode, the resultant bit-stream is generated at drop port and the filter
MRRs on the through port of RLGs are turned off. Each drop port in RLG employs
two filter MRRs, the first MRR receives the sign bit from the peripheral W of its
corresponding RLG (Fig. 9.3(a)). The sign bit operates the filter to steer the in-
coming optical bit-stream λi

j to the +ve aggregation lane (if the sign bit is ’0’) or
to the second MRR filter that guides the results to -ve aggregation lane (if the sign
bit is ’1’). Thus, the +ve aggregation lane and -ve aggregation lane of a PPE guide
the optical bit-streams, carrying the stochastic multiplication results, to BPCAs. For
XNOR-bit count operation mode, the resultant bit-stream is generated at the trough-
port of RLGs. Therefore, in XNOR-bitcount operation mode the filter MRRs on the
drop port are turned off. Each troughport port in RLG employs a single filter MRR,
this MRR always filters the resultant XNOR operation bit stream to the +ve aggre-
gation lane. The +ve aggregation lane of a PPE guides the optical bits, carrying
the XNOR operation results, to BPCAs. A BPCA is a circuit that collects all the
optical bit-streams (i.e., stochastic multiplication results or XNOR operation results)
from its corresponding +ve aggregation lane and -ve aggregation lane to generate the
accumulation result or bit count value in the binary format (details about BPCA in
Section 9.4.5).

9.4.2 Operational Modes of SCOAR Processing Element

Fig 9.5 shows the two operational modes of our SCOAR polymorphic processing
element (PPE). Our SCOAR PPE can be operated in two modes (i) dot product
operation and (ii) XNOR-bitcount operation. As discussed in Section 9.2.2, the
homogenous quantized, heterogenous quantized and binarized CNN models have dif-
ferent computation requirements.

Dot Product Mode: By default, SCOAR PU is configured to operate in the
dot product operation mode as shown in Fig. 9.5(a). The dot product operation
mode is employed to support the processing of mixed-precision CNN models with
varying precision across the different layers of the model. At each layer, the GEMM
operation between I and W is mapped onto SCOAR PU as dot product operations,
and each PPE in the PU performs a dot product operation of size N. In a PU, M
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Figure 9.4: (a)Schematic of our Optical reconfigurable logical Gate (RLG) (b) oper-
ation of RLG as XNOR gate (c) operation of RLG as AND gate (d) results of RLGs
transient analysis

PPEs work in parallel performing M parallel dot product operations. At each PPE,
precision adaptive input peripherals convert the b-bit binary values Ib and Wb into
stochastic bitstreams I and W of length L=2b. The stochastic bitstreams are fed to
the N hitlessly arranged RLGs, in dot product mode, RLGs are configured as logical
AND gates to realize stochastic multiplication as discussed in Section 9.2.4. The
RLGs generate the output of stochastic multiplication at their drop ports. Each drop
port waveguide is equipped with two MRR filters to transfer the result onto +ve and
-ve aggregation lanes depending on the sign of the Wb. In addition, the MRR filters
on the troughport of RLGs are turned off. The aggregation lanes guide the resultant
bits of stochastic multiplication to BPCA for accumulation.

XNOR-bitcount Mode: Fig. 9.5(b) shows the operation of SCOAR PPE in
XNOR-bitcount mode. As discussed in Section 9.2.2, BNN processing requires XNOR
operations followed by bitcount. For XNOR-bitcount mode, the input peripherals of
PPE fed the 1-bit I and W values to RLGs, here RLGs are programmed to operate
as logical XNOR gates. The RLGs generate the output of XNOR operation at the
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Figure 9.5: Operation of SCOAR PE (a) Dot product operation mode (b) XNOR-
Bitcount operation mode.

trough ports. Each trough port waveguide is equipped with a MRR to drop the
XNOR result onto +ve aggregation lane. In this mode, the MRR filters on the drop
port waveguide are turned off. The +ve aggregation lanes guide the resultant bits of
XNOR operation to BPCA for bit counting.

9.4.3 Reconfigurable Logic Gate

The design of our invented Reconfigurable Logic Gate (RLG) is illustrated in Fig.
9.4(a). It is an add-drop microring resonator (MRR), which has two operand ter-
minals (realized as embedded PN-junctions) that can take two operand bits i and w
as inputs. Fig. 9.4(b) and Fig. 9.4(c) show the passbands of the MRR for differ-

183



ent operand inputs and temperature conditions. To operate as an XNOR gate, the
MRR’s temperature can be increased using the integrated microheater (Fig. 9.4(a)),
to consequently tune its operand-independent resonance from its fabrication-defined
initial position η to its programmed position κ (blue passband; Fig. 9.4(b)), rela-
tive to the input optical wavelength position λin. For each bit combination at the
operand terminals ((i,w) = (0,1), (1,0), or (1,1)), the MRR’s resonance passband
electro-refractively moves to an operand-driven position (red and magenta passbands
in Fig. 9.4(b)). Based on the MRR resonance passband’s programmed position κ rel-
ative to λin, the through-port transmission (TT(λin)) of the MRR provides bit-wise
logical XNOR operation between the input bits i and w. Similarly, the MRR can
be reconfigured to operate as an AND logic gate at the drop port by changing the
temperature to tune the resonance position κ (magenta passband; Fig. 9.4(c)). Then,
for each bit combination at the operand terminals, the MRR’s resonance passband
electro-refractively moves to an operand-driven position (red and blue passbands in
Fig. 9.4(c)). The MRR resonance passband’s drop-port transmission (DT(λin)) pro-
vides bit-wise logical AND operation between the input bits i and w. Thus, using
the integrated microheater, our RLG can programmed to operate as XNOR or AND
logic gate based on the processing requirements. To assess the operational speed of
our RLG, we conducted an analysis focusing on the maximum operating bitrate (BR)
under specific conditions: FWHM=1.2nm, PLaser= 0dBm, and OMA= -5dBm. Our
findings indicate that the RLG can achieve a BR of 42 GS/s when configured as an
AND gate, and a BR of 41 GS/s when configured as an XNOR gate. The microheater
power and programmed detuning values for the RLG are provided in the incest table
of Fig. 9.4(a).

To validate the operation of our RLG, we performed the transient analysis, as
shown in Fig. 9.4(d). For that, we modeled and simulated our RLG using the
foundry-validated tools from Ansys/Lumerical’s DEVICE, CHARGE, and INTER-
CONNECT suites [6]. Fig. 9.4(c) shows two input bit-streams I = {i11, i12, .., i18}
and W = {w1

1, w
1
2, .., w

1
8} applied to the two PN junctions of our RLG configured as

XNOR gate and AND gate at a DR = 10 GS/s. By looking at the output optical
trace TT(λin) and DT(λin) in Fig. 9.4 (c), we can say TT(λin) = {i11�w1

1,..,i
1
8�w1

8}
and DT(λin) = {i11 · w1

1,..,i
1
8 · w1

8}, which validates the functionality of our RLG as a
logical XNOR gate and AND gate. From our validation, our OXG has a full pass-
band width at half maximum (FWHM) of 0.35 nm and it can operate at DR of up
to 50 GS/s. Our XNOR gate consumes energy of 0.032nJ with an area footprint of
0.011mm2.

9.4.4 RLG Input Peripherals

Our RLG input peripherals consist of a binary-to-stochastic (B-to-S) number gener-
ator and serializers, as shown in Fig. 9.3(b). The B-to-S generator converts a binary
input value Ib and binary weight value Wb into unipolar stochastic bit-streams I and
W. Unlike prior work [186], we employ the deterministic B-to-S generator proposed in
[190] for binary-to-stochastic conversion, which alleviates the need for high area and
latency-incurring look-up tables. The B-to-S generator [190] produces two unipolar
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stochastic bit-streams I and W by maintaining the marginal probability of one bit-
stream (i.e., I or W ) equal to its conditional probability given the other bit-stream
(i.e., I given W or W given I ) [196]. This method of B-to-S conversion ensures
error-free stochastic multiplication [196]. The precision of the bitstreams depends on
the length L = 2b of I and W. The length of the bitstreams is dynamically adapted
by the B-to-S generator based on the precision requirements of the processing model.
For example, to process a two-layer heterogeneously quantized CNN with 4-bit preci-
sion Ib and Wb for layer 1 and 8-bit precision Ib and Wb for layer 2, the deterministic
B-to-S generator produces the stochastic bitstreams I and W of L = 24 = 16 dur-
ing the processing of layer 1, and dynamically varies the length of the stochastic
bitstreams I and W to L = 28 = 256 during the processing of layer 2 to achieve
8-bit precision. Thus, stochastic computing’s inherent flexibility allows us to set the
precision by simply changing the length of the bit stream. Hence, changing precision
levels across the layers of the heterogeneous quantized CNNs can be processed effi-
ciently. Furthermore, these generated bitstreams I and W are fed to the RLG via
high-speed serializers and drivers for stochastic multiplication. However, the length
of the stochastic bit-streams increases exponentially with precision, and the stochas-
tic representation of binary values above 8-bit binary precision incurs high latency
and is detrimental to the throughput. Therefore, we limit the maximum supported
precision of SCOAR PPE to 8-bits.

9.4.5 Balanced Photocharge Accumulator

From Section 9.4.1, the stochastic multiplication bit-streams or XNOR bits gener-
ated by RLGs are guided to a BPCA, where they are accumulated to generate a
binary output value equivalent to the dot product result and in the case of BNNs,
bit counting of XNOR bits is performed. Our BPCA is inspired by the time inte-
grating receiver (TIR) design from [150] and the photodetector-based optical-pulse
accumulator design from [29]. As shown in Fig 9.3(c), a BPCA circuit employs two
photodiodes, each connected to the +ve aggregation lane and -ve aggregation lane of
the PPE. These photodiodes are interlinked in a balanced configuration, commonly
referred to as a balanced photodiode (BPD) configuration. The BPD is connected
to a TIR via a switch (S0). The TIR comprises an amplifier and a feedback capaci-
tor/switch (S1) pair (Fig. 9.3(c). It functions as a current-to-voltage converter circuit
by integrating the incoming differential electrical current over a period. The balanced
photodetectors generate a differential current pulse for each optical logic ‘1’ incident
upon it. This current pulse accumulates a certain amount of charge on the capaci-
tor of the active TIR circuit (e.g., the circuit with a C1 capacitor); as a result, the
capacitor accrues an analog voltage level. Hence, when one or more output optical
bit-streams are incident upon the photodetectors, the total accumulated charge (and
thus, the accrued analog voltage level) on the active capacitor (e.g., C1) is propor-
tional to signed accumulation of the total number of ‘1’s in the incident bit-streams
from +ve and -ve aggregation lanes. Prior works [186, 188] have used PDs and TIR
configuration in this setup to perform signed accumulation and bit count operations
using heterodyne incoherent superposition at PDs, however, none of the prior works
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have explored the homodyne incoherent superposition of optical pulses at PDs to
perform accumulation. For the first time, our BPCA employs homodyne incoherent
superposition at PD which allows all the RLGs in a PPE to operate on a single wave-
length λi. By designing the PPE to operate on a single wavelength λi, we remove
FSR constraint on achievable N which improves the scalability of SCOAR PPE (more
on this in Section 9.5). With homodyne incoherent superposition, the photodetectors
accumulate optical pulses from all the RLGs. Depending on the operation mode,
the output analog voltage computed corresponds to the unipolar unscaled addition
[196] of the stochastic bit-streams or XNOR bitcount result. To convert this analog
voltage into a binary value, the BPCA circuit employs an analog-to-digital converter
(ADC). This binary value is the result of dot product operation for heterogeneous
and homogeneous quantized CNN models and XNOR-bit count operation for BNNs.

9.5 Scalability Analysis

To determine the achievable size N for our SCOAR PU at maximum supported pre-
cision b=8, we adopt the scalability analysis equations (Eq. 9.1, Eq. 9.2, and Eq.
9.3) from [9] and [152, 186]. Table 9.1 reports the definitions of the parameters and
their values used in these equations. our SCOAR PU processes stochastic bit-streams
in dot product mode and binary values in XNOR-bit count mode, in both modes it
requires the bit resolution of BRes=1-bit in the equations. In addition, we conser-
vatively choose to operate RLGs at BR=30Gbps. As shown in Fig. 9.3(a), the M
of the SCOAR PU is determined by the number of combs supported by the on-chip
laser source, and we fix the M=25 with each comb providing a minimum laser power
intensity of PLaser = -3dbm [135]. We first solve Eq. 9.1 and Eq. 5.4 for datarate
(DR)=BR∗2b, to find PPD−opt to be -17.2 dBm. Then, we solve Eq. 5.4 for N, to find
N =1042, which is a very large N compared to analog PUs that have N<=44 [152].
This large size of N is possible due to two reasons, firstly, SCOAR’s spectrally hitless
PPE architecture (as discussed earlier in Section 9.4.1) due to which SCOAR signifi-
cantly reduces the crosstalk-related power penalty contributing to Ppenalty. Secondly,
the prior works’ PEs utilize dense wavelength division multiplexing (DWDM), and
the number of wavelengths multiplexed imposes a limit on the achievable N. This
limit is defined by the available free spectral range (FSR) and channel spacing (CS)
i.e N=(FSR/CS). Considering optimistic values of FSR=50nm and CS=0.25nm, the
theoretical maximum achievable N=200. In contrast, SCOAR PE does not employ
DWDM and uses a single wavelength in its PPE by exploiting homodyne incoherent
superposition at a BPCA. By unlocking the potential of BPCA, SCOAR removes
the FSR and CS-related limit on achievable N. These enable SCOAR to achieve
higher N compared to prior analog accelerators. On the other hand, prior stochas-
tic computing-based optical accelerator SCONNA [186] achieves N=M=176 which
results in a total of N×M=30976 parallel multiplication operations in a cycle, this
is slightly higher than SCOAR’s N×M=1042×25=26050. However, SCONNA em-
ploys a huge number of on-chip laser diodes and look-up tables that incur high static
power consumption, and latency which result in lower throughput and energy effi-
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Table 9.1: Definition and values of various parameters used in Eq. 9.1, Eq. 9.2, and
Eq. 9.3 (from [9, 152, 186]) for the scalability analysis.

Parameter Definition Value
PLaser Laser Power Intensity -3 dBm
Rs PD Responsivity 1.2 A/W
RL Load Resistance 50 Ω
Id Dark Current 35 nA
T Absolute Temperature 300 K

RIN Relative Intensity Noise -140 dB/Hz

PEC−IL
Fiber to Chip Coupling

Insertion Loss
1.44

PMRR−W−IL
Silicon Waveguide

Insertion Loss
0.3 dB/mm

Psplitter−IL Splitter Insertion Loss 0.01 dB

PMRM−IL
Optical Microring Modulator

Insertion Loss
4 dB

PMRR−IL
Optical Microring Resonator

Insertion Loss
0.01 dB

PMRM−OBL Out of Band Loss 0.01 dB
PPenalty SCOAR Network Penalty 1.8 dB

ciency compared to SCOAR (more details in section 9.6.3). In addition, SCONNA’s
usage of N =176 on-chip LD is far away from practical implementation.

BRes =
1

6.02

[
20log10(

R× PPD−opt
β
√

DR√
2

− 1.76

]
(9.1)

(9.2)β =

√
2q(RPPD−opt + Id) +

4kT

RL

+R2P 2
PD−optRIN +

√
2qId +

4kT

RL

(9.3)
PO/p(dBm) = PLaser − PSMF−att − PEC−IL − PSi−att ×N × dMRR

− PMRM−IL − (N − 1)PMRM−OBL − Psplitter−IL × log2(M)

− PMRR−W−IL − (N − 1)PMRR−W−OBL − Ppenalty − 10log10(N)

9.6 Evaluation

9.6.1 System Level Implementation of SCOAR

Fig. 9.6 illustrates the system-level implementation of our SCOAR accelerator. It
consists of global memory that stores mixed precision model parameters and a pre-
processing and mapping unit. It has a mesh network of tiles. Each tile contains 4 PUs
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Figure 9.6: System-level overview of our SCOAR CNN accelerator.

interconnected (via H-tree) with a unified buffer, as well as pooling and activation
units. Each PU consists of multiple PPEs and each PPE is equipped with a dedicated
input and output FIFO buffer [192] to store intermittent weights, inputs, and psum
results.

9.6.2 Simulation Setup

For evaluation purposes, we modeled our SCOAR accelerator based on Fig. 9.6
using our custom-developed, transaction-level, event-driven Python-based simula-
tor. We simulated the inference for a total of six CNN models, comprising three
mixed-precision models, one homogeneously quantized model, and two binary neural
networks. Specifically, for mixed-precision models, we included DenseNet121 [71],
MobileNetV2 [69], and ResNet50 [65]. We determined the optimal layer configura-
tion for these models using LQ-Net techniques [205]. Additionally, we utilized an
8-bit quantized GoogleNet model from [126] as the homogeneously quantized model.
Furthermore, we evaluated binarized ResNet18[65] and VGG-small[149] from [205].
We evaluate frames-per-second (FPS) and FPS/W (energy efficiency).

We compared our SCONNA with the prior accelerators HQNNA [156], SCONNA
[186], ROBIN [160], and OXBNN [188]. HQNNA is an analog optical accelerator de-
signed for the efficient processing of heterogeneous quantized models that uses time
division multiplexing-based bit slicing for supporting precision variation among the
layers. SCONNA is a stochastic computing-based digital optical accelerator designed
to perform inference of 8-bit quantized CNNs, it uses look-up tables for binary to
stochastic conversion, and to enable processing of mixed precision models we inte-
grated look-up tables corresponding to precision below 8-bits. ROBIN is an analog
optical accelerator for BNNs, we employ bit slicing of weights and inputs to match the
precision supported by ROBIN to process heterogenous quantized CNNs. In addition
to ROBIN, we consider another BNN-specific optical accelerator that employs single
MRR-based XNOR gates [188] to processs BNNs. Each accelerator variant is eval-
uated for the output stationary (OS ) dataflow. Both HQNNA and ROBIN operate
at 5 GS/s whereas SCONNA is operated at 30 Gbps. In addition, HQNNA has ded-
icated PU units to PU Conv to process the convolution layers and PU FC for fully
connected layers. We consider two variants of ROBIN: ROBIN Energy-Optimized
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Table 9.2: Accelerator Peripherals and DPU Parameters [152]

Power(mW) Latency Area(mm2)
Reduction Network 0.050 3.125ns 3.00E-5

Activation Unit 0.52 0.78ns 6.00E-5
IO Interface 140.18 0.78ns 2.44E-2
Pooling Unit 0.4 3.125ns 2.40E-4

eDRAM 41.1 1.56ns 1.66E-1
Bus 7 5 cycles 9.00E-3

Router 42 2 cycles 1.50E-2
DAC (ALL)1 [181] 12.5 0.78ns 2.50E-3
DAC(SCOAR)2[82] 26 0.78ns 6.00E-3

EO Tuning 80 µW/FSR 20ns -
TO Tuning 275 mW/FSR 4µs -

(ROBIN EO) and ROBIN Performance-Optimized (ROBIN PO)[160]. For a fair
comparison, we performed area proportionate analysis, wherein we altered the PE
count for each photonic accelerator across all of the accelerator’s PUs to match with
the area of SCOAR having 50 PUs. Accordingly, the scaled PE counts of ROBIN PO
(N=50 ), ROBIN EO (N=10 ), OXBNN (N=53 ), SCONNA (N=176 ) and HQNNA
(PU conv=N=20, PU FC=N=50 ) are 65, 150, 270, 30, and 90 (PU conv = 56 and
PU FC=34), respectively. Table 9.2 gives the parameters used for our evaluation.

Figure 9.7: (a) Normalized FPS (log scale) (b) Normalized FPS/W (log scale) for
SCOAR versus prior optical accelerators with input batch size=1. FPS and FPS/W
results of heterogeneous CNNs are normalized relative to ROBIN˙EO for ResNet50,
and homogeneous CNNs are normalized relative to ROBIN˙EO for VGG-small.

189



9.6.3 Evaluation Results

Fig. 9.7(a) compares the FPS values (log scale) achieved by each accelerator across
various quantized CNNs. SCOAR significantly outperforms the analog optical accel-
erators HQNNA, ROBIN PO and ROBIN EO by 1758×, 2861×, and 5122×, respec-
tively, on gmean across the heterogenous quantized CNNs. Similarly, SCOAR also
achieves 76×, 85×, and 11313× better FPS than analog optical accelerators HQNNA,
ROBIN PO and ROBIN EO, respectively, for homogenous quantized CNNs. These
benefits are mainly associated with the superior N, precision adaptive input periph-
erals, higher BR of SCOAR compared to the analog optical accelerators and in-situ
accumulations at BPCA. When compared to analog accelerators our SCOAR with
spectrally hitless architecture supports a larger PU size (N=1042 ), i.e., the count of
multiplication operation N and the number of parallel multiplication operations M
(=25), which increases the overall throughput with improved parallelism. Secondly,
SCOAR, with its utilization of stochastic computing and dynamic precision adaptive
input peripherals, eliminates the latency incurred with bit slicing in ROBIN and shift
and accumulation in HQNNA. Third, the higher operating BR=30Gbps compensates
for the lengthy stochastic bit-streams of 2B bits used by SCOAR. Fourth, our BPCA
eliminates the latency corresponding to psum reductions. Furthermore, SCOAR also
improves the throughput of BNN inference, SCOAR achieves atleast 3212×, 3455×,
and 9× better FPS than prior optical BNN accelerators ROBIN PO, ROBIN EO, and
OXBNN. SCOAR also achieves 1200× better throughput than HQNNA on BNNs.
Most of these benefits stem from the advantages discussed earlier; however, it’s impor-
tant to note that the gains of SCOAR are less when compared to OXBNN. This is due
to the fact that OXBNN also conducts in-situ accumulations and operates at 30Gbps.
Furthermore, SCOAR performs exceptionally well against its stochastic computing
counterpart SCONNA, achieving 13× better FPS on gmean across heterogeneous
models and 6× better FPS on homogeneous models than SCONNA. SCOAR utilizes
significantly faster and more compact deterministic binary-to-stochastic number gen-
erators instead of the bulky and time-consuming lookup tables used in SCONNA.
Moveover, SCONNA is not capable of running BNNs due to its functionally fixed
PEs, which cannot perform XNOR operations. Overall, SCOAR gives exceedingly
better FPS compared to the prior works.

Fig. 9.7(b) gives the energy efficiency (FPS/W) values for each accelerator across
heterogenous precision, homogenous precision, and binary neural network models.
It is evident that SCOAR attains substantially better energy efficiency than prior
optical accelerators. Our SCOAR gains 900×, 3100×, and 2900× better FPS/W
against HQNNA, ROBIN PO, and ROBIN EO respectively, on gmean across the
heterogenous quantized models. SCOAR also attains significantly improved energy
efficiency for homogenous quantized and BNN models. As shown in the Fig. 9.7(b),
SCOAR achieves 297×, 1883×, 1721×, and 2.8× better energy efficiency compared to
HQNNA, ROBIN PO, ROBIN EO, and OXBNN, respectively on gmean, across two
BNN models. These energy efficiency benefits are due to the improved throughput
and flexible precision support of SCOAR PUs. In addition, due to BPCA, SCOAR
performs in-situ accumulation, leading to significant energy savings by drastically
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Table 9.3: Top-1 and Top-5 inference accuracy comparison of various binary to
stochastic conversation techniques for 8-bit quantized CNNs GoogleNet and ResNet50
and ImageNet dataset [45].

GoogleNet ResNet50 Gmean
Accuracy
Drop (%)

Top1 Top5 Top1 Top5 Top1 Top5

UGEMM 1.2 0.9 0.9 1.8 1 1.2
Gaines 1.7 2 1.6 2.5 1.6 2.2
Jenson 1.4 1.7 1.4 2 1.4 1.8
SCOAR 0.5 0.6 0.3 0.5 0.4 0.5

reducing the frequency of analog-to-digital converter (ADC) usage. Furthermore,
BPCA eliminates the need for a psum reduction network and its corresponding en-
ergy consumption. Moreover, leveraging stochastic computing, SCOAR eliminates
the necessity for energy-intensive shifters and adders used in the time division multi-
plexing scheme of HQNNA. As discussed in the preceding section, by replacing lookup
tables with deterministic binary-to-stochastic number generators, SCOAR reduces
static power consumption and read access energy compared to SCONNA, resulting
in at least 16× better energy efficiency for SCOAR. Overall, SCOAR significantly
improves the throughput and energy efficiency compared to the tested analog and
digital optical accelerators.

The area efficiency values (FPS/W/mm2) for each accelerator across various CNNs
are similar to the energy efficiency (FPS/W) values for area proportional analysis
(when the area of all the accelerators is matched to the area of SCOAR). Therefore,
we have not reported area efficiency results. Overall, SCOAR significantly improves
throughput (FPS) and energy efficiency (FPS/W) across various quantized models
compared to the tested optical accelerators.

9.6.4 Inference Accuracy Results

As discussed in Section 9.4.4, the binary to stochastic conversion can incur errors
in the computed stochastic multiplication results. To evaluate the impact of the
stochastic to binary (B-to-S) conversion technique used in our SOAR on the CNN in-
ference accuracy, we simulated the inference of GoogleNet[162] and ResNet50[65] with
our deterministic B-to-S conversion and compared it against prior B-to-S techniques
like UGEMM[196], Gaines[54], and Jenson[78]. We integrated our custom simula-
tor with ML-framework PyTorch [126] and performed the inference using ImageNet
validation dataset [45] (50k images and 1k classes). Table 9.3 reports the Top-1 and
Top-5 inference accuracy drop obtained for our SCOAR and prior techniques for 8-bit
integer-quantized GoogleNet[162] and ResNet50[65]. As evident, SCOAR yields the
least accuracy drop of 0.4% and 0.5% better Top-1 and Top-5 accuracy, respectively,
on gmean across the GoogleNet[162] and ResNet50[65] CNNs. Moreover, our SCOAR
accelerator’s significant gains in the FPS, FPS/W, and FPS/W/mm2, overshadow the
minor drop in the CNN inference accuracy.
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9.7 Summary

In this paper, we presented SCOAR, a novel MRR-based CNN accelerator. The
processing element of our SCOAR employs a spectrally hitless array of novel recon-
figurable logic gates that efficiently meet the computation requirements of homoge-
nous, heterogeneous, and binary quantized CNNs. In addition, SCOAR exploits
the homodyne incoherent superposition of the balanced photocharge accumulator
to remove the FSR-imposed scalability limit and perform in-situ temporal accumu-
lations. Our evaluation results for six quantized CNN models show that SCOAR
provides improvements of at least 1758× (900×), 76× (6×), and 9×(2.8×) better in
throughput(energy efficiency) for heterogeneous quantized, homogeneous quantized,
and binary quantized CNN, respectively, when compared to four optical accelerators
HQNNA, SCONNA, ROBIN and OXBNN, with Top-1 and Top-5 accuracy drop of
only up to 0.4% and 0.5% for homogenous quantized CNNs. Our evaluation results
for six quantized CNN models show that SCOAR provides improvements of at least
1758× (900×), 76× (6×), and 9×(2.8×) better in throughput(energy efficiency) for
heterogeneous quantized, homogeneous quantized, and binary quantized CNNs, re-
spectively, when compared to four optical accelerators HQNNA, SCONNA, ROBIN
and OXBNN, with Top-1 and Top-5 accuracy drop of only up to 0.4% and 0.5% for
homogenous quantized CNNs.

192



Chapter 10 Conclusions and Future Work

In this report, we presented several solutions to address various design challenges en-
countered by PIC-based AI accelerator systems. A recap of each of our contributions
is discussed in the upcoming paragraphs.

In our first contribution in Chapter 2, we introduced a silicon MR-based chip-
scale accelerator for delayed feedback reservoir computing (DFRC), enabling on-chip
integration and significantly reducing training times. Leveraging the rich nonlinearity
of the active MRR, we implemented the nonlinear node in the reservoir layer of the
accelerator. Then, by utilizing the photonic waveguide as the feedback delay loop, we
enabled full on-chip integration of the reservoir layer. Our evaluation with benchmark
tasks showed that our MRR-based DFRC accelerator achieves 35% and 98.7% lower
NRMSE, up to 58.8% less average SER, and up to 93x faster training time compared
to a photonic DFRC accelerator from prior work.

In our second contribution in Chapter 3, we presented an insertion loss-aware
framework PROTEUS for co-optimizing the laser power consumption and perfor-
mance of emerging PNoCs. PROTEUS dynamically adapts the key photonic link
configuration parameters, such as Q-factor of microrings and bitrate of photonic
data signals, to statically reduce the laser power consumption and opportunistically
improve the packet transfer latency in PNoCs. PROTEUS exploits the dependence
of BER power penalty in PNoCs on Q-factor and bitrate to balance the reduction
in laser power consumption in PNoCs with the achieved aggregated datarate and
packet latency. Our PROTEUS framework achieves up to 24.5% less laser power
consumption, up to 31% less average packet latency, and up to 20% less energy-per-
bit, compared to two other laser power management techniques from prior work.

In our third contribution in Chapter 4, we tackle the reconfigurability challenges
in MRR-based CNN accelerators by introducing novel reconfigurable DPEs. These
DPEs enable dynamic maximization of the size compatibility between the DPEs and
the CNN tensors processed using them. Our reconfigurable DPEs seamlessly inte-
grate with existing MRR-based CNN accelerators. Evaluation results demonstrated
that our integrated accelerators with reconfigurable DPEs achieve a better balance
between hardware utilization and CNN processing latency, leading to substantial im-
provements in Frames per second (FPS)(throughput) and FPS/W(energy efficiency).

In our fourth contribution in Chapter 5, we introduced a single-MRR-based op-
tical XNOR gate (OXG) and a novel bitcount circuit called Photo-Charge Accumu-
lator (PCA). Utilizing OXGs and PCAs, we developed a novel accelerator named
OXBNN for processing BNN inferences. Our OXGs efficiently perform the neces-
sary XNOR operations in BNNs using half the number of MRRs, thereby reducing
both area and optical losses. Furthermore, our PCA enabled in-situ bitcount op-
erations by leveraging incoherent heterodyne superposition at photodetectors and
time-integrating receivers, thus eliminating the need for external electronic bit-count
circuits. The combined advantages of OXGs and PCAs allow OXBNN to achieve
FPS (throughput) and FPS/W(energy efficiency) improvements of up to 62× and
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7.6×, respectively, compared to two state-of-the-art photonic BNN accelerators from
previous works.

In our fifth contribution in Chapter 6, we addressed the significant scalability ver-
sus bit-precision trade-off inherent in analog optical CNN accelerators by integrating
stochastic computing with MRR-based CNN accelerators. We developed an MRR-
based optical stochastic multiplier (OSM) for stochastic multiplications and utilized
multiple OSMs to create a novel stochastic computing-based CNN accelerator named
SCONNA. The OSM was modeled using photonics foundry-validated simulation tools
from ANSYS/Lumerical. By overcoming this tradeoff, SCONNA enhances the scala-
bility of an MRR-based CNN accelerator by approximately 4 times. Our evaluation
results for four CNN models demonstrate that SCONNA achieves improvements of up
to 66.5×, 90×, and 91× in throughput, energy efficiency, and area efficiency, respec-
tively, compared to two analog optical accelerators, with a negligible Top-1 accuracy
drop of up to 0.4% for large CNNs and up to 1.5% for small CNNs.

In our sixth contribution in Chapter 7, we introduced a systematic approach for
classifying prior incoherent MRR-based CNN accelerators based on the aggregation
routing used by photonic interconnect organizations in their DPEs into Modulation-
Aggregation-Splitting- Weighting (MASW), Aggregation-Splitting-Modulation Weight-
ing, and Splitting-Modulation-Weighting-Aggregation (SMWA). We performed a com-
prehensive circuit-level comparative analysis of MASW, ASMW, and SMWA organi-
zations and identified that each organization incurs different magnitudes of crosstalk
noise and optical signal losses. We demonstrated that due to these variations, each
organization achieves different levels of processing parallelism. At the system level,
our evaluation results for four CNN models demonstrated that SMWA organization
achieves up to 4.4×, 5×, and 5.2× better throughput, energy efficiency, and area-
energy efficiency, respectively, compared to ASMW and MASW organizations on
average.

In our seventh contribution in Chapter 8, we presented HEANA, a novel hybrid
time-amplitude analog optical GEMM accelerator. The dot product element of our
HEANA employs a spectrally hitless array of novel hybrid time-amplitude analog op-
tical modulators (TAOM) that perform multiplication operations, combined with a
balanced photo-charge accumulator (BPCA) that performs spatiotemporal accumula-
tion of the individual multiplication results from TAOMs. Each TAOM utilizes a sin-
gle active microring resonator (MRR) to perform multiplication operations, allowing
for the electro-optic tuning of both input and weight values. This enables the flexibil-
ity of executing various CNN dataflows namely input stationary, output stationary,
and weight stationary dataflows. Moreover, the spectrally hitless arrangement of
TAOMs in HEANA eliminates spectral interference and various crosstalk effects en-
countered by current MRR-enabled analog photonic accelerators. In addition, the
single MRR implementation of TAOMs substantially reduces the area consumption,
implementation complexity, and insertion losses in HEANA, thereby increasing its
energy efficiency. Also, the BPCA circuit in HEANA enables in-situ accumulation of
a large number of partial sums, thereby reducing the overall latency and energy con-
sumption of CNN processing. We performed detailed modeling and characterization
of our TAOM unit using photonics foundry-validated tools from ANSYS/Lumerical.
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Here, we performed time-domain simulations from which we evaluated the perfor-
mance of our TAOM in terms of accuracy and precision. We have also performed a
scalability analysis of our HEANA’s dot product units, to determine their achievable
maximum size and supported bit-precision. Finally, we evaluated HEANA for input
stationary, output stationary, and weight stationary dataflows at the system-level,
and compared its performance with two well-known photonic CNN accelerators from
prior works. Our system-level evaluation results for four CNN models show that
HEANA provides improvements of up to 25× and 32× in throughput, and energy
efficiency, respectively, compared to two prior optical analog accelerators AMM and
MAM, with Top-1 accuracy drop of only up to 0.1%.

In our eighth contribution in Chapter 9, we presented SCOAR, a novel MRR-
based CNN accelerator. The processing element of our SCOAR employs a spectrally
hitless array of novel reconfigurable logic gates that dynamically adapt to the compu-
tation requirements such as variable precision and operations like XNOR for homoge-
neous, heterogeneous, and binary quantized CNNs. SCOAR also exploits the homo-
dyne incoherent superposition of the balanced photo charge accumulator to eliminate
the FSR-imposed scalability limit and perform in-situ temporal accumulations. Our
system-level evaluation results show that SCOAR provides improvements of at least
1758× (900×), 76× (6×), and 9× (2.8×) better in throughput (energy efficiency)
for heterogeneous quantized, homogeneous quantized, and binary quantized CNNs,
respectively, compared to four optical accelerators, with Top-1 and Top-5 accuracy
drops of only up to 0.4% and 0.5% for homogeneous quantized CNNs.

10.1 Future Work

As AI technologies continue to advance, the complexity of tasks they are expected to
perform is escalating rapidly. This growth is fueled by the need for more sophisticated
algorithms, larger datasets, and higher precision models. Consequently, AI comput-
ing requirements are skyrocketing, necessitating more powerful hardware, software,
and efficient computational architectures to keep pace with the evolving demands. As
the AI computing demands keep scaling, photonic integrated circuits-based AI accel-
erators will continue to face new design challenges. Taking this into consideration,
we provide the following directions for future research.

Analysis of Optical Loss and Crosstalk Noise in MRR-based Incoherent
Photonic Accelerators

In Chapter 6, we presented a comparative analysis of the impact of DPU organiza-
tion on scalability, considering variations in optical losses. However, the MRR also
encounters inherent optical losses and crosstalk noise arising from fabrication imper-
fections and undesired optical couplings, which become increasingly significant as the
network scales up. Consequently, the inference accuracy of MRR-based incoherent
photonic accelerators can be compromised by such inefficiencies. While prior works
[152, 157, 9], including Chapter 6, have estimated these losses at a conceptual level,
we propose the development of comprehensive models to accurately calculate losses
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from the device to the system level. These proposed models can be applied to any
MRR-based incoherent photonic accelerator architecture with various configurations
to analyze the effects of loss and crosstalk. Such an analysis is crucial for meet-
ing inference accuracy and scalability requirements when designing an MRR-based
incoherent photonic accelerator.

A Spatio Temporal In-Situ accumulator for efficient partial sum reductions
in MRR based Photonic CNN accelerators

Prior work [95, 120] has demonstrated that inter-DPU and intra-DPU communication
in MRR-based Photonic CNN accelerators significantly contributes to latency and
power consumption, thereby affecting throughput and energy efficiency. Communica-
tion requirements primarily arise during the processing of partial sum accumulations.
Current accelerators typically rely on electronic reduction tree-based networks such
as S TREE [81], S TREE ACC [93], and STIFT [120] for reduction, which involves
ADC conversions, buffer accesses, and communication overhead. Chapters 6 and 7
of our work addressed the lack of photonic in-situ spatio-temporal accumulators by
introducing a balanced photocharge accumulator (BPCA). However, these chapters
and prior works lack a comprehensive analysis of applying BPCA under various clus-
tering configurations at DPU-level and DPE-level and data mapping with different
dataflows for available MRR-based DPU architectures. Our goal in this work is to
conduct such an analysis to demonstrate the advantages of BPCA over electronic re-
duction networks. Furthermore, we aim to identify optimal configuration parameters
such as clustering type (intra-DPE versus intra-DPU), clustering size, and dataflow
to maximize the throughput and energy efficiency of various MRR-based DPU accel-
erator architectures.

A DWDM enabled Microring resonator based delay feedback reservoir

As demonstrated in Chapter 2, MRR-based Delay Feedback Reservoir Computing
(DFRC) has shown comparable performance to its electronic and photonic counter-
parts. However, both the architecture proposed in Chapter 2 and previous works
are limited to performing training or inference on a single task, whereas modern
AI workloads increasingly demand parallel processing capabilities. Thus, there is a
pressing need to explore opportunities for parallel processing in PIC-based DFRC
accelerators. To address the lack of concurrency in running parallel model train-
ing and inference on PIC-based DFRC accelerators, we propose leveraging the dense
wavelength division compatibility of MRRs. Our plan involves integrating more than
one MRR in the DFRC loop, with each MRR handling an individual task while
sharing the same feedback loop to act as a reservoir. Furthermore, the evaluation
of PIC-based DFRC accelerators in the literature has primarily focused on conven-
tional RC Benchmarks, lacking analysis of recent RC tasks and comparisons with
state-of-the-art RNN models. Therefore, we aim to fill this gap by conducting thor-
ough evaluations of PIC-based DFRC accelerators on contemporary RC tasks and
comparing their performance with state-of-the-art RNN models.

196



A case for Heterogeneous Architectures of Electro-photonic GEMM Ac-
celerators

It has been shown that electro-photonic (EP) GEMM accelerators can be employed
for high-performance as well as embedded/edge computing applications [150]. How-
ever, the method of operation for an EP GEMM accelerator has to differ for the
high-performance application compared to the applications at the edge. This is be-
cause, for the application at the edge, energy efficiency is typically prioritized over
throughput. Therefore, for the application at the edge, energy-friendly data en-
coding/signaling and other operating conditions are utilized, whereas, for the high-
performance application, throughput-friendly signaling and operating conditions are
utilized. Consequently, the use of binary/unary signaling (analog or mixed signaling)
is common for the at-edge (high-performance) application [152, 150]. However, to
minimize energy consumption at a BPD/BPCA, it is common to select a very slow
sampling rate of the BPD/BPCA for the application at the edge [150, 188]. This
necessitates that the BPD/BPCA allows for accumulations (signed sum-of-products)
to be performed both temporally as well as spatially to allow multiple fast-arriving
product values to be accumulated every sampling period. In contrast, a fast sampling
rate is required at BPDs/BPCAs for the high-performance application, which makes
it sufficient to enable spatial-only accumulations at the BPDs/BPCAs. To provide
efficient software-level support for this kind of heterogeneity of operating conditions
and applications, there is an opportunity to develop new languages and compiler
tools.

197



Appendix

• https://github.com/uky-UCAT/Photonic-Interconnects-Simulator (A cycle-
accurate C++ photonic interconnect simulator derived from NOXIM and GEM5
as part of Chapter 3. The repository contains the implementation of the frame-
work proposed in Chapter 3 and the corresponding simulation files.)

• https://github.com/uky-UCAT/CASES2022 (The python scripts developed to
perform scalability analysis of analog MRR-based CNN accelerators as part of
Chapter 4.)

• https://github.com/uky-UCAT/B_ONN_SIM (A python-based simulator devel-
oped as part of Chapter 5. The simulator can evaluate the BNN inference on
various MRR-based BNN accelerators to determine metrics like throughput,
energy efficiency, and area efficiency.)

• https://github.com/uky-UCAT/SC_ONN_SIM (A transaction-level, event-driven
python-based simulator developed as part of Chapter 6. It serves as a tool for
the performance evaluation of stochastic computing-based optical neural net-
work accelerators designed for various quantized Convolutional Neural Network
models.)

Copyright© Sairam Sri Vatsavai, 2024.
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[120] F. Muñoz Mart́ınez et al. Stift: A spatio-temporal integrated folding tree for
efficient reductions in flexible dnn accelerators. JETC, 2023.

[121] B. Neel, M. Kennedy, and A. Kodi. Dynamic power reduction techniques in
on-chip photonic interconnects. In Proceedings of the 25th Edition on Great
Lakes Symposium on VLSI, GLSVLSI ’15, page 249–252, New York, NY, USA,
2015. Association for Computing Machinery.

207



[122] D.-R. Oh et al. An 8b 1gs/s 2.55mw sar-flash adc with complementary dynamic
amplifiers. In IVLSIC, 2020.

[123] K. Padmaraju et al. Intermodulation crosstalk characteristics of wdm silicon
microring modulators. IEEE Photonics Technology Letters, 2014.

[124] Y. Pan, J. Kim, and G. Memik. Flexishare: Channel sharing for an energy-
efficient nanophotonic crossbar. In HPCA - 16 2010 The Sixteenth International
Symposium on High-Performance Computer Architecture, pages 1–12, 2010.

[125] Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman,
and S. Massar. Optoelectronic reservoir computing. Scientific Reports, 2(1),
Feb. 2012.

[126] A. Paszke et al. Pytorch: An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Systems 32. 2019.

[127] N. Peserico et al. Integrated photonic tensor processing unit for a matrix mul-
tiply: a review. JLT, 2023.

[128] M. Popel et al. Transforming machine translation: a deep learning system
reaches news translation quality comparable to human professionals. Nature
Communications, 11(1):4381, Sep 2020.

[129] P. R. Prucnal et al. Neuromorphic Photonics. CRC Press, May 2017.

[130] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das, B. Kaul,
and T. Krishna. Sigma: A sparse and irregular gemm accelerator with flexible
interconnects for dnn training. In 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 58–70, 2020.

[131] C. Ramey. Silicon photonics for artificial intelligence acceleration : Hotchips
32. In 2020 IEEE Hot Chips 32 Symposium (HCS), pages 1–26, 2020.

[132] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European confer-
ence on computer vision, pages 525–542. Springer, 2016.

[133] A. Ren et al. Sc-dcnn: Highly-scalable deep convolutional neural network using
stochastic computing. ASPLOS ’17, New York, NY, USA, 2017. ACM.

[134] A. Rizzo, Q. Cheng, S. Daudlin, and K. Bergman. Ultra-broadband silicon
photonic interleaver for massive channel count frequency combs. In 2020 Con-
ference on Lasers and Electro-Optics (CLEO), pages 1–2, 2020.

[135] A. Rizzo et al. Massively scalable kerr comb-driven silicon photonic link. Nature
Photonics, 2023.

208



[136] A. Rizzo, Y. London, G. Kurczveil, T. Van Vaerenbergh, M. Fiorentino,
A. Seyedi, D. Livshits, R. G. Beausoleil, and K. Bergman. Energy efficiency
analysis of frequency comb sources for silicon photonic interconnects. In 2019
IEEE Optical Interconnects Conference (OI), pages 1–2, 2019.

[137] S. Samarasinghe. Neural Networks for Applied Sciences and Engineering: From
Fundamentals to Complex Pattern Recognition. Auerbach, 2007.

[138] M. Sandler et al. Inverted residuals and linear bottlenecks: Mobile networks
for classification, detection and segmentation. CoRR, 2018.

[139] J. Schmidhuber. Deep learning in neural networks: An overview. 2014.

[140] B. Schrauwen, D. Verstraeten, and J. Campenhout. An overview of reservoir
computing: Theory, applications and implementations. pages 471–482, 01 2007.

[141] M. A. Seyedi, R. Wu, C.-H. Chen, M. Fiorentino, and R. G. Beausoleil. 15 gb/s
transmission with wide-fsr carrier injection ring modulator for tb/s optical links.
In Conference on Lasers and Electro-Optics, page SF2F.7. Optical Society of
America, 2016.

[142] B. J. Shastri, A. N. Tait, T. F. de Lima, W. H. P. Pernice, H. Bhaskaran, C. D.
Wright, and P. R. Prucnal. Photonics for artificial intelligence and neuromor-
phic computing. Nature Photonics, 15(2):102–114, Jan. 2021.

[143] S. Shekhar. Silicon photonics: A brief tutorial. IEEE Solid-State Circuits
Magazine, 13(3):22–32, 2021.

[144] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg,
X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljačić. Deep learning
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