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Nlrp3 Inflammasome Signaling Regulates the Homing
and Engraftment of Hematopoietic Stem Cells (HSPCs) by Enhancing
Incorporation of CXCR4 Receptor into Membrane Lipid Rafts

Mateusz Adamiak1,2 & Ahmed Abdel-Latif3 & Kamila Bujko1
& Arjun Thapa1 & Krzysztof Anusz4 & Michał Tracz4 &

Katarzyna Brzezniakiewicz-Janus5 & Janina Ratajczak1 & Magda Kucia1,2 & Mariusz Z. Ratajczak1,2

# The Author(s) 2020

Abstract
Fast and efficient homing and engraftment of hematopoietic stem progenitor cells (HSPCs) is crucial for positive clinical
outcomes from transplantation. We found that this process depends on activation of the Nlrp3 inflammasome, both in the
HSPCs to be transplanted and in the cells in the recipient bone marrow (BM) microenvironment. For the first time we provide
evidence that functional deficiency in the Nlrp3 inflammasome in transplanted cells or in the host microenvironment leads to
defective homing and engraftment. At the molecular level, functional deficiency of the Nlrp3 inflammasome in HSPCs leads to
their defective migration in response to the major BM homing chemoattractant stromal-derived factor 1 (SDF-1) and to other
supportive chemoattractants, including sphingosine-1-phosphate (S1P) and extracellular adenosine triphosphate (eATP). We
report that activation of the Nlrp3 inflammasome increases autocrine release of eATP, which promotes incorporation of the
CXCR4 receptor into membrane lipid rafts at the leading surface of migrating cells. On the other hand, a lack of Nlrp3
inflammasome expression in BM conditioned for transplantation leads to a decrease in expression of SDF-1 and danger-
associated molecular pattern molecules (DAMPs), which are responsible for activation of the complement cascade (ComC),
which in turn facilitates the homing and engraftment of HSPCs.

Keywords Nlrp3 inflammasome . Purinergic signaling . Extracellular nucleotides . Complement cascade . Stem cell homing .

Stem cell engraftment . Bonemarrow sterile inflammation
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Introduction

Hematopoietic transplantation is based on intravenous infu-
sion of hematopoietic stem progenitor cells (HSPCs), which,
i n r e s pon s e t o bon e ma r r ow (BM) - exp r e s s e d
chemoattractants, migrate and home to BM hematopoietic
niches [1–3]. This process is followed by their engraftment
and expansion to repopulate recipient myeloablated BM. The
most important BM chemoattractant is the α-chemokine stro-
mal-derived factor 1 (SDF-1) [4, 5]. However, its homing
properties are supported by the bioactive phosphospingolipid
sphingosine-1-phosphate (S1P) and by extracellular adeno-
sine triphosphate (eATP) [6–9]. As we demonstrated in the
past, for optimal sensing of SDF-1 gradients and intracellular
signaling in migrating HSPCs, CXCR4 has to be incorporated
into cell membrane lipid rafts [10, 11].

In our previous work we demonstrated that the Nlrp3
inflammasome plays an important role in pharmacological
mobilization and egress of HSPCs from BM into peripheral
blood (PB) [12, 13]. Specifically, blockade of the Nlrp3
inflammasome by the small-molecule inhibitor MCC950 led
to a decrease in the release of HSPCs from BM into PB [12],
and this result was subsequently reproduced in Nlrp3-KO
mice. In this current investigation we became interested in
the role of the Nlrp3 inflammasome complex in the reverse
process, which is homing and engraftment of transplanted
HSPCs.

The Nlrp3 inflammasome is located in the cytoplasm in an
inactive form [14], and upon activation it becomes a function-
al multiprotein aggregate, composed of several Nlrp3 com-
plex proteins (speck complexes) containing Nlrp3, ASC, and
procaspase 1 [15]. Expression of the Nlrp3 inflammasome has
been primarily observed in innate immunity cells, including
monocytes, macrophages, granulocytes, and dendritic cells
[16, 17]. Subsequently, this protein complex was also found
in T and B lymphocytes [18, 19].

Here we report for the first time that the Nlrp3
inflammasome complex is also expressed at the mRNA
level in murine HSPCs, and its blockade by the small-
molecule inhibitor MCC950 or its functional absence in
Nlrp3-KO mice leads to defective migration, homing, and
subsequent engraf tment in myeloabla ted hosts .
Specifically, after exposure to MCC950 or isolation from
Nlrp3-KO mice HSPCs show decreased chemotaxis in
response to SDF-1, S1P, and eATP gradients. Moreover,
we observed that decreased responsiveness of HSPCs to
homing factors in BM is related to defective incorporation
of the SDF-1 receptor CXCR4 into membrane lipid rafts.
This is because Nlrp3 inflammasome activation in HSPCs
leads to autocrine secretion of eATP at the leading surface
of migrating cells, which promotes incorporation of
CXCR4 into membrane lipid rafts.

This finding again confirms the involvement of innate im-
munity in the regulation of HSPC migration. Importantly, we
provide novel evidence that the Nlrp3 inflammasome not only
plays a pivotal role in egress/mobilization of HSPCs from BM
into PB [12], but its expression in transplanted HSPCs and in
cells in the BM microenvironment conditioned for transplan-
tation is crucial for optimal homing, engraftment, and hema-
topoietic reconstitution.

Materials and Methods

Animals

Pathogen-free, 6–8-week-old female C57BL/6 J wild-type
(WT) and B6.129S6-Nlrp3tm1Bhk/J (Nlrp3-KO) mice were
purchased from the Central Laboratory for Experimental
Animals, Medical University of Warsaw or the Jackson
Laboratory (Bar Harbor, ME; USA) at least 2 weeks before
experiments. Animal studies were approved by the Animal
Care and Use Committee of the Warsaw Medical University
(Warsaw, Poland) and the University of Louisville
(Louisville, KY, USA).

Murine Bone Marrow-Derived Mononuclear Cells
(BMMNCs)

Cells were obtained by flushing experimental mouse tibias
and femurs. Red blood cells (RBCs) were removed by lysis
in BD Pharm Lyse buffer (BD Biosciences, San Jose, CA,
USA), washed, and resuspended in appropriate media [20].

Isolation of SKL Cells

SKL cells were isolated from the BM of C57BL/6 wild type
and Nlrp3-KO mice. Briefly, the BM was flushed from the
femurs, and the population of total nucleated cells was obtain-
ed after lysis of red blood cells (RBCs) using 1 × BD Pharm
Lyse buffer (BD Pharmingen, San Jose, CA, USA). The cells
were subsequently stained using the following lineage
marker-specific antibodies (all from BD Biosciences): PE–an-
ti-TCR γδ, clone GL3; PE–anti-CD11b, clone M1/70; PE–
anti-TCR β-chain, clone H57–597; PE–anti-CD45R/B220,
clone RA3-6B2; PE–anti-TER-119/erythroid cells, clone
TER-119; PE–anti-Ly-6G and -Ly-6C (Gr1), clone RB6-
8C5; PE–Cy5–anti-Ly-6A/E (Sca-1), clone D7; fluorescein
isothiocyanate (FITC)–anti-CD117 (c-Kit), clone 2B8 for
30 min in medium containing 2% fetal bovine serum (FBS).
The cells were then washed, resuspended in RPMI-1640 me-
dium, and sorted using a Moflo XDP cell sorter (Beckman
Coulter, Indianapolis, IN, USA) as populations of SKL
(Sca-1+c-Kit+ Lin−) cells.
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Transwell Migration Assay

RPMI-1640 assay medium (650 μl) plus 0.5% BSA, with or
without stromal-derived factor 1 (SDF-1, 5 ng/ml),
sphingosine-1-phosphate (S1P, 0.1 μM), or adenosine tri-
phosphate (ATP, 0.25 μg/ml), was added to the lower cham-
bers of a Costar Transwell 24-well plate (Corning Costar).
Aliquots of experimental mouse BMMNC suspension (1 ×
106 cells per 100 μl), without any addition or incubated for
1 h with 10Panx (WRQAAFVDSY, 40 μM), scrambled
10Panx (SCPanx, FSVYWAQADR, 40 μM), or apyrase
(2 U/ml), were loaded onto the upper chambers with 5-μm
pore filters and then incubated (3 h, 37 °C, 95% humidity, 5%
CO2). An aliquot of cells from the lower chambers was har-
vested and resuspended in human methylcellulose base medi-
um (R&DSystems), supplemented with murine GM-CSF (25
ng/ml) and IL-3 (10 ng/ml), for determining the number of
CFU-GM colonies. Cultures were incubated for 7 days
(37 °C, 95% humidity, and 5% CO2), at which time the colo-
nies were counted under an inverted microscope [20–22].

Short-Term Homing Experiments

Experimental mice (WT,WT treated withMCC950 [7 mg/kg,
IP, every second day for 12 days], or Nlrp3-KO) were irradi-
ated with a lethal dose of γ-irradiation (10 Gy). Twenty-four
hours later, the animals were transplanted by tail vein injection
with 5 × 106 BM cells from Nlrp3-KO mice, untreated WT
mice , or WT mice t rea ted for 1 h wi th 10Panx
(WRQAAFVDSY, 40 μM) or scrambled 10Panx (SCPanx
(FSVYWAQADR, 40 μM). All cells were labeled with
PKH67 Green Fluorescent Cell Linker (Sigma-Aldrich, St
Louis, MO, USA) according to the manufacturer’s protocol.
Twenty-four hours after transplantation, BM cells from the
femurs were isolated via Ficoll–Paque and divided into two
aliquots. One aliquot of cells was analyzed on a flow
cytometer, and the second aliquot was plated in serum-free
methylcellulose cultures and stimulated to grow CFU-GM
colonies with granulocyte-macrophage colony-stimulating
factor (GM-CSF, 25 ng/ml) and interleukin 3 (IL-3, 10 ng/ml).
After 7 days of incubation (37 °C, 95% humidity, and 5%
CO2) the number of colonies was scored under an inverted
microscope [8, 21].

Evaluation of Engraftment

For engraftment experiments, WT mice untreated or treated
with MCC950 (7 mg/kg, IP, every second day for 8 days
before and 12 days during the experiment) or Nlrp3-KO mice
were irradiated with a lethal dose of γ-irradiation (10 Gy).
Twenty-four hours later, the animals were transplanted by tail
vein injection with 1.5 × 105 BM cells fromNlrp3-KOmice or
WT mice untreated or treated for 1 h with 10Panx

(WRQAAFVDSY, 40 μM) or scrambled 10Panx (SCPanx
(FSVYWAQADR, 40 μM). Twelve days after transplanta-
tion, the femora of transplanted mice were flushed with
phosphate-buffered saline (PBS). BM cells purified via
Ficoll–Paque were plated in serum-free methylcellulose cul-
tures and stimulated for formation of CFU-GM colonies with
mGM-CSF (25 ng/ml) and IL-3 (10 ng/ml). After 7 days of
incubation (37 °C, 95% humidity, and 5%CO2) the number of
colonies was scored under an inverted microscope. The
spleens were also removed, fixed in Telesyniczky’s solution
for CFU-S assays, and the colonies counted on the surface of
the spleens [8, 21, 23].

Recovery of Leukocytes and Platelets

Experimental mice (WT or WT treated with MCC950,
7 mg/kg, IP, every second day for 8 days before and 28 days
during the experiment) were irradiated with a lethal dose of γ-
irradiation (10 Gy). Twenty-four hours later, the animals were
transplanted by tail vein injection with 7.5 × 105 BM cells
from Nlrp3-KO mice or WT mice untreated or treated for
1 h with 10Panx (WRQAAFVDSY, 40 μM) or scrambled
10Panx (SCPanx (FSVYWAQADR, 40 μM). Transplanted
mice were bled at various intervals from the retro-orbital plex-
us to obtain samples for white blood cell (WBC) and platelet
(PLT) counts, as described [8, 21, 24]. Briefly, 50 μl of PB
were drawn into EDTA-coated Microvette tubes (Sarstedt
Inc., Newton, NC, USA) and run within 2 h of collection on
a HemaVet 950FS hematology analyzer (Drew Scientific Inc.,
Oxford, CT, USA).

qRT-PCR Analysis of Nlrp3 Inflammasome Complex
Gene Expression

BMMNCs from non-irradiated and irradiated C57BL/6 and
Nlrp3-KO mice were isolated, resuspended in RPMI-1640
medium plus 0.5% bovine serum albumin (BSA; Sigma-
Aldrich, at 2 million cells per 500 μl of medium), centrifuged,
and the total RNA isolated with the RNeasy Mini kit (Qiagen
Inc.) after DNase I (Qiagen Inc.) treatment. The purified RNA
was reverse-transcribed with MultiScribe reverse transcrip-
tase, oligo(dT), and a random-hexamer primer mix (all from
Applied Biosystems Life Technologies, CA, USA).
Quantitative evaluation of the target genes was then per-
formed using an ABI Prism 7500 sequence detection system
(Applied Biosystems Life Technologies) with Power SYBR
Green PCR Master Mix reagent and specific primers. The
PCR cycling conditions were 95 °C (15 s), 40 cycles at
95 °C (15 s), and 60 °C (1 min). According to melting point
analysis, only one PCR product was amplified under these
conditions. The relative quantity of a target gene, normalized
to the β2-microglobulin gene as the endogenous control and
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relative to a calibrator, was expressed as 2–ΔΔCt (fold
difference).

The following primer pairs were used for analysis:
mNLRP1.
forward primer: 5′- GCT GAA TGA CCT GGG TGA

TGG T-3′.
reverse primer: 5′-CTT GGT CAC TGA GAG ATG CCT

G-3′.
mIL-18.
forward primer: 5′- ACA ACT TTG GCC GAC TTC AC-

3′.
reverse primer: 5′-GGG TTCACTGGCACT TTGAT-3′.
mIL-1β.
forward primer: 5′- TCA CAGCAG CACATCAACAA-

3′.
reverse primer: 5′-TGT CCTCAT CCTGGAAGGTC-3′.
mAIM2.
forward primer: 5′-AAA ACT GCT CTG CTG CCT CT-

3′.
reverse primer: 5′-GAT GGC TTC CTG TTC TGC CA-3′.
mCasp1.
forward primer: 5′- CAC AGC TCT GGA GAT GGT GA-

3′.
reverse primer: 5′- GGT CCCACA TAT TCCCTC CT-3′.
mASC.
forward primer: 5′- GCC AGA ACA GGC ACT TTG TG-

3′.
reverse primer: 5′- AGT CAG CAC ACT GCC ATG C-3′.
mNlrp3.
forward primer: 5′- GCT GCT GAAGATGACGAG TG-

3′.
reverse primer: 5′-TTT CTC GGG CGGGTA ATC TT-3′.
mHMGB1.
forward primer: 5′- TAA AAA GCC CAG AGG CAA

AA-3′.
reverse primer: 5′- GCS GCS ATG GTC TTC CAC CT-3′.
mS100A9.
forward primer: 5′- TGG TGG AAG CAC AGT TGG −3′.
reverse primer: 5′- CAT CAG CAT CAT ACA CTC CTC

AA −3′.
mSDF-1.
forward primer: 5′- CGT GAG GCC AGG GAA GAG

T-3′.
reverse primer: 5′- TGA TGA GCA TGG TGG GTT GA

−3′.
mSCF.
forward primer: 5′- TACCATATC TCG TAGCCAACA

ATG A − 3′.
reverse primer: 5′- GGC AAA TCF TCC AAA TGA CTA

TAT GA −3′.
mβ2M.
forward primer: 5′-ATGCTATCCAGAAAACCCCT

CAAAT-3.

reverse primer: 5′-AACTGTGTTACGTAGCAGTT
CAGTA-3′.

Lipid Raft Detection

Murine tibias and femurs from C57Bl/6 and Nlrp3-KO ani-
mals were flushed, and BM-derived MNCs were obtained
after lysis of red blood cells (RBCs) using 1 × BD Pharm
Lyse buffer (BD Pharmingen, San Jose, CA, USA). Murine
SKL (Sca-1+c-Kit+Lin−) cells were purified by using
fluorescence-activated cell sorting (FACS) from BM-derived
MNCs using the following lineage marker-specific antibodies
(all from BD Biosciences): PE–anti-TCR γδ, clone GL3; PE–
anti-CD11b, cloneM1/70; PE–anti-TCRβ-chain, clone H57–
597; PE–anti-CD45R/B220, clone RA3-6B2; PE–anti-TER-
119/erythroid cells, clone TER-119; PE–anti-Ly-6G and Ly-
6C (Gr1), clone RB6-8C5; PE–Cy5–anti-Ly-6A/E (Sca-1),
clone D7; fluorescein isothiocyanate (FITC)–anti-CD117 (c-
Kit), clone 2B8. Briefly, SKL cells isolated from Nlrp3-KO
and WT BM were plated on fibronectin-coated plates over-
night, then incubated with SDF-1 (50 ng/ml) and LL-37
(2.5 μg/ml). SKL cells from WT BM were also exposed to
10Panx-1 inhibitory peptide (200 μM; Tocris) or scrambled
10Panx peptide (200 μM; Tocris), adenosine (10 μM;
Sigma-Aldrich), or CoPP (cobalt III protoporphyrin IX chlo-
ride, 50 μM; Enzo Life Science) for 3 h, then washed and
fixed in 3.7% paraformaldehyde. The cholera toxin B subunit
conjugated with FITC (Sigma-Aldrich) was applied to detect
the ganglioside GM1, and rat monoclonal anti-CXCR4 IgG
antibody (R&D Systems) and Alexa Fluor 594 goat anti-rat
IgG antibody (Invitrogen) were applied to detect CXCR4. The
stained cells were examined, and images were generated using
a FluoView FV1000 laser-scanning confocal microscope
(Olympus America Inc., Center Valley, PA, USA).

Enzyme-Linked Immunosorbent Assay

Conditioned media (CM) of lethally irradiated (10 Gy of γ-
irradiation)WT andNlrp3-KOmicewere prepared as follows.
After isolation of whole bone marrow, the cells were incubat-
ed in RPMI with 0.5% BSA for 24 h at 37 °C in a 5% CO2

incubator. The supernatant (CM) was then harvested. The re-
sidual C5a level was measured by enzyme-linked immunosor-
bent assay (ELISA) according to the manufacturer’s protocols
(Abcam, cat. no. ab193718) [25, 26].

Statistical Analysis

All results are presented as mean ± SD. Statistical analysis of
the data was done using Student’s t test for unpaired samples,
with p ≤ 0.05 considered significant.
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Results

Normal Murine Hematopoietic Stem/Progenitor Cells
(HSPCs) Express Nlrp3 Inflammasome Components

The Nlrp3 inflammasome is expressed in innate immunity
cells and in cells belonging to the T and B lymphocytic line-
ages [16–19]. Here we asked whether it is also expressed in
murine HSPCs. As shown in Fig. 1, all crucial Nlrp3
inflammasome components, including Nlrp3 protein, ASC,
caspase 1, IL-1β, and IL-18 are expressed at the mRNA level
in murine FACS-purified Sca-1+Kit+Lin− (SKL) cells. In ad-
dition, we also detected HSPC expression of mRNAs for two
important danger-associated molecular pattern molecules
(DAMPs, also known as alarmines [12]), high mobility group
box 1 (HMGB1) protein and the S100 calcium-binding pro-
tein S100a9. Both of these DAMPs are released from cells
after activation of the Nlrp3 inflammasome.

Proper Expression of the Nlrp3 Inflammasome in
HSPCs Is Required for their Migration toward BM-
Homing Chemoattractants

In our previous work we demonstrated that inhibition of Nlrp3
inflammasome expression in mice by its specific inhibitor
MCC950 significantly decreases egress of HSPCs from BM
into PB during pharmacological mobilization by granulocyte
colony-stimulating factor (G-CSF) or the CXCR4 receptor
antagonist AMD3100 [12]. We have proposed that this could
be a result of decreased migration of cells, and to better ad-
dress this issue we performed Transwell chemotaxis assays
using normal BMMNCs exposed to nontoxic doses of
MCC950 and tested against the chemoattractants SDF-1,
S1P, and eATP. We found that migration of BMMNCs and
CFU-GM clonogenic progenitors was significantly inhibited
when Nlrp3 expression in migrating BM cells had been
inhibited by nontoxic doses of MCC950 (Supplementary
Fig. 1A, B). Next, we reproduced these experiments compar-
ing BMMNCs from control and Nlrp3-KO mice and obtained
similar results (Fig. 2). We conclude that proper Nlrp3
inflammasome expression in HSPCs is required for migration
of these cells in response to BM-expressed homing factors.

BMMNCs from Nlrp3-KO Mice Show Impaired Homing
and Engraftment after Transplantation into Normal
Mice

To address directly the role of the Nlrp3 inflammasome in the
homing and subsequent engraftment of HSPCs after trans-
plantation into lethally irradiated mice, we inhibited expres-
sion of the Nlrp3 inflammasome in BMMNCs present in the
graft by employing the small-molecule inhibitor MCC950
(Supplementary Fig. 2). After exposure, these cells were

Fig. 1 Expression of Nlrp3, IL-1β, IL-18, caspase 1, ACS, HGMB1,
and S100a9 mRNAs in murine BMMNCs and BM-purified SKL
cells. Expression of Nlrp3, IL-1β, IL-18, caspase 1, ACS, HGMB1,
and S100a9 mRNAs in BMMNCs and BM-purified SKL cells as mea-
sured by RT-PCR. Results are combined from three independent purifi-
cations of BM and SKL cells isolated from six animals per purification

Fig. 2 Impact of Nlrp3 on the chemotactic activity of murine
BMMNCs. The chemotactic responsiveness of BMMNCs from WT or
Nlrp3-KO mice to medium supplemented with SDF-1, S1P, or ATP
according to the number of CFU-GM clonogenic progenitors. Results
are combined from two independent experiments. *p > 0.05
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subsequently infused intravenously into wild type (WT) con-
trol animals. We observed that the number of donor-derived
PKH67-labeled BMMNCs and the number of CFU-GM
clonogenic progenitors, as enumerated 24 h after transplanta-
tion in a similar manner as day-12 colony-forming units in
spleen (CFU-S) and day-12 CFU-GM clonogenic progenitors
isolated from BM, was reduced when Nlrp3 expression was
inhibited. In parallel, we also observed a slowing in the recov-
ery kinetics of leukocytes and blood platelets (Supplementary
Fig. 2). This result indicates that HSPC expression of the
Nlrp3 inflammasome is crucial for in vivo migration of
transplanted HSPCs and their homing and engraftment in BM.

To confirm this intriguing observation, we repeated
our experiments using BMMNCs from control WT and
Nlrp3-KO mice and assayed them in homing and en-
graftment experiments after transplantation into normal
syngeneic WT animals. Figure 3A shows that, compared
with WT control cells, the number of fluorochrome-
labeled donor cells was reduced by 60% in the BM of
transplanted animals 24 h after injection. Similarly, the
number of donor CFU-GM in BM after injection of
Nlrp3-KO BMMNCs was reduced by more than 50%
compared with control WT BMMNCs. In short-term en-
graftment experiments we observed that, 12 days after
transplantation of Nlrp3-KO BMMNCs, the numbers of

donor-derived CFU-S progenitors in spleen and CFU-
GM progenitors in BM were reduced by more than
50% (Fig. 3B). Corresponding with these results, we
observed that mice transplanted with Nlrp3-KO
BMMNCs had slower kinetics of recovery for leuko-
cytes and platelets (Fig. 3C).

Nlrp3 Inflammasome Deficiency in the BM
Microenvironment of Transplant-Recipient Mice Also
Impairs Homing and Engraftment of BMMNCs

Based on observations that the Nlrp3 inflammasome is upreg-
ulated in lethally irradiated mice after conditioning for trans-
plantation, we first exposed recipient mice to MCC950 and
transplanted them with syngeneic BMMNCs. Supplementary
Fig. 3 shows that the number of donor-derived fluorochrome-
labeled cells and CFU-GM clonogenic progenitors was re-
duced in transplanted mice exposed to MCC950 inhibitor to
a similar number as day-12 CFU-S and CFU-GM clonigenic
progenitors, compared with transplanted control mice that
were not exposed to MCC950. In addition, the recovery of
leukocytes and platelet counts was also delayed in mice ex-
posed to an Nlrp3 inflammasome inhibitor around the time of
transplantation (Supplementary Fig. 3C).

a

c
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Fig. 3 Defect in short- and long-term engraftment of Nlrp3-KO HSPCs
in WT mice
Panel A. Lethally irradiated WT mice (9 per group) were transplanted
with bonemarrowmononuclear cells (BMMNCs) fromWT orNlrp3-KO
mice, which had been previously labeled with a PKH67 cell linker.
Twenty-four hours after transplantation, the femoral BMMNCs were har-
vested, the number of PKH67+ cells evaluated by FACS, and the CFU-
GMclonogenic progenitors enumerated in an in vitro colony assay. Panel
B. Lethally irradiated WT mice (9 per group) were transplanted with

BMMNCs fromWT or Nlrp3-KOmice, and 12 days after transplantation
femoral BMMNCs were harvested and plated to count the number of
CFU-GM colonies and the spleens removed for counting the number of
CFU-S colonies. No colonies were formed in lethally irradiated,
untransplanted mice (irradiation control). *p < 0.05. Panel C. Lethally
irradiated mice (9 per group) were transplanted with BMMNCs from
WT or Nlrp3-KO mice. White blood cells (left) and platelets (right) were
counted at intervals (at 0, 3, 7, 14, 21, and 28 days after transplantation).
*p < 0.05.
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Next, we repeated homing and short-term engraftment ex-
periments employing lethally irradiated Nlrp3-KO mice
(Fig. 4). Again, as in experiments in which the Nlrp3
inflammasome was inhibited withMCC950, we observed that
the number of donor-derived fluorochrome-labeled cells and
CFU-GM clonogeneic progenitors was reduced in
transplanted Nlrp3-KO mice (Fig. 4A) to a similar number
as day-12 CFU-S and CFU-GM clonogenic progenitors
(Fig. 4B), compared with control animals.

This result implies that the Nlrp3 inflammasome regulates
homing and engraftment, both in transplanted donor-derived
HSPCs and in the transplant-recipient BMmicroenvironment.

The Nlrp3 Inflammasome Regulates Migration of
HSPCs by Promoting Incorporation of CXCR4 into
Membrane Lipid Rafts

We reported in the past that migration of HSPCs in response
to BM chemoattractants requires incorporation of homing re-
ceptors, for example, CXCR4, into cell membrane lipid rafts
[10]. Accordingly, certain innate immunity mediators, includ-
ing cationic antimicrobial peptides (e.g., LL-37, C3a, or β2-
defensin) released from BM during myeloablative condition-
ing for transplantation enhance incorporation of CXCR4 re-
ceptor into membrane lipid rafts, and these are required for
optimal migration of HSPCs in response to an SDF-1 homing
gradient in BM [27]. To address potential involvement of the
Nlrp3 inflammasome in this phenomenon, we evaluated
membrane lipid raft formation in normal syngeneic
BMMNCs and Nlrp3-KO cells in a model in which cells were
exposed to a lipid raft-promoting factor, the small immuno-
modulatory peptide LL-37. Figure 5A shows that, in response
to LL-37, CXCR4 became incorporated into membrane lipid
rafts in control syngeneic BM-purified SKL cells but not in
SKL cells purified from Nlrp3-KO mice (Fig. 5B).

Moreover, in our previous work we demonstrated that the
eATP metabolite extracellular adenosine (eAdo) inhibits mi-
gration of HSPCs by upregulation of intracellular heme oxy-
genase 1 (HO-1) in the cells [28]. Based on this finding, dur-
ing LL-37 priming we exposed murine SKL cells to eAdo
(Fig. 5C) or a small-molecule activator of intracellular HO-
1, CoPP (Fig. 5D), and observed inhibition of membrane lipid
raft formation. This may at least partially explain the negative
effect of the eAdo–HO-1 axis on the migration of HSPCs and
identifies this axis as a negative regulator of lipid raft
assembly.

Pannexin 1 Channel-Dependent Autocrine Secretion
of eATP by HSPCs Promotes their Migration toward
Increasing Concentrations of BM-Expressed
Chemoattractants

It has been demonstrated that migration of leukocytes in re-
sponse to a C5a anaphylatoxin gradient is enhanced by
autocrine-secreted eATP from migrating cells released on
their leading surface [29, 30]. Therefore, we asked whether a
similar mechanism occurs for HSPCs migrating in response to
SDF-1, S1P, or eATP gradients. We perturbed autocrine se-
cretion of ATP by employing two strategies. First, we
inhibited the pannexin 1 channel on the surface of migrating
cells by employing a small-peptide inhibitor of the pannexin 1
channel, 10Panx, and as a second strategy we exposed migrat-
ing cells to apyrase, an enzyme that degrades eATP secreted
from the cells. As shown in Fig. 5B, chemotaxis of CFU-GM
clonogenic progenitors was significantly inhibited in the pres-
ence of a pannexin 1 channel inhibitor or in the presence of
apyrase.

These results suggested that eATP, released in an au-
tocrine manner at the cell’s leading surface, promotes in-
corporation of the CXCR4 receptor into membrane lipid
rafts and thus enhances the chemotactic migration of cells.

a b

Fig. 4 Defect in homing and short-term engraftment of HSPCs in
Nlrp3-KO mice. Panel A. Lethally irradiated Nlrp3-KO or WT mice
(4 mice per group) were transplanted with bone marrow mononuclear
cells (BMMNCs) fromWTmice, which had been previously labeled with
a PKH67 cell linker. Twenty-four hours after transplantation, the femoral
BMMNCs were harvested, the number of PKH67+ cells evaluated by
FACS, and the CFU-GM clonogenic progenitors enumerated in an

in vitro colony assay. Panel B. Lethally irradiated Nlrp3-KO orWTmice
(5 mice per group) were transplanted with BMMNCs fromWTmice, and
12 days after transplantation femoral BMMNCs were harvested and plat-
ed to count the number of CFU-GM colonies and the spleens removed to
count the number of CFU-S colonies. No colonies were formed in lethally
irradiated, untransplanted mice (irradiation control). *p < 0.05
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As proof of the autocrine involvement of eATP in this
phenomenon, we observed that inhibition of pannexin 1
channels by the small blocking peptide 10Panx10, but not
by the control scrambled SCPanx peptide, inhibited auto-
crine release of eATP, which resulted in decreased hom-
ing and engraftment of HSPCs. Corroborating this find-
ing, we observed i) a reduced number of PKH67+-labeled
cells and CFU-GM progenitors 24 h after transplantation
in recipient BM (Fig. 6A), ii) a reduced number of CFU-S
colonies in spleens and CFU-GM progenitors in BM
12 days after transplantation (Fig. 6B), and iii) impaired

recovery of peripheral blood counts in transplanted mice
(Fig. 6C). Moreover, we also observed impaired incorpo-
ration of CXCR4 into membrane lipid rafts (Fig. 6D).

Decreased Expression of SDF-1 and Other Factors
Involved in Migration and Homing of HSPCs in the BM
Microenvironment of Nlrp3-KO Mice Conditioned for
Transplantation

Finally, we became interested in the potential differences in
the response of the BM microenvironment to myeloablative
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Fig. 5 Confocal analysis of
membrane lipid rafts in
purified murine SKL cells.
Panel A. Defective lipid raft
formation in murine C57Bl/6
Nlrp3-KOBM-purified SKL cells
or wild type BM-purified SKL
cells exposed to adenosine
(10 μM) or CoPP (50 μM).
Representative images of SKL
cells sorted from WT BM, stimu-
lated with SDF-1 (50 ng/ml) and
LL-37 (2.5μg/ml), stained with
cholera toxin subunit B (a lipid
raft marker) conjugated with
FITC and rat anti-mouse CXCR4
followed by anti-rat Alexa Fluor
594, and evaluated by confocal
microscopy for formation of
membrane lipid rafts. Lipid rafts
were formed in SKL cells
(control) but not in SKL cells
isolated from Nlrp3-KO animals
or SKL cells isolated from WT
animals after adenosine and CoPP
treatment. Panel B. The chemo-
tactic responsiveness of
mBMMNCs untreated or treated
with 10Panx, SCPanx, or apyrase
in unsupplemented medium or
medium supplemented with SDF-
1, S1P, or ATP, as determined by
counting the number of CFU-GM
clonogenic progenitors. Results
are combined from two indepen-
dent experiments. *p > 0.05,
**p > 0.01, ***p > 0.001
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treatment in Nlrp3-KO and WT mice. As expected, we ob-
served decreased upregulation of mRNAs for Nlrp3
inflammasome components (ASC, IL-1β, IL-18, and cas-
pase-1) compared with control animals (Fig. 7A). Similarly,
the increases in expression ofmRNAs for SDF-1 and KLwere
also at a much lower level in Nlrp3-KO mice than in WT
controls. Moreover, we also observed a decrease in expression
of mRNA for the Aim2 inflammasome and selected DAMPs,
including high mobility group box 1 (HMGB1) protein and
the S100 calcium-binding protein S100a9. Of note, all these
molecules are important in activating the complement cascade
(ComC), which, as we demonstrated in the past, is important
for optimal homing and engraftment of transplanted HSPCs
[13, 31, 32]. In fact, this trend was paralleled by decreased

activation of the ComC in the plasma of Nlrp3-KOmice com-
pared with WT control animals, reflected by a lower level of
C5a in an ELISA assay (Fig. 7B).

Finally, it has been reported that the Nlrp3 inflammasome
maintains a pool of HSPCs in BM. In support of this finding,
Nlrp3 inflammasome-KO mice have a statistically significant
reduction in the number of SKL cells, CFU-GM progenitors,
and BFU-E progenitors in BM (Supplementary Fig. 4).

Discussion

The seminal observation of the current report is that the Nlrp3
inflammasome, as expressed in transplanted HSPCs and in the

a

b

c d

Fig. 6 The impact of pannexin 1 channel blockade on short- and
long-term engraftment of HSPCs in WT mice. Panel A. Lethally
irradiated WT mice (9 per group) were transplanted with bone marrow
mononuclear cells (BMMNCs) that had been previously labeled with a
PKH67 cell linker and then treated with 10Panx or SCPanx. Twenty-four
hours after transplantation, the femoral BMMNCs were harvested, the
number of PKH67+ cells evaluated by FACS, and the CFU-GM
clonogenic progenitors enumerated in an in vitro colony assay. Panel
B. Lethally irradiated WT mice (9 per group) were transplanted with
BMMNCs treated with 10Panx or SCPanx, and 12 days after transplanta-
tion the femoral BMMNCs were harvested and plated to count the num-
ber of CFU-GM colonies and the spleens removed for counting the num-
ber of CFU-S colonies. No colonies were formed in lethally irradiated,
untransplanted mice (irradiation control). *p < 0.05, **p < 0.01,

***p < 0.001. Panel C. Lethally irradiated WT mice (9 per group) were
transplanted with BMMNCs treated with 10Panx. White blood cells
(above) and platelets (below) were counted at intervals (at 0, 3, 7, 14,
21, and 28 days after transplantation). *p < 0.05. Panel D. Defective lipid
raft formation in murine BM-purified SKL cells from C57Bl/6 mice ex-
posed to 10Panx inhibitory peptide (200 μM). Representative images of
SKL cells sorted from WT BM, stimulated with SDF-1 (50 ng/ml) and
LL-37 (2.5μg/ml) (positive control) or exposed to 10Panx inhibitory pep-
tide, stained with cholera toxin subunit B (a lipid raft marker) conjugated
with FITC and rat anti-mouse CXCR4 followed by anti-rat Alexa Fluor
594, and evaluated by confocal microscopy for formation of membrane
lipid rafts. Lipid rafts were formed in SKL cells (control), but not in SKL
cells after 10Panx inhibitory peptide treatment
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BM microenvironment of recipients conditioned for trans-
plantation, is required for optimal stem cell homing, engraft-
ment, and hematopoietic reconstitution. It has emerged as a
major sensor of changes in body microenvironments and is
currently the best-studied member of the inflammasome fam-
ily expressed in hematopoietic and lymphopoietic cells [33,
34], including, as we demonstrate here, normal HSPCs. In
fact, hematopoiesis is coregulated by pathways characteristic
of the activation of innate immunity cells [35]. This should not
be surprising, because of the common developmental origin of
these cells from a hemato/lymphopoietic stem cell [36, 37].

After intravenous infusion, HSPCs home from PB to BM
stem cell niches in response to chemoattractants secreted in
the BM microenvironment, and this process precedes their
subsequent engraftment and repopulation of the recipient’s
hematopoietic organs [1–3]. It is well known that not all
HSPCs in the PB find their way to stem cell niches in the
BM, and the majority is trapped in different non-
hematopoietic locations in various organs [38]. On the other
hand, the fast and efficient homing and engraftment of hema-
topoietic stem progenitor cells (HSPCs) is crucial for positive
clinical outcomes after transplantation. The speed of homing
and engraftment can be accelerated by i) transplantation of a
greater number of HSPCs, ii) enhancing their responsiveness
to BM-expressed chemoattractants, and, what we also envi-
sion, iii) enhancing the BM hematopoietic microenvironment
of the graft recipient [8, 39–42]. The number of transplanted
HSPCs depends on their efficient pharmacological mobiliza-
tion and harvesting from donor BM and/or their successful
ex vivo expansion [42–44].

The process of homing is orchestrated by gradients of fac-
tors that induce chemotactic activity in HSPCs, and the list of

these chemoattractants is rather short. Specifically, it is well
known that, besides SDF-1, HSPCs respond to gradients of
S1P, C1P, and eATP [45–47]. The sensitivity of HSPCs to
SDF-1 gradients can be enhanced by processing HSPCs for
transplantation in hypoxic conditions [49, 50] or exposing
them to short-term mild heating (39 °C) [48], short pulses of
prostaglandin E2 [51], the inhibitory activity of the SDF-1-
degrading enzyme dipeptidylpeptidase 4 (DPP4) [52], or the
proper fucosylation of P-selectin glycoprotein ligand 1 on
their surface [53].

It is known that the homing receptors are expressed on the
surface of cell membranes, which consist of a phospholipid
bilayer and several embedded proteins held together via
noncovalent interactions between the hydrophobic phospho-
lipid tails. Under physiological conditions, these phospholipid
tails are in a liquid crystalline state [11, 54]. Moreover, cell
membranes also contain combinations of glycosphingolipids
and protein receptors organized into glycoprotein microdo-
mains, known as lipid rafts, and these dynamic microscopic
cholesterol-enriched structures are important in assembling
signaling molecules together with cell-surface receptors and
have been identified as playing a primary role in signaling
[55–57].

These lipid rafts play an important role in orchestrating the
migration of HSPCs toward higher concentrations of chemo-
tactic factors, and CXCR4, the major homing receptor for
SDF-1, is associated with these cell-surface structures [10].
Its presence in cell membranes is required for optimal signal-
ing and chemotactic activity of HSPCs [10]. Several factors
have been identified, including anti-microbial cationic pep-
tides, such as (i) the complement cascade cleavage fragment
C3a, (ii) cathelicidin (LL-37) and iii)β2-defensin, that are part
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Fig. 7 The effect of myeloablative treatment on mRNA and protein
expression related to Nlrp3 inflammasome activation, as measured
by qRT-PCR and ELISA. Panel A. Expression of IL-1β, IL-18, AIM2,
Nlrp1, SDF-1, SCG, caspase 1, Hmgb1, and S100a9 mRNAs in bone
marrow mononuclear cells (BMMNCs) isolated from non-irradiated and
irradiated (1000 cGy) C57Bl/6 and Nlrp3-KO animals, as measured by

qRT-PCR. Results of qRT-PCRwere normalized to theβ2microglobulin
(β2m) level. The data represent the mean value ± SEM for three inde-
pendent experiments. Panel B. The level of C5a protein in conditioned
media harvested from irradiated WT or Nlrp3-KO BMMNCs, measured
by ELISA. The data represent the mean value for two independent ex-
periments. *p < 0.05
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of the innate immunity response and enhance incorporation of
CXCR4 into membrane lipid rafts [10, 26, 46].

We identified a novel mechanism that promotes incorpora-
tion of CXCR4 into membrane lipid rafts and depends on
activation of the Nlrp3 inflammasome in HSPCs. This activa-
tion enhances the release of eATP, which in an autocrine/
paracrine manner increases CXCR4 incorporation into mem-
brane lipid rafts at the leading surface of migrating cells and
thus facilitates the migration of HSPCs in response to an SDF-
1 gradient (Fig. 8). Corroborating such a mechanism, HSPCs
isolated from Nlrp3-KO mice or exposed to the eATP-
degrading enzyme apyrase have impaired migration toward
BM chemoattractants. This result suggests also that a short
incubation of HSPCs with eATP before transplantation could
improve their BM seeding efficiency, and we are currently
testing this possibility.

We hypothesized that exposure of HSPCs to antimicrobial
cationic peptides could facilitate lipid raft formation in the
mechanism of Nlrp3 inflammasome-mediated autocrine/
paracrine release of eATP. In fact, LL-37, which is a very
efficient lipid raft formation-promoting peptide [46], failed
to induce the formation of membrane lipid rafts in Nlrp3-KO
cells, which is similar to the the effect of inhibition of
pannexin 1 channel release of eATP. Moreover, we observed
that eAdo, a product of eATPmetabolism by CD39 and CD73
ectonucleotidases, which inhibits migration of HSPCs [12], in
our hands inhibited formation of membrane lipid rafts.
Furthermore, experiments are planned to identify which of
the P1-binding receptors for eAdo is responsible for this ef-
fect. We have also demonstrated that the inhibitory effect of
eAdo on migration of HSPCs depends on upregulation of
intracellular heme oxygenase 1 (HO-1) [28]. Supporting this

observation, we have shown in our current work that upregu-
lation of HO-1 in HSPCs by the small-molecule activator
CoPP results in a decrease in membrane lipid raft formation.

The sensitizing effect of autocrine/paracrine-secreted
eATP in response to chemoattractants has been reported in
an elegant paper that demonstrated a positive effect of eATP
and a negative effect of eAdo on the migration of neutrophils
in response to a C5a gradient [29]. In our work we report
similar results with HSPC responsiveness to BM
chemoattractants and provide a molecular explanation of this
phenomenon, involving the opposing effects of eATP and
eAdo on membrane lipid raft formation.

In addition to modulating the migratory responsiveness of
HSPCs to chemoattractant gradients, another important strat-
egy to enhance homing and engraftment of HSPCs is to mod-
ify the recipient BMmicroenvironment in a way that promotes
better homing and engraftment of HSPCs. In our previous
work we demonstrated that innate immunity and ComC acti-
vation play important roles in optimal engraftment of
transplanted cells [58]. Here, we observed a homing and en-
graftment defect in Nlrp3-KO recipient mice, and our ELISA
results demonstrated that Nlrp3-KO mice have defective acti-
vation of the ComC in CM extracts isolated from BM cells
conditioned for transplantation. Therefore, we have demon-
strated for the first time that a functional deficiency of the
Nlrp3-inflammasome in the BM of transplantation recipients
has a negative effect on homing and engraftment of
transplanted HSPCs. By way of explanation, our results show
that the BM from lethally irradiated Nlrp3-KO mice show a
decrease in expression of mRNAs for SDF-1, KL, and certain
DAMPs responsible for ComC activation [59–62]. Therefore,
the Nlrp3 inflammasome plays an important role, both as reg-
ulator of HSPCmigration toward BM chemoattractants and as
responder to myeloablative irradiation of the BM microenvi-
ronment, in facilitating efficient seeding of transplanted cells.

Finally, after they lodge in BM niches HSPCs need to
expand and establish proper hematopoiesis. Evidence has ac-
cumulated that this process is also regulated by the NLrp3
inflammasome [63]. Specifically, eATP-mediated Nlrp3
inflammasome activation may regulate the pool of HSPCs
and seems to be an integrator of metabolic activity in promot-
ing HSPC formation and the development of the myeloid and
lymphoid lineages in vivo and in vitro [64]. In fact, we
showed in this report that Nlrp3-KO mice have reduced num-
bers of SKL cells as well as CFU-GM and BFU-E clonogenic
progenitors in the BMmicroenvironment. These observations
together demonstrate the important modulatory role of the
Nlrp3 inflammasome in hematopoietic reconstitution [65].

In conclusion, we have demonstrated for the first time that
the Nlrp3 inflammasome plays a crucial role in homing and
engraftment of HSPCs. This effect is mediated in an autocrine/
paracrine eATP-dependent manner, both in HSPCs and in
cells in the BM microenvironment conditioned by irradiation
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Fig. 8 The role of eATP in the homing and engraftment of HSPCs.
eATP plays a dual role in the homing of HSPCs to BM. On the one hand,
whether autocrine-secreted from transplanted HSPCs (*) or secreted in
response to conditioning for transplantation from cells in the BM micro-
environment (**), eATP promotes formation of membrane lipid rafts
(yellow cap) on the surface of HSPCs, which assemble together the major
receptors for chemoattractants (SDF-1, S1P, and eATP) (adapted from
65)
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for transplantation. On the basis of this finding, modulation of
Nlrp3 inflammasome activity becomes a potential target for
therapeutic interventions to improve clinical outcomes from
hematopoietic transplantations. For example, there could be
exposure of HSPCs in the graft to eATP, inhibition of auto-
crine eAdo by CD39 or CD73 blocking agents, or exposure of
HSPCs to the Nlrp3 inflammasome-activating antibiotic
nigericin. On the other hand, nigericin and eAdo inhibitors
could also be employed to increase Nlrp3 expression in the
BM of transplantation recipients.
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