GRAZING ALFALFA—MOMENTUM CONTINUES

Garry D. Lacefield
Extension Forage Specialist
University of Kentucky

In my presentation at our XIII Kentucky Alfalfa Conference held here last year, I stated that interest in grazing alfalfa was at an all time high. Five other speakers followed me on the program with presentations about alfalfa grazing. Steve Osborne discussed alfalfa grazing trials in Monroe County. Ken Johnson talked about the Do's and Don't's in Alfalfa Grazing”. Dr. Roy Burris talked about alfalfa grazing from a state perspective and Mr. Warren Thompson discussed the topic from a national perspective. Professor Joe Burns concluded the grazing portion of the program with grazing alfalfa experiences in Tennessee.

Despite a rather "poor" spring and late summer for seeding alfalfa, interest among Kentucky farmers remains high for alfalfa as a crop and for grazing as an option for utilization. Interest continues to increase nationally. In a survey conducted in seventeen states this past year, all 17 said interest in grazing alfalfa was on the increase. Thirteen out of seventeen reported alfalfa grazing research programs now underway. All seventeen states reported at least one alfalfa grazing demonstration. Sixteen states indicated acres devoted totally or partially to alfalfa for grazing would increase over the next few years. It was interesting to note that eleven of the seventeen states stated that bloat was not considered to be a serious problem. Response was varied when asked what factors were limiting use of alfalfa for grazing. Increased management was listed by five states as most limiting, with three states listing bloat, two listed soils, with labor, economics, weather, tradition, fencing, water, and lack of information each getting one vote for most limiting factors.

Why Consider Alfalfa for Grazing?

Alfalfa is the most important forage legume grown in the U.S. Grown over a wide range of soil and climate conditions it has the highest yield potential and feeding value of all perennial forage legumes. This versatile crop can be used for hay, pasture, silage, green-chop, pellets, cubes and soil improvement. Because of its many merits, especially yield, quality and versatility, it can be used successfully in many animal feeding programs. Advantages include:

1. Versatile Use - Alfalfa can be ideal on farms where it can be used for hay, silage, or grazing. Research results—Virginia workers studied systems of grazing alfalfa based on need and environmental conditions. Systems of grazing the early spring growth provided quality feed and delayed the first hay harvest until more favorable weather for curing. Other systems provide grazing during mid-summer when cool-season grasses are often less productive. Comparing the systems shows that total season yield is not reduced by any graze-hay systems.
With proper grazing management, alfalfa’s **high yield potential** can be converted to high levels of animal production per acre. Liveweight gains per acre are quite high for grazing beef cattle, with total season gains 500 to 800 lb/acre in research trials and on-farm demonstrations. Virginia workers showed a reduction in corn silage requirements of up to eighty percent with high producing dairy cows grazing alfalfa.

Alfalfa’s quality for grazing is excellent, resulting in total season average daily gains over 2 lbs/day in grazing trials and demonstrations. In other dairy grazing studies, increased profit per cow has been shown. New York reported $123.00, Pennsylvania $116.00 and Michigan $150.00 increased profit per cow per year with dairy cows grazing alfalfa compared to conventional silage and grain feeding programs.

Alfalfa’s deep root system makes it more **drought tolerant** than our other cool-season legumes and grasses. Although alfalfa does not make maximum growth during summer droughts, it usually provides good summer pastures. During extreme drought this aspect is even more important since cool-season grasses become dormant.

Extended Use of Stand — For old alfalfa fields that have been used for hay but where some of the stand has been lost or become weedy, grazing can extend the stand’s useful life a year or more. Grazing may also rejuvenate some stands by reducing grass and weed competition. **Research results** — When alfalfa stands decline to less than 3 plants/sq ft, optimum hay yields usually cannot be achieved. Excellent beef gains have been made on alfalfa stands with as few as 1 plant/sq ft although productivity per acre suffers.

Reduced Machinery Cost — Over 40% of the cost of producing alfalfa hay is machinery and equipment. In a total grazing system, this cost can be eliminated or certainly minimized.

Grazing Alfalfa: Concerns

1 The most frequent concern of producers considering grazing alfalfa is **bloat**, but it can be minimized with precautions. Producers may lose more money from fear of bloat than from bloat itself if it keeps them from efficiently using the alfalfa pasture.

2 **Additional Fencing** — Alfalfa must be grazed on a rotational basis. Doing so requires that fields be subdivided so that cattle are restricted to one area for a time, then moved to another area. This system gives the grazed area time to regrow before grazing again. Fencing does not have to be elaborate or complex. Simple low-cost electric fences that restrain animals to a given area are adequate. Access to water and minerals is also important.
Greater Management and Labor Inputs — Although some consider this category to be a disadvantage, advocates of controlled grazing do not always agree. Once the necessary fencing is in place, time studies have shown that the amount of additional labor required for rotational grazing is quite small compared to harvesting hay. In addition, regularly moving cattle to new pastures lets the producer observe them more closely and therefore permits greater cattle-pasture management efficiency.

Stand Decline — If alfalfa plants are not grazed properly, stands decline. Grazing animals may damage alfalfa crowns during wet and muddy conditions. In addition, damage to new crown shoots can occur when cattle are left on an individual paddock after new shoots develop.

These disadvantages can be minimized with the following practices:

• To avoid damage to stands use a "sacrifice paddock" next to the alfalfa where you can put cattle during wet and muddy conditions.

• Do not let cattle graze an individual paddock for over 10 to 12 days to minimize damage to newly developed shoots. Exceptions to the 12-day rule include the first grazing in spring and times when alfalfa is dormant (during drought and after freezedown).

Grazing Alfalfa: Requirements

Establishing the Stand

Requirements for establishing an alfalfa stand for grazing are the same as for hay. A thick, healthy and productive stand has the greatest potential for animal performance and production per acre. Although pure stands can be grazed successfully, alfalfa-grass mixtures have advantages in grazing situations. Alfalfa-grass pastures may minimize bloat, and reduce the amount of hoof damage and soil erosion.

Recommendations for grazing alfalfa that have been used for many years reflect and approximate hay harvest: i.e. graze rotationally, provide for a rest or recovery period, then graze again. For example, if a crop of hay would have been taken every 35 days, then a rotation schedule would be set to complete one cycle in that time. Consider the number of paddocks, stocking rate, grazing time, recovery period, ease of cattle movement, water, salt and minerals.

Rotations (graze-rest)

Research has clearly shown that rotational grazing is better than continuous grazing for yield, quality and stand persistence.
General recommendations are to graze a paddock for one week and allow 4 to 6 weeks for plants to recover before grazing again. Considerable flexibility exists in the grazing time, but plants should not be grazed for more than 10 to 12 days. If they are grazed that long, new shoots developing from crown buds will likely be damaged. Therefore, stocking density should be heavy enough to remove growth in 10 to 12 days or less.

With more intensive systems and high stocking density, growth can be removed in 1 or 2 days. Intensive systems require many paddocks and frequent cattle movement.

Time required before a paddock can be grazed again depends on growing conditions. Under good conditions with rapid growth, the rest period is 4 weeks or less. During less favorable growing conditions, 4 to 6 weeks may be needed.

Special considerations should be given when grazing new stands. Plants need to become well established before grazing to avoid damage. The first crop could be taken for hay or silage and begin grazing on the next growth to minimize damage to new seedlings.

Alfalfa should be grazed closely enough so that regrowth occurs from the crown. This situation not only ensures good utilization, but also helps control weeds.

An exception occurs during the fall grazing period. General recommendations have been to make the season’s last cutting by mid-September, because growth made from mid-September until freeze-down ensures root reserves for overwintering and regrowth the following spring. However, research has shown that alfalfa plants can be grazed during this period if they are not grazed short. To accomplish this, rotate animals more frequently or reduce stocking rates. Grazing during Sept. 15 to Nov. 1 should ensure that at least 8 inches of growth remains when animals are moved. Quality and animal performance can be quite high, since animals are only eating high quality plant tops.

Bloat Precautions

No management practice can ensure that bloat will not occur. However, its likelihood can be decreased so much that grazing alfalfa can become common. The following suggestions can reduce the risk of cattle bloat:

- Grow grass with alfalfa.
- Feed bloat-preventing compounds.
- Do not turn hungry cattle into an alfalfa field, especially when plants are wet from dew.
- Do not graze immature alfalfa or alfalfa-grass.
- Provide salt and minerals.
- Observe cattle closely when turning in for the first time.
- Observe cattle closely during cool, cloudy, rainy weather for signs of bloat.

Conclusion

Alfalfa is a high yielding, high quality forage legume well adapted to Kentucky. Gains per animal and per acre can be excellent with acceptable stand persistence when present technology is used.
APPENDIX

Number of Paddocks = \(\frac{\text{Days of Rest}}{\text{Days of Grazing}} \) + 1

Example: Graze 4 days, rest 28 days
\[
\frac{28}{4} + 1 = 8
\]

<table>
<thead>
<tr>
<th>Acres Required per Paddock</th>
<th>Avg. wt. of Animals to be Grazed</th>
<th>Dry Matter Consumed per animal as % of Body Weight</th>
<th>Number of Animals</th>
<th>Days on the Pasture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dry Matter Available in the Area to be Grazed</td>
<td>% of the Dry Matter Utilized by Grazing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example: Thirty 600 lb steers consuming 3% body weight for 4 days. Twelve inches growth, thick stand (12 X 175 lbs/inch) utilizing approximately 75%.

\[
\frac{600 \times 0.03 \times 40 \times 4}{(12 \times 175) \times 0.075} = \frac{2880}{1575} = 1.8
\]

Total Acres Required = Number of Paddocks \times \text{Acres Required per Paddock}

Example: 8 \times 1.8 = 14.4

Stocking Rate = \(\frac{\text{No. animals to be grazed}}{\text{Total Acres Grazed}} \)

Example: \(\frac{40}{14.4} = 2.8 \)

Stocking Density = \(\frac{\text{No. of Animals Grazing}}{\text{Paddock}} \)

Example: \(\frac{40}{1.8} = 22 \)