
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Electrical and
Computer Engineering Electrical and Computer Engineering

2023

Modeling the Early Visual System Modeling the Early Visual System

Nicholas Lanning
University of Kentucky, lanningn17@gmail.com
Author ORCID Identifier:

https://orcid.org/0009-0006-5764-0449
Digital Object Identifier: https://doi.org/10.13023/etd.2023.490

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Lanning, Nicholas, "Modeling the Early Visual System" (2023). Theses and Dissertations--Electrical and
Computer Engineering. 196.
https://uknowledge.uky.edu/ece_etds/196

This Master's Thesis is brought to you for free and open access by the Electrical and Computer Engineering at
UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Electrical and Computer Engineering
by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

https://uknowledge.uky.edu/
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece
https://orcid.org/0009-0006-5764-0449
https://uky.az1.qualtrics.com/jfe/form/SV_0lgcRp2YIfAbzvw
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Nicholas Lanning, Student

Dr. Luis Sanchez Giraldo, Major Professor

Dr. Daniel Lau, Director of Graduate Studies

MODELING THE EARLY VISUAL SYSTEM

THESIS

A thesis submitted in partial
fulfillment of the requirements for
the degree of Master of Science in

Electrical Engineering in the College
of Engineering at the University of

Kentucky

By
Nicholas Lanning

Lexington, Kentucky

Director: Dr. Luis Sanchez Giraldo, Professor of The Department of Electrical and
Computer Engineering
Lexington, Kentucky

2023

Copyright© Nicholas Lanning 2023

ABSTRACT OF THESIS

MODELING THE EARLY VISUAL SYSTEM

There are two encoding schema present in simple cells in the early visual system of
vertebrates: the retinal simple cells activate highly when the receptive field contains a
center surround stimulus, while the primary visual cortex’s (V1) simple cells activate
highly when the receptive field contains visual edges. Work has been done in the
past to enforce constraints on visual machine learning such that the retinal or V1
encoding is learned, but this work is often done to emulate retinal and V1 encoding
in a vacuum. Recent work using convolutional neural networks focuses on anatomical
constraints along with a supervised objective for training the network to explain
the emergent representations of retina and V1 in vertebrates. The model dismisses
observations made by other models of retinal processing where robustness to noise
and coding efficiency are considered. Moreover, the use of a convolutional architecture
explicitly enforce spatial equivariance in the features, which can limit the emergence
of other relevant features. Here, we explore a more flexible model. We propose the
EVSNet, a fully-connected neural network which learns retinal and V1 features. To
analyze the representations learned with this network, we propose a measure called
the orientedness to quantitatively discern expected retinal features from expected V1
features.

KEYWORDS: Early Visual System, Representation Learning, Information Bottle-
neck

Nicholas Lanning

December 14, 2023

MODELING THE EARLY VISUAL SYSTEM

By
Nicholas Lanning

Dr. Luis Sanchez Giraldo
Director of Thesis

Dr. Daniel Lau
Director of Graduate Studies

December 14, 2023

Date

For Yancey

ACKNOWLEDGMENTS

I would like thank Dr. Luis Gonzalo Sanchez Giraldo for his continuous support

and guidance during my time working in his lab. I also thank Oscar Skean, Keider

Hoyos, and Santiago Posso for their understanding, wisdom, and camaraderie. I

finally would like to thank my family for their support and faith in me as I ventured

through this chapter of my life.

iii

TABLE OF CONTENTS

Acknowledgments . iii

List of Figures . vi

List of Tables . vii

Chapter 1 Introduction . 1
1.1 Outline . 2
1.2 Objectives . 2

1.2.1 Main Objective . 2
1.2.2 Specific Objectives . 2

Chapter 2 Background . 4
2.1 Receptive Fields . 4
2.2 Supervised vs. Unsupervised Learning 5
2.3 Autoencoders . 5

2.3.1 Architecture . 5
2.3.2 Learning . 9

2.4 Convolutional Neural Networks . 11
2.5 Residual Layers . 12

Chapter 3 Related Work . 14

Chapter 4 Method . 17
4.1 Network Architecture . 17

4.1.1 Noise Injection . 17
4.1.2 Residual Layers . 18
4.1.3 Activation Function . 18

4.2 Objective Function . 19
4.3 Feature Visualization . 21
4.4 Dataset Generation . 23
4.5 Orientation Measure . 25

Chapter 5 Experimentation . 29
5.1 Input Noise Sweep . 29
5.2 Default EVSNet Sweep . 31
5.3 Coverage Map . 31
5.4 Activation Function Validation . 33

5.4.1 Double Leaky ReLU Model 33
5.4.2 Double Sigmoid Model . 34

5.5 No-Bottleneck Network . 38

iv

5.6 Orientedness Histogram Analysis . 39

Chapter 6 Discussion . 45
6.1 Double Activation Models . 45
6.2 No-Bottleneck Model . 45
6.3 Orientedness . 46
6.4 Limitations of the Proposed Model 46

Chapter 7 Conclusion . 48
7.1 Future Work . 48

Bibliography . 50

Vita . 55

v

LIST OF FIGURES

2.1 Center-surround receptive fields. 4
2.2 Oriented Gabor receptive fields. 4
2.3 Autoencoder structure. 6
2.4 Sigmoid activation curve. 7
2.5 ReLU activation curve. 8
2.6 Cross-correlation example. 12
2.7 Residual layer. 13

4.1 Leaky ReLU activation curve. 19
4.2 Adjusted leaky ReLU activation curve. 19
4.3 Model Architecture with noise injection. 20
4.4 Model Architecture with visualization decoders. 23
4.5 Patch selection. 24
4.6 A center surround feature and its 2D FFT. 25
4.7 A Gabor feature and its 2D FFT. 26
4.8 A center surround feature on the edge and its 2D FFT. 27
4.9 Orientedness histogram. 28

5.1 Example loss curve. 30
5.2 Retinal representations changing with input noise. 30
5.3 V1 representations changing with input noise. 31
5.4 Default EVSNet Features . 32
5.5 center surround receptive field coverage maps. 33
5.6 Double leaky ReLU network features. 34
5.7 Double leaky ReLU orientedness histogram. 35
5.8 Double sigmoid network . 35
5.9 Double sigmoid orientedness histogram. 36
5.10 Double sigmoid with high V1 tradeoff, low V1 noise model features. . . . 36
5.11 Double sigmoid model with Gabors sorted by orientedness. 37
5.12 Histogram of activations for double sigmoid model with high tradeoff. . . 38
5.13 Double sigmoid with high tradeoff orientedness histogram. 39
5.14 No-bottleneck network features . 40
5.15 No-bottleneck model orientedness histogram. 40
5.16 No-bottleneck with high retinal tradeoff, low retinal noise network features 41
5.17 No-bottleneck model with high retinal tradeoff, low retinal noise oriented-

ness histogram. 41
5.18 Chi-squared bar graph for the default sweep. 43
5.19 Chi-squared bar graph for the double sigmoid sweep. 43
5.20 Chi-squared bar graph for the double sigmoid sweep. 44

vi

LIST OF TABLES

5.1 Default values for hyperparameter sweeps in EVSNet training. 31
5.2 Chi-squared distances of model histograms 42

vii

Chapter 1 Introduction

The act of seeing is something which may easily be taken for granted, but the human
visual system contains many complex parts, some of which are not fully understood.
As such, studying and modeling aspects of human and vertebrate visual systems has
been a much-pursued field of study.

Early work in the 1950’s and 1960’s was devoted to experimentally learning the re-
sponse of simple cells in the retina and primary visual cortex (V1) of cats by applying
simple light stimuli and observing the response [33, 26, 27]. Additional physiological
experimentation was done with the early visual system of old world primates [28, 17],
which observed similar retinal and cortical simple cell activations to stimuli as was
observed with cats. Using human perceptual experiments, the goals and architecture
of the early primate visual system were correlated with the human visual system [37].

Occurring around the same time as the physiological cat studies, efforts were
focused on theorizing the informational objectives of vision and its components [5,
3, 35]. One of the key ideas presented was the redundancy reduction theory, which
assumed that the goal of the early visual system was to transmit information while
reducing the redundancy of the sent information, meaning that the early visual system
would be efficiently encoding visual information. Later during the 1980’s and 1990’s
interest in information theory as it pertains to sensory processing was revitalized
[34, 54, 20, 2, 1, 7, 58, 21, 45], and moving from the late 1990’s into the 2000’s
and 2010’s working with visual machine learning models became more accessible.
[45, 59, 18, 50].

The success of modern computer vision systems in complex tasks like visual ob-
ject recognition and segmentation has motivated investigating the similarities and
differences between these artificial systems and their biological counterparts [32]. On
the other hand, understanding the mechanisms that biological systems employ can
serve as inspiration to improve computer vision systems [15]. Representation learn-
ing is a machine learning method by which we try to learn a set of elements which
can used to represent some input data. Indeed, work has been done previously to
learn representations which match physiological retinal and V1 encodings, but this
work largely focuses on developing these representations in a vacuum, not as part of
a visual system. In addition, the work that has been done developing the two rep-
resentations in tandem assumes spatial equivariance in the learned features by using
a convolutional neural network, and makes some deviations from most other early
visual representation learning in terms of dataset and training task. To address these
issues, we propose an Early Visual System Network (EVSNet) which:

• learns both retinal and V1 representations in tandem,

• uses fully-connected layers to validate whether or not spatial equivariance can
be assumed of the learned features,

1

• utilizes the popular van Hateren Natural Image Dataset [57] and an unsuper-
vised learning task.

We also use several methods to analyze the representations learned with this network,
including a measure we propose called the orientedness measure. This measure helps
to quantitatively discern expected retinal features from expected V1 features.

1.1 Outline

Chapter 1 provides a brief overview of the history of research leading up to the state
of the art in modeling the early visual system of vertebrates, as well as an outline
and the objectives of this thesis. Chapter 2 explains principles regarding neural
networks and how they apply to biological visual systems, unsupervised learning and
autoencoders, residual networks, and how to visualize the receptive fields learned by
the network. Familiarity with this information will be vital in understanding the
methods from prior research and the methods we present. Chapter 3 will detail
some of the important experimentation concerning early visual system learning in
order to further contextualize the state of the art. Chapter 4 shows the specific
techniques we use and the considerations we make given the existing body of work.
Chapter 5 contains visualizations of the learned representations for various parameter
sweeps, as well as some other pertinent analyses of these models. Chapter 6 will
discuss implications of the presented results and key takeaways. Finally, Chapter 7
summarizes the ideas for future work which could be used to develop further on this
research.

1.2 Objectives

1.2.1 Main Objective

Construct a model for the early visual system via representation learning.

1.2.2 Specific Objectives

• Construct a model using fully-connected layers in an autoencoder network which
models the retinal and V1 encoding in tandem.

• Utilize biologically accurate constraints on learning in order to encourage the
expected retinal and V1 representations.

• Gain understanding of how adjusting network hyperparameters can affect the
learned representation of the retinal and V1 layers.

• Propose a method for quantitatively differentiating different receptive field
shapes.

• Compare our conditions for learning receptive fields to existing work.

2

Copyright© Nicholas Lanning, 2023.

3

Chapter 2 Background

2.1 Receptive Fields

In the visual systems of vertebrates, two of the first components of visual sensing
and processing are the retina and V1 [25]. In the retina, many photoreceptors at
nearby locations in space report their sensed information to retinal ganglion cells,
which aggregate this information to provide a single activation for a large group of
photoreceptors and their associated portion of the visual field. The retinal ganglion
cells activate highly when they sense a pattern in their portion of the visual field,
known as a receptive field. It has been found via physiological experimentation with
vertebrates that these retinal ganglion cells have the highest activations when the
visual field contains what is called a “center surround” receptive field [33], shown in
Figure 2.1. In contrast, neurons in V1 have been experimentally shown to activate
highly when the visual receptive field contains what is known as an oriented Gabor
receptive field [26], shown in Figure 2.2.

Figure 2.1: On-center and off-center center surround receptive fields. Light and dark
regions correspond to light or dark regions in the visual field; for example, a neuron
with the off-center receptive field at right would activate highly for a visual stimulus
with a dark center and bright surround.

Figure 2.2: Oriented Gabor receptive fields. Gabors receptive fields may have a light
or dark center, where light portions mean that the neuron responds to light in that
region, while dark regions mean that the neuron responds to the lack of light in that
region.

4

2.2 Supervised vs. Unsupervised Learning

Typically, retinal and V1 receptive fields are modeled using unsupervised learning
techniques. Unsupervised learning can be described as “learning without a teacher”.
The model should capture the structure in the data from regularities. On the other
hand, as we move up the hierarchy, supervised learning models where the goal of
learning is to find a mapping from inputs to desired behaviors have been more suc-
cessful [56]. In computer vision, typical uses of supervised learning include object
classification or object detection. The learning is “supervised” because training is
done with data where we know the correct answer and can therefore punish incorrect
answers or reward correct answers. For example, in digit classification a network
may be trained with image data that is paired with the label of a digit present in
the image, and for object detection the data is paired with a boolean mask which
indicates whether or not the object is present. In contrast to this, unsupervised learn-
ing methods for computer vision do not operate with a notion of what is correct or
incorrect. Some unsupervised methods, such as principal component analysis (PCA)
and independent component analysis (ICA), utilize optimization of statistics of the
input data in order to learn underlying components of the data and form a represen-
tation. Often times, as in the case of PCA, this learned representation corresponds
to a lower dimensional linear subspace of the input data, meaning the input data or
other signals similar to the input data can be represented in a more compact manner.
Another important unsupervised method in the field of representation learning is the
autoencoder.

2.3 Autoencoders

The idea of finding a compact representation of the input data can be generalized
by employing transformations of the input data. To guarantee that the information
about the input data is preserved, such transformations should reversible. This can
be accomplished by finding a transformation from the representation space back to
the input space. This paradigm, which will be described in more detail below, is
known as an autoencoder.

2.3.1 Architecture

An autoencoder is a model composed of an encoder and a decoder block. An encoder
is a function G̃ which maps input data point x ∈ Rd to an encoding vector y ∈ Rp,
while a decoder is a function G̃−1 which maps the encoding to a reconstruction of
the input data, x̂ ∈ Rd 1. These mapping functions can have varying degrees of
complexity, from linear mappings, to nonlinear operations expressed as a hierarchy
of multiple transformations. A visualization of an autoencoder network can be seen
in Figure 2.3.

1We denote the decoder by G̃−1 to emphasize the role of reversing the encoding. However,
the decoder may not correspond to an inverse map in the strict mathematical sense as G̃ is not
necessarily invertible

5

Figure 2.3: A simple autoencoder structure. The encoder produces the encoding
vector, which can also be referred to as the learned representation, in the latent
space. The decoder transforms the encoding vector to produce a reconstruction of
the input.

At its simplest, an encoder does a linear operation on the input data using a
learned weight matrix and a learned bias component. The result of this linear oper-
ation can then be passed through a nonlinear activation function, which allows the
network to capture information about the input which could not be captured merely
by the linear operation. This composition can be expressed as follows:

y = g(Wex+ be) (2.1)

where x is the input data vector, We is the learned weight matrix, be is the learned
bias vector, g is the nonlinear activation function, and y is the vector encoding of the
input. The weight matrix, therefore, is the encoder dimensionality p (the layer width)
by the input dimensionality d, and the bias is a vector with the same dimensionality
as the encoder. The encoder dimensionality or layer width is the number of hidden
units which can be chosen arbitrarily. Hidden units are a sort of resource which
determines the complexity of the learned representation; a encoder layer with many
hidden units will be able to encode more data about the input. If the encoding is
a smaller dimensional space than the input, then the representation is said to be
undercomplete; if it is the same size or larger, the encoding is said to be complete or
overcomplete, respectively.

After the data is encoded, the encoding y ∈ Rp is passed as an input to the
decoder, whose job is to produce a reconstruction x̂ of the input data x using the
encoding. In its simplest form, the decoder can be represented purely by a linear
operation:

x̂ = Wdy + bd. (2.2)

It should be noted that Wd and bd are the decoder weights and biases, which can be
trained simultaneously but are distinct from the encoder weights and biases.

6

Figure 2.4: The sigmoid activation curve.

Activation Function

The most common activation functions work as point-wise nonlinearities, that is,
they operate on each dimension individually. Two main types of nonlinear activation
function, which will be the focus of our work, are the sigmoid and the rectified linear
response. The sigmoid activation, as its name suggests, is an S-shaped curve. While
there are many functions that satisfy this definition, we center our attention on the
logistic function given by

y =
1

1 + e−x
(2.3)

When discussing activation functions, we will use x to denote the input to the function
and y to denote the output, which should be recognized as distinct from x and y.
Figure 2.4, shows a plot of the logistic function (2.3). As we can see the range
of the function is the interval (0, 1) and the domain is the entire real line. The
function squeezes large values of x, either negative or positive into saturation at 0 or
1, respectively. In this sense, we can think about the outputs of the logistic function
as the probability of the neural unit being active.

The second type of nonlinear activation function that we will consider is the
Rectified Linear Unit (ReLU) [42]. The ReLU response is given by:

y =

{
0 x ≤ 0

x x > 0
(2.4)

From Figure 2.5, we can see that the ReLU activation is essentially a max operation
between 0 and x. In neural coding, a popular hypothesis is that neurons encode
information about the input stimulus in what is known as firing rate [40]. Firing rate
is the frequency at which action potentials occur in a neuron. The firing rate varies
with the intensity of the stimulus and cannot be negative by definition. The outputs
of a ReLU activation in an artificial neural network mimic this behavior.

When we talk about a learned representation of the data in autoencoders, typically
we are interested in the encoder map, and the features that it captures about the
input. With images for example, one way to understand the learned representation is

7

Figure 2.5: The ReLU activation curve.

to look at the inputs that contribute to the activation of each of the output dimensions
of the encoder. In this sense, we can think of representing the input image as a
combination of basic features in the dictionary that activate different dimensions of
the encoding vector. For a given input image, the latent space activations may have
some high values and some low values; these high activations are features which are
very prominent in the input. For the simplest form of encoder (2.1), we can see how
the information of the input can be expressed as a combination of basic features by
looking at each of the rows of We.

So far, we have discussed the operations that describe how the input can be trans-
formed into the representation space (encoding vector) but we have not yet discussed
how to obtain such a transformation. Intuitively, the encoder and decoder transfor-
mations must be aligned to the structure of the input data. This is accomplished by
a learning process that tunes the weights and biases of the encoder and decoder. In
the following section, we discuss this process in more detail.

Batch Processing

The autoencoder network operation can be represented compactly using matrix no-
tation. A set of n inputs {xi}ni=1, or what we call a batch of size n, can be represented
as a matrix X ∈ Rd×n with a number of rows given by the total number of input
dimensions and a number of columns given by the batch size. The output of the
encoder (2.1) for a batch X, is represented by a matrix Y ∈ Rp×n, given by:

Y = g(WeX+ be1
T
n) (2.5)

where 1n is an n-dimensional vector, with all entries equal to 1. The matrix Y is
then passed as an input to the decoder, whose job is to produce a reconstruction of
the input data X from the encoding. The linear decoding for a batch of size n is
represented in matrix form as

X̂ = WdY + bd1
T
n . (2.6)

8

2.3.2 Learning

Objective Function

The objective function, which can be arbitrarily chosen by the user, acts as a measure
of how “good” a given representation is under a given criteria. For instance, in image
compression, a reasonable choice would measure the reduction in size for storage
and the perceptual quality of the recovered image. Conventionally, autoencoders are
trained to learn a representation from which the input can be recovered up to some
level of error when compared to the input data. In other words, the representation
should preserve information about the input. Ideally, we would train an encoder to
find a representation that maximizes the mutual information between the input and
the encoded data:

I(X;Y) = H(Y)−H(Y |X) (2.7)

Alternatively, we can seek to maximize I(X; X̂). The data processing inequality
states that for X → Y → X̂ we have I(X;Y) ≥ I(X; X̂), as we cannot increase
the mutual information between two random variables by doing more transforma-
tions, we can only maintain or reduce the mutual information. A method of note
for learning a good representation is the information bottleneck, which attempts to
maximize I(X; X̂) while explicitly minimizing I(X;Y) [55]. By minimizing the mu-
tual information between the input and the latent space, the information bottleneck
”squeezes” out unnecessary information, only keeping what is necessary to make a
good reconstruction of the input.

Despite I(X; X̂) being the ideal measure, computing this mutual information
can be intractable since the probability distribution PX(x) of X is usually unknown
[14]. For this reason, either a tractable lower bound on the mutual information or a
surrogate for mutual information is optimized. Perhaps the most common surrogate
for mutual information for real valued vector random variables is simply the mean-
squared error between the input and the decoder reconstruction, given by:

L(X, X̂) = MSE(X, X̂) = E
[∥∥∥X − X̂

∥∥∥2
]
. (2.8)

Given that in our case we have a set of samples {xi}ni=1, the MSE is estimated
empirically as:

ˆMSE(X, X̂) =
1

n

n∑
i=1

∥xi − x̂i∥2 . (2.9)

In the case of grayscale images, xi is a vector with length d given by the num-
ber of pixels. The squared norm of the error between the input image x and its
reconstruction x̂ is,

∥x− x̂∥2 =
d∑

j=1

(
(x)j − (x̂)j

)2

, (2.10)

where (x)j is a scalar denoting the jth entry of the vector x.
Other terms can be added to the objective function in order to emphasize other

aspects that fit our definition of a “good” learned representation. For example, a

9

common term to add is a weight regularization term. This term serves to limit
the network weights from becoming too large, which may lead to unstable networks,
while also preventing features from overfitting the data. Two common forms of weight
regularization are the L1 and L2 norms:

LL1reg =
∑
l,k

∣∣∣(W)l,k

∣∣∣ (2.11)

LL2reg =
∑
l,k

(W)2l,k (2.12)

whereW corresponds to a weight matrix that is present in any layer of a network, and
l and k are indices to refer to positions in the weight matrix. When any one of these
terms is incorporated into the loss, the training will not only try to minimize the error
between the input and the autoencoder’s reconstruction but also do it in such a way
that the weights in the network have small values. Namely, LL1reg encourages many
weights to become zero which can help further interpretation of the learned weights.
The LL2reg term encourages smoothness in the weight distribution. Intuitively, the
small values of the weights yield functions implemented by the network that do not
change abruptly, enforcing some form of regularity on the structures learned by the
autoencoder. We will use both of these norms in our objective function when training
the EVSNet.

Gradients

The objective function provides a measure of how good a given configuration (a
network with a given set of weight values) is. In order for the network to learn
weights and biases, we search for configurations where the objective function value is
high and then move the weights and biases in the direction of those configurations.
To better illustrate the learning process, we will use a simple autoencoder based on
(2.1) and (2.2) to compute X̂. We can treat minimizing the mean-squared error
between the input and reconstruction as maximizing a lower bound on the mutual
information between the input and the reconstruction [60]. Using (2.8) to represent
the value we are trying to minimize, we can structure the learning of weights and
biases as a minimization problem:

minimize
We,be,Wd,bd

L(X,Wd[g{WeX+ be1
T
n}] + bd1

T
n) (2.13)

If the objective function is differentiable with respect to the parameters, we can
compute the gradients of the loss with respect to the encoder and decoder parameters,
We, be, Wd, and bd. Since the gradient points to the direction where the function
increases the most, we can then make small adjustments to these parameters in
the opposite direction of the gradient which minimize the loss, and after many steps
determined by the gradient we can reach a configuration that minimizes the objective
function [12].

There is an efficient way to structure finding the gradients of the loss with respect
to each of the network parameters known as backpropagation [52]. We start with the

10

expression for the loss, and then we use the chain rule to move backwards through
the network until we reach the desired parameter. For example, to find the partial
derivative of the loss with respect to the decoder weights in our example two layer
autoencoder, we would do:

∂L
∂ (Wd)ℓ,k

=
1

n

n∑
i=1

d∑
j=1

∂L

∂
(
X̂
)
j,i

∂
(
X̂
)
j,i

∂ (Wd)ℓ,k
. (2.14)

where ℓ and k are indices which represent the specific decoder weight in the matrix
Wd. In a similar way, we can find the partial derivatives of the objective function
with respect to the inputs of the decoder,

∂L
∂ (Y)ℓ,i

=
d∑

j=1

∂L

∂
(
X̂
)
j,i

∂
(
X̂
)
j,i

∂ (Y)ℓ,i
, (2.15)

which can be used to find the partial derivatives with respect to the encoder weights:

∂L
∂ (We)ℓ,k

=
1

n

n∑
i=1

p∑
j=1

∂L
∂ (Y)j,i

∂ (Y)j,i
∂ (We)ℓ,k

(2.16)

Modern machine learning frameworks such as Pytorch [47], handle the computation
of gradients via automatic differentiation and include gradient-based optimization al-
gorithms that adjust the network parameters to minimize the loss, such as Stochastic
Gradient Descent, AdaGrad, or Adam [31]. We discuss our specific choice of optimizer
in Chapter 5.

2.4 Convolutional Neural Networks

The architecture discussed in the previous section is known as a fully-connected ar-
chitecture. Signals can be thought of as functions on some domain. In the case of
images, the domain is space. When representing images as vectors, where each pixel
position corresponds to a dimension, a fully-connected layer will contain weights in a
matrix which map all of the input dimensions to a latent space. For larger and larger
input sizes, the number of parameters which need to be stored in order to compute
this mapping grows as well. Convolutional Neural Networks (CNN) circumvent this
issue by restricting the linear mappings, matrix vector multiplication, to convolu-
tions. CNN exploit the fact that images exhibit spatial correlations, and thus the
dimensions in a data vector representing an image are coupled. By using a fixed-size
kernel that is smaller than the input image size, CNNs restrict their mappings to
local operations in space. The kernel works as a sort of window that moves across
the input image and computes the cross-correlation of the input image pixels with a
learned kernel of weights. The cross-correlation between an image I and a kernel K
is given by:

s[i, j] = (I ∗K)[i, j] =
∑
m

∑
n

I[i+m, j + n]K[m,n] (2.17)

11

Figure 2.6: A CNN works by learning a kernel, an example of which is shown on
the left. This kernel moves across the input image shown in the middle. The kernel
elements and local input elements are multiplied element-wise and then summed to
produce one pixel of the output on the right. The cross-correlation is computed for
all kernel positions, and with a layer of one-pixel padding around the input we can
produce an output of the same size as the input. For this example kernel, it tends to
emphasize portions of the input where there are edges directed 45 degrees down and
to the right.

where i and j represent spatial coordinates on the input image I, and m and n
represent the height and width of the kernel [6]. An example of this shifting cross-
correlation is given in Figure 2.6.

In essence, we are still computing a weighted sum of input values as we were with
fully-connected layers, but we are constraining the weighted sum to only consider the
input values around a certain region of the image. The rationale for this is that by
moving the kernel over the larger input image, we can still learn valuable features like
edges which are present on a small scale in the input. In doing this, we are reducing
the number of parameters needed to learn a representation for larger input sizes, as
well as reducing the amount of computations. [6]

2.5 Residual Layers

A simple autoencoder like the one described in the previous section may have limited
expressive power. Deeper networks can compute more complex functions with com-
plexity growing exponentially with depth [49]. Moreover, our objective is to model an
encoding process in multiple stages, namely, retinal processing followed by V1 pro-
cessing. For each one of these stages, we want our network to be able to approximate
sufficiently complex functions that provide efficient encoding of images.

A problem one can run into when training multi-layer models is that of vanishing
or exploding gradients. [23] proposed that this issue could be avoided using a learned
residual mapping, which is added to an identity mapping of the input to the layer.
Given input x, we wish to learn an underlying mapping H(x). The idea is that we use
linear-nonlinear layers in order to approximate complicated functions, so therefore we
should also be able to use the same layers to estimate the residual functions given by
H(x)− x, which is denoted as F(x).

It has been theorized that many nonlinear layers in sequence can have trouble
with approximating H(x) if it close to an identity mapping. The idea, then, is that

12

Figure 2.7: A residual layer very similar to the one presented in [23]. Each residual
layer contains two weight layers, with a nonlinear activation between them. Rather
than an identity mapping, a linear mapping Ax is added to the residual mapping
F(x). F(x) +Ax is the output of the layer, and therefore represents a mapping of
X. This residual module could be used in place of a simple linear-nonlinear mapping
to learn a more complex representation.

if the underlying mapping is close to an identity of the input, then the residual F(x)
can be pushed close to zero which allows for a better approximation. While it is
improbable that the true underlying mapping is an identity, if the true mapping is
closer to an identity mapping than a zero mapping then it helps to precondition the
learning [23]. An example of a related residual layer visualization is given in Figure
2.7. In this sense, we should expect that stacking multiple residual layers would only
learn residual nonlinearities as needed. The configuration of residual layers allows
the flow of the gradient information all the way to the input layer, since the identity
mapping which work in parallel with the residual mapping, does not suffer of the
vanishing or exploding gradients.

Copyright© Nicholas Lanning, 2023.

13

Chapter 3 Related Work

One notable method for training autoencoders on natural images is known as sparse
coding [45]. It yields features that resemble a collection of Gabor edge detector
receptive fields; these receptive fields exhibit behavior like simple cells in the mam-
malian V1 [44]. This matches the results of experimentation which determined the
receptive field responses of V1 in cats [26] and in macaques [28]. In terms of the
retina, the aforementioned center surround receptive fields have been observed in
many vertebrates including frogs, rats, lizards, and monkeys [62]. The findings of
these physiological studies with primates are often extrapolated to the human visual
system, as the results can be correlated to human perceptual studies [37]. The goal
of sparse coding is to find a vector y ∈ Rp such that for a set of dictionary elements
{ϕi}pi=1, where ϕi ∈ Rd, the linear combination given by

x̂ =

p∑
i=1

ϕi (y)i (3.1)

is a good approximation of a given input image x. An important feature of y is
that only a few entries of this vector are different from zero. In other words, y is
a sparse vector, which means that information about the input x can be efficiently
represented by y. Given a fixed dictionary {ϕi}pi=1 represented as a matrix Φ ∈ Rd×p,
the encoding process corresponds to the implicit mapping given by the optimization
problem:

y = argmin
a∈Rp

∥x−Φa∥2 + λΩ(a), (3.2)

where Ω(·) is the sparsity measure, λ is a tradeoff hyperparameter which determines
the importance of the sparsity constraint, and a represents the learned activations
which determine which vectors of Φ are most relevant. A commonly used candidate
for Ω is the L1 norm,

Ω(a) =

p∑
i=1

|(a)i| . (3.3)

Sparse coding utilizes the principle of redundancy reduction pioneered by Barlow [5]
by exploiting high order statistical dependencies beyond linear pairwise correlations.
Earlier work in [2] focused on the principle of redundancy reduction in the presence
of input noise to model the behavior of retinal ganglion cells. To provide a tractable
approach, they use only linear and non-divergent transformations where the the input
and output dimensionalities of the model are the same. The model gives rise to
receptive fields that resemble those of of RGN cell in primates. Nevertheless, the
theory does not explain the choice of the family of transformations and the presence
of noise after it.

Doi and Lewicki [18] showed that simply using an efficient coding model was not
sufficient to develop an encoding which simulates the receptive field activations of

14

cells in the retina, as the goal of the efficient coding model in the context of the
visual system is merely to maximally encode information about the sensory input.
They argue that the goal of retinal encoding is more accurately described as trying to
encode the sensory signal in such a way that the encoding accounts for degradation of
the input signal due to the eye’s blurring and noise produced by the photoreceptors
themselves. Unlike [2], they also noted that retinal encoding should also seek to be
resilient to degradation in the code itself due to neural noise, which occurs during the
transmission of the encoding through the optic nerve [18].

Karklin and Simoncelli [30] further developed these ideas by creating a model with
accurate noise distributions to describe the noise on the input signal and the output
neural noise, as well as utilizing a nonlinear response and metabolic cost on firing
spikes. They also use biologically realistic levels of input and neural channel noise
when looking at the signal-to-noise ratio.

A popular theory is the idea that via evolution the retina and V1 have both
evolved to be as efficient as possible in their encoding method; that is, they preserve
the most amount of information as possible from the input via the encoding, subject
to any biological constraints such as the metabolic cost of neurons activating [3, 5].
While the efficient coding theory is relatively well-accepted as rationale for vertebrate
visual systems developing efficient methods for compressing visual information, there
are competing theories on why these methods are different between the retina and
V1. Efforts in the past to prove these theories have largely been done either by focus-
ing entirely on the retinal encoding process or focusing entirely on the V1 encoding
process. Few papers have focused on developing retinal and V1 encodings in tandem.
[53] proposes a model that captures retinal and V1 stages. Each stage uses a com-
position of sparse PCA followed by ICA and a point-wise nonlinearity aligned with
the expected marginal distributions of the ICA outputs. [36] simulates vertebrate
retinal and V1 encodings using a model with predominantly convolutional layers in
a supervised, task-oriented approach (object classification) rather than unsupervised
image reconstruction.

A key finding of [36] is that center surround units can be developed in the retinal
layer and Gabor features can be developed in the V1 layer simultaneously by using a
dimensional bottleneck at the output of the retinal layer. In the context of autoen-
coders, a dimensional bottleneck can be instantiated by employing an undercomplete
latent space which has a smaller layer width than the input space, then moving to an
output or further latent space that is complete or overcomplete. Dimensional bottle-
necks in autoencoders can reduce the flow of information, as we have fewer resources
to represent the same amount of information. A dimensional bottleneck is a specific
instance of the more general information bottleneck. [55] explains based on informa-
tion theoretic arguments that an information bottleneck can be any constraint that
reduces the flow of information. Other forms of reducing flow can be noise in the
representation or enforcing high levels of sparsity in the representation.

By enforcing a loss term which maximizes the flow of information from input to
output and minimizes the mutual information between the input and the latent space,
the bottleneck will learn a representation which only captures the information about
the input which is relevant to the task. However, where [55] explicitly reduces mutual

15

information between the input and the latent space, [36] reduces mutual information
implicitly via an upper bound imposed by the undercomplete latent space. They
ensure the transfer of information between input and output by enforcing a loss
term based on classification accuracy. They claim that the primary constraint which
led to the development of the appropriate receptive fields in the retina and V1 was
the inclusion of the bottleneck, as implementing the bottleneck at the output of
the retinal network simultaneously led to the correct receptive fields developing in
both the retinal network and the V1 network. The fact that these representations are
developed when training on a classification task is interesting, as most work concerned
with modeling EVS representations trains using an unsupervised reconstruction task.
The reason for using a supervised task may stem from the fact that [36] models
further visual processing after the EVS, meaning a classification task could be more
apt.

Copyright© Nicholas Lanning, 2023.

16

Chapter 4 Method

Our main goal is to construct a model of the early visual system via representation
learning. Based on the previous work on sparse coding for V1 and efficient encoding in
RGN, we propose a model that is motivated by the informational bottleneck principle.
Unlike [36], the information flow in our model is also constrained by input and channel
noise, which mimic the noise present before the retina and the noise within the retina
and V1 respectively; the choice of nonlinearity; and a metabolic cost term in the
objective function which mimics the need for neurons to conserve information by
minimizing firing rate. Below we provide more detail on the considerations and
choices we made to create the EVSNet.

4.1 Network Architecture

An important consideration when setting up the network to mimic the early visual
system is the inclusion of a bottleneck when moving from the retinal network to the V1
network, as found in [36]. As they are using a CNN architecture, the bottleneck ratios
they use are 32 retinal channels to 1 retinal channel to 32 V1 channels (32 : 1 : 32),
32 : 2 : 32, and 32 : 4 : 32. In our case we are using fully-connected layers, as
we did not want to make the assumption that the learned features will be spatially
equivariant. Rather, we use the fully-connected layers in order to let the network
produce spatially equivariant features if these are indeed optimal. Thus, we must
necessarily use wider layers to account for the features inhabiting different regions of
the receptive field.

Initially, we used a network with a fully-connected retinal layer of 100 units and a
fully-connected V1 layer of 256 units, so our ratio was 256 input units to 100 retinal
units to 256 V1 units. The ratio of V1 neurons to retinal neurons is biologically
accurate to the neuron ratio present in some mammals such as cats and macaques
[29]. After the retinal and V1 encoding layers, we use a single-layer linear decoder
to produce a reconstruction of the inputs; the rationale for choosing a simple linear
decoder is explained in Section 4.3. Similar to sparse coding the decoding is linear
and the encoding mapping is nonlinear, but unlike sparse coding our encoding map
is explicit.

4.1.1 Noise Injection

To the input of the full network we inject additive Gaussian noise which acts to model
the noise present in photoreceptors. We also inject additive Gaussian noise at each
of the retinal and V1 layers after the linear operation and batch normalization but
before the nonlinear activation. This models the neural noise present in the retina
and V1. For the input, we inject Gaussian noise of mean 0 and a variable standard
deviation, while for each of the layers we inject Gaussian noise of mean 0 and a
variable standard deviation which is usually an order of magnitude larger than the

17

input noise. These levels of noise at the input and neural levels are comparable to
the biologically accurate levels of noise presented in [30].

4.1.2 Residual Layers

In order to prep the architecture for future work with deeper networks, we opted to
turn these single fully-connected layers into modules. For our experiments we imple-
ment residual layers (modules), similar in structure to the residual architecture pre-
sented in Figure 2.7. Per the figure, each residual layer contains two fully-connected
linear layers and a skip connection, which adds a linear mapping of the input to
the layer to the output of the second fully-connected layer. When we instantiate a
residual layer, we provide the dimensionality of the input and dimensionality of the
output. The first linear layer maps from the width of the input to the width of the
output, while the second linear layer maps from the width of the output to the width
of the output. The output of the first linear layer goes through a ReLU activation
function, which is then passed as input to the second linear layer. The output of this
layer is added to the skip connection’s linear mapping of the input. This sum is then
passed through a nonlinear activation function, the choice of which we will discuss
next.

4.1.3 Activation Function

In our initial experiments, we found that the sigmoid activation was more likely to
produce center surround receptive fields when used in the retinal layer. We also
found that a ReLU activation was good at producing oriented Gabor receptive fields.
Following these observations, we pursue further ablations on this configuration that
will be described in more detail in the experiments Chapter.

A well-known issue that can arise when using a ReLU activation functions is that
for any inputs less than 0, the activation value is 0, and the slope in the negative
region is also 0. This can lead to the problem of zero gradients, meaning that certain
neurons in the layer will not get any gradient signals to update their parameters [38].
A common solution to this issue is to use a leaky ReLU activation instead. The leaky
ReLU response is given by:

y =

{
mx x < 0

x x ≥ 0
(4.1)

Like the ReLU activation, a leaky ReLU activation has no bounds on activation
level (does not saturate like the sigmoid). When the input is greater than 0, the
activation function behaves like a linear function with slope 1, and when the input is
less than 0, a slope m << 1 is employed. The slope m is a user defined parameter.
The shape of the activation curve for a leaky ReLU unit with m = 0.1 is shown in
Figure 4.1

A traditional leaky ReLU can help overcome the zero gradient problem. However,
the presence of negative activations became an issue when we added a term to the
objective function which attempts to minimize the activation level, as this would

18

Figure 4.1: The leaky ReLU activation curve, with a slope of 0.1 for the negative x
region in order to better visualize the slope in the negative region.

Figure 4.2: Our adjusted leaky ReLU function, which was used when calculating the
metabolic cost for each of the retinal and V1 layers.

produce trivial solutions with very large negative activation values. We will explain
this more thoroughly in the next section. Attempting to minimize the activation
value of the function in Figure 4.1 would mean our weights would keep getting more
negative. To combat this issue while still preventing the problem of dead gradients,
we instead opt to use a negative slope m = −2, as shown in Figure 4.2. This is
equivalent to using a regular leaky ReLU with an asymmetric penalty where negative
activation would result in a much higher penalty.

Now that we have discussed the model architecture-specific methods we employ,
Figure 4.3 shows a block diagram for the proposed model.

4.2 Objective Function

In this section, we describe the main elements that constitute our objective function.

Information Preservation: Usually, the objective function over which the net-
work weights are optimized contains a term which ensures that network maximizes

19

Figure 4.3: In the experimental model, we utilize a residual fully-connected layer in
each of the retinal and V1 layers. Notably, we add input noise to the data prior to
the retinal layer (σI), just before the retinal activation (σR), and just before the V1
activation (σV 1).

information transfer between the input and the neuron responses. Ideally such ob-
jective would maximize the mutual information I(X;Y) = H(X) −H(X|Y), where
X is the random variable representing the input data and Y the neuron responses;
however, evaluating the conditional entropy H(X|Y) can be difficult, as the integral
used to find it is intractable [61]. Thus, an approximation or surrogate of mutual
information is often used [60]. In our case, we take the mean of the aforementioned
L2 norm between the inputs and the reconstructions.

Lrec = E
[
(Xi − X̂i)

2
]

(4.2)

Metabolic Cost: Another common idea motivated by biology is that some portion
of the loss function upon which the autoencoder model is trained should include
a metabolic cost on firing spikes [36, 30], as an economy of activation energy was
suggested in [4]. Namely, the metabolic cost of a neuron is defined as its mean
activation multiplied by .

If we are trying to minimize the mean activation level, this requires activation
values to be only positive. While this holds for sigmoid and ReLU activations, it is
not necessarily satisfied for leaky ReLU activations. As we previously pointed out,
the leaky ReLU can help overcome zero gradients that may occur during training with
conventional ReLU units, but their use is not compatible with the above definition
of metabolic cost. As a solution, we propose an asymmetric function to compute the
metabolic cost for leaky ReLU activation layers, shown in Figure 4.2. For the retinal
and V1 layers respectively, we do

LR,meta = E[(YR)] (4.3)

LV1,meta = E[sβ(YV1)] (4.4)

where YR and YV1 represents the activations of the retinal and V1 layers respectively
and,

sβ(x) =

{
−βx x < 0
x x ≥ 0

(4.5)

20

with β >> 1.

Total Cost: In order to build our objective function, we use one reconstruction
term, a weight regularization term (L2 regularization as mentioned in 2.12), and
metabolic cost terms each for the retinal layer and the V1 layer. It should be noted
that the trade-offs for each layer’s metabolic cost can be adjusted independently, and
their value is represented by λR and λV1. Thus, the final objective function takes the
following form:

Ltotal = Lrec + λRLR,meta + λV1LV1,meta + 0.0001LL2reg (4.6)

4.3 Feature Visualization

Visualization techniques have been commonplace in neuroscience to understand how
neurons in the visual pathway respond to stimuli. In early stages such as the retina
and V1, one popular technique known as spike triggered average has been used to
visualize the receptive fields of simple cells [16]. To summarize, the firing of a neuron
is recorded when presented with images of i.i.d. samples of white Gaussian noise, and
the noise images for which the neuron fires are averaged. This technique can be used
to visualize neurons that can be well modeled using a linear-nonlinear model like the
following:

y(x) = g(wTx), (4.7)

where w,x ∈ Rd and g is a non-decreasing function such as the sigmoid or the ReLU
functions we have discussed. If we limit the energy of the stimuli

∑d
i=1 (x)

2
i ≤ E, the

input that maximizes the response y(x) is given by:√
E

wTw
w, (4.8)

The optimal stimuli is proportional to the weights of the linear transformation in the
model neuron. Therefore, for the simple autoencoder with a single encoding layer,
we can visualize the learned features by looking at the weights of the rows of the
linear transformation matrix in the encoder. However, when dealing with more than
one encoder layer, we lose the ability to easily visualize what inputs elicit responses
of neurons in layers past the first layer. After all, second-layer weights provide us a
mapping from a space the size of the first layer to a space the size of the second layer,
which does not tell us directly how the second layer relates to the input.

In our model, not only do we have both a retinal and a V1 stages, but each of
these are actually residual fully-connected modules (see Figure 2.7). Each residual
fully-connected module contains two regular fully-connected layers, meaning that in
total we have four sets of fully-connected layer weights which we are optimizing. We
could visualize the first of these layers using the simple visualization method described
above, but we’ll need to use another technique to visualize the other layers.

There have been various proposals on how to visualize intermediate layers in deep
neural networks. An unrefined method for doing so would be to merely look for which

21

images in the dataset provide the maximum activation for each unit in the deeper
layer. While this method would be computationally very quick, it lacks nuance. The
input image which maximizes an activation may not be unique to a particular unit.
When using images from the dataset, there is a lot of correlated information in the
image, so it can be tough to discern which part of the input is causing the layer unit
to activate highly [41].

Another method involves generating images which maximize the activation of
each unit in a layer [19, 39, 43]. Starting from noise in the shape of the input, we
can optimize the pixels these noisy inputs with an objective function which tries
to maximize a given unit’s activation level [19, 39]. A more sophisticated method
constrains the inputs to lie in the support of natural images; this is accomplished by
optimizing the latent code in a generative adversarial network (GAN) [22] rather than
directly optimizing pixel values [43]. However, optimizing pixel values requires adding
heuristics like regularization to avoid grainy-looking visualizations. Using GANs has
the problem that they usually generate images of entire objects, while retinal and V1
features are known to correspond to features that only cover a small portion of the
entire object.

Noticing that our model is inspired by sparse coding (a linear generative model)
and that our model contains single-layer linear decoder to reconstruct the input
from V1 activations, if we transpose this linear decoder transformation we then have
weights providing a linear mapping from the input-space to the V1-space, which is
exactly what we want to visualize. In fact, in sparse coding this corresponds to visu-
alizing the dictionary elements [45] which are the column vectors of the matrix Φ in
(3.2) that span the space of images.

We extend this principle to visualize the retinal features as well. We add another
linear decoder to our architecture which decodes the retinal activations back to the
input space. The main difference is that this decoder is added to an EVSNet where
parameters are kept fixed. Let yR = fR(x) be the output of the retinal module for
an image x. Our retina decoder is an affine map,

x̂′ = WRdyR + bRd, (4.9)

where x̂′ ∈ Rd is the input reconstruction from the retina code yR ∈ RpR , WRd ∈
Rd×pR , and bRd ∈ Rd. As you can see, similar to the visualization of the decoder
weights of the EVSNet, we transpose the weights of this decoder in order to get a
mapping from the input-space to the retina-space. Figure 4.3 shows a visualization
of how these linear decoders fit into our architecture. The V1 decoder was already in
place as the the decoder of our autoencoder, so we add another linear decoder after
the end of the retinal layer, which has a different dimensionality due to the different
size of the retinal latent space and the V1 latent space.

The retinal decoder can be trained relatively easily, as we employ an objective
function which minimizes the MSE loss (2.8) between the input X and the retinal
decoder’s reconstruction X̂ ′. We also use an L2 weight regularization (2.12) to make
sure the decoder weights are optimized to a unique solution. The training of this
decoder is quick, only requiring 100 epochs of training (compared to the thousand

22

Figure 4.4: The retinal decoder does not affect any of the network weights or biases
during training of the EVSNet. This retina decoder is only trained on the intermediate
outputs of the EVSNet while keeping the parameters of the EVSNet model fixed.

epochs required for training the full network). The retinal decoder training does not
significantly increase the time required to train the full network, so we can train this
decoder several times throughout the EVSNet training to get a visualization of how
the retinal features evolve throughout the training process.

4.4 Dataset Generation

When attempting to model the vertebrate visual system, a common dataset is the
van Hateren Natural Image Dataset [57], which contains 4,167 images of natural
landscapes. The images in this dataset have resolution of (1,024 × 1,536 pixels).
Because our focus is on early visual system where receptive fields are known to be
localized and occupy a relatively small portion of the visual field, to generate our
dataset we take a sample of patches from each image in the dataset. These patches
are much smaller in size. Each patch is 16 × 16 pixels, and we pull a user-specified
number of patches from each image in the dataset. We also placed a constraint on
which patches were picked; patches needed to have a pixel standard deviation larger
than a threshold value to ensure a high enough contrast, allowing the autoencoder to
better learn localized features.

For each image file in the van Hateren Dataset directory, its data is copied to an
array and reshaped to 1,024×1,536. Then we run a while loop that iterates until the
number of patches taken from this image reaches the user-chosen number of patches
per image. During each run of this while loop, a random column and row value is
chosen. The column value is chosen between 0 and 1,520 (1,536− 16), while the row
value is chosen between 0 and 1,008 (1,024−16). The patch is then indexed from the
row value to the row value plus 16, and from column value to column value plus 16.
The patch values are divided by the patch’s maximum value to scale the values to the
range [0,1], and then the standard deviation of the patch is checked. If the standard

23

Figure 4.5: At left is one of the full 1024×1536 images from the van Hateren dataset.
The two example patches at right represent patches that could be randomly selected
for consideration in the patch dataset. For a contrast threshold of 0.1, the patch at
top right would be rejected due to a lack of contrast (standard deviation = 0.018),
while the patch at bottom right would be accepted as it has a high enough contrast
(standard deviation = 0.11).

deviation is lower than a threshold value (i.e. the patch lacks adequate contrast),
then the patch is rejected and the loop will run again. If the patch is accepted, the
count of accepted patches increases and the loop condition is evaluated.

If the patch has an adequately high standard deviation, then the patch is saved to
the array of current patches and the patch counter is incremented by one. The loop
will continue to run until the specified number of suitable patches are taken from the
current image. These patches are then appended to the array of all patches. The
next image is loaded from the directory, and the process repeats until all images have
had patches collected from them. An example illustrating the acceptance/rejection
of patches is shown in Figure 4.5.

To generate the patch dataset used for the results of this paper, we select 20
patches per image for a total of roughly 83,000 patches, and a contrast threshold value
of 0.1. The threshold value was chosen by generating data with a selection of threshold
values, and choosing the highest threshold value which caused only negligible change
in the patch generation run time when compared to generating without a threshold.
The generated training patch dataset was only generated once and it is used for all
the experimentation training present in this thesis.

We also generated a separate validation dataset, which took 30 random patches
per image for approximately 125,000 patches. The validation dataset was used to
discern how many epochs to train the models in our experimentation. Since we are
learning with an unsupervised task an evaluating our representation with a separate
metric, we do not use a test dataset.

24

(a) (b)

Figure 4.6: A center surround feature and its corresponding 2D FFT. We would
describe this center surround feature as unoriented because its 2D FFT is circular.

4.5 Orientation Measure

To quantitatively differentiate center surround receptive fields from Gabor receptive
fields, we propose our own measure of orientedness. For each of the features in
either the retinal or V1 layer vis the linear decoder approach, we can compute the
2-dimensional Fast Fourier tranform (2D FFT), which is a discrete Fourier transform
corrsponding to a 2-dimensional array of spatial frequencies. If we take the magnitude
of this 2-dimensional FFT, we can visualize the frequencies present in the feature. At
the center of the 2D FFT is the DC component or bias of the feature, which is 0 for
our cases as the mean value of the features is 0. Moving out from the center of the
array, pixel values represent higher frequency components. Pixels near the center of
the visualization therefore represent the lower frequency components. As you rotate
around the image, you change the direction in which there is a spatial frequency.
For example, in Figure 4.6 the FFT pixel values are relatively radially symmetric, as
there is no strong orientation in the center surround feature. In Figure 4.7, there are
only high values for frequency components along the line y = −x, which corresponds
to the direction over which the Gabor feature varies.

By interpreting the magnitudes the 2D FFTs of the retinal and V1 features as
distributions on the x, y plane, we can construct a heuristic measure of how oblong the
distribution is based on 2× 2 covariance matrix that is obtained form the coordinate
distribution. To construct the covariance matrix A we estimate is entries AXX , AXY ,
AY X and AY Y . Note that, AXY = AY X , so we only need to find the covariance term
and both variance terms. We find AXX using

AXX =
7∑

x=−8

7∑
y=−8

F (x, y)xx (4.10)

where F (x, y) represents the value of the magnitude of the 2D FFT at the coor-

25

(a) (b)

Figure 4.7: We can describe this Gabor as oriented due to the oblong shape of its 2D
FFT.

dinates (x, y). Similarly, to find AY Y we do

AY Y =
7∑

x=−8

7∑
y=−8

F (x, y)yy (4.11)

Finally, to find AXY we use

AXY =
7∑

x=−8

7∑
y=−8

F (x, y)xy. (4.12)

We arrange the above terms in a covariance matrix as follows:

A =

[
AXX AXY

AY X AY Y

]
(4.13)

which can be used to obtain an ellipse C via the following quadratic equation:

[
x y

] [AXX AXY

AY X AY Y

]−1 [
x
y

]
= C. (4.14)

The oblongness of the ellipse defined by (4.14) can be determined based on the eigen-
values of A. The larger of the two values represents the variance in the direction
of the major axis, while the smaller value represents the variance in the orthogonal
direction which corresponds to the minor axis. We can then take the ratio of the
larger eigenvalue to the smaller one to get our measure for orientation. For a 2D FFT
where the magnitude is rotation invariant, we expect that the primary and secondary
variances would be very similar, thus the above defined ratio would be close to 1. For
a more oblong 2D FFT (like the one in Figure 4.7), we expect that the major axis
variance would be larger than the variance of the minor axis, yielding a higher ratio.

26

(a) (b)

Figure 4.8: A center surround feature on the edge of the receptive field and its
corresponding 2D FFT. Despite the fact that it should be unoriented, we see that the
2D FFT appears to be oriented and not circular.

One limitation of the proposed method arises when we look at center surround
features that appear near the edges of the patch. We can see in Figure 4.8 that we
have what would normally be a center surround feature, but it is cut off on the right
edge of the patch area. This causes an artifact in the 2D FFT that introduces extra
energy on spatial frequencies along the x-axis. However, we believe this issue can be
overlooked as it only affects a few of the receptive fields. Moreover, we can construct
a histogram of the orientedness values for all features in each layer, and compare the
relative frequency distributions for each layer.

Figure 4.9 shows that we can see a clear difference in the distributions of relative
frequencies of orientedness values between the center surround and Gabor features;
the center surround features have many more orientedness values close to 1.0, making
the distribution much more skewed than the Gabor feature distribution. We compute
our orientedness histograms on the range [1, 7] with 20 bins. We can use the chi-
squared distance to discern how different the retinal and V1 distributions are, as it
is a common method for comparing histogram distributions.

Copyright© Nicholas Lanning, 2023.

27

Figure 4.9: The relative frequency histogram for the retinal and V1 features in a
model trained with σI = 0.1, σR = 4.0, σV 1 = 0.5, λR = 2.0, and λV 1 = 2.0. The
retinal layer has mostly center surround features and the V1 layer has mostly oriented
Gabor features. When we are comparing the orientedness of the retinal layer to the
V1 layer in this case, we should expect that the relative frequency distributions would
differ. This appears to be the case, as the retinal center surround feature distribution
appears much more right skew than the V1 Gabor orientedness distribution.

28

Chapter 5 Experimentation

The proposed model has a set of hyperparameters that control its behavior. Namely,
we have the nonlinearity at the retinal and V1 outputs, the input and channel noises
(retina and V1) σR and σV1, and the metabolic constraint which is indirectly set
via tradeoff coefficients λR, meta and λV1, meta in (4.6). Experimentation consisted of
training many different EVSNets over a sweep of these hyperparameters, visualizing
the learned representations, and quantitatively analyzing these visualizations using
the method presented in Section 4.5. We wanted to gain an understanding of how
each hyperparameter affected the learned representation.

Note, the hyperparameters above are not the only ones that can be modified, they
are the ones that matter the most in changing the behavior of the model. We also
varied the sizes of the retina and V1 layers. In order to pick the learning rate, we
trained networks over a selection of different learning rates ranging logarithmically
from 1e−2 to 1e−6. We then picked the largest learning rate that would still produce
stable representations, which was 1e−4. This learning rate was used with an Adam
optimizer for all sweeps.

For all sweeps, networks were trained for 1000 epochs each. This training length
was chosen based on the loss curves for the networks, for which the change in loss
per epoch becomes negligible at this point. As can be seen in Figure 5.1, the training
loss curves flattens out considerably after 1000 epochs.

Our method for naming models stems from all the parameters which we adjust.
An example of a model name is S R 100 256 0.1 4.0 0.5 2.0 2.0. The first two letters
represent the retinal and V1 activation functions (S for sigmoid and R for leaky ReLU
in this case). The next two numbers represent the size of the retinal and V1 layers
(100 and 256 units), respectively. The next three numbers represent the values of σI,
σR, and σV1 respectively (0.1, 4.0, and 0.5). Finally, the last two numbers represent
the values of λR and λV1 (both 2.0).

5.1 Input Noise Sweep

A sweep was conducted over all three noise parameters, with the sweep parameters
being σI:[0.1, 0.5, 1.0], σR:[0.5, 2, 4], and σV1:[0.5, 2, 4]; retinal and V1 metabolic
tradeoff was set to 1.0. We wanted to observe specifically how each noise parameter
affected the learned representation. Specifically, we noticed that the input noise had
a very noticeable effect on the learned representation. Shown in Figures 5.2 and 5.3
are the retinal and V1 features for 3 models which had the same parameters, except
for the input noise which varies across all 3 possible values.

The main takeaway from the input noise sweep is that increasing the input noise
seems only to make the learned features more diffuse, sometimes to the point of losing
a discernible localized feature. For this reason, we kept the input noise static at a
standard deviation of 0.1. The reason why receptive fields are more diffuse at high
level of input noise can be explained from the nature of the frequency distribution of

29

Figure 5.1: An example loss curve, taken from model S R 100 256 0.1 4.0 0.5 2.0 2.0
which was run at 5000 epochs, with loss on a validation set being computed every
10 epochs. It should be noted that logging each epoch and logging the validation
loss count as a logger step, shown on the x-axis. The validation loss is shown in
blue, while the train loss is shown in orange. Both curves seems to flatten at around
1500-2000 epochs; however, since we are computing many sweeps over different sets
of parameters, the time to compute was very important to us. With this in mind, we
opted to use 1000 epochs as our training length, which is shown by the red vertical
line.

(a) (b) (c)

Figure 5.2: As we increase the input noise, the learned retinal representation shows
more diffuse features. For 3 models with identical hyperparameters except for input
noise (of the form S R 100 256 XX 2.0 4.0 1.0 1.0), (a) shows the retinal represen-
tation with input noise of standard deviation 0.1; (b) shows the representation with
with input noise of standard deviation 0.5; and (c) shows the representation learned
with input noise of standard deviation 1.0.

natural images which follows a power law 1
f2−η with η being a small positive number

30

(a) (b) (c)

Figure 5.3: The V1 representations for the same 3 models presented in Figure 5.2.
Again, as input noise increases from a standard deviation of 0.1 to 0.5 to 1.0, the
learned representations become much more diffuse.

Hyperparameter Values
σR [0.5, 2, 4]
σV1 [0.5, 2, 4]
λR [0.5, 2]
λV1 [0.5, 2]

Table 5.1: Default values for hyperparameter sweeps in EVSNet training.

much smaller than 2 [51]. As the noise floor increases, the image information will be
only discernible at low frequencies which are above the noise floor.

5.2 Default EVSNet Sweep

After seeing the effects of changing input noise, we opted to keep input noise static at
σI = 0.1 for all future sweeps. With this, we set up our default model sweep, which
swept over the values in Table 5.1. Retinal and V1 features from a default EVSNet
are shown in Figure 5.4. In the retinal layer, we see the appropriate center surround
features have developed, while oriented Gabor receptive fields have developed in the
V1 layer.

5.3 Coverage Map

Visual assessment of the features in Figure 5.4a show localized features that appear
to be translated versions of a few prototypical shapes (center surround receptive fields
in our case). This behavior resembles to what we would expect from a translation
equivariant representation like the one imposed by using a convolutional layer, where
the same filter is applied locally and swept over the entire image [13]. To validate
this observation, we make a map which shows the space in the visual field which the
center surround receptive fields occupy. To do this, we look at all retinal features and

31

(a) Retinal layer features (b) V1 layer features

Figure 5.4: The learned retinal and V1 representations for model
S R 100 256 0.1 4.0 0.5 2.0 2.0 in the default sweep. We can see clear center
surround receptive fields in 5.4a, and oriented Gabors in 5.4b. Both sets of features
have been sorted by the absolute value of their skewness (third central moment) as a
simple way of ordering the features by diffuseness. This reaffirms that the off-center
units are typically more diffuse and fewer than the on-center units. We also see that
the V1 features have been roughly ordered by diffuseness as well.

calculate the skewness (third central moment) of their pixel value distributions. We
take features with skewness values greater than 1 to correspond to on-center units (for
off-center units, we pick all retinal features with a skewness less than −1); doing so
removes the retinal features which do not contain prominent localized center surround
features. We can take a contour of the center surround units at a threshold value
which was picked by matching the contours to their respective unit and adjusting the
threshold until the contour matched the size of the feature. We can then draw all
the on-center unit and off-center unit contours on two separate fields, and we get two
coverage maps like those shown in Figure 5.5. Note the same threshold is applied to
all features with high skewness (on-center) and another threshold to all features with
high negative skewness (off-center).

The coverage map shows that indeed similar features are evenly distributed across
space. We can see that the on-center units, which are smaller and more plentiful than
the off-center units, effectively tile the entire visual field with some overlap between
units. We also see that the off-center units attempt to spread and cover the visual
field as well. This lends credence to the idea that a spatially equivariant representa-
tion is optimal when modeling the retina, as we see similarly-shaped receptive fields
being repeated and essentially translated across the visual field. It is known that the
correlation between the luminance values between two points over natural images only
depends on the distance between the two points and not on their specific locations
in the image [51]. In other words, the correlation function is translation invariant.
That the extracted features are consistent with this characteristic of natural images

32

(a) (b)

Figure 5.5: The coverage maps for the retinal features in Figure 5.4. (a) shows the
contours taken for the on-center units, which tile the entire visual field. (b) shows
the contours taken for all the off-center units, which are larger and fewer in number,
but still make an attempt to cover the entire visual field. These results support the
idea that a spatially equivariant retinal representation is indeed optimal.

can serve as an indication that the proposed model is not overfitting.

5.4 Activation Function Validation

As mentioned before, we observed that sigmoid activations in the network have a
tendency to produce center surround receptive fields, while leaky ReLU activations
have a tendency to produce oriented Gabor receptive fields. In order to more formally
validate this claim, we decided to train two other versions of the network, one of which
had sigmoids for both nonlinear activations, and the other of which had our leaky
ReLU’s for both nonlinear activations.

To see whether the choice of nonlinear activation function is the driving force
which pushes the development of center surround or oriented Gabor receptive fields,
for both models, we do a sweep over the same set of hyperparameters as the default
EVSNet model.

5.4.1 Double Leaky ReLU Model

When looking at features from models in the double leaky ReLU sweep, qualitatively
we see that both the retinal and the V1 features appear to be oriented Gabors, as
can be seen in Figure 5.6. In order to quantitatively assess that both layers learn
the same features, we compute the orientedness measure via the 2D FFTs of the
features (as mentioned in 4.5) and then construct a relative frequency histogram of
the orientedness values. An example histogram from one of the modes in the sweep
can be seen in Figure 5.7. The orientedness relative frequency histogram shows
two distributions which appear to be relatively similar, which qualitatively validates

33

(a) (b)

Figure 5.6: The learned representations for the double leaky ReLU sweep model
R R 100 256 0.1 0.5 4.0 2.0 2.0. The retinal representation when using a leaky ReLU
activation at each layer shows clear oriented Gabor receptive fields, despite this not
normally being the case. The V1 representation when using a leaky ReLU activation
at each layer also shows oriented Gabor receptive fields, which is expected at this
layer. Changing the nonlinear activation function for the retinal layer seems to have
directly had an effect on what sort of features the layer learns, as this is a single pair
of features of many in the sweep which show oriented Gabors in the retinal layer.

that the produced features are similar. Quantitative validation of the distributions’
similarity will be explained further in Section 5.6.

5.4.2 Double Sigmoid Model

Similarly, when looking at most of the features in the double sigmoid sweep, we see
localized center surround receptive fields in both the retina and V1, as shown in Figure
5.8. We also find the orientedness relative frequency histograms of these features
to compare the distributions of orientedness which both layers have. An example
histogram from one model in the sweep is shown in Figure 5.9. Similarly to the
double leaky ReLU model, the orientedness histogram shows two distributions which
are similar, which further qualitatively validates the similarity in learned features.
It should be mentioned that the similarity between the retinal and V1 features was
observed in all but a few models in the double sigmoid sweep.

For a few specific models in the double sigmoid sweep, we noticed interesting
behavior wherein the the V1 features would contain center surround features as well
as Gabor receptive fields. This would occur specifically in models which had low V1
noise, and high V1 tradeoff. An example of the edge behavior from the sweep can
be seen in Figure 5.10. In order to better show the mix of center surround features
and Gabor features, we show the features and the 2D FFTs of the model features,
all sorted by their orientedness value in Figure 5.11.

34

Figure 5.7: The orientedness relative frequency histogram comparing the orient-
edness of retinal features to V1 features in double leaky ReLU sweep model
R R 100 256 0.1 0.5 4.0 2.0 2.0. Qualitatively, we can see that the two relative fre-
quency distributions look relatively similar, so we can validate our claim that both
layers contain predominantly oriented receptive fields.

(a) (b)

Figure 5.8: The retinal and V1 features for double sigmoid sweep model
S S 100 256 0.1 2.0 4.0 0.5 2.0. Both sets of features appear to be made up of cen-
ter surround units, which was true of models in the sweep across most parameters,
leading us to believe that the choice of nonlinear activation plays a significant role in
developing specific receptive fields shapes.

35

Figure 5.9: The orientedness histogram for double sigmoid sweep model
S S 100 256 0.1 2.0 4.0 0.5 2.0. Both the retinal and V1 features for this model ap-
pear to be center surround receptive fields, and the orientedness distributions also
seem to agree that both layers have similar features.

(a) (b)

Figure 5.10: The retinal and V1 features for double sigmoid sweep model
S S 100 256 0.1 2.0 0.5 2.0 2.0. In instances where the sweep pushes the V1 tradeoff
high and the V1 noise low, we see that the retinal layer has center surround features
as we might expect. However, the V1 layer appears to have a significant amount of
oriented Gabor features, in addition to some center surround features. We noted this
behavior only occurs when both the V1 noise was low and V1 tradeoff was high.

36

(a) (b)

(c) (d)

Figure 5.11: The retinal and V1 features from model S S 100 256 0.1 2.0 0.5 2.0 2.0
in the double sigmoid sweep and their associated 2D FFTs. Each of these visualization
grids has been sorted by the features’ orientedness, where the top left element has
the lowest orientedness, and you increase orientedness as you move to the right and
then down, restarting at the left of each row. We can see in (c) and (d) that there
are a few center surround features near the top with relatively low orientation, but
as you move down we start to see clearly-oriented Gabor, which is supported by the
oblongness of the respective 2D FFTs.

37

(a) (b)

Figure 5.12: We passed all patches from the dataset through model
S S 100 256 0.1 2.0 0.5 2.0 2.0, and recorded the activations for both a center sur-
round unit and a Gabor unit 5.10b. From this, we constructed a histogram of the
two sets of activations; (a) shows the histogram of activations for a center surround
receptive field (4th unit), while (b) shows the histogram of activations for an oriented
Gabor receptive field (3rd unit). The distributions of activations for center surround
receptive fields tend to have more activations in the 1.0 saturation range, as well as
more activations distributed in the linear region of the sigmoid; the distribution of
activations for oriented Gabor receptive fields tends to be sparser, with many ac-
tivations in the lowest bin, fewer activations in the 1.0 saturation region, and very
few activations in between. While we only show histograms for two specific features,
this is a trend which we observed across several sets of center surround and Gabor
activation histograms.

To further investigate the edge behavior, we decided to look at the histogram
of activations for two specific units in the V1 layer when passing all patches in the
dataset through the encoder. Figure 5.12 compares the activation histograms for a
center surround feature and a Gabor feature from the V1 features in Figure 5.10. We
can see two types of behaviour where one of the histograms shows a higher level of
saturation around the upper limit. Since the metabolic cost is the average activation
value, the center surround unit has a higher mean activation which would agree with
higher metabolic cost and the oriented unit with a lower metabolic cost.

5.5 No-Bottleneck Network

To test the claim in [36] that a dimensional bottleneck at the retinal layer is alone
sufficient to cause center surround and oriented Gabor receptive fields to develop
simultaneously, we trained a collection of networks with 256 units in both the retinal
layer and the V1 layer, removing the dimensional bottleneck that was present in
our default EVSNet. We did a sweep across the same set of hyperparameters as
the default sweep (see Table 5.1). Features learned from one of the no-bottleneck
models can be seen in Figure 5.14. We found that despite removing the dimensional
bottleneck, we still learned center surround features in the retinal layer and oriented

38

Figure 5.13: The relative frequency orientedness histogram for the double sigmoid
model with high V1 tradeoff and low V1 noise S S 100 256 0.1 2.0 0.5 2.0 2.0 present
in Figure 5.10. The two distributions are notably different when looking at the lowest
values of orientedness, where there are many more retinal features than V1 features.
The difference in distributions makes sense, as more of the V1 features which were
expected to be center surround receptive fields have been replaced with oriented
Gabor receptive fields.

Gabor features in the V1 layer. The orientedness relative frequency histogram can
be seen in Figure 5.15. We can tell the two histogram distributions apart by the
difference in high orientedness values; the V1 layer has many more features with
high orientedness when compared to the retinal layer’s features. This makes sense,
as after removing the bottleneck we still developed center surround receptive fields
in the retinal layer and oriented Gabor features in the V1 layer. We noticed this
distinction in almost all of the models in the no-bottleneck sweep.

For models in the no-bottleneck sweep with high retinal metabolic tradeoff and
low retinal noise, we noticed edge behavior similar to what was mentioned in the
previous section, where the Gabor features appear at a sigmoid activation (in the
retinal layer this time). Again, the Gabor behavior only appears in instances where
we have low noise and high tradeoff at a sigmoid layer. The features from one of
these models is shown in Figure 5.16. To validate that both layers contain the same
oriented Gabor features, the orientedness relative frequency histogram comparison is
shown in Figure 5.17. We can see that the distributions of orientedness values look
very similar, further validating the similarity in the learned representations.

5.6 Orientedness Histogram Analysis

Over the course of this document we have included several histograms showing the
relative frequency of retinal and V1 feature orientedness for specific models. For each
of these histograms we qualitatively assess whether the distributions of retinal and
V1 orientedness match, but in order to get a quantitative assessment, we take the chi-
squared distance between the two distributions for each of these histograms. Table

39

(a) (b)

Figure 5.14: The retinal and V1 features for no-bottleneck sweep model
S R 256 256 0.1 4.0 0.5 2.0 2.0. Despite removing the dimensional bottleneck, we
still have learned a retinal representation predominantly composed of center sur-
round features, and a V1 representations predominantly composed of oriented Gabor
features. This goes against the idea that a dimensional bottleneck simultaneously
encourages both layers to develop their expected features as stated in [36].

Figure 5.15: The orientedness relative frequency histograms for the no-bottleneck
sweep model S R 256 256 0.1 4.0 0.5 2.0 2.0. When looking at the histograms, we
can see that the distributions are very clearly disparate. The low end of the retinal
features is much higher than the V1 features, and the V1 features have more high
values of orientedness.

40

(a) (b)

Figure 5.16: The retinal and V1 features for no-bottleneck sweep model
S R 256 256 0.1 0.5 2.0 2.0 2.0. Due to the high retinal tradeoff and low retinal noise,
the retinal layer with sigmoid activation learns a representation made predominantly
of oriented Gabor features. This is similar to the sigmoid-activated V1 layer learning
Gabor features in 5.10.

Figure 5.17: The orientedness relative frequency histograms for the no-bottleneck
sweep model S R 256 256 0.1 0.5 2.0 2.0 2.0. To validate that the retinal layer is
indeed learning the same features as the V1 layer, we compare the orientedness his-
tograms of both sets of features. Both distributions appear to be the same shape,
validating that these features are very similar.

41

Model Name Qualitative Assessment Chi-squared
Distance

S R 100 256 0.1 4.0 0.5 2.0 2.0 Different Distributions 0.342
R R 100 256 0.1 0.5 4.0 2.0 2.0 Same Distributions 0.0936
S S 100 256 0.1 2.0 4.0 0.5 2.0 Same Distributions 0.0294
S S 100 256 0.1 2.0 0.5 2.0 2.0 Different Distributions 0.200
S R 256 256 0.1 4.0 0.5 2.0 2.0 Different Distributions 0.376
S R 256 256 0.1 0.5 2.0 2.0 2.0 Same Distributions 0.0260

Table 5.2: A summary of the chi-squared distances of the models and orientedness
histograms that were shown specifically in the document. Generally, the chi-squared
distance validates the qualitative assessment, as higher values correspond to features
or orientedness distributions which appear not to match.

5.2 shows a summary of these assessments, including the model ID, the qualitative
assessment, and the chi-squared distance between the two orientedness distributions.
The histograms used are Figures 4.9, 5.7, 5.9, 5.13, 5.15, and 5.17.

We notice that for each of the example models where we believe the retinal and V1
features to be coming from the same distribution, the value of chi-squared distance is
less than 0.1. For cases where we believe the distributions to be different, the value
of chi-squared distance is at or above 0.2.

We must keep in mind that these 6 models only show a few cases where the chi-
squared distance works well. Because of this, for the entire default sweep, the double
leaky ReLU sweep, and the double sigmoid sweep, we computed each of the 36 models’
two orientedness histograms, then found the chi-squared distance between them. The
goal was to observe which parameters affected the difference in distributions, and give
a more full view of how the chi-squared distance works to differentiate features. We
split the graph into 9 groups of models based on the retinal and V1 noise added while
training. The color of the bar in the group can be used to determine what the values
for tradeoff were during training. The values for chi-squared distance are generally
larger in the default sweep when compared to the double sigmoid or double leaky
ReLU sweep, which makes sense as we expect the orientedness to be greater when
retinal and V1 features are distinct. The results for each sweep can be viewed in
Figures 5.18, 5.19, and 5.20.

Copyright© Nicholas Lanning, 2023.

42

Figure 5.18: This chart shows all the chi-squared distances between the orientedness
histograms for each model in the default sweep. We split the graph into 9 groups
of models based on the retinal and V1 noise added while training. The color of the
bar in the group can be used to determine what the values for tradeoff were during
training. These values for chi-squared distance are generally larger than those from
the double sigmoid or double leaky ReLU sweep, which makes sense as we expect the
orientedness to be different between center surround and Gabor features.

Figure 5.19: The chi-squared distances for the double sigmoid sweep. Generally, these
chi-squared distances are relatively low. We do see some significant outliers in the
models with low V1 noise and high V1 tradeoff, which follows our observation that
such conditions lead to oriented Gabors being learned at a sigmoid layer rather than
center surround features.

43

Figure 5.20: The chi-squared distances for the double leaky ReLU sweep. Again,
compared to the default sweep, these values for chi-squared distance are mostly lower.
This makes sense, as in most cases the retinal layer and V1 layer are learning similar
features. There are some instances where there are not as many relevant features
learned, which could contribute to some of the higher values of chi-squared distance
here.

44

Chapter 6 Discussion

6.1 Double Activation Models

Per the double leaky ReLU sweep, when we use a leaky ReLU activation at both layers
in the EVSNet, the network learns a representation that is predominantly composed
of oriented Gabor features at both layers. When looking at the double sigmoid model
features in the double sigmoid sweep, we also saw that both the retinal and V1
features are predominantly center surround receptive fields.

We might think, at this point, that the choice of activation function specifically
affects the shape of the learned features. However, when we reached certain param-
eters during the double sigmoid sweep (lowest V1 noise level, highest V1 metabolic
tradeoff), we saw a significant amount of the features becoming Gabor receptive fields.
Our hypothesis is that this has to do with a lack of high-end activation saturation
present when using a sigmoid activation, as is supported by Figure 5.12 which shows
that center surround features typically have much higher high-end saturation than
the Gabor features when using a sigmoid activation. If high-end saturation is the
cause of center surround receptive fields being developed, it would make sense that
Gabor edges would develop only in the cases where metabolic cost was high (which
pushes the activations to be lower on average) and where V1 noise was low (which
pushes fewer activations into the saturation region).

Since we can think of the noise injected between layers as a sort of information
bottleneck, we can also think of the presence of an information bottleneck encouraging
the development of center surround features; when we limit the noise and use a
higher tradeoff which discourages high activation values, we limit the information
bottleneck which would normally encourage the learning of center surround features.
This observation is consistent with recent electro-physiological studies that support
computations that maximize Signal-to-Noise Ratio for information transmission [24].

6.2 No-Bottleneck Model

Through the double sigmoid and double leaky ReLU models, we had found that the
shape of the learned representation could be directly affected by the choice of hyper-
parameters which limit the flow of information. We specifically wanted to test the
claim in [36] that a dimensional bottleneck was all that was required to simultane-
ously develop the appropriate features in both the retinal and V1 layers. We ran
the no-bottleneck model sweep, and we found that despite removing the dimensional
bottleneck, we still learned center surround features in the retinal layer and oriented
Gabor features in the V1 layer. In addition, for a couple specific models with low
retinal noise and high retinal tradeoff, we saw that both layers developed oriented
Gabor features. As such, we were not able to reproduce the claim presented in [36].

This further cemented to us that it is not specifically a dimensional bottleneck
which encourages the development of appropriate features at the retinal and V1

45

layers, but more generally any sort of constraint which limits the flow of information.
While it could be true that the dimensional bottleneck contributed as an information
bottleneck in our case (we didn’t observe oriented Gabor features in any of the default
sweep models, no matter the choice of hyperparameters), we propose that there are
many ways one could implement an information bottleneck to develop these features.

6.3 Orientedness

Our proposed measure of orientedness works well when paired with chi-squared dis-
tance to quantitatively differentiate center surround features from oriented Gabor
features. As seen in Table 5.2, the chi-squared distances between the layer oriented-
ness distributions are significantly higher in instances where qualitatively the features
in each layer do not match, and lower in instances where they do match.

When we look at Figures 5.18, 5.19, and 5.20 we can further validate our measure
of orientedness. The default sweep has significantly higher values on average, as a
majority of the models have a chi-squared distance at or above 0.15, while the double
sigmoid and double leaky ReLU sweeps have a majority of models with a chi-squared
distance below 0.15. This makes sense, as we expect the default sweep to produce
different features in each layer, while for the double activation sweeps we expect
similar features in each layer. In the case of the double sigmoid sweep, the models
which have a chi-squared distance much greater than 0.2 are the low V1 noise, high V1
tradeoff models which encouraged the development of oriented Gabors in the V1 layer.
We didn’t observe this sort of behavior in the double leaky ReLU sweep, though there
are still a few high values for chi-squared distance. We theorize that this occurred
because some of the low noise, low tradeoff models produced fewer localized features
in the retina while V1 still produced a good number of oriented Gabors. When
computing the orientedness on receptive fields that don’t contain localized features
(oriented Gabors in this case), we expect there to be less orientedness, meaning that
the two distributions of features would be quantitatively farther apart.

6.4 Limitations of the Proposed Model

The proposed model is able to obtain discernible behavior between two layer repre-
senting the roles of the retinal ganglion cells and V1. For the retina model, the size
of the model provides spatial coverage for the size of input 16× 16 pixels, where the
center surround behaviour can be observed. However, the proportion of on-center and
off-center units does not necessarily reflect the proportion and asymmetries observed
in mammalian visual system [11]; we expect that there should be more off-center
features learned in the retinal layer.

A limitation regarding V1 is that our proposed model is only able to capture
the behaviour of simple cells. A model that include complex cell behaviour would
necessitate further layers to produce the invariances observed in complex cells [48, 9].

Contrast normalization is another operation that is known to occur in the early
visual system [10]. In the proposed approach the model’s ability to include this

46

behavior was neither enforced nor confirmed. It is possible that the composition of
multiple layers of computation in the residual module capture some aspects of this
kind of nonlinearity, but this was not tested.

47

Chapter 7 Conclusion

In this thesis, we have proposed the EVSNet model, which learns representations
which mimic real-world retinal and V1 representations in the vertebrate early visual
system. This model uses fully-connected layers, so as to not assume spatial equiv-
ariance of the learned features; additionally we used biologically inspired constraints
on learning in order to develop a learned representation which matches the shape of
retinal and V1 encodings which have been found experimentally from nature. By uti-
lizing sweeps of hyperparameters and training many unique EVSNet models, we have
gained an understanding of how adjusting certain learning constraints can affect the
final learned representation. We found that the dynamic range of the responses which
can be controlled by the layer nonlinearity, in conjunction with noise and metabolic
constraints has a controllable effect on the features that emerge in the model. In
order to bolster our qualitative assessment of the difference in expected retinal and
V1 feature shapes, we proposed a measure of orientedness, which we use to show
differences and similarities between learned retinal and V1 representations. Finally,
we compared our findings to the existing work and found that we could generalize
the leading paper’s findings to say that information bottleneck principles including
a dimensional bottleneck could be applied to encourage the learning of biologically
accurate retinal and V1 representations.

7.1 Future Work

Future efforts to develop upon the findings of this thesis could be directed towards
polishing the orientedness measure. The measure worked well for us to help quanti-
tatively differentiate center surround and Gabor receptive fields when there are not
a lot of quantitative analysis methods for this sort of unsupervised representation
learning. However, the issue of edge features being represented as more oriented than
they should be could be addressed or accounted for.

We found that inhibiting the flow of information with noise and the metabolic
tradeoff encouraged the development of the appropriate biological representations.
In our case, we used a surrogate for the mutual information in order to judge the
transfer of information. It would perhaps be salient to use a mutual information
estimator or a bound on the mutual information instead, as we could gain a better
idea about exactly how changing the information bottleneck constraints affects how
much information is transferred.

We would also like to investigate the role of more sophisticated nonlinearities like
divisive normalization, which can also shape the features that characterize both stages
of our model [8]. Also, the model was trained purely on reconstruction error. There
have been many recent advances in self-supervised learning in computer vision and
natural language processing. An open avenue for experimentation is training these
models via self-supervised learning which could be better aligned with behavioral
tasks that are relevant for survival [46].

48

Copyright© Nicholas Lanning, 2023.

49

Bibliography

[1] J. J. Atick. Could information theory provide an ecological theory of sensory
processing? Network: Computation in Neural Systems, 22(1-4):4–44, 1992.

[2] J. J. Atick and A. N. Redlich. Towards a Theory of Early Visual Processing.
Neural Computation, 2(3):308–320, 1990.

[3] F. Attneave. Some informational aspects of visual perception. Psychological
Review, 61(3):183–193, 1954.

[4] H. Barlow. Redundancy reduction revisited. Network: Computation in Neural
Systems, 12(3):241–253, 2001.

[5] H. B. Barlow. Possible Principles Underlying the Transformations of Sensory
Messages. Sensory Communication, pages 216–234, 1961.

[6] Y. Bengio, I. Goodfellow, and A. Courville. Deep learning, volume 1. MIT press
Cambridge, MA, USA, 2017.

[7] W. Bialek, F. Rieke, R. R. De Ruyter Van Steveninck, and D. Warland. Reading
a neural code. Science, 252(5014):1854–1857, 1991.

[8] M. F. Burg, S. A. Cadena, G. H. Denfield, E. Y. Walker, A. S. Tolias, M. Bethge,
and A. S. Ecker. Learning divisive normalization in primary visual cortex. PLOS
Computational Biology, 17(6):1–31, 06 2021.

[9] M. Carandini. What simple and complex cells compute. J Physiol., 2006.

[10] M. Carandini and D. Heeger. Normalization as a canonical neural computation.
Nat Rev Neurosci, 2011.

[11] E. Chichilnisky and R. Kalmar. Functional asymmetries in on and off ganglion
cells of primate retina. Journal of Neuroscience, 2002.

[12] E. K. Chong, W.-S. Lu, and S. H. Zak. An Introduction to Optimization, Fifth
Edition. John Wiley and Sons, 2023.

[13] T. Cohen and M. Welling. Group equivariant convolutional networks. In M. F.
Balcan and K. Q. Weinberger, editors, Proceedings of The 33rd International
Conference on Machine Learning, volume 48 of Proceedings of Machine Learning
Research, pages 2990–2999, New York, New York, USA, 20–22 Jun 2016. PMLR.

[14] T. M. Cover and J. A. Thomas. Elements of Information Theory 2nd Edition
(Wiley Series in Telecommunications and Signal Processing). Wiley-Interscience,
July 2006.

50

[15] J. Dapello, T. Marques, M. Schrimpf, F. Geiger, D. Cox, and J. J. DiCarlo.
Simulating a primary visual cortex at the front of cnns improves robustness to
image perturbations. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and
H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 13073–13087. Curran Associates, Inc., 2020.

[16] P. Dayan and L. F. Abbott. Tehoretical Neuroscience: Computational and Math-
ematical Modeling of Neural Systems. MIT Press, 2001.

[17] R. L. De Valois, D. G. Albrecht, and L. G. Thorell. Spatial frequency selectivity
of cells in macaque visual cortex. Vision research, 22(5):545–559, 1982.

[18] E. Doi and M. S. Lewicki. A theory of retinal population coding. Advances in
Neural Information Processing Systems, (January 2007):353–360, 2007.

[19] D. Erhan, Y. Bengio, A. Courville, and P. Vincent. Visualizing higher-layer
features of a deep network. Technical Report, Univeristé de Montréal, 01 2009.

[20] D. J. Field. Relations between the statistics of natural images and the re-
sponse properties of cortical cells. Journal of the Optical Society of America
A, 4(12):2379, 1987.

[21] D. J. Field. What Is the Goal of Sensory Coding?, 1994.

[22] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, editors, Advances in
Neural Information Processing Systems, volume 27. Curran Associates, Inc.,
2014.

[23] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recogni-
tion. Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2016-December:770–778, 2016.

[24] J. Homann and M. A. Freed. A mammalian retinal ganglion cell implements
a neuronal computation that maximizes the snr of its postsynaptic currents.
Journal of Neuroscience, 37(6):1468–1478, 2017.

[25] D. H. Hubel. Eye, brain, and vision. Scientific American Library/Scientific
American Books, 1995.

[26] D. H. Hubel and T. N. Wiesel. Receptive fields of single neurones in the cat’s
striate cortex. The Journal of Physiology, pages 247–250, 1959.

[27] D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and func-
tional architecture in the cat’s visual cortex. The Journal of Physiology, 160:106–
154, 1962.

[28] D. H. Hubel and T. N. Wiesel. Receptive fields and functional architecture of
monkey striate cortex. The Journal of physiology, 195(1):215–243, 1968.

51

[29] J. Jang, M. Song, and S. B. Paik. Retino-Cortical Mapping Ratio Predicts
Columnar and Salt-and-Pepper Organization in Mammalian Visual Cortex. Cell
Reports, 30(10):3270–3279.e3, 2020.

[30] Y. Karklin and E. P. Simoncelli. Efficient coding of natural images with a popu-
lation of noisy Linear-Nonlinear neurons. Advances in Neural Information Pro-
cessing Systems 24: 25th Annual Conference on Neural Information Processing
Systems 2011, NIPS 2011, 24:999–1007, dec 2011.

[31] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In Inter-
national Conference on Learning Representations (ICLR), San Diega, CA, USA,
2015.

[32] N. Kriegeskorte. Deep neural networks: A new framework for modeling biolog-
ical vision and brain information processing. Annual Review of Vision Science,
1(1):417–446, 2015. PMID: 28532370.

[33] S. W. Kuffler. Discharge patterns and functional organization of mammalian
retina. Journal of neurophysiology, 16(1):37–68, 1953.

[34] S. Laughlin. A simple coding procedure enhances a neuron’s information ca-
pacity. Zeitschrift fur Naturforschung - Section C Journal of Biosciences, 36(9-
10):910–912, 1981.

[35] J. Y. Lettvin, H. R. Maturana, W. S. Mcculloch, and W. H. Pitts. What the
frog’s eye tells the frog’s brain. proceedings of the. Proceedings of the IRE,
47:1940–1959, 1959.

[36] J. Lindsey, S. A. Ocko, S. Ganguli, and S. Deny. A Unified Theory of Early Visual
Representations from Retina to Cortex through Anatomically Constrained Deep
CNNs. jan 2019.

[37] M. Livingstone and D. Hubel. Segregation of Depth: Form, Anatomy, Color,
Physiology, and Movement, and Perception. Science, 240(4853):740–749, 1988.

[38] A. L. Maas, A. Y. Hannun, A. Y. Ng, et al. Rectifier nonlinearities improve
neural network acoustic models. In Proc. icml, volume 30, page 3. Atlanta, GA,
2013.

[39] A. Mahendran and A. Vedaldi. Understanding deep image representations by
inverting them. In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5188–5196, 2015.

[40] P. Miller. An Introductory Course in Computational Neuroscience. Computa-
tional Neuroscience Series. MIT Press, 2018.

[41] C. Molnar. Interpretable machine learning. Christoph Molnar, 2023.

52

[42] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th international conference on machine learn-
ing (ICML-10), pages 807–814, 2010.

[43] A. Nguyen, A. Dosovitskiy, T. Yosinski, Jason band Brox, and J. Clune. Syn-
thesizing the preferred inputs for neurons in neural networks via deep generator
networks. NIPS 29, 2016.

[44] B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field prop-
erties by learning a sparse code for natural images, 1996.

[45] B. A. Olshausen and D. J. Field. Natural image statistics and efficient coding.
Network: computation in neural systems, 7(2):333–339, 1996.

[46] A. E. Orhan, V. V. Gupta, and B. M. Lake. Self-supervised learning through the
eyes of a child. In Proceedings of the 34th International Conference on Neural
Information Processing Systems, NIPS’20, Red Hook, NY, USA, 2020. Curran
Associates Inc.

[47] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chin-
tala. Pytorch: An imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems 32, pages 8024–8035. Cur-
ran Associates, Inc., 2019.

[48] D. A. Pollen and S. F. Ronner. Spatial computation performed by simple and
complex cells in the visual cortex of the cat. Vision Research, 22(1):101–118,
1982.

[49] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein. On the
expressive power of deep neural networks, 2017.

[50] M. Rehn and F. T. Sommer. A network that uses few active neurones to code
visual input predicts the diverse shapes of cortical receptive fields. Journal of
Computational Neuroscience, 22(2):135–146, 2007.

[51] D. L. Ruderman. The statistics of natural images. Network: Computation in
Neural Systems, 5(4):517–548, 1994.

[52] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations
by back-propagating errors. Nature, 323:533–536, 1986.

[53] H. Shan and G. Cottrell. Efficient visual coding: From retina to v2, 2014.

[54] M. V. Srinivasan, S. B. Laughlin, and A. Dubs. Predictive coding: A fresh view
of inhibition in the retina. Proceedings of the Royal Society of London - Biological
Sciences, 216(1205):427–459, 1982.

53

[55] N. Tishby, F. C. Pereira, and W. Bialek. The information bottleneck method.
pages 1–16, 2000.

[56] M. H. Turner, L. G. Sanchez Giraldo, O. Schwartz, and F. Rieke. Stimulus- and
goal-oriented frameworks for understanding natural vision. Nature Neuroscience,
25:15–24, 2019.

[57] J. van Hateren and A. van der Schaaf. Independent component filters of natural
images compared with simple cells in primary visual cortex. Proc.R.Soc.Lond,
1998.

[58] J. H. van Hateren. A theory of maximizing sensory information. Biological
cybernetics, 68(1):23–29, 1992.

[59] B. T. Vincent, R. J. Baddeley, T. Troscianko, and I. D. Gilchrist. Is the early
visual system optimised to be energy efficient? Network: Computation in Neural
Systems, 16(2-3):175–190, 2005.

[60] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. A. Manzagol. Stacked de-
noising autoencoders: Learning Useful Representations in a Deep Network with
a Local Denoising Criterion. Journal of Machine Learning Research, 11:3371–
3408, 2010.

[61] P. Viola and W. M. Wells III. Alignment by maximization of mutual information.
International journal of computer vision, 24(2):137–154, 1997.

[62] T. N. Wiesel and D. H. Hubel. Spatial and chromatic interactions in the lateral
geniculate body of the rhesus monkey. Journal of neurophysiology, 29(6):1115–
1156, 1966.

54

Vita

Nicholas Patrick Lanning

Education
Bachelor of Science in Electrical Engineering from the University of Kentucky,
August 2017 - May 2021

Employment
Graduate Research and Teaching Assistant, August 2021 - May 2023 Undergraduate
Research Assistant, August 2020 - May 2021

55

	Modeling the Early Visual System
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Outline
	1.2 Objectives
	1.2.1 Main Objective
	1.2.2 Specific Objectives

	2 Background
	2.1 Receptive Fields
	2.2 Supervised vs. Unsupervised Learning
	2.3 Autoencoders
	2.3.1 Architecture
	2.3.2 Learning

	2.4 Convolutional Neural Networks
	2.5 Residual Layers

	3 Related Work
	4 Method
	4.1 Network Architecture
	4.1.1 Noise Injection
	4.1.2 Residual Layers
	4.1.3 Activation Function

	4.2 Objective Function
	4.3 Feature Visualization
	4.4 Dataset Generation
	4.5 Orientation Measure

	5 Experimentation
	5.1 Input Noise Sweep
	5.2 Default EVSNet Sweep
	5.3 Coverage Map
	5.4 Activation Function Validation
	5.4.1 Double Leaky ReLU Model
	5.4.2 Double Sigmoid Model

	5.5 No-Bottleneck Network
	5.6 Orientedness Histogram Analysis

	6 Discussion
	6.1 Double Activation Models
	6.2 No-Bottleneck Model
	6.3 Orientedness
	6.4 Limitations of the Proposed Model

	7 Conclusion
	7.1 Future Work

	Bibliography
	Vita

