
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Biology Faculty Publications Biology 

4-1-2021 

Toward the Discovery of Biological Functions Associated with the Toward the Discovery of Biological Functions Associated with the 

Mechanosensor Mtl1p of Mechanosensor Mtl1p of Saccharomyces cerevisiaeSaccharomyces cerevisiae  via via 

Integrative Multi-OMICs Analysis Integrative Multi-OMICs Analysis 

Nelson Martínez-Matías 
University of Puerto Rico 

Nataliya Chorna 
University of Puerto Rico 

Sahily González-Crespo 
University of Puerto Rico 

Lilliam Villanueva 
University of Puerto Rico 

Ingrid Montes-Rodríguez 
University of Puerto Rico 

See next page for additional authors 

Follow this and additional works at: https://uknowledge.uky.edu/biology_facpub 

 Part of the Biochemistry Commons, Bioinformatics Commons, Cell Biology Commons, Microbiology 

Commons, Molecular Biology Commons, and the Systems Biology Commons 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Repository Citation Repository Citation 
Martínez-Matías, Nelson; Chorna, Nataliya; González-Crespo, Sahily; Villanueva, Lilliam; Montes-
Rodríguez, Ingrid; Melendez-Aponte, Loyda M.; Roche-Lima, Abiel; Carrasquillo-Carrión, Kelvin; Santiago-
Cartagena, Ednalise; Rymond, Brian C.; Babu, Mohan; Stagljar, Igor; and Rodríguez-Medina, José R., 
"Toward the Discovery of Biological Functions Associated with the Mechanosensor Mtl1p of 
Saccharomyces cerevisiae via Integrative Multi-OMICs Analysis" (2021). Biology Faculty Publications. 
206. 
https://uknowledge.uky.edu/biology_facpub/206 

This Article is brought to you for free and open access by the Biology at UKnowledge. It has been accepted for 
inclusion in Biology Faculty Publications by an authorized administrator of UKnowledge. For more information, 
please contact UKnowledge@lsv.uky.edu. 

https://uknowledge.uky.edu/
https://uknowledge.uky.edu/biology_facpub
https://uknowledge.uky.edu/biology
https://uknowledge.uky.edu/biology_facpub?utm_source=uknowledge.uky.edu%2Fbiology_facpub%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/2?utm_source=uknowledge.uky.edu%2Fbiology_facpub%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/110?utm_source=uknowledge.uky.edu%2Fbiology_facpub%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/10?utm_source=uknowledge.uky.edu%2Fbiology_facpub%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/48?utm_source=uknowledge.uky.edu%2Fbiology_facpub%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/48?utm_source=uknowledge.uky.edu%2Fbiology_facpub%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/5?utm_source=uknowledge.uky.edu%2Fbiology_facpub%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/112?utm_source=uknowledge.uky.edu%2Fbiology_facpub%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://uky.az1.qualtrics.com/jfe/form/SV_0lgcRp2YIfAbzvw
https://uknowledge.uky.edu/biology_facpub/206?utm_source=uknowledge.uky.edu%2Fbiology_facpub%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:UKnowledge@lsv.uky.edu


Toward the Discovery of Biological Functions Associated with the Toward the Discovery of Biological Functions Associated with the 
Mechanosensor Mtl1p of Mechanosensor Mtl1p of Saccharomyces cerevisiaeSaccharomyces cerevisiae  via Integrative Multi-OMICs via Integrative Multi-OMICs 
Analysis Analysis 

Digital Object Identifier (DOI) 
https://doi.org/10.1038/s41598-021-86671-8 

Notes/Citation Information Notes/Citation Information 
Published in Scientific Reports, v. 11, issue 1, 7411. 

© The Author(s) 2021 

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give 
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, 
and indicate if changes were made. The images or other third party material in this article are included in 
the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If 
material is not included in the article's Creative Commons licence and your intended use is not permitted 
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/. 

Authors Authors 
Nelson Martínez-Matías, Nataliya Chorna, Sahily González-Crespo, Lilliam Villanueva, Ingrid Montes-
Rodríguez, Loyda M. Melendez-Aponte, Abiel Roche-Lima, Kelvin Carrasquillo-Carrión, Ednalise Santiago-
Cartagena, Brian C. Rymond, Mohan Babu, Igor Stagljar, and José R. Rodríguez-Medina 

This article is available at UKnowledge: https://uknowledge.uky.edu/biology_facpub/206 

https://creativecommons.org/licenses/by/4.0/
https://uknowledge.uky.edu/biology_facpub/206


1

Vol.:(0123456789)

Scientific Reports |         (2021) 11:7411  | https://doi.org/10.1038/s41598-021-86671-8

www.nature.com/scientificreports

Toward the discovery 
of biological functions associated 
with the mechanosensor Mtl1p 
of Saccharomyces cerevisiae 
via integrative multi‑OMICs 
analysis
Nelson Martínez‑Matías1, Nataliya Chorna1*, Sahily González‑Crespo1, Lilliam Villanueva1, 
Ingrid Montes‑Rodríguez2, Loyda M. Melendez‑Aponte1, Abiel Roche‑Lima1, 
Kelvin Carrasquillo‑Carrión1, Ednalise Santiago‑Cartagena1, Brian C. Rymond3, 
Mohan Babu4, Igor Stagljar5,6 & José R. Rodríguez‑Medina1* 

Functional analysis of the Mtl1 protein in Saccharomyces cerevisiae has revealed that this 
transmembrane sensor endows yeast cells with resistance to oxidative stress through a signaling 
mechanism called the cell wall integrity pathway (CWI). We observed upregulation of multiple heat 
shock proteins (HSPs), proteins associated with the formation of stress granules, and the phosphatase 
subunit of trehalose 6‑phosphate synthase which suggests that mtl1Δ strains undergo intrinsic 
activation of a non‑lethal heat stress response. Furthermore, quantitative global proteomic analysis 
conducted on TMT‑labeled proteins combined with metabolome analysis revealed that mtl1Δ strains 
exhibit decreased levels of metabolites of carboxylic acid metabolism, decreased expression of 
anabolic enzymes and increased expression of catabolic enzymes involved in the metabolism of amino 
acids, with enhanced expression of mitochondrial respirasome proteins. These observations support 
the idea that Mtl1 protein controls the suppression of a non‑lethal heat stress response under normal 
conditions while it plays an important role in metabolic regulatory mechanisms linked to TORC1 
signaling that are required to maintain cellular homeostasis and optimal mitochondrial function.

The fungal cell wall is a physical structure that evolved to shield cells from the changing conditions of the 
ecological niches in which they thrive, acting as a porous barrier that isolates the delicate plasma membrane 
(PM) and cytoplasm from the external  environment1,2. Fungi have developed a molecular response mechanism 
named the Cell Wall Integrity Pathway (CWI) to maintain cellular integrity in response to changes in the cellular 
 environment3–9. In the CWI, information conveying environmental changes such as chemicals, biomolecules, 
ions, radiation, osmotic pressure, or thermal motion enters the cell by way of stress mechanosensor proteins 
embedded within the cell wall-PM  composite4.

In the budding yeast Saccharomyces cerevisiae, the CWI pathway participates in regulation of cellular processes 
including cell wall biosynthesis, cell wall repair, and maintenance of cell  integrity1,2,4,8,10,11, response to oxidative 
 stress12,13, heat  shock5,14–16, hypo osmotic  shock6, glucose starvation and regulation of key cellular metabolic 
processes such as ribosome assembly and energy metabolism in response to nutrient  starvation7,17,18, impaired 
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cell wall  synthesis8, antifungal drug treatments, and other environmental stresses that can alter the integrity of 
the cell  wall12,19.

The CWI communicates stress signals via five transmembrane mechanosensory proteins consisting of the 
Wsc-family (Wsc1p, Wsc2p and Wsc3p), and Mid-family (Mid2p and its homologue Mtl1p)4,8,20,21. Wsc1p has 
been associated with activation of the CWI pathway in response to  Caspofungin22, alkaline  pH23 and reorgani-
zation of actin during hypo osmotic  stress24 while Mid2p has been associated with activation in response to 
Calcofluor  white8,25, mating  pheromone26,  vanadate27, and acidic  conditions28, and oxidative  stress13. The WSC2 
and WSC3 genes act as multi-copy suppressors in mutants with glycerol synthesis  abnormalities29,30 and Mtl1p 
has been associated with the response to hydrogen peroxide-induced oxidative stress and glucose  starvation12,31.

These proteins communicate physical and chemical signals to the cell interior via their cytoplasmic domains, 
by activating a set of downstream effectors that act in a cascade–like  fashion12,32. As an initial step, Rom2p is a 
Rho1p GEF that attaches to the cytoplasmic tail of these mechanosensor proteins in a regulated manner to acti-
vate Rho1p GTPase activity which in turn activates  Pkc1p33. The ensuing sequential signaling cascade includes 
kinases Bck1p, Mkk1p, Mkk2p and the end-kinase Slt2p. Once a mechanosensor activates the CWI pathway, 
and Slt2p is hyperphosphorylated, it translocates to the nucleus and activates transcription factor Rlm1p and the 
heterodimer complex Swi4p/Swi6p by  phosphorylation34. These transcription factors induce the transcription 
of specific genes for the synthesis of cell wall components, osmo-protective molecules, and cell cycle regulatory 
 proteins34–36. According to Harrison and co–workers, a linear signal transmission scheme like this cannot be 
used exclusively to explain every instance of CWI pathway  activation37. They proposed that in some cases, lateral 
signals could bypass elements upstream of Pkc1p through non-linear mechanisms that activate the cell integrity 
MAPK pathway such as: Pkc1p by actin stress, Bck1p by osmotic stress, and Mkk1p, Mkk2p and Slt2p by heat 
 stress37. Others have proposed that Rom2p may also mediate stress responses with the involvement of cAMP and 
 Ras2p32. This observation was subsequently integrated in a model where Mtl1p is proposed to activate a general 
stress response to glucose starvation and oxidative stress through Tor1p and Ras2p  inhibition31. We have recently 
provided direct evidence that Ras2p can physically interact with Wsc1p,  Mid213and  Wsc238 which supports the 
model described by Petkova that Ras2p is involved in regulation of Mtl1p stress signaling.

Although the functional roles of Wsc- and Mid-family mechanosensors may appear to be  redundant4,19, Mtl1p 
has been designated with unique roles responsible for the response to  H2O2-induced  stress12, also reported for its 
homolog  Mid2p13, activation of the CWI pathway in response to glucose  starvation31, extension in chronologi-
cal life span, and the integrity of mitochondrial function in yeast  cells39. The mechanism by which Mtl1p exerts 
its protective roles is not fully understood although in a study by Petkova et al., they report a “genome-wide 
transcriptional analysis revealed a cluster of protective stress genes that were down-regulated in the absence of 
Mtl1p”31. These investigators used microarray analysis to quantify mRNA expression (Affymetrix GeneChip 
Yeast Genome S98 array) contrasting with more comprehensive analytical methods used in this study. To expand 
these previous studies, we have therefore designed a strategy for identification of components of the biological 
network of Mtl1p by analyzing the macromolecular changes occurring at the transcriptome and proteome levels 
when the MTL1 gene is deleted with further analysis of the systematic effects of these macromolecular changes 
through metabolite analysis to pinpoint the focus of the mutation.

In this manuscript, we present the findings of our studies on the mechanosensor Mtl1p of S. cerevisiae using 
a multipronged Omics approach. We have conducted quantitative analyses that elucidated the transcriptome, 
proteome, and metabolome profiles of mtl1Δ strains compared to wild-type controls under normal culture 
conditions to uncover the biological networks requiring Mtl1p for maintaining metabolic homeostasis and 
resistance to stress conditions. Because stress–response mechanisms are well conserved, the knowledge derived 
from experiments using Saccharomyces cerevisiae as a model system provides insights into the mechanisms by 
which opportunistic fungal pathogens adapt to environmental stresses and can have important translational 
applications for antifungal drug  development40,41.

Materials and methods
Strains. All Saccharomyces cerevisiae strains used in this study.

Confirmation of MTL1 deletion strain. The BY4742 wild-type (WT) and YGR023w (mtl1Δ) strains were 
obtained from Open Biosystems. The chromosomal deletion of MTL1 was confirmed by PCR with genomic 
DNA. These strains were used in transcriptome, proteome, and metabolome experiments.

Cell culture conditions. The S. cerevisiae WT and mtl1Δ strains were cultured overnight at 27 °C, with shaking 
at 210 rpm, in 25 mL of complete synthetic medium (CSM) containing all amino acids and 2% glucose (Sigma), 
plus 0.67% Nitrogen base supplemented with ammonium sulfate (Fisher Scientific). Two to three cultures pre-
pared with different media batches were used per experiment. The next day, the cultures were replenished with 
fresh CSM and cultured at 27 °C until they reached an Optical Density  (OD600) between 0.6 and 0.7 units. The 
cells were harvested by centrifugation at 3838xg for 5 min at 4 °C, cell pellets were washed with 1 ml ice-cold 
sterile deionized water, and centrifuged as before. Cell pellets were suspended in the appropriate buffer solutions 
described below for RNAseq, Total Protein, and Total Metabolite extractions, or stored for future use at – 80 °C.

RNAseq analysis. Transcriptome library construction and Ion Proton sequencing. Cells pellets were resus-
pended in 2 ml freshly prepared Buffer Y1 (1 M sorbitol, 0.1 M EDTA, pH 7.4, and 0.1% ß-Mercaptoethanol 
(Sigma M-3148, 98%) with 50 U Zymolase added per 1 × 107 cells (ICN Code 320921 Zymolase Arthrobacter 
luteus 20,000U/g) and incubated for 60 min at 30 °C with gentle shaking to generate spheroplasts. These were 
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centrifuged for 5 min at 3000×g at room temperature (RT) and the supernatant was discarded. Spheroplast pel-
lets were used for mRNA isolation.

Total RNA was isolated from S. cerevisiae WT and mtl1Δ strains using the Qiagen RNeasy kit. RNA quality 
was verified using the Agilent RNA 6000 Nano Kit in the 2100 Bioanalyzer from Agilent Technologies follow-
ing the RNA 6000 Nano Kit user manual. This was followed by the isolation of mRNA from 5.0 µg of total RNA 
using the NEBNext Poly (A) mRNA Magnetic Isolation Module (NEB Cat. No. E7490S, Version 6.0). The mRNA 
quality was assessed using the Agilent RNA 6000 Pico Kit in the 2100 Bioanalyzer from Agilent Technologies 
following the Agilent RNA 6000 Pico Kit user manual.

Transcriptome libraries were prepared using the Ion Total RNA-Seq Kit v2 from Life Technologies (Publi-
cation Number 4476286). The mRNA samples were fragmented by RNase III digestion for 3 min at 37 °C and 
purified according to Ion Total RNA-Seq Kit v2 manual specifications. Sample yield and size distribution were 
determined using the RNA 6000 Pico Kit with the Agilent 2100 Bioanalyzer. Three mRNA samples each from 
wild-type and mtl1Δ strains (6 different biological samples in total) were analyzed by NGS (Next Generation 
Sequencing). Each of the six samples was run individually in a chip (hence they were not barcoded). Addi-
tionally, one chip was run with all the samples mixed. For this experiment samples were barcoded using Ion 
Xpress RNA-Seq Barcode 1–16 Kit from Life Technologies. Emulsion PCR and enrichment steps were carried 
out in the Ion OneTouch 2 System and in the Ion OneTouch ES System, respectively, using the Ion PGM Hi-Q 
View OT2 Kit from Life Technologies following the Ion PGM Hi-Q View OT2 Kit User Guide (Publication 
Number MAN0014580). After the emulsion PCR, an aliquot was analyzed in the Qubit 2.0 Fluorometer (Invit-
rogen) using the Ion Sphere Quality control kit from Life Technologies. The empty ISP’s were removed during 
the enrichment process which employs magnetic Dynabeads MyOne Streptavidin C1 Beads (Invitrogen) to 
immobilized Templated ISP’s.

Each sample was run in the Ion PGM Sequencer using the Ion 318 Chip V2 BC from Life Technologies. 
The samples were prepared using the Ion PGM Hi-Q View Sequencing Kit following the Ion PGM Hi-Q View 
Sequencing User Manual (Publication Number MAN0014583). Seven chips were loaded in total and run in the 
Ion PGM Sequencer.

The RNAseq reads were processed and analyzed with the CLC genomics workbench v12 [www. qiage nbioi 
nform atics. com] to obtain the expressed transcriptomes/genes. Firstly, the raw reads were processed from the 
original fastq files using the Quality Control analysis pipeline, which is used to determine the quality of the reads 
and correctly trim the sequences. Then the CLC read alignment analysis pipeline was performed using the S. 
cerevisiae S288c as the reference genome. The Total Counts result per gene was used as the gene/transcriptome 
expression value. This process was repeat to obtain the six results that corresponds to wild type group (3 repli-
cates) and mutant type group (3 replicates).

Bioinformatics analysis of differently expressed mRNAs. To determine the differently expressed genes/transcrip-
tomes, the mutant and wild type replicated groups were considered as experimental and control, respectively. 
 Python42 and R [www.R- proje ct. org] tailored pipelines were implemented for dataset pre-processing. These 
pipelines were used to detect missing values and identify outliers. Then the Interquantile (IQR) mean method 
was used for outlier imputations. Based on the dataset and expected results, a single channel model design com-
parison was used, which involves two samples, Experimental Group vs Control Group. R Bioconductor software 
limma version 3.9.0 (https:// www. bioco nduct or. org)43 was applied to implement and run the model. Limma 
then used an empirical Bayes function that performed the statistical analysis of interest. The output of this pro-
cedure was a data frame that especially contained for each protein its fold-change (FC), and ordinary moderated 
p-values, in our case Benjamini–Hochberg adjustment.

Quantitative proteomics by tandem mass tag (TMT) labeling. Sample processing. Five each of 
WT control and mtl1Δ experimental total protein samples (250 μg per sample) were delivered for quantitative 
proteomics analysis (Supplementary Table S3). Total protein lysates for WT and mtl1Δ strains were generated 
from cells pellets disrupted with glass beads in lysis buffer (50mMTris HCl pH7.5, 10% Glycerol, 1% Triton 
X-100, 0.1% SDS, 150 mM NaCl, 5 mM EDTA, 5X Protease Inhibitor Cocktail and 5X PMSF) by vortexing for 
60 s at high speed alternating with 3 min on ice, repeated for 4 cycles. Total protein concentration was quantified 
by the DC-Protein Assay (Bio-Rad).

Sample processing began with an acetone precipitation overnight with 100 μg of total protein to concentrate 
the samples on the next day and wash away unwanted substances. Samples were resuspended in 50 μl of 2X 
sample buffer (95% Laemli/ 5% β-mercaptoethanol). SDS-PAGE using Mini-PROTEAN TGX Precast Gel (12% 
fixed gel) was allowed to run for 15–20 min at 150 V to generate a 1.5 cm band. Gels were stained with Bio-Safe 
Coomassie G-250 to visualize the quality of the proteome bands present in each lane, and to be able to cut them 
out. After the proteome gel bands were cut out, they were destained using a 50 mM ammonium/ 50% Acetonitrile 
solution at 37 °C. Then, they were reduced with Dithiothreitol (25 mM DTT in 50 mM Ammonium Bicarbonate) 
at 55 °C, alkylated with Iodoacetamide (10 mM IAA in 50 mM Ammonium Bicarbonate) at room temperature 
in the dark, and digested with trypsin (Promega) overnight at 37 °C. Digested peptides were extracted out of 
the gel pieces using a mixture of 50% acetonitrile/ 2.5% formic acid in water. Extracted samples were dried and 
stored at − 80 °C to wait for TMT labeling procedure and subsequent LC–MS/MS analysis.

TMT labeling and fractionation. As specified by the manufacturer’s protocol, dried extracted samples were 
reconstituted in 100 mM TEAB and labeled with the TMT 10plex labeling reagents (41 μl, 0.8 mg). The TMT 
labels were added as described in Table 1. The addition was followed by an hour incubation allowing the labelling 
reaction to occur, and a quenching step of 15 min. Finally, equal amounts of each sample were mixed to gener-

http://www.qiagenbioinformatics.com
http://www.qiagenbioinformatics.com
http://www.R-project.org
https://www.bioconductor.org
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ate a final pool. We used 75% of the volume per sample for this pool, and kept the remaining 25% of the sample 
volume in each individual vial which is now stored in our freezer in case the analysis has to be repeated. The final 
pool was dried to proceed with the fractionation procedure.

Fractionation was performed using the “Pierce High pH Reversed-Phase Peptide Fractionation Kit” and fol-
lowing the manufacturer’s instructions. Briefly, the column was conditioned twice using 300 μl of Acetonitrile, 
centrifuging at 5000×g for 2 min; and repeating the steps using 0.1% Trifluoroacetic acid (TFA). Sample (final 
pool) was bound to the column, washed to remove contaminants and any unbound TMT reagent, and eluted 8 
times into 8 different vials using a series of elution solutions with different Acetonitrile/TFA percentages. Elu-
tion solutions are specified in the manufacturer’s protocol. The entire procedure was performed twice and 16 
fractions were generated followed by drying and LC–MS/MS analysis.

Sample preparation for LC MS/MS. The reconstitution of the fractions for mass spectrometry analysis was 
made using 2.5% acetonitrile/2.5% formic acid in water. A total of 3 μl were transferred to a special sample vial 
to be able to inject 2 μl of sample into the instrument. The remaining volume of the reconstituted fractions were 
stored at – 80° C.

LC–MS/MS analysis. For peptide separation on an Easy-nLC1200 instrument (Thermo Fisher Scientific), a 
PicoChip H354 REPROSIL-Pur C18-AQ 3 μm 120 A (75 μm × 105 mm) chromatographic column (New Objec-
tive) was used. The separation was obtained using a gradient of 7–25% of 0.1% of formic acid in acetonitrile 
(Buffer B) for 102 min, 25–60% of Buffer B for 20 min, and 60–95% Buffer B for 6 min. Making a total gradient 
time of 128 min at a flow rate of 300 nl/min, with an injection volume of 1 μL per sample.

Q-Exactive Plus (Thermo Fisher Scientific) operates in positive polarity mode and data-dependent mode. 
The full scan (MS1) was measured over the range of 375 to 1400. The MS2 (MS/MS) analysis was configured to 
select the top ten most intense ions for HCD fragmentation, configured over the range of 200 to 2000 m/z. A 
dynamic exclusion parameter was set for 30.0 s.

Database search. Once the Mass Spectrometry analyses were finished, the raw data files were searched with 
a S. cerevisiae database and downloaded from UniProt (Universal Protein Resource). The raw data was ana-
lyzed with Proteome Discoverer software version 2.1 (https:// www. therm ofish er. com/ pr/ en/ home/ indus trial/ 
mass- spect romet ry/ liquid- chrom atogr aphy- mass- spect romet ry- lc- ms/ lc- ms- softw are/ multi- omics- data- analy 
sis/ prote ome- disco verer- softw are. html) using workflows configured for quantitative proteomics. A dynamic 
modification for oxidation + 15.995 Da (M) was configured. A static modification of + 57.021 Da (C) generated 
by the alkylation during processing, and static modifications from the TMT reagents + 229.163 Da (Any N Term, 
K) were all included in the parameters for the search.

Quantitative proteomics by TMT labeling. The analysis was performed for the datasets related to Mutant (mtl1Δ) 
and Wild Type (WT) groups to determine the differential protein abundances. The comparisons included five 
replicates for both mtl1Δ and WT groups as described in Supplementary Table S3, where the Control Group and 
Experimental Group correspond to MT and WT replicated samples, respectively. Similar to our analysis of dif-
ferently expressed mRNAs, the datasets were pre-processed with tailored  Python42 and R [www.R- proje ct. org] 
scriptings for missing values, as well as identification and processing of outliers using the Interquantile (IQR) 
mean imputation method. A single channel design for the Experimental Group vs Control Group was imple-
mented and ran using the R Bioconductor software limma version 3.9.0 (https:// www. bioco nduct or. org)43. The 
results from the statistical analysis of significantly different protein abundances were considered based on a Fold 
Change FC ≥ 2 and adjusted P value (using the Benjamini–Hochberg adjustment) ≤ 0.05.

Metabolomics analysis. Sample Processing. Cells pellets of WT and mtl1Δ strains were resuspended in 
1 ml of pure methanol (Fisher HPLC grade) pre-chilled at − 20 °C, for 5 min (quenching step). The cell suspen-
sions were centrifuged for 5 min at 167×g, 4 °C. The methanol supernatant was removed from each sample with 
a Pasteur pipet. The samples were resuspended in 1 ml of a 1:1 mixture of methanol and sterile deionized water 
and homogenized with a Poly Tron PT-2100 homogenizer (set at 15) using two 7-s pulses.

Derivatization of glucose. Metabolic extracts from the WT and mtl1Δ strains (n = 13, each) were collected 
and dried in a nitrogen gas stream at 50  °C (RapidVap, Labconco). Nitrilation was performed as previously 
 described44 by adding 150 μl of 0.2 mM hydroxylammonium chloride in pyridine to the dried sample, and then 
heating at 90 °C for 40 min. After that, acetylation was performed by adding 250 μl of acetic anhydride, and then 
heating at 90 °C for 60 min. After that, the sample was dried in a nitrogen gas stream again, and then redissolved 
in 400 μl of ethyl acetate. Derivatized samples were collected and stored at − 20 °C.

Table 1.  Saccharomyces cerevisiae strains.

Strain Genotype Source

BY4742 MAT α his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 Open Biosystems

YGR023w MAT α his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 mtl1::KanMx4 Open Biosystems

https://www.thermofisher.com/pr/en/home/industrial/mass-spectrometry/liquid-chromatography-mass-spectrometry-lc-ms/lc-ms-software/multi-omics-data-analysis/proteome-discoverer-software.html
https://www.thermofisher.com/pr/en/home/industrial/mass-spectrometry/liquid-chromatography-mass-spectrometry-lc-ms/lc-ms-software/multi-omics-data-analysis/proteome-discoverer-software.html
https://www.thermofisher.com/pr/en/home/industrial/mass-spectrometry/liquid-chromatography-mass-spectrometry-lc-ms/lc-ms-software/multi-omics-data-analysis/proteome-discoverer-software.html
http://www.R-project.org
https://www.bioconductor.org
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Derivatization of other metabolic features. Metabolic extracts from the WT and mtl1Δ strains (n = 7, each) 
were collected, evaporated to dryness in a nitrogen stream, derivatized by methoxyamination by adding 50 μl of 
20 mg/ml solution of methoxyamine hydrochloride in pyridine (Sigma-Aldrich) and incubated at 37 °C for 2 h. 
Trimethylsilylation was subsequently performed by adding 50 µl of N-methyl-N-trimethylsilyl-trifluoroaceta-
mide (MSTFA + 1% TMCS, Sigma-Aldrich) and incubated for 1 h at 65 °C. Samples were centrifuged at 15.700 
× g for 10 min at RT. Supernatants were transferred to glass vials and stored at − 20 °C.

Analysis of glucose content. Twenty microliters per sample were added to glass vials with inserts to evaluate 
the glucose content via GC–MS (GC/MS-TQ8050, Shimadzu Inc.) using SIM mode and analytical conditions 
previously  described44. The glucose concentration in the samples was performed by comparing the obtained 
absorbance values in each sample with the glucose (Sigma) calibration curve.

Analysis of other metabolites. Twenty microliters per sample were added to glass vials with inserts followed 
by the addition of 1 mM 2-fluobiphenyl (Sigma-Aldrich) as an internal standard. Samples were processed via 
GC/MS-TQ8050 using full scan mode and analytical conditions as previously  described45. Peak integration was 
performed using GCMS Labsolution data analysis version 4.45 software (https:// www. ssi. shima dzu. com/ produ 
cts/ gas- chrom atogr aphy- mass- spect romet ry/ gcmss oluti on- softw are. html). Mass spectral library searches of the 
major chromatographic peaks were conducted using the GCMS Lab solution data analysis software equipped 
with the NIST14/2014/EPA/NIH database in each data set, which resulted in a final data set consisting of 45 
metabolic features selected for the metabolomics analysis. Quantitative analysis of metabolic features in each 
sample was performed by calculation of a response factor using the internal standard 1  mM 2-fluobiphenyl 
spiked into each sample before the GC/MS analysis.

Quality assessment and quality controls in metabolomics analysis. Reproducibility of metabolite recovery, the 
performance of sample extraction, derivatization, and instrumentation were validated by the utilization of sev-
eral blank samples, including a system suitability blanks, and derivatization processing blanks. To evaluate ana-
lytical accuracy and precision, an external quality assessment was performed using 1 mM 2-fluobiphenyl spiked 
into derivatization blank samples before running on the GC/MS (n = 3). The percent of relative standard devia-
tion (%RSD) of 2-fluobiphenyl peak abundances accounted for 3.8%, which demonstrates good reproducibility 
of the method. For systematic bias mitigation, we performed the randomization of the sample analysis order. 
Blanks and quality control samples were spaced evenly among the injections to monitor instrument stability.

Bioinformatic analysis of metabolites. Metaboanalyst 4.046,47 was used for bioinformatic analysis. Identified 
concentrations of each metabolite were composed as the data matrix and processed. Data integrity check was 
performed according to default settings on the Metaboanalyst interface and normalized by OD, and range scaled 
to improve the pattern recognition for metabolomics data. Differences between WT and mtl1Δ strains were eval-
uated using Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA). Quality and reli-
ability were assessed by cross-validation by using two parameters: the R2(Y) (a measure of how much variation 
is represented by the model) and Q2(X) (a measure of how accurate the data are classified in the model)48. To 
evaluate the model performance, class labels were permuted 1000 times to identify whether differences between 
groups were significant. Mann–Whitney U test was used to identify statistically significant (p < 0.05) metabolic 
features.

Functional enrichment analysis of proteome and metabolome data. To understand the cellular regulatory mecha-
nisms in mtl1Δ strain, we applied an integrative multi-omics analysis of mtl1Δ proteome, and metabolome using 
Cytoscape and the ClueGO plugin in the Cytoscape which integrates Gene Ontology (GO) terms and creates a 
functionally organized GO/pathway term network corrected by kappa  statistics49 using two-sided (Enrichment/
Depletion) tests based on the hypergeometric distribution (Supplementary Table S2). The P value < 0.05 was 
corrected by Bonferroni step down correction method; Min GO Level = 7 and Max GO Level = 16; Kappa Score 
Threshold = 0.4; Initial Group Size = 2 and sharing Group Percentage = 50.0. The created network represented 
the pathways as randomly colored nodes, where some of them were partially overlapped depending on their 
functional relation. The node size represented the term enrichment significance and is highlighted by a large 
name label. Edges indicate statistically significant associations between GO terms. Since ClueGo mostly evalu-
ates functional enrichment, taking into account the number of analyzed genes/proteins, therefore, to evaluate 
other functional enrichments where a small number of proteins per term existed, we applied the GeneMANIA 
plugin in the Cytoscape to model possible interaction networks. GeneMANIA integrates GO terms and creates 
a functionally organized GO/pathway term network applying Q-values from an FDR corrected hypergeometric 
test for enrichments and the Benjamini–Hochberg  corrections50. Pathways visualizations have been carried out 
using ClueGO plugin for Cytoscape 3.7.2 and ChemDraw 15 (PerkinElmer).

Results and discussions
Integrative analysis of transcriptome and proteome data. To assess the effect of Mtl1p in the 
regulation of stress genes, we measured the mRNA levels in the mtl1Δ strain compared to a WT using Next 
Generation Sequencing (NGS) and quantitative proteomic analysis by TMT labelling of tryptic peptides gener-
ated from total proteins followed by tandem mass spectrometry (MS–MS). After we filtered the results of these 
experiments according to the selected criteria (FC ≥ 2 or FC ≤ − 2 P value ≤ 0.05) we identified a total of 104 
differentially regulated mRNA transcripts and proteins (Supplementary Table S1, Fig. 1). Interestingly, 22 down-

https://www.ssi.shimadzu.com/products/gas-chromatography-mass-spectrometry/gcmssolution-software.html
https://www.ssi.shimadzu.com/products/gas-chromatography-mass-spectrometry/gcmssolution-software.html
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regulated ORFs reported in this study were also reported in a previous  study31. We found 33 upregulated (Group 
1) and 12 downregulated proteins (Group 3) that correlated at both the mRNA and protein levels, while there 
were 42 upregulated (Group 2) and 17 downregulated proteins (Group 4) that were uncorrelated with their cor-
responding mRNAs (Supplementary Table S1). One protein that was differentially regulated in the mtl1Δ strain 
(Group 2) was the catalytic subunit of the β-1,3-glucan synthase, Fks1p, a protein induced by the CWI pathway 
in response to cell wall damage (Supplementary Fig. S1). In the mtl1Δ strain, this gene exhibits repressed mRNA 
levels in the RNAseq data yet proteome analysis shows a sevenfold increase in expression this protein (mRNA 
-2.52 vs Protein + 7.07). Remarkably, previous breakthrough studies using transcriptome and proteome data 
from E. coli and yeast reported that protein and mRNA copy numbers for any given gene may be uncorrelated, 
highlighting the disconnect between proteome and transcriptome quantitative analysis in single  cells51,52, which 
is also likely to apply to global quantitative analyses used here. Contributing factors to the uncorrelated behavior 
include an undervalued role for post-transcriptional, translational, and protein turnover regulation in the deter-
mination of protein  concentrations53.

Although we did not find a mutual relationship in expression between the mRNA and proteins in all cases, 
genes associated with the stress response such as SSA1, SSA4, HSP26, HSP42, HSP78, HSP82, HSP104, and CTT1 
were upregulated at the protein level. Another finding was that the proteins encoded by genes MRPL7, PHB2, 
ATP17, AIM45, ALD4, HSP78, HSP82, NDE1, and QCR2, all of which encode components of the mitochondria, 
were upregulated at the protein level in the mtl1Δ, while mitochondrial components IDH1, MAE1, NUC1, and 
SAM50 were downregulated (Fig. 1, Supplementary Table S1). A review that addressed the question regard-
ing the inverted correlation between transcripts and proteins suggests that despite the effectiveness of mRNA 
expression values shown in a variety of applications, their correlations with protein levels are almost certainly 
only correlative rather than  causative53. Therefore, it is most probable that the concentration of proteins and their 
interactions represent true contributing forces in the  cell54.

The cAMP/PKA pathway regulates genes containing a Stress Response Element (STRE) consisting of the 
sequence 5′-CCCCT-3′ bound by transcription factors (TFs) Msn2p and  Msn4p17. Activation of PKA by increas-
ing intracellular cAMP levels inhibits the accumulation of carbohydrate stores, respiratory growth, and the tran-
scription of genes bearing an STRE through negative regulation of the Rim15p kinase by PKA and inhibition of 
nucleocytoplasmic shuttling by TFs Msn2p and  Msn4p55,56. To test if the regulated mRNAs in the mtl1Δ strain 
represent genes with STREs, we analyzed the promoter DNA sequences within 500 base pairs of the transcrip-
tion start site of all 104 differentially regulated genes in the mtl1Δ strain (Supplementary Table S1), to identify 
potential Msn2/Msn4 binding motifs. Only 19 differentially downregulated genes (i.e. HSP42, CAR1, HSP104, 
ALD4, TDH1, SSA4, CTT1, TSL1, HSP78, GPH1, GLK1, PRB1, YML131W, PGM2, YMR196W, TPS2, HSP150, 
VPS13, YPL260W) and 6 upregulated genes (i.e. RPS20, IPI3, SND3, RPL3, PHB2, YBL036C) contained at least 
one STRE, indicating that other signaling systems are also involved in regulating the mtl1Δ  phenotype17. In 
the future, a broader search of all consensus sequences contained in the Yeast Transcription Factor Specificity 
Compendium database (YeTFaSCo)57 is warranted for these differentially regulated genes. Interestingly, inspec-
tion of the promoter regions of WSC1, WSC2, WSC3, MID2, and MTL1 revealed that only the MTL1 promoter 
contained an STRE, implying that its expression is transcriptionally regulated by TFs Msn2p and Msn4p in 
response to stress conditions.

Analysis of metabolome data. The biological effect of a differentially expressed gene can ultimately be 
manifested in the operation of the biological processes(es) in which it participates in the cell. Thus, a global 
analysis of cellular metabolites can reveal changes in specific metabolic processes that may be attributed to the 
absence of a given protein. Also, the biochemical steps being affected targeted within these putative metabolic 
processes may be identified intuitively. Therefore, to better understand the biological processes that require 
Mtl1p function(s), a global metabolite analysis was conducted in WT and mtl1Δ yeast strains.

We identified a total of 46 metabolites in this analysis (Table 2). The identification of glucose was conducted 
separately, and we did not find any differences between WT and mtl1Δ strains (Table 2 Row 46, Fig. 2B). The 
observed fold-change for glucose in mtl1Δ was 1.1 (Table 2, Fig. 2B). For a description of the analysis see “Mate-
rials and Methods”. The other 45 metabolites extracted from WT and mtl1Δ strains were used for metabolomics 
analysis.

The OPLS-DA score plot shows a clear separation between WT and mtl1Δ strains (Fig. 2A) with an R2Y of 
0.95 and Q2 of 0.78. To further evaluate the model, we performed permutation tests (n = 1000). The empirical P 
values were 0.003 for R2Y and 0.02 for Q2. Thus, a clear distinction between the metabolome of WT and mtl1Δ 
strains was observed (Fig. 2A). Mann–Whitney U test analysis detected 12 features significantly decreased in 
mtl1Δ stain compared to WT. (Table 2, Fig. 2C,D). The most significant metabolic changes were related to amino 
acid metabolism, purine metabolism, and carboxylic acid metabolism.

Functional enrichment analysis. The functional enrichment analysis was performed exclusively for 
groups exhibiting upregulated (Groups 1 and 2) and downregulated (Groups 3 and 4) proteins using ClueGo 
as described in “Materials and Methods” section. We identified 13 top-ranked categories and their associated 
proteins including cellular amino acid metabolic and biosynthetic process, trehalose metabolism in response to 
stress, cellular response to heat, cytoplasmic stress granule, flavin adenine dinucleotide binding, glucose meta-
bolic process, stress granule disassembly, purine nucleoside monophosphate biosynthetic process, diphospho-
transferase activity, pyruvate metabolic process, DNA synthesis and protein targeting to mitochondrion (Fig. 3, 
Supplementary Table S2).

Identified functional enrichments in the cellular response to heat and trehalose metabolism in response to 
stress in the mtl1Δ strain grown at normal conditions and temperature (27 °C) suggest that the deletion of MTL1 
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Figure 1.  Comparison of differential protein and mRNA expression profiles. (Left panel, Proteomic_FC) 104 
proteins identified on the right margin, with statistically significant changes in abundance of twofold or greater 
in the mtl1Δ strain are shown alongside their mRNAs (Right panel, RNAseq_FC) with expression changes of 
twofold or greater. Note that a significant block of proteins correlated with their mRNA levels, while others did 
not correlate (see Results and Discussion for details). The color scale indicates relative fold-change (Red = FC ≥ 
2, Green = or FC ≤ − 2), P value ≤ 0.05.
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Table 2.  Difference in metabolite concentrations between WT and mtl1Δ strains.

# ID Fold change p value

Amino acid metabolism

1 Alanine 1.01

2 Asparagine 0.30 0.0006

3 Aspaptate 0.34 0.004

4 Cysteine 0.41

5 Glutamate 0.75

6 Glutamine 0.36 0.01

7 Glycine 0.76

8 Histidine 0.52 0.007

9 Homocysteine 0.57

10 Homoserine 2.46

11 Isoleucine 1.06

12 Leucine 0.77

13 Methionine 0.21 0.04

14 N-Acetyl-glutamate 0.87

15 Ornitine 0.16 0.0006

16 Phenylalanine 0.28 0.007

17 Proline 0.48

18 Serine 0.88

19 Threonine 0.43 0.007

20 Tryptophan 0.76

21 Tyrosine 0.72

22 α-Aminoadipate 0.50 0.007

23 Valine 1.00

24 5-Oxoprolinate 1.45

25 5-Oxoproline 0.89

26 Sarcosine 1.12

Purine metabolism

27 Hypoxanthine 0.32 0.0111

28 Orotate 0.34

29 Uracil 0.82

30 3-Ureidopropionate 0.98

Biosynthesis of cysteine

31 Cystathionine 0.76

Alpha-hydroxy acid metabolism

32 Glycolate 0.87

Saturated fatty acid metabolism

33 Myristate 0.39

34 Palmitate 0.77

35 Stearate 1.24

Mono-unsaturated fatty acid metabolism

36 Palmitoleate 0.72

37 Oleate 0.82

Poly-unsaturated fatty acid metabolism

38 Eicosadienoate 1.47

Organic acid metabolism

39 Lactate 0.33

Carboxylic acid metabolism

40 Citrate 0.40 0.0012

41 Succinate 1.07

42 Fumarate 1.17

43 Malate 0.39 0.0006

44 Malonate 0.45

Vitamine metabolism

45 Niacinamide 0.69

Glucose metabolism

46 Glucose 1.1
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could be associated with the activation of complex regulatory mechanisms related to non-lethal heat stress. Yeast 
responds to heat stress via rapid synthesis of heat shock proteins (HSP) and trehalose that serves to protect cel-
lular functions by preventing protein aggregation, unfolding aggregated proteins, or targeting denatured proteins 
for  degradation14. Thus, we identified significant upregulation of HSP104, HSP150, HSP26, HSP42, HSP78, and 
HSP82 and enzymes NTH1, TPS2, TSL1 (Supplementary Table S2, Fig. 3). In addition, trehalose is an effective 
stabilizer of proteins, suppresses protein aggregation upon  denaturation16, and acts as an anti-dehydration agent 
minimizing the effects of  dryness15. It is recognized that the activity of various trehalose-metabolizing enzymes 
required the presence of HSP104 in yeast cells under heat  stress58. Thus, HSP104 works synergistically with 
trehalose to stabilize the yeast proteome in response to heat  stress16. Moreover, mitochondria have been recog-
nized to play an essential role in heat stress  tolerance59. In agreement with this assumption, we also observed a 
functional enrichment in protein targeted to the mitochondrion (Fig. 3). It is recognized that most mitochondrial 
proteins are synthesized in the cytosol and then translocated to mitochondria to perform their functions. An 
earlier study showed that heat stress could affect mitochondrial protein translocation efficiency, and therefore, 
the mitochondrial biosynthesis and functioning are  repressed60. Our analysis suggests that the MTL1 deletion 
did not repress the synthesis of proteins targeted to the mitochondrion since HSP82, ubiquinol cytochrome-c 
reductase, Complex III (QCR2), and SSA1 were upregulated (Fig. 3).

Functional enrichments in the amino acid metabolic process associated with upregulation in catabolic 
enzymes BAT2, ARO9, DUR1,2, MET13 and CHA1 (Supplementary Table S1 Groups 1—2) and amino acid 
biosynthetic process concomitant with the downregulation of anabolic enzymes MET6, MET17, LEU1, GLN1, 
GDH1, MAE1, ASN1, SAM2, SPE3, and CAR1 (Supplementary Table S1 Groups 3–4) suggest that the biosynthesis 
of amino acids was partially suppressed in the mtl1Δ strain. Pairing proteome and metabolome data produced 
results consistent with this assumption and explained a significant reduction of several metabolites specifically: 
CHA1/threonine, ARO9/phenylalanine, ASN1/asparagine, MET6-MET17-MET13/methionine, GLN1/glutamine, 
and CAR1/ornithine (Supplementary Table S1, Figs. 1, and 2D). Moreover, identified significant decrease in 
α-aminoadipate suggests a negative regulation of the anabolic function of the α-aminoadipic acid pathway 
in yeast, which is used for lysine  biosynthesis61. A recent study highlights that heat stress in yeast exhibits an 
anaplerotic character by elevating the expression of a large number of proteins to guarantee constant protein 
levels for important metabolic processes as a compensative regulatory mechanism against protein aggregation 
and shutdown of cell  growth14. In contrast, we observed that the mtl1Δ strain displays a cataplerotic character 
by counterbalancing stress-related detrimental effects by downregulation of anabolic functions.

Previously, it was reported that heat stress could trigger reliance on glycolysis for energy generation and 
increase the signaling pathway for glucose-regulated gene  expression62. Accordingly, the glucose metabolic pro-
cess was significantly enriched by the deletion of MTL1. Glyceraldehyde-3-phosphate dehydrogenase (TDH1), 
glucokinase (GLK1), phosphoglucomutase (PGM2), the regulatory subunit of the trehalose synthase complex 
(TSL1), aldehyde dehydrogenase (ALD4) and malate dehydrogenase (MDH2) were associated with the glucose 

Figure 2.  Metabolomics analysis of WT and mtl1Δ strains. (A) OPLS-DA score plot based on WT and mtl1Δ 
cell metabolomes. (B) Violin plots visualize the non-significant distribution of glucose in WT and mtl1Δ strains 
(n = 12). (C–E) Violin plots visualize the distribution of significantly altered metabolites in WT and mtl1Δ 
strains (n = 7).
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metabolic process (Supplementary Table S2). However, we have not found any changes in glucose content in the 
mtl1Δ compared to the WT strain (Table 2, Fig. 2B) presumably because of elevated conversion of glucose to 
 trehalose63 by TPS2 and TSL1 or pyruvate by TDH1 (Supplementary Table S2). The fact that pyruvate metabolic 
process was also significantly enriched in the mtl1Δ strain supports our assumption. Moreover, it is known that 
heat stress induces pyruvate accumulation and at the same time, a reduction of pyruvate consumption genes as 

Figure 3.  Functional enrichment analysis of the molecular, biological and cellular regulatory mechanisms in 
the mtl1Δ strain. (A) Network representations of GO enriched terms in the respective networks in mtl1Δ strain 
of differentially expressed proteins using ClueGO. Enriched terms are represented as circle nodes based on their 
kappa score (> 0.4) and adjusted P values corrected with the Benjamini–Hochberg method. The enrichment 
significance of the GO terms is reflected by the size of the nodes. Node color represents the class that they 
belong. Mixed coloring means that the specific node belongs to multiple classes. Associated proteins for each 
term are presented as triangles. Color of the font indicates upregulation (red) or downregulation (green). The 13 
top-ranked categories of GO biological processes are labeled. Sub-network terms for each category are presented 
in Supplementary Table S2. Visualization has been carried out using ClueGO plugin for Cytoscape 3.7.2. 
(https:// cytos cape. org). (B) Top-ranked categories visualized on a bar chart, showing adjusted P values (Log10).

https://cytoscape.org
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the first line of cellular defense mechanisms in S. cerevisiae64. Pyruvate efficiently scavenges heat-induced ROS, 
which results in a reduction of protein carbonylation, stabilization of the mitochondrial membrane potential 
(ΔΨm) generated by Complexes I, III and IV during electron  transport64. Consistent with this study, we observed 
upregulation of glucokinase (GLK1), which converts glucose to glucose-6-phosphate for further glycolytic pro-
cessing to yield pyruvate as the end product, and downregulation of D-lactate dehydrogenase (DLD3), that is 
coupled to the reduction of pyruvate to lactate. Consequently, a decrease in lactate was identified that could 
lead to pyruvate accumulation in mtl1Δ strain (Table 2). However, the downregulation of mitochondrial malic 
enzyme (MAE1) suggests that oxidative decarboxylation of malate to pyruvate is abolished presumably due to 
significantly low content of malate (Table 2, Fig. 2C). Elevation of ALD4 suggests that pyruvate is metabolized 
by decarboxylation to acetaldehyde via the alternate mitochondrial pyruvate dehydrogenase bypass pathway, 
and converted to acetate by ALD465 which can be further converted to acetyl-CoA. Additionally, it was shown 
that heat stress depressed the conversion of glucose to glutamate and glutamine, derived from α-ketoglutarate62. 
As a result, both mRNAs and proteins of glutamate dehydrogenase (GDH1) and glutamine synthetase (GLN1) 
were downregulated, and correspondently the content of glutamate and glutamine were reduced in the mtl1Δ 
strain (Table 2, Fig. 2D).

An earlier study suggested that in S. cerevisiae, heat stress induces oxidative stress through ROS produced 
mainly by the heat-damaged mitochondrial respirasome and a set of genes associated with the mitochondrial 
respiratory chain was  downregulated65. Functional enrichment analysis of the mtl1Δ strain respirasome showed 
a positive correlation of proteins in Supplementary Table S1, Group 2 such as NADH dehydrogenase, Complex I 
(NDE1), Subunit 2 of ubiquinol cytochrome-c reductase (QCR2, Complex III) and F1F0 ATP synthase, Complex 
V (ATP17) with mitochondria respirasome (Fig. 4A,B). Moreover, enrichment in flavin adenine dinucleotide 
binding GO term concomitant with an upregulation of electron transfer flavoprotein AIM45 that serves as a 
specific electron acceptor for several dehydrogenases, suggests that AIM45 can interact with dehydrogenases, 
including succinate dehydrogenase to convey electrons to ubiquinone in the mtl1Δ strain (Fig. 4B). In addition, 
we identified the upregulation of fumarate oxidoreductase that reduces fumarate to succinate (OSM1). The pre-
vious study suggested that the OSM1/fumarate couple accepts electrons with similar efficiency as cytochrome 
 C66. Since we did not find any significant differences in the content of succinate and fumarate (Table 2) in the 
mtl1Δ and WT strains, it suggests that the mtl1Δ strain has developed an adaptive response to maintain oxida-
tive phosphorylation at a controlled level to support cell growth. Besides its role in oxidative phosphorylation, 
OSM1 is involved in protein targeting to the mitochondrial pathway which is usually activated to prevent protein 
aggregation, misfolding, or proteolysis triggered by  stress67.

Furthermore, we identified functional enrichments in the other specific target pathways related to stress-
resistance, such as DNA synthesis involved in DNA repair, purine nucleoside monophosphate biosynthetic 
process, and diphosphotransferase activity (Fig. 3). It is recognized that enzymatic DNA repair pathways become 
evolved to cope with the heat stress, which can trigger nuclear mutation frequencies and DNA strand  breaks68. 
In the mtl1Δ strain, we found upregulations of two proteins involved in DNA repair such as the largest subunit 
B220 of RNAPII (RPO21) and DNA polymerase alpha catalytic subunit A (POL1) (Supplementary Table S1, 
Group 2). DNA repair mechanisms involve either tolerating the damage or protecting of the DNA by removing 
bases, nucleotides, mismatches, homologous recombinations and non-homologous end-joining to ensure overall 
survival. A nucleotide excision repair mechanism includes transcription-coupled DNA repair when nucleotides 
are rapidly removed in the transcribed DNA  strand69. It is known that RPO21 promotes the intrinsic capacity 
of RNAPII for transcription bypass of DNA lesions by incorporation or misincorporation of nucleotides across 
the  lesions70. POL1 is a component of the replisome, a multi-component enzymatic machine at the replication 
fork that mediates DNA replication and specifically modulates both imprecise non-homologous end-joining and 
more complex chromosomal  rearrangements71.

In Group 2, we also found upregulation of adenylosuccinate synthetase (ADE2) and bifunctional phospho-
ribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase (ADE17) which along with GUK1 
(Group 1) are associated with purine nucleoside monophosphate biosynthetic process (Fig. 3, and Supplementary 
Table S2). Purine and pyrimidine nucleotides serve many important functions in cells as precursors to DNA and 
RNA, energy source, signaling molecules, and cofactor  components72. De novo purine nucleotide biosynthesis 
in yeast involves the 10-step production of the purine nucleotide inosine monophosphate (IMP), the common 
precursor to both AMP and guanosine monophosphate GMP. ADE2 and ADE17 are involved in the de novo IMP 
biosynthetic process while GUK1 acts in biosynthetic pathways downstream of GMP and AMP (Supplementary 
Table S2). Since IMP can also be synthesized from hypoxanthine by the salvage pathway, the possibility of incor-
porating hypoxanthine into DNA and RNA due to heat stress can cause significant defects in purine nucleotide 
 metabolism73. Our metabolomics analysis identified a significant reduction in hypoxanthine in the mtl1Δ strain 
presumed to be the result of triggering a complex cellular survival adaptative response to the MTL1 deletion 
(Fig. 2C, Table 2). Moreover, we observed a decrease in uracil (Table 2), which, together with hypoxanthine are 
miscoding and mutagenic in DNA and can interfere with RNA editing and  function73,74. Identified enrichments 
of differentially expressed folic acid synthesis protein (FOL1) and thiamine pyrophosphokinase (THI80) at both 
protein and RNA levels (Supplementary Table S1, Group 1) associated to the diphosphotransferase activity GO 
term (Fig. 3) also suggests the triggering of cellular survival adaptive response to the MTL1 deletion. In particular, 
FOL1 is important for the biosynthesis of purines and is required to manage folate deficiency during the heat 
stress for preventing of massive incorporation of uracil into the  DNA75. THI80 produces thiamine pyrophosphate 
from thiamine—an essential coenzyme for several enzymes in carbohydrate metabolic pathways required for 
yeast’s metabolic adaptation to heat stress and regulation of energy  production59.

In addition, we observed functional enrichment in cytoplasmic stress granule GO term (Supplementary 
Table S2, Fig. 3). Stress granules are non-membrane-enclosed RNA granules that dynamically sequester the 
non-translating messenger ribonucleoproteins, and a large variety of misfolded proteins through protein–protein 
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interactions which vary under different  conditions76–78. In the mtl1Δ strain, we identified upregulations of HSP26, 
known for its role in sequestration of misfolded proteins to stress-induced  foci79,80, and RNA helicase (DED1)—a 
regulator of 48S translation pre-initiation complex  assembly81, which directly responds to environmental  stress82. 
DED1 protein rapidly becomes insoluble by forming gel-like condensates that selectively repress translation of 
housekeeping mRNAs to promote survival under conditions of severe heat  stress82.

In addition, our functional enrichment analysis predicted associations of five other proteins that were not yet 
recognized for their associations with cytoplasmic stress granule assembly, including peptidyl-prolyl cis–trans 
isomerase (FPR1), RPO21, flavohemoglobin nitric oxide oxidoreductase (YHB1), LEU1 and SAM2 (Figs. 1, 
3, Supplementary Table S2). However, proteomics analysis of stress granules coupled with super-resolution 
microscopy in yeast conducted by another  group83 revealed the occurrence of physical interactions between 
DED1 and YHB1, RPO21, LEU1, and SAM2, suggesting the possibility that these proteins can be recruited to 
stress granules. Thus, physical interactions of YHB1 with DED1 could explain its important role in oxidative 
and nitrosative stress  responses84. Selective degradation of non-functional or unassembled forms of RPO21 by 
the 20S  proteasome85 after completion of RNAPII assembly in the  cytoplasm86 and interaction of RPO21 with 
DED1 could represent its possible recruitment to stress granules as another quality-control mechanism to prevent 
RPO21 accumulation. Moreover, observed downregulation of SAM2 and LEU1 followed by a decrease in amino 
acids methionine and leucine correspondently (Table 2, Fig. 2D) could be sensed by the mtl1Δ strain as a stress 

Figure 4.  Functional enrichment analysis of the mtl1Δ strain respirasome. (A) Network representations of 
GO enriched terms in the respective networks of differentially expressed proteins in the mtl1Δ strain using 
ClueGO. Enriched terms are represented as circle nodes based on their kappa score (> 0.4) and adjusted P values 
corrected with the Benjamini–Hochberg method visualized on a bar chart. Associated proteins for each term are 
presented as triangles. Node color represents the class that they belong. Mixed coloring means that the specific 
node belongs to multiple classes. Visualization has been carried out using ClueGO plugin for Cytoscape 3.7.2 
(https:// cytos cape. org). (B) electron transport chain (ETC) depicted associations of identified proteins with ETC 
complexes. Visualization has been carried out using ChemDraw 15 (PerkinElmer) https:// www. perki nelmer. 
com/ categ ory/ chemd raw.

https://cytoscape.org
https://www.perkinelmer.com/category/chemdraw
https://www.perkinelmer.com/category/chemdraw
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and as such also triggers SAM2 and LEU1 interaction with DED1 and their recruitment to the stress granules. In 
addition, functional enrichment analysis predicted the association of FPR1 with stress granules assembly. FPR1 
is a yeast orthologue of the human FKBP12, which belongs to a family of protein folding  chaperones87. It was 
reported that FPR1 is significantly upregulated when yeast cells are exposed to proteotoxicity-induced  stress88. In 
silico modeling showed a possibility of polymerization of FKBP12 with its interacting partner FRB into gel-like 
structures inside living  cells89. However, the role of FPR1 in the process of stress granules formation in yeast is 
still not completely elucidated.

Functional enrichment in the cytoplasmic stress granule disassembly GO term was concomitant with upregu-
lations of HSP104 and SSA1 (Supplementary Table S1, Fig. 3). HSP104 is the most crucial thermotolerance-related 
heat shock protein of Saccharomyces cerevisiae, which has the ability to rescue denatured proteins through 
disassembly of high–molecular weight  aggregates90. HSP104 is abundant under normal growth conditions but 
is substantially induced by heat  stress91. Interestingly, a recent study showed a novel mitochondrial function in 
preventing protein aggregation in response to heat stress, which could also trigger assembly of protein aggregates 
on the mitochondrial surface, where HSP104 facilitates their untangling and transport into the mitochondrial 
matrix for  degradation92. SSA1 is a member of HSP70  family90 which can colocalize with HSP104 in stress gran-
ules and might influence stress granules assembly or disassembly enabling efficient protein  homeostasis80. Several 
upregulated proteins including PHB2, HSP82, SSA4, HSP78, CCT3 act in de novo posttranslational protein 
folding, while HSP78 and HSP82, can also induce protein refolding. It was also found that HSP82 is significantly 
expressed only during heat  stress91. The accumulation of a significant number of misfolded proteins could have 
secondary consequences, such as the inhibition of normal protein degradation by the ubiquitin–proteasome 
system that is controlled in the mtl1Δ strain by upregulation of deubiquitinating enzymes RPT3 and UBP6, which 
spare ubiquitin from proteasomal  degradation93.

In addition, stress granules are typically observed when cytoplasmic translation is  depressed94. Accordingly, 
we detected a significant downregulation of several cytoplasmic ribosomal proteins (Fig. 1, Supplementary 
Table S1 Group 4), such as RPL33B, RPL42A, RPS6B and RPL3 (large ribosomal subunits), and RPS1A, and 
RPS20 (small ribosomal subunits), and RSP5 involved in ribosome stability. A recent study suggested that protein 
degradation and aggregation induced by heat stress can delay the proteomic  response14, which could explain the 
weak correlation of the transcriptome and the proteome (Fig. 1, Supplementary Table S1 Group 4). Importantly, 
downregulation of RPL33B, RPL42A, RPS6B, RPL3, RPS1A, and RPS20 coupled with upregulation of the compo-
nent of the mitochondrial ribosome MRPL7 (Fig. 1, Supplementary Table S1 Group 1), that suggests a potential 
molecular switch from cytoplasmic to mitochondrial translation as part of a complex adaptive response to avoid 
proteotoxic stress that could impact growth of the mtl1Δ strain (Supplementary Table S2).

Taken together, an analysis of functional enrichment of the mtl1Δ proteome and metabolome suggests that 
the loss of Mtl1p function can activate complex regulatory mechanisms related to non-lethal heat stress, even 
under normal culture conditions at 27 °C that disrupts numerous metabolic processes and cellular structures. 
Based on a preliminary conclusion, mtl1Δ strains develop an adaptive response for survival and growth.

Modeling of TORC1 contribution to the mtl1Δ interactome. The MTL1 function is required to 
maintain ribosomal gene repression, the general stress response through Rho1p, the inhibition of the TORC1, 
and activation of the cell wall integrity CWI pathway in response to both glucose starvation and oxidative stress. 
Since TORC1 functionality was not inhibited in the our mtl1Δ strains, it is able to regulate a variety of ana-
bolic and catabolic processes upon sensing diverse nutrient-derived signals including amino acids such as glu-
tamine, leucine, asparagine, arginine and  methionine95–97. These amino acids, excluding arginine, which was not 
detected in our samples, were lower in the mtl1Δ strains and asparagine and methionine significantly decreased 
(Table 2, Fig. 2D). Correspondently, anabolic enzymes encoded by GLN1, ASN1, MET6, and MET17 were sig-
nificantly decreased at both transcriptional and translation levels (Supplementary Table  S1, Group 3). Thus, 
we hypothesize that certain levels of the aforementioned amino acids required to maintain the mtl1Δ cellular 
homeostasis is being provided via an amino acid transporter  system97, allowing TORC1 to sense their levels and 
trigger appropriate adaptive  responses98.

Using the GeneMANIA plugin in Cytoscape, we conducted the TORC1 interactome analysis to identify if 
significantly regulated proteins could interact with TORC1 physically or genetically. Two proteins FPR1 and 
MDH2 potentially interact physically with TORC1 (Fig. 5). FPR1 is a protein of the FKBP12 family in S. cerevisiae, 
which is a primary target for  rapamycin99. Addition of rapamycin results in the formation of the FPR1-rapamycin 
complex required for TORC1  inhibition100. Although FPR1 is recognized to play a crucial role in rapamycin’s 
efficacy, its physiological functions remain unclear. Nevertheless, a previous study suggests that FPR1 interacts 
with TORC1 and heat shock proteins Hsp90p and Hsf1p during  stress101. Consequently, the predicted physical 
interaction of TORC1 and FPR1 in our study might explain the observed functional enrichment in the cyto-
plasmic stress granules pathway components (Fig. 5, Supplementary Table S2). MDH2 catalyzes the reversible 
oxidation of malate to oxaloacetate in the citric acid cycle and plays a pivotal role in the malate-aspartate shuttle 
that operates in the metabolic coordination between cytosol and mitochondria. Since it is known that TORC1 
interacts with MDH2 to protect it from degradation during nutrient  stress69, the predicted physical interaction 
of TORC1 with MDH2 could be the result of adaptive metabolic changes in the mtl1Δ strain that resulted in 
functional enrichment of the glucose metabolic process (Fig. 5). Furthermore, GeneMANIA analysis predicted 
genetic interaction between the TORC1 and QCR2, OSM1, ATP17, MRPL7, RSP5, RPS1A, and RPS20 encoded 
proteins (Fig. 5). Gene interaction is a broad term used to describe the joint role of multiple genes on biological 
processes and phenotypic  effects102. It is recognized that mammalian TORC1 is a positive regulator of key genes 
encoding electron transport chain proteins and stimulates oxidative  phosphorylation103. Given that TORC1 is a 
highly conserved eukaryotic protein, observed upregulation of QCR2, OSM1 and ATP17 and genetic interaction 
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with TORC1 supports our hypothesis of a synergistic association of TORC1 with QCR2, OSM1 and ATP17 in 
shaping the respiratory process in the mtl1Δ strain (Fig. 4B, Fig. 5) and protein targeting to the mitochondrial 
pathway associated with OSM1. Moreover, this analysis predicted a suppressive genetic interaction of TORC1 
with RPS1A, RPS20, RSP5, and a synergistic genetic interaction with MRPL7 (Fig. 5). Since TORC1 regulates 
translation and ribosome biogenesis in S. cerevisiae104, our data support the contribution of TORC1 to the 
molecular switch from cytosolic to mitochondrial translation as in the mtl1Δ strains. In human cultured cells, 
TORC1 activity is inversely correlated with mitochondrial protein synthesis and respiration regulating mito-
chondrial  biogenesis105.

Taken together, we envisage that a deletion of the MTL1 gene in S. cerevisiae can engage TORC1 signaling 
concomitant with activation of the cytoplasmic stress granules pathway, enhanced glucose metabolism, oxidative 
phosphorylation, with protein targeting to the mitochondrial pathway and activation of the molecular switch 
from cytoplasmic to mitochondrial translation.

In summary, a deficiency of the Mtl1 protein in the mtl1Δ strain triggers what we describe as a non-lethal heat 
stress-like response in yeast cells rendering them more sensitive than the WT to oxidative stress caused by  H2O2, 
as previously described by  others12,31. Mtl1p is a key mechanosensory protein for recognizing environmental 
stress by a mechanism that requires its functional and structural integrity to signal the suitability of temperature, 
pH, carbon source and nutrient availability for normal  growth31. We provide additional evidence supporting that 
Mtl1p maintains normal cellular homeostasis through a mechanism regulated by  TORC131,39. The impairment 
in Mtl1p function caused by heat denaturation, oxidative stress, or other chemical and environmental threats 
to cell integrity interrupts this signaling axis and triggers the activation of a general stress  response17 that we 
believe to be more similar to the non-lethal heat stress-like response described here for mtl1Δ strains. We pro-
pose that the responses observed in the mtl1Δ mutant mimic a chronic non-lethal heat stress state evidenced 
by upregulation in the accumulation of heat shock proteins and trehalose synthesis, both of which are factors 
implicated in the adaptive response to heat  stress106. Similarly, with the accumulation of cytoplasmic catalase 
T (22-fold), the enhanced accumulation of proteins that promote cytoplasmic stress granule formation, the 
increase in enzymes required for amino acid catabolism with a reduction in ribosome biogenesis. The enhanced 

Figure 5.  Predicted contribution of TORC1 in the mtl1Δ strain interactome. Figure shows the overlay of 
predicted physical interactions (straight parallel black lines) and genetic interactions (dotted black lines) with 
GO terms (Fig. 3). Associated upregulated proteins (red) and downregulated proteins (green) are presented as 
triangles. GO terms concomitant with the predicted TORC1-protein interactions are represented as grey circle 
nodes. Non-related GO terms and proteins are shown in white. Visualization has been carried out using ClueGO 
plugin for Cytoscape 3.7.2 (https:// cytos cape. org).

https://cytoscape.org
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susceptibility of the mtl1Δ mutant to  H2O2 treatment, despite the massive accumulation of catalase T, could be 
caused by high endogenous levels of  ROS107. Normally, ROS are mainly produced within the  mitochondria108. 
However, proteome and metabolite analysis of the mtl1Δ strain showed upregulation in proteins of the mito-
chondrial respirasome as indicators that this mitochondrial function was not affected by the MTL1 deletion. 
This assumption can be tested by direct measurements of mitochondrial physiological activity. Therefore, the 
enhanced sensitivity to oxidative stress associated with mtl1Δ  strains31 may originate from accumulated ROS 
generated by other dysregulated metabolic processes. Enhanced catabolism of amino acids and ER stress may 
represent two potential sources for these ROS.

Conclusions
We have provided new metabolic data showing that an mtl1Δ strain upregulates the accumulation of heat shock 
proteins and trehalose synthesis, which are known indicators of the adaptive response to non-lethal heat stress 
that we propose for these strains. Similarly, the accumulation of cytoplasmic catalase T (22-fold), enhanced 
accumulation of proteins that promote cytoplasmic stress granule formation and enzymes required for amino 
acid catabolism, combined with a reduction in ribosome biogenesis and increased synthesis of mitochondrial 
respiratory proteins, indicate a complex cellular stress response characterized by elements of heat stress and 
nutrient deprivation. Without having found evidence of mitochondrial malfunction, we propose that the down-
regulation of ribosomal protein synthesis coupled with the upregulation in synthesis of mitochondrial proteins 
may represents a shift in translation of cytoplasmic proteins to translation of mitochondrial proteins as an adap-
tive response to Mtl1p deficiency. The combined data supports the new function of active Mtl1p under normal 
cellular conditions which is to suppress the non-lethal heat stress response presumably via down-regulation 
of the MTL1 gene at the transcriptional level followed by triggering an adaptive cellular response to maintain 
normal metabolic homeostasis.

Data availability
Metabolomics data are available at the NIH Common Fund’s National Metabolomics Data Repository (NMDR) 
website, the Metabolomics  Workbench109 (Project ID PR001034, https:// doi. org/ 10. 21228/ M81X28). RNAseq 
data are available at Sequence Read Archive (SRA) repository, with the accession number PRJNA686365 (https:// 
www. ncbi. nlm. nih. gov/ sra/? term= PRJNA 686365). Proteomics data are available at the Proteomics Identifica-
tions Database (PRIDE). Currently, it is only accessible for authors and reviewers (to access the data please go to 
https:// www. ebi. ac. uk/ pride/ archi ve/ login, and use these credentials to login User: reviewer_pxd023963@ebi.
ac.uk, Password: oPr4sZae, then look for the accession number PXD023963). The data will be publicly accessible 
after the paper is accepted for publication.
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