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ABSTRACT OF THESIS

A Flexible Photonic Reduction Network Architecture for Spatial GEMM
Accelerators for Deep Learning

As deep neural network (DNN) models increase significantly in complexity and size,
it has become important to increase the computing capability of specialized hard-
ware architectures typically used for DNN processing. The major linear operations of
DNNs, which comprise the fully connected and convolution layers, are commonly con-
verted into general matrix-matrix multiplication (GEMM) operations for acceleration.
Specialized GEMM accelerators are typically employed to implement these GEMM
operations, where a GEMM operation is decomposed into multiple vector-dot-product
operations that run in parallel. A common challenge that arises in modern DNNs is
the mismatch between the matrices used for GEMM operations and the hardware size
of the GEMM accelerator. In case the matrices are smaller than the hardware size,
some hardware resources go idle but still consume static power. This diminishes the
energy efficiency. On the other hand, in case the matrices are larger than the hard-
ware size, the many vector-dot-product operations involved in a GEMM operation
cannot be fully mapped onto the hardware structure. As a result, the vector-dot-
product operations need to be folded over time into multiple temporal frames. Each
temporal frame generates a partial sum (psum) of the final output value of the corre-
sponding dot-product operation. Consequently, to produce the final output matrix,
these psums need to be stored in memory and redistributed back into the accelerator
to be accumulated using a network of accumulators called a reduction network (RN).
To efficiently accelerate modern DNNs with heterogeneous matrix sizes, customized
spatial GEMM accelerators have been introduced in prior work. These accelerators
employ flexible RNs to implement spatial and temporal reduction of psums of het-
erogeneous sizes. They create unique mappings of matrices depending on their sizes
to compute multiple vector-dot-products in parallel while minimizing the number of
computing resources remaining idle.

Despite their advantages, these flexible RNs from prior work are still limited due
to their electronic design. A flexible RN typically comprises a network of accumula-
tors that work together to collect and reduce psums. Every electronic accumulator
has a limited fan-in, and therefore, a large number of accumulators need to be con-
nected together. This increases the number of hardware components and network



links required to achieve the desired reduction of psums, leading to a reduction in
performance and energy efficiency. Nevertheless, to address this shortcoming, pho-
tonic devices and interconnects have been demonstrated. In this thesis, I present
an innovative use of photonic devices and interconnects from the state-of-the-art to
build a novel photonic RN architecture. Our photonic RN architecture substantially
reduces the required counts of photonic accumulators and links to achieve the spatial
and temporal reduction of psums of heterogeneous sizes with massive parallelism.
We evaluate our photonic RN and compare it against the state-of-the-art electronic
RN architectures from prior work for four modern DNN workloads. The evaluation
results show a latency speed-up of up to 5.63× and energy efficiency improvement of
up to 1.97× on average across the considered DNN workloads.

KEYWORDS: Reduction Network, Accumulation, Deep Learning, Photonic Archi-
tectures, Flexible Spatial Accelerators
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Chapter 1 Introduction

In recent years, deep neural network (DNN) models have become more widespread
and have significantly grown in complexity and size, with the aim of achieving higher
accuracy [10,30]. In order to allow this growth, without driving computing metrics to
unreasonable levels, a research motivation has been introduced to focus on improv-
ing the computational performance of these networks. One of the most widely seen
DNN models is the convolutional neural network (CNN), which is commonly used
for visual image analysis [26]. CNNs consist of many layers, such as the convolution,
fully-connected, and pooling layers, among others. However, the convolution layers
appear the most frequently and tend to consume a large portion of the CNN’s over-
all computations. Therefore, as CNN models and the convolution layer increase in
complexity, much of the research towards improving performance has been focused
on improving the computation of these convolution layers.

The operation of DNN models, like the CNN, commonly occur on specially de-
signed hardware accelerators, that have been introduced to improve performance
while lowering computational latency and energy overhead [4,24]. When implement-
ing the compute-heavy convolution layer onto hardware, it is common to convert
it into a general matrix-matrix multiplication (GEMM) operation [30] for ease of
computing. This GEMM operation is composed of multiple vector-dot-products
that must be computed, which can then broken down into several multiply-and-
accumulate (MAC) operations. Therefore, these hardware accelerators that imple-
ment the GEMM operation require multipliers and adder units in order to compute
the MAC operations. However, it is common for there to be a mismatch between the
required number of multiplications and additions for a dot-product, and the number
of multipliers and adders that the hardware provides. This leads to one of two situa-
tions. If the required number of multiplications and additions is less than the number
of multipliers and adders provided, then the accelerator sees an underutilization of
devices, as some still consume static power but are not currently in use. On the other
hand, if there are less hardware resources provided than what is required, the MAC
operation is broken down and folded over time into multiple temporal frames. Each
frame produces a partial sum (psum) of the final output value of the dot-product.
The hardware then needs to collect and accumulate these psums together in some
form of reduction hardware that can add psums spatially from different multiplier
units and temporally from different temporal frames. Therefore, the hardware ac-
celerators that compute the GEMM operations require multiplier units, adder units,
and some form of reduction hardware.

In addition to the required and provided hardware size mismatch, the size of
the inputs in a convolution layer vary heavily between different layers and CNNs.
As a result, the size of the vector-dot-products and number of psums that need to
be accumulated also vary between layers. Therefore, hardware accelerators must be
flexible, in order to only engage as many multipliers and adders as needed for the
vector-dot-product. To answer this challenge, flexible spatial accelerators have been
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introduced [14, 23]. These accelerators solve the issue of variable dot-product sizes,
by logically dividing the hardware into clusters, where each cluster is responsible
for the computation of one vector-dot-product. The size of the clusters is set with
the goal of increasing utilization of hardware resources by computing several MAC
operations in parallel. Thus, by creating a unique cluster mapping per layer, flexible
spatial accelerators are able to handle variable sized inputs and appropriately increase
utilization of computing resources.

Although flexible spatial accelerators have proven to answer the challenges pre-
sented by mapping the convolution layer and subsequently GEMM operations onto
hardware, they still pose performance challenges of their own. The part of these
accelerators that is responsible for collecting and reducing psums is commonly re-
ferred to as the reduction network (RN). Current state-of-the-art RNs are typically
composed of a network of electrical links and adders [14, 20, 23]. These electrical
adders are typically limited to a fan-in of two or three, while the electrical links have
a limited fan-in of just one channel per link. Therefore, within the RN, each accu-
mulator is only able to add a maximum of three psums, with each psum requiring a
separate link to arrive on. This limitation typically results in a tree-based topology
of electrical links and accumulators that make up the RN. However, this topology
leads to a large latency and hardware reduction complexity, that scales logarithmi-
cally with the number of psums to accumulate. In order to overcome this limitation,
prior works have attempted to modify this tree-based topology to improve reduction
performance [14,20]. However, as long as these electrical links and accumulators have
a low limited fan-in, the RN will still require this costly tree-based topology. Thus,
there is a research motivation to create a RN that can overcome these limitations
and reduce the latency and hardware complexity, so that the network can scale more
reasonably and improve performance.

In this work, our approach to answering these challenges is to utilize photonic
interconnect links and devices to replace the electrical links and adders. It has been
shown that the fan-in of photonic interconnects can be increased far beyond the lim-
itation of electrical links by utilizing wavelength-division multiplexing (WDM). This
property of photonic interconnects allows for a superposition of multiple information
signals to stream together on the same waveguide, using different wavelengths [19].
Thus, the spatial parallelism of each photonic interconnect is improved and it’s fan-in
increased. In addition, it is possible to spatially and temporally accumulate optical
information through an electro-photonic accumulating device that utilizes a pho-
todetector, capacitor, and time-integrating receiver [27,31]. With multiple streams of
incoming optical information arriving on a photonic interconnect with WDM applied,
this accumulator can have it’s spatial accumulation fan-in increased beyond the low
fan-ins seen in electrical accumulators. In addition, this device is capable of holding
accumulated information within itself, allowing accumulation to happen temporally
without the need to store the intermediate results in memory. Thus, by utilizing
photonic interconnects and the electro-photonic accumulator, we can spatially and
temporally accumulate psums, while also improving the fan-in of both the links and
accumulator beyond what their electrical equivalents are capable of.
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We implement the benefits of photonic interconnects and accumulators through a
photonic RN that we introduce in this work. Our RN answers the challenges present
in GEMM accelerators, including the mismatch of dedicated hardware and input sizes
which results in temporal folding, flexibility needed to create clusters for variable-sized
inputs, and collecting and reducing psums through accumulation hardware. The cre-
ation of clusters is handled through new circuits we introduce, the reduction topology
assemblers (RTAs). The RTAs implement the flexibility to logically divide the pho-
tonic RN hardware into clusters. In addition, the RTA converts digital psum values
into the analog domain by transforming each psum into a sequence of optical pulses,
each representing an 8-bit slice of the psum value. These psum optical pulses are
routed by the RTAs to the electro-photonic accumulators, which we have dubbed
photo-charge accumulators (PCAs). The RTAs are able to imprint all optical pulses
on just two photonic interconnect waveguides, due to WDM. Each cluster has one
PCA, which can add the incoming pulses in just one cycle, thereby vastly improv-
ing the fan-in of both photonic interconnect links and accumulators while spatially
accumulating all psums in a cluster. In addition, the PCA holds intermediate re-
sults within itself, thereby allowing for a temporal accumulation of psums as well.
Thus, by implementing photonic interconnects and accumulators, the photonic RN is
able to vastly improve latency and hardware reduction complexity while still flexibly
accumulating psums spatially and temporally.

Output results from the PCA require conversion from the analog domain back
into the digital domain before they can be sent to memory. However, an additional
challenge arises when trying to perform this conversion through an ADC. The bit
precision of psum values vary, and the total output result can be up to 32-bits long.
No ADC is capable of a 32-bit value conversion. Therefore, the PCA needs to answer
this challenge somehow. To do this, before converting into the digital domain, the
analog output value is split into two parts, each representing 16-bits of the final output
value. By carrying this out first, the PCA is able to instead use two 16-bit ADCs
to convert the output result, and then populate a 32-bit register using their results.
Thus, the analog output value is successfully converted into the digital domain to be
sent to memory

To analyze how the reduction complexity improves due to the improved fan-in of
the photonic interconnect links and electro-photonic accumulators, we compared the
photonic RN against five other state-of-the-art electrical RNs, taken from [20]. We
observed that in terms of time complexity, the photonic RN is primarily dependent
on the bit precision of the psums, since each 8-bits in a psum requires an additional
optical pulse. The electrical RNs time complexity on the other hand are indepen-
dent of bit precision, but rather scale with the number of psums to accumulate due
to the low limited fan-in of the electrical accumulators. In terms of hardware com-
plexity, the photonic RN requires a different channel per psum for WDM, but each
channel only needs to be 1 bit wide since it is in the analog domain. The electrical
RNs instead require a much larger number of channels due to their limited fan-in,
and each channel must be the size of the psums’ bit precision since they are in the
digital domain. The electrical RNs also require more adders than the photonic RN,
again due to the difference in fan-ins between the electrical and electro-photonic ac-
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cumulators. To see how the different dependencies affect the latency and hardware
energy cost of reducing partial sums, we analyzed how the photonic RN performs
against the best electrical RN, STIFT, as bit precision and number of psums both
vary. For the latency, we observed that although the photonic RN has small bumps
in latency every 8-bits as a new optical pulse is output, compared to the continuous
increase of STIFT’s latency with number of psums, the photonic RN performs vastly
better overall. For the hardware energy cost, we observed that the photonic RN
has a continuous increase with the number of psums, and therefore the number of
channels required. On the other hand, STIFT’s hardware energy cost comparatively
continuously increases largely with both bit precision and number of psums, due to
it’s link channel size and number of required adders having dependencies on those
metrics respectfully. Overall, we observe that the improved fan-in from the photonic
interconnect links and electro-photonic accumulator lead to improved latency and
hardware reduction complexities for the photonic RN, even compared to the best
performing electrical RN.

In order to compare our photonic RN against electrical RNs in real applications,
we evaluated our RN against the three best performing electrical RNs from [20] while
varying cluster size in a transaction level, event drive simulator over four DNNs:
GoogLeNet, ResNet50, DenseNet121, VGG16. In terms of latency, we observed that
due to the improved fan-in of the photonic links and accumulator which leads to a
much lower reduction time complexity, the photonic RN achieved the lowest latency
across all clusters and all tested DNNs. Speed ups range from 1.98× at cluster size 2
to 5.63× at cluster size 128 when looking at the geometric mean of the DNN’s results.
We also measured reduction energy-efficiency (FPS/W) and observed that at lower
cluster sizes (2-4), the photonic RN performed slightly worse than the electrical RNs.
At its worst it is only 0.95× as energy-efficient as the lowest performing electrical
RN. This can be attributed to the photonic RN’s higher overall power cost, resulting
from photonic devices generally requiring a larger power consumption. At the lower
cluster sizes this factor plays a larger role than the improved time complexity seen
by the photonic RN. However, as cluster size increases, the photonic RN starts to
perform better in terms of energy-efficiency. By cluster size 16, it outperforms all
the electrical RNs, as they start requiring both higher reduction times, and a larger
number of links and accumulators due to their low limited fan-in. At cluster size 128,
when comparing the geometric mean of the four DNN’s results, the photonic RN is
1.27× to 1.97× more energy-efficient than the electrical RNs. We lastly calculated
the area of our photonic RN and found it to be 2.63mm2, which is considerably larger
than the electrical RNs even at a similar technology node. However, we performed
a footprint-efficiency analysis in terms of FPS/mm2 and found that although the
photonic RN performs worse at lower cluster sizes of 2 and 4, from cluster size 8
onwards, the improvements of the photonic RN’s lower reduction time complexity
overtakes the additional area overhead, resulting in better results compared to all
electrical RNs. Thus, we see that in terms of latency, energy-efficiency, and footprint-
efficiency, although the photonic RN may sometimes performs slightly worse at lower
cluster sizes, the benefits of the improved link and accumulator fan-ins can be heavily
seen in the reduction time complexity as cluster size increases.
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The rest of this paper is organized into different chapters. Chapter 2 goes over im-
portant background information pertaining to CNNs and their implementation onto
hardware, flexible accelerator structures and operation, current photonic-enabled ac-
celerator, and the motivation for why we need this work. Chapter 3 details the
photonic RN at various levels of abstraction, starting with a network overview, then
moving onto the RN structure with a focus on the RTA and PCA, and then finally
presenting an example operation and mapping to help explain end-to-end communi-
cation of psum collection and accumulation. This chapter also presents an analysis
of the time and hardware reduction complexities for our photonic RN and some
other electrical RNs. Chapter 4 explains how we evaluated our photonic RN against
other electrical RNs over multiple DNNs. We present a latency, energy-efficiency,
and footprint-efficiency analysis in order to compare the networks and explain how
the benefits of the photonic RN show through. Lastly, in Chapter 5 we conclude
our work, briefly going through everything that was discussed, and also present some
ideas for future work that out photonic RN can be extended to.

Copyright© Bobby Bose, 2023.
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Chapter 2 Background

2.1 Introduction

In this chapter, we provide helpful background information on the current state-of-
the-art implementation of convolutional neural networks (CNNs) on hardware, dis-
cuss the difficulties involved with this, and then present our ideas on how to solve
these challenges. We first go into detail on the structure of CNNs, focusing on the
important convolution layer and how its input and output data can be represented
(Section 2.2). We then discuss how the computations of CNNs are commonly imple-
mented onto hardware accelerators, specifically focusing on the common method of
converting the convolution layer into a general matrix-matrix multiplication (Section
2.3). In this section, we also detail the main challenges that the accelerator must
answer, such as varying input data size, and a mismatch of hardware between what
the convolution operation requires and what the accelerator provides. We then intro-
duce flexible spatial accelerators, which have been developed to try and solve these
challenges (Section 2.4). Photonic-enabled DNN accelerators are introduced (Section
2.5), which also aim to improve the acceleration of CNNs and other deep neural net-
works. Lastly, we explain the limitations of current state-of-the-art flexible spatial
accelerators, specifically focusing on their reduction networks, and introduce the idea
of how photonic interconnects and devices can be used to overcome these limitations
(Section 2.6).

2.2 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a prevalent form of DNNs and were
developed to primarily be used for image, video, and audio analysis [26, 37]. Like
other types of neural networks, the operation of a CNN typically consists of two
steps: training and inference [30]. Training involves the use of a set or multiple sets
of data to determine the values of network parameters based on a target objective
function and output accuracy. After training the network, running it on new data
is referred to as inference. CNNs consist of many layers, such as the convolution,
fully-connected, and pooling layers, among others. However, the convolution layers
appear the most frequently and tend to consume a large portion of the CNN’s overall
computations [10, 26].

As seen in Fig. 2.1a, a convolution operation involves two important sets of
data: the input feature map (ifmap) and the weight filters. Both sets of data can be
represented as 3D tensors, with the ifmap having a height H, width W, and number
of channels C, and the weight kernels having a height R, width S, and number of
channels C. It is also common to have multiple sets of filters, M, being applied to an
ifmap, in order to test for different features of the input. The output result of the
convolution operation, the output feature map (ofmap), has a height E, width F, and
number of channels M.

6



Figure 2.1: Mapping of a convolution operation (a) to an equivalent general matrix
multiplication (GEMM) (b)

2.3 Hardware Implementation of CNNs

Since their inception, research has focused on improving the inference accuracy of
CNNs/DNNs. However, this has come at the cost of CNN models increasing in size
and complexity [30]. This cost has also caused the computational overhead of process-
ing CNNs (in terms of computing latency, energy, and area) to increase to unsustain-
able levels. To continue to improve performance without also increasing computing
latency, energy and area to unreasonable metrics, there has grown a research focus on
improving the computational cost of these networks. Much of this on-going research
has been focused on improving the performance of the compute-heavy convolution
layer on hardware accelerators [18, 30].

The most common method to implementing the linear layers of computation in a
CNN, like the fully-connected and convolution layers, is to convert them into a general
matrix multiplication (GEMM) operation. To perform this conversion, both 3D input
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tensors are flattened into 2D matrices, as seen in Fig. 2.1b. Each channel of a weight
filter is flattened into a vector and then appended together in order, producing a final
weight matrix of width K=R×S×C. The height of the weight matrix, M, is equal to
the number of weight filters being applied to the ifmap. The ifmap is converted into
a Toeplitz matrix, whose values are set to reflect the multiplications and additions
that occur in the convolution operation [30]. The input feature matrix has a width
N=E×F, and height K, which matches the weight matrix width. As seen in Fig.
2.1b, in the equivalent GEMM form of the operation, each value of the output matrix
is obtained through the vector-dot-product between a row of the weight matrix, and
one column of the input feature matrix. This dot-product can be broken down into
several multiply-and-accumulate (MAC) operations. The overall GEMM operation
itself can then be thought of as a series of MAC operations that need to be computed.

To implement MAC operations, we require multipliers and accumulators in a
hardware accelerator. A typical GEMM accelerator contains multiple multipliers and
multiple adders connected together [4, 9, 11, 30]. To calculate all output features, we
require M ∗ N dot-products of K size. To achieve this, the hardware needs to have
K ∗M ∗ N multipliers and accumulators. If the number of multipliers and number
of adders available do not match with the multiplications and additions required for
a vector-dot-product, then the accelerator needs to break down the MAC operation
into partial sums (psums). For example, for a K sized dot-product, if we only had K/4
adders, we would need 4 psums to achieve the full dot-product. The psums need to be
accumulated in an extra required structure that collects the psums and reduces them
to the final output value. Thus, hardware accelerators for CNNs require multiple
multipliers, adders, and reduction hardware that can reduce psums. The accelerator
needs to support the flow of data through these employed multipliers, adders, and
reduction hardware for psum accumulation.

2.4 Flexible and Re-configurable Accelerator Networks

Hardware accelerators typically implement multiple MAC operations by employing
multiple multipliers and adders. The number of MAC operations that can be acceler-
ated in parallel depends on how many multipliers and adders are available. Typically
the number of multipliers and adders do not match the required amount. The MAC
operations required to process one CNN layer often have to then be folded into mul-
tiple temporal frames. Each temporal frame creates a psum, which then need to
be accumulated together to generate the final output. An example division of a
vector-matrix multiplication into temporal folds is presented in Fig. 2.2a, where it
is assumed the hardware dedicates only 2 multipliers and 2 adders for each MAC
operation. Due to the mismatch of the number of dedicated multipliers and adders
and the required amount for a MAC operation, the vector-dot-product that is needed
to generate one output value in the output feature matrix needs to be folded into
multiple temporal frames. Since there are twelve multiplications that need to oc-
cur, each MAC operation is folded into 12/2 = 6 temporal frames, each generating
a psum. The psums then need to be added together to generate the final output
feature. The psums from each MAC operation in a temporal frame contribute to one
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partial output matrix. The sum of these matrices produces the final output matrix.
Thus, to produce all output values, the multipliers and adders in the hardware need
to be capable of computing multiple MAC operations in parallel, producing partial
output matrices over multiple temporal folds which are added together to produce
the output.

Figure 2.2: Example of cluster mapping a GEMM operation (a) onto a flexible DNN
accelerator (b) over multiple temporal folds

The size of the matrices in the convolution operation vary across different layers
of a CNN. As a result, the number of psums needed also change dynamically across
different layers of the same CNN. It is imperative to design a flexible hardware that
can support different sizes of matrices and a variable number of psums that must
be accumulated together. This issue has been the subject of on-going research, with
many flexible spatial accelerators having been proposed to answer this challenge [4,
14,23,24]. Flexible spatial accelerators are typically broken up into distinct networks,
based on their focus of operation. As seen in Fig 2.3, these networks are normally
referred to as the distribution network (DN), multiplier network (MN), and reduction
network (RN). The DN is responsible for transmitting weights and input features
stored in the global buffer to the MN. These values can be transmitted in a broadcast,
multicast, or unicast manner, depending on how many multipliers need the same data.
Typically, a tree-based network is employed for the DN to allow for the different types
of data transmission. The MN is responsible for performing the individual MAC
operations that make up the vector-dot-products. This network usually consists of
a linear set of multiplier units, equivalent to the number of leaves in the DN tree-
topology. The RN is responsible for collecting and accumulating the products of the
MAC operations, or psums. As a whole, these three networks need to work together
to fully compute the variable sized vector-dot-products needed to calculate output
values across each layer of a CNN.

As the size of the matrices vary, and the number of psums needed change, the
MN and RN need flexibility to only engage as many multipliers and adders as needed.
When the size of the matrices is smaller than the number of multipliers, we see an
underutilization as some devices go idle, resulting in a loss of parallelism and an
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Figure 2.3: Typical architecture of a re-configurable DNN accelerator with a tree-
based DN topology and a linear MN

inefficient static power consumption cost of the idle devices [4, 14, 23]. If the dot-
product size is consistently larger than the multipliers, then the RN needs to be able to
achieve temporal reduction of psums. Prior works have addressed these challenges by
logically dividing the flexible spatial accelerator hardware into multiple clusters, with
one dot-product mapped per cluster. Typically, clusters are made by creating unique
memory footprints and communications patterns for each DNN layer, with the goal
of increasing utilization of computing resources. An example of this is presented in
Fig. 2.2b, where the vector-dot-product operations seen in Fig. 2.2a are mapped onto
a flexible spatial accelerator hardware. The input and output matrices are colored
by cluster to indicate how output values are calculated. As seen in Fig. 2.2b, in an
accelerator with 8 multiplier units, a possible mapping is to dedicate two multipliers
and their connected circuitry per cluster. In this setup, four dot-products are able to
be computed in parallel. Since the number of multipliers does not match the required
amount for each full MAC operation, the hardware will run for 12 multiplications
/ 2 multipliers = 6 iterations, creating 6 psums that are accumulated together to
produce the final output value. Thus, the flexible spatial accelerator is able to utilize
clustering to efficiently use all multipliers and compute multiple MAC operations in
parallel with temporal folding. By achieving both spatial and temporal end-to-end
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flow of data, we see that flexible spatial accelerators are able to handle mixed sized
GEMM operations.

2.5 Photonics Enabled DNN Accelerators

To continue to improve the performance of DNN accelerators and inference accuracy,
various accelerators that utilize photonics have been proposed. Several photonic com-
puting based accelerators have been introduced that handle the computation of the
input and weight vector-dot-products with photonic devices. Albireo [25] is a pho-
tonic DNN accelerator that uses photonic devices for optical math in order to improve
performance and broadcasting capabilities. SCONNA [31] aims to combine stochas-
tic computing and photonics in order to improve the vector-dot-product operation.
OXBNN [32], LightBulb [39], and ROBIN [29] are all photonic-based Binary Neural
Network accelerators that convert CNN models to 1-bit precision in order to improve
performance and inference accuracy.

In addition, there are also photonic-interconnect based accelerators that aim to
overcome the high latency and energy limitations of metallic interconnects. Typically
in these accelerators, the computation of psums is kept entirely in electrical processing
elements, while the movement of data through the network is done through photonic
interconnects. SPRINT [16], ASCEND [17], and SPACX [15] are all chiplet-based ac-
celerators that utilize photonic interconnects in this way for it’s distance-independent
latency, and the ease of switching between different communication patterns.

2.6 Motivation

The RN it vital for the computation of output values, and consumes a large portion of
computing energy and time [14, 20]. Due to this, there is strong research motivation
to focus on improving performance of reduction in DNN accelerators [14, 20, 23].
Current state-of-the-art flexible spatial accelerator RNs are composed of a network of
electrical links and adders, which handle spatial and temporal psum communication
and accumulation from the multiplier units to memory [14, 20, 23]. In these flexible
spatial accelerators, the electrical accumulators have a limited fan-in of up to two
or three values maximum [14, 20]. In addition, electrical links are limited to one
channel per physical link, resulting in a fan-in of only one. Due to these limitations,
spatial reduction of only two or three psums is possible by one accumulator, with each
psum needing to arrive on a separate physical link. The limited fan-in of electrical
accumulators and links increases the required number of accumulators and links in
the RN with logarithmic complexity, resulting in a tree-based topology of electrical
links and accumulators. For example, the electrical RN S − Tree from [20] requires
O(n − 1) number of electrical accumulators and O(2n − 2 + n/2 − log2(n/2) − 1 ×
ReLU(1−⌊(n−1)/16⌋) number of electrical links to accumulate n psums. This large
electrical accumulator and links complexity leads to a large energy, latency, and area
overhead, furthering the motivation of on-going research to improve performance of
the RN.
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By studying photonic networks, it has been shown that photonic interconnects
can serve as an alternative to electrical interconnects to overcome their inherent lim-
itations. The fan-in of photonic interconnect links can be increased beyond the one
channel per link limitation of electrical links, by utilizing wavelength-division mul-
tiplexing (WDM). WDM is a property of photonic interconnects that allows for a
superposition of multiple optical data streams together on the same waveguide using
different wavelengths. This enables spatial parallelism of data, increasing the fan-in
to much larger metrics than possible in electrical links. In addition, it has been shown
that we can spatially and temporally accumulate optical information through an in-
tegrated circuit utilizing a photodetector and time-integrating receiver (TIR) [27,32].
This photonic accumulator circuit is able to take advantage of the improved pho-
tonic link fan-in from WDM, increasing its own fan-in far beyond the small numbers
electrical accumulators are capable of. Thus, by integrating both photonic intercon-
nects and photodetector-TIR based accumulators in a flexible spatial accelerator, it
is possible to improve performance beyond what electrical links and accumulators
are currently capable of. In this work, we aim to leverage these benefits of photonic
interconnects and devices to create a RN that does that.

Copyright© Bobby Bose, 2023.

12



Chapter 3 Photonic Reduction Network Architecture and Operation

3.1 Introduction

In this chapter, we discuss the photonic RN’s architecture and overall operation of
collecting and reducing psums from the MN to memory. First, we present a high-level
overview of the whole network, detailing how our RN handles the challenges present
in flexible spatial accelerator RNs (Section 3.2). Next, we go into further detail
discussing the deeper structure of the overall photonic RN (Section 3.3). We focus on
the two main circuits, the reduction topology assembler (Section 3.3.1) and photo-
charge accumulator (Section 3.3.2), that are used to answer the challenges presented
in Section 3.2. After this, we explain the full psum collection and accumulation of
the photonic RN, by presenting an example operation and cluster mapping (Section
3.4). We separate the description of the operation into three parts: psum signal
conversion to the optical domain and routing to accumulators (Section 3.4.1), psum
accumulation within the accumulators (Section 3.4.2), and conversion of the final
output value back into the digital domain to send to memory (Section 3.4.3). Lastly,
after the example we derive the O() complexities of our photonic RN, in terms of
both psum reduction latency and hardware cost, and compare it to current state-of-
the-art electrical RNs (Section 3.5). Both through the example and O() complexity
presentations, we demonstrate how our photonic RN is able to collect and accumulate
psums from the MN to memory, while displaying improvements over current state-
of-the-art electrical RNs.

3.2 Network Overview

To address the shortcomings of current state-of-the-art flexible spatial accelerators, we
propose a new photonic RN design, seen in Fig. 3.1, that implements the benefits of
photonic interconnects and accumulators on top of existing flexible spatial accelerator
structures. First, our RN needs to address the multiple challenges that flexible spatial
accelerators already currently do. Since typically the available number of multipliers
and adders for a cluster does not match the required amount to perform a MAC
operation, our RN needs the ability to fold the MAC operations required for a CNN
layer into multiple temporal frames. The psums generated from each frame need to
then be summed together in some form of reduction hardware. In addition, as input
matrix sizes change across CNN layers, our RN should only engage as many multipliers
and adders as needed. To implement this, the RN needs to have capabilities to
logically divide the network into clusters, allowing it to accelerate multiple MAC
operations in parallel and efficiently utilize all computing resources. Therefore, for our
RN to be able to compete with current state-of-the-art flexible spatial accelerators, we
require it to be capable of temporally folding MAC operations in time, create clusters
based on variable-sized matrices, and have hardware capable of accumulating the
generated psums.
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Figure 3.1: Architecture of a 256 PE, photonic interconnect based reduction network

Our photonic RN handles the required logical division of the network into clusters
through a new circuit we introduce, the reduction topology assembler (RTA). Each
processing element (PE) in the network (equivalent to multiplier units in the MN)
requires an RTA, which all work together to create the logical clusters. Each cluster
is assigned a unique wavelength, on which it’s computed psums will be modulated
onto. A comb laser source provides multiple wavelength carriers through a power
waveguide which runs through the RTAs, providing multiple wavelengths to choose
from for each cluster. The RTA converts the input digital psum value into 1 or more
optical pulses, where the energy packetized in the pulse represents the psum value, and
imprints this onto the selected carrier wavelength for the cluster. The optical pulses
are routed onto a positive (+ve) or negative (-ve) accumulation waveguide, which
both run through the RTAs. The accumulation waveguide the pulses are routed to
is based on the sign of the psum value. Each active PE performs this task, resulting
in a homodyne superposition of optical pulses representing all psums in the cluster
for the current fold. We require only one +ve and -ve accumulation waveguide to
accumulate all psums in all clusters due to WDM, which increases the fan-in of the
accumulation waveguides far beyond the limited fan-in of only one that electrical links
have. Thus, by selecting separate wavelengths per cluster and utilizing WDM, we are
able to logically divide the network into clusters, while also keeping the number of
required photonic interconnect links to a low minimum.

The photonic RN requires some reduction hardware that is able to accumulate
psums spatially from different PEs, and also temporally over multiple temporal frames
created by folding a MAC operation over time. We implement this through electro-
photonic structures we introduce, named photo-charge accumulators (PCAs). Each
PCA is an accumulator which has the capability to spatially accumulate the ho-
modyne superposition of optical pulses representing psums in a cluster through a
photodetector-TIR circuit [27, 32]. In addition, each PCA can temporally accumu-
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late the psums that arrive in separate temporal frames by holding the partially cal-
culated output value between folds. PCAs are able to overcome the limited fan-in
of two or three seen in electrical adders due to each cluster only requiring one +ve
and -ve accumulation waveguide to transfer all psums, and the PCA circuit being
able to accumulate all incoming psums in one cycle. In short, together the RTAs and
PCAs work together to provide end-to-end communication from the PEs to memory,
are able to satisfy the requirements of flexible spatial accelerators to both spatially
and temporally accumulate psums through multiple clusters and temporal frames,
and improve on the shortcomings of current accelerators due to the limited fan-in of
electrical links and adders.

3.3 Structure

In order to improve on the design of current state-of-the-art flexible spatial accel-
erators structures by integrating photonic interconnects and devices, we design our
proposed photonic RN based on the interconnected accumulator structures seen in
current flexible spatial accelerators [14, 20, 23]. Therefore, our RN is intended to be
connectable with already existing spatial accelerator DNs and MNs. A model depict-
ing how our proposed RN would look with 256 PEs can be seen in Fig. 3.1. As can be
seen, our RN utilizes the RTAs and PCAs previously discussed, along with additional
photonic interconnects (waveguides) and microrings (MRs), to create a end-to-end
collection and accumulation network from the PEs to memory. By completing this
path of data communication, our RN is able to perfectly fit in the typical flexible
spatial accelerator structure seen in Fig. 2.3.

3.3.1 Reduction Topology Assembler (RTA)

The RTAs in our network serve three primary goals: transforming a digital psum
signal into packetized optical energy, creating unique cluster mappings per CNN layer
to parallelize MAC operations and efficiently use all computing resources, and routing
signals from the PEs to the accumulators. The first task each RTA performs is the
conversion of digital psum signals into an optical representation. To perform this,
each active RTA reads in the digital psum value from its attached PE and sends it to
a digital-to-time converter (DTC) [3], as seen in Fig. 3.2. This transforms the signal
into a pulse train, where the total pulse length is proportional to the original psum
value. Since DTCs have been shown to be able to operate in the low picosecond
range [12, 13], with measured resolutions as low as 5 ps [3], the conversion from
digital to time domain does not contribute significantly to overall network latency
time. The generated pulse train feeds an electro-absorption modulator (EAM) [7,38],
which is used to modulate optical power on a waveguide. The EAM uses negative
logic and is by default powered on in order to not release and modulate any power
onto the waveguide. The pulse train signal drives the EAM, allowing it to release
power, modulating the optical power on the waveguide proportional to the time signal
length. In order to keep the power released by the EAM to a minimum, we allow it
to modulate power up to only 8-bit precision in a single modulated output pulse. To
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accommodate higher bit precisions of up to 32, which is seen with neural networks,
the EAM outputs additional modulated pulses, each representing another 8 bits.
Therefore for each psum, the EAM may output up to 4 packets of modulated optical
energy to represent up to 32 bits. With this, the psum signal has been transformed
from a digital value into packet(s) of optical energy.

In addition to converting psums into an optical representation, the RTAs are
also responsible for logically dividing the network into clusters, where each cluster
is responsible for the computation of one MAC operation. Cluster mappings are
created uniquely for each CNN layer, in order to efficiently utilize all computing
resources and minimize wasted static power consumption from unused devices. For a
model with X PEs, cluster sizes can ranges from 2 PEs/cluster to X/2 PEs/cluster.
For example, in the model depicted in Fig. 3.1 with 256 PEs, the cluster size can
range from 2 to 128. To separate these clusters in the network, we utilize WDM
to improve the fan-in of the photonic interconnect links. This allows us to provide
all potentially needed wavelengths through one power waveguide from the off-chip
comb laser. Hence, by logically dividing the network into clusters by using separate
wavelengths and WDM, we can parallelize multiple MAC operations and efficiently
use all computing resources, without needing to increase the number of required
photonic interconnect links to the numbers seen in electrical RNs.

In order for the RTAs to separate clusters by wavelength, they need to also route
psum signals through their structures and to the accumulators correctly, in order to
properly utilize each cluster. There are many routing challenges that the RTA answers
to accomplish this. Due to the inability to represent psum signage in packetized
optical energy, the photonic RN requires two paths of psum flow to the accumulators,
to carry positive (+ve) and negative (-ve) psums. Within the RTA, this means
that the circuitry to convert the pulse train to optical energy needs to be doubled,
as seen in Fig. 3.2. We refer to the two paths of psum flow as the +ve and -
ve tracks. The output of the DTC feeds a demultiplexer, which routes the pulse
train to either the +ve or -ve track of the network based on the psum signage. To
ensure that optical power is only modulated on the correct wavelength for the psum’s
cluster, a MR first modulates out a portion of the optical power from the power
waveguide at the specified wavelength onto an intermediate waveguide, which the
EAM is placed on. All MRs have a limit to the number of wavelengths they can
tune to. No MR currently proposed has the capabilities to tune to the possible 128
wavelengths required. To solve this issue, we cascade multiple MRs together, who in
total can tune to 128 possible wavelengths. It has been shown that a channel gap
of 0.2 nm is possible for MRs [22]. With a reasonable tuning range of 6.4 nm, each
MR is able to be tuned to 32 unique wavelengths through thermal and electro-optic
tuning [5], as seen in Fig 3.3. We would then need 4 MRs in a set to cover the
necessary 128 wavelengths required for this model. In this case, the first MR would
be tunable to λ0− 31, the second to λ32− 63, the third to λ64− 95, and the fourth
to λ96 − 127. In addition to four MRs, the RTA also requires four intermediate
waveguides and four EAMs per track. A second demultiplexer is used to route the
psum pulse train representation to the EAM, whose corresponding MR can be tuned
to the current cluster’s specified wavelength. Another MR couples the EAM output
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Figure 3.2: Reduction Topology Assembler used to select carrier wavelength, convert
input into optical pulses, and route to an accumulation waveguide
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Figure 3.3: Free Spectral Range of 4 MRs cascaded together to cover 128 wavelengths.
Each MR can select from 32 possible wavelengths.

onto an accumulation waveguide, which is used to finish routing the psum signal to
the accumulators. Each PE in a cluster modulates its psum onto the accumulation
waveguide, thereby separately accumulating the total positive and negative psums as
a homodyne superposition of optical pulses. By utilizing WDM to separate clusters,
the photonic RN requires only one accumulation waveguide for each track to carry
all psums to the accumulators. Thus the RTAs are successfully able to convert all
psums into packetized optical energy, separate them by clusters, and route all data
from the PEs to the accumulators.

3.3.2 Photo-Charge Accumulator

To improve on the limited fan-in of electrical accumulators in typical flexible spa-
tial accelerators and also incorporate temporal folding of MAC operations, our RN
uses electro-photonic accumulator structures, called PCAs, to accumulate psum val-
ues. Each cluster in the network only requires one PCA to accumulate all psums
in its MAC operation, due to the structure’s increased fan-in. Therefore, there are
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a number of PCAs in the hardware equal to the maximum number of clusters, or
potential carrier wavelengths. To collect the psums from a cluster on the accumula-
tion, the total positive and negative psums are filtered out by ring resonators to the
PCA corresponding with the specified wavelength for the cluster, as seen in Fig. 3.1.
The PCA uses two photodetectors to detect the incoming homodyne superposition of
optical pulses representing the psums on the +ve and -ve accumulation waveguides.
During each pulse of incoming power, the photodetector outputs a current. The two
photodetectors generate currents that are directed in opposing directions, allowing
the positive and negative psums to accumulate together. As each psum may be rep-
resented as up to four pulses of packetized optical energy, the EAMs in the RTA are
calibrated so that the same pulse of optical energy from each RTA in the cluster ar-
rives at the PCA simultaneously, thereby accumulating photons on the photodetector
during the same interval and contributing to the same current output. Each of the
four current outputs is routed through a demultiplexer and drives a separate capac-
itor, storing a voltage proportional to the current pulse length. A time-impedance
receiver (TIR) connected to each capacitor is used to fully capture the pulse if it’s
time length exceeds the inverse bandwidth of the photodetectors [27]. In addition,
the stored partial output value can be held in this capacitor-TIR circuit, allowing the
PCA to accumulate psums over multiple temporal frames [6]. Thus, the photonic RN
requires only one PCA per cluster to accumulate all psums over all temporal folds of
the MAC operation.

Although the incoming pulses of packetized optical energy for each psum represent
different 8-bit parts of the whole psum representation, the bit position weight of
the number is not present in the modulated power. For example, the second pulse
represents bit positions 8-15 of the psum and should therefore have a weight of 28. To
correct this, the PCA must apply these bit weights before the individual 8-bit voltage
representations can be summed together. The four modulated pulses representing
the psum have weights 20, 28, 216, and 224 for the least to most significant 8 bits
respectively. To apply this weight, the capacitance on the capacitors storing the
8-bit voltages is set based on the equation for standard parallel plate capacitors,
Q = CV . Since capacitance and voltage have an inverse relationship, the weights
to apply to the capacitance flip for the least to most significant 8 bits. Therefore,
the capacitance for the capacitor for the least significant 8 bits is weighted 224×
more than the capacitance for the capacitor storing the most significant 8 bits. This
is depicted in Fig. 3.4. Although not depicted in the figure, the capacitor storing
voltage for bits 8-15 and bits 16-23 would have capacitance 216×C0 and 28×C0. Once
all psums for the cluster’s MAC operation are received, the PCA sums the individual
voltages together using an analog op-amp voltage adder. Therefore, by manipulating
the capacitors storing the psum voltages for a cluster, the PCA can create an accurate
voltage representation of the final output value.

Before the total output voltage can be converted back into a digital value to be
sent to memory, additional voltage manipulation must be performed. Currently, it
is impossible to have an ADC with 32-bit precision on an integrated CMOS chip.
To resolve this issue, the PCA breaks down the total accumulation result into its
upper and lower 16 bits, reduces the weight of the voltage representing the upper 16
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Figure 3.4: Photo-charge accumulator architecture

bits, and then uses two 16-bit ADCs to convert the result and populate one 32-bit
register. A closer look at the voltage split and reduction circuit designed for a simpler
4-bit value is explained in more detail with a dedicated figure in Section 3.4.3. This
circuit is driven by the output of the op-amp adder. The op-amp adder generates a
constant short circuit current of 20 mA and is capable of driving a capacitive load
of 500 pF. Designing a capacitor or capacitive circuit to be under 500 pF is within
reason, and therefore no additional circuitry is required for the adder output. Once
the voltage split and reduction is complete, two 16-bit ADCs then read in the upper
and lower voltages, and populate the upper and lower 16-bits of a 32-bit register with
their result respectively. Thus, the final output value produced from the summing
of all psums in the cluster over all temporal folds is recorded in memory, and the
computation of the MAC operation is over.

3.4 Operation and Example Mapping

To better explain the end-to-end communication and operation of the photonic RN,
an example mapping and operation is presented. Consider the hardware setup seen
in Fig 3.1, with 256 PEs. To create clusters, first the optimal cluster size must be
determined in order to parallelize the proper amount of MAC operations to reduce
the number of unused devices, which still consume static power. If 4 PEs per cluster
is determined to be the optimal mapping, then we would have 256 total PEs / 4 PEs
per cluster = 64 clusters mapped on the RN. As seen in Fig 3.5, the first four PEs
(0-3) would belong to cluster 0, the second set of four PEs (4-7) would be mapped to
cluster 1, etc. A unique wavelength would be assigned to each cluster (λ0 for cluster
0, λ1 for cluster 1, etc.). The first 64 PCAs, whose MRs are tuned to λ0 − 63, are
assigned to clusters 0-63 respectively. Together, these choices provide the RTAs and
PCAs the necessary information to divide the network into the logical clusters.
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Figure 3.5: Example of mapping cluster size = 4 in a 256 PE photonic RN model

3.4.1 Partial Sum Signal Conversion and Routing

The psums output from the PEs first need to be sent through the RTAs to be con-
verted into packetized optical pulses, and routed to the correct waveguides on the
right wavelengths. For ease of explanation, we will focus on cluster 0. To accumulate
the psums in this cluster, first PE0-3’s MR that is tunable to λ0 in the first MR
set will modulate out a portion of the optical power from the power waveguide on
that wavelength onto the MR’s intermediate waveguides. This occurs in both the
positive and negative tracks of the RN. Based off the device parameters discussed
in Section 3.2.1, the first MR would be responsible for λ0. Next PE0-3 sends their
psums through their RTA DTCs to generate a pulse train each, where the number of
pulses is proportional to the absolute value of the psum. For example, if PE0 had a
psum of 6, PE1 had a psum of -4, PE2 had a psum of -3, and PE3 had a psum of
8, then their DTCs would generate pulse trains of 6, 4, 3, and 8 pulses respectively,
with quantization value TQ length per pulse. After the pulse trains are generated, the
first demultiplexer routes the pulse trains to either the positive or negative path of
the RTA, based on the psum polarity. For this example that means PE0 and PE3’s
pulse trains would be routed to the +ve track, and PE1-2’s pulse trains would be
routed to the -ve track. Another demultiplexer then routes this signal to the EAM
on the intermediate waveguide connected to the active MRs for this mapping. In this
example, the +ve track’s demultiplexer routes PE0 and PE3’s signals to the positive
intermediate waveguide connected to the first MR, and the -ve track’s demultiplexer
routes PE1-2’s signals to the negative intermediate waveguide connected to the first
MR. The output signals from the DTCs drive the EAMs, modulating the power on
λ0 on the intermediate waveguides proportional to the time signal lengths. In this
example, we will assume PE0 and PE2’s psums are between 9-16 bits long, and PE1
and PE3’s psums are between 1-8 bits long. That means PE0 and PE2’s EAM will
output two pulses of packetized optical energy to represent their psums. On the
other hand, PE1 and PE3’s EAM will only need to output one pulse of packetized
optical energy to represent their psums. At the end of each intermediate waveguide
is another tuned MR, from the second set of MRs, that transfers the power on λ0
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to the +ve or -ve accumulation waveguide. In this example, the modulated power
representing PE0 and PE3’s psums is coupled and superpositioned together on the
+ve accumulation waveguide, and the modulated power for PE1-2 on the -ve accu-
mulation waveguide. With this, the RTAs for this cluster have finished converting
the input psums to packetized optical energies, and have routed these signals to the
correct accumulation waveguides.

3.4.2 Partial Sum Accumulation

Now that all psums in the cluster for this temporal frame have been routed to the
accumulation waveguides, the associated PCA for the cluster must accumulate them
all together. To do this, first, further down the accumulation waveguides, the MRs
tuned to λ0 would pick up the optical power on the two accumulation waveguides
and route it to a PCA. The photodetectors in the PCA are driven by the positive
and negative accumulated psum signals, and output a current during each pulse.
The positive and negative psum currents, which have opposing directions, combine,
adding the total positive and negative psums together. As seen in Fig. 3.6a, the
psum signals from each PE in the cluster contribute to the combined output current.
Since PE0 and PE3 had positive psums, their combined photodetector currents are
positive, whereas PE1-2’s combined photodetector currents are negative due to their
psums being negative. The incoming psums are represented as up to 16-bits in this
temporal frame for this cluster, and therefore the PCA requires two periods X1 and
X2 to read in both pulses, each representing 8-bits of the psums. The current output
from each period drives a separate capacitor-TIR circuit. As seen in Fig. 3.4, the top
two capacitor-TIR circuits are required to store voltages representing the first and
second 8-bit parts of the accumulated psums. During X1, the pulses representing the
first 8-bits of the psums arrive, and the capacitor for TIR0 is charged, with TIR0
maintaining an output voltage representative of the accumulated 8-bit part of the
psums, as seen in Fig. 3.6b. While accumulating, we close S11, allowing the current
to accumulate charge on the capacitor. The second pulse representing the next 8-bits
arrives during X2, and drives TIR1 and it’s capacitor. While this is occurring, we
reopen S11 and close S21, allowing charge to accumulate on the next capacitor. The
voltage maintained by TIR1 is weighted 28× the voltage in TIR0, since this represents
bits 8-15. Note that since PE1 and PE3’s psums were less than 9 bits, they did not
contribute to this second voltage. With this finished, the psums in this cluster for
this temporal frame have now been successfully accumulated by the PCA.

Although temporal frame 1 has concluded, before the final output value can be
achieved, the PCA still needs to accumulate psums from the remaining temporal
frames for this cluster. After temporal frame 1, the cluster moves onto temporal
frame 2. In between temporal frames we open S11 and S21, and only close it when new
psums arrive. This allows the capacitor-TIR circuits to hold the partially accumulated
values. During temporal frame 2, PE0-3 potentially output new digital psums values
to their RTAs, following the same procedure detailed in the previous section. In
this example, let’s assume PE0-2 all output new psums up to 16 bits long during
temporal frame 2. These new psums eventually lead to new combined photodetector
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Figure 3.6: Example of the PCA accumulating psum signals from a 4 PE sized cluster
over two total temporal frames. (a) Combined photodetector (PD) output current
per PE for two temporal frames. Period X1 captures the first pulse of a psum signal,
and period X2 captures the second pulse. Psum values are between 1-16 bits in
example. (b) Voltage output of the two active TIRs during both temporal frames.
TIR0 captures the pulse representing the first 8-bits, and TIR1 captures the pule
representing the second 8-bits. (c) Total voltage output from the analog op-amp
voltage adder after both temporal frames. Not to scale with TIR outputs.
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output currents, as seen in Fig. 3.6a. These currents will again drive TIR0 and
TIR1, accumulating charge on their capacitors and modifying the held voltage, as
seen in Fig. 3.6b. Once accumulation in this temporal frame is concluded, the cluster
will move onto the next frame. In this example, we will assume their are only two
temporal frames needed to fully compute the dot-product. In this case, once temporal
frame 2 has concluded, the PCA moves onto summing the individual accumulated
psum parts. To do this, first S12, S22 and S1 close, and we ensure that S11 and S21 are
open. This connects the active capacitor-TIR circuits to the analog op-amp voltage
adder, summing the weighted voltages together. As seen in Fig. 3.6c, the voltage
stored in the adder represents the final output value summed from all psums over
every temporal frame for this cluster. Thus, psum accumulation has concluded for
this cluster.

3.4.3 Output Division and Reduction

Although the output of the op-amp adder represents the final output value, it must
first go through the voltage split and reduction circuit to divide the output into its
upper and lower 16 bits before it can be sent through ADCs and back to memory.
An example operation of the split and reduction circuit can be seen in Fig. 3.7. For
ease of demonstrating, let us initially assume the op-amp adder output actually only
represents a 4-bit value instead of 32-bits, and that the ADCs can only handle 2-bit
precision. To first create the split in voltage, we must determine how many voltage
levels are present in a 4-bit value. To do this, we look at how many numbers can
be represented with 4 bits, or simply take 24 = 16. The lower 2 bits of this number
represent 22 = 4 of these voltage levels, and therefore the upper 2 bits represent the
remaining 24−22 = 12 voltage levels. To split the voltage, we need to divide it by this
ratio of 12 : 4 = 3 : 1. We use series capacitors to perform the split, as seen in Fig. 3.7
connected through S3. Capacitors in series share the same charge Q, and split their
voltage based on their capacitances. Since capacitance and voltage have an inverse
relationship, the split ratio is flipped, becoming 1 : 3 respectively. When splitting the
voltage, we open S1 and close S2 and S3, allowing the output of the adder to charge
both capacitors. The top capacitor fills with a voltage representing the upper 2 bits,
while the bottom capacitor’s voltage represents the lower 2 bits. If we assume a 5V
adder output, the series capacitors will split the voltage into 3.75V and 1.25V for the
upper and lower 2 bits, as seen in Fig. 3.7b. These two voltages now proportionally
represent the upper and lower 16-bits of the output value, completing the voltage
division part of this circuit.

Before the upper 2 bit’s voltage can be sent through an ADC, it’s bit position
weight needs to be removed and the voltage scaled down through the voltage reduction
part of this circuit. For a 4-bit number, the upper 2 bits have a weight of 22 = 4. We
perform the voltage reduction through parallel capacitors, seen in Fig. 3.7 connected
by S4. When a capacitor is placed in parallel with an already existing capacitor,
the shared voltage over them reduces by an amount equivalent to the sum of their
capacitances. Therefore, to reduce the voltage representing the upper 2 bits by 22,
we use parallel capacitors, whose added capacitance is 22× the original capacitor. As
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Figure 3.7: Example operation of the voltage division and reduction circuit in the
PCA. Circuit depicted is set up to split a 4-bit TIR output value into two 2-bit parts.
(a) No current flow when both switches are open. (b) Voltage division of voltage
adder output when S3 closes. (c) Voltage reduction of the upper 2 bits’ voltage when
S3 opens and S4 closes.

seen in Fig. 3.7c, this results in another capacitance ratio of 1 : 3 which reduces the
voltage from 3.75V to 0.9375V. While this reduction is occurring, we open S2 and
S3 and close S4. Once the voltage reduction is done, both upper and lower voltages
are read by ADCs, which then populate the upper and lower 2 bits of a 4-bit register
with their outputs, thus completing the voltage division and reduction of the initial
4-bit value.

The same procedure used to calculate the 4-bit split and reduction can be extended
to a 32-bit value. As seen in Fig. 3.4, this results in a split ratio of 1 : 216 − 1
for the upper and lower 16 bits, and a total reduction capacitance of 216 over the
parallel capacitors setup. After splitting and reducing the output value into it’s
upper and lower 16 bits, both ADCs will read in the value and convert it into a digital
representation. These two 16-bit values will then be sent to memory, populating the
upper and lower 16 bits of a 32-bit register. With this complete, the end-to-end
communication and operation of psum collection and accumulation for cluster 0 is
finished. While this is occurring, clusters 1-63 will also be undergoing the same
process through the RN, using different wavelengths and PCAs as discussed. The
same +ve and -ve accumulation waveguides are used for all parallel accumulations,
since we employ WDM and each cluster uses a unique wavelength. Once computation
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of this CNN layer is complete, a new cluster mapping will be determined for the next
layer.

3.5 Reduction Complexity

As seen in Table 3.1, the photonic RN exhibits a psum reduction time complexity of
O(Tp×28×⌈b/8⌉× i), where Tp is the photonic cycle time, b is the bit precision, and
i is the number of folds needed to complete psum accumulation for the output value.
Tp remains consistent throughout testing, at a set 5 ps. The primary contributing
factor to changes in reduction time in the photonic RN is the bit precision of the
psums. As discussed prior, the EAM is able to support up to 8-bit precision psums in
one modulated output pulse. In order to support higher precision psums, the EAM
outputs an additional modulated pulse, increasing the reduction time. The reduction
complexities of several electrical RNs from [20] that we evaluate against can be seen in
Table 3.1. In contrast to the photonic RN, the electrical RN’s reduction complexities
are independent of bit precision, but instead are heavily impacted by the number of
psums to accumulate, n. In addition, as these RNs are not photonics-based, they
operate at a different clock speed, with a electrical cycle time, Te = 1.25ns.

To analyze the reduction time complexity, we compare our photonic RN against
the best performing electrical RN from [20], STIFT. As seen in Fig. 3.8, we compare
both networks latency to accumulate a number of psums (n) while sweeping the bit
precision (b). We observe that the photonic RN remains consistent as n increases,
which is as expected due to the reduction complexity having no direct relationship
with this factor. However, we do see a small bump in the reduction time, as b
increases from 8 to 9 and the EAM is required to output a second modulated pulse
to support the higher bit precisions. STIFT experiences the opposite relationship,
with it’s reduction time remaining consistent as b changes, but increasing with n.
Comparing the two RNs, we observe that the photonic RN performs better in terms
of reduction time across all b and almost all n. The only situation in which STIFT
performs better is when n < 7. However, in practice, n would rarely be this small,
and tends to be on the larger end of the sweep.

When looking at the hardware complexity of the RNs, the benefits of the photonic
RN again become clear. The number of channels needed to accumulate all psums is
n in the photonic RN, since accumulation occurs in the PCA, and therefore we only
require a channel per psum being sent. Aside from PT and ST-Linear which are
fairly simple in hardware structure, due to the low fan-in of the electrical links and
accumulators, the electrical RNs require a tree-based RN topology in order to fully
collect and reduce the psums. This structure is very costly in terms of hardware
complexity, and requires a sizable number of channels to build the tree. In addition,
although the reduction time complexity of the electrical RNs is independent of the bit
precision, the hardware complexity is not. The channels in the electrical RNs need to
be at least b bits wide, in order to correctly accumulate two psums in an adder. In
contrast, due to information in the photonic RN being represented as analog signals,
the channels only need to be 1 bit wide. The photonic RN requires just ⌈b/8⌉ + 1
adders (TIRs) to accumulate all psums for one output value. This is possible since
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Table 3.1: Reduction latency and hardware complexities of different RNs. n is the
number of psums to accumulate, i is the number of folds, l is the number of levels in
the adder tree network, b is bit precision, Te = 1.25ns is electronic cycle time, and
Tp = 5ps is photonic cycle time

RN Time # Channels Channel Size # Adders

PT O(Te × n) O(1) O(b) O(1)
ST-Linear O(Te × n) O(n/i) O(b) O(n/i+ 1)

S-Tree O(Te × (i+ l)× log2(n/i)) O(2n− 2 + n/2− log2(n/2)− 1×ReLU(1− ⌊(n− 1)/16⌋) O(b) O(n− 1)
ST− Treeac O(Te × i× log2(n/i)) O(2n+ n/2− log2(n/2)− 1×ReLU(1− ⌊(n− 1)/16⌋) O(b) O(n)

STIFT O(Te × i× log2(n/i)) O(2n+ n/2− log2(n/2)− 1×ReLU(1− ⌊(n− 1)/16⌋) O(b) O(n)
Photonic RN O(Tp × 28 × ⌈b/8⌉ × i) O(n) O(1) O(⌈b/8⌉) + 1

the PCA is capable of temporal accumulation, and therefore we only require a adder
for each of the four 8-bit parts of the psum, as well as the analog op-amp voltage
adder. S-Tree, ST− Treeac, and STIFT instead all require an entire tree-based adder
unit structure to accumulate all psums. Although PT and ST-Linear do not require
this structure, the trade-off is that they have a much higher reduction latency, even
greater than the other electrical RNs.

We compare the reduction hardware complexity by evaluating the total energy cost
to accumulate all psums in the photonic RN and STIFT, as both b and n are swept.
As seen in Fig. 3.9, the photonic RN maintains a consistent energy consumption as
b changes, and increases slowly as n increases. This is as expected, after observing
the relationships in the hardware complexity equations. In contrast, STIFT’s energy
consumption increases with both b and n. At lower b and n, both RN’s energy is
about equal. However, as b and n increase, STIFT’s energy quickly exceeds the
photonic RNs. Based off the hardware complexity equations, we can infer that this
rapid increase is due to STIFT’s positive relationship with both b and n, resulting in
it’s reduction energy increasing at a higher rate than the photonic RN’s.

Copyright© Bobby Bose, 2023.
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Figure 3.8: Comparison of reduction latency to reduce different number of partial
sums over different bit precisions
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Figure 3.9: Comparison of reduction energy to reduce different number of partial
sums over different bit precisions
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Chapter 4 Evaluation

4.1 Evaluation Setup

We evaluate our photonic RN against the S-Tree, ST− Treeac, and STIFT RNs de-
scribed in [20], which are based on the MAERI [14] and SIGMA [23] RN structures.
To model these networks, we extended the simulator developed for the SCONNA ac-
celerator [31] to handle electrical networks. This is a transaction-level, event-driven
python-based simulator originally designed to evaluate for SCONNA and other pho-
tonic accelerators. In addition, the simulator implements convolution to toeplitz
matrix conversion and clustering.

We set hardware configuration parameters similar to [20], using two 512-MiB
HBM2 DRAM modules, in order to maintain accuracy between tested RNs. We use
an output-stationary dataflow for all evaluation and maintain a 8-bit precision for
the psums. A pipe-lined cache is assumed to be used, resulting in a cache latency
of only 1 cycle. As seen in Fig. 4.1, a tree-based DN and a linear MN are set and
kept consistent throughout testing. It should be noted that the photonic RN does
not require buffers between the MN and RN, and instead sends psums directly from
the PEs (multipliers) to the RN. In addition, S-Tree requires an extra connection
(not depicted in Fig. 4.1) from memory to the RN, in order to perform accumulation
folding. ST− Treeac, STIFT, and the photonic RN all perform accumulation folding
within the RN itself.

We evaluate each RN for latency and energy-efficiency (FPS/W) over four dif-
ferent DNNs: GoogLeNet, ResNet50, DenseNet121, and VGG16. For each DNN,
we test with set cluster sizes of 2, 4, 8, 16, 32, 64, and 128. In addition, the area
for our photonic RN is calculated and compared to the other tested RNs through a
footprint-efficiency analysis (FPS/mm2), as well as other photonic interconnect based
accelerators. Power and area metrics for the components in our photonic RN are pre-
sented in Table 4.1. The required laser power was calculated based off the insertion
losses incurred through the path light travels in the network, as seen in Table 4.2.
The calculated required laser power came out to be -23.154 dbm, which is equivalent
to about 4.837µW.

4.2 Latency

As seen in Fig. 4.2, the photonic RN achieves the lowest latency across all tested
DNNs. This is followed by ST− Treeac and STIFT, which exhibit similar latency’s
due to their identical reduction complexity. S-Tree performs the worst out of the
tested RNs, which is as expected since it is unable to perform accumulation folding
within the RN itself and requires reads and writes to memory. The photonic RN’s
low latency can be attributed to it’s low reduction complexity which arises from being
able to accumulate all psums in the network in just one cycle per 8-bit pulse. This is
due to the improved fan-in seen by the photonic interconnect links and PCAs. Thus,
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Figure 4.1: DNN accelerator architecture used in evaluation with an example tree-
based RN

Table 4.1: Photonic RN Component Parameters

Component Power (mW) Area (mm2)

DTC [3] 8 0.02
Demux (1 to 2) 0.042 1.59E-4
Demux (1 to 4) 0.125 4.76E-4

EAM [38] 1.5E-6 4E-7
TIR [8,36] 1.158 5.2E-3

Photodetector [33, 34] 1.1 4.5E-6
Microring [28,35] 0.8 9E-6
16-bit ADC [21] 2.55 2E-3
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Table 4.2: Losses incurred in the photonic RN

Component Loss (dB)

EAM [38] 0.25
Microring [1] 0.01

Waveguide propagation [1] 0.3/mm
Waveguide bend [2] 0.001

Figure 4.2: Latency (ms) of the tested RNs to run different DNNs

as a result we see that the improved fan-in has a direct positive relationship with the
reduction complexity and the overall throughput of the network.

Across all tested DNNs, as cluster size increases, the latency for all the RNs also
increases. This trend is the result of less output values being computed in parallel
as cluster size increases and the total number of clusters decreases. In addition, as
cluster size increases, the chance for components in a network to go unused both still
consume static power also increases. Despite this, when looking at the geometric mean
of the latency across the tested DNNs, we observe that as cluster size increases, the
speed-up achieved by the photonic RN also increases. At cluster size 2, the photonic
RN is 1.98× faster than the next fastest RN. At cluster size 128 however, this jumps
up to 5.63× the next fastest RN. Therefore, we can infer that the photonic RN is
affected by the increase in cluster size less due to less components in the network
remaining unused.

4.3 Energy-efficiency

The energy-efficiency of the tested networks varies heavily at different cluster sizes.
At the lower cluster sizes of 2 and 4, the photonic RN performs slightly worse than
the electrical RNs, as seen in Fig. 4.3. At its worst, the photonic RN is only 0.95×
as energy-efficient as the best performing electrical RN. This occurs at cluster size 4
when running GoogLeNet. The photonic RN’s performance here can be attributed
to the increased power cost it incurs compared to the electrical RNs due to the
photonic interconnects and PCAs requiring higher power draws than their electrical
equivalents. At the lower cluster sizes, the benefits of the improved fan-in of the

32



Figure 4.3: FPS/W of the tested RNs to run different DNNs

photonic RN are not as impactful in the throughput, and therefore the increased
power draw has more of an effect on the results. However, from cluster size 8, we
start to see an improvement of the photonic RN as it becomes more energy-efficient
than ST− Treeac. At cluster size 16, the photonic RN becomes more energy-efficient
than all tested electrical RNs. This trend continues as cluster size increases, with the
photonic RN’s energy-efficiency improvement over the electrical RNs also increasing.
This can be explained by the improved fan-in seen by the photonic interconnects and
PCAs having a larger impact on throughput at higher cluster sizes and overcoming
the increased power draw of the photonic RN. In addition, this energy-efficiency
improvement at higher cluster sizes is magnitudes greater than the loss at the lower
cluster sizes. When looking at the geometric mean, we can observe that at cluster
size 128, the photonic RN is 1.97× more energy-efficient than S-Tree, 1.47× more
than ST− Treeac, and 1.27× more than STIFT.

4.4 Area

The total area of our 256 PE photonic RN, as seen in Fig. 3.1, was calculated to be
2.63 mm2. Based on the results presented in [20] using TSMC 28nm GP standard
LVT library, for a 256 PE architecture, the areas of the electrical RNs are 0.172
mm2 for S-Tree, 0.32 mm2 for ST− Treeac, and 0.273 mm2 for STIFT. It should be
noted that S-Tree also requires a global buffer to store partially calculated output
values, whereas the other two electrical RNs keep track of it within the network.
Most photonic circuits cannot be implemented with technology nodes below 45nm.
Therefore, to have an equivalent comparison based on similar technology nodes, if we
implement the electrical RNs in 45nm technology, then the area values are scaled to
0.444 mm2 for S-Tree, 0.827 mm2 for ST− Treeac, and 0.705 mm2 for STIFT. Even
when accounting for this, the photonic RN is still larger than the electrical RNs.
This increase in area is expected however, as the electrical RNs are only made up of
multiplier and adder units, which do not incur as much area overhead compared to
the photonic and electro-optic devices and circuits used in the photonic RN.
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Figure 4.4: FPS/mm2 of the tested RNs to run different DNNs

To get a better understanding of how the RNs perform when accounting for the
difference in areas, we compare footprint-efficiency in terms of FPS/W of all RNs over
the four tested DNNs while varying cluster size, as seen in Fig. 4.4. An important
factor to note is that we perform this analysis at a similar technology node of 45nm,
in order to keep results comparable. We observe that at the lower cluster sizes of
2 and 4, S-Tree tends to perform the best, followed by STIFT, ST− Treeac, and
then the photonic RN. This matches the order of RN size from smallest to largest.
This relationship is understandable, as at these lower cluster sizes the benefits of the
RNs are not as impactful, so their FPS/mm2 performance is primarily dependent on
the area. At cluster sizes 8 and 16, the photonic RN starts to outperform STIFT
and ST− Treeac due to its improved reduction latency, but is still worse than S-
Tree. However, the difference in performance between S-Tree and the other networks
starts to significantly decrease as well. From cluster size 32 onwards, the photonic
RN performs the best as its reduction latency benefits start to become even more
impactful, and are able to overcome the increased area overhead cost. In addition,
S-Tree’s performance continuously becomes worse compared to the other RNs, as the
benefits of its much lower area overhead lose importance, compared to the improved
reduction latency benefits of the other RNs. Thus, overall we see that as cluster size
increases, the FPS/mm2 performance of the photonic RN continuously improves and
eventually overcomes the increased area overhead, compared to the electrical RNs.
One important caveat however, is that this analysis looks at a comparison between
the RNs at a comparable technology node of 45nm. If we want to implement at a
lower technology node, then area could end up being a greater challenge, and the
electrical RNs might still be a better choice, despite the photonic RN’s improved
reduction latency.

In addition to comparing the photonic RN’s area against the electrical RNs, we
also compare it to other state-of-the-art photonic DNN accelerators. When compared
to these accelerators, we observe that the photonic RN’s area is very reasonable. The
area of a single chiplet in ASCEND [17] is 24.07 mm2. Albireo’s [25] total architecture
is 124.6 mm2. Although these results are for an entire accelerator and not just
the reduction portion, since the photonic RN is designed to work with electrical
DNs and MNs, we can infer that it’s total area would be smaller than these fully-
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photonic accelerators. Therefore, in general, in a purely area overhead comparison,
the photonic RN might perform worse than its electrical counterparts, but is still
reasonable in size when compared to fully photonic based DNN accelerators.

Copyright© Bobby Bose, 2023.
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Chapter 5 Conclusion and Future Work

5.1 Summary of Results and Conclusion

Current state-of-the-art flexible spatial accelerators are limited by the low fan-ins seen
by the electrical links and accumulators that typically compose the RN. This leads
to high latency, energy, and area costs as the number of components required scales
logarithmically with the number of psums that need to be accumulated in the RN.
In order to overcome these limitations, in this work, we proposed a photonic RN for
spatial GEMM accelerators that utilizes photonic interconnect links and an electro-
photonic accumulator, the PCA. The photonic interconnects are able to overcome the
low fan-in of one channel per link seen by electrical links, by utilizing WDM in order
to improve spatial fan-in. The PCA is able to spatially accumulate all psums arriving
on a photonic interconnect in just one cycle, heavily improving it’s fan-in compared to
electrical accumulators. In addition, the PCA can hold partially accumulated output
information, allowing it to temporally accumulate psums as well, further reducing the
total number of accumulators required in the RN. Therefore, by utilizing photonic
interconnects and PCAs together, the photonic RN is able to improve on the low
fan-ins seen by current flexible spatial accelerators RNs.

To evaluate our photonic RN, we first compared its latency and hardware re-
duction complexities against other state-of-the-art electrical RNs. We observed that
due to the improved fan-in of the photonic interconnects and PCAs, the photonic RN
achieves lower latency and hardware reduction complexities compared to its electrical
counterparts. To test this, we performed an analysis of both latency and hardware
energy cost, while varying bit precision and number of psums to accumulate, and
found that the photonic RN consistently achieves better results compared to the best
performing electrical RN. We also evaluated our photonic RN against the three best
electrical RNs by running four DNNs over them while varying cluster size. Our re-
sults show that the photonic RN is able to achieves latency speed-ups ranging from
1.98× at cluster size 2, to 5.63× at cluster size 128. This is once again a result of
the higher fan-ins leading to improved reduction complexities and therefore higher
throughputs. In terms of energy-efficiency, we observed that although the photonic
RN is slightly less energy-efficient at lower cluster sizes, as cluster size increases it
becomes much more energy-efficient than the electrical RNs, achieving efficiency in-
creases up to 1.97× at cluster size 128. This trend is a result of the improved fan-in
and lower reduction complexity eventually being able to overcome the higher power
consumption of the photonic RN. Lastly, we performed a footprint-efficiency analysis
and found a similar trend. At lower cluster sizes the photonic RN performed worse
than the electrical RNs. However, as the cluster size increases, the benefits of the
improved reduction latency and throughput overcome the increased area overhead of
the photonic RN. In conclusion, our results demonstrate that by using our proposed
photonic RN for spatial GEMM accelerators, we can successfully overcome the limita-
tions of the low fan-ins of electrical links and accumulators, and can further improve
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throughput, energy-efficiency, and footprint-efficiency due to the improved reduction
complexities achieved by it.

5.2 Future Work

There are multiple areas of future research that the work presented in this paper
can be applied to. Our photonic RN is currently only able to handle fixed-point
psums. To handle the reduction of floating-point psums as well, our photonic RN
could be extended to support representation of these values. This would allow the
network to handle a larger coverage of DNN models. In addition, the full potential of
photonic architecture reduction networks can be realized by integrating multi-chiplet
systems with photonic distribution networks as well, like seen in [15–17]. This has
the potential to improve the overall GEMM accelerator performance, by utilizing the
benefits of photonic interconnects and devices across the entire architecture, and not
just the RN. Lastly, our photonic RN does not need to be limited to CNN-specific
applications. Rather, it can applied to any accelerator that is spatial and in which
the main function to accelerate involves the reductions of psums. This includes any
algorithm involving linear algebra sub-functions such as matrix-matrix multiplication
or vector-matrix multiplication.

Copyright© Bobby Bose, 2023.
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