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Sex Differences in Kappa Opioid
Receptor Agonist Mediated
Attenuation of Chemotherapy-
Induced Neuropathic Pain in Mice
Kelly F. Paton1, Dan Luo2, Anne C. La Flamme1,3, Thomas E. Prisinzano2 and
Bronwyn M. Kivell 1*

1School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand, 2Department
of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States, 3Malaghan Institute of Medical Research,
Wellington, New Zealand

Chemotherapy-induced neuropathic pain is a common side effect for cancer
patients which has limited effective treatment options. Kappa opioid receptor (KOR)
agonists are a promising alternative to currently available opioid drugs due to their low
abuse potential. In the current study, we have investigated the effects of Salvinorin A (SalA)
analogues, 16-Ethynyl SalA, 16-Bromo SalA and ethyoxymethyl ether (EOM) SalB, and in a
preclinical model of paclitaxel-induced neuropathic pain in male and female C57BL/6J
mice. Using an acute dose-response procedure, we showed that compared to morphine,
16-Ethynyl SalA was more potent at reducing mechanical allodynia; and SalA, 16-Ethynyl
SalA, and EOM SalB were more potent at reducing cold allodynia. In the mechanical
allodynia testing, U50,488wasmore potent in males and SalA wasmore potent in females.
There were no sex differences in the acute cold allodynia testing. In the chronic
administration model, treatment with U50,488 (10 mg/kg) reduced the mechanical and
cold allodynia responses to healthy levels over 23 days of treatment. Overall, we have
shown that KOR agonists are effective in a model of chemotherapy-induced neuropathic
pain, indicating that KOR agonists could be further developed to treat this debilitating
condition.

Keywords: paclitaxel, kappa opioid receptor, salvinorin A, chemotherapy-induced neuropathic pain, sex differences

INTRODUCTION

Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of treating cancer
(Sisignano et al., 2014; Addington and Freimer, 2016) with 68% of chemotherapy patients reporting
CIPN within the first month of treatment (Seretny et al., 2014). CIPN is often characterized by
spontaneous tingling or burning pain, hypersensitivity to mechanical and cold stimuli, and
numbness (Forman, 1990; Dougherty et al., 2004). CIPN can be very debilitating, significantly
impacting the quality of life and independence of cancer sufferers (Beijers et al., 2014; Mols et al.,
2014). Often CIPN is identified as the reason for limiting either the dose or length of chemotherapy
treatment and in severe CIPN cases, chemotherapy may be terminated (Holmes et al., 1991;
Rowinsky et al., 1993); however, CIPN may persist for months following cessation of chemotherapy
(van den Bent et al., 1997). Chemotherapy drugs that induce CIPN include vinca alkaloids, platinum
derivatives and taxanes (Jaggi et al., 2011; Sisignano et al., 2014; Ewertz et al., 2015). Paclitaxel is a
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taxane chemotherapeutic widely used to treat solid tumors such
as ovarian, breast, cervical, prostate, non-small cell lung, gastric,
head and neck, Kaposi’s sarcoma, and pancreatic cancers
(Khanna et al., 2015).

The pathogenesis of paclitaxel-induced neuropathic pain
involves dying-back axonal damage. This causes distal sensory
axons to degenerate in the peripheral nervous system, and causes
sensitization of nociceptive afferents leading to neuropathic pain
symptoms in the hands and feet in a “stocking and glove”-type
distribution (Forman, 1990; Dougherty et al., 2004). The
American Society of Clinical Oncology clinical practice
guideline states there are no recommended therapeutics for
the prevention of CIPN as there is not sufficient or consistent
evidence from any randomized placebo-controlled trials
(Hershman et al., 2014; Loprinzi et al., 2020). For the
treatment of established CIPN, the serotonin-norepinephrine
reuptake inhibitor duloxetine is the only agent which is
moderately recommended (Hershman et al., 2014; Loprinzi
et al., 2020). Mu opioid receptor (MOR) analgesics, including
hydrocodone, morphine, oxycodone, methadone, and fentanyl
patches or tramadol are considered a third-line therapy
(Finnerup et al., 2015; Grace et al., 2016); however, MOR
agonists are still commonly used to treat CIPN, with a recent
study finding that 97% of CIPN patients used opioid therapy
(Shah et al., 2018).

MOR agonists are associated with many side effects and can
induce hyperalgesia (Grace et al., 2016), respiratory depression
(Pattinson, 2008; Dahan et al., 2010), tolerance (Chu et al., 2006;
Uniyal et al., 2020), and addiction (Compton and Volkow, 2006).
In comparison, kappa opioid receptor (KOR) agonists do not
have rewarding effects (Vonvoigtlander et al., 1983), and are not
associated with respiratory depression (Freye et al., 1983) or
gastrointestinal transit (Porreca et al., 1984), and have potential
to treat pain (Beck et al., 2019; Paton et al., 2020a). The
naturally occurring KOR agonist, Salvinorin A (SalA), has
been used as a chemical scaffold to produce analogues with
greater metabolic stability and potency. We investigated two
analogues with alterations at the carbon-16 position, 16-
Ethynyl SalA and 16-Bromo SalA, and one analogue at the
carbon-2 position, ethoxymethyl ether Salvinorin B (EOM
SalB). We have previously shown that 16-Ethynyl SalA and
16-Bromo SalA have antinociceptive effects in preclinical
models of pain in mice, have a longer duration of action
than SalA, and have improved side effect profiles (Paton
et al., 2020b). Therefore, in the current study we have
assessed the effect of 16-Ethynyl SalA, 16-Bromo SalA and
EOM SalB in mice with paclitaxel-induced neuropathic
pain. Furthermore, the majority of preclinical studies of the
paclitaxel-induced neuropathic pain model have used male
animals (Naji-Esfahani et al., 2016); however, in chronic
pain studies, women typically have increased pain sensitivity
and higher prevalence of clinical pain (Mogil, 2012; Bartley
and Fillingim, 2013), and respond differently to pain
medications (Pieretti et al., 2016). Therefore, we sought to
understand the sex differences in the progression of paclitaxel-
induced neuropathic pain and the differences in KOR treatment
outcomes.

MATERIALS AND METHODS

Animals
Female and male C57BL/6J mice (8 + weeks old) were used for all
experiments. Animals were bred and housed at the Victoria
University of Wellington (VUW) Animal Facility, Wellington,
New Zealand. Animals were originally sourced from the
Jackson Laboratories (Bar Harbour, ME, United States). All
animals were group-housed (maximum 5 mice/cage) in a
temperature (20–22°C) and humidity (55%) controlled
environment. The animals were maintained on a 12-h light/
dark cycle with lights on at 7 a.m. Access to food and water
was provided ad libitum except during experimental sessions. For
all paclitaxel-induced neuropathic pain experiments, soft paper/
pulp-based Carefresh Natural bedding (Masterpet, Lower Hutt,
NZ) was used in the home cage to avoid any mechanical
stimulation to the paw. Each cage had shredded nesting
material as environmental enrichment.

All experimental procedures were undertaken during the light
cycle and in presence of white noise. Animals were handled for at
least 2 days before testing to acclimatise to handling and prevent
stress during experimental procedures. Animals were habituated
to the experimental room for 30 min each day. All procedures
were carried out with the approval of the VUW Animal Ethics
Committee (approval numbers 21480 and 25751). All procedures
were carried out in agreement with the New Zealand Animal
Welfare Act, 1999.

Drug Preparation
SalA was isolated and purified from Salvia divinorum leaves and
assessed for purity (>98%) using high-performance liquid
chromatography (HPLC) (Munro and Rizzacasa, 2003;
Tidgewell et al., 2004). The SalA analogues were synthesized
as previously described (Prevatt-Smith et al., 2011; Riley et al.,
2014) and tested for purity (>95%) with HPLC. The prototypical
KOR agonist U50,488 was purchased from Sigma-Aldrich (St.
Louis, MO, United States) and morphine sulphate from Hospira
NZ Ltd (Wellington, New Zealand). The compounds were
dissolved in a vehicle containing DMSO, Tween-80 (Sigma-
Aldrich), and 0.9% saline at a ratio of 2:1:7, respectively. The
compounds were delivered at a volume of 10 μl/g of weight via
intraperitoneal (i.p.) injection and delivered at 5 μl/g via
subcutaneous (s.c.) injection in the dose-response experiments.
The KOR antagonist nor-BNI (Sigma-Aldrich) was dissolved in
0.9% saline and injected s.c. 24 h before testing to selectively
antagonize the KOR, as earlier pre-treatment intervals have been
shown to also antagonize the MOR (Endoh et al., 1992; Kishioka
et al., 2013).

Induction of Paclitaxel-Induced
Neuropathic Pain
Paclitaxel (Taxol, Tocris Bioscience #RDS109750, Bristol,
United Kingdom) was made fresh daily by dissolving in
absolute ethanol, cremophor EL (Sigma-Aldrich) and 0.9%
saline at a ratio of 1:1:18, respectively. Experimental
procedures were as previously described (Deng et al., 2015;
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Paton et al., 2017; Atigari et al., 2020). Mice were administered
paclitaxel 4 mg/kg i.p. injections on four alternate days to give a
cumulative dose of 16 mg/kg. Mechanical and cold allodynia were
assessed every second day to measure the progression of
paclitaxel-induced effects. Mice were placed in transparent
plastic chambers upon a metal mesh stand. After a 20 min
habituation to the apparatus, each hind paw was measured in
duplicate for each type of stimulation, always beginning with
mechanical testing. On days with behavioural measurements and
a paclitaxel dose, measurements were always taken before the
administration of paclitaxel.

Von Frey Filament Procedure
Mechanical allodynia was measured using a 20-piece set of Semmes
Weinstein von Frey filaments (#58011, Stoelting, IL, United States) as
previously described (Paton et al., 2017; Atigari et al., 2020). Filaments
numbered from 2 to 9 were used, with testing always beginning with
filament number 5. The filament was applied at a right angle to the
plantar surface of the hind paw with enough force to produce a slight
bend. The filaments were held for 3 s or until a positive withdrawal
response was observed. Mechanical allodynia was measured using a
simplified up-down method until 5 filaments had been administered
(Bonin et al., 2014). Mechanical allodynia for each animal was
calculated by averaging the paw withdrawal thresholds from
duplicate values for each hind paw.

Acetone Test
Using a 1ml syringe, a bubble of acetone was administered to the
plantar surface of the hind pawwith care not to cause anymechanical
stimulation. The amount of time the animal reacted to the stimulus
was recorded for 60 s following application. A positive reaction was
defined as elevating, licking, biting or shaking of the paw. Two
measurements were taken for each hind paw alternately, with 5min
between consecutive applications. Cold allodynia for each animal was
calculated by averaging the duration of time spent responding to the
acetone across the 4 applications.

Acute Dose-Response in Paclitaxel-Treated
Mice
On day 15, the cumulative dose-response effects were assessed in
the paclitaxel-treated mice using a within-animals design (Paton
et al., 2017; Atigari et al., 2020). The KOR agonists, morphine, or
equivalent volumes of the vehicle were administered via s. c.
injection every 30 min at increasing concentrations to create
cumulative doses, with the mechanical and cold allodynia
measured 30 min following each dose. The effects were
measured in each hind paw once for each dose.

Chronic Administration of Treatment in
Mice With Paclitaxel-Induced Neuropathic
Pain
The efficacy and tolerance effects of chronic administration of the
KOR agonists were measured in mice with established paclitaxel-
induced neuropathic pain. Following the measurements on day
15, animals were assigned to treatment groups to ensure an

equivalent average mechanical allodynia score across all
groups. The experimenter was blinded to the treatments each
animal received. The doses used were based on the ED80 value
obtained from the mechanical allodynia dose-response results.
Animals were given daily i.p. injections starting on day 16. The
treatments were as follows: 16-Ethynyl SalA, 3 mg/kg; 16-Bromo
SalA, 4 mg/kg; U50,488, 10 mg/kg; morphine, 10 mg/kg; and
vehicle. On all the even-numbered days the treatment was
given 30 min before mechanical and cold allodynia testing.

Statistical Analysis
GraphPad Prism (version 7.03, GraphPad Software, La Jolla, CA,
United States) and SPSS Statistics (version 25, IBM, Armonk, NY,
United States) were used to determine statistical significance.
Values represented as the mean ± standard error of the mean
(SEM) and were considered significant when p < 0.05. The data
sets were tested for normality using the D’Agostino and Pearson
omnibus normality test. Comparison of multiple treatment data
was analyzed using one-way analysis of variance (ANOVA)
followed by Bonferroni post-tests. Comparisons of multiple
effects were analyzed using two-way ANOVA followed by
Bonferroni post-tests. Two-way repeated-measures ANOVA
was used when one variable was measured over time.

Dose-response data were analyzed by creating a non-linear
regression. A four-parameter variable slope with least-squares
ordinary fit was used to fit the curve to the data sets. For
mechanical allodynia, the top constraint was set no more than
9.5. For cold allodynia, the bottom constraint was set at no less
than 0. The extra sum-of-squares F test with the bottom, top,
logED50 and hillslope parameters was used to compare the
treatment curves, and with the null hypothesis that one curve
fits all data sets. If the results showed a different curve fit for each
data set, then the ED50 and Emax values were compared with one-
way ANOVA analysis.

The effects of treatment, sex and time were analyzed with a
three-way repeated-measures mixed ANOVA, with treatment
and sex as between-subjects variables, and time as the within-
subjects variable. The normality of the data was assessed with the
Shapiro-Wilk test using the standardized residuals. The
homogeneity of variances was measured using Levene’s test of
equality of error variances. If the data was non-normal and had
unequal variances at some time points, then the data was
transformed. The sphericity of the data was tested using
Mauchly’s test. If the p < 0.05, the assumption of sphericity
was violated and the Greenhouse-Geisser correction was applied.
The Bonferroni correction was applied for multiple families of
comparisons and the adjusted α level reported.

RESULTS

This study aimed to understand the effects of KOR agonists
(Figure 1) for the treatment of paclitaxel-induced neuropathic
pain in male and female mice. Initially, we investigated the sex
differences throughout the progression of the paclitaxel-induced
neuropathic pain model. A three-way repeated-measures mixed
ANOVA was run to understand the effects of treatment, sex, and
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time on the mechanical withdrawal thresholds. The three-way
interaction of treatment, sex and time was not statistically
significant [F(6.183,717.2) = 2.053, p = 0.055] (Figure 2A). There
was a statistically significant two-way interaction between
treatment and time [F(6.183,717.2) = 66.771, p < 0.0005] and
between treatment and sex [F(1,116) = 9.744, p = 0.002].
Statistical significance of a simple main effect was accepted at
a Bonferroni-adjusted alpha level of 0.006 due tomultiple families
of comparisons. There was a statistically significant simple main
effect of treatment at days 4–15 (p < 0.006). The simple main
effects of sex were not significant on any day. Overall, this shows
that the paclitaxel treatment group was significantly different to
the vehicle treatment group, but there were no sex differences.

A three-way repeated-measures mixed ANOVA was run to
understand the effects of treatment, sex and time on the reaction
times to the cold acetone stimulus. The three-way interaction was
statistically significant [F(6.618,767.7) = 3.284, p = 0.002]
(Figure 2B). There was not a significant simple two-way
interaction of treatment and sex at any time point (p > 0.006),
however, there was a significant main effect of both treatment and
sex on days 2–15 (p < 0.006). Overall, this means that there is an
effect of paclitaxel treatment and an inherent difference between
the sexes reaction to the cold stimulus, however, the effect of
paclitaxel on each sex does not change over time.

Cumulative Dose-Response Effects of
Kappa Opioid Receptor Agonists
The dose-response effects of the KOR agonists were measured to
understand and compare the potency and efficacy of each drug in

both sexes. All of the curves were analyzed separated for sex,
showing that a different curve fits each data set for the treatment
of mechanical [F(22,450) = 9.915, p < 0.0001] and cold allodynia
[F(22,450) = 13.33, p < 0.0001] (Figures 2D–G). The potencies
(ED50 values) were compared by treatment and sex (Table 1). For
mechanical allodynia, treatment with U50,488 in males was more
potent than females (p = 0.0136), whilst the opposite was found
with SalA, and with treatment in females significantly more
potent than males (p = 0.0040). Morphine, 16-Ethynyl SalA,
16-Bromo SalA, and EOM SalB had no significant difference
between the sexes. When the male treatment groups were
compared to morphine, only 16-Ethynyl SalA was significantly
more potent (p = 0.0152). When compared to the female
morphine treatment group, SalA (p = 0.0098) and 16-Ethynyl
SalA (p = 0.0242) were significantly more potent.

For the treatment of cold allodynia, the two-way ANOVA
found no interaction of sex and treatment [F(5,450) = 0.329, p =
0.8955] (Table 2). Therefore, only the data with the combined
sexes could be compared, showing SalA (p = 0.0034) and 16-
Ethynyl SalA (p < 0.0001) had significantly more potent
antinociceptive effects than morphine.

Antagonism of the Kappa Opioid Receptor
16-Ethynyl SalA, 16-Bromo SalA, and U50,488 were antagonized
at the KOR by pre-treating with nor-BNI (Figure 3). One-way
ANOVA analysis of the values at the final dose for 16-Ethynyl
SalA, 16-Bromo SalA (10 mg/kg), and U50,488 (20 mg/kg)
showed a significant effect of treatment for the mechanical
[F(5,51) = 118.9, p < 0.0001] (Figure 3A) and cold allodynia
data [F(5,51) = 73.85, p < 0.0001] (Figure 3B). Bonferroni post-

FIGURE 1 | Chemical structures of Salvinorin A, 16-Ethynyl SalA, 16-Bromo SalA, EOM SalB, and U50,488.
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FIGURE 2 | Paclitaxel administration produces mechanical and cold allodynia in male and female C57BL/6J mice. (A) Paclitaxel was administered as 4 doses of
4 mg/kg and allodynia measured until day 15. Numbers underneath the timeline represent experimental days. (B) Paclitaxel administration produced mechanical
allodynia on days 4–15, shown as a reduction in withdrawal score measured using von Frey filaments. There were no sex differences in the withdrawal scores. (C)
Paclitaxel administration had a significant effect on days 2–15, with an increase in reaction time to a cold acetone stimulus. There was an effect of treatment and sex,
and but no interaction of both factors, with females showing an increased reaction time in the vehicle and paclitaxel treatment groups compared to males. Three-way
repeated measures mixed ANOVA. *p < 0.006. Vehicle-treated n = 16–18; paclitaxel-treated males n = 50, females n = 36. (D–G) Dose-response effects of morphine
and the KOR agonists comparing male and female mice with established paclitaxel-induced neuropathic pain. Mechanical allodynia was measured in (D)males and (E)
females. Cold allodynia was measured in (F) males and (G) females. Veh refers to paclitaxel-treated animals treated with vehicle. BL refers to pre-paclitaxel baseline
values. n = 6–8. Values presented as mean ± SEM. Image in panel (A) created using BioRender.com.
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TABLE 1 | Dose-response effects of the KOR agonists in female and male mice with established paclitaxel-induced mechanical allodynia. The potency (ED50) of the opioid
receptor agonists were measured in mice of both sexes. U50,488 had more potent effects in males compared to females, whereas SalA was more potent in females.
When the KOR treatments for each sex were compared to morphine, 16-Ethynyl SalA was significantly more potent in males and females. SalA was more potent than
morphine in females only. Non-linear regression analysis. Two-way ANOVA with Bonferroni post-tests. n = 6–7. n.s. = not significant, *p < 0.05, **p < 0.01.

Opioid receptor
agonist

ED50 value (mg/kg) logED50 ± SEM Two-way ANOVA comparisons

Male Female Male Female Male vs female Male vs. Male
treated with
morphine

Female vs.
Female treated
with morphine

Morphine 2.16 3.83 0.33 ± 0.11 0.58 ± 0.07 >0.9999 n.s. — —

U50,488 1.23 4.38 0.09 ± 0.11 0.64 ± 0.09 0.0255 * >0.9999 n.s. >0.9999 n.s.
SalA 3.94 0.99 0.60 ± 0.12 −0.003 ± 0.101 0.0078 ** >0.9999 n.s. 0.0186 *
16-Ethynyl SalA 0.65 1.08 −0.19 ± 0.12 0.03 ± 0.13 >0.9999 n.s. 0.0283 * 0.0447 *
16-Bromo SalA 1.27 1.25 0.10 ± 0.01 0.10 ± 0.08 >0.9999 n.s. >0.9999 n.s. 0.1636 n.s.
EOM SalB 1.07 1.76 0.031 ± 0.11 0.25 ± 0.11 >0.9999 n.s. >0.9999 n.s. >0.9999 n.s.

TABLE 2 |Dose-response effects of the KOR agonists in female andmalemice with established paclitaxel-induced cold allodynia. Non-linear regression analysis was used to
calculate the potency (ID50) of the opioid receptor agonists in male and female mice. Two-way ANOVA showed there was no significant interaction of treatment and sex.
Using the combined sex data, SalA and 16-Ethynyl SalA hadmore potent antinociceptive effects thanmorphine. The efficacy of the treatments were not significantly different.
One-way ANOVA with Bonferroni post-tests. n = 6–7. n.s. = not significant, **p < 0.01, ****p < 0.0001.

Opioid receptor agonist ID50 value
(mg/kg)

logID50 ± SEM ID50 value (mg/kg) logID50 ± SEM p value for ID50

compared to morphine

Male Female Male Female Sexes combined Sexes combined Sexes combined

Morphine 2.06 3.64 0.31 ± 0.12 0.56 ± 0.10 2.71 0.43 ± 0.08 —

U50,488 1.06 2.08 0.03 ± 0.17 0.32 ± 0.12 1.46 0.17 ± 0.10 0.3349 n.s.
SalA 0.60 1.03 −0.22 ± 0.19 0.01 ± 0.12 0.82 −0.09 ± 0.13 0.0011 **
16-Ethynyl SalA 0.31 0.71 −0.51 ± 0.20 −0.15 ± 0.14 0.48 −0.32 ± 0.12 <0.0001 ****
16-Bromo SalA 1.20 1.44 0.08 ± 0.13 0.16 ± 0.11 1.31 0.12 ± 0.09 0.1607 n.s.
EOM SalB 0.77 0.90 −0.11 ± 0.14 −0.04 ± 0.12 0.83 −0.08 ± 0.09 0.0021 **

FIGURE 3 | KOR antagonism reduces the antinociceptive effect of the KOR agonists. The selective KOR antagonist nor-binaltorphimine (nor-BNI, 10 mg/kg) was
administered prior to the dose-response procedure. (A) Antinociceptive dose-response effects against mechanical allodynia. Nor-BNI reduced the antinociceptive
effects of the KOR agonists at the highest dose for 16-Ethynyl SalA, 16-Bromo SalA (10 mg/kg) and U50,488 (20 mg/kg) to the mechanical stimulus. (B) Antinociceptive
dose-response effects against cold allodynia. Nor-BNI reduced the antinociceptive effects of the KOR agonists to the cold stimulus. One-way ANOVA with
Bonferroni post-tests. Values presented as mean ± SEM. n = 13 for KOR agonist treatment, n = 6 for groups with nor-BNI pre-treatment. ****p < 0.0001 indicates
comparison between treatment with and without pre-treatment of nor-BNI.
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tests showed that there was a significant difference with pre-
treatment of nor-BNI for all KOR agonists (p < 0.0001). The
results show that the antinociceptive actions of the novel SalA
analogues are mediated via the KOR.

Effect of Chronic Administration of Kappa
Opioid Receptor Agonists on Mechanical
Allodynia
We further assessed the effect of the KOR agonists using a chronic
administration model, in which treatment began on day 16 post-
initiation of paclitaxel-induced neuropathic pain. In male mice,
16-Ethynyl SalA and U50,488 reduced paclitaxel-induced

mechanical allodynia on all days evaluated (p < 0.005;
Figure 4A). Morphine treatment had antinociceptive effects
on days 16–30, and 16-Bromo SalA on days 16–30 and 34–36
(p < 0.05; Figure 4A). In the female mice, U50,488 reduced
mechanical allodynia at all time points evaluated, whereas, 16-
Ethynyl SalA reduced mechanical allodynia at days 16–30, 34,
and 38; 16-Bromo SalA at days 16–28, and 32; and morphine at
days 16–30 (Figure 4C). The area under the curve (AUC) analysis
showed that all treatment groups were significantly different to
the paclitaxel/vehicle group within each sex (p < 0.001;
Figure 4B). Furthermore, in the males, U50,488 treatment
reduced the mechanical withdrawal thresholds to healthy
control levels (vehicle/vehicle treatment group; p > 0.9999;

FIGURE 4 | Chronic KOR treatment reduced mechanical and cold allodynia in mice with established paclitaxel (Ptx)-induced neuropathic pain. (A, B) Time course
of the treatment effects of vehicle (Veh), morphine (10 mg/kg), U50,488 (10 mg/kg), 16-Ethynyl SalA (3 mg/kg), and 16-Bromo SalA (4 mg/kg) on mechanical allodynia in
(A) males and (B) females. (C) Area under the curve (AUC) comparison within the male and female animals showed treatments all significantly increased the paclitaxel-
inducedwithdrawal scores, with U50,488 treatment in males improving themechanical thresholds to vehicle/vehicle levels. Comparison of the sex differences in the
treatments found that U50,488 and 16-Ethynyl weremore effective inmales. (D, E) Time course of the treatment effects on cold allodynia in (D)males and (E) females. (F)
AUC analysis showed that U50,488 treatment in both sexes and 16-Ethynyl treatment in males reduced the cold stimulus responding time to the same level as vehicle/
vehicle controls. Two-way ANOVA with Bonferroni post-tests. n. s. = not significant, p̂ < 0.05,̂ p̂ < 0.01,^̂ p̂ < 0.005,̂ ^̂ p̂ < 0,001 for male treatment group compared to
male paclitaxel/vehicle group; #p < 0.05, ##p < 0.01, ###p < 0.005, and ####p < 0.0001 for female treatment group compared to female paclitaxel/vehicle group; *p < 0.05,
***p < 0.005 for sex difference within treatment group. Values presented as mean ± SEM, n = 6−9.
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Figure 4B). Further investigation into sex differences within each
treatment showed that U50,488 and 16-Ethynyl SalA were more
effective in male mice than female mice (p < 0.05), whereas, all
other treatments had no sex differences (Figure 4C).

Effect of Chronic Administration of Kappa
Opioid Receptor Agonists on Cold Allodynia
In male mice, U50,488 reduced the paclitaxel-induced cold
allodynia at all the days evaluated (days 16–38; p < 0.01); 16-
Ethynyl SalA attenuated cold allodynia at days 18–38; 16-Bromo
SalA at day 24; and morphine at days 16–20, 24–28, and day 32
(Figure 4D). In the female mice, U50,488 reduced the reaction
time at all time points (days 16–38; p < 0.005); 16-Ethynyl SalA
reduced cold allodynia at days 16–22 and 28–38 (p < 0.01); 16-
Bromo SalA at days 20–22, 28 and 36–38 (p < 0.01); and
morphine at days 16–22, 26–28, and 32–38 (p < 0.05;
Figure 4E). In male mice, AUC analysis showed all KOR
agonist treatments attenuated thermal nociception; in female
mice, all treatment groups except 16-Bromo SalA attenuated
thermal nociception when compared to the paclitaxel/vehicle
control group (Figure 4F). U50,488 (both sexes) and 16-
Ethynyl SalA (males only) returned antinociceptive responses
to healthy control levels (vehicle/vehicle group). When the sexes
were compared within each treatment, there were no significant
sex differences (Figure 4F).

DISCUSSION

There is an urgent need to develop new treatments for CIPN, as
this debilitating condition currently has very limited treatment
options (Loprinzi et al., 2020). MOR agonists are often used to
alleviate pain; however, these can potentiate pain when used
chronically, and have addictive and aversive side effects (Chu
et al., 2006; Compton and Volkow, 2006; Pattinson, 2008; Dahan
et al., 2010; Roeckel et al., 2016).We have investigated the effect of
KOR agonists for the treatment of paclitaxel-induced neuropathic
pain due to the reduced abuse potential of KOR agonists, which is
an important requirement for these treatments due to the long-
term nature of chemotherapy regimens. We have further
investigated the sex differences within our experiments due to
the over-reliance on male animals used in research, which may
not give an accurate representation of both sexes (Clayton and
Collins, 2014; Lee, 2018; Shansky and Murphy, 2021).

We initially investigated the effect of sex on the onset of
disease in the paclitaxel-induced neuropathic pain model. We
showed that paclitaxel administration induces significant
mechanical allodynia, with no sex differences at any time
points. In contrast, measurements of cold allodynia showed
the female mice had a longer reaction time in both the vehicle
and paclitaxel groups. This is consistent with a previous study
using NMRImice, which found the paclitaxel-treated female mice
had increased paw licking following cold stimulus to the paw
between days 7–11, however, measurements on days 13 and 15
were not significantly different to males (Naji-Esfahani et al.,
2016). The same study found no sex differences in the

development of paclitaxel-induced mechanical allodynia
measured using von Frey filaments (Naji-Esfahani et al., 2016).
In further studies, there were no differences between the sexes in
paclitaxel-induced mechanical allodynia in C57BL/6 mice (Smith
et al., 2004); whereas in rats, there were both findings with no sex
difference (Hwang et al., 2012) and with females showing greater
mechanical hyperalgesia (Wang et al., 2018; Ferrari et al., 2020).
Overall, themajority of studies have no inherent sex differences in
paclitaxel-induced mechanical allodynia, whereas multiple
studies have shown females to have a heightened cold response.

The antinociceptive dose-response effects of the KOR agonists
were evaluated alongside morphine to assess the potency of the
compounds in both sexes. The mechanical testing showed
U50,488 was significantly more potent in males compared to
females. It has been shown in previous studies that U50,488
exhibits higher antinociceptive potency in males when measured
with the tail withdrawal assay (reviewed in Rasakham and Liu-
Chen, 2011). However, in a similar paclitaxel-induced experiment
performed in Sprague Dawley rats, acute morphine treatment
(2–5 mg/kg i.p.) had the same antinociceptive effects in both sexes
with mechanical allodynia (Hwang et al., 2012). We also found
that SalA treatment was more potent in females. Interestingly, in
rhesus macaques, SalA has sex differences in the pharmacokinetic
effects, with females showing a slower elimination from plasma
and a larger area under the concentration-time curve following
intravenous injection (Schmidt et al., 2005), which may explain
the increased antinociceptive effects produced in females. We also
showed that 16-Ethynyl SalA was more potent than morphine for
treatment of both mechanical and cold allodynia, which is similar
to our previous study showing 16-Ethynyl SalA was more potent
and efficacious than U50,488 in the warm water tail withdrawal
assay (Paton et al., 2020b).

There are few previous studies measuring the effects of KOR
agonists in a model of paclitaxel-induced neuropathic pain. We
have shown the SalA analogue, β-tetrahydropyran SalB, and the
mixed opioid receptor agonist MP1104 have anti-allodynic effects
in this model (Paton et al., 2017; Atigari et al., 2020). In an
alternative CIPN model, KOR agonist LOR17 was found to
alleviate oxaliplatin-induced thermal hypersensitivity to a cold
stimulus, and was more potent than U50,488 (Bedini et al., 2020).
SalA has also been assessed in other models of neuropathic pain.
SalA reduced pain in a sciatic nerve ligature model in maleWistar
rats when injected directly into the insular cortex (Coffeen et al.,
2018). Furthermore, an extract of Salvia divinorum, containing
SalA, SalB, and other substances found in the leaves of the plant,
reduced mechanical and thermal sciatic nerve ligature
neuropathic pain when administered at 100–200 mg/kg i.p.
(Simon-Arceo et al., 2017). The effect of KOR agonists in
CIPN is an emerging area of research, however, these studies
set the groundwork to show that KOR agonists have promise at
treating neuropathic pain.

Several studies have assessed the effects ofMOR agonists in the
paclitaxel-induced neuropathic pain model. In male C57BL/6J
mice, previous findings show morphine with an ED50 of
6.68 mg/kg against mechanical allodynia and 12.5 mg/kg
against cold allodynia (Slivicki et al., 2018), whereas, we found
that morphine was 3–6 fold more potent (mechanical allodynia
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ED50 of 2.16 mg/kg; cold allodynia ED50 of 2.06 mg/kg). The
effects in both studies were done at 30 min post-injection,
however, the dose-response in the Slivicki et al. (2018) study
was done over multiple days rather than a cumulative dose-
response in one session. Previous work has indicated that discrete
versus cumulative dose-response procedures yield the same
results (Schechter, 1997). A further difference between the
studies is Slivicki et al. (2018) used an electronic von Frey
anesthesiometer, whereas the current study used classical von
Frey filaments of varying diameter. The electronic von Frey
anesthesiometer may give more continuous data, as opposed
to the individual von Frey filaments that each exert a discrete
maximum force, and the electronic von Frey apparatus is believed
to be more sensitive (Cunha et al., 2004).

In the current study, daily 10 mg/kg morphine administration
was effective for 15 days against mechanical allodynia, whereas a
previous study found morphine was only effective on the first
treatment day and was no longer effective 3 days later (Slivicki
et al., 2020). In male Sprague Dawley rats, Flatters and Bennett
(2004) found an acute treatment of 4 mg/kg morphine was
ineffective at treating paclitaxel-induced mechanical allodynia
and 8 mg/kg only produced a 50% reversal of mechanical
allodynia. A further study in male Sprague Dawley rats found
that 4 mg/kg normalized the mechanical withdrawal thresholds
to pre-paclitaxel baseline levels (Rahn et al., 2008). This shows
there is great variation in the effects of morphine in the paclitaxel-
induced neuropathic pain model. Reasons for variations in the
results could include the use of different species (mice vs rats),
different concentration of paclitaxel, the use of electronic vs.
classical von Frey apparatus, and different experimental time
points.

In the chronic administration regimen, we showed that
U50,488 significantly reversed the effects of paclitaxel over
23 days, with no apparent tolerance effects. In the warm water
(55°) tail withdrawal assay in C57BL/6 mice, U50,488 has been
shown to cause tolerance effects, however, this was with an
escalating dose scheme up to 75 mg/kg i.p. over 4 days
(McLaughlin et al., 2004), whereas in the current study we
used 10 mg/kg i.p. treatment daily. Interestingly, using a
partial spinal nerve ligation model, phosphorylated KOR
immunoreactivity was increased in the L4-5 dorsal horn
regions of the spinal cord in male C57BL/6 mice and KOR
knock-out mice there was increased mechanical allodynia and
thermal heat hyperalgesia (Xu et al., 2004). However, due to this
endogenous KOR activation in the mice with neuropathic
pain, treatment with U50,488 showed increased tolerance
compared to sham, and this tolerance effect was absent in
prodynorphin or GRK3 knock-out mice (Xu et al., 2004).
Furthermore, KOR antagonism with nor-BNI in mice and rats
led to increased levels of mechanical and thermal allodynia
(Obara et al., 2003). In comparing to the current study,
because U50,488 does not show the tolerance effects
associated with endogenous KOR activation, it could be that
the endogenous KOR system is not activated to the same extent in
the paclitaxel-induced neuropathic pain model compared to the
partial spinal nerve ligation model; however, this effect has not
been studied.

Interestingly, the KOR mediates the initial aversive
component of paclitaxel-induced neuropathic pain (day 8),
with an increase in prodynorphin levels in the nucleus
accumbens (Meade et al., 2020). Due to this aversive nature of
the pain, it is important to develop treatments that do not have
negative side effects. We have previously shown that 16-Bromo
SalA does not have anxiogenic effect in the elevated zero maze
and the marble burying test; however, 16-Ethynyl SalA did
significantly reduce exploratory behaviors in the elevated zero
maze but had no effect in the marble burying test (Paton et al.,
2020b). Furthermore, the sedative effects of the treatments should
be considered, we know that 16-Ethynyl SalA, 16-Bromo SalA,
and U50,488 have motor incoordination effects in the rotarod
performance test (Paton et al., 2020b; Dunn et al., 2020); however,
16-Bromo SalA and 16-Ethynyl SalA did not reduce spontaneous
locomotor activity at lower doses in rats (Riley et al., 2014). Even
though the duration of action of these novel SalA analogues is
longer than the parent compound (Paton et al., 2020b), the
relatively short duration of action and negative side effects
may hinder progression of these compounds into a clinical
setting. However, these compounds show proof-of-concept
that KOR agonists can be used for this form of neuropathic
pain. In addition, there has been some progress in developing
peripherally-restricted MOR agonists for the treatment of
neuropathic pain (Tiwari et al., 2018), so further investigation
into the mechanism of action could indicate whether a
peripherally-restricted KOR agonist could be developed with
no centrally-active side effects.

In conclusion, we have shown that KOR agonists have anti-
allodynic effects in a mouse model of CIPN and are more potent
than morphine for the treatment of paclitaxel-induced
neuropathic pain. We have shown that U50,488 was more
potent in male mice; whereas, SalA treatment was more potent
in females. In the chronic administration paradigm, treatment
with U50,488 reversed the paclitaxel-induced allodynia to healthy
levels. Therefore, this study provides evidence that KOR agonists
have potential for treating pain conditions associated with
chronic neuropathy such as CIPN by reducing allodynia.
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