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ABSTRACT OF DISSERTATION

BUILDING ENERGY MODELING AND STUDIES OF ELECTRIC POWER
DISTRIBUTION SYSTEMS WITH DISTRIBUTED ENERGY RESOURCES

There is significant opportunity for savings in energy and investment from im-
proved performance of electric Power Distribution Systems (PDSs) through optimal
planning and operation of conventional voltage-controlling devices. Novel multi-step
model conversion and optimal capacitor planning (OCP) procedures are proposed
for large-scale utility PDSs and are exemplified with an existing utility circuit of ap-
proximately 4,000 buses. Simulated optimal control and operation is achieved with
a cluster-based approach that utilizes load-forecasting to minimize equipment degra-
dation by intelligently dispersing device setting adjustments over time such that they
remain most applicable.

Improved performance may also be achieved through smart building technologies
and Virtual Power Plant (VPP) control of increasingly more prevalent Distributed
Energy Resources (DERs). The established simulation test bed for PDSs incorporates
DERs to evaluate VPP implementations and an optimization process for control tim-
ing is proposed that minimizes targeted peak power and possible resulting increase in
total daily energy. The advanced VPP controls incorporate the Consumer Technology
Association (CTA) 2045 standard and EnergyStar performance characterizations to
leverage HVAC systems as Generalized Energy Storage (GES) for load manipulation
and to support the integration of demand-side generating DERs, such as local solar
Photo-Voltaic (PV) systems.

KEYWORDS: Distributed Energy Resource (DER), Generalized Energy Storage (GES),
Power Distribution System (PDS), Smart Grids, Smart Homes, Virtual Power
Plant (VPP).
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Chapter 1

Introduction

1.1 Background

Improved performance of electric Power Distribution Systems (PDSs) through

optimal planning and operation of conventionally available voltage-controlling devices

can offer significant savings in both energy and investment. Such devices include

capacitor banks (CBs), which are typically employed to increase system load capacity,

reduce losses and improve power factor through voltage drop counteraction along

a circuit by providing reactive power. They have long been considered a popular

technology due to their lower cost and maintenance requirements when compared to

other reactive power compensating devices and methods.

Traditionally, the CB installation process is performed through “rule-of-thumb”

simulation techniques with the assumption of peak load operation since this scenario

represents the most extreme condition of the circuit and the best opportunity for

savings. The yielded benefits of CBs are directly determined by both their placement

and rating [2]. Therefore, the application of optimal CB placement and rating can im-

prove savings and system performance. Such optimization is typically multi-objective

in nature since costs from system power losses, capital investment, and voltage quality

may compete.
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Conventional control of PDSs over time is achieved through Supervisory Control

and Data Acquisition (SCADA) networks and compatible devices, such as switchable

CBs, automatic voltage regulators (AVRs), and Load-Tap-Changing (LTC) trans-

formers [1]. The improved control and management of these devices are also currently

of great interest for grid modernization and are typically associated with the con-

cepts of Conservation Voltage Reduction (CVR) and Volt-Var Optimization (VVO)

[3]. CVR has long been considered as a function of VVO to cost-effectively reduce

energy use and peak power [4].

Techniques for optimal PDS planning may also be adapted for optimal operation

and control that employ CVR and VVO functions. Through time-series simulation

and computational optimization, total energy use, voltage quality, and utility asset

degradation may be improved. Relevant optimization objectives may include total

energy use and targeted peak power reduction by either minimizing losses or demand

through adjusting system-wide voltage. The degree of benefit from either minimiza-

tion is dependent upon circuit-specific voltage dependency of associated loads.

Various utility and national laboratory demonstrations of CVR and VVO have

been performed through pilot programs and test cases of differing M&V types [5].

It has been determined based on such field implementations that PDS energy use

may be reduced by 0.3% to 1.0% for every 1% of reduction in system voltage [6]. A

range of 1% to 4% in total energy use savings is expected based upon circuit-specific

characteristics. Therefore, as smart grid technologies and Advanced Meter Infras-

tructure (AMI) become increasingly more prevalent in modern distribution systems,

the improved control of these devices offers significant opportunity for savings in both
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energy use and costs due to equipment degradation.

Emerging smart technologies can provide visibility and control of individual resi-

dential loads in buildings as well. Various energy-using appliances constitute a smart

building, including larger energy users like Heating, Ventilation, and Air-Conditioning

(HVAC) and water heating systems. Such appliances can reduce energy use of resi-

dential loads through considerable efficiency improvements and may be employed as

Distributed Energy Resources (DERs) for residential energy storage and load manip-

ulation.

Load manipulation, especially for electric PDSs with highly variable distribution-

side generators such as solar Photo-Voltaic (PV) systems, can be an invaluable tool

for utilities in managing the smart grid and for improved renewable integration and

local utilization. Co-simulation frameworks of DER and PDS models as testbeds

enable study and development of such Virtual Power Plant (VPP) methodologies.

1.2 Literature Review

The following is a brief introductory literature review for each of the chapters.

Additional literature review is included in the corresponding introductory sections.

For current PDSs, various optimization approaches have been applied in literature

to the CB placement and sizing problem with differing considerations of objectives

and independent variables. Some techniques include plant growth-based and multi-

objective Particle Swarm Optimization (PSO) algorithms [7–12]. Additional reported

methods involve the hybrid utilization of multi-criteria algorithms at different levels

with comparisons of algorithm types [13–17].
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It was found that typical objectives for CB planning generally include the mini-

mization of active power losses and investment [18–20]. Constraints were also some-

times applied concurrently with the optimization, or afterward upon the resulting

Pareto set, to ensure power system operational compliance for proposed CB configu-

rations by limiting voltage violations and Total Harmonic Distortion (THD) [20–22].

A literature gap exists with respect to the consideration or evaluation of CB

efficacy over time as well as for application on real large-scale PDSs, as the studied

methods usually employed the IEEE test systems at their peak load instances. PDSs

can experience considerable change in load demand and bus voltages due to natural

loadshapes and operational events of typical control devices, such as LTC transformers

and voltage regulators [23–25]. The readjustment of such devices upon reconfiguration

of CBs during the optimization process also seems to be insufficiently reported.

The evaluation of CVR and VVO effects may be performed through measurement

and verification (M&V) methods that should consider load effects from typical causes,

such as weather, time of day, and occupant behavior. Such M&V methods may be

categorized as comparison, regression, or simulation-based [5, 26]. Simulation-based

methods employ power system models that enable simulated control of components

with the challenge of considering load changes over time and voltage-dependency,

which can be captured though constant impedance, constant current, and constant

power (ZIP) modeling [23, 24, 27].

The U.S. residential sector is a major participant in the electric power grid at

nearly 25% of the total energy demand [28]. U.S. residences, regardless of building

type or geographical location, typically contain various appliances, many of which are
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becoming controllable devices in the emerging smart grid. Based on a survey of end

user energy consumption, space heating and cooling are the top categories in energy

use among typical household appliances [29]. Combined, they may be considered as a

complete HVAC system and use over 50% of total annual residential energy [30–32].

Therefore, the application of VPP control for HVAC systems, in aggregate, offers a

significant opportunity for the shift or reduction of load peaks in power systems [33].

Simulation testbeds are reported to have an important role in both the develop-

ment of VPP control schemes and in the planning of DER deployment [34]. Battery

Energy Storage Systems (BESSs) can be an effective, but costly, utility grid energy

management solution and, therefore, are typically optimally planned through distri-

bution system simulation [35]. Control strategies that coordinate multiple types of

DERs, such as BESSs and solar PV, are an integral aspect of the smart grid which

can be developed and tested through simulation [36].

1.3 Research Objectives and Original Contributions

Research Objectives

The study of optimal planning and operation for PDSs is a main research objective

of this work. Recent improvements in modeling, measurement, and control offers

considerable opportunity in this regard. Currently available large-scale PDS models

are employed by utilities for general planning purposes and may be converted into

an open-source version with custom reformatting software for the development and

study of control and optimization methodologies.

The combination of these highly inter-operable model versions and computational
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intelligence methods allows for the optimization of both CB placement and rating

in actual many thousand-node utility PDSs at their static peak load case, which

offers the most opportunity for savings. Measured circuit data enables time series

simulation with the assumption that individual loads experience the same loadshape

and may be scaled accordingly to match that of the total circuit load measured at

the source bus. Increasingly available AMI data offers the prospect of individually

unique load profiles and increased simulation granularity in the near future.

With time-series simulation capability, methods employed in optimal planning

may also be adapted for optimal operation and control. Typically available devices,

such as switchable CBs and controllable LTC transformers, may be utilized to min-

imize total system power and to improve its voltage-time profile. Power demand

reduction is achieved through the decrement of LTC tap settings, while consider-

ing violations of the standard tolerance at all buses, to decrease voltage-dependent

load demand. Voltage-dependency is captured by an equivalent ZIP load modeling

method that employs available measured data for a specific circuit. Power losses are

also reduced through optimal operation of CBs to maintain voltage near relatively

high-loss buses. Such optimal performance, though, is likely to increase device op-

eration frequency, which may cause faster equipment degradation and is also to be

considered.

For the utilization of typical residential loads as DERs in power systems, consid-

eration of various appliance-specific dependencies is necessary to develop adequate

models. As the largest energy-using household appliance with the most opportunity

as a controllable DER, HVAC systems are of significant focus. The modeling of HVAC
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systems must capture both weather effects and the building thermal properties with

which it is associated. Furthermore, control effects on occupant thermal comfort

must also be considered as they represent a constraint in realistic scenarios. Other

appliances are not as dominantly weather-dependent and can be modeled based on

use schedules that represent typical human behavior.

In order to study large-scale VPP control strategies that employ such residen-

tial loads, their models must be highly inter-operable in a co-simulation framework

with PDSs. Current building energy modeling methods are typically of the white-

box, physics-based nature and require considerable computation time, which limits

scalability. Computational and artificial intelligence methods offer solutions to such

limitations and enable large-scale case studies. The characterization of residential

loads as Generalized Energy Storage (GES) also enables uniform control methods for

all localized DER. Through such developments, applications of VPP controls for peak

power manipulation and the study of corresponding effects at both the power system

and individual building levels are of great interest.

Original Contributions

1. A comparative study of multi-objective optimization approaches for a power

system specific problem that employ computational intelligence methods, such

as Differential Evolution (DE) and the Non-Dominated Sorting Genetic Algo-

rithm (NSGA) III, as applied to three real large-scale utility circuits.

2. A new multi-step procedure for optimal power system configuration selection

that utilizes pseudo weight vectors based on objective priority and a systematic
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analysis of the most extreme configuration types.

3. An efficacy evaluation approach for power system configurations through time-

series simulation and stochastic analysis.

4. Optimal operation of PDSs through CB and LTC transformer control that min-

imizes total system energy use and improves its voltage-time profile.

5. A cluster-based method to optimally disperse PDS device control adjustments

over time through load-forecasting in order to minimize utility asset degradation

and maintain best performance.

6. Development of EnergyPlus models through extensive multi-annual data from

experimental homes with robot-operated appliances to mimic human habitation

that represent different levels of energy efficiency for U.S. houses.

7. Development and demonstration of a highly scalable co-simulation framework

for ultra-fast machine learning models of building electric power and indoor

temperature with actual many-thousand node PDSs.

8. Simulation and analysis of VPP scenarios that employ hundreds of unique build-

ings and their corresponding HVAC systems with other DER, such as local so-

lar PV, through GES characterization and Consumer Technology Association

(CTA) 2045 control schemes.

9. Multi-objective optimization of VPP HVAC control considering peak power

reduction in exchange for increased total energy use through control timing.
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1.4 Dissertation Outline

Following the introduction, Chapter 2 proposes a multi-objective optimal plan-

ning method for PDS CBs with procedures for configuration selection and efficacy

evaluation over time. Chapter 3 discusses the optimal operation of conventional PDS

devices, such as CBs and LTC transformers, through machine learning clustering and

load-forecasting. Chapter 4 explores the energy effects of smart building technologies

and discusses the modeling of robot-operated smart homes, which enables evaluation

in different geographical locations and utilization in DER control schemes. As an

application and continuation of study from the previous chapters, the co-simulation

framework for the building models in Chapter 4 with the PDS simulation testbed from

Chapters 2 and 3 is provided in Chapter 5 . Also included in Chapter 5 are studies

of VPP scenarios that employ HVAC systems as energy storage in coordination with

other DERs through GES characterizations and control setting optimization. Fi-

nally, conclusions and recommendations for continued and future work are provided

in Chapter 5.7.

1.5 Main Publications

The main concepts, methods, and results of this dissertation have been published

or under consideration for publication in the following journal and conference pro-

ceeding papers:

• E. S. Jones, N. Jewell, Y. Liao, and D. M. Ionel, “Optimal Capacitor Place-
ment and Rating for Large-Scale Utility Power Distribution Systems Employing
Load-Tap-Changing Transformer Control,” IEEE Access, vol. 11, pp. 19324-
19338, 2023, doi: 10.1109/ACCESS.2023.3244572.
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• E. S. Jones, R. E. Alden, H. Gong, and D. M. Ionel, “Co-simulation of Electric
Power Distribution Systems and Buildings including Ultra-fast HVAC Models
and Optimal DER Control,” 14p, prepared for journal submission (April 2023).

• E. S. Jones, N. Jewell, Y. Liao, and D. M. Ionel, “A Cluster-based Method for
Optimal Operation of Power Distribution Systems with Minimal Utility Asset
Degradation,” 10p, prepared for journal submission (April 2023).

• E. S. Jones, R. E. Alden, H. Gong, A. Hadi, and D. M. Ionel, “Co-simulation
of Smart Grids and Homes including Ultra-fast HVAC Models with CTA-2045
Control and Consideration of Thermal Comfort,” 2022 IEEE Energy Conver-
sion Congress and Exposition (ECCE), Detroit, MI, USA, 2022, pp. 1-6, doi:
10.1109/ECCE50734.2022.9948200.

• E. S. Jones, R. E. Alden, H. Gong, A. G. Frye, D. Colliver and D. M. Ionel,
“The Effect of High Efficiency Building Technologies and PV Generation on the
Energy Profiles for Typical US Residences,” 2020 9th International Conference
on Renewable Energy Research and Application (ICRERA), 2020, pp. 471-476,
doi: 10.1109/ICRERA49962.2020.9242665.

• R. E. Alden, E. S. Jones, S. B. Poore, H. Gong, A. Al Hadi and D. M.
Ionel, “Digital Twin for HVAC Load and Energy Storage based on a Hybrid
ML Model with CTA-2045 Controls Capability,” 2022 IEEE Energy Conver-
sion Congress and Exposition (ECCE), Detroit, MI, USA, 2022, pp. 1-5, doi:
10.1109/ECCE50734.2022.9948141.

• H. Gong, E. S. Jones, A. H. M. Jakaria, A. Huque, A. Renjit and D. M.
Ionel, “Large-Scale Modeling and DR Control of Electric Water Heaters With
Energy Star and CTA-2045 Control Types in Distribution Power Systems,” in
IEEE Transactions on Industry Applications, vol. 58, no. 4, pp. 5136-5147,
July-Aug. 2022, doi: 10.1109/TIA.2022.3178066.

• H. Gong, E. S. Jones, R. E. Alden, A. G. Frye, D. Colliver and D. M. Ionel,
“Virtual Power Plant Control for Large Residential Communities Using HVAC
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vol. 58, no. 1, pp. 622-633, Jan.-Feb. 2022, doi: 10.1109/TIA.2021.3120971.

Additional peer-reviewed journal and conference proceedings papers have been

published and are listed in the following:

• E. S. Jones, O. M. Akeyo, K. Waters and D. M. Ionel, “Electric Power System
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Energy and Microgrid Capabilities” 2020 IEEE Industry Applications Society
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Chapter 2

Planning and Optimization for Electric Power Distribution Systems

2.1 Introduction and Main Problem

Capacitor banks (CBs) are typically employed in power distribution systems to

increase system load capacity and overall power factor correction. This is achieved

by providing voltage support and reactive power control functions, which also yields

improved power losses and energy savings. Resulting harmonic effects and switching

transients from control over time are considered secondary to the these main benefits.

CBs have long been considered a popular technology due to their lower cost and

maintenance requirements when compared to other reactive power compensating de-

vices. The traditional and currently most common method for CB installation relies

on intuitive rules of thumb supported by multiple powerflow studies to manually de-

termine location and reactive power rating [1, 37]. Such techniques can be arduous

to perform and likely to provide sub-optimal solutions, especially for larger power

distribution systems.

The yielded benefits of CBs are directly determined by both their placement and

rating [2]. Therefore, the application of an Optimal CB Planning (OCP) procedure,

such as the one proposed in this work and illustrated in Fig. 2.1, offers the opportunity
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for improved savings and system performance. Such optimization is typically multi-

objective in nature since costs from system power losses, capital investment, and

voltage quality may compete.

A comparative study of multi-objective CB planning methods is presented, which

includes novel approaches that may employ three concurrent objectives, a penalty

constraint upon voltage violations during optimization, and the automatic adjust-

ment of Load-Tap-Changing (LTC) transformer tap settings to ensure peak system

performance based upon proposed CB re-configurations. For the optimization algo-

rithm, multi-objective versions of differential evolution (DE) and a Genetic Algorithm

(GA) are considered and compared in performance and Pareto set quality.

Optimal CB installation bus locations and ratings are simultaneously determined

for three sub-circuits corresponding to transformers of a substation within a large

48MW, 9Mvar example power distribution system, which is made possible through

an automated model conversion procedure of actual large-scale utility distribution

systems. The circuits are simulated at their peak loads since this scenario represents

the most extreme condition of the circuit and the best opportunity for savings. Max-

imum load demand causes minimum voltage, and the most need is experienced for

voltage support and reactive power compensation. With CBs being switchable and

becoming more easily controllable, those having been installed may be turned off for

lower load situations to maintain operational compliance.

An initial sensitivity analysis is employed to improve computation time and main-

tain Pareto set quality, as the example real circuit is very large in scale with approxi-

mately 4,000 buses, which is a major contribution. A pseudo-weight vector approach

14



is utilized to select optimal configurations based on provided weights, including the

most extreme cases with respect to the considered objectives. A systematic procedure

is proposed to analyze the extreme and existing reference configurations for each sub-

circuit to inform configuration selection from among the corresponding Pareto sets.

The main objective of the work described in this chapter is to improve operation

through the optimal placement and rating of CBs in power distribution systems.

Independent variables are identified and include CB rating at the most sensitive bus

locations. Different studies involve various combinations of objectives, which include

minimization of power losses, voltage standard deviation, and investment.

This chapter is substantially based on the following journal publication: E. S.

Jones, et al., “Optimal Capacitor Placement and Rating for Large-Scale Utility

Power Distribution Systems Employing Load-Tap-Changing Transformer Control,”

IEEE Access, vol. 11, pp. 19324-19338, 2023, doi: 10.1109/ACCESS.2023.3244572.

In section 2.2, a literature review is provided with primary focus upon existing

CB planning methods that employ computational optimization. Section 2.4 estab-

lishes the power distribution system modeling and simulation procedure. Section 2.5

formulates the CB planning problem and provides the sensitivity analysis for bus

location installation candidacy, which corresponds to optimization decision variables.

Considered optimization algorithms are explained in section 2.6, and the methods

which employ them are compared in section 2.7 to establish their individual merits.

Finally, a sub-circuit analysis to inform configuration selection is provided in section

2.8 with conclusions in section 2.10.
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Figure 2.1: Flowchart for the overall proposed OCP procedure with five main
processes, including circuit modeling, candidate bus location determination, multi-
objective optimization, solution selection considering objective priority, and selected
configuration analysis.
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2.2 Conventional Approaches

Upon review of relevant literature, special attention was placed on the selection

of optimization objectives and algorithms employed in such studies. Additional con-

straints and the stage during which they were applied were also considered as well as

example test power systems and modeling methods for both the networks and loads.

Proposed by A. Noori et al. is a hybrid allocation of CBs and distributed static

compensators in power distribution systems through multi-objective improved golden

ratio optimization method (MOIGROM) and a fuzzy decision making process [18].

In this case, the MOIGROM has two objectives, including voltage violations and to-

tal installation cost corresponding to the equipment and related active power losses.

A power loss reduction factor method is applied to determine buses most sensitive

to reactive resource installation to reduce the decision variables considered by the

MOIGROM. The procedure was applied to the IEEE 13, 69, and 118 bus test sys-

tems, resulting in solutions that improved both total active power losses and voltage

violations on the example circuits.

Two optimal methodologies that both employ an epsilon multi-objective genetic

algorithm (ϵ −MOGA) for the allocation of both fixed and switching CBs in a sim-

ulated real utility 162-bus power distribution network are explored by M. Ahmadi

et al. [19]. Optimization objectives include minimization of total installation cost

and switching frequency. The first method is a two-step process where installation

location is determined by sensitivity analysis and the CB sizes by ϵ−MOGA, whereas

the second method utilizes ϵ −MOGA for both. The two-mechanism approach with
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an additional sensitivity analysis yielded better results, but both methods showed

significant improvement in voltage profile, power losses, and financial investment.

Post-optimization constraints may also be applied as employed by Onaka et al.

for the IEEE 34-bus test system to consider total harmonic distortion (THD) [21].

Optimal solutions are determined initially through the Non-Dominated Sorting Ge-

netic Algorithm II (NSGA-II) for two objectives in which the maximum bus voltage

violations and total system costs considering CB installation as well as active power

losses at both fundamental and harmonic frequencies are to be minimized. Solutions

among the Pareto set, or optimal solution set of best compromise, that violate the

THD constraint are removed from consideration.

Optimal placement and sizing of CBs is determined by A. A. Eajal et al. for the

IEEE 13-bus test system through a discrete Particle Swarm Optimization (PSO) with

a single objective of minimizing total system cost considering active power losses and

CB installation [20]. A total Harmonic Distortion (THD) constraint is applied during

the optimization instead of in the post-optimization stage as in [21].

An ant colony search optimization algorithm is proposed by C. F. Chang for both

network reconfiguration and CB placement with the minimization of power losses as

the only objective [22]. Voltage quality and other operating conditions are considering

as constraints. It is also proposed that the method could be extended to automated

control of distribution system devices over time.

Other optimization approaches have been applied to this CB placement and sizing

problem, such as plant growth-based and multi-objective PSO or NSGA-II algorithms

with differing objectives [7–12, 38, 39]. Some reported methods involve the hybrid
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utilization of different multi-criteria algorithms at different levels of a power system

simulation, and comparisons of algorithm types have been provided [13–17].

It was found that typical objectives for CB planning generally include the mini-

mization of active power losses and investment [18–20]. Constraints were also some-

times applied concurrently with the optimization or afterward upon the resulting

Pareto set to ensure power system operational compliance for proposed CB configu-

rations by limiting voltage violations and THD [20–22, 39].

The reconfiguration of other circuit elements to accommodate new CB arrange-

ments has also been considered in literature, including by system topology alterations

through changes in tie states and sectionalizing switches [40, 41]. Other studies have

incorporated Distributed Generators (DGs) with their CB planning approaches, as

renewable DGs like local solar PV are becoming more prevalent in modern power

distribution systems [42–45].

Optimal CB planning for circuits with different load model scenarios have been

studied [41, 46–48]. Such scenarios include different percentages of the peak load,

variation in load based on customer types, or cases that model load voltage depen-

dency. To study such cases on larger utility circuits, there is a need for enhanced load

modeling methods with improved granularity, such as those that may employ data

from Advanced Metering Infrastructure (AMI) programs currently being deployed by

utilities [49].

In addition to natural loadshapes, power distribution systems can experience con-

siderable change in load demand and bus voltages due to operational events of typical

control devices, such as LTC transformers and voltage regulators. A literature gap
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exists with respect to the readjustment of such devices upon reconfiguration of CBs

during the optimization process. LTC settings control the voltage profile of a power

system and must be considered for a fair comparison to a base reference case.

Although comparative studies of optimization algorithms for OCP methods are

available in current literature, the direct comparison of different methods in full,

including their formulations, are insufficiently reported. The consideration or evalua-

tion of CB efficacy over time as well as application of OCP on real large-scale power

distribution systems are both limited in literature, as current studies usually only

employ the IEEE test systems at their peak load instances.

The original contributions of this work are framed within the development and

proposal of a novel OCP procedure (Fig. 2.1). These include a comparative study

of multi-objective optimization approaches for a power system specific problem by

employing computational intelligence methods and readjustment of LTC transform-

ers, a new multi-step procedure for optimal power system configuration selection that

utilizes a pseudo weight vector approach based on objective priority and a system-

atic analysis of the most extreme configuration types, and the application of OCP

to three actual large-scale utility circuits, which was achieved through a custom-

developed software to translate utility distribution system models into open-source

OpenDSS versions for considerably improved accessibility.

2.3 Electric Power Distribution System Modeling

The modeling of PDSs may be achieved through the determination of power flow

and associated values at all defined nodes, which include real power (P ), reactive
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power (Q), voltage magnitude (∣V ∣), voltage phase angle (σ), and current (I) [50].

The apparent power at node i may be defined by:

Si = Pi + jQi = ViI
∗
i . (2.1)

For a power system with n nodes, the network equation is given by the matrix

equation:

I = Y V , (2.2)

where I is n vectors of current injections; Y , n × n bus admittance matrix; V , n

vectors of node voltages.

The current injected into node i may be obtained from 2.2:

Ii =
n

∑
k=1

YikVk = Yi1V1 + Yi2V2 +⋯ + YinVn. (2.3)

Solving 2.3 and 2.1 provides:

Si = Pi + jQi =
n

∑
k=1

ViV
∗
ikV

∗
k , (2.4)

By rewriting Vk = ∣Vk∣ δk, Yik = ∣Yik∣ θik, 2.4 becomes:

Si =
n

∑
k=1

∣Vi∣ δi ∣Yik∣ −θik ∣Vk∣ −δk = ∣Vi∣ ∣Yik∣ ∣Vk∣ δi − θik − δk. (2.5)

The real and reactive power at node i can determined by:

Pi = Re(Si) =
n

∑
k=1

∣Vi∣ ∣Yik∣ ∣Vk∣ cos(δi − θik − δk) (2.6)

Qi = Im(Si) =
n

∑
k=1

∣Vi∣ ∣Yik∣ ∣Vk∣ sin(δi − θik − δk) (2.7)

The power at the nodes of network consisting of n buses from 2.4 is described by:

Si = Pi + jQi =
n

∑
k=1

ViY
∗
ikV

∗
k

= ViY
∗
iiV

∗
i + Vi

n

∑
k=1,k≠i

Y ∗ikV
∗
k , i = 1,2,⋯, n

(2.8)
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Rewriting 2.8:

Y ∗iiV
∗
i =

Si

Vi

−
n

∑
k=1,k≠i

Y ∗ikV
∗
k i = 1,2,⋯, n (2.9)

Dividing both sides of 2.8 by Y ∗ii :

V ∗i =
1

Y ∗ii
[
Si

Vi

−
n

∑
k=1,k≠i

Y ∗ikV
∗
k ] i = 1,2,⋯, n (2.10)

The complex conjugate of 2.10 is solved as:

Vi =
1

Yii

[
S∗i
V ∗i
−

n

∑
k=1,k≠i

YikVk] i = 1,2,⋯, n (2.11)

OpenDSS, an open-source software by the Electric Power Research Institute (EPRI)

for the modeling of electric power distribution systems, employs the primitive admit-

tance matrix approach. A two-phased coupled impedance example may be defined

as:
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

I1

I2

I3

I4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

Z−1 −Z−1

−Z−1 Z−1

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

V1

V2

V3

V4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.12)

where the impedance characteristics, Z, are defined as:

Z =

⎡
⎢
⎢
⎢
⎢
⎣

z11 M12

M12 z22

⎤
⎥
⎥
⎥
⎥
⎦

(2.13)

In OpenDSS, power lines are defined by impedance matrix. For a three phase bus

example, impedance matrices may be represented by:

Z = R + jX =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.14)

The series resistance and reactance matrices are respectively defined in ohms per

unit length:

R =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

R11

R21 R22

R31 R32 R33

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.15)
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X =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X11

X21 X22

X31 X32 X33

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.16)

The shunt nodal capacitance matrix is defined in nanofarads per unit length:

C =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C11

C21 C22

C31 C32 C33

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.17)

Power flow of circuit models is solved in OpenDSS by iterative loop. The main

system admittance matrix is constructed by the small nodal admittance matrices of

each line. The source currents and node voltages are updated at each iteration until

it converges based on a provided tolerance, which is typically 0.0001p.u.

Ohm’s Law for the main system admittance matrix may be expressed as:

Is =YV, (2.18)

where Is is the source currents; V, the node voltages. OpenDSS adopts the “flat

start” method where all voltage angles and magnitudes are initialized to 0 and 1.0p.u.,

respectively. For each iteration, V is calculated by the sparse matrix solver, denoted

by:

V
(k+1)
i =

1

Yii

(Isi −∑
j≠i

YijV
k
j ). (2.19)

Updates are applied to 2.18 with the newly determined V(k+1):

Ik+1s =YVk+1. (2.20)

The new Ik+1s and Vk+1 are employed in 2.19, and the procedure repeats until the

calculated voltages converge.
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Figure 2.2: Comparison of the Synergi and converted OpenDSS circuit model line
and component mappings for the original configuration of the actual 48MW, 9Mvar
power distribution system KUs1. Also included for comparison are both individual
bus voltage and line loss analyses for the peak load instance. The OpenDSS circuit
diagram is labeled with the top candidate bus locations for CB installation. Candi-
dacy is determined by a sensitivity analysis in terms of power loss reduction factor
(rfw) as discussed in section 2.5. Change in voltage for buses with high rfw causes
relatively significant change in power losses for connected lines. Such buses typically
cluster near the main distribution feeder lines.

2.4 Large-Scale Utility Circuit Model Conversion

The example circuit, henceforth referred to as KUs1, utilized in the following study

is a large 48MW, 9Mvar distribution system with AMI and is considered a candidate

by its utility for implementing Conservation Voltage Reduction (CVR) and volt-var

optimization (VVO) programs (Fig. 2.2). KUs1 is significant in complexity, boasting

3,839 buses and 6,854 nodes, which serves approximately 5,000 homes in the U.S.

A software tool to convert power distribution system models from Synergi, a

utility power system simulation software, to OpenDSS [51] was developed with Python

to enable the application of the OCP procedure on such circuits. This modeling

procedure can also enable future CVR and VVO testing and benefit evaluation [5,

23, 24, 52].

The KUs1 circuit OpenDSS model is a full copy of its Synergi counterpart which
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Figure 2.3: Geographical circuit schematics of different characteristics for KUs1, in-
cluding number of phases and conductor type for the line associated with the buses.
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Figure 2.4: Summary of circuit conversion for KUs1 in terms of individual bus volt-
age, including Synergi and OpenDSS average bus voltages as well as the ratio and
difference of Synergi to OpenDSS average bus voltages.
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Table 2.1: Global circuit conversion summary
Active
power [MW]

Reactive
power [Mvar]

Losses [Mw]

Synergi 47.67 9.39 0.55
OpenDSS 47.90 9.94 0.50
Absolute diff.
(relative diff.)

0.23
(0.48%)

0.55
(5.86%)

0.05
(9.09%)

includes the matching of line mapping, impedances, and power losses, spot load de-

mand, active and reactive powerflow, and bus voltages. Synergi requires two database

files as input to produce circuit models, including the network and equipment files.

The equipment file provides important parameters and descriptions of circuit com-

ponents, such as cables, transformers, switches, and CBs, typically employed by the

utility. The network file describes the line mapping, component placement, peak load

allocation, and operating details for the full circuit.

With the model conversion tool, circuit information is imported from the Synergi

database input files and rewritten into OpenDSS format. To confirm accurate conver-

sion, circuit model definitions and simulation results from both versions are compared

at the global and individual component-level (Table 2.1). Line lengths, positive and

zero sequence components, and connection node mapping as well as the peak active

and reactive powers of loads connected at each bus matched exactly. Simulated av-

erage voltages of the 3,839 buses yielded minimal percent difference with a mean of

0.17% and standard deviation of 2.65%.

A smaller, more urban circuit with 2,409 buses, 4,829 nodes, 1 LTC transformer,

13 CBs, a peak power of 27.69MW/4.22Mvar was also successfully converted and

referred to as LGEs1 (Fig. 2.5). In Figs. 2.3 and 2.6, the significant complexity of
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Figure 2.5: Circuit schematic of LGEs1, indicating the location of its 13 CBs.

these circuit models are illustrated through geographical schematics of different circuit

characteristics. Conversion summaries in terms of individual bus voltages after the

transformer LTC tap settings were calibrated are also provided in Figs. 2.4 and 2.7.

Additional software for OCP has also been developed with Python by directly

interfacing with the OpenDSS open-source software to employ as the modeling and

simulation engine (Fig. 2.1). This tool set is utilized for the simulation of KUs1 at

the peak load time instance for OCP and may be employed for time series simulation

based upon a provided loadshape.

Such accurate circuit modeling and the prospective incorporation of AMI data to

improve granularity in load modeling offers improved evaluation accuracy of effects

from optimal planning and control. As an alternative to AMI, advanced load modeling
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Figure 2.6: Geographical circuit schematics of different characteristics for LGEs1,
including number of phases and conductor type for the line associated with the buses.
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Figure 2.7: Summary of circuit conversion for KUs1 in terms of individual bus volt-
age, including Synergi and OpenDSS average bus voltages as well as the ratio and
difference of Synergi to OpenDSS average bus voltages.
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Figure 2.8: Histogram for rfw of all buses in the KUs1 circuit with no. of occurrences
on a logarithmic scale. Buses with higher rfw correspond to those most sensitive
to CB installation. The red line marks the minimum cutoff rfw for consideration of
candidacy.

through energy simulation of buildings and weather-dependent appliances is also of

consideration [31, 53–56].

2.5 Problem Formulation and Sensitivity Analysis for Candidate Instal-

lation Buses

Multi-objective optimization for OCP is proposed to determine the Pareto set of

optimal CB configurations at the peak load instance. Two formulations are consid-

ered, each with four optimization method variations, resulting in eight sets of results

for the example T1 sub-circuit of KUs1, which corresponds to a single transformer

(Table 2.2). An analysis is performed and provided in section 2.7 to establish the rela-

tive merits of each of the formulations and optimization methods in terms of resulting

Pareto sets and possible configurations.
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Both problem formulations consider the installed CB reactive power ratings [kvar]

for candidate CB installation bus locations as independent variables, which are deter-

mined by a sensitivity analysis discussed later in this section (Fig. 2.8). They share

the same discrete range of 0 to 1,200kvar in increments of 300kvar, which corresponds

to typically available CB sizes at the distribution system level. Both placement and

rating are optimized simultaneously through the inclusion of 0kvar as a rating option.

The common objectives for the two formulations are to minimize total active

power losses (wa,t) and investment represented by total installed CB rating (cr,t):

min [wa,t =
nl

∑
i=1

(wa,l,i) +
nt

∑
j=1

(wa,x,j)] , (2.21)

min [cr,t =
nc

∑
i=1

(vr,i)] , (2.22)

where nc is the total number of CBs to be installed; cr,i, the reactive power [kvar]

rating of CB number i; nl, the total number of lines; wa,l,i, the active power losses

[kW] at line number i; nt, the total number of transformers; wa,x,j, the active power

losses [kW] at transformer number j; nb, the total number of buses; vi, the average

voltage of all phases at bus number i; vr, the reference voltage of 1.0pu.

For the second formulation, a third objective defined in equation (2.23) is proposed

that minimizes the voltage variation throughout the circuit to improve distribution

of CB installation locations and possibly reduce voltage violations over time, which

is different from the typical approach that employs only two objectives. Lower volt-

age variation offers the prospect of reduced control operations and slower equipment

degradation, which is being further explored in continued work. The function directly
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minimizes standard deviation of node voltages (vn,d) and is defined as:

min

⎡
⎢
⎢
⎢
⎢
⎢
⎣

vn,d =

¿
Á
ÁÀ∑

nn
i=1 (vn,i − vn,a)

2

nn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (2.23)

where nn is the total number of nodes in the circuit; vn,i, the voltage at node number

i; vn,a, the mean voltage of all nodes.

To improve OCP performance and optimal configuration quality, a sensitivity

analysis was performed to determine the best candidate bus locations for CB in-

stallation (Fig. 2.1). This effectively reduces the search space for the optimization

algorithm and eliminates from consideration many buses that are not appropriate for

CB installation by employing a power loss reduction factor (rfw), defined as:

rfw(i) =
(∆wi −∆wmin)

(∆wmax −∆wmin)
, (2.24)

where ∆wi, the difference in active power loss of the lines connected to bus i between

two KUs1 simulation cases with transformer LTC tap settings set to 1.0pu and 1.05pu;

wmin, the difference in minimum active power loss among the lines of the system;

wmax, the difference in maximum active power loss among the lines on the system.

rfw captures the effectiveness of CB installation at a specific bus by determining the

degree to which the change in active power losses of lines connected to the considered

bus are dependent upon the change in voltage at that bus.

The list of candidate buses was further narrowed by excluding buses with fewer

than three phases to comply with typical utility practices for CB installation. This

effectively reduced the number of possible bus locations from approximately 4,000

to around 120. The bus candidate vector corresponds to the number of decision
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Figure 2.9: Comparison of resulting example Pareto sets for the KUs1 T1 sub-circuit
from the most basic NM2 optimization employing the two considered optimization
algorithms, NSDE (DE) and NSGA-III (GA), at different numbers of allowed gener-
ations as indicated legend labels.

variables in the multi-objective optimization and directly relates to simulation time.

This is important as future work with time series simulation will rely upon such an

optimization to apply controls as the load changes.

2.6 Optimization Algorithms

For the OCP methods, two optimization algorithms are considered, including a

Non-Dominated Sorting Differential Evolution (NSDE) variant and the Non-Dominated

Sorting Genetic Algorithm III (NSGA-III) (Fig. 2.9). DE was originally designed

for single-objective scalar optimization and has been adapted with a non-dominated

sorting function to solve the OCP multi-objective problem due to its efficiency and

effectiveness [57].

NSGA-III is an extension of the NSGA-II algorithm that is tailored to optimization
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problems that may have multiple objectives, which is innately suitable for OCP when

coupled with a discrete independent variable set [58, 59].

Since typically available CB ratings are limited to larger units of 300kvar, an initial

advantage of NSGA-III is the ability to employ a discrete independent variable set,

whereas the NSDE variant may only utilize continuous variable ranges. This requires

the NSDE method to incorporate an additional step to glean solutions with ratings

that closely match what is actually available.

Algorithm 1 Pseudo-code for the OCP optimization algorithm with continuous in-
dependent variable ranges based on the differential evolution concept.

Generate initial population vector PC1,p

while termination criteria is not satisfied do
for each population of power system configurations, p, in PCg,p do

Generate permutation of random indices, R ▷ Mutation
PCM,g,p ← PCg,p[R[0]] + SF (PCg,p[R[1]] − PCg,p[R[2]])
if RAND(0,1) ≤ CR then ▷ Crossover

PCU,g,p ← PCM,g,p

else
PCU,g,p ← PCg,p

end if
if f(PCU,g,p) ≤ f(PCg,p) then ▷ Selection

PCg+1,p ← PCU,g,p

else
PCg+1,p ← PCg,p

end if
end for
g ← g + 1 ▷ Increment to next generation

end while

For initialization of the NSDE method, the configurations of selected ratings for

the candidate installation bus locations within an initial population vector of the first

generation are determined by use of uniform random number as follows:

PCg,p = Bl + (Bu −Bl) ∗RANDp(0,1), (2.25)
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where g is the generation index and is equal to 1 to indicate the first generation; p,

the population index and is equal to 1 to indicate the first population; Bu, the set of

upper bounds; Bl, the set of lower bounds; RANDp(0,1), a function that produces

a set of random values between 0 and 1 equal in size to population p.

The configurations within the population PCg,p as defined in equation (2.25) are

then mutated to create a new population (PCM,g,p), which expands the search space:

PCM,g,p = PCg,p ∗R0 + SF∗

[(PCg,p ∗R1) − (PCg,p ∗R2)] ,

(2.26)

where R is a random permutation of distinct configurations and sf is a scaling factor

that produces more population diversity as it is increased. sf is a positive value and

is typically set within the range of [0,2] [57]. Based on the configurations from the

target (PCg,p) and mutated (PCM,g,p) vectors, the cross-over procedure produces a

population vector of trial configurations (PCU,g,p) as follows:

PCU,g,p =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

PCM,g,p if RAND(0,1) ≤ cr

PCg,p otherwise
(2.27)

where cr is the cross-over probability. A random value for each of the individual

configuration variables is generated as denoted by the RAND(0,1) function. Finally,

the selection step compares the evaluations of the objective function for PCU,g,p and

PCg,p to improve or maintain the quality of PCg,p for the next generation, PCg+1,p:

PCg+1,p =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

PCU,g,p if f(PCU,n,p) ≤ f(PCn,p)

PCg,p otherwise
(2.28)
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This multi-step optimization procedure is repeated until the termination criteria

is satisfied. The Pareto set, or epsilon non-dominated sorted solution set of best

compromise, is then determined as the set of optimal configurations.

Since this variant of DE is multi-objective, the process will terminate once a

maximum number of generations is reached. This maximum value is determined by

trial and comparison as illustrated in Fig. 2.9. The flow of the NSDE algorithm is

further illustrated in Alg. 1. Sets included in Algs. 1 and 2 are indicated by their

capitalization.

Algorithm 2 Pseudo-code for the OCP optimization algorithm with discrete inde-
pendent variable ranges based on the concept of NSGA-III.

Randomly generate initial population vector of power system configurations PCg,c

of size npop where g is generation number
Define a set of distributed reference points RP
g ← 1
while termination criteria is not satisfied do

PCg,S ← ∅, i← 1
PCg,r ← PCg,p ∪ PCg,c

F ← non dominated sorting of PCg,r

while ∣PCg,S ∣ < Npop do
PCg,S ← PCg,S ∪ PCg,s[i]
i← i + 1

end while
PCg,S ← PCg,s[i]
if ∣PCg,S ∣ = Npop then

PCg+1,p ← PCg,S

Criteria satisfied, break here
else

Pg+1,p ← ∪
l−1
j←1PCg,s[j]

Determine K number of points to be chosen from PCg,s: K ← Npop − ∣Pg+1∣

Normalize objectives
Associate each member of PCg,S with a reference point d ∈H
Compute niche count of reference point j, where j is associated with member

k ∈ Pg+1 ∩ PCg,S

Choose K members from PCg,S to construct Pg+1

end if
g ← g + 1 ▷ Increment generation

end while
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Fundamentally, NSGA-II and NSGA-III follow the same process but with a differ-

ent selection mechanism. In NSGA-II, new parent populations PCg+1,p are determined

from a combined population PCg,r, which is the union of the parent and child popula-

tion sets (PCg,p and PCg, c, respectively) ordered by their rankings. Let the set PCg,s

be the non-dominated sorting of PCg,r. For each configuration, i, in a population of

size npop, let the set PCg,S having been initialized as an empty set be the union of

itself PCg,S and PCg,s[i]. If the size of PCg,S becomes greater than npop, then only

those members with the largest crowding distances among the last non-dominated

front PCg,s are selected.

In NSGA-III, the best members from PCg,s are, instead, selected from the supplied

reference points RP . In this work, the set RP was determined based on the Das

and Dennis procedure [60]. Next, with PCg,S and RP , each objective’s values are

normalized based on PCg,S. Then, references lines are constructed on a hyper-plane

by joining the points of RP with the origin. The population members of PCg,S

and PCg,s are then associated with a member of RP based on their closeness to the

reference lines in the now normalized objective space.

The number of members from PCg+1,p that are in PCg,S which are associated

with the members of RP are counted. If there is a reference point, or member

of RP , that has no member associated with it and at least one of the members

of PCg,s are associated with that member of RP , then the member of PCg,s with

the shortest perpendicular distance to the corresponding reference line is added to

PCg+1. If all members of RP associate with at least one member of the population,

then the member to be added to PCg+1,p is, instead, randomly selected from PCg,s.
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This procedure, starting from the initialization of PCg,S inclusive, is repeated until

a termination criteria, such as the desired population size or maximum number of

generations, is satisfied. The flow of the NSGA-III algorithm is further illustrated in

Alg. 2.

In comparing NSDE and NSGA-III at maximum generation numbers of 10, 20,

and 100, it is evident that NSGA-III yields Pareto sets of better quality with fewer

required generations than NSDE (Fig. 2.9). This is an additional advantage of NSGA-

III, which already employs a discrete independent variable range that eliminates the

need for removing configurations with invalid CB ratings as in the NSDE case with

continuous ranges.

The proposed OCP procedure is being adapted in on-going work to act as an

optimal control function, which would occur at each timestep of a simulation (Fig.

2.1). The number of required generations directly determines computation speed, as

each generation requires the same amount of time and produces the same number

of configurations in the design space. Although a practically identical Pareto set

is reached by the optimization algorithms eventually, the computation speed is an

important aspect in enabling real-time operation of the optimal control functionality.

Therefore, all considered multi-objective OCP formulations in the following study

employ NSGA-III.

2.7 Multi-objective Optimization Methods

For each of the the two problem formulations defined in section 2.5, four opti-

mization methods are considered. The methods are compared based on results from
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Figure 2.10: Possible configurations and Pareto sets for the (a) NM2, (b) PM2, (c)
NA2, and (d) PA2 methods. Configurations with voltage violations of more than
0 are not considered and not illustrated within any of the plots. Introducing the
penalty constraint as illustrated with PM2 and PA2 increases the breadth of the
search space. It also provides additional valid configurations along the Pareto sets
that require less investment. Incorporating automatic LTC tap setting adjustment
within the optimizer, as in NA2 and PA2, improves overall wa,t and cr,t.

Table 2.2: Characteristics of the eight (8) considered optimization methods.
Optimization method NM2 PM2 NA2 PA2 NM3 PM3 NA3 PA3
wa,t objective Y Y Y Y Y Y Y Y
cr,t objective Y Y Y Y Y Y Y Y
vn,d objective N N N N Y Y Y Y
Penalty constraint on voltage violations N Y N Y N Y N Y
Automatic LTC tap setting adjustment N N Y Y N N Y Y
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Figure 2.11: Possible configurations and Pareto sets for the three-objective (a) NM3,
(b) PM3, (C) NA3, and (D) PA3 methods. Configurations with voltage violations of
more than 0 are not considered and not illustrated within any of the plots. Effects
observed in Fig. 2.10 remain present. The additional third objective increases focus
by the optimizer in the region of increased cr,t and yields configurations with improved
vn,d, including some with penalty to wa,t and cr,t, which indicates it’s independence
as a third objective.
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the KUs1 T2 sub-circuit simulation. Corresponding merits are established in terms

of Pareto set results and possible configurations. The differences in the four ap-

proaches include the incorporation of a penalty constraint for configurations with

voltage violations and the method of adjusting the tap settings at the corresponding

LTC transformer (Tab. 2.2).

The voltage violation penalty constraint is enacted by counting the the number of

voltage violations experienced in each configuration considered by checking whether

any nodes within the circuit have a voltage greater than 1.05pu or less than 0.95pu.

When voltage violations are detected, wa,t is heavily penalized such that the config-

uration is no longer considered valid by the optimizer (Fig. 2.15).

For LTC transformer tap setting adjustment, two methods are considered. In

the first, the LTC tap settings are manually adjusted in 1/32 increments, which

corresponds to 32 possible settings, within a band of +/- 5% for the existing reference

circuit such that bus voltages are as low as possible without causing any voltage

violations (Fig, 2.15). Then, the tap settings are left unchanged for all configurations

proposed by the optimizer.

Tap settings are determined and controlled by the optimizer in the second method

so that power distribution system effects due to new CB configurations are considered

concurrently. This is achieved by adding the tap settings as additional independent

variables with a discrete range of 32 tap settings as applied in the manual adjustment

technique.

The assigned optimization type names identify whether the penalty constraint is
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employed (no penalty (N) or with penalty (P)) as well as the method of tap set-

ting adjustment (manual, M, or automatic, A) and the number of objectives (2 or

3) considered (Table 2.2). The most basic optimization method, NM2, yields an

anticipated Pareto set of optimal CB configurations illustrated in Fig. 2.10a. Such

configurations are favorable with respect to the reference case, which operates with

relevantly average cr,t.

For this case in the T2 sub-circuit, many options exist through which wa,t may

be improved, even with reduced cr,t. Configuration quality is very similar for PM2 as

in NM2 with an expanded solution set throughout the lower region of reduced cr,t,

which is due to the penalty constraint against voltage violations (Fig. 2.10b). The

expansion in search space by penalty constraint is also evident between NA2 and PA2

(Figs. 2.10c and 2.10d).

Introducing the automatic LTC transformer tap adjustment function in cases NA2

and PA2 considerably improves both the wa,t and cr,t across the set of possible so-

lutions. Additionally, configurations of lower cr,t have especially improved wa,t, as

indicated by the steeper slope of the Pareto set (Fig. 2.12). Minimal wa,t is achieved

by enabling the power system to operate at the highest voltage without violating

standard limits. In the NA2 and PA2 cases, the optimizer is able to adjust the volt-

age of the entire system through LTC transformer tap control as well as increase the

voltage of targeted nodes with particularly high rfw.

The additional penalty constraint against voltage violations increases the size of

the search space but more generally and without such focus in the lower cr,t region, es-

pecially for PA3 (Figs. 2.11 and 2.12). As anticipated, vn,d is mostly dependent upon
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CB placement with some correlation to increased cr,t since more CBs are available to

improve voltage uniformity. (Fig. 2.13).

The optimizer shifts in focus to the higher cr,t region for three-objective methods,

since such optimal configurations can now also offer reduced vn,d, sometimes with

penalty to wa,t. This adjusted focus is more so evident in methods NA3 and PA3,

since configurations produced with these techniques can provide additional loss miti-

gation from higher tap settings without voltage violations through improved voltage

uniformity (Fig. 2.14).

Three-objective methods also provide additional configurations among the Pareto

set with improved vn,d that do not necessarily correlate with the other two objectives.

This contribution enables analysis of the trade-offs between all three without losing

quality in configurations that focus more upon wa,t and cr,t. Across methods, it may

be observed that the relationship between wa,t and cr,t inverts at very high cr,t due

to over-correction and the addition of too much reactive power into the system such

that flow reverses. The implementation of the investment objective, represented by

total CB power rating, may be further developed as the total number of individual

CBs as well as their geographical location can also contribute.

Additionally, the application of these methodologies to CB switching and LTC

settings for time-series optimal control of established devices is being considered to

reduce total distribution system power by activating CVR and VVO functions without

voltage violations. The evaluation of benefits yielded by these functions is enabled

through ZIP parameter modeling of the distribution system loads to capture their

voltage dependency. Advanced load modeling techniques, such as the incorporation
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Figure 2.12: Pareto sets of wa,t and cr,t for all eight (8) optimization methods. The
introduction of automatic LTC tap adjustment improves overall wa,t and cr,t, espe-
cially for configurations of lower cr,t.

of AMI data as it becomes more available from utilities, can improve the accuracy of

such evaluation as it becomes more available in emerging smart grids [49].

2.8 Optimal Configuration Selection through Sub-circuit Analysis

The PA3 optimization technique was also applied to the other two sub-circuits of

KUs1 (T1 and T3, Figs. 2.16 and 2.17). A decision-making procedure is proposed

for configuration selection through the pseudo-weight vector approach [61]. Since

the multi-objective optimization of PA3 minimizes three objectives, three weights

with the requirement that they must sum to one are provided to the decision-making

function to return a solution. For each solution s among the entire solution set S,

this selection method calculates a pseudo weight for each objective obj by determining

the normalized distance to the worst solution corresponding to each obj through the
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Figure 2.13: Pareto sets of cr,t and vn,d for all eight (8) optimization methods. vn,d
is mostly dependent upon CB placement with some correlation to increased cr,t since
more CBs are available to improve voltage uniformity.

Figure 2.14: Pareto sets of wa,t and vn,d for all eight (8) optimization methods. Higher
tap settings in the LTC tap function-enabled NA3 and PA3 methods further reduce
wa,t, which was made possible in part by improved vn,d.
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Figure 2.15: Circuit diagrams with reference CB locations and bus voltages for the
three KUs1 sub-circuits corresponding to substation transformers with manually cal-
ibrated tap settings such that voltages operate as low as possible without any voltage
violations.

equation:

pwobj =
(fmax

obj − fobj(s))/(f
max
obj − f

min
obj )

∑
N
n=1 [((f

max
n − fn(s))/(fmax

n − fmin
n )]

(2.29)

where fmax
obj is the maximum result of obj among the solutions in S; fobj(s), the result

of obj for s; fmin
obj , the minimum result of obj among the solutions in S; N , the set of

objectives for each s of the set S; fmax
n , the maximum result of objective n for all of

S; fn(s), the result of objective n for s; fmin
n , the minimum result of objective n for

all of S.

Four unique circuit configuration types from among the Pareto sets of the three

sub-circuits of KUs1 (T1, T2, and T3) were selected for comparison. The three circuits

are simulated at their respective peak load instances, and their actual reference CB

configurations are provided as ”Ref” (Fig. 2.15).
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Table 2.3: Percent change to circuit characteristics applied by selected optimal con-
figurations with respect to reference (”Ref”) configuration and compromise factors as
defined in Eq.2.30
Sub-circuit T1 T2 T3
Configuration C W Q D C W Q D C W Q D
δw -2 -7 15 10 -2 -8 5 4 -7 -10 -3 -2
δq 40 30 -70 155 5 10 -42 90 130 120 70 210
δd -3 -6 9 -11 -50 -36 -32 -63 -26 -21 -15 -33
cfw,q 0.05 0.23 0.21 0.06 0.40 0.80 0.12 0.04 0.05 0.08 0.04 0.01
cfd,q 0.08 0.20 0.13 0.07 10.00 3.60 0.76 0.70 0.20 0.18 0.21 0.11
cfw,q 0.67 1.17 1.67 0.91 0.04 0.22 0.16 0.06 0.27 0.48 0.20 0.06

Among the selected solutions are the three most extreme cases with the objectives

of wa,t, cr,t, and vn,d, which are respectively defined in equations (2.21), (2.22), and

(2.23), weighted at 100% and labeled as cases ”W”, ”Q”, and ”D”. The fourth

configuration, ”C”, is an equal compromise of the objectives with weights of 33%

each.

To further enable comparison of sub-circuits and capture compromise between

objectives for the selected configurations in terms of improvement from the reference

cases, compromise factors between the three objectives are proposed and calculated

as follows:

cfw,q = ∣
δw
δq
∣ , cfd,q = ∣

δd
δq
∣ , cfw,d = ∣

δw
δd
∣ (2.30)

where cfw,q is the compromise factor between active power losses (wa,t) and total CB

power rating (cr,t); cfd,q, between voltage standard deviation (vn,d) and cr,t; cfw,d,

between wa,t and vn,d; δw, the absolute percent change in wa,t between the reference

and selected configuration; δq, the absolute percent change in cr,t; δd, the absolute

percent change in vn,d.

Among the three sub-circuits, T1 has exceptionally low δd across the selected
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Figure 2.16: Possible configurations and Pareto set for T1. vn,d is exceptional for all
configurations, including Ref, in comparison to T2 and T3. Improved wa,t is achieved
with less cr,t with respect to Ref.

Figure 2.17: Possible configurations and Pareto set for T3. Considerable improvement
of vn,d possible with reduced cr,t and wa,t compared to Ref.
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Figure 2.18: Comparison of the three Pareto sets with shared axes to illustrate how
each sub-circuit may benefit from OCP with respect to their corresponding reference
configurations and to each other in terms of the three objectives. T1 can experience
similar wa,t with much less cr,t than Ref and no penalty to vn,d. Opportunity exists
for T2 and T3 to improve in vn,d with less wa,t. T2 can achieve this with even less
cr,t than Ref, whereas T3 would require more to yield similar benefits.

Figure 2.19: Circuit bus voltages of the three sub-circuits for each selected configu-
ration type. As anticipated, D reduces vn,d more than the other configurations. Both
T2 and T3 experience more vn,d than T1 and have the most opportunity for improve-
ment in that regard.
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configuration types and a low cfd,q. This indicates that the base circuit excels in

voltage uniformity regardless of CB configuration (Table 2.3 and Fig. 2.18). Such

stable voltage along with higher cfw,q suggests that the compromise between wa,t and

cr,t be of primary focus for configuration selection. Based on configuration Q, reducing

the cr,t by 70% would yield a δw of only 15%. So, the CBs in the T1 sub-circuit could

be reconfigured with similar wa,t and vn,d with much less cr,t.

For T2, δd has the most range with all configuration types, boasting reductions of

up to 63% as well as very high values of cfd,q. This indicates that the system is most

sensitive to CB placement in terms of voltage variation (Fig. 2.19). Similar to T1,

T2 could also be reconfigured with better δq, as much as -42%, at a small δw of up

to 5%. The more favourable selection for T2 would considerably improve vn,d with a

small penalty to wa,t at much lower cr,t.

The T3 sub-circuit is different from T1 and T2 in that it requires considerably

more cr,t to achieve similar improvements in wa,t and vn,d. The W configuration offers

the best δw of -10%, but at a high δq of 120% and with a very low cfw,q of 0.08. δq

increases further to 210% for the D configuration, yielding a significant δd of -33% at

a low cfd,q of 0.11. Therefore, reconfiguration of T3 based upon the corresponding

Pareto set would require more cr,t of at least a 70% increase to begin realizing improved

δw and δd as in T1 and T2.
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Figure 2.20: Example six month loadshape from January to June 2022 for total active
(top) and reactive (bottom) power measured at the KUs1 T2 substation transformer
every minute.

2.9 Time Series Evaluation of Circuit

Configurations

Traditionally, the effectiveness of CBs may be considered only at peak load as this

is usually the most extreme case for energy use and lower voltage. Since power distri-

bution systems typically do not operate at this level of load, the effects of the installed

CBs may not be adequately captured. An evaluation procedure through stochastic

analysis extended from [52] is proposed to capture and compare the performance of

different CB configurations in a power distribution system over an example six month

period for the KUs1 T2 sub-circuit as illustrated in Fig. 2.20.

To enable time series simulation, global multipliers for total active and reactive

power are calculated based on the measured peak load of the circuit and minutely

loadshape data captured at the corresponding substation transformer (Fig. 2.21).
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Figure 2.21: Two consecutive example days (left and right columns) from the full 180-
day minutely simulations of KUs1 T2 in all considered configurations with results for
LTC secondary bus voltage (top row) as well as total reactive power (middle row),
and total active power losses (bottom row).
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Figure 2.22: Comparison of distribution fits through CDFs of active power losses over
an example week-long period.

These multipliers are applied to the individually connected loads at each timestep

with the assumption that the global loadshape is representative [23]. The prospective

application of local AMI data to improve granularity of the simulated individual load

behavior may also be incorporated in the circuit simulation framework as it becomes

more available.

A controller was implemented during the time series simulation that mimicked

conventional control of LTC transformers and CB switching. The LTC tap adjustment

control is described in detail in CB5. The CB switching control was issued such that

they would remain on as long as corresponding bus voltages remained below 1.05pu.

The CBs also individually trip if total system reactive power flows in reverse back into

the substation (Fig. 2.21). A five minute control limit is set after a trip command to

ensure full discharge before executing the next close command.
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Figure 2.23: Histograms and resulting PDFs assuming a normal distribution for each
of the considered configuration types in terms of total active power losses.

The procedure may consider any representative value for the total circuit per-

formance per timestep. Considering active power losses and average voltage of all

individual buses as examples for the evaluation procedure due to their association

with the OCP main objectives, respective histograms are illustrated in Figs. 2.23

and 2.24 for all configuration types considered in previous sections.

Gaussian Kernel Density Estimation (GKDE) may also be employed to determine

the shape of the distribution, and is described as:
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Figure 2.24: Histograms and resulting PDFs assuming a normal distribution for each
of the considered configuration types in terms of average voltage for all power system
buses.
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f̂G(x;h) =
1

n

n

∑
i=1

K(x − xi;h), (2.31)

where a PDF data set X = {x1, x2, . . . , xn}, K, the kernel function, which is defined

as:

K(x − xi;h) =
1
√
2πh

e
(x−xi)

2

2t , (2.32)

where h is the bandwidth [53]. Scott’s rule is employed to determine the bandwidth

such that it is large enough to reduce the variance of the PDF and small enough to

mitigate the bias [62].

Employing GKDE to determine the circuit-specific PDF for performance metrics

allows for the inferencing and general capture of probable circuit behavior based upon

limited observed data. The PDFs may be translated into a cumulative distribution

function (CDF) for direct comparison of performance over time (Fig. 2.22).

Since a substantial amount of data was employed in this study, including 259,200

minutes of active and reactive power measurements, the CDFs for final comparisons

are based on the resulting simulation data directly rather than incorporating a sta-

tistical estimation procedure. It was found that none of the configurations offer

substantial reduction in losses with respect to the NC case of no CBs considering

loss reduction rarely exceeds 0.1% of the approximate 18MW total peak active power

of KUs1 T2 (Fig. 2.25). This is in part due to the relatively high reactive power

of loads and frequent reversal of flow back into the substation, which disables CBs

from operation since they would only further contribute to this flow and a worsening

power factor (Fig. 2.21). As illustrated in Fig. 2.26, considerable improvements are
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realized in voltage stability. The Q configuration with 42% less total CB rating than

Ref maintains operational compliance by remaining within the acceptable voltage

range of 0.95pu and 1.05pu for almost 90% of the time, which is the same as all other

configurations with CBs.

2.10 Summary

Multi-objective optimization for CB placement and rating of large-scale utility cir-

cuits is achieved through a multi-step Optimal Capacitor Planning (OCP) procedure

developed through a comparison of methods, which include different formulations

and optimization algorithms. The novel PA3 three-objective technique with both

penalty constraint on voltage violations and automatic Load-Tap-Changing (LTC)

transformer tap setting adjustment was determined to be the most effective. A solu-

tion selection method through a pseudo-weight vector approach that considers objec-

tive priority was developed and employed to determine the three most extreme cases

of the KUs1 sub-circuits as well as an even compromise configuration. The efficacy

evaluation for CB configurations over time in addition to the peak load scenario may

be enabled by future enhanced load modeling methods as utilities deploy Advanced

Metering Infrastructure (AMI).

Based on a systematic sub-circuit analysis of the selected configurations, signifi-

cant improvements with respect to the base reference case were concluded. The T1

and T2 sub-circuits could be reconfigured to perform similar to the reference case

with 70% and 42% less total installed CB rating, respectively. T2 was found to be

most sensitive in voltage variation change and could be improved in this regard by up
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(a)

(b)

Figure 2.25: CDFs of total active power losses for each circuit configuration in (a)
full and (b) zoomed in views.
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Figure 2.26: CDF for average bus voltage of each circuit configuration case.

to 63%. T3 was unique in that the reference case had a relatively low total installed

CB rating and would require more investment to yield similar benefits in reduced

power losses and voltage deviation as in T1 and T2.
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Chapter 3

Optimal Operation of Voltage-Controlling Devices in Distribution
Systems

3.1 Introduction and Main Problem

Power Distribution Systems (PDSs) experience constant change in load over time

due to weather effects and occupant behavior. Voltage at individual buses change

as well with an inverse relationship to corresponding loads. Therefore, voltage-

controlling devices, including Capacitor Banks (CBs), Automatic Voltage Regulators

(AVRs), and Load-Tap-Changers (LTCs) for transformers, are required to maintain

operational compliance [24].

CBs are a popular reactive power compensating and power factor correcting tech-

nology that stabilizes bus voltages. They are typically employed at bus locations

farther from the source bus due to more significant voltage drop. LTCs and AVRs

are similar in their utility as they are conventionally placed to maintain voltage of

feeders.

The improved control and management of such devices are currently of great

interest for grid modernization and are typically associated with the concepts of

Conservation Voltage Reduction (CVR) and Volt-Var Optimization (VVO) [3]. CVR

has long been studied in PDSs and is now commonly considered as a function of

VVO to cost-effectively reduce energy use and peak power [4]. Savings are realized
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through CVR by operating within the lower half of the American National Standards

Institute (ANSI) standard C84.1 recommended voltage band (114V-120V) without

harming residential appliances or utility assets [26].

The evaluation of CVR and VVO effects may be performed through measurement

and verification (M&V) methods that should consider load effects from typical causes,

such as weather, time of day, and occupant behavior. Such M&V methods may be

categorized as comparison, regression, or simulation-based [5, 26]. Comparison-based

M&V utilizes two feeders of very similar configurations, topologies, and loads that are

in close proximity to one another. CVR/VVO is applied to one, while the other other

feeder serves as a baseline. Although the most straightforward, finding two feeders

that are similar enough is often not possible and external effects, such as weather,

can be significantly different.

In regression-based implementations, loads are modeled as functions of impact

factors, such as outdoor temperature. The liner regression models are solved over an

example day with a reference voltage and with CVR applied. Simulation-based meth-

ods employ power system models that include the full network and connected loads.

This enables simulated control of power system components with the challenge of

considering voltage-dependency, which can be captured though constant impedance,

constant current, and constant power (ZIP) modeling [23, 24, 27].

Various utility and national laboratory demonstrations of CVR/VVO have been

performed through pilot programs and test cases of differing M&V types [5]. It

has been determined based on such field implementations that PDS energy use may

be reduced by 0.3% to 1.0% for every 1% of reduction in system voltage [6]. A
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range of 1% to 4% in total energy use savings is expected based upon circuit-specific

characteristics.

As smart grid technologies and Advanced Meter Infrastructure (AMI) become in-

creasingly more prevalent in modern distribution systems, the improved control of

these devices offers significant opportunity for savings in both energy use and costs

due to equipment degradation. Extensive modeling for PDS networks, equipment,

and loads, including their voltage dependency, enables the development and evalua-

tion of advanced control methodologies through simulation-based M&V. Proposed in

the following are both an optimal control case of best operational performance with

unlimited adjustments to control settings that employs computational intelligence to

perform CVR and VVO functions as well as an improved method that also considers

equipment degradation by dispersing adjustments over time through machine learn-

ing clustering and day-ahead forecasting. The advanced control cases are compared

with a baseline conventional case through exemplification upon an actual large-scale

utility circuit model of approximately 2,000 nodes, henceforth referred to as circuit

KUs1T1.

The main objective of this chapter is to develop a control optimization for voltage-

controlling devices in PDSs to minimize both energy use and equipment degradation

from setting adjustments over time. Independent variables are identified and include

the settings of individual devices, including LTCs and CBs, as well as settings for

the controller over time to leverage the expected trade off between the two main

minimization objectives. Three control methods, which are illustrated in Fig. 3.9,

are compared to evaluate effectiveness of the proposed cluster-based method.
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This chapter is substantially based on the following journal publication: E. S.

Jones, et al., “A Cluster-based Method for Optimal Operation of Power Distribution

Systems with Minimal Utility Asset Degradation”, 10p, 2023, prepared for journal

submission (April 2023).

The formulation presented includes the general methods proposed in: Y. Zhang,

Y. Liao, E. S. Jones, N. Jewell and D. M. Ionel, “ZIP load modeling for single and

aggregate loads and CVR factor estimation,” in International Journal of Emerging

Electric Power Systems, vol. 23, pp. 839-858, 2022, doi: 10.1515/ijeeps-2022-0052.

In section 3.2, the modeling for the PDSs and associated loads as well as the

method for time series simulation are established. Section 3.3 introduces a simula-

tion case with conventional control of voltage-controlling devices to be employed as a

baseline. Section 3.4 formulates and provides results for the optimal control method

with unlimited setting adjustments to be considered as a benchmark case. The for-

mulation and results of the improved control case that achieves best performance with

consideration of equipment degradation are discussed in section 3.5. Having simu-

lated three control cases, section 3.6 provides a comparative study and discussion

with conclusions in section 3.7.

3.2 Time Series Power Distribution System Simulation with ZIP Load

Modeling

A framework for the translation of actual large-scale PDSs from Synergi to OpenDSS

[51], an open source circuit simulator provided by the Electric Power Research Insti-

tute (EPRI), was developed and applied to KUs1T1 by utilizing the OpenDSS Python
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Figure 3.1: Circuit diagram of KUs1T1 with load at associated buses for an example
time instance.

API (Fig. 3.1). Employing OpenDSS as the base simulation engine and accessing the

model through the framework enables its use as a testbed for custom control and op-

timization methodologies. Components of the OpenDSS model, which originate from

the Synergi version developed by the partner utility, include the network of lines,

installation locations of devices, and specific definitions for equipment. The network

lines are defined by their lengths, endpoint connection nodes, and sequences com-

ponents. Extensive information for the substation transformer and nine three-phase

capacitors is also explicitly defined.

The original load models are that of constant active and reactive power with the

peak values experienced by the circuit based on historical data. Time series simulation

is achieved by assuming each load experiences the same power-time profile, and by

applying equivalent loadshape ratios for both active and reactive power that are based

on measured data at the substation transformer. This ties simulation granularity to

the timestep of available measured data, which is minutely for KUs1T1. To evaluate
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Table 3.1: The simulation results for the reference case from the equivalent ZIP
parameter estimation as well as for the minimum and maximum cases from the sensi-
tivity analysis. Percent change for the latter two cases is also indicated with respect
to the reference case.

Case Reference Minimum Maximum
Active power [kW] 15,408 15,300 (-0.70%) 15,515 (+0.69%)
Reactive power [kvar] 3,079 2,992 (-2.83%) 3,165 (+2.79%)
Power losses [kW] 251 248 (-1.20%) 255 (+1.59%)
Avg. system-wide
bus voltage [pu]

0.9675 0.9668 (-0.07%) 0.9681 (+0.06%)

control methodologies that leverage voltage to reduce energy use, either by reducing

losses or the demand of loads, a more complex load model type is required to capture

dependency of power upon voltage for certain residential loads. The ZIP load model is

a popular method for capturing such voltage dependency [27, 63–65]. The individual

ZIP load active and reactive power are respectively defined as:

p = p0 [ap (
∣v∣

v0
)

2

+ bp (
∣v∣

v0
) + cp] , (3.1)

q = q0 [aq (
∣v∣

v0
)

2

+ bq (
∣v∣

v0
) + cq] , (3.2)

where p is the active power demand of the load; ap, bp, cp, the first, second, and third

ZIP parameters that must sum to 1; ∣v∣, the voltage magnitude; v0, the base voltage;

q, the reactive power demand of the load; aq, bq, cq, the fourth, fifth, and sixth ZIP

parameters that must also sum to 1.

Equivalent ZIP load parameters for KUs1T1 were determined based on measured

data from the substation transformer, and each individual load model was updated

to the ZIP type. To determine the degree of effect on circuit model accuracy from

possible estimation error of ZIP parameters, a parametric sensitivity analysis was
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Figure 3.2: Sensitivity analysis results of all 10,000 simulation case in term of total
active power.

performed. Ten thousand sets of all six ZIP parameters were randomly generated

within a range of +/- 15% in increments of 1% from the reference estimation values.

The analysis results, provided in Table 3.1 and illustrated in Fig. 3.2, show that the

estimation methodology is relatively very stable in that the most extremely erroneous

cases yielded resulting simulation changes of only 0.06% to 2.83%.

The assumptions that the individual loads would experience the same load profile

and have the same ZIP parameters limits the accuracy for the time series simula-

tion and voltage dependencies to the substation transformer level. As AMI meters

are deployed and data for individual loads becomes available, this time series circuit

simulation testbed may be updated to employ individual time-power profiles. Ad-

ditionally, voltage dependency of each individual load may be captured through the

ZIP parameter regression method utilized in this work, or by machine learning model

training directly upon the measured data.
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Figure 3.3: Conventional control of LTC transformer taps from Beckwith Electric
technical documents [1].

3.3 Baseline Case with Conventional Controls

The KUs1T1 PDS is a sub-circuit of a larger system and is fed from a single

substation transformer. This transformer is outfitted with an LTC, and the sub-

circuit contains nine CBs throughout as illustrated in Fig. 3.1. The baseline case

with conventional control is simulated over an example summer day based on minutely

active and reactive power data that is applied as ratios with respect to peak load.

For equivalent comparison, the following control cases are simulated in the same way.

Conventional control is enacted by adjustment of LTC tap settings and CB on/off

status based on typical control practices provided by the partnering utility [1]. Tradi-

tionally, LTCs operate based on four primary settings: voltage setpoint, block raise,

block lower, and a time delay to reduce unnecessary adjustments caused by brief

transients. As voltage at the bus monitored by the LTC deviates from the setpoint,
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Figure 3.4: Bus voltage at the secondary side of the KUs1T1 LTC transformer with
simulated conventional control.

the tap setting will be adjusted within a discrete range of -32 to 32 taps, which cor-

responds to +/- 0.1pu voltage in increments of 0.003125pu. As shown in Fig. 3.3, if

voltage exceeds either the upper or lower limits for longer than the time delay, which

is usually thirty to sixty seconds, tap adjustment occurs.

The simulation results for the KUs1T1 under conventional control are provided in

Fig. 3.4 with resulting voltage at the LTC-monitored bus and specific limits for the

circuit. With a time delay of thirty seconds, two tap adjustments occur as voltage

dips below the lower limit between 7:00-11:00. Based on data from the partnering

utility, the typical number of LTC operations per day for a circuit like KUs1T1 is 7.5

on average and can peak to 25.

Conventional control of switchable CB follows a trip/close logic. For KUs1T1, a

trip limit of 1.05pu and close limit of 1.00pu are applied for all nine CBs. The resulting

simulation results of voltages at the bus monitored by these CBs are provided in Fig.
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Figure 3.5: Conventional control simulation results with voltage for each individual
bus in KUs1T1.

Figure 3.6: Individual bus voltages monitored by the nine CBs of KUs1T1 for switch-
ing control.

70



3.6. Since all CBs were assumed to be closed upon initialization and the voltages

remain beneath the trip limit, no CB adjustments occur during the example day.

The results in terms of individual bus voltages in Fig. 3.5 illustrate well the

limitations of conventional control strategies, as voltages must operate in the upper

half of the acceptable 0.95pu to 1.05pu range to avoid violations. Monitoring only

the bus near the LTC for tap adjustment requires a higher block lower setting to

account for voltage drop throughout the circuit as it is very close to the source bus.

Opportunity for savings exists through CVR and VVO functions, which glean energy

use by reducing system-wide voltage and intelligently controlling devices to maintain

operational compliance. The effectiveness of CVR and VVO depends upon the voltage

dependency of residential loads, which contributes to the importance of accurate ZIP

modeling as discussed in section 3.2.

3.4 Best Performance Case with Optimal Operation and Unlimited Ad-

justments

Through the circuit simulation testbed discussed previously in section 3.2 and

chapter 2, optimization of control for voltage-controlling devices is achieved with

utilization of the non-dominated sorting genetic algorithm II (NSGA-II) [58]. The

optimization is formulated for a single simulation timestep t with the objective of

minimizing total distribution system active power (pa,t) at that moment, including

network losses (wa) and load demand (pa,d,t), which is formally defined as:

min [pa,t =
nl

∑
i=1

(wa,l,t,i) +
nx

∑
j=1

(wa,x,t,j) +
nd

∑
k=1

(pa,d,t,k)] , (3.3)
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where nl is the total number of lines; wa,l,t,i, the active power losses at time t over

line number i; nx, the total number of transformers; wa,x,t,j, the active power losses

at time t over transformer number j; nd, the total number of loads; pa,d,t,k, the active

power demand at at time t for load number k.

Targeting pa,t as the only minimization objective accounts for the trade-off that

can occur between reduction in wa,t and voltage-dependent pa,d,t based on the ZIP

parameters of the circuit model. The independent variables include the trip/close

settings for the nine switching CBs and the LTC tap setting that may be within a

discrete range of -32 to 32. A constraint is built into the optimization that imposes

a five-minute time limit for CBs after a trip command to ensure full discharge before

the next close command. Another constraint is incorporated that penalizes designs

with bus voltages below a provided minimum target voltage (vt,m).

During time series simulation, this optimization is called every timestep after the

application of the load profile scalars and ZIP parameters. The optimal LTC tap

settings and trip/close statuses of the CBs for that moment are then determined and

applied. The vt,m is set to be a constant 0.975pu to account for secondary voltage

drop over distribution transformers. Since calling the optimization every timestep in

this control case leads to purposefully unlimited adjustments, the devices of KUs1T1

receive control commands on a minutely basis to ensure minimum power and number

of violations of the vt,m limit.

Aspects of the resulting optimal designs and allowed number of generations for

the NSGA-II to run were compared to determine the best setting for solution quality

and total simulation time (Fig. 3.7). Running the optimization for all 1440 timesteps
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Figure 3.7: Solution quality of various PDS characteristics and simulation time at
different allowed no. of generations as indicated by the legend for the control opti-
mization with unlimited adjustments. The simulation results are determined for an
example day with respect to another simulation of no control.
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Figure 3.8: Final LTC voltage results having run the control optimization with 20
generations for every timestep and with no limits to adjustments aside from the built-
in CB discharge time limit.

over the simulated day at a setting of 20 generations was accepted to be the point of

“best compromise” by considering the change in total energy as the highest priority.

Resulting optimal operation with unlimited adjustments, which is shown through the

LTC voltage in Fig. 3.8, reduces total energy use over the day from 229.85MWh to

226.85MWh, which is a reduction of 1.3% and is in-line with expectations based on

review of relevant literature and previous implementations.

3.5 New Cluster-based Method for Improved Optimal Controls

To achieve similarly optimal performance while also considering equipment degra-

dation by limiting the number of device adjustments, a new method for improved

optimal control is proposed (Fig. 3.9). This improved control case employs machine

learning and load forecasting to disperse operations over time such that the PDS

performs optimally and adjustment frequency is minimized. A k-means clustering
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Figure 3.9: Flowchart of time series PDS simulation with ZIP load modeling and the
three considered control types.
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Figure 3.10: The example day time-load profiles measured minutely at the substa-
tion transformers for KUs1T1 with the clusters of time most similar in total power
determined by the machine learning K-means clustering algorithm.

algorithm is employed to determine periods of time that are most similar to each

other in terms of total PDS power. The algorithm partitions no observations into nk,

which must be less than or equal to no, sets such that the variance of each cluster set

Ki is minimized. This objective is formally defined by:

min [σk,t =
nclr

∑
i=1

{ ∑
x∈Ki

(∣∣x − µi∣∣
2)}] , (3.4)

where nclr is the number of k-means clusters to determine; x, the observation elements

of cluster set Ki; µi, the mean of the observation values in cluster set Ki.

Assuming that control settings remain optimally applicable for all timesteps within

each of the resulting clusters, adjustments are then only required once per cluster. The

application of clustering creates another opportunity for optimization with multiple
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objectives, including the minimization of total day energy use ed as well as total

number of device adjustments nadj and voltage violations nvio, which are formally

defined as:

min [ed =
nt

∑
i=1

(pa,t)] , (3.5)

min [nadj =
nt

∑
i=1

{
nltc

∑
j=1

(nltc,i,j) +

ncap

∑
k=1

(ncap,i,k)}] , (3.6)

min [nvio =
nt

∑
i=1

{
nb

∑
j=1

(nvio,i,j)}] , (3.7)

where nt is the total number of timesteps; nltc is the total number of LTCs; nltc,i,j,

the total number of tap adjustments for time i at LTC j; ncap, the total number of

CBs; ncap,i,k, the total number of switching adjustments for time i at CB k; nb is the

total number of buses; nvio,i,j, the total number of voltage violations for time i at bus

j, which can only be 0 or 1;

The number of clusters (nclr) for the k-means algorithm to determine is an inde-

pendent variable for the optimization and has a discrete range of 2 to 25. The vt,m

setting is no longer considered constant as in section 3.4 and is adapted to be another

independent variable with a discrete range of 114V to 120V in 0.1V increments. The

nclr and vt,m are directly associated with the objectives defined in 3.6 and 3.7 as nclr

determines when the optimization to minimize is called and vt,m sets how low the

per-cluster optimization is to reduce PDS bus voltages.

When the per-cluster optimization in this improved control case is called, the
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objective defined in 3.3 is updated to be the average total PDS power for each of the

timesteps within the corresponding cluster (pµ,c), which is defined as:

min [pµ,c =
∑

nt,c

i=1 (pa,i)

nt,c

] , (3.8)

where nt,c is the total number of timesteps within cluster c; pa,i, the total distribution

system active power at time t. This updated objective improves applicability of the

issued adjustments for the entire time period.

Having formulated the optimization problem to determine best settings for the

cluster-based control method, 1,380 simulations were performed based on the control

setting combinations established by the independent variable ranges, which include 23

and 60 different nclr and vt,m options, respectively. Though the problem formulation

is an opportune application of computational optimization, an algorithm was not

applied and results for each possible case were produced since each simulation required

only 0.5s to complete with parallel processing. The set of simulation results allows

for the determination of relationships between the input control settings of nclr and

vt,m and resulting objective evaluations, which include ed from 3.5, nadj from 3.6, and

nvio,a, which is nvio from 3.7 averaged over the day.

From the simulations, design inputs of nclr and vt,m may be compared with result-

ing ed as illustrated in Fig. 3.11. It is evident that lower vt,m directly correlates to

lower ed, whereas nclr produces minimal improvement, which is in-line with expecta-

tions. The nclr setting influences nadj for both LTCs and CBs and prevents increased

nvio for cases of lower vt,m that enable improved ed reduction. This effect, shown in

Figs. 3.12 and 3.12, is most evident when comparing cases with nclr of less than 11
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Figure 3.11: Relationship between results for (top) total energy use and the control
settings nclr and vt,m over the example day for KUs1T1 with a (bottom) zoomed view
of the case with the best selected settings.
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Figure 3.12: Relationship between nclr and resulting ed, nadj for LTC taps only, and
nvio,a over the example day for KUs1T1 with (left) full-scale and (right) zoomed views.
Although nclr does not directly correlate to ed as vt,m does, a minimum nclr of around
11 is required to access cases with much lower ed and nvio,a of less than 11.
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Figure 3.13: Relationships between control setting nclr and resulting nadj for LTCs
and CBs. Increased nclr correlates to increased mean and variance of nadj for LTCs
and CBs. For designs with greater than 60 CB nadj, CB unavailability is observed
due to more frequent timer activation.
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and cases with nclr greater than or equal to 11. Those with less than 11 are unable

to enact enough nadj to accommodate lower vt,m settings without high nvio.

It may also be observed that greater “operational freedom” from higher nclr does

not necessarily elicit lower ed past approx. 10 LTC nadj (Fig. 3.14). As illustrated

in Fig. 3.13, the relationship between LTC nadj and CB nadj becomes less linear

for cases of greater than approx. 60 CB nadj. At this point, CBs start to become

unavailable due to the more frequent activation of the built-in five-minute timer. CB

unavailability can disallow lower vt,m with acceptable nvio that is achieved by lower

LTC tap settings that may rely upon CBs to prevent nvio in especially low voltage

regions.

With the 1,380 simulated combinations of nclr and vt,m, best settings are deter-

mined through a selection procedure. The first step is to limit the pool of designs

to those with very few nvio,a. To select settings for KUs1T1, only the 409 designs

with less than or equal to 10 nvio,a were considered based on typical performance with

conventional control that is discussed further in section 3.6.

From the remaining pool, a Pareto front of best designs is then calculated based

on a non-dominated sorting of the objectives to minimize ed and nadj as shown in Fig.

3.14. This step further reduces the number of possible settings to 8 optimal designs.

From this point, the best setting is dependent upon objective priority by the utility

as the Pareto front represents a trade-off between the two objectives. For example,

circuit specific cost ratios in units of $/kWh and $/adjustment may be applied to

determine the cheapest option in terms of economic costs, or ed may be weighed

more heavily with nadj having some maximally acceptable limit to avoid increased
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Table 3.2: Simulation results for the four considered control cases.

Control case Conv.
Opt. w/
unlmtd.
adjmts.

Opt.
cluster w/
example
settings

Opt.
cluster w/
best
settings

Tot. energy [MWh] 229.85 226.85 228.63 226.59
Tot. losses [MWh] 2.82 2.56 2.60 2.51
Tot. load [MWh] 227.02 224.30 226.03 224.08
Peak active power [MW] 13.41 13.28 13.34 13.24
Peak reactive power [Mvar] 7.39 3.98 6.63 7.00
Avg. no. of voltage violations 11.37 3.84 0 8.67
Tot. no. of LTC adjmts. 2 543 6 5
Tot. no. of CB adjmts. 0 1,417 33 37

equipment degradation.

In this case, the design with the ed at the most reasonable resulting nadj was

selected having nclr at 11 and a vt,m of 0.981pu. Compared to an example cluster-

based improved optimal control case having example settings of 10 nclr and 1.0pu vt,m

inspired by the conventional control case, the method yields 169% more reduction in

ed and 76% fewer nvio,a with settings optimization. As illustrated in Fig. 3.15 for the

case with optimal settings, the individual bus voltages remain just above the 0.975pu

minimum and has enough clusters to ensure tap adjustments are available such that

excessive nvio,a does not occur without having to operate at higher voltages as in the

15:00-18:00 time period for the case with example settings.

3.6 Comparative Studies and Discussion

Four cases based on three control methods were simulated over an example day

at a minutely timestep for the KUs1T1 circuit, including conventional, optimal with
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Figure 3.14: Resulting nvio,a, ed, and nadj from different input control setting combi-
nations of nclr and vt,m for the 409 designs with less than or equal to 10 nvio,a along
with the calculated Pareto front of 8 best designs and selected case.
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Table 3.3: Resulting percent changes [%] for the control cases with respect to the
conventional case.

Control case
Tot.
energy

Tot.
losses

Tot.
load

Peak
active
power

Peak
reactive
power

Optimal w/ unlimited adjmts. 1.30 9.28 1.20 0.96 46.09
Optimal cluster-based w/ ex. settings 0.53 7.97 0.43 0.50 10.23
Optimal cluster-based w/ best settings 1.42 11.06 1.29 1.22 5.20

unlimited adjustments, and improved cluster-based optimal that has limited adjust-

ments with both example and best control settings. The results of these simulations

are illustrated in terms of individual bus voltages in Fig. 3.15 to illustrate how the

controls affect the entire PDS over time. To evaluate effectiveness of the control

methods, performance metrics related to objectives defined in sections 3.4 and 3.5,

including ed, nvio,a, and nadj for both LTCs and CBs separately, are provided in Table

3.2 as well as changes with respect to the conventional control case in Table 3.3.

The optimal case with unlimited adjustments yielded improvements of 1.30% in ed

with only 3.84 nvio,a, which is less than that of the conventional 11.37 nvio,a. This case

is considered only as a benchmark though for best possible theoretical performance as

adjustments are allowed for every timestep without limit, which results in excessive

nadj for LTCs and CBs. To achieve similar optimal performance without increasing

equipment degradation compared to the conventional case by intelligently dispersing

adjustments throughout the day, the improved cluster-based method is employed.

With example control settings of 10 nclr and 1.0pu vt,m inspired by the conventional

case, the cluster-based improved optimal method reduces ed by 0.53% with 0 nvio,a

due to the relatively high 1.0pu vt,m. By optimizing these settings and changing them

to 11 and 0.981pu, respectively, ed reduction surpasses all other control cases at 1.42%
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Figure 3.15: Comparison of control methodologies for KUs1T1 by individual bus volt-
ages every simulation timestep, including the cases of conventional (top left), optimal
with unlimited adjustments (top right), and improved cluster-based optimal that has
limited adjustments with both example (bottom left) and best control settings (bot-
tom right).
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while still remaining beneath the conventional nvio,a at only 8.67. The ability to finely

tune the settings nclr and vt,m enables lower ed by reducing vt,m until an acceptable

limit for nvio,a is reached.

A minimum bus voltage of 0.975 was assumed to account for possible secondary

voltage drop over distribution transformers as the employed circuit models capture

only down to the primary side. The additional drop over the transformer and pro-

ceeding lines connected to customer loads can be added into the models, which could

enable even lower vt,m and, therefore, more improvement in ed reduction. Severity of

voltage drop is dependent upon the length of the secondary side line, amount of load

experienced, the transformer kVA rating, and distance from the source bus. These

dependencies may be incorporated in future work either in OpenDSS models them-

selves or within the testbed simulator based on more generalized data provided by

the utility. Additional studies to explore the effects of Distributed Generation (DG)

[66] and the increasing prevalence of appliances with power electronics on CVR and

VVO functions would also be of great interest and are possible through the circuit

simulating testbed.

3.7 Summary

A comparative study of different Power Distribution System (PDS) control meth-

ods that employ voltage-controlling devices, including Capacitor Banks (CBs) and

Load-Tap-Changing (LTC) transformers, was performed. The study was enabled by

a time-series circuit simulation testbed and explempified upon a comprehensive model

of an actual 2,000-node utility PDS that captures load demand voltage-dependency
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through an equivalent constant impedance, constant current, and constant power

(ZIP) representation.

Included in the study were cases of conventional, best performance without limit

to setting adjustment, and cluster-based optimal performance with dispersion of ad-

justments over time through load-forecasting. It was concluded that the new cluster-

based control method achieved optimal performance with a total energy use reduction

(ed) of 1.42% while also minimizing equipment degradation by the tuning of control

settings, which include number of clusters (nclr) and minimum target voltage (vt,m),

such that number of CB and LTC adjustments (nadj) and voltage violation (nvio,a)

are traditionally acceptable.
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Chapter 4

Electric Power and Energy for Smart Buildings

4.1 Introduction and Main Problem

Improved Heating, Ventilation, and Air-Conditioning (HVAC) system and build-

ing technologies can considerably reduce total building energy use and enable Demand

Response (DR) control, offering significant opportunity for savings and enhanced

community-wide load malleability in Virtual Power Plant (VPP) scenarios. To sim-

ulate and study such scenarios at both the individual load and aggregated power

system levels, controllable models of HVAC energy that sufficiently capture effects

from weather are required.

To comprehensively model an HVAC system, it is necessary to consider the build-

ing within which it operates and its associated thermal loads. The link between

HVAC systems and corresponding buildings is due to the significant relationship be-

tween HVAC system energy usage and the thermal behavior of the building, which

is influenced by the local climate and the building’s construction. EnergyPlus, a

white-box, physics-based whole building energy simulation program was employed as

a solution to simulate both indoor temperature and HVAC energy use.

The total energy usage of different appliances and end-user consumption share

by different house types were also analyzed for insight into the energy makeup of
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(a) (b)

Figure 4.1: Residential energy use survey results for 2015 provided by the U.S. En-
ergy Information Administration. Provided are (a) annual energy use by different
appliances of a typical residential building in the U.S. and (b) end-user energy use
distribution by different types of U.S. homes. Energy use excludes the losses in elec-
tricity generation and delivery.

typical residences (Fig. 4.1). Appliance technology is continually evolving, and more

efficient HVAC systems are being installed or retrofitted in both recently developed

and existing buildings [55].

Transmission and distribution losses account for approximately 5% of the total

energy used in U.S. electric power systems with an estimated loss of over 206 TWh

in 2019 alone [67, 68]. Since current is dependent upon Power Factor (PF), a higher

PF load requires less current than that of the same active power with a lower PF.

Therefore, change in energy use may be achieved through PF correction and reactive

power compensation by reducing resistive losses that result in heat generation in

conductive elements [69]. In addition to possibly significant energy savings, other

benefits include lower electricity costs, improved power quality, and reduced utility

grid (i.e. transformer) and residential equipment degradation.

The effects of PF on energy use may warrant their consideration in modeling.

Household appliances and equipment have different energy use behaviors based on
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both the schedule of occupant use and power requirements during operation. So, it is

also important to understand these factors in order to determine the reactive power

contributions of appliances. The operation times of such appliances become more

predictable at the aggregated level and may be represented by equivalent schedules

as exemplified in Fig. 4.2.

Typical household appliances and local solar Photo-Voltaic (PV) systems offer

significant opportunity as Distributed Energy Resources (DERs) for improved power

system operation and energy savings. Considering this, the main objectives of this

chapter are to:

• Analyze typical residential loads based on measured data from buildings built

to be representative of different energy efficiency classes

• Identify energy effects of HVAC system and building technologies

• Develop building energy and temperature models for the analysis of solar PV

performance in different geographical locations and to employ in power system

control studies.

This chapter is substantially based on the following publication: E. S. Jones,

et al., “The Effect of High Efficiency Building Technologies and PV Generation on

the Energy Profiles for Typical US Residences,” 2020 9th International Conference

on Renewable Energy Research and Application (ICRERA), 2020, pp. 471-476, doi:

10.1109/ICRERA49962.2020.9242665.
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(a)

(b)

Figure 4.2: Typical operation schedule through energy use for (a) a refrigerator (Ref)
and (b) clothes washer (CW) of a 3 bedroom, 2.5 bathroom house based on the
Building America house simulation protocols.
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4.2 Field Demonstrators

In 2008, the Tennessee Valley Authority (TVA) began a technology demonstra-

tion project with technical support from Oak Ridge National Laboratory (ORNL).

Three houses were constructed side-by-side in Knox County, TN to represent three

distinct energy profiles: conventional construction, retrofit efficiency, and Near Net-

Zero-Energy (NNZE) design (Fig. 4.3). Human habitation was physically simulated

within the houses through the operation of equipment and appliances by robots, em-

ulators, and other typical interfaces, such as a programmable thermostat. Scheduling

was based on the National Renewable Energy Laboratory (NREL) Building America

house simulation protocols.

Four house models were developed based on the physical characteristics of the

TVA robotic houses and calibrated against the measured data from the project (Fig.

4.4). These models included a conventional house with a Seasonal Energy Efficiency

Rating (SEER) 13 single stage heat pump (Conv13S) and the same conventional house

with a SEER 19 variable capacity heat pump (Conv19S). The other two models were

of a retrofit house with improved insulation, better windows, and a highly efficient

SEER 20.5 variable speed heat pump (RetroF) and a house built from the beginning

to be near NZE on an annual basis with a SEER 16 dual stage heat pump (NNZE).

Data for weather, Domestic Hot Water (DHW) draw, and energy usage was col-

lected hourly from 2009 to 2014. The project provided a basis for the analysis of

technologies across a spectrum of energy efficiency, including HVAC systems, water

heaters, construction, appliances, and residential solar PV systems.
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Figure 4.3: The near net-zero-energy (NNZE) house front (a) and back (b). TVA
robotic devices are controlled to mimic realistic human behavior. Also shown is a
HPWH used in the retrofit house (c), a shower emulator (d), and a refrigerator with
programmed arms (e) that operate according to automatic schedules.

Figure 4.4: Example BEopt simulation model for the typical construction house type.
All models follow a very similar floor plan but different construction materials and
techniques.
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Figure 4.5: The overall system architecture of EnergyPlus, an open source whole
building energy simulation program that models energy use for both HVAC system
and plug and process loads.

4.3 Physics-based HVAC and Building Modeling with EnergyPlus

The residential building energy models were developed with a combined software

process that utilized EnergyPlus and the Building Energy Optimization Tool (BEopt)

and (Figs. 4.4 and 4.5). EnergyPlus is a widely used open-source Building Energy

Model (BEM) simulation tool that models energy consumption for typical building

loads (i.e. HVAC, lighting, and plug and process loads) and domestic water use

[70]. EnergyPlus building models are initialized by three sets of data, which include

building parameter and construction specifications, weather data, and a DHW usage

schedule. The first version of the software was published in 2001 and has since been

updated on a bi-annual basis.

NREL’s BEopt software includes EnergyPlus as the base simulation engine [71].
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BEopt accepts as input the geometry of the building and construction details, includ-

ing attic and wall insulation, wall stud type, windows, and roofing as well as appliance

and equipment efficiencies. BEopt also considers occupancy and geographical weather

data to produce a detailed EnergyPlus Input Data File (IDF) [72].

Extensive building specifications can be provided to EnergyPlus through a user

interface, which is bypassed by use of BEopt as previously discussed. All input files are

written in a flat ASCII file that is fully readable and editable. The “InputProcessor”

function utilizes the Input Data Dictionary (IDD) file to interpret the IDF file, which

is then executed for simulation. The desired outputs are also generated by processing

in a predefined manner of which the user has full control.

EnergyPlus simulates total energy use of the building as well as for individual

appliances. The software may also interface with Python through a recently available

internal plug-in or through third-party libraries and software, such as the Building

Controls Virtual Testbed (BCVTB). This feature provides considerably improved

functionality with the added prospect of automated building generation, model cali-

bration, and co-simulation with other software. For example, in section 4.7, reactive

power is calculated post-simulation within the Python environment by analyzing the

provided energy results and applying an equivalent power factor.

The HVAC and building models developed in this work employed weather data

collected from an onsite weather station during two example years. Data from 2010

was utilized for models Conv13S and NNZE, while 2013 data was for Conv19S and

RetroF. It is important to have actual local weather data due to the HVAC system’s

high sensitivity to climate. Accurate modeling of an HVAC system requires a small
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timestep to capture highly transient behavior [73]. Considering this, the models were

simulated at a timestep of one minute. The actual measured energy use and weather

data were recorded with the resolution of one hour. This mismatch prevented model

calibration at smaller timesteps and was satisfactory for the analysis of monthly

energy usage.

Once the initial BEopt models for the robotic houses were converted into Ener-

gyPlus models, a significant effort was made to minimize difference between actual

measured and simulated energy usage of the HVAC components. A variety of fac-

tors were considered, including material thermal mass, attic and wall insulation, and

HVAC Coefficient Of Performance (COP).

After various tests, the best versions of the models kept the same values as specified

by TVA except for the COP ratings of the HVAC systems, which were adjusted to

minimize error between measured and simulated HVAC system energy usage. For

the two models that were based on 2013 data, monthly energy use was brought to

within 15% difference of the measured values (tables 4.1 and 4.2), a limit that followed

ASHRAE Guideline 14 [74].

It was notably challenging to reduce error for certain ”shoulder” months such as

April, May, and October due to their very low energy usage and mixture of both heat-

ing and cooling, especially for the building models based on the 2010 data (tables 4.3

and 4.4). It should also be noted that such error is exacerbated when increased solar

heat gain and mild temperatures occur simultaneously, which is due to the underes-

timation of the solar heat gain effect by the models. This phenomenon occurred in

2010, which caused the other two models based in that year to have shoulder month
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Table 4.1: Monthly and annual comparison of simulation results to measured data of
Conv19S based on actual locally measured weather data in 2013.

Month
Measured tot.
energy (kWh)

Simulated tot.
energy (kWh)

Tot. energy
error (%)

Portion of
meas. annual
energy use [%]

Ratio of
meas. to
sim. energy

Jan 922 932 -1 14 0.99
Feb 802 759 5 12 1.06
Mar 813 737 9 12 1.1
Apr 194 221 -14 3 0.88
May 188 199 -6 3 0.94
Jun 391 371 5 6 1.05
Jul 432 430 0 7 1
Aug 419 442 -6 6 0.95
Sep 302 270 11 5 1.12
Oct 247 260 -5 4 0.95
Nov 704 672 5 11 1.05
Dec 1,109 943 15 17 1.18
Total year 6,524 6,239 4 100 1.05

Table 4.2: Monthly and annual comparison of simulation results to measured data of
RetroF based on actual locally measured weather data in 2013.

Month
Measured tot.
energy (kWh)

Simulated tot.
energy (kWh)

Tot. energy
error (%)

Portion of
meas. annual
energy use [%]

Ratio of
meas. to
sim. energy

Jan 688 721 -5 14 0.99
Feb 592 588 1 12 1.06
Mar 613 559 9 12 1.1
Apr 144 159 -11 3 0.88
May 120 114 5 3 0.94
Jun 249 239 4 6 1.05
Jul 280 294 -5 7 1
Aug 273 304 -12 6 0.95
Sep 188 168 11 5 1.12
Oct 151 168 -11 4 0.95
Nov 473 502 -6 11 1.05
Dec 707 710 0 17 1.18
Total year 4,479 4,528 -1 100 1.05
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Table 4.3: Monthly and annual comparison of simulation results to measured data of
Conv13S based on actual locally measured weather data in 2010.

Month
Measured tot.
energy (kWh)

Simulated tot.
energy (kWh)

Tot. energy
error (%)

Portion of
meas. annual
energy use [%]

Ratio of
meas. to
sim. energy

Jan 1,995 2,112 -6 17 0.94
Feb 1,609 1,642 -2 14 0.98
Mar 814 886 -9 7 0.92
Apr 196 352 -80 2 0.56
May 862 360 58 7 2.4
Jun 982 868 12 8 1.13
Jul 942 1,077 -14 8 0.87
Aug 947 1,047 -11 8 0.9
Sep 516 509 1 4 1.01
Oct 129 366 -185 1 0.35
Nov 528 504 4 4 1.05
Dec 2,298 1,970 14 19 1.17
Total year 11,818 11,694 1 100 1.01

energy use error outside of the 15% goal. In this study, the errors from the shoulder

months were considered minimal because the energy usage of those months were only

1% to 7% of the annual total.

4.4 HVAC and Building Technologies and their Effect on Energy Usage

After each of the four HVAC system models were calibrated based on actual

energy use and weather measurements, they were simulated for an entire year based

on Knoxville, TN TMY3 weather data so that the technologies may be generally

compared under the same weather conditions ([75]) (Fig. 4.6). Since Conv13S and

Conv19S were the same building energy model, the effects of the HVAC component

alone may be observed (Fig. 4.7).

The measured and calculated HVAC power for two example days is provided for

Conv19S in Fig. 4.8. The February day had a measured total daily energy use of 51

kWh, and a total error of 1% when compared to the model. For the May day, 5 kWh

and 45%, respectively. The higher error for the shoulder month is typical due to the
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Figure 4.6: Hourly energy usage for the HVAC system of the simulated conventional
house (a) and the hourly energy difference between the HVAC systems of the conven-
tional house and the NNZE house (b) based on Knoxville, TN TMY3 weather data.
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Table 4.4: Monthly and annual comparison of simulation results to measured data of
NNZE based on actual locally measured weather data in 2010.

Month
Measured tot.
energy (kWh)

Simulated tot.
energy (kWh)

Tot. energy
error (%)

Portion of
meas. annual
energy use [%]

Ratio of
meas. to
sim. energy

Jan 1,095 1,002 8 22 1.09
Feb 813 736 9 16 1.10
Mar 359 403 -12 7 0.89
Apr 53 149 -179 1 0.36
May 196 111 43 4 1.76
Jun 358 354 1 7 1.01
Jul 425 483 -14 8 0.88
Aug 448 468 -4 9 0.96
Sep 247 235 5 5 1.05
Oct 64 142 -123 1 0.45
Nov 220 204 7 4 1.08
Dec 750 813 -8 15 0.92
Total year 5,027 5,103 -1 100 0.99

Figure 4.7: Power for the HVAC systems in the Conv13S and Conv19S models. Both
were simulated using Knoxville TN, TMY3 weather data on an example summer day.
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Figure 4.8: HVAC system power for a high energy use, heating-only February day
and a low energy use day in May with a mixture of heating and cooling.

Table 4.5: Energy usage and peak power for different HVAC systems in the house
models with Knoxville, TN TMY3 weather

House model
Annual total
energy [kWh]

Peak hourly
power [kW]

Conv13S 9,699 10.5
Conv19S 7,131 8.9
RetroF 5,467 6.9
NNZE 4,148 5.7

mild temperatures and much lower required HVAC energy use.

As anticipated, the SEER 19 variable capacity heat pump was much more energy

efficient than the SEER 13 single stage heat pump with annual HVAC system energy

savings of 2,568 kWh or 26% (13% of the total house use) and a 15% reduction in

HVAC system hourly peak (Table 4.5).

When the HVAC system and building construction are both improved, as shown

in the comparison between cases Conv13S and NNZE, the HVAC system annual total

energy usage and hourly peak may be reduced by 57% and 46%, respectively.
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4.5 Water Heaters and Other Appliances

Since schedule-based in-house devices, such as lighting and appliances that use

DHW, are minimally affected by climate, experimental measurements from the TVA

project are used directly for their analyses.

The measured loads in Fig. 4.9 shows that Water Heaters (WHs) are typically the

second most energy using individual component of a house, after the HVAC system.

This is another opportunity to realize significant energy savings through changing a

single appliance. Sincethe energy usage of WHs is decisively dependent upon human

behavior, the study of the component was based upon measured data. Inside the

TVA robotic houses, automated systems implemented schedules to represent the use

of DHW and appliances (Fig. 4.10) [76]. DHW use schedules in the project were

derived from the Building America House Simulation Protocol [77].

According to the measured energy use of the WHs in the conventional and retrofit

houses in 2010, it was found that upgrading from an Electric Water Heater (EWH)

with typical appliances to a Heat Pump Water Heater (HPWH) with EnergyStar

appliances yielded remarkable results in energy use reduction. Over the entire year,

the 50 gallon HPWH in the retrofit house used a total of 2,179 kWh (57%) less than

the EWH in the conventional house. This is due to the better appliances as well as

the improved technology of the HPWH (Fig. 4.11).

Upon initial construction of the typical and retrofit homes in 2009, a 40 gallon

EWH and a HPWH were selected to represent a baseline standard home and an

improved, modified home for energy efficiency, [76]. The WHs have an energy factor
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Figure 4.9: Total actual measured energy usage of the HVACs, WHs, lights, Mis-
cellaneous Electric Load (MEL), and appliances (Apps) within the conventional and
retrofit houses for the year of 2010. The HVAC is consistently the highest individual
energy user, while the water heater is always the second highest.

Figure 4.10: Example week for the electric water heater (EWH) schedule.
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Figure 4.11: Power for the conventional house EWH and the retrofit house HPWH
during an example day in 2010.

of 0.9 and 2.5. The retrofit home was also equipped with EnergyStar dishwashers,

refrigerators, clothes washers and dryers.

Inside the homes, an automated robotic system implemented schedules to repre-

sent the use of DHW and appliances. The DHW use schedules for the showers, baths,

sinks, dishwasher, and clothes washer were all based on WH studies and scientific

references selected in the Building America House Simulations Protocol [77]. Equa-

tions based on the numbers of rooms and Finished Floor Area (FFA) in the home are

provided as well for the DHW usage and miscellaneous loads.

Adjustments were made to the typical home to better simulate occupant load in

October of 2013. The standard electric water heater was replaced with a GE HPWH.

The year of 2013 to 2014 had 54% reduction in hot water energy use than 2012- 2013

with the electric water heater. This is a significant drop of 2052 kWh over a year

from 3,839.2 to 1,787.3 kWh for domestic hot water in the typical home.
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In the retrofit home from 2013 to 2014 an EcoCute CO 2 HPWH was installed.

Compared to the GE HPWH in the typical home, it used 123 less kWh and is thus

comparable as the typical home as it did not include Energy Star appliances. It is

important to note that due to an equipment failure in the beginning of the year the

total DHW energy use was higher in 2013 than 2011. Large energy savings potential

are available with HPWHs.

In order to reduce peak time energy use by the water heater (for clothes washing

hot water needs), two time-based load-manage temperature profiles were tested in

2010. 1) Tank temperature of 140°F during the night, 170°F from 3 am to 1pm, then

120°F during peak to 9pm. 2) Starting at 6 am to peak time set tank temperature to

150°F, 120°F during peak and then 170°F afterwards.

With only HPWH used to meet demand, both schedules succeeded at moving hot

water load away from the peak on non-laundry days, but overall daily load increased.

Less total energy was used by profile 2) than 1). When laundry was done, however,

1) had 8% less energy than 2), and 2) also failed to move the hot water load from

peak time contradicting the results seen on non-laundry days. It was concluded that

occupancy habits affect the success of scheduling hot water load management for

HPWH.

4.6 Rooftop PV Performance for Different Geographical Locations

An external PV module was modeled and calibrated against the measured hourly

average power generation through determination of unknown parameters by differen-

tial evolution to minimize error for the 2.5kW rooftop solar PV system on the NNZE
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house (Fig. 4.3b). In retrospect, this calibration would have been an excellent appli-

cation of linear regression. The DC power output of the PV module was determined

as follows:

pg,pv = [(
γ

1000
)pr,pv] [1 − (

kp
100
(tc − 25

○C))] ∗ ηpv, (4.1)

where γ, the solar irradiance [W /m2]; pr,pv, the PV array rated power [W]; kp, the

temperature coefficient of maximum power [%/○C]; ηpv, the efficiency considering

losses due to the inverter, interconnection of modules with nonidentical properties,

and dirt accumulation; tc, the temperature of the PV cells [○C], which is calculated

by:

tc = to + (
tn − 20○C

0.8
)(

γ

1000
) , (4.2)

where to is the outdoor ambient temperature [○C] and tn is the nominal operating cell

temperature [○C].

With Tamb and γ measured onsite hourly, average power output was calculated at

the same timestep using the proposed PV module and compared to the actual values.

Even though PV generation experiences significant transient behavior from variable

weather conditions, an hourly timestep was found to be satisfactory for studies down

to the daily level (Fig. 4.12). When considering days in the example year of measured

data with error above 0.1 kWh between calculated and measured PV power output,

only about 7% have a percent error above 10%. These days are likely due to the

irradiance sensor and solar panels experiencing different solar radiation from weather

effects such as cloud cover. At a monthly comparison, the results are satisfactory

with error only ranging from approximately 1% to 6%.
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Figure 4.12: Example daily PV power for the typical case of very low daily energy
error and the rare case of higher error which is likely due to differing solar radiation
between the irradiance sensor and actual PV panel.

Table 4.6: Average hourly solar radiation, total annual PV energy generation calcu-
lated on an hourly basis, and CF for simulated locations based on TMY3 weather

Location
Radiation
[W /m2]

PV [kWh] CF [kW]

Bowling Green, KY 154.9 2,927 13.4
Bristol, TN 174.5 3,392 15.5
Chattanooga, TN 178.8 3,313 15.1
Columbus, MS 182.2 3,345 15.3
Knoxville, TN 178.3 3,359 15.3
Memphis, TN 187.2 3,475 15.9

The performance of a simulated 2.5kW PV system was determined for six differ-

ent locations over an entire year using TMY3 weather after the proposed PV module

was calibrated based on onsite measured data. The annual PV generation and cal-

culated Capacity Factor (CF) as well as average hourly solar irradiance, which is for

illustration purposes only and not for calculations, are provided (Table 4.6).

As expected, the most northern location, Bowling Green, KY, had the smallest

CF while one of the most southern, Memphis, TN, had the highest value (Fig. 4.13).
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Figure 4.13: Monthly total PV generation for TN1 (Knoxville, TN), TN2 (Memphis,
TN), and KY (Bowling Green, KY) locations.

To further illustrate the significant relationship between geographical location and

PV generation, the full simulated year of PV generation in Memphis, TN is provided

along with the hourly energy difference between the simulations in Memphis, TN and

Bowling Green, KY (Fig. 4.14).

The PV system rating required for each building energy model to be considered

NZE on an annual basis was determined for multiple locations [78]. The typical

Conv13S house ranges from 14.2kW to 18.4kW. The NNZE house has a much lower

range of 6.4kW to 8.3kW (Table 4.7). This illustrates that both the geographical

location and the house type have a significant influence on the PV rating required for

a house to be considered NZE.

Since the actual 2.5kW solar system took up nearly a third of the roof space of

the NNZE example house, it would be fair to assume that a typical house of this

109



Figure 4.14: Hourly PV energy generation of the simulated 2.5kW PV system in
Memphis, TN (a) and the hourly energy difference between system simulations in
Memphis, TN and Bowling Green, KY (b). All simulations were based on TMY3
weather data.
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Table 4.7: PV ratings (kW) required to achieve NZE for houses of different types in
all simulated locations

Location Conv13 Conv19 RetroF NNZE
Bowling Green, KY 18.4 16.3 11.1 8.3
Bristol, TN 14.5 13.1 8.9 6.5
Chattanooga, TN 14.2 12.5 8.4 6.4
Columbus, MS 15.4 13.3 8.9 7.3
Knoxville, TN 14.8 13.1 8.9 6.7
Memphis, TN 14.4 12.4 8.3 6.8

size could only support, at best, a PV system of around 9kW maximum (Fig. 4.3b).

Therefore, only the RetroF or NNZE house types in certain locations would be able

to realistically support a PV system large enough to be NZE.

4.7 Appliance Power Factor and Reactive Power

The main causes of reduced PF in electric power circuits include harmonic distor-

tion and the displacement of phase angle between voltage and current. The general

representations of displacement and harmonic effect in the overall ”true” RMS PF

of typical residential appliances in resistive elements, such as building wiring and

transmission and distribution lines, are illustrated in Fig. 4.15.

Voltage and current waveform examples of actual data measured from a vacuum

cleaner and DC power supply illustrate the influence of harmonic distortion on power

factor and are provided in Fig. 4.16. Phase displacement occurs when the current of

the reactive loads lag (for inductance) or lead (for capacitance) the voltage. Due to

the displacement, increased current is required to sufficiently supply the load.

Residential building load types include resistive, reactive, and non-linear, includ-

ing those that are electronically supplied or controlled (Table 4.8). Resistive loads
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Figure 4.15: Overview of the system losses (grid and building level) caused by low PF
of the typical residential home appliances. The upstream losses of the distribution
transformers are not shown.

Figure 4.16: Real examples of voltage and current waveforms for (top) a vacuum
cleaner and (bottom) DC power supply illustrating the influence of harmonic distor-
tion on PF.
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cause neither displacement nor harmonic impacts, resulting in unity PF. Such ex-

amples include incandescent lamps and electric water heaters. Reactive loads can

be either inductive or capacitive, such as electric motors, pumps, and compressors.

Switched-mode power converters are typically employed with non-linear loads to func-

tion as rectifiers, with examples including most electronic loads (i.e., computers, TVs,

monitors, printers, etc.). Such loads may produce high harmonic content due to the

solid-state converter or rectifier, which can be substantial without PF correction.

Although electronically-controlled loads may reduce PF, several advancements

to improve overall energy efficiency for residential appliances have also been achieved

with this technology, including energy use/consumption forecasting [86] and appliance

control and energy monitoring through smart plugs [87].

Since the HVAC system is typically the largest energy-user, a specific example case

of power requirements during operation is provided in Fig. 4.17(a). The HVAC power

cycle has much less variability than that of the smaller appliance cycles illustrated in

Fig. 4.17(b). HVAC systems are different from other typical residential appliances

in that its operation schedule is dominantly climate-based. Weather effects generally

supplant that of the occupant’s influence. So, hot and humid climates may realize

more energy savings than more mild regions.

Potential for energy savings at both the residential and community levels exists

through PF management. Few regulations currently exist to encourage PF correction

on typical household appliances and electronic devices. An early example of PF reg-

ulation in California applies to televisions of 100W and more with a PF requirement

of at least 0.9 [85], but the considerable possible benefits of PF improvement at this
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Table 4.8: Energy and Power Factor Characteristics of Typical Residential Appliances
in the U.S.

Appliance
Energy
Usage
[%]

Active
Power
[W]

Power
Factor

Source

Refrigerator 7.0 100-145 0.8-0.99
[79],[80],[81],

[82]

Clothes dryer 4.5 2500-5700 1.0 [79],[80],[82]

Washing
Machine

0.4 500-540 0.55-0.59 [79], [80]

Dishwasher 0.5 1100 1.0 [80]

Water heater 13.6 4500 1.0 [80]

Microwave
oven

1.1 1700 0.9 [81],[82], [83]

HVAC 36.1 1840-2340 0.90-0.92 [79],[80]

Pool/hot tub/
sauna pump

1.5 900-2300 0.35-0.8 [84]

Dehumidifiers 1.2 200-750 0.3-0.8 [84]

TV a 49-190 0.53-0.94 [79],[85], [81]

Computers
(Desktop)

a 95-200 0.63-0.99 [79],[81], [83]

Laptop a 26-130 0.53-0.99 [79],[81]

LED Lamps b 8-10 0.7-0.8 [84]

Fluorescent
lamps

b 13-16 0.5-0.8 [79], [84]

Incandescent
lamps

b 96 1.0 [79], [83]

Vacuum c 987-1360 0.96-0.98 [79],[81]

a 6.9% including all other electronics appliances
b 10.3% including all other lighting loads
c 13% including all other miscellaneous appliances
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Figure 4.17: Real and reactive power during example operation cycles of (a) a typical
HVAC system as well as (b) a refrigerator and a clothes washer based on experimental
data.
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level has still yet to be fully realized.

According to EPRI research, a 0.9 PF minimum requirement on plug loads above

50W at 50% and 100% load scenarios could save up to 241 GWh per year in California

[85]. Nationally, the potential energy savings could be as much as 15.8 TWh per year

[84]. California’s Energy Commission has also provided studies on television PF,

reporting that an improvement from 0.5 PF to 0.95 PF would reduce the associated

load current from 1.7A to 0.9A and improve building wiring power losses by more

than 70% [88].

As reactive power contributions from residential buildings become more prevalent

in the electric power grid from advancing modern appliance technology, it is increas-

ingly important to consider reactive power effects in building energy modeling. As

discussed previously in section 4.3, the EnergyPlus building modeling software em-

ploys schedules of occupant use and weather data for simulation [70]. Both the sched-

ule of occupant use and corresponding power ratings are important for equivalent PF

calculation.

Reactive power may be calculated in post-processing or during BEM simulation

as added functionality to building energy modeling software, such as EnergyPlus,

that may not already consider it. Equivalent PFs are calculated by averaging the

corresponding real and reactive power based on specified time scales and interpolating

the average as a constant value to the original time scale. Example equivalent PF

calculation is provided in Fig. 4.18 based on the same minutely data utilized in Fig.

4.17 for example appliances at 1-minutes, 15-minute, and hourly time intervals, which

correspond to smart metering and traditional building modeling practices.
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Figure 4.18: Experimental minutely PF and calculated equivalent PF for 15-minute
interval, which corresponds to typical smart metering, and the traditional hourly
interval for (a) an HVAC system, (b) a refrigerator, and (c) a clothes washer (CW).
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The equivalent PF may vary greatly between time scales based on the provided

example (Fig. 4.18). The determination of equivalent PF in aggregation through the

proposed procedure may, in principle, be utilized for the determination of reactive

power for entire communities by averaging from the house level.

4.8 Summary

There is significant opportunity for reducing energy use in the residential sector

through high efficiency technologies and for increasing distributed solar Photo-Voltaic

(PV) generation. This study illustrates this through the experimentation and simu-

lation of buildings, Heating, Ventilation, and Air-Conditioning (HVAC) systems, and

PV energy models as well as through comparison of schedule-based in-house devices

such as Water Heaters (WHs) and appliances. It was shown that an HVAC system

upgrade alone, without any changes to the building, can reduce energy use of the

HVAC by 26% or by 13% of the total house’s energy use.

With better construction materials and improved techniques, HVAC energy sav-

ings can more than double to 57% with a 46% reduction in HVAC system peak hourly

power. It was shown that this combination may reduce the PV rating that is required

for a house to be considered Net Zero Energy (NZE) by up to 55%, depending on

location. For the simulation locations, it was determined that only the RetroF or

NNZE house designs could support enough rooftop solar PV panels to be considered

fully NZE over an entire year. It was also shown through experimental methods that

Heat Pump Water Heater (HPWH) technology with better appliances can use up to

57% less energy than an Electric Water Heater (EWH) with typical appliances over
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an example year. This reduction is very significant since the WH is the second most

energy using device in a typical house.

Modern electric loads are increasingly including power electronics converters and

are non-linear with respect to displacement and/or harmonic impacts. Therefore, the

consideration of Power Factor (PF) and reactive power for typical residential loads in

building energy modeling is becoming more important. A survey of typical residential

appliance PF values and energy characteristics as well as a proposed approach for

equivalent PF calculation is provided in this work, which may be employed at the

community level for studies on residential reactive power contributions.

Equivalent PF calculation and reactive power estimation with building energy

modeling may facilitate compensation technologies that promote considerable resi-

dential energy savings. A set of high resolution residential data is provide as an

example and utilized to determine average PF of different appliances for 15-minute

and hourly resolutions, which correspond to typical smart metering and building mod-

eling practices. A method to apply equivalent PF to the EnergyPlus building energy

modeling software is also proposed to determine reactive power contributions from

simulated loads.
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Chapter 5

Virtual Power Plant Control of Smart Homes and Grids

5.1 Introduction and Main Problem

Residential loads constitute approximately 25% of total annual energy in the U.S.

compared to commercial and industrial [30]. Within these communities, Heating,

Ventilation, and Air-Conditioning (HVAC) systems are the largest end use at around

50% of total typical building loads. There is significant opportunity in leveraging

Distributed Energy Resources (DERs) like HVAC systems as energy storage solutions

to shift or shape load over time through Virtual Power Plant (VPP) controls [33, 89].

Controls for load manipulation are invaluable tools for utilities to manage the

emerging smart grid and optimally utilize increasingly more prevalent and intermit-

tent demand-side generators, such as Behind-The-Meter (BTM) solar Photo-Voltaic

(PV) systems [90–92]. As a promising DER type, battery energy storage systems

(BESSs) can be an effective, but costly, utility grid energy management solution

[35, 36, 92, 93]. They require planning and coordination strategies through simula-

tion to ensure adequate sizing for other DERs that may generate power intermittently

[94]. Such DERs can benefit greatly by co-location of BESSs in terms of grid inter-

connection and cost-effectiveness [95].

As an alternative to BESSs, HVAC and water heating systems that are already
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Figure 5.1: Schematic illustration of the newly developed co-simulation framework
with multiple HVAC and building models and CTA-2045 control implementation.
The framework employs ultra-fast HVAC system and building models with distinct
base load energy profiles for typically human behavior-based loads. A representative
community of individually unique building models for both electric power and indoor
temperature may be simulated at the buildings and power system levels. It may also
incorporate other DER types with controls, such as solar PV and BESSs.
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widely available offer similar functionality when operated as generalized energy stor-

age (GES) with additional appliance-specific constraints that are typically associated

with occupant comfort and weather effects. Control strategies that coordinate multi-

ple types of DERs, such as solar PV and GES, are an integral aspect of the smart grid

and can be developed and tested through co-simulation [91, 96]. Simulation testbeds

play an important role in both the development of such VPP control schemes and in

the planning of DER deployment [34, 97].

This work employs a novel co-simulation framework that acts as a testbed for

control strategies that may employ various GES systems, particularly HVAC systems,

and DERs based on the Consumer Technology Association (CTA) 2045 standard

[98, 99]. The evaluation of control cases at both the power system and individual

building levels is enabled by the framework, which is facilitated by a physics-informed

machine learning modeling procedure that is must faster than conventional white-box

implementations.

Advanced control methodologies are utilized that incorporate HVAC system se-

quential phasing in batches of houses throughout the community and more gradual

changes in setpoint temperatures. Also, the proposal of a multi-objective control op-

timization is provided with objectives to minimize targeted power peaks and possible

resulting increases in total energy use. Independent variables for the optimization in-

clude “shed” and “load-up” control times for the HVAC systems, which are command

types based on the CTA-2045 standard and made possible by GES characterization

that inherently considers occupant thermal comfort.

This chapter discusses the development and application of a novel co-simulation
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framework, DER and Power Distribution System (PDS) models, and control method-

ologies with the following objectives:

• Enable testing and study of DER control scenarios

• Evaluate improved power system operation, such as peak power shifting/shaving

and DER coordination with increased utilization of local generation

• Identify opportunities for typical household appliances like HVACs to be em-

ployed as DERs

• Consider effects of control on occupants, such as change in thermal comfort,

which may be a likely constraint in actual implementation

• Optimize control settings for VPP scenarios.

This chapter is substantially based on the following publications:

• E. S. Jones, et al., “Co-simulation of Electric Power Distribution Systems and

Buildings including Ultra-fast HVAC Models and Optimal DER Control,” 14p,

2023, prepared for journal submission (April 2023).

• E. S. Jones, et al., “Co-simulation of Smart Grids and Homes including Ultra-

fast HVAC Models with CTA-2045 Control and Consideration of Thermal Com-

fort,” 2022 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit,

MI, USA, 2022, pp. 1-6, doi: 10.1109/ECCE50734.2022.9948200.

In section 5.2, the models for DER, including generators and energy storage,

are established. Section 5.3 provides the operation of the DERs in aggregate at
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the power system level considering different control and distribution-side generation

scenarios. Section 5.4 formulates the optimization of HVAC system GES control

settings. The results of the optimization and preceding central composite and full

factorial simulation experiments are discussed in section 5.5. Having determined a

“best compromise” set of optimal settings, section 5.6 further explores the effects of

the control on individual buildings and occupants, and conclusions are provided in

section 5.7.

5.2 Models for Buildings, Energy Storage, and PV Generation

A novel framework for co-simulation of DERs and PDSs is utilized as a testbed

for control schemes, GES, and DER deployment (Fig. 5.1). The building models

employed in the co-simulation framework are organized into four components: HVAC

system, thermal building envelope, residential solar PV system, and base load (i.e.,

other home appliance electric load). As a basis for the HVAC and building com-

ponents, three houses that are representative of a spectrum of energy efficiencies,

from conventional performance to Near-Net-Zero Energy (NNZE), were modeled and

calibrated in EnergyPlus [70, 100]. EnergyPlus is the U.S. Department of Energy’s

flagship simulator for whole-building white-box simulation. It employs physics-based

principles related to building construction as well as weather characteristics for the

calculation of HVAC system energy use.

Through a new Python plugin, software was developed to synthesize many dif-

ferent EnergyPlus house models by varying internal HVAC and building character-

istics of the base conventional EnergyPlus building model. A normal distribution of
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key building characteristics spanning from the lower efficiency conventional house to

highly efficiency NNZE house was used to ensure adequate and representative ran-

domness between houses. Such HVAC system performance characteristics include the

heating and cooling thermal energy capacities, coefficients of performance (COP), and

air flow rates. The varied building thermal properties include conductivity, thickness,

density, and specific heat of construction materials such as studs, insulation, and as-

sociated air cavities for walls and roofing as well as for attic trusses and additional

ceiling insulation. Window U-factors and solar heat gain coefficients (SHGCs) were

also considered.

All of the newly synthesized EnergyPlus models are then simulated for an example

location and time period based on weather data to produce synthetic data of HVAC

energy use and indoor building temperature for an entire community of individual

houses. With this synthesized data, a Machine Learning (ML) process may be ap-

plied to train and develop new black and grey box versions through methods including

Multi-Linear Regression (MLR), k-means clustering for weather grouping, and ther-

modynamic equations for specific heat conversions (Fig. 5.6) [101]. This process

enables both ultra-fast simulation that is up to approximately 133 times faster than

EnergyPlus as well as straightforward integration with other software as incorporated

in the co-simulation framework.

The ML training procedure produces multiple models, which are satisfactorily

accurate in capturing both the heating and cooling thermal energy of the HVAC

system, as well as the indoor temperature of the building, while experiencing external

weather effects. The inclusion of building indoor temperature enables the tracking
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Figure 5.2: Histograms of HVAC cooling characteristics associated with the 351 syn-
thesized EnergyPlus models from which the ML models were trained.
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Figure 5.3: Histograms of HVAC heating characteristics associated with the 351
synthesized EnergyPlus models from which the ML models were trained.
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Figure 5.4: Histograms of conductivity values for different construction materials of
the 351 synthesized EnergyPlus models from which the ML models were trained.
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Figure 5.5: Histograms of thickness and density values for different construction
materials as well as window efficiency metrics of the 351 synthesized EnergyPlus
models from which the ML models were trained.
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Figure 5.6: Schematic of HVAC and building time dependent simulator capable of
executing both explicit and CTA-2045 commands, as well as providing Energy Star
GES performance, such as electric energy capacity, energy take, and equivalent SOC.

and prediction of thermal comfort for occupants, which is a notable contribution

and is integral for improved HVAC control. The ML models capture the thermal

properties of the building and the HVAC system and their relationship with weather.

As a result, the ultra-fast ML models are not limited to the location for which the

original EnergyPlus input weather data is representative, which is an important and

significant modeling contribution for VPP studies to be conducted across multiple

locations and compared to determine optimal areas for control investment.

As part of the testbed, an HVAC and building simulator is custom-developed to

utilize the ML models for co-simulation with a power PDS and are assigned to ap-

propriate circuit nodes (Figs. 5.6). Simulation processes and control logic for the

HVAC and building simulator is provided in Fig. 5.7, where td is indoor temperature

deviation; ts, setpoint temperature; ti, indoor temperature; hm, HVAC mode of op-

eration; hs, HVAC on or off status; tdb, the thermostat temperature dead-band; ttol,

the thermostat temperature tolerance; ph,kW , the HVAC electric active power [kW],

tin, the indoor temperature of the next timestep; pfh, the power factor of the HVAC
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Figure 5.7: Flowchart for the HVAC and building simulator that employs ML HVAC
models as well as the PV simulator.
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system; ph,kvar, the HVAC electric reactive power [kvar]; pvr, the rated power of the

solar PV system [kW]; ppv, the electric active power generated from the solar PV

system; pt,kW , the total electric active power of the building [kW]; pt,kvar, the total

electric reactive power of the building [kvar]; pb,kW , the electric active power of the

base load [kW]; pb,kvar, the electric reactive power of the base load [kvar].

Residential solar PV systems may be assigned to the building models and sim-

ulated based on weather data through physical equations (Fig. 5.1). The PV sim-

ulator in the framework determines generated solar PV power (pg,pv) based on the

model established in section 4.6. Unlike HVAC and PV systems, other typical house-

hold appliances and devices are primarily human behavior-based and not dominantly

weather dependent. Therefore, each building model may be assigned a random daily

profile of energy use for other typical house loads, including water heaters, lights, and

electronics. The schedules employed for the following studies were based on minutely

household energy use data sourced from the Electric Power Research Institute (EPRI)

SHINES project [102].

5.3 Power System and DER Operation

The co-simulation framework was utilized to simulate a very large subdivision

in the U.S. with the buildings randomly populated at appropriate connection nodes

throughout a modified IEEE 123-bus test PDS (Fig. 5.8) [103]. The initial load

allocation of the test power system was considered by assuming 10kW of the original

peak load at each connection node corresponds to a single building. This method

resulted in 351 uniquely generated buildings, 52 (15%) of which having a BTM solar
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Figure 5.8: The circuit diagram for the modified IEEE 123-bus test system. The
original circuit has a peak load of 3.6MW, 1.3MVAr and is to be representative of a
very large residential subdivision in the U.S.

Figure 5.9: PDS total active power for the baseline and control cases. This is an
aggregation of all building loads minus the power losses across the PDS without
considering any contributions from PV generation.
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PV system with typical power ratings randomly selected between 3 and 7.5kW. The

houses with BTM PV generation capability were distributed throughout the power

system to represent gradual adoption patterns of the technology.

For the simulated example day, minutely solar irradiance and outdoor tempera-

ture data collected in the southeast U.S. is employed as input to the models (Fig.

5.10). The baseline simulation case does not include any VPP control, and the HVAC

systems operated as they normally would in accordance with their indoor tempera-

ture setpoints and associated building thermal properties. At the PDS level, the total

power ramped up in the morning as both the solar irradiance and outdoor tempera-

ture increased (Fig. 5.9). HVAC systems constitute almost half of the energy used by

typical residences and use more energy as indoor temperature changes [30]. As this

change in temperature reduced in the midday, the HVAC systems settle into normal

operation and maintain indoor temperature near setpoint.

Total system power ramped down as the sun set with a subsequent peak likely

due to occupant arrival in the evening. This secondary evening peak is of particular

interest as Electric Vehicle (EV) charging in scenarios of higher penetration may

cause a significant system-wide power increase at this time [104]. Additionally, the

longer midday peak may invert as distributed solar PV becomes more prevalent,

which further contributes to the concern of the secondary evening peak (Figs. 5.10

and 5.11). The reshaping of the residential load profile from higher DER penetration

levels, including contributions from solar PV and EVs, may be alleviated by VPP

control of other residential loads, such as HVAC systems.

Considering occupant thermal comfort is a significant challenge in conventional
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Figure 5.10: Results for the PDS total solar PV power generation for the simulated
15% and estimated solar PV penetration cases of up to 100%. The variability in solar
PV power generation is caused by variability in irradiance.

Figure 5.11: Results for the PDS total net power for the simulated 15% and estimated
solar PV penetration cases of up to 100%.
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HVAC control implementations due to the complex relationship between weather,

HVAC power, and indoor temperature, which is unique for every building. Incorpo-

rating indoor temperature into VPP control schemes that leverage HVAC systems

as DER is necessary to prevent violation of typical thermal comfort limits for occu-

pants. Improved control methods through the CTA-2045 standard for DER control

types and GES characterization based on Energy Star definitions address the issue

through analogies of equivalent State-Of-Charge (SOC) and energy storage capacity

[31, 105]. The equivalent SOC and energy storage capacity at time t of an HVAC

system may be respectively defined by:

soch(t) =
θmax − θi(t)

θmax − θmin

, (5.1)

ec,h(t) = eh,c ⋅ (1 − soch(t)), (5.2)

where the θmax and θmin are the maximum and minimum indoor temperatures, re-

spectively; θi(t), the indoor temperature at time t; eh,c, the input electric energy

required for the HVAC system to reduce indoor temperature from θmax to θmin.

During simulation, the HVAC system and building models that are generally illus-

trated in Fig. 5.6 determine their corresponding ec,h(t) internally upon initialization

based on their thermal properties and ability to maintain indoor temperature over

time. The recalculation of ec,h(t) at multiple timesteps throughout simulation would

capture the system’s dependency on weather in this regard, which is analogous to

effects also experienced by conventional electric battery energy storage systems, such

as changes in capacity and self discharge.
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When a CTA-2045 command is issued, such as a “shed” or “load-up”, the con-

troller adjusts individual building indoor temperature setpoints based upon their

ec,h(t), which are determined by considering building thermal properties and typical

ASHRAE standard occupant thermal comfort limits [31]. Calculating the setpoint

change in this way considers the individual building characteristics, thereby enabling

more accurate prediction of the maximum energy that may be used from the demand-

side without violation of indoor temperature limits. By incorporating the consider-

ation of occupant thermal comfort directly into the controls, the degree to which

occupant comfort is violated now correlates with the accuracy of the building ec,h(t)

estimations and the θmax and θmin settings.

5.4 Problem Formulation and Algorithms for Optimal VPP Control of

HVAC Systems

A VPP control scenario is proposed that employs the CTA-2045 command types

to reduce the evening peak power. A “load-up” is planned before the evening to

pre-cool the houses while they are the least occupied to provide a more sustained

“shed” that will turn the HVAC systems off during the evening peak time window.

The indoor temperature setpoint adjustments applied by these controls are issued

incrementally over the first thirty minutes of the control period to provide a gradual

change in power over time.

Additionally, these advanced controls employ phasing before and after active pe-

riods, by which batches of randomly selected HVAC systems are sequentially engaged

and disengaged from the control as illustrated in Fig. 5.12 [31]. The box-and-whisker
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Figure 5.12: Simulation results for individual on/off statuses for HVACs to show
control phasing in the baseline case (top) and in case P6 (bottom) for both the
baseline and P6 cases. The “load-up” and “shed” event windows are shaded in light
gray and purple, respectively. This format is replicated in following figures.

Figure 5.13: Simulation results hourly average PDS bus voltages for both the baseline
and P6 cases.
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format employed throughout is such that the box extends from the first quartile to

the third quartile with a green line at the median. Whiskers extend from the box by

1.5x the inter-quartile range, and flier points are those past the end of the whiskers.

The improved control functionality prevents power spikes that would have oc-

curred otherwise as illustrated with example case NP in Fig. 5.9. In such a case, all

of the HVAC systems engaged and disengaged simultaneously as soon as the “load-

up” and “shed” controls were issued, thereby causing a large spike and steep drop

in total PDS power. Another power spike occurred in the evening after the “shed”

control ended as the HVAC systems resumed cooling all at once (Fig. 5.21).

To ensure best performance, the controls are formulated as a multi-objective opti-

mization to minimize both the total PDS peak power during the evening time period

(pa,t=tep) and possible resulting increase in total system energy use (ed) over the ex-

ample day, which are formally defined as:

min [pa,t=tep =
nl

∑
i=1

(wa,l,i) +
nt

∑
j=1

(wa,x,j) +
nd

∑
k=1

(pa,d,k)] , (5.3)

min [ed =
nt

∑
i=1

(pa,t=i)] , (5.4)

where nl, the total number of lines; wa,l,i, the active power losses over line number

i; nt, the total number of transformers; wa,x,j, the active power losses at transformer

number j; nd, the total number of loads; pa,d,i, the active power demand at load

number i; tep, the moment of maximum power in the evening peak time window of

5:30 to 9:00; nt, the total number of timesteps (minutes) in the day.

A ed value greater than the baseline case indicates that the energy used during
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Figure 5.14: Resulting evaluation of optimization objectives for both the central
composite (CC) and full factorial (FF) DOEs with respect to the baseline case.

the “load-up” command is greater than that of the avoided energy use during the

“shed” command. Such a scenario can present a trade-off between pa,t=tep and ed as

both are to be minimized and compete to some degree. In this case, a Pareto set of

best settings is expected to be determined by the optimization.

The independent variables of the control optimization include the “load-up” start

time, the control transition time, and the “shed” end time. To establish independent

variable bounds, a central composite and full factorial Designs Of Experiments (DOE)

with response surfaces were performed (Figs. 5.14 and 5.15). The response surfaces

for both the central composite and full factorial suggest the minimums for ed and

pa,t=tep are achieved with “load-up” start, control transition, and “shed” end times of

8:00, 15:00, and 22:00, respectively. Based on the DOEs, pa,t=tep is significantly less

dependent upon “load-up” start time than the other independent variables.

The non-dominated sorting genetic algorithm (NSGA) III is utilized for the full
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Figure 5.15: Response surfaces for the central composite (left) and full factorial (right)
DOEs that captures the relationships between input control time settings and the
objectives.

Figure 5.16: Four dimensional representations of the objective evaluations for the
optimization results, which include over 750 designs.
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Figure 5.17: Resulting (top) objective evaluations and (bottom) a cropped view of all
cases simulated during the NSGA-III optimization with respect to the baseline case
and with the Pareto front of the eleven (11) best cases indicated.
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Table 5.1: Results of optimal designs from the Pareto set and the baseline cases,
including the maximum power during the evening peak (on-peak) as well as total
energy for the full day, the on-peak time window, and off-peak time window.
Case Base P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
On-peak max power [MW] 1.20 0.86 0.86 0.87 0.88 0.88 0.88 0.89 0.90 0.90 0.91 0.91
Tot. day energy [MWh] 19.29 21.36 21.22 21.16 21.09 21.07 20.92 20.90 20.88 20.85 20.83 20.85
Tot. on-peak energy [MWh] 2.97 2.19 2.19 2.19 2.20 2.19 2.20 2.20 2.20 2.20 2.20 2.21
Tot. off-peak energy [MWh] 16.32 19.17 19.03 18.97 18.90 18.88 18.72 18.70 18.68 18.65 18.63 18.64

Table 5.2: The control time settings and resulting percent change with respect to the
baseline case for all simulated cases in terms of maximum power during the evening
peak (on-peak) as well as total energy for the full day, the on-peak time window, and
off-peak time window.
Case P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
Load-up start time 6:05 6:30 6:45 7:00 7:05 7:40 7:45 7:50 7:55 8:00 8:00
Control transition time 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00
Shed end time 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:00 22:05
On-peak max power [%] -28.75 -28.60 -27.91 -27.10 -27.10 -26.83 -25.70 -25.01 -24.93 -24.45 -24.55
Tot. day energy [%] 10.73 9.99 9.65 9.32 9.21 8.42 8.31 8.20 8.07 7.98 8.06
Tot. on-peak energy [%] 24.75 23.70 23.27 22.88 22.82 22.06 21.98 21.86 21.73 21.68 21.68
Tot. off-peak energy [%] -4.40 -4.32 -4.21 -3.96 -3.95 -3.45 -3.42 -3.33 -3.27 -3.21 -2.93

optimization with independent variable bounds of 6:00-8:00, 15:00-17:00, and 22:00-

24:00 for the “load-up” start, control transition, and “shed” end times, respectively,

in increments of five (5) minutes [59]. Comprised of over 750 simulation cases, the

optimization confirms the relationships established by the central composite and full

factorial DOEs (Fig. 5.18). The dependency of pa,t=tep on “load-up” start time is more

evident in the full optimization and opposes the objective to minimize ed. Therefore,

a Pareto front of eleven (11) best control settings is determined that showcases the

inverse relationship between max power during the evening peak (pa,t=tep) and total

day energy use (ed) (Figs. 5.17 and 5.18).

5.5 Case Study and Discussion of Optimal Control Settings

The Pareto set of optimal control settings provides designs that reduce pa,t=tep

within a range of 24.45% and 28.75% by enacting the “shed” command (Tables 5.1
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Figure 5.18: Relationships between the two (2) objectives and the three (3) indepen-
dent variables of control times for all simulated cases during the optimization.
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Table 5.3: Total energy during the “load-up” and “shed” time windows, which are
different for each case based on the input time settings, with and without the controls
active.
Case P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
Load-up w/ ctrl [MWh] 11.78 11.44 11.22 10.95 10.86 10.15 10.05 9.95 9.84 9.73 9.73
Load-up w/o ctrl [MWh] 9.44 9.24 9.10 8.91 8.84 8.32 8.24 8.16 8.08 8.00 8.00
Shed w/ ctrl [MWh] 5.82 5.83 5.83 5.85 5.85 5.88 5.88 5.89 5.89 5.89 5.95
Shed w/o ctrl [MWh] 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.09 6.13

and 5.2). Such significant reduction in pa,t=tep is in part enabled by the pre-cooling

of buildings through the “load-up” command, which, in theses case, increased ed by

7.98% to 10.73%. Of the considered optimal control designs, P1 yielded the most

reduction in pa,t=tep at 1.03MW (28.75%) and experienced the largest increase in ed of

2.07MWh (10.73%)during “load-up” with respect to the baseline case. P10 represents

the other extreme with a pa,t=tep reduction and ed increase of 0.29MW (24.45%) and

1.54MWh (7.98%), respectively. The “best compromise” case of P6 achieved a pa,t=tep

reduction of 0.32MW (26.83%) with a ed increase of 1.63MWh (8.42%). The results of

the two most extreme cases, P1 and P10, are emboldened, and the “best compromise”

case, P6, is both emboldened and italicized in tables 5.1, 5.2, and 5.3.

If residential energy storage systems (RESSs) were to be utilized instead to realize

the results of P6, each house would require an approximate RESS capacity of 5.2kWh,

or 1.83MWh in total, based on the additional energy used in P6 during the “load-up”

control window provided in Table 5.3. With a typical Tesla Powerwall as a currently

available example RESS, which is rated at 13.5kWh in capacity [106], around 136 out

of the 351 simulated houses would need to adopt the technology in order to achieve the

same effect. Assuming a typical RESS round-trip efficiency of 86%, the RESSs would

expend around 0.26MWh in total ed as losses [107]. The ed increase of 1.63MWh for
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P6 may be recuperated over the following day(s) through specific controls, such as

extended and more gradual “shed” commands.

From the utility perspective, the “load up” during midday is timed such that

energy generated by solar PV may be better utilized locally. Considering PDS con-

figurations with high penetration levels of solar PV and utility-scale renewable gen-

eration, improved BTM PV utilization by loading-up midday would also reduce total

associated carbon emissions even with increased ed as it would essentially replace

higher carbon-emitting generation that would have been needed during the elimi-

nated evening peak.

For the control and baseline cases at different levels of penetration, table 5.4

provides the BTM PV utilization factor, which represents the percentage of solar

PV generation used BTM and not fed back to the utility. Generated energy begins

to exceed the load demand and is fed back onto the transmission system once solar

PV adoption surpasses 45% of the PDS. Each of the control cases improved BTM

solar PV utilization similarly by approximately 3% to 8% across penetration levels.

To further elaborate upon the features of the co-simulation framework as well as the

effects of the optimal VPP controls at both the power system and individual occupant

levels, the results of the “best compromise” control case P6 are discussed in further

detail in the next section and considered as the primary example.

5.6 Individual Building and Occupant Effects

As the individual buildings experience large changes in indoor temperature due to

quickly increasing outdoor ambient temperature and solar irradiance as the sun rises
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Table 5.4: The BTM solar PV utilization for the baseline and control cases at different
levels of penetration.
Pen./
Case

Base NP P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

15% 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
30% 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
45% 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
60% 99.86 99.93 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
75% 91.36 98.30 99.05 99.05 99.05 99.18 99.12 98.98 98.91 98.98 99.05 99.05 99.05
90% 85.96 92.20 93.12 93.12 93.18 93.25 93.25 92.86 92.80 92.80 92.94 92.94 92.94
100% 84.27 88.96 89.57 89.71 89.58 89.38 89.45 89.22 89.22 89.29 89.09 89.10 89.10

in the morning, HVAC systems will use more energy to maintain indoor temperature

setpoints (Figs. 5.11, 5.21, and 5.20). Once the transition into daytime is complete,

the HVAC systems settle into normal operation and maintain the indoor temperature

with less energy use since outdoor temperature experiences relatively small change.

As shown in Fig. 5.11, BTM solar PV generation exacerbates the additional peak in

the evening.

The “load-up” and “shed” command types enact energy shifting rather than sav-

ing. They are useful for reducing total system power peaks and shifting energy in

time such that BTM renewable energy may be better utilized. HVAC systems will

increase energy use as the “load up” event decreases the setpoint temperature. This

pre-cooling creates a larger range for temperature to increase during “shed”, which

allows for a more sustained and significant drop in total system power during the

on-peak time window (Fig. 5.21).

Upon control issuance, HVAC systems respond independently to newly assigned

indoor temperature setpoints that are based upon their own unique electric energy

capacities and equivalent SOCs, which innately considers occupant comfort limits

according to ASHRAE standards [31]. Indoor temperatures change at different rates

between houses due to differing thermal properties and construction until equivalent
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Figure 5.19: Total energy use for the baseline and P6 cases.

SOC reaches a maximum bound (Figs. 5.21, 5.22). Since the equivalent SOC of the

individual buildings is dependent upon their estimated energy capacities, indoor tem-

peratures may deviate from thermal comfort bounds for a short time. Such violations

may be mitigated by improving the energy capacity estimation or by implementing

tighter minimum and maximum SOC bounds.

5.7 Summary

A novel co-simulation framework is employed to optimize Virtual Power Plant

(VPP) controls that leverage Heating, Ventilation, and Air-Conditioning (HVAC)

systems as Generalized Energy Storage (GES) to reduce a targeted PDS power peak,

while better utilizing Behind-The-Meter (BTM) solar Photo-Voltaic (PV) energy gen-

eration locally. The incorporation of HVAC system phasing and gradual setpoint
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Figure 5.20: HVAC energy use only for the baseline and P6 cases.

Figure 5.21: Hourly average indoor temperatures of all buildings for the baseline and
P6 cases.
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Figure 5.22: Hourly equivalent SOC, which is inversely related to indoor temperature,
of all buildings for the baseline and P6 cases.

change functions effectively prevents power system peaking or dropping from start

or completion of controls. The minimization of on-peak maximum power reduction

(pa,t=tep) and possible resulting total day energy use increase (ed) can compete in cer-

tain scenarios. Therefore, the optimization produced a Pareto set of best designs with

control settings that achieve a pa,t=tep of 24.45% to 28.75% and experience an increase

in ed of 7.98% to 10.73%. Each design yields improved BTM solar PV utilization by

approximately 3% to 8% because of the “load-up” timing.

From among the best control designs, P6 offers a “best compromise” with a pa,t=tep

reduction of 0.32MW (26.83%) and a ed increase of 1.63MWh (8.42%). If Residential

Energy Storage Systems (RESSs) were to be utilized instead to realize the same re-

sults as P6 with HVAC system control only, they would require a combined capacity

of approximately 1.83MWh. Assuming a typical RESS round-trip efficiency of 86%,
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the RESS would expend around 0.26MWh in ed as losses. In contrast, the 1.63MWh

increase in ed in P6 to achieve a more significant pa,t=tep may be recuperated over the

following day(s) through specific controls. For the P6 optimal control case, the indi-

vidual building and occupant effects are observed, including indoor temperature and

equivalent State-Of-Charge (SOC), which is made possible by the individual model-

ing of HVAC and building systems within the co-simulation framework. The ability

to simulate individual effects in this way, which enables their incorporation into Dis-

tributed Energy Resource (DER) control methodologies, is integral for consideration

of occupant thermal comfort during HVAC system control events.
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Chapter 6

Conclusions

In this final chapter, the conclusions and contributions of the dissertation are

summarized. Future research is recommended with a view at possible further progress

in the subject area.

6.1 Summary

Novel multi-objective optimization methodologies were proposed in Chapter 2 for

power distribution systems (PDSs) planning of capacitors rating and placement on

three actual large-scale utility sub-circuits, which are collectively referred to KUs1.

Two formulations were provided, each with four associated methods that were com-

pared and discussed. A solution selection method through a pseudo-weight vector

approach was also developed to compare selected configurations through sub-circuit

analyses. Considerable improvements and associated costs were discussed for the

three example circuits with respect to their corresponding reference cases. The eval-

uation of capacitor efficacy over time through time-series simulation and stochastic

analysis was also presented in this chapter.

Chapter 3 includes new methods that adapt the optimization techniques studied

in Chapter 2 to improve operation and control of PDSs over time. Circuits experience
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continuous change in load and bus voltage over time due to weather and appliance use

patterns. Conventional control was performed as a base case with typically available

devices, such as switchable capacitors, LTC transformers, and voltage regulators. This

control was optimized over time such that total energy use and utility asset degrada-

tion is minimized while remaining operationally compliant to traditional standards.

Studies were based on the T1 sub-circuit from KUs1 with load data measured at

the main transformer that allows for individual simulation over time and estimated

equivalent ZIP parameters that capture voltage-dependency of loads.

Chapter 4 identified the significant opportunity for reducing energy use in the

residential sector through high efficiency technologies and by increasing distributed

Photo-Voltaic (PV) generation through the experimentation and simulation of build-

ings, Heating, Ventilation, and Air-Conditioning (HVAC) systems, and solar PV en-

ergy models as well as through comparison of schedule-based household devices such

as water heaters and typical appliances. As an example, a simulated HVAC system

upgrade without changes to the building was determined to reduce HVAC energy use

by 26%, or 13% of the total building energy use. Incorporating improved construc-

tion significantly increases savings by 57% with a 46% reduction in HVAC system

peak hourly power. Such improvements further enable residences to become Net-

Zero-Energy (NZE), which is evident by the studied reduction in solar PV rating

requirement by up to 55% depending on location.

Also considered in this chapter is the increasing prevalence of power electronics

converters in modern electric loads. A survey of typical residential appliance Power

Factor (PF) values and energy characteristics as well as a proposed approach for
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equivalent PF calculation was provided, which may be employed at the community

level for studies on residential reactive power contributions. A method to apply

equivalent PF to the EnergyPlus building energy modeling software was also proposed

to determine reactive power contributions from simulated loads.

In chapter 5, a novel co-simulation framework was employed to optimize Virtual

Power Plant (VPP) controls that leverage HVAC systems as Generalized Energy

Storage (GES) to reduce a targeted distribution system power peak, while better

utilizing Behind-The-Meter (BTM) solar PV locally. The incorporation of HVAC

system phasing and gradual setpoint change functions effectively prevented power

system peaking or dropping from start or completion of controls.

The minimization of on-peak maximum power reduction and possible resulting

total day energy use increase can compete in certain scenarios. Therefore, the opti-

mization produced a Pareto set of best designs with control settings that achieve a

targeted maximum power reduction of 24.45% to 28.75% with corresponding increases

in total day energy uses between 7.98% and 10.73%. Each design yielded improved

BTM solar PV utilization by 3% to 8% because of the “load-up” timing.

From among the best control designs, a “best compromise” case was determined

with a peak power reduction of 0.32MW (26.83%) and total day energy increase of

1.63MWh (8.42%). If Residential Energy Storage Systems (RESSs) were to be utilized

instead to realize the same results with HVAC system control only, they would require

a combined capacity of approximately 1.83MWh. Assuming a typical RESS round-

trip efficiency of 86%, the RESSs would expend around 0.26MWh in total energy

losses over the day. In contrast, the 1.63MWh increase in total day energy use from
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the HVAC control may be recuperated over the following day(s).

For the “best compromise” optimal HVAC control case, the individual building

and occupant effects were observed, including indoor temperature and equivalent

state-of-charge (SOC), which was made possible by the individual modeling of HVAC

and building systems within the co-simulation framework. The ability to simulate

individual effects in this way, which enables their incorporation into Distributed En-

ergy Resource (DER) control methodologies, is integral for consideration of occupant

thermal comfort during HVAC system control.

6.2 Original Contributions

1. A comparative study of multi-objective optimization approaches for a power sys-

tem specific problem that employ computational intelligence methods, such as

Differential Evolution (DE) and the Non-Dominated Sorting Genetic Algorithm

III (NSGA-III), as applied to three real large-scale utility circuits (Chapter 2).

2. A new multi-step procedure for optimal power system configuration selection

that utilizes a pseudo weight vector approach based on objective priority and a

systematic analysis of the most extreme configuration types (Chapter 2).

3. An efficacy evaluation approach for power system configurations through time-

series simulation and stochastic analysis (Chapter 2).

4. An approach for optimal operation of PDSs through capacitor and LTC trans-

former control that minimizes total system power and improves its voltage-time

profile (Chapter 3).
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5. A cluster-based method to optimally disperse PDS device control adjustments

over time through load-forecasting in order to minimize utility asset degradation

and maintain best performance (Chapter 3).

6. Development of EnergyPlus models through extensive multi-annual data from

experimental homes with robot-operated appliances to mimic human habitation

that represent different levels of energy efficiency for U.S. houses (Chapter 4).

7. Development and demonstration of a highly scalable co-simulation framework

for ultra-fast machine learning models of building electric power and indoor

temperature with actual many-thousand node PDSs (Chapters 4 and 5).

8. Simulation and analysis of VPP scenarios that employ hundreds of unique build-

ings and their corresponding HVAC systems with other DER, such as local so-

lar PV, through GES characterization and Consumer Technology Association

(CTA) 2045 control schemes (Chapters 4 and 5).

9. Multi-objective optimization of VPP HVAC control considering peak power

reduction and increased total energy use through control timing (Chapter 5).

6.3 Recommendations for Future Research

Based on the results of this Ph.D. dissertation and recent research, possible further

work may include the following:

1. The load modeling for voltage dependency and time-series simulation could be

improved with application of AMI data and machine learning. The studies

in this work utilize the data currently available from the utility, which was
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measured only at the substation transformer. This data was employed for time

series simulation and equivalent ZIP parameter estimation with the assumptions

that the resulting load shape and voltage dependency would be applicable to

the individual loads. The models could also be extended to include distribution

transformers and associated secondary voltage drop for further improvements

in energy use minimization through CVR and VVO functions.

2. Further evaluation of capacitor efficacy over time may be performed with op-

timal control for comparison with the presented results that were produced

with conventional control. The effects of inaccuracies in load forecasting on the

cluster-based optimal control method could also be explored.

3. The EnergyPlus building model calibration could be automated with the new

Python plugin, appropriate measured data, and computational optimization.

The method employed in this work required manual adjustments as the plugin

was not available at the time. Automating this process would enable much more

efficient and accurate production of new building models.

4. The simulation and control optimization of VPP scenarios could be extended

to include other DERs, such as water heaters, electric vehicles, and residential

energy storage systems, in addition to the HVAC and solar PV systems. Study

of different penetration levels could be considered as the case study provided

assumes 100% community participation. The testbed may also be applied to

actual large-scale utility PDS models with the models for buildings and DERs

as replacements for currently employed generalized load models.
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[12] P. Dı́az, M. Pérez-Cisneros, E. Cuevas, O. Camarena, F. A. Fausto Martinez,
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[15] L. A. Gallego, J. M. López-Lezama, and O. G. Carmona, “A mixed-integer lin-
ear programming model for simultaneous optimal reconfiguration and optimal
placement of capacitor banks in distribution networks,” IEEE Access, vol. 10,
pp. 52655–52673, 2022.
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