
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Electrical and
Computer Engineering Electrical and Computer Engineering

2023

A Phase Change Memory and DRAM Based Framework For A Phase Change Memory and DRAM Based Framework For

Energy-Efficient and High-Speed In-Memory Stochastic Energy-Efficient and High-Speed In-Memory Stochastic

Computing Computing

Supreeth Mysore
University of Kentucky, ssh366@uky.edu
Digital Object Identifier: https://doi.org/10.13023/etd.2023.191

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Mysore, Supreeth, "A Phase Change Memory and DRAM Based Framework For Energy-Efficient and High-
Speed In-Memory Stochastic Computing" (2023). Theses and Dissertations--Electrical and Computer
Engineering. 192.
https://uknowledge.uky.edu/ece_etds/192

This Doctoral Dissertation is brought to you for free and open access by the Electrical and Computer Engineering at
UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Electrical and Computer Engineering
by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

https://uknowledge.uky.edu/
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece
https://uky.az1.qualtrics.com/jfe/form/SV_0lgcRp2YIfAbzvw
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Supreeth Mysore, Student

Dr. Ishan Thakkar, Major Professor

Dr. Daniel Lau, Director of Graduate Studies

A Phase Change Memory and DRAM Based Framework For Energy-Efficient and
High-Speed In-Memory Stochastic Computing

DISSERTATION

A dissertation submitted in partial
fulfillment of the requirements for the
degree of Doctor of Philosophy in the
College of Electrical and Computer

Engineering at the University of
Kentucky

By
Supreeth Mysore Shivanandamurthy

Lexington, Kentucky

Director: Dr. Ishan G. Thakkar, Assistant Professor of Electrical and Computer
Engineering

Co-Director : Dr. Sayed Ahmad Salehi, Assistant Professor of Electrical and Computer
Engineering

Lexington, Kentucky 2023

Copyright© Supreeth Mysore Shivanandamurthy 2023

ABSTRACT OF DISSERTATION

A Phase Change Memory and DRAM Based Framework For Energy-Efficient and
High-Speed In-Memory Stochastic Computing

Convolutional Neural Networks (CNNs) have proven to be highly effective in various
fields related to Artificial Intelligence (AI) and Machine Learning (ML). However, the
significant computational and memory requirements of CNNs, especially the multiply-
accumulate (MAC) operations that are fundamental building blocks of CNNs, make their
processing highly challenging. As the input dataset size increases, the traditional processor-
centric, von-Neumann computing architectures become ill-suited for processing CNNs
because they exponentially increase the latency and energy costs of processing CNNs.

To overcome these challenges, researchers have explored the Processing-In-Memory
(PIM) technique, which involves placing the processing unit inside or near the memory unit.
This approach reduces data migration length and utilizes the internal memory bandwidth at
the memory bank and subarray levels. However, developing an efficient PIM-based system
with minimal hardware complexity remains a significant challenge.

The proposed PIM solution in this thesis report suggests utilizing different memory
technologies, such as Dynamic RAM (DRAM) and phase change memory (PCM), with
stochastic arithmetic and minimal add-on logic. Stochastic computing is a technique that
uses pseudo-random numbers to perform arithmetic operations. This technique reduces
hardware requirements for CNNs’ arithmetic operations, making it possible to implement
them with simple logic gates.

This thesis report details techniques and architectures to enable DRAM and PCM-based
PIM systems that can employ stochastic arithmetic to accelerate CNNs. The detailed topics
include PCM-based scalable Stochastic Number Generator (SNG), DRAM-based stochas-
tic MAC accelerator for CNNs, non-volatile memory (NVM) class PCRAM-based MAC
accelerator for CNNs, and DRAM-based stochastic to binary conversion (StoB). The re-
port also identifies future research directions to enable highly scalable, energy-efficient,
and high-speed PIM accelerators for CNNs. for the proposed designs, including in-situ
PCRAM-based SNG, ODIN (A Bit-Parallel Stochastic Arithmetic Based Accelerator for
In-Situ Neural Network Processing in Phase Change RAM), ATRIA (Bit-Parallel Stochas-
tic Arithmetic Based Accelerator for In-DRAM CNN Processing), and AGNI (In-Situ,
Iso-Latency Stochastic-to-Binary Number Conversion for In-DRAM Deep Learning), and
presents initial findings for these ideas.

In summary, the proposed solution in the report offers a comprehensive approach to
address the challenges of processing CNNs. The proposed designs have the potential to
significantly improve the energy and time efficiency of accelerating CNNs. Using Stochastic
Computing with different memory technologies enables the development of efficient PIM-
based systems with minimal hardware overheads and complexity, providing a promising
path for the future of CNN-based applications.

KEYWORDS: In-Memory Computing, Convolution Neural Network, Stochastic Comput-
ing, Artificial Intelligence

Author’s signature: Supreeth Mysore
Shivanandamurthy

Date: May 5, 2023

iii

A Phase Change Memory and DRAM Based Framework For Energy-Efficient and
High-Speed In-Memory Stochastic Computing

By
Supreeth Mysore Shivanandamurthy

Director of Dissertation: Dr. Ishan G. Thakkar

Co-Director of Dissertation: Dr. Sayed Ahmad Salehi

Director of Graduate Studies: Dr. Daniel Lau

Date: May 5, 2023

DEDICATED TO MY FAMILY AND TEACHERS
Thanks for leading me from the darkness of ignorance

to the quest for the immortality of knowledge.

ACKNOWLEDGMENTS

I would like to take this opportunity to express my gratitude to several individuals who

have contributed significantly to the successful completion of my work. Without their

support, guidance, and motivation, this accomplishment would not have been possible.

First and foremost, I would like to extend my heartfelt gratitude to my advisor, Dr. Ishan

Thakkar, for his unwavering support and guidance throughout my research. Dr. Thakkar

has consistently provided me with the latest ideas, relevant literature, and infrastructure,

which have been critical to the completion of my work. His constant encouragement and

constructive feedback have been invaluable, and I am grateful for his mentorship.

I would also like to acknowledge my family, who has been my pillar of strength through-

out this journey. Their unconditional love, support, and sacrifice have been an inspiration

to me, particularly during the challenging times of the pandemic. Their unwavering en-

couragement and motivation have been the driving force behind my accomplishments, and

I am grateful for their unwavering support.

Moreover, I would like to express my appreciation to my fellow labmates at UCAT lab,

UKY, for their insightful discussions and collaborative efforts. Their support, camaraderie,

and shared knowledge have been instrumental in making my research journey an enjoyable

and memorable one.

Finally, I would like to thank Dr. Salehi for his support and guidance during my research

studies. His valuable insights, suggestions, and expertise have been instrumental in shaping

my work, and I am grateful for his mentorship.

Once again, I extend my sincere appreciation to all those who have contributed to the

successful completion of my work, and I look forward to continuing my research journey

with their support and guidance.

iii

TABLE OF CONTENTS

Acknowledgments . iii

List of Figures . vi

List of Tables . viii

Chapter 1 Introduction . 1
1.1 Contributions . 2
1.2 Report outline . 3

Chapter 2 Background and Related Work . 4
2.1 Convolution Neural Networks (CNNs) . 4
2.2 State of art machine learning technique . 4
2.3 Processing in-memory (PIM) . 5

Chapter 3 Scalable Stochastic Number Generator for Phase Change Memory (PCM)
based In-memory Stochastic Processing 12

3.1 Chapter Overview . 12
3.2 Background: Phase change memory . 12
3.3 Stochastic Number Generator . 13
3.4 Results . 14
3.5 Summary . 15

Chapter 4 An Accelerator Based on Parallel SC for In-PCRAM Deep Learning
Applications . 16

4.1 Chapter Overview . 16
4.2 Introduction . 16
4.3 Related work and motivation . 17
4.4 Phase change Ram (PCRAM) architecture 18
4.5 Stochastic arithmetic . 19
4.6 ODIN Framework: overview . 19
4.7 Integration with heterogeneous computing system 19
4.8 Hardware modifications in PCRAM banks 20
4.9 Hardware for multiply-accumulate (MAC) operations 21
4.10 Hardware for activation and pooling functions 23
4.11 Implementation and hardware overheads 25
4.12 Overheads of Hardware Modifications . 26
4.13 Conclusions . 28

Chapter 5 A Parallel SC Based In-DRAM CNN Accelerator 29
5.1 Chapter Overview . 29

iv

5.2 Introduction . 29
5.3 Concept of Bit-Parallel Rate-Coded Unary (stochastic) computing 30
5.4 ATRIA: Overview . 32
5.5 Evaluation . 37
5.6 Conclusions . 41

Chapter 6 A Substrate for In-DRAM StoB for CNN Applications 42
6.1 Abstract of the chapter . 42
6.2 Introduction . 42
6.3 Background and related work . 44
6.4 Proposed technique to convert the rate coded unary to temporal coded unary 45
6.5 Overview of Our AGNI Substrate . 46
6.6 Operation of Our AGNI Substrate . 47
6.7 Evaluation . 53
6.8 Conclusion and future scope . 55

Chapter 7 Conclusions . 56

Chapter 8 Future Direction 1: Optimized GDAC-based SNG, Analysis and Miti-
gation of the Impacts of PCRAM Reliability Issues 57

8.1 Introduction . 57
8.2 Problems in the existing OPAMP-based SNG 57
8.3 Key ideas/Approaches . 58
8.4 Goals of this work . 59

Chapter 9 Future direction 2: PSCA – Stochastic Computing based In-PCRAM
Accelerator for CNN Processing . 60

9.1 Motivation . 60
9.2 Challenges . 60
9.3 Idea . 60
9.4 Aim of this work . 61

Chapter 10 Future Direction 3: In-DRAM BtoS Conversion with Variable Paramet-
ric Precision for Improving the Performance of CNN Applications 63

10.1 Motivation . 63
10.2 Idea . 63

Bibliography . 65

Vita . 75

v

LIST OF FIGURES

2.1 Four major types of layers found in Convolutional Neural Networks (CNNs) [1]. 4
2.2 a) Generic computer architecture b) Generic PIM approach to implement pro-

cessing unit inside main memory c) Proposed design framework for PCRAM-
based PIM implementation (can also be implemented in DRAM). 6

3.1 Functional block-diagram of our proposed Phase Change Memory (PCM) based
Stochastic Number Generator (SNG). 13

3.2 (A) Area and (B) energy consumption values of our GDACbased SNG and
conventional LFSR-based SNG for various bit-sizes of input binary number. . . 14

4.1 Four major types of layers found in Convolutional Neural Networks (CNNs) [1]. 18
4.2 Stochastic arithmetic circuits. (a) Multiplier (AND gate), (b) Adder (MUX

circuit). 19
4.3 Integration of ODIN in a heterogeneous system. 20
4.4 Schematic of a PCRAM bank modifications in ODIN. 21
4.5 PCRAM activity flows for ODIN PIMC commands (a)B TO S, (b) CNN MUL,

(c) CNN MUL, (d) S TO B, and (e)CNN POOL. 22
4.6 (a) Execution time and (b) energy consumption for ODIN and other considered

CNN processing systems, across VGG-1/2 and CNN-1/2 topologies. 26

5.1 Bit-serial rate-coded unary (stochastic) computing circuits for (a) multiplication
(AND gate), (b) scaled accumulation (MUX). 31

5.2 Bit-parallel rate-coded unary (stochastic) computing circuits for (a) multiplica-
tion (array of AND gates), (b) scaled accumulation (array of MUXs). Here, the
individual N bits of operands A, B, C, and D from Fig 6.1 are striped across N
copies of AND gates and MUXs. 31

5.3 The hierarchical structure of our ATRIA accelerator chip. 32
5.4 Schematic of a processing element (PE) of ATRIA. (a) Schematic of a subarray

and feature processing unit (FPU); (b) pop counter for S-to-B conversion [2];
(c) LUT for B-to-S conversion; (d) a 16:1 MUX and its connections with S/As
as part of the FPU . 33

5.5 A schematic showing the operation of a PE of ATRIA to perform a 16-operand
multiply-accumulate (MAC) function (𝐹𝑀𝐴𝐶). 35

5.6 (a) Efficiency (FPS/W/mm2), (b) latency, (c) throughput (FPS), and (d) memory
bottleneck ratio (MBR) results for various in-DRAM accelerators across CNNs.
GM means geometric mean. 40

6.1 (a) rate coded unary representation, (b) transition coded unary representation . 44
6.2 Flash ADC with a) Input 𝑉𝑖𝑛 = 0.5𝑉𝐷𝐷 , and b) Input 𝑉𝑖𝑛 = 0.25𝑉𝐷𝐷 45
6.3 Schematic layout of AGNI substrate and employed peripherals. Illustration of

(a) an AGNI-modified DRAM tile, (b) an A to U peripheral unit, (c) an S to A
peripheral unit, and (d) a U to B peripheral unit. 46

vi

6.4 Schematic of AGNI StoB substrate with N = 4 and BN = 2. Consisting of
peripheral structures S to A units, A to U units and U to B unit 47

6.5 SPICE simulation for AGNI StoB substrate with N = 4. a)voltages of the
precharge units (𝑉𝑅𝐸𝐹) b)Equalizer (EQ) and Latching signals(L1), c) Wordline
(WL) and SEL signals, d)Bitline (BL) voltages e)DRAM cell capacitor voltage,
f) sense n and isolation signal, g) charging (K1) and discharging (B1), and h)
capacitor voltage . 50

6.6 Analog capacitor voltage at different number of 1’s for 4 bit SN 51

8.1 Resistance Drift and broadening in the PCRAM row for SET and RESET state. 57
8.2 Illustration of (A) PCRAM cell array, and (B) PCRAM resistance distributions

for SET and RESET cells. (C) block diagram of CAPSTONE PCRAM-based
GDAC SNG without opamp-summer circuit. (D) block diagram of PCRAM-
based GDAC SNG [11] (E) PDF and CDF voltage mapping of 2𝑁 PCRAM
cells. (F) flow chart of the CAPSTONE (G) passive averager. 58

8.3 Correlation Manipulation: (A) positive correlation manipulation, (B)Negative
correlation, and (C) uncorrelated. 59

10.1 (a) Gaussian distribution of DRAM 𝑇𝑅𝐶𝐷 activation time, b) DRAM peripheral
connection with addon logic variable timer, (c) enlarged portion of the variable
timer with enabled connection to the sense amplifier. 63

vii

LIST OF TABLES

2.1 Advantages and disadvantages of SC . 8
2.2 The literature survey on PIM for arithmetic and logic operation with different

memory class . 10

4.1 : Required number of PCRAM reads, writes, and resultant total latency values
for various ODIN PIMC commands. 25

4.2 Requirement of memory capacity, number of PCRAM reads and writes for
implementing various CNN topologies on ODIN accel-erator. 25

4.3 ANN benchmark topologies [2]. 27
4.4 Area, energy and delay values for various add-on logic circuits for ODIN (scaled

for 14nm CMOS). 27
4.5 Requirement of memory capacity, number of PCRAM reads and writes for

implementing various CNN topologies on ODIN accel-erator. 27

5.1 Latency, energy, and area overhead values of various hardware components of
the FPUs in the PEs of ATRIA. 37

5.2 Average APE (𝜇APE), standard deviation in APE (𝜎APE) and CNN testing
accuracy (A) for SCOPE-Vanilla, SCOPE-H2D and ATRIA for various CNNs. . 38

5.3 Comparison of various accelerators with ATRIA, in terms of number of PEs
(#PEs) and latency of MUL, ACC, MAC, binary to stochastic conversion (B-
to-S), and pop count (PC) operations. 39

6.1 Definitions and uses of various timing signals employed by AGNI substrate. . . 48
6.2 Toggle time stamps (↑ or ↓) for various timing signals to realize the four

operational steps of our AGNI substrate. 48
6.3 MAE, MAPE, RMSE, and 𝑉𝑀𝐴𝑋 of AGNI at different BLgroups lengths (N) . . 52
6.4 Charge pump area and power dissipation . 53
6.5 Comparison of EDP, and AREA of prior StoB designs (Parallel PC [3], Serial

PC [4]), and AGNI . 55

viii

Chapter 1 Introduction

The advent of big data has transformed the way we use technology [5]. Smart gadgets
and applications rely on massive datasets that require advanced algorithms like machine
learning, deep learning, and neural networks to extract meaningful information. Convolu-
tional neural networks (CNNs) have emerged as powerful tools for visual image analysis
and are extensively used in many fields, including computer vision, speech recognition, and
natural language processing. A detailed explanation of CNNs will be provided in Chapter
2.

However, the high computational demands of CNNs pose a significant challenge for
traditional computing systems. The convolution and fully connected layers, which are
essential to CNNs, consist of many multiply and accumulate (MAC) operations that are
both computation and data-intensive (refer to Chapter 2). Traditional computing systems
are not designed to handle this massive amount of data, leading to extravagant energy and
latency costs. They are facing significant challenges in keeping up with the computational
needs of modern CNN applications. Moreover, frequent data movements between and
processing and memory cores of these systems also add substantial energy and latency costs
while processing CNNs. In Chapter 2, we discuss in detail the drawbacks of traditional
computing systems in the context of processing CNN applications.

To mitigate these issues, there is a pressing need for alternative computing systems that
are simpler to realize and have low-overhead hardware organization, with increased energy
efficiency for arithmetic operations. The envisioned alternative computing systems should
also address the issue of performance degradation and enable faster processing of CNNs.

To that end, to address the challenge of frequent data movements in traditional von-
Neumann architectures, researchers have proposed using the processing-in-memory (PIM)
technique and near-data computing [6]. This work is concentrated on the PIM technique,
wherein the memory units are instilled with some in-situ processing capabilities. Due
to this, the required data movements reduce drastically, resulting in increased processing
throughput, latency and energy consumption. However, designing PIM architectures have
its own challenges. First, the fabrication cost involved in the hardware modifications to
enable PIM inside traditional main memory should be minimized. Second, the hardware
circuitry that powers PIM architectures should be energy- and area-efficient.

To address this hardware efficiency challenge, researchers have come up with alternative
arithmetic options such as stochastic computing and approximate computing [7] [8] [6].
Our research focuses on implementing the computations required for processing CNNs in
the stochastic domain. Stochastic arithmetic operations are simpler to implement and have
less hardware footprint compared to binary computation. However, stochastic computing
suffers from limitations, namely the high area and energy overheads, and low performance
of conventional circuits used for binary to stochastic number conversion. We address these
shortcomings to enable stochastic computing in PIM architectures.

This dissertation focuses on developing alternative computing systems for faster pro-
cessing of CNNs with high energy efficiency. Specifically, we explore two types of CNN ac-
celerators: volatile memory-based (i.e., DRAM-based) and phase-change memory (PCM)-

1

based PIM designs. Our initial work involves designing a novel stochastic computing-based
PIM framework for CNN acceleration using mature DRAM technology. This framework
utilizes bit-parallel stochastic computing, as described in Chapter 5. To further enhance
the performance of our DRAM-based PIM accelerators for CNNs, we propose a new iso-
latency stochastic-to-binary conversion substrate, which is detailed in Chapter 6. Further,
one potential alternative to DRAM is PCM, which offers scalability and energy efficiency
benefits. Considering the popularity of PCM technology, we extended our idea of using the
stochastic computing-based acceleration of CNNs to realize a PCM-based PIM architec-
ture. This architecture is explained in detail in Chapter 4. Furthermore, we also contributed
to the development of a scalable stochastic number generator (SNG) using the inherent
stochasticity of PCM. This is explained in Chapter 3.

The contributions of this report are enumerated in Section 1.1. The report outline is
provided in Section 1.2.

1.1 Contributions

This thesis report makes the following contributions.

Scalable Stochastic Number Generator for Phase Change Memory (PCM) Based In-
Memory Stochastic Processing

In this study, we present the design of a high-performance and low-area footprint SNG
that utilizes the inherently stochastic nature of PCM. We demonstrate the effectiveness of
our PCM-based SNG by implementing it for different binary input lengths and comparing it
with state-of-the-art Linear Feedback Shift Register (LFSR)-based SNG designs. We also
identify the workflow towards achieving SNG scalability with minimal hardware footprint
and discuss the challenges and constraints associated with the PCM-based SNG design.
In Chapter 3, we provide a detailed explanation of our proposed SNG’s energy and area-
saving, which are 250× and 300×, respectively, compared to conventional LFSR-based
SNG designs at 14-bit binary input length.

ODIN: A Bit-Parallel Stochastic Arithmetic-Based Accelerator for In-situ Neural Net-
work Processing in Phase Change RAM

We introduce a new PIM engine, named ODIN, that combines the advantages of stochas-
tic computing and PIM architecture to facilitate the low-overhead in-situ acceleration of
essential CNN functions such as multiply-accumulate (MAC), nonlinear activation, and
pooling. ODIN employs hybrid binary-stochastic bit-parallel arithmetic and Phase Change
RAM (PCRAM) as the underlying memory technology to achieve energy-efficient compu-
tation.

To assess ODIN’s performance, we mapped four CNN benchmark applications on the
proposed accelerator and compared it with a conventional processor-centric design and a
crossbar-based in-situ CNN accelerator from prior research. Our analysis results indicate
that the ODIN accelerator can achieve at least 5.8x faster and 23.2× more energy-efficient
computation compared to the processor-centric design, and up to 90.8× faster and 1554×

2

more energy-efficient computation compared to the crossbar-based in-situ CNN accelerator
from prior work. A detailed description of these findings is presented in Chapter 4.

ATRIA: Low-latency, Energy-efficient In-DRAM CNN Acceleration With Bit-parallel
Unary Computing

We introduce ATRIA, a novel in-DRAM accelerator that utilizes bit-parallel rate-coded
unary computing for energy-efficient and high-speed inference of CNNs. ATRIA employs
lightweight modifications to DRAM cell arrays to implement stochastic computing and
accelerate MAC operations inside DRAM. By performing 16 MAC operations in only two
consecutive memory operation cycles, ATRIA significantly enhances the latency, through-
put, and efficiency of CNN inference processing. Chapter 5 provides a detailed explanation
of these improvements.

AGNI:In-situ, ISO-latency Stochastic-to-Binary Number Conversion for In-DRAM
Deep Learning

Additionally, we present AGNI, a new technique for in-DRAM stochastic-to-binary
number conversion for deep learning applications. AGNI makes minor modifications to
existing DRAM peripherals and enhances the performance of existing in-DRAM stochastic-
to-binary conversion circuits by reducing area, energy-delay product, and latency. Our
SPICE simulations demonstrate that AGNI can achieve a 3.9× improvement in performance
across four deep CNN models. Chapter 6 provides a comprehensive explanation of AGNI
and its simulation results.

1.2 Report outline

The report is thoughtfully structured to present a comprehensive account of our research
work. In Chapter 1, we provide an introduction to the report, highlighting the motivation
and objectives of our research. Chapter 2 offers a review of the existing literature and the
required background.

We present our research contributions in Chapters 3, 4, 5, and Chapter 6, with each
chapter focusing on a specific contribution of our research. Chapter 3 elaborates on our
proposed workflow for a PCM-based SNG and discusses potential future work. Chapter
4 discusses ODIN, a stochastic MAC engine using PCM memory structure, along with
our future plans for this research. Similarly, Chapter 5 focuses on ATRIA. In Chapter 6,
we discuss our AGNI substrate.Finally, Chapter 7 concludes our report by summarizing
our findings and contributions. We also highlight future scopes related to precision and
correlation manipulation techniques to address stochastic inaccuracy in Chapter 8, Chapter
9, and Chapter 10.

Copyright© Supreeth Mysore Shivanandamurthy, 2023.

3

Chapter 2 Background and Related Work

2.1 Convolution Neural Networks (CNNs)

In the present day, cloud computing and big data are very popular. It consists of an
immense dataset to process and extract meaningful information. For applications, such as
image recognition, computer vision, and other augmented reality-based technology, scholars
found that convolution neural networks are a very favorable candidate and accelerated the
growth of big data significantly. For our dissertation, we are focusing on the application
related to the convolution neural network. Thus, it is necessary to give a brief overview
of the generic CNNs, the structure of neural network layers, and the arithmetical operation
involved in each neural network layer. Generally speaking, CNNs consist of four major types
of layers, as shown in Figure 1, namely convolution (CONV), local response normalization
(LRN), max pooling (POOL), and fully connected (FC) layers [9]. From all these layers,
the major portion of information extraction of the input data takes place in the CONV and
FC layers, where a very large number of MAC operations occur on the synaptic weights
and input biases. These MAC operations typically involve many steps for intermediate
value preparation and storage. Therefore, they can be highly time-consuming and energy-
consuming. To give better insight, consider Equation 2.1, related to an FC layer, which
consists of MAC operations between 𝑤𝑖, 𝑗 ′𝑠 and 𝑎𝑖′𝑠.

Figure 2.1: Four major types of layers found in Convolutional Neural Networks (CNNs) [1].

Here in Equation 2.1, 𝑤𝑖, 𝑗 ′𝑠 is the synaptic weight connecting ith node in layer ‘a‘to
𝑗 𝑡ℎ node in layer ‘b‘, and ‘f‘ is a non-linear activation function (in our dissertation we use
ReLU activation function).

out(𝑥, 𝑦) 𝑓0 =
𝑁𝑖∑︁
𝑓𝑖=0

𝐾𝑥∑︁
𝑘𝑥=0

𝐾𝑦∑︁
𝑘𝑦=0

(𝑤 𝑓𝑖 , 𝑓0 (𝑘𝑥 , 𝑘𝑦) · in(𝑘𝑥 , 𝑦 + 𝑘𝑦) 𝑓𝑖) (2.1)

2.2 State of art machine learning technique

In this subsection, we are explaining the layers and NN’s mathematical operations.

4

Convolution layer

This layer is used to identify the characteristic elements of input data. For example, see
Figure 2.1. The filter is formed by 𝐾𝑥 ×𝐾𝑦 coefficient kernel; these kernels are learned and
form the synaptic weights for the next layer. The formula below shows the concrete method
to find the output neuron at position (x, y) of output feature map 𝑓 0:

From the above Equation 2.2 input feature map fi can have multiple feature maps and
the kernel is usually three dimensional i.e., 𝐾𝑥 × 𝐾𝑦 × 𝑁𝑖 𝑓 .

out(𝑥, 𝑦) 𝑓0 = max
0≤𝑘𝑥≤𝐾𝑥 ,0≤𝑘𝑦≤𝐾𝑦

(2.2)

Pooling layer (POOL)

This layer computes the simple operation of max and average over the neighboring
points. See Figure 2.1. Unlike convolutional or a classifier layer, a pooling layer has no
learned synaptic weight and is represented as follows:

Local Response Normalization (LRN)

LRN implements the competition between multiple neurons at the same location. The
function is like the lateral inhibition found in biological neurons. The impact of the LRN
on the accuracy is negligible. Our work is not focused on implementing the LRN layers as
evidenced by [10] [11] as shown in the below equation 2.3.

out(𝑗) = 𝑡
(
𝑁𝑖∑︁
𝑖=0

𝑤𝑖, 𝑗 · in(𝑖)
)

(2.3)

Classification layer

Finally, the results of the sequence of Pooling, CONV, and LRN layers are fed to the
classification layer. This layer is also called a fully connected layer. Check-in Figure 2.2,
each 𝑁𝑖 node is connected to output node No. The main function of this layer is to correlate
the different features extracted from the filtering, pooling, and normalization to predict the
output categories. Where 𝑤𝑖, 𝑗 is the synaptic weights, t() is a transfer function. It can be
tanh(x), max(0,x) and ReLU. Our research work considered the ReLU activation function
as shown in equation 2.1.

2.3 Processing in-memory (PIM)

Introduction

In this subchapter, we are going to discuss the conventional computer architecture and
its drawback for big data applications. We also discuss the mitigation technique with the
in-memory processing methodology especially using DRAM and NVM-based memory
architecture.

5

Motivation

As explained in the earlier Section, CNN is being adopted by a wide spectrum of ap-
plication domains such as natural language processing, image recognition, and computer
vision. Nowadays, NN models employ increasingly enormous numbers of datasets and
parameters. For example, Alexnet [12] [13] and VGG [14] are exercised in image classifi-
cation with almost 61M and 138M parameters respectively. Keeping in mind this enormous
data, the training of such a complex model demands enormous computation, memory re-
sources, latency time, and energy. One critical aspect of this computation is the energy and
large bandwidth requirement. These needs keep growing with the increase in parameters of
dataset classification. But in present days the NN models are becoming deeper and larger;
the data set and pressure on the faster runtime system need to keep growing. To mitigate
this requirement, investigators come up with the low precision CNN model [15] and prune
CNN [16], owing to the tradeoff in accuracy. Even these techniques try to improve the com-
putation speed but have not addressed the key issue of CNN training model data migration
requirement.

Figure 2.2: a) Generic computer architecture b) Generic PIM approach to implement processing
unit inside main memory c) Proposed design framework for PCRAM-based PIM implementation
(can also be implemented in DRAM).

Need of processing-in-memory computing

To address the data migration length challenges as explained before, researchers are
considering the option of processing-in-memory technique (PIM). PIM is not a recent tech-
nique. It was actually proposed by IBM research in 2004, but most of the applications during
previous years do not involve high data set volumes. One of the earliest PIM architecture
examples is Stone’s logic-based in-memory computer. Also, the cost of adding the extra
circuitry (i.e., processing unit) inside the memory is not feasible due to the fabrication is-
sues [17] [18]. However, big data with a conventional computer system (i.e., von-Neumann

6

architecture) is not able to suffice the system performance requirement. Thus, it is inevitable
for today’s digital world to incorporate the PIM architecture to meet the computing system
requirements and accelerate the big data and cloud computing applications. There exist a
few PIM architectures proposed by the researchers such as NON-VON [2], EXECUBE [19],
Terasys [20], Computational RAM [21], and IRAM [22]. This architecture constitutes the
add-on logic inside the DRAM to perform the addition operation in parallel. But many of
these architectures were hindered by the setbacks/physical limitations of memory technol-
ogy (i.e., DRAM) that prevents the integration of processing unit (PU) inside the memory.

New opportunity in modern memory

The researcher communities are of the opinion that the demand for large memory density
by modern applications such as data learning with DRAM scaling has been pushed to their
complete physical limits [23] [24]. It is becoming more problematic to increase the memory
density [9] with reduced latency [25] [26] and improve the energy efficiency of DRAM-
based memory architecture [27]. Consequentially, memory-related research companies are
exploring the alternative to DRAM and also addressing the prior issues. Researchers have
developed two solutions to overcome the limitations exhibited in prior memory systems for
PIM implementation.

The first invention is the 3D stacked memory [18] [28]. In this technology, multiple
layers of memory (in general DRAM) are stacked one above the other [29]. In addition
to the multiple layers-based stacked 3D-DRAM memory architecture, the researchers have
incorporated PU in one of the layers. Thus, the 3D-stacked-based technique reduces the
data migration length thereby improving the system performance.

Second, researchers have found the major breakthrough of emerging non-volatile mem-
ory (NVM) can be a replacement for main memory subsystems. The main advantage of this
NVM technology is the near-zero leakage current compared to the high leakage current in
DRAM. Hence the NVM-based design exhibits better scalability and improves the memory
density for data storage. The memory manufacturers are mainly considering three types of
NVMs to replace the DRAM system at the main memory level:

• Phase change memory (PCM) [30]

• Magnetic RAM (MRAM) [31]

• Metal-oxide resistive RAM (RRAM) / memristor [32] [33]

All of the above mentioned NVM-based techniques are expected to provide the same
memory latencies and energy consumption close to DRAM from literature studies. Fur-
thermore, recent literature related to the NVM state [1] that the NVM is not only used for
storing the data but can be used as the processing unit. In addition, each cell of NVM
mimics the characteristics of a human neuron, which resemble the basic functionality of
neural network character. Consequently, the hardware circuitry to implement the NN by
using NVM-based memory technology can reduce the area requirement significantly. This
idea attracted much research in PIM architecture using NVM-based systems. In addition,

7

Table 2.1: Advantages and disadvantages of SC

Features Advantages Disadvanatages

Operating Speed short clock period
Massive Parallelism Long bit stream

Result quality high error tolerance
progressive precision

Low precision
random number fluctuations
correlations included inaccuracies

Circuit size and power Tiny arithmetic components More random number sources and
stochastic to binary conversion ckts

Design Issues Rich set of arithmetic
components Little CAD tool support at present

numerous PIM works related to the NVM-based cells are processed in recent times to
perform Boolean logic operations [34] [35].

Some examples include deep learning (DL), artificial intelligence (AI), voice recognition
etc., used in healthcare, data-science management, and statistical investigation. These
applications consist of tremendous data information for processing. von-Neumann led to
a lot of data migration from the main memory to the processor and the final processed
information is stored back again in the main memory. From recent research studies, it is
calculated that the data migration is 100× greater than the ADD operation [26] [20]. Also,
this system suffers from memory-wall issues due to limited memory channel bandwidth
for data transmission. To mitigate this drawback, we are reusing the concept of processing
in-memory/compute-in-memory concepts [36] [37]. In PIM the processing unit is made
closer or within the main memory causing reduced data migration length.

Consequently, this modification in PIM with reference to the baseline memory system
leads to the enhanced performance of the computing system in multifold [38] [39] [40].
Processing in memory (PIM) is not a new research area. It was started in early 2004 [20] by
IBM research members, but during that time the fabrication issue and high cost hindered
the research progress. However, nowadays with technology’s progression the fabrication
cost have been drastically reduced. It is stable to fabricate a computing unit/processing unit
inside the main memory.

Motivation

Traditionally, the main memory in recent computing systems uses DRAM. However,
due to the scaling and reliability issue in DRAM, high leakage current caused the hindrance
in development at the sub-nanometer regime of 22nm [9]. Also, a conventional volatile
memory system (i.e., DRAM) suffers from repetitive refresh requirements to retain the
data because the stored memory data in DRAM is volatile. To overcome these challenges
in recent times, researchers have conducted many experiments to replace DRAM with
non-volatile emerging memory (NVM) such as Phase change memory (PCM/PCRAM),
spintronic devices, and magnetic tunnel junction devices [41] [42] [43]. In addition to
this NVM (especially memristive devices) have near zero leakage current and, it is easy to
scale the size even fabricated to 7nm by IBM research [43]. Also, the memristive devices
mimic the character of a neuron network thus reducing the hardware required to a very
large extent. To give an example, using the CMOS logic the gate requirement to implement

8

a single neuron node of NN is very high (22 transistors). In contrast, we can replace this
with a single memristive cell for a great hardware footprint reduction.

Background

Multiply-accumulate (MAC) is the most widely used arithmetic operation, which is
both a data and compute-intensive operation. In this chapter of our dissertation, we are
concentrating on the PIM architecture in recent times to perform the MAC operation and
use of data-intensive applications such as deep learning, convolution neural network, and
relevant works.

PIM are classified based on the data interpretation and stored in the memory array into
two classes. They are PIM-A [44] and PIM-P 54 [45]. First, consider some of the following
applications that use the resistance changes to compute and transmit data, and output is
produced in the memristive array called PIM-A [46]. Also, these PIM-A architectures such
as Snider [38], IMPLY, and FBL [47], use the resistive changes as their input and output of
the memristive crossbar. Further, hybrid PIM-Ah is proposed, which consists of resistive
accumulator [46], and majority logic [48]. But these architectures suffer from the reliability
issue of DAC and ADC components.

Second, in some PIM operations, the output is produced in the periphery of the memory
unit as voltage changes and this class of architecture is called PIM-P. Depending on the
voltage representation in PIM-P, memory systems are broadly classified into resistive PIM-
Pr and PIM-Cr [25] [49]. Some of the recent CIM-Pr work is Pinatubo [50] [51], scouting
[15], and HieIM [52] where the output peripherals are very simple and less complex to
design. Whereas in PIM-Cr the output peripheral circuits are complex to design [53] [54].
One key point to be remembered is that PIM-Cr uses ADC/DAC units at the output to
perform the calculation which consumes almost 85% of area and 90% of total energy
consumption.

Work related to MAC operation

To maintain brevity and consistency, we narrow down our documentation related to the
PIM-based accelerator with only arithmetic and arithmetic with logical operation accelerator
for MAC operation. Related work is tabulated in Table 2.2. Also, some of the recent works
related to the arithmetic operation using PIM architecture, such as 3D-DRAM to perform
convolution operation proposed by Wang [55]. However, this hardware implementation
cost (i.e., complex fabrication steps) is expensive with a complex arithmetic processing unit
(PU). Ahead HMC-MAC [27], NeuralHMC [56] [18] are 3-D DRAM-based accelerators
for increasing the MAC operations, but the processing unit (PU) design is a complex and
expensive fabrication process to implement.

To perform the massive MAC operations in parallel for a neural network using DRAM,
literature such as McDRAM [57], where the processing unit (PU) of MAC is placed close
to the column decoder and it suffers from the area overhead issues and timing violation.

Few recent articles use the LUT-based MAC operation such as LAcc [58] [59], where
each MAC operation is disintegrated into smaller units that decompose the multiplication
operation size and LUT size. However, the accuracy is very low in LAcc architecture.

9

Table 2.2: The literature survey on PIM for arithmetic and logic operation with different memory
class

Technology year Name
Data Large In Memory In memory
precision Data Bitwise op. large Data Op.

Mapping
DRAM-3D 2017 wang [64] 16b Bit parallel N/A MAC

RERAM 2016 chi [65] 6b crossbar N/A MACprime
MRAM/RERAM 2017 du [66] 8-bit Crossbar AND/OR/NOR ADD/MUL/MAC

MCRAM AND PCM 2018 mimi [67] BWNN/ Bit-serial AND/XOR MAC8-bit
THYRISTOR DEVICES 2018 joonseopsim [68]/lupis 6-bit Bit-parallel AND/NOR/SHIFT ADD,MUL,MAC
RRAM 2018 halwani [69] BCNN/Var Width Bit-Parallel AND/SHIFT/OR/NOT MAC/SHIFT
CMOL 2018 madhav [70] 8-bit Bit-serial AND/NOR/SHIFT MAC
RERAM 2018 haiyu [71] / lergan 16-bit Crossbar AND/OR MAC
RERAM 2019 gupta [61] / nnpim 16-bit Crossbar AND/OR MAC
RERAM 2019 RAPID [72] 16-bit Crossbar AND/OR MAC
RERAM 2019 angizi [21] [73] 10-bit Crossbar AND/OR COMPARISION
STT-MRAM 2019 hao [41] /pj-axmt 8-bit Crossbar AND/OR MAC
DRAM 2020 roy [74] 8-bit Bit-parallel AND/OR MAC
MCRAM/ PCM 2018 xie [75]/ aim BCNN Crossbar XNOR N/A
MEMRISTIVE CROSS BAR 2016 shafiee [10] / isaac 16-bit Crossbar N/A MAC
RRAM 2018 chen [28] DCNN Crossbar N/A MAC
MEMRISTIVE CROSS BAR 2017 ankit [26]/ resparc Var. Width Crossbar AND/OR/NOT MAC
SOT-MRAM 2017 angizi [30] / imc 8-bit Bit-Parallel AND/OR N/A
SOT-MRAM 2018 angizi [31]/ cmp-pim 8-bit Bit-Parallel AND/OR COMPARISON
NVM 2018 nihar [76] Var. Width Crossbar AND/OR/NOT MAC
HMC 2019 chuhan [18]/ neuralhmc 16-bit Bit-Parallel AND/OR/NOT MAC
SRAM 2019 gao [77] / tangram 16-bit Bit-Parallel AND/OR/NOT MAC
HMC DRAM 2018 jeon [27]/ hmc-mac Var. Width Bit-Parallel AND/OR/NOT MAC
NANOWIRE WITH NVM 2017 liu Var. Width Bit-Parallel AND/OR/NOT ADD, MUL
RERAM 2018 long [78] 10-bit Crossbar AND/OR MAC
DRAM 2018 shin [79] / mcdram 6-bit Bit-Parallel AND/OR/NOT ADD, MUL
DRAM 2019 wang [60] BCNN Bit-Parallel AND/OR/NOT MAC
DRAM 2019 deng / LAcc 8-bit Crossbar XNOR N/A
MEMRISTOR 2017 john [10] 8-bit Crossbar NOR NOR/SHIFT
SOT-MRAM 2017 zhezhi [44] 8-bit Bit-Parallel AND/OR MAC
WIDE IO2 DRAM 2017 lei [80] / xnor-pop BCNN Crossbar XNOR N/A
SOT-MRAM 2018 angizi [81] /imce 8-bit Bit-Parallel AND/OR MAC
STT-MRAM 2018 jain [82] 8-bit Crossbar NOR NOR/SHIFT
NANOWIRE SPINTRONICS 2018 angizi [81] BCNN Crossbar AND/NOR N/A
RERAM 2018 ammer [16]/imaging 8-bit Crossbar NOR NOR/SHIFT
NVM 2018 said [83] [84] 16-bit Crossbar AND/NOR/NOT/SHIFT MAC/COMPARISION
DRAM 2018 li [85] [86]/ scope 8-bit Bit-Parallel AND/OR ADD/MULT(STOCH)
SOT-MRAM 2018 angizi [87] [88]/ dima 8-bit Bit-Parallel AND/OR MAC/COMPARISION

Further, ReRAM-based crossbar memory-based PIM architecture for high performance and
massive parallelism in PRIME [60], NNPIM [61] but it suffers from very high computation
delay time for multiple sense amplifier (SA) operations. Further, in some of the recent work
(i.e., ISAAC [10], DaDiano [62] [63]) MAC operation will be processed in a dedicated
subsidiary crossbar-based processing chip. Even though the operating speed is high the
hardware cost of fabrication and energy dissipation due to the dedicated crossbar-based
memristive circuit is almost 85%. Next, there exists ReRAM-based crossbar memory-based
PIM architecture for high performance and massive parallelism, e.g., PRIME [60], NNPIM
[61]. Still, it suffers from very high computation delay time for multiple sense amplifier
operations. Further MAC operation based on dedicated chip in ISAAC [11], DaDiano [63].
These systems are called near-data computing. Even though the operating speed is high,
the hardware cost of fabrication and energy dissipation due to the dedicated crossbar-
based memristive circuit is almost 85%. Also, the dedicated chip will not incorporate the
enormous data set of the current big CNN applications.

Researchers have tried to use the approximate computation technique to reduce the

10

hardware footprint with tradeoffs in accuracy, some of these works are Pj-AxMTJ [89]. LAcc
[90]. Further, XNOR-POP [91] is used to reduce the arithmetic operation in the convolution
neural network to implement BNN. This results in a reduction of complex arithmetic
operations into simple logic operations. In this article, the author used the wide-IO DRAM
to show the BNN implementation. Also, recent work by DIMA [87] converted all the
computationally expensive components into simple logic circuits with better approximation.
They have shown the feasibility by mapping the AddNet CNN application to SOT-MRAM-
based memory architecture. Likewise, modification in sense amplifier performs the logical
operation as shown in Pinatubo [92] to perform MAC operation used in CNN applications
such as CiM-SCAM using FeFET and SRAM technology. SCOPE [93] uses SC to perform
bulk bit-wise logic operations (Limited logic function), but the study is limited only to
multiplication. This document can be used as a manual for future scope and improvement
needed for PIM architecture with the class of device technology.

11

Chapter 3 Scalable Stochastic Number Generator for Phase Change Memory (PCM)
based In-memory Stochastic Processing

3.1 Chapter Overview

In this chapter, a novel approach to designing a Stochastic Number Generator (SNG) was
proposed, which leverages the inherent stochastic nature of Phase Change Memory (PCM).
The PCM-based SNG was implemented and tested for different binary input lengths, and its
performance was compared to the state-of-the-art Linear Feedback Shift Register (LFSR)-
based SNG. The proposed SNG was found to be highly scalable with a minimal hardware
footprint, while also overcoming the challenges and constraints associated with the workflow
of PCM-based SNG.

Overall, the proposed SNG was shown to offer significant improvements over conven-
tional LFSR-based SNGs in terms of energy and area savings, with up to 250× and 300×
improvements, respectively, for a 14-bit binary input length. These results demonstrate the
potential of PCM-based SNGs as a promising solution for stochastic arithmetic-based CNN
accelerators.

3.2 Background: Phase change memory

A PCM cell embeds a small volume of chalcogenide material 𝐺𝑒2𝑆𝑏2𝑇𝑒5 (GST) [94],
which can be programmed into two different states (i.e., crystalline/SET state and amor-
phous/RESET state) with dramatically different electrical resistance [17]. The amorphous
(RESET) state represents a binary “0”, while the crystalline (SET) state represents a “1”.
The resistance of PCM cells in the SET state (RSET) follows a normal distribution in the
𝑘Ω range [30], whereas the resistance of PCM cells in the RESET state (RRESET) follows
a normal distribution in the 𝑀Ω range [9], as shown in Figure 3.1-(B).

Typically, for a PCM array, 𝐼𝑅𝐸𝐴𝐷 and 𝑉𝑅𝐸𝐹 are judiciously designed such that
𝑉𝑅𝐸𝐹 /𝐼𝑅𝐸𝐴𝐷 falls in between the resistance distributions of SET and RESET cells (Fig-
ure 3.1-(B)). As a result, for a PCM row being read,𝑉𝑆𝐸𝑇 for all SET cells is less than𝑉𝑅𝐸𝐹 ,
whereas 𝑉𝑅𝐸𝑆𝐸𝑇 for all RESET cells is greater than 𝑉𝑅𝐸𝐹 , enabling the distinction of the
SET cells (logic ‘1’s) from the RESET cells (logic ‘0’s) with 100% probability.

Now consider that a SET PCM row with all its cells pre-programmed in the SET
state (storing ‘1’s) is being read. For this read operation, if we can control 𝑉𝑅𝐸𝐹 such
that 𝑉𝑅𝐸𝐹 /IREAD falls somewhere on the resistance distribution of the SET cells, we can
control the number of cells that would be read as ‘1’s. For example, if we can control
𝑉𝑅𝐸𝐹 to be 𝑉𝑅𝐸𝐹’, as shown in Figure 3.1-(B), 𝑉 ′

𝑅𝐸𝐹
/𝐼𝑅𝐸𝐴𝐷 would fall at the center of the

resistance distribution for SET cells. As a result, only 50% of the cells in the SET PCM row
would be read as ‘1’s (as these cells fall on the left of the 𝑉𝑅𝐸𝐹’/𝐼𝑅𝐸𝐴𝐷 reference), and the
remaining 50% cells would be read as ‘0’s. Learning from this observation, we leverage a
judicious control of the PCM read operation to design an efficient SNG, as described next.

12

3.3 Stochastic Number Generator

Figure 3.1 presents a functional block diagram of our proposed Stochastic number
generator (SNG). In the field of Stochastic computing, we need to have, complete control
on a total number of 1’s and 0’s and which is controlled by the voltage reference value
(𝑉𝑅𝐸𝐹). Apart, from this Stochastic computing, we don’t need a true random number
generator (RNG) with uniform distribution. We only need to have an RNG that we can
control the number of generated 1’s in its output. To convert an N-bit input number (Figure
3.1-1) into a 2N-bit Stochastic bit-vector (Figure 3.1-4), our SNG employs a PCM-based
Gaussian digital-to-analog converter (GDAC) (Figure 3.1-2) that provides𝑉𝑅𝐸𝐹 for reading
a row of 2N PCM cells (Figure 3.1-3) pre-programmed in the SET state. Figure 3.1-2
illustrates the GDAC operation for a 3-bit binary input (B2B1B0), which can be generalized
to any N-bit binary input (BN-1..B1B0). In general, an N-bit GDAC contains N switches
(S0 to SN-1), each of which corresponds to a bit (B0 to BN-1) in the N-bit input number
and depending on the bit’s value (‘0’ or ‘1’), connects its respective voltage source (V0 to
VN-1 – implemented using charge pumps [93]) to the voltage summer circuit. We assume
that the cumulative distribution function (CDF) for the resistance of PCM SET cells (Figure
3.1-3) is available at the design time. Therefore, the voltage level of the voltage source,
corresponding to a bit BX from the N-bit input, can be determined at the design time as: VX
= 𝐼𝑅𝐸𝐴𝐷 × CDF-1(2X/2N), where CDF-1 is the inverse CDF that gives the resistance value
RX (Figure 3.1-3 and 3.1-4) for the given probability number. Accordingly, our proposed
N-bit GDAC produces 𝑉𝑅𝐸𝐹 using the embedded voltage summer circuit (Figure 3.1-2).
When this 𝑉𝑅𝐸𝐹 is used to read the PCM row with 2N SET cells (Figure 3.1), only the
number of cells out of total 2N cells are read as ‘1’s, and the remaining cells are read as
‘0’s, thereby converting an N-bit input into a 2N-bit Stochastic output.

Figure 3.1: Functional block-diagram of our proposed Phase Change Memory (PCM) based Stochas-
tic Number Generator (SNG).

13

For example, let us understand how this works for a 3-bit input number 101 (i.e., B2=1,
B1=0, B0=1). To convert this number into a Stochastic number, our SNG should be able to
produce a vector of total 8-bits with five ‘1’s and three ‘0’s. In our SNG (Figure 3.2), the
voltage level V2 of the voltage source, corresponding to B2=1, can be evaluated as V2 =
IREAD× CDF-122/23 = IREAD× CDF-14/8. Similarly, V1 and V0 can also be evaluated.
Consequently, our proposed GDAC produces𝑉𝑅𝐸𝐹 = B0V0+B1V1+B2V2 = V0+V1, as B1
is zero for our example number 101. This 𝑉𝑅𝐸𝐹 is used to read a total of 23 = 8 PCM SET
cells and doing so results in only 𝐵020 + 𝐵121 + 𝐵222 = 20 + 22 = 5 cells to be read as ‘1’s,
and the remaining 3 cells to be read as ‘0’s, hence, correctly converting the binary input
101 into an 8-bit Stochastic number.

3.4 Results

We evaluated the area and energy consumption of our proposed SNG and compared
the results with the LFSR-based conventional SNG from [25], for different bit-sizes of the
input binary number from 4-bits to 14-bits. We used Cadence’s Spectre for SPICE-level
simulations of the LFSR-based conventional SNG and our GDAC-based SNG with the op-
amp-based voltage summer. We take the area, energy, and delay values for PCM from [30]
and for charge-pump based voltage-sources from [95]. The 𝜇𝑎𝑛𝑑𝜎 for the SET resistance
distribution for PCM cells are evaluated from [96] to be 34.15kΩ and 6.54𝑘𝜔, respectively.
Figure 3.1 and Figure 3.2, respectively, show the area consumption and energy values, for
the two SNG designs, evaluated for 14nm technology by scaling the SPICE-based results
for 45nm technology. From the figures, as the bit-size of the input binary increases from
4-bits to 14-bits, the energy and area values for our GDAC-based SNG hardly increase,
compared to the exponential increase in the energy and area values for the conventional
LFSR-based SNG. As a result, for a 14-bit input number, our GDAC-based SNG consumes
300× less area and 250× less energy, compared to the LFSR-based SNG.

Figure 3.2: (A) Area and (B) energy consumption values of our GDACbased SNG and conventional
LFSR-based SNG for various bit-sizes of input binary number.

14

3.5 Summary

In summary, the use of our PCM-based SNG for Stochastic PIM architectures provides
the following benefits: (i) Our SNG can convert any N-bit binary number into a 2Y–bit
Stochastic number, by simply using the𝑉𝑅𝐸𝐹 generated by our GDAC to read total 2Y PCM
SET cells. Here, Y can be any number ≥ N, as an abundant number of PCM cells would
already be available in PCM based PIM architectures, which provides an unprecedented
opportunity to improve the precision of the generated Stochastic numbers without adding
any significant conversion logic/circuit and related overheads in our designed SNG. (ii)
As PCM SET cells are already available in a PCM-based PIM architecture, GDAC is the
only block of our SNG that incurs area overhead. Moreover, unlike the LFSR-based SNGs
from [25], our GDAC-based SNG can generate all 2Y bits of the output Stochastic number
in parallel, which results in huge latency and energy savings for our GDAC-based SNG. In
the future, we plan to evaluate the conversion-based and precision-based error efficiencies
for our proposed SNG. Moreover, we intend to do a comprehensive comparative analysis
of our proposed SNG with other SNG designs from prior work. Further, we will do
detailed case studies to explore the utilization of our designed SNG for various Stochastic
Processing-In-Memory (PIM) applications, including deep neural network inference and
training applications.

15

Chapter 4 An Accelerator Based on Parallel SC for In-PCRAM Deep Learning
Applications

4.1 Chapter Overview

This chapter proposes a new SC-based Processing-In Memory (PIM) engine called
ODIN. ODIN is evaluated by mapping four CNN benchmark applications on it and is
shown to be significantly faster and more energy-efficient than conventional designs and
prior crossbar-based in-situ CNN accelerators. The proposed solution offers a promising
approach to address the challenges associated with processing CNNs, and the ODIN acceler-
ator has the potential to significantly improve the energy and time efficiency of CNN-based
applications.

4.2 Introduction

CNNs have achieved remarkable progress in recent years, and they are being aggressively
utilized in real-world applications related to artificial intelligence (AI) and machine learning
[47]. In general, CNNs mimic biological neural networks and utilize compute-heavy
arithmetic functions such as multiply-accumulate (MAC), nonlinear activation, and pooling.
Although these CNN functions are amenable to acceleration because of a high degree of
compute parallelism, their acceleration is challenging because of the need to avoid the
memory wall while accessing their large number of operands [9]. To address this problem,
several prior works have explored crossbar memory-based processing-in-memory (PIM)
accelerators (e.g., [9] [24]) that leverage the Kirchhoff’s Law to perform MAC operations
in the analog domain. However, such analog computing-based accelerators require power-
hungry and sluggish digital-to-analog converters and analog-to-digital converters (DACs
and ADCs), which diminishes the performance and energy-efficiency benefits of such
accelerators. Moreover, these accelerators do not fully capitalize on the PIM paradigm, as
they still have to heavily rely on conventional processor-centric computing for implementing
essential CNN functions such as nonlinear activation and pooling. This motivates the need
for simple, low-overhead, and energy-efficient in-situ accelerators that can realize the full
potential of PIM-based CNN processing. In this chapter, we present a phase change
RAM (PCRAM) based in-memory CNN accelerator called ODIN. ODIN uses Stochastic
arithmetic to convert complex MAC operations into a series of simple and low-overhead
in-situ logical operations that are implemented using the analog computing capabilities
of PCRAM [94]. Stochastic arithmetic typically requires additional circuits to enable
conversion of the operands between the Stochastic and binary number formats [23]. ODIN
employs lightweight CMOS add-on logic inside PCRAM banks to implement such number
conversion circuits with minimal area and power consumption overheads. ODIN also
employs custom CMOS logic blocks to realize the binary arithmetic-based implementation
of nonlinear activation and pooling functions of CNNs. Stochastic arithmetic for CNN
processing has been utilized before in the DRAM-based in-situ accelerator described in [23].
The accelerator from [23] employs heavy add-on logic inside DRAM banks, which can

16

increase the total area of DRAM chips by up to 4× [19]. In contrast, ODIN presents the
first-of-a-kind Stochastic arithmetic-based accelerator that includes extremely low-overhead
add-on logic and very lightweight modifications in PCRAM banks and PCRAM controller
for efficient processing of CNNs. Our key contributions to this work are summarized below.

• We present a novel processing-in-memory (PIM) accelerator called ODIN that lever-
ages hybrid binary-Stochastic arithmetic to accelerate CNN processing in PCRAM;

• ODIN employs low-overhead add-on logic and lightweight PCRAM modifications to
implement Stochastic arithmetic based MAC operations and binary arithmetic-based
activation and pooling operations directly inside PCRAM banks;

• We evaluate our ODIN accelerator for four CNN benchmark topologies (i.e., CNN1,
CNN2, VGG1, and VGG2) from MLBench library [2], with two datasets MNIST and
ImageNet;

• We compare the performance of our ODIN accelerator for the considered CNN
benchmarks with the following architectures: baseline CPU-only with 32-bit float-
ing precision, CPU-only with 8-bit fixed precision, as well as the pipelined and
unpipelined variants of the ISAAC accelerator from [97].

4.3 Related work and motivation

Several processing-in-memory (PIM) based CNN accelerators are proposed in prior
work (e.g., [97] [23] [10]- [2]). Some of these accelerators use memory in the con-
ventional volatile RAM configuration (e.g., SRAM [14], DRAM [23] [10]- [13] based
CNN accelerators), whereas some others use the emerging non-volatile memory in the
crossbar configuration (e.g., STT-MRAM [17] [18], ReRAM [97] [15] [16] [2]). The
RAM-configured CNN accelerators use bit-line computation to perform basic bit-parallel
logical operations in a single read of a traditional RAM. Each memory column (bit-line)
is further transformed into a bit-serial ALU by adding extra logic, multiplexing, and state
elements in the peripheral circuitry, to perform complex arithmetic operations such as mul-
tiplication and addition, which are very essential for CNN processing [24] [1]. However,
these accelerators incur high area-power overheads in their augmented peripherals and suf-
fer from low throughput of bit-serial execution. Along the same line, a recently proposed
DRAM-based in-situ accelerator [23] uses Stochastic arithmetic to perform CNN opera-
tions. However, this accelerator heavily modifies peripherals to facilitate logic circuitry,
registers, and shifters to enable carry-save addition required for MAC processing. These
modifications can result in up to 4× area increase per DRAM bank [19]. On the other
hand, NVM crossbar-based accelerators also suffer from high overheads of ADC and DAC
circuits. In contrast, our proposed design ODIN stands first of its kind to leverage the hybrid
binary-Stochastic arithmetic inside PCRAM banks for implementing a very low-overhead
acceleration of CNNs.

To explain the structure and operations involved in a CNN, we explain a highly popular
CNN model called Convolutional Neural Network (CNN). Generally, CNNs consist of
majorly four types of layers (Figure 16), namely convolution (CONV), local response

17

normalization (LRN), pooling (POOL), and fully connected (FC) layers [1]. Among all
these layers, the major portion of information of the input data gathering is taken place
in the CONV and FC layers are computationally heavy, wherein a very large number
of multiply-accumulate (MAC) operations occur between the synaptic weights and input
activation values. In addition to MAC operations, other important operations in a CNN
(ANN) are nonlinear activation and pooling. These CNN operations typically involve many
steps for intermediate value preparation and storage, and therefore, they can be highly time
and energy-consuming. For better insight, consider Eq. (4), related to an FC layer, which
consists of MAC operations between the weights (𝑤𝑖, 𝑗 ′𝑠) and input activation values (ai‘s).
In Eq. (4), 𝑤𝑖, 𝑗 ′𝑠 the synaptic weight connecting 𝑖𝑡ℎ node in layer ‘a’ to 𝑗 𝑡ℎ node in layer ‘b’,
and ‘f()‘ is a non-linear activation function (e.g., ReLU [1]).

Moreover, popular pooling functions for CNNs are maxed and average pooling functions.
Also, note that, since ODIN uses Stochastic arithmetic, the results are always between ‘0’
and ‘1’. Therefore, for processing CNNs on ODIN accelerator, the LRN layer can be safely
ignored with minimal loss of accuracy [97].

Figure 4.1: Four major types of layers found in Convolutional Neural Networks (CNNs) [1].

4.4 Phase change Ram (PCRAM) architecture

This Section provides a brief background on PCRAM organization required to un-
derstand ODIN. The operation of PCRAM is not discussed here, for which the reader is
encouraged to refer to prior work [98] and [20]. PCRAM, like DRAM, is organized hi-
erarchically [20]. An example PCRAM memory of 16GB capacity has 2 channels, with
8 ranks per channel, and 16 banks per rank. A PCRAM bank has 16 partitions, each of
which is an array of 4096 wordlines and 8k bitlines. A PCRAM bank has 256 peripheral
structures, which include the sense amplifiers (S/As) to read and the write drivers (W/Ds)
to write. The peripheral structures in PCRAM banks allow us to read and program 256
PCRAM cells in parallel. Therefore, the read and write granularity is 256 bits (the size of
a memory line).

18

Figure 4.2: Stochastic arithmetic circuits. (a) Multiplier (AND gate), (b) Adder (MUX circuit).

4.5 Stochastic arithmetic

In Stochastic arithmetic, data is processed in the Stochastic number (SN) format in-
stead of the conventional binary number (BN) format. In SN format, information data is
represented as pseudorandom bit streams. Using Stochastic arithmetic, the complexity of
performing MAC operations can be reduced substantially. For example, multiplication can
be implemented by a simple bit-parallel AND operation, and scaled addition (accumulate)
can be realized by a bit-parallel multiplexing (MUX) operation [21]. Figure 17(a) depicts
an AND gate implementing c = a×b in the SN format and Figure 4.2(b) shows a MUX
implementing 𝑐 = 𝑠× 𝑎 + 𝑠′× 𝑏 in the SN format. In the ODIN engine, we always use s=0.5
for MUX-based Stochastic addition.

4.6 ODIN Framework: overview

The design of ODIN accelerator includes the following three hardware architecture at-
tributes: (i) integration with heterogeneous computing system, (ii) lightweight modification
of peripherals and inclusion of add-on logic in PCRAM banks to enable in-situ process-
ing of CNNs, and (iii) introduction of new memory controller commands to support the
processing-in-memory (PIM) functionality in PCRAM. Each of these attributes is described
below.

4.7 Integration with heterogeneous computing system

Figure 4.3 shows the heterogeneous computing system architecture that employs our
ODIN accelerator. The system consists of a heterogeneous processing chip (HPC) that
has heterogeneous cores (e.g., CPU, GPU cores) integrated with on-chip memory. The
HPC connects, through a bus, with a phase change RAM (PCRAM) based main memory
subsystem and a storage subsystem (SSD based). The PCRAM main memory subsystem
has two channels. One of the PCRAM channels functions as the main memory channel by
default. In contrast, the PCRAM modules on the other channel are lightly modified with
add-on logic to constitute our ODIN accelerator, which has PIM capabilities for an efficient
in-situ acceleration of CNNs. These modified PCRAM modules, referred to as ODIN
accelerator modules, also serve as PCRAM-based main memory modules when their PIM

19

Figure 4.3: Integration of ODIN in a heterogeneous system.

functionality is not in use. Both the ODIN accelerator and PCRAM main memory channels
are connected to the storage channel through direct memory access (DMA) controllers,
in addition to being connected to conventional memory controllers that manage regular
memory operations. It is assumed that the DMA controller, in association with the software
stack, can prefetch all the operands related to a CNN under execution from the SSD channel
and load them in the ODIN accelerator modules, to subsequently trigger their processing
directly inside the ODIN accelerator modules. The regular memory controller associated
with the ODIN accelerator channel is also lightly modified with PIM controller (PIMC)
capabilities, to support additional commands for efficient management of ODIN’s operation.

4.8 Hardware modifications in PCRAM banks

Our ODIN accelerator can fully process CNNs directly inside PCRAM. For that, ODIN
employs lightweight modifications in PCRAM banks that enable in-situ execution of es-
sential arithmetic functions of CNNs, such as multiply-accumulate (MAC), activation, and
pooling. To reduce the overheads of affected modifications, ODIN employs hybrid binary-
Stochastic arithmetic for implementing these functions. To this effect, ODIN implements
MAC operations using Stochastic arithmetic, whereas for activation and pooling functions,
ODIN uses traditional binary arithmetic. The specific modifications in the PCRAM bank
structure, effected to implement various CNN functions, are described in the SubSections
below. In addition, ODIN also dedicates an entire partition per PCRAM bank as a scrap
memory space that is utilized to help perform various CNN functions in situ. This partition
is identified as Compute Partition in Figure 19(a), which shows a schematic of ODIN’s
PCRAM bank with effected modifications.

20

Figure 4.4: Schematic of a PCRAM bank modifications in ODIN.

4.9 Hardware for multiply-accumulate (MAC) operations

To implement in-situ MAC operations inside PCRAM, ODIN uses Stochastic arithmetic,
which transforms complex multiplication and addition operations, respectively, into simple
bit-parallel AND and multiplexing operations. Multiplexing operations can be further
divided into bit-parallel AND and OR operations (Figure 4.2(b)) using Stochastic arithmetic.
Thus, ODIN employs Stochastic arithmetic to convert complex MAC operations into a series
of simple bit-parallel AND and OR operations. However, for MAC operations to take place
inside PCRAM in the Stochastic format, all MAC operands need to be present in PCRAM
in the Stochastic format. Storing all MAC operands of a CNN inside PCRAM ahead of time
in the Stochastic format may require impractically high storage capacity. This is because
an N-bit binary operand typically occupies 2N- bits when it is converted into the Stochastic
format with reasonable precision. Therefore, to reduce the storage footprint of CNN MAC
operands, ODIN makes two adjustments. First, it makes CNN MAC operands available in
PCRAM banks in binary format. Second, it fixes the size of the operand to 8-bits - this
adjustment resonates with other prior works on PIM-based CNN accelerators (e.g., [1], [2])

21

wherein the size of CNN operands is fixed without significant loss of CNN inference and
training accuracy. In the wake of these adjustments, to perform the CNN MAC operations
in the Stochastic format, ODIN employs the following hardware modifications:

Figure 4.5: PCRAM activity flows for ODIN PIMC commands (a)B TO S, (b) CNN MUL, (c)
CNN MUL, (d) S TO B, and (e)CNN POOL.

Lightweight add-on logic circuits

Lightweight add-on logic circuits are included in every PCRAM bank to enable the
conversion of operands between the binary and Stochastic formats. The add-on logic
circuits include an SRAM based lookup table for binary to Stochastic conversion, and a
pop counter for Stochastic to binary conversion, of CNN MAC operands. Figure 4.4(b)-

22

4.4(c) shows these add-on logic circuits as part of the schematic of a PCRAM bank. The
lookup table consists of an SRAM block of 256x256 cells (Figure 4.4(c)), with peripherals
to access the block. An 8-bit operand in the binary format is used to index into the SRAM
block of 256 rows via a decoder. The indexed SRAM row provides the Stochastic version
of the operand, which is read in the SRAM block’s local row buffer. Along the same
lines, the pop counter logic includes a clocked 256-bit parallel-in-serial-out (PISO) register
connected with an 8-bit digital level counter (Figure 4.4(b)). The PISO stores a 256-bit
Stochastic operand and then serially outputs it bit-by-bit, which is fed in the counter to
count the number of 1s in the Stochastic operand, to consequently convert the operand in
the binary format. From Figure 4.4(a), ODIN also employs lightweight control logic to
facilitate movement and processing of the operands through these add-on logic circuits.
The overheads of these add-on logic circuit, and their control logic are discussed in Section
5.8 (Table 6).

A low-overhead modification in PCRAM bank peripherals

A low-overhead modification in PCRAM bank peripherals is included to enable in-situ
MAC operations (i.e., series of bit-parallel AND and OR operations) among the operands
available in PCRAM in the Stochastic format. These modifications are made in the sense-
amplifiers, row-address decoders, and wordline drivers, as adopted from PINATUBO frame-
work [99]. Like PINATUBO framework [50], these modifications also enable ODIN to
perform bit-parallel logical AND/OR/NOT operations between two operands, by simply
storing the two operands in two separate PCRAM rows and then activating and reading
both the PCRAM rows simultaneously using appropriate sense-amplifier reference volt-
ages. We extract the overheads of these modifications from [100], and account for them in
our system-level analysis in Section 4.10.

4.10 Hardware for activation and pooling functions

To implement binary arithmetic-based CNN activation and pooling functions, ODIN
employs two different add-on logic blocks per physical PCRAM bank (Figure 4.6(a)).
The logic block for activation function consists of a CMOS implementation of an 8-bit
ReLU [27] and it directly follows the pop counter circuit (Figure 4.4(a)). On the other
hand, the logic block for pooling function implements CMOS circuit for 4:1 8-bit max
pooling [25]. The additional control logic included in the PCRAM bank facilitates the
movement and processing of operands through these activation and pooling logic blocks.
The overheads of activation and pooling logic blocks are given in (Section 5.5) and are
accounted for in for our calculations. our system level analysis (Section VI). We choose
8-bit ReLU and 4:1 max pooling functions for ODIN in this chapter, because the CNN
benchmark models (Section VI) we have considered for our analysis use these functions.
Nevertheless, we envision that ODIN can be easily extended to use any other activation
(e.g., tanh [26], softmax [27]) and pooling (e.g., average pooling [27]) functions with any
other precision as well. C. New PIM Controller (PIMC) to Support CNN Processing To
orchestrate the processing of CNNs by employing the modified hardware discussed in the
previous subsection, ODIN introduces the following five new PCRAM controller com-

23

mands: (1) B TO S, (2) CNN MUL, (3) CNN ACC, (4) S TO B, and (5) CNN POOL.
Each of these commands con-sists of multiple basic PCRAM READ and WRITE operations
(Table 1). Fig. 5(a) -5(e) shows PCRAM activity flows under-taken during these commands.
Moreover, the latency/timing parameters associated with these commands are given in Table
1. The PIM controller (PIMC) of ODIN (Fig. 3) breaks down these PCRAM activity flows
into a series of PCRAM operation commands (e.g., READ, WRITE) and control signals.
Then, the PCRAM controller schedules these commands in appropriate order while abiding
by various timing constraints (e.g., timing constraints of the activity flows in Fig. 5), to
orchestrate efficient CNN processing, as discussed below.

(1) B TO S: this command orchestrates conversion of CNN operands from the binary
format to the stochastic format. The activity flow of this command involves reading operands
from PCRAM in the binary format, converting them into the stochastic format, and then
writing them back into the PCRAM rows of the Compute Partition (Fig. 4.5(a)). As each
256-bit PCRAM block read from an 8kb PCRAM row can fetch 32 8-bit operands, the
B TO S activity flow includes conversion of 32 8-bit binary operands into 32 stochastic
operands (256-bit each), and writing them back in 32 separate PCRAM rows of the Compute
Partition. (2) CNN MUL: this command directs a multiplication operation (i.e., bit-parallel
AND) between two CNN operands that are stored in the stochastic format (256-bit each)
in two separate PCRAM rows of the Compute Partition. As discussed earlier, ODIN
adopts PINATUBO framework [3] for implementing bit-parallel AND operations. As a
result, the CNN MUL activity flow involves simultaneously activating the two PCRAM
rows that contain the two 256-bit stochastic operands in the Compute Partition, and then
reading both operands simultaneously using an appropriate reference voltage in the sense
amplifiers that facilitate reading in the PCRAM bank, as doing so performs bit-parallel
AND between the two 256-bit stochastic operands [94]. The reader is encouraged to review
[3] for more details on how such bit-parallel AND is performed in the PCRAM sense-
amplifiers. (3) CNN ACC: this command directs an accumulation (addition) operation
(i.e., a multiplexing operation converted into a series of bit-parallel AND and OR, Fig.
4.5(c)) between a stochastic operand stored in a PCRAM row of the Compute Partition and
an accumulator block that is part of the Accumulator Row in the Compute Partition. From
Fig. 2(b), in addition to the stochastic operands, a multiplexing operation also requires S
and S’ operands. ODIN preprocesses S and S’ operands offline and makes them available
in two separate PCRAM rows of the Compute Partition. The CNN ACC activity flow (Fig.
4.5(c)) uses these S and S’ operands to perform two bit-parallel AND operations and one
following bit-parallel OR operation, to consequently perform a multiplexing (accumulate
or addition) operation. Like CNN MUL, CNN ACC also adopts PINATUBO to undertake
its activity flow

We choose 8-bit ReLU and 4:1 max pooling function for ODIN in this chapter, because
the CNN benchmark models (Section 5.6) we have considered for our analysis use these
functions. Nevertheless, we envision that ODIN can be easily extended to use any other
activation (e.g., tanh [76], softmax [77]) and pooling (e.g., average pooling [25]) functions
with any other precision as well.

(4) S TO B: After the results of all MAC operations related to at least 32 neurons of an
CNN layer are available in the stochastic format, ODIN invokes this command to convert the
results into the binary format and then apply the activation function on them. The S TO B

24

Table 4.1: : Required number of PCRAM reads, writes, and resultant total latency values for various
ODIN PIMC commands.

ODIN PIMC
Command #Reads #Writes Latency(ns)

B TO S 33 32 3504
S TO B 32 32 3456
CNN POOL 32 32 3456
CNN MUL 1 1 108
CNN ACC 1 1 108

Table 4.2: Requirement of memory capacity, number of PCRAM reads and writes for implementing
various CNN topologies on ODIN accel-erator.

Fully Connected Layers Convolution Layers Accuracy
Memory Read Write Memory Read Write (%)

(Gb) (x106) (x106) (Gb) (x106) (x106)
VGG1 1.93 247 248 0.229 58.8 30.3 89.5
VGG2 1.96 251 252 0.234 60.01 30.9 88.51
CNN1 0.00095 1.22 1.226 0.0002 0.62 0.32 97.45
CNN2 0.00098 1.254 1.257 0.00026 0.67 0.34 97.21

activity flow (Fig. 4.5(d)) involves reading 32 stochastic MAC results from 32 different
PCRAM rows of the Compute Partition, converting them one after another into the binary
format using the pop count circuit block, applying the activation function on them one
after another using the CMOS logic block for ReLU, and then assembling 32 resultant 8-bit
binary activation values in the 256-bit write buffer through demultiplexing, before writing
them back (from write buffer) into a PCRAM row in a partition other than the Compute
Partition. (5) CNN POOL: In addition to MAC and activation functions, CNNs may also
require (e.g., CNNs) pooling functions. CNNs typically employs one pooling layer (either
max or aver-age pooling) after every convolution layer [7]. ODIN invokes this command
to process a CNN pooling layer. The CNN POOL activity flow (Fig. 4.5(e)) changes
depending on the size of the pooling filter (e.g., 4:1 vs 9:1). Consequently, the activity flow
includes reading multiple (either 4 (Fig. 4.5(e)) or 9) 256-bit PCRAM blocks containing 32
8-bit binary operands, reducing the number of operands by applying the pooling function
using the pooling logic block, and then assembling 32 pooling function outputs in a single
256-bit PCRAM block to be written back. The multiple 256-bit PCRAM blocks that are
read at the beginning of this activity flow can come from the same or different PCRAM
rows.

4.11 Implementation and hardware overheads

A. Implementation of CNN Processing on ODIN Although ODIN can be used for
processing CNNs during forward propagation (inference) as well as back propagation
(training) phases, in this chapter we only discuss and analyze how ODIN’s performance
during the inference phase. To begin with CNN processing, ODIN first uploads trained
and quantized weights of all layers of the CNN in the PCRAM banks in the 8-bit binary
format via the DMA controller (Fig. 4.3). It also uploads the input activation values to
the CNN in the 8-bit binary format. After the uploading of CNN weights and inputs via

25

Figure 4.6: (a) Execution time and (b) energy consumption for ODIN and other considered CNN
processing systems, across VGG-1/2 and CNN-1/2 topologies.

the DMA controller is over, ODIN employs the PIM controller (PIMC) to begin processing
the CNN layer by layer, starting from the first layer. To process each layer, ODIN’s PIMC
breaks down the inference task into a sequence of PCRAM commands and control signals
(following the activity flows from Section IV), which are then scheduled by the PCRAM
controller to orchestrate the CNN layer processing

The processing time taken by ODIN differs for each layer, depending on the type (e.g.,
fully-connected, convolution, pooling) and size (i.e., #nodes, #connections) of the layer.
This is because the type and size of the layer dictates (i) how many PCRAM reads and
writes would be required to process the layer, and (ii) what the required storage capacity
would be to store the operands. The type, size, and number of layers in an CNN depends
on the architecture of the CNN model in use. Therefore, the storage requirement and the
processing performance (i.e., delay, energy) of ODIN would differ between differ-ent CNN
architectures. To provide a peek into these dependencies, we have evaluated the required
number of PCRAM reads and writes and storage requirement for some benchmark CNN
topologies, as shown in Table 4.3. Our used methodology for deriving these results is
discussed in Section 5.10.

4.12 Overheads of Hardware Modifications

The overheads (delay, area, and timing overheads) of different hardware modifications
made in PCRAM banks as part of our ODIN framework are listed in Table 3. In addition,

26

Table 4.3: ANN benchmark topologies [2].

CNN1 conv5x5-pool-784-70-10 (MNIST Dataset)
CNN2 conv7x10-pool-1210-120-10 (MNIST Dataset)

VGG1

conv3x64-conv3x64-pool-conv3x128
conv3x128-pool-conv3x256-conv3x256-conv3 x 256-pool-conv3x512-
conv3x512-conv3x512-pool-conv3 x512-conv3x512
conv3x512-pool-25088-4096-4096-1000 (ImageNet Dataset)

VGG2

conv3x64-conv3x64-pool-conv3x128
conv3x128-pool-conv3x256-conv3x256-conv3x256-conv1 x
512-pool-conv3x512-conv3x512-conv3x512-con1
x512-pool-conv3x512-conv3x512-conv3x512-con1x 512-
pool-25088-4096-4096-1000 (ImageNet Dataset)

Table 4.4: Area, energy and delay values for various add-on logic circuits for ODIN (scaled for
14nm CMOS).

Hardware Energy (pJ) Delay (ns) Area (mm2)Component
SRAM-LUT [28] 0.297 0.316 0.402
16:8 Mux [28] 4.662 0.007 0.159
256:8 Mux [28] 4.72 0.0077 0.639
256:32 Mux [28] 18.6 0.0303 0.688
8:32 Demux [28] 18.64 0.0305 0.158
8:256 Demux [28] 149.19 0.242 0.493
256:1024 Demux [28] 902.8 1.465 1.266
ReLU Logic [25] 185 4.3 0.02
Pooling Logic [25] 2140 39.3 3.06

Table 4.5: Requirement of memory capacity, number of PCRAM reads and writes for implementing
various CNN topologies on ODIN accel-erator.

Fully Connected Layers Convolution Layers Accuracy
Memory Read Write Memory Read Write (%)

(Gb) (x106) (x106) (Gb) (x106) (x106)
VGG1 1.93 247 248 0.229 58.8 30.3 89.5
VGG2 1.96 251 252 0.234 60.01 30.9 88.51
CNN1 0.00095 1.22 1.226 0.0002 0.62 0.32 97.45
CNN2 0.00098 1.254 1.257 0.00026 0.67 0.34 97.21

ODIN also needs to add PIMC inside the PCRAM controller module. To support the PIMC,
ODIN requires five additional control signals corresponding to the controller commands
discussed in Section IV. Overall, the overheads of ODIN are significantly less than the
overheads of other processing in crossbar memory-based accelerators from prior work.
This is because, like the crossbar accelerators from prior work, ODIN does not need
high-area consuming, power-hungry, and throughput-limiting analog-to-digital converters
(ADCs) and digital-to-analog converters (DACs). We account for the overheads from Table
3 in our system-level evaluation presented in the next section.

27

4.13 Conclusions

In this work, we presented an energy-efficient and high throughput ANN accelerator
called ODIN, which is a PCRAM based processing-in-memory (PIM) engine. ODIN
leverages the hybrid binary-stochastic arithmetic to accelerate the essential operations of
CNNs, such as multiply-accumulate (MAC), activation, and pooling, directly inside the
banks of PCRAM main memory. We analyzed the performance of ODIN in terms of
execution time and energy consumption, and compared it with two baseline CPUonly
systems and two ISAAC-based variants, for four different benchmark CNN topologies from
MLBench. The results of our analysis for the considered CNN topologies indicate that
our ODIN accelerator can be at least 5.8× faster and 23.2× more energy-efficient, and up
to 90.8× faster and 1554× more energy-efficient, compared to the crossbar-based in-situ
CNN accelerator from prior work. These results corroborate the excellent capabilities of
ODIN for accelerating CNNs. The detailed explanation related to the future direction in
the chapter9

28

Chapter 5 A Parallel SC Based In-DRAM CNN Accelerator

5.1 Chapter Overview

This chapter provides an overview of the novel in-DRAM-based CNN accelerator
(ATRIA). ATRIA employs lightweight modifications in DRAM cell arrays to implement
bit-parallel rate-coded unary computing, also known as stochastic computing, based on
the acceleration of multiply-accumulate (MAC) operations inside DRAM. This enables
ATRIA to significantly improve the latency, throughput, and efficiency of processing CNN
inferences by performing 16 MAC operations in only two consecutive memory operation
cycles.

To evaluate the performance of ATRIA, four benchmark CNNs were mapped on the
accelerator and compared with five state-of-the-art in-DRAM accelerators from prior work.
The results of this analysis showed that while ATRIA exhibited only a 3.5% drop in CNN
inference accuracy, it still achieved improvements of up to 3.2× in frames-per-second (FPS)
and up to 10× in efficiency (𝐹𝑃𝑆/𝑊/𝑚𝑚2) compared to the best-performing in-DRAM
accelerator from prior work.

5.2 Introduction

Convolutional Neural Networks (CNNs) have achieved remarkable progress in recent
years, and they are being aggressively utilized in real-world applications related to Artificial
Intelligence (AI) and machine learning [12] [41]. In general, CNNs mimic biological neu-
ral networks and utilize compute-heavy arithmetic functions such as multiply-accumulate
(MAC), nonlinear activation, and pooling. Although these CNN functions are amenable
to acceleration because of a high degree of compute parallelism, their acceleration using
traditional ASIC platforms (e.g., Dadiannao [12], EIE [22] [65]) is challenging because of
the need to avoid the memory wall while accessing their large number of operands [10].
To address this problem, several prior works have explored processing-in-memory (PIM)
designs based on the emerging non-volatile memory (NVM) crossbar technologies (e.g.,
ISAAC [41], PRIME [20], XNOR-RRAM [21]) as well as the traditional DRAM technol-
ogy (e.g., DRISA [98] [101], SCOPE [97], DRACC [19], LACC [94]). Such PIM designs
strive to avoid data movement to consequently achieve a balance between computational
efficiency and memory performance while processing CNNs in situ.

However, it is challenging to support MAC operations in PIM designs. The NVM
crossbar-based PIM designs, such as ISAAC [41] and PRIME [20], leverage Kirchoff’s Law
to perform MAC operations in the analog domain. However, such analog computing-based
accelerators require power-hungry and sluggish digital-to-analog converters and analog-
to-digital converters (DACs and ADCs), which diminishes the performance and energy-
efficiency benefits of such accelerators. Alternatively, the DRAM-based PIM designs
implement in-situ MAC operations digitally, for which they break a single MAC operation
into multiple functionally complete memory operation cycles (MOCs) that are serially run
on a single subarray (the smallest logical cell array in a DRAM module). Multiple such

29

subarrays typically work in parallel to achieve high processing throughput. Such designs
require a very larger number of MOCs per MAC operation. For instance, DRISA [98]
requires up to 222 MOCs per MAC. To reduce the required number of MOCs, SCOPE [97],
DRACC [19], and LACC [94] employ lightweight optimizations that simplify the imple-
mentation of MAC operations. SCOPE adopts rate-coded unary (stochastic) computing
to implement approximate multiplication, requiring a reduced number of up to 25 MOCs
per MAC [97]. On the other hand, DRACC [19] eliminates most multiply operations by
employing quantized CNNs that use ternary weights, whereas LACC [94] employs lookup
table based multiply operations. Because of these optimizations, DRACC and LACC re-
quire reduced number of MOCs per MAC of up to 13 and 11 respectively. This can still
incur very high latency and energy consumption as one MOC can incur up to 49 ns la-
tency and up to 4nJ energy consumption [98] [102] [19], depending on the utilized DRAM
technology node, and subarray size (bitline length). The high latency and energy values
per MAC operation have prevented the DRAM-based PIM designs from being immediately
adopted for CNN inference.

In this chapter, we present a novel CNN accelerator called ATRIA. ATRIA employs
bit-parallel rate-coded unary (stochastic) computing, which enables it to perform 16 MAC
operations in only 2 consecutive MOCs. ATRIA is most related to SCOPE [97]. It sig-
nificantly improves SCOPE in two ways. First, SCOPE uses rate-coded unary (stochastic)
computing to perform only multiply operations, whereas it uses conventional binary arith-
metic to perform accumulated operations. In contrast, ATRIA performs both multiply and
accumulate operations using bit-parallel rate-coded unary (stochastic) computing. Second,
both SCOPE and ATRIA require expensive binary-to-stochastic (B-to-S) and stochastic-to-
binary (S-to-B) conversions of operands, but ATRIA is better able to hide the latency of
these conversions by successfully removing them from the critical processing path. More-
over, ATRIA restricts the precision errors induced due to the rate-coded unary (stochastic)
computing-based accumulated operations by employing stochastic operands that are 2×
larger in size. As a result, ATRIA exhibits only a 3.5% drop in CNN inference accuracy
on average compared to SCOPE. Despite this slight drawback, ATRIA substantially out-
performs SCOPE as well as other in-DRAM accelerators such as DRISA and LACC in
terms of the latency, throughput (frames-per-second (FPS)), and efficiency (FPS/W/mm2)
of processing state-of-the-art CNNs.

5.3 Concept of Bit-Parallel Rate-Coded Unary (stochastic) computing

The use of rate-coded unary (stochastic) computing simplifies the implementation of
complex arithmetic functions, such as multiplication and accumulation, by reducing them
to simple bit-wise logical operations [9]. To perform a multiplication of 2 N-bit stochastic
operands (A and B in Fig 6.1(a)) in the bit-serial manner, the bit-streams of the operands
are applied to an AND gate serially, and the bit-wise output of the AND gate is collected
for total N clock cycles to generate the multiplication output bit-stream (C in Fig 6.1(a)).
Similarly, to perform a scaled accumulation of 4 (or more) N-bit stochastic operands in the
bit-serial manner (A, B, C, D in Fig 6.1(b)), the bit-streams of the operands are applied
to a MUX, whose bit-wise output is selected by a 2-bit (or larger) random number (RND
in Fig 6.1(b)) every clock cycle for total N clock cycles, to generate the output bit-stream

30

that represents a scaled accumulation (E in Fig 6.1(b)). To reduce the area and static power
consumption of computing, such bit-serial implementation of rate-coded unary (stochastic)
computing compromises the latency of computing.

Figure 5.1: Bit-serial rate-coded unary (stochastic) computing circuits for (a) multiplication (AND
gate), (b) scaled accumulation (MUX).

Figure 5.2: Bit-parallel rate-coded unary (stochastic) computing circuits for (a) multiplication (array
of AND gates), (b) scaled accumulation (array of MUXs). Here, the individual N bits of operands
A, B, C, and D from Fig 6.1 are striped across N copies of AND gates and MUXs.

In contrast, we observe that the latency of computing can be improved by N× if the
rate-coded unary (stochastic) computing can be implemented in the bit-parallel manner.
For example, if N copies of AND gates and MUX circuits are available (Figs. 6.3(a) and
6.3(b)), the N-bit outputs for the stochastic multiplication and scaled accumulation can be
obtained in one clock cycle in the bit-parallel manner. In a nutshell, the idea for such
bit-parallel implementation of rate-coded unary (stochastic) computing is to transform the
input bit-streams into bit-vectors by striping them across the N copies of the AND gates
and MUX circuits, and then perform bit-wise AND and MUX operations to generate output
bit-vectors. For instance, the individual N bits 𝑎1 to 𝑎𝑁 , 𝑏1 to 𝑏𝑁 , 𝑐1 to 𝑐𝑁 , and 𝑑1 and
𝑑𝑁 of operands A, B, C, and D from Fig 6.1(b) are striped across N copies of MUXs in
Fig 6.3(b). As a result, the individual N bits of the scaled accumulation output E can be
collected in a bit-parallel manner from N MUXs. For such bit-parallel scaled accumulation
(i.e., MUX operation), total N RND signals (𝑅𝑁𝐷1 to 𝑅𝑁𝐷𝑁) are needed which can be

31

generated a priori and made available in a parallel manner (Fig 6.3(b)). Although Fig 6.3(b)
illustrates bit-parallel scaled accumulation for only four input stochastic operands (A, B, C,
and D), this concept can be extended for more or less than 4 input stochastic operands as
well.

Such bit-parallel rate-coded unary (stochastic) computing naturally fits well for in-
DRAM processing of applications because the inherent parallelism of DRAM makes it
fundamentally easy to provision data in the bit-parallel manner. Our proposed in-DRAM
accelerator ATRIA employs such bit-parallel rate-coded unary (stochastic) computing to
implement in-DRAM MAC operations for the first time, and exploits the benefits of such
implementation to substantially improve the latency and throughput of in-DRAM CNN
processing, compared to the in-DRAM CNN processing accelerators from prior work.

Figure 5.3: The hierarchical structure of our ATRIA accelerator chip.

5.4 ATRIA: Overview

Our ATRIA accelerator architecture employs an 8Gb DRAM module with 8 chips. Fig
5.3 illustrates the schematic of one such chip. Each chip has 8 banks, with 64 subarrays per
bank, and 32 mats per subarray of 256×256 bits size each. Each row in a subarray is of 8Kb
size, therefore, each subarray contains total 8Kb sense amplifiers (S/As) and write drivers
(W/Ds). Each subarray acts as a processing element (PE), which is defined as the smallest
independent cell-array structure that can perform computing. Therefore, there are total 4096
PEs in ATRIA. Like the other in-DRAM accelerators from prior work (e.g., DRISA [98],
SCOPE [97], LACC [94]), the PEs in ATRIA can also operate in parallel to process CNN
inference in situ. To process CNN inference, each PE (i.e., subarray) in ATRIA employs
a feature processing unit (FPU), as shown in Fig 5.3. In addition, to orchestrate these in-
parallel processing operations inside the PEs, ATRIA employs hierarchical controllers (chip,
bank and subarray controllers (CTLRs) in Fig 5.3). The operation of these hierarchical
CTLRs is described in Section 5.4. The structure and operation of each FPU in ATRIA
support our concept of bit-parallel rate-coded unary (stochastic) computing for in-situ
processing of CNNs, as discussed next.

Structure of a PE in ATRIA

A PE of our ATRIA accelerator is basically a DRAM subarray that is integrated with an
FPU and a subarray CTLR, as illustrated in Fig 5.4. The subarray part of the PE is structured
in the manner the conventional DRAM subarrays are organized [23] [28]. Therefore, in this

32

Figure 5.4: Schematic of a processing element (PE) of ATRIA. (a) Schematic of a subarray and
feature processing unit (FPU); (b) pop counter for S-to-B conversion [2]; (c) LUT for B-to-S
conversion; (d) a 16:1 MUX and its connections with S/As as part of the FPU

section, we only provide details of the structure of the FPU. The role of the subarray CTLR is
discussed in Section 5.4. The FPU consists of various hardware components that support the
implementation of the following six functions: (i) bit-parallel stochastic multiply operation
(MUL), (ii) bit-parallel stochastic accumulate operation (ACC), (iii) binary to stochastic
(B-to-S) conversion, (iv) stochastic to binary (S-to-B) conversion through pop counter
(PC), (v) nonlinear activation function ReLU, and (vi) max pooling function. To support
bit-parallel MUL, three 8Kb rows of the subarray (Row 1, Row 2 and Row 3 in Fig 5.4(a))
are reserved and operated following the triple row activation and charge-sharing protocol
of AAP memory operation cycle (MOC) from Ambit [102] (see Section 5.4).

The hardware components that support bit-parallel ACC consist of an array of 512 copies
of 16:1 MUXs and their associated 512 copies of 4-bit registers (Fig 5.4(a)). These 4-bit
registers store the pre-determined random values that enable the output selection (16:1) for
their respective MUXs. Each MUX has 16 inputs, therefore, the total number of inputs for
the entire array of 512 MUXs is 8Kb. These 8Kb MUX inputs are connected to 8Kb S/As,
with 16 adjacent S/As feeding one MUX and vice versa (Fig 5.4(d)). Note that the S/As in
the commodity DRAMs typically connect to I/O logic through signal S and related control
transistors (𝑀1 to 𝑀16) (Fig 5.4(d)). To facilitate connections of S/As to MUXs, ATRIA
employs one additional inverter (INV) and 16 transistor switches (T1 to T16) per MUX,
which can be controlled by the same signal S (Fig 5.4(d)). An 8Kb row from the subarray
can be read into 8Kb S/As (Fig 5.4(a)), which can hold total 16 stochastic bit-vectors of
512-bit size each (16 × 512 = 8Kb). These 16 stochastic bit-vectors can be striped across
512 MUXs, so that each individual bit of a bit-vector is fed into a different MUX with each

33

MUX having all its 16 inputs from 16 different bit-vectors. This arrangement sets up the
array of MUXs to perform a 16-operand scaled ACC in the bit-parallel manner, following
our concept of bit-parallel rate-coded unary (stochastic) computing discussed in Section
5.3. The detailed functioning of this array of MUXs for performing scaled ACC is presented
in Section 5.4.

In addition, to implement in-memory B-to-S conversion, each FPU in ATRIA employs
a lookup table (Fig 5.4(c)). Our idea of using lookup table-based B-to-S conversion is
inspired from the design of SCOPE accelerator [97]. This enables ATRIA to employ the
deterministic method for B-to-S conversion to eliminate correlation errors [97]. Moreover,
each FPU in ATRIA employs an additional lookup table to perform ReLU (Fig 5.4(a)).
Further, it also incorporates a pop counter to perform in-memory S-to-B conversion (Fig
5.4(b)), as well as logic to implement max pooling function (Fig 5.4(a)). ATRIA implements
the max pooling and ReLU functions in the binary domain. This mandates that the results
of processing of every CNN layer’s parameters always go through S-to-B, ReLU, and then
B-to-S conversions before they can activate processing of the next CNN layer. This in
turn eliminates the undesirable propagation of precision errors (which are very common
in rate-coded unary (stochastic) computing [9]) between the stochastic operations of two
consecutive CNN layers (see more on errors in Section 5.5. The overheads of incorporating
FPUs in ATRIA PEs are discussed in Section 5.4. The next section describes the functioning
of an FPU-enabled PE of our ATRIA accelerator.

Functioning of a PE in ATRIA

Each PE of our ATRIA accelerator can perform all essential functions required for
processing CNNs, such as MAC, max pooling, and ReLU. In addition, since ATRIA
employs rate-coded unary (stochastic) computing, each PE can also perform important
functions for implementing rate-coded unary (stochastic) computing, such as B-to-S and
S-to-B (pop count) conversions. On one hand, each PE performs B-to-S, S-to-B (pop
count), ReLU, and max pooling functions by relaying the related operands along the data
processing path in the FPU through the corresponding hardware components (Fig 5.4(a)).
To orchestrate the relaying of the operands to perform these functions, the PE makes use
of the subarray CTLR whose functioning along with the functioning of other hierarchical
CTLRs in ATRIA is discussed in Section 5.4. On the other hand, each PE of ATRIA
can perform a MAC function (𝐹𝑀𝐴𝐶) of 16 stochastic operands of 512-bit size each, by
employing a series of total five memory operation cycles (MOCs) (similar to the AAP/AP
MOC from [98] [102]). These MOCs engage the reserved rows Row 1, Row 2 and Row 3
(Fig 5.4(a)) and the MUXs in the FPU, as discussed next.

Fig 5.5 illustrates how ATRIA performs 𝐹𝑀𝐴𝐶 . ATRIA performs 𝐹𝑀𝐴𝐶 in two main
steps. Step 1 engages the reserved subarray rows Row 1, Row 2, and Row 3 to perform
MUL. Step 2 engages the array of MUXs to perform ACC. Before performing 𝐹𝑀𝐴𝐶 ,
ATRIA first makes the involved stochastic operands available in the reserved subarray rows
Row 1 and Row 2. For that, it performs two MOCs similar to RowClone [25] to copy the
contents of two source rows into Row 1 and Row 2 respectively. Consequently, Row 1
contains 16 512-bit operands 𝑁1 to 𝑁16 (Fig. 5(a)). Similarly, Row 2 contains 16 512-bit
operands 𝑀1 to 𝑀16 (Fig 5.5(a)). In addition, ATRIA initializes Row 3 with ‘0’s at system

34

Figure 5.5: A schematic showing the operation of a PE of ATRIA to perform a 16-operand multiply-
accumulate (MAC) function (𝐹𝑀𝐴𝐶).

boot. After these initial steps, ATRIA schedules Step 1 of 𝐹𝑀𝐴𝐶 , which employs the triple
row activation and charge-sharing based MOC from Ambit [102] to perform bit-parallel
logical AND (i.e., stochastic MUL) of the involved operands 𝑁1 to 𝑁16 and 𝑀1 to 𝑀16.
At the end of the MOC for Step 1, Row 3 contains the results of bit-parallel logical AND,
i.e., 𝑁1 AND 𝑀1 to 𝑁16 AND 𝑀16 (Fig 5.5(a) and Fig 5.5(b)). These results essentially
represent the outcome of bit-parallel stochastic MUL, i.e., 𝑁1𝑀1 to 𝑁16𝑀16. After this,
ATRIA schedules Step 2 of 𝐹𝑀𝐴𝐶 , where it performs a MOC to read the stochastic MUL
results from Row 3 into S/As. These results from S/As are then pushed through the array
of 16:1 MUXs, MUX1 to MUX512. The 512-bit output of this array of MUXs is selected
using the pre-latched random control signals RND1 to RND512. This 512-bit output is the
stochastic scaled ACC of the input operands 𝑁1𝑀1 to 𝑁16𝑀16. In other words, this 512-bit
output presents 𝐹𝑀𝐴𝐶 = (𝑁1𝑀1 + 𝑁2𝑀2 + . . . + 𝑁16𝑀16)/16 (Fig 5.5(a) and Fig 5.5(b)).
ATRIA then uses one more MOC to store the result of this 𝐹𝑀𝐴𝐶 into a row in the subarray
through W/Ds. Thus, ATRIA uses only 5 MOCs (2 MOCs for initializing Row 1 and Row
2, 1 MOC for MUL, 1 MOC for ACC, and 1 MOC for write back) to perform a scaled
MAC function 𝐹𝑀𝐴𝐶 (also called dot-product) of 16 stochastic operands. In other words,
if a MAC operation is conventionally defined as a MUL of two operands followed by an
accumulate operation (i.e., A = A + 𝑁𝑖𝑀𝑖), then ATRIA uses only 5 MOCs to perform 16
MAC operations in parallel. However, we find from our evaluation results in Section 5.5

35

that the use of bit-parallel rate-coded unary (stochastic) computing in ATRIA can increase
precision errors. Nevertheless, we also find that the increased precision errors are worth
tolerating for dues to the substantial performance benefits of ATRIA.

System Integration and Controller Design

In this section, we describe how our ATRIA accelerator integrates with the host system
and how the hierarchical controllers of ATRIA orchestrate the processing of CNNs. ATRIA
integrates with the host system in the same way the conventional GPU or FPGA based
accelerators do through PCIe bus. For a CNN processing using ATRIA, the host system
stores the weighting parameters and inputs of the CNN in the individual PEs (subarrays)
of ATRIA via direct memory access (DMA). We adopt the strategy from SCOPE [97],
wherein the weighting parameters are stored in ATRIA in the stochastic format. This
strategy ensures that in-situ B-to-S conversions are required only for activation parameters,
which dramatically reduces the number of in-situ B-to-S conversions. As a result, the
latency and energy of processing CNNs with ATRIA are dramatically reduced as well.

After storing the inputs and weighting parameters of a CNN in PEs of ATRIA, the
host-side ATRIA CTLR (not shown in Fig 5.3) orchestrates the processing of the CNN
in conjunction with the hierarchical ATRIA CTLRs shown in Fig 5.3. The host-side
ATRIA controller generates a series of 𝜇-operations, which are received by the hierarchical
ATRIA CTLRs. We adopt the designs from [98] for these CTLRs. These CTLRs support
simultaneous multi-subarray/bank activation for better parallelism. The first chip-level
CTLR is essentially a decoder, and it also helps with inter-bank data movement. The bank-
level CTLRs decode the 𝜇-operations and convert them into addresses, vector lengths, and
control codes, and then send them to subarray CTLRs in the active subarrays. The subarray
CTLR consists of address latches, local decoders, and counters. The address latches are
essential for multi-subarray activation [98]. The counters are used for continuously updating
addresses to local subarray decoders. In addition, the subarray CTLR also contains buffers
to support the communication of operands.

Inter-bank and inter-subarray data communications in ATRIA are supported through
the interconnects design adopted from LISA [26]. Data communications are carried out in
binary format instead of stochastic format, which results in better energy-efficiency [97].
Also, the inclusion of buffers in the subarray CTLRs enables pipelined data communications,
which enables better use of resources and efficient hiding of long latencies, reducing the
memory bottleneck to improve the throughput of CNN processing with ATRIA.

Overhead Analysis

Table 5.1 lists the latency, energy, and area overheads of various hardware components
that are part of the FPUs inside the PEs of our ATRIA accelerator. These results are based
on our logic synthesis analysis for 22nm node. We considered standard SRAM for LUT
implementation. After accounting for the extra area overhead of these components from
Table Table Table 5.1, the total area for 8Gb ATRIA accelerator becomes 77mm2. For
comparison, DRISA-1T1C-NOR [98], DRISA-3T1C [97], SCOPE-Vanilla [97], SCOPE-
H2D [97], and LACC [94] consume 55mm2, 64.6mm2, 259.4mm2, 273.4mm2, and 61mm2

36

Table 5.1: Latency, energy, and area overhead values of various hardware components of the FPUs
in the PEs of ATRIA.

Component Total Area
(mm2)

Latency
(ns)

Energy
per PE (pJ)

16:1 MUXs for ACC 1.3×10-3 2 10
4-bit Registers for RND Storage 1.1×10-5 2 15.6

B-to-S LUT (512×256) 3.4 1 0.3
S-to-B Pop Counter (PC) (2GHz) 2.1×10-5 256 153.6

ReLU LUT 1.2 1 0.3
Max Pooling Logic 4.1 5 940

area respectively. Thus, ATRIA consumes larger area than DRISA-1T1C-NOR, DRISA-
3T1C, and LACC. Nevertheless, ATRIA still achieves substantially better area and energy
efficiency compared to these accelerators (Section 5.5). Similarly, despite the S-to-B
pop counter in ATRIA incurring a long latency of 256ns (Table 5.1), the performance of
ATRIA does not get much affected, as ATRIA manages to keep this latency out of the
critical processing path (Section 5.5).

5.5 Evaluation

Modeling and Setup for Evaluation

We evaluate ATRIA and compare it with other in-DRAM accelerators from prior
work such as SCOPE-Vanilla [97], SCOPE-H2D [97], DRISA-1T1C-NOR [98], DRISA-
3T1C [98], and LACC [94]. We first evaluate the per-MAC latency, per-MAC energy,
and total area values for our considered accelerators. We divide the evaluation of per-
MAC latency/energy into two parts: latency/energy of a multiply operation (MUL) and
latency/energy of an accumulate operation (ACC). All our considered accelerators follow
the AAP/AP memory operation cycle (MOC) from Ambit [102]. Therefore, the latency
and energy values per MOC and total number of MOCs per MAC are evaluated first for all
considered accelerators. Different accelerators have different latency and energy per MOC
because they employ different lengths of local bitlines in their subarrays. For example,
DRISA [98] and SCOPE [97] employ shorter local bitlines with only 64 cells per bitline. In
contrast, LACC employs 512 cells per bitline, whereas ATRIA employs 256 cells per bitline.
Shorter bitlines typically yield lower latency per MOC [23]. We evaluate latency using
SPICE [17] based modeling of local bitlines. To evaluate per-MOC energy as well as total
accelerator area, we used CACTI [16]. We developed a custom simulator in Python to model
the MOC-accurate transaction-level performance behavior of our considered accelerators,
as well as to evaluate system-level performance metrics such as frames-per-second (FPS),
latency, efficiency (FPS/W/mm2), and memory bottleneck ratio. Memory bottleneck ratio
is defined as the ratio of total stall time (time for which an accelerator needs to wait for the
operands) over total inference processing time. We considered four state-of-the-art CNNs
to evaluate these metrics. The quantized versions of these CNN models were trained using
PyTorch for ImageNet dataset and 8-bit fixed-precision of activation and weight parameters.
These activation and weight parameters were extracted and provided as the input to our
Python based performance simulator, which also took our evaluated energy, latency, and

37

Table 5.2: Average APE (𝜇APE), standard deviation in APE (𝜎APE) and CNN testing accuracy (A)
for SCOPE-Vanilla, SCOPE-H2D and ATRIA for various CNNs.

SCOPE-Vanilla SCOPE-H2D ATRIACNN
Benchmarks 𝜇APE 𝜎APE A(%) 𝜇APE 𝜎APE A (%) 𝜇APE 𝜎APE A(%)

Alexnet 0.23 0.04 93.6 0.09 0.01 96.7 0.33 0.05 92.2
GoogleNet 0.30 0.05 87.7 0.17 0.03 88.5 0.41 0.07 87.7

VGG16 0.35 0.05 91.9 0.21 0.03 95.1 0.53 0.09 90.2
ResNET-50 0.26 0.04 90.1 0.12 0.02 93.6 0.47 0.08 89.8

area values for our considered accelerators as the input. Next, we present and discuss the
results of our simulation-based study.

Precision Error and Accuracy Results

ATRIA has one caveat compared to SCOPE. The use of MUX based bit-parallel stochas-
tic accumulation in ATRIA can increase the absolute precision error (APE) of computing,
as explained in [9]. An APE for an operation (i.e., MUL or ACC) is defined as the absolute
difference between the expected result and the observed result of the operation. From [9]
and [27], APE depends on the operand values, input size (i.e., number of operands), and
operand size (i.e., bit-stream length). For a MUX based stochastic ACC with an input size
of 16 (as is the case for ATRIA), the average APE (𝜇APE) can be reduced to an acceptable
value in the range between 0.2 to 0.54, if the operand size is kept 512 bits or longer [9] [27].
Therefore, we increase the operand size, i.e., bit-vector length, of the bit-parallel stochastic
operands in ATRIA to 512 bits from their full-precision length of 256 bits (corresponds to
8-bit binary operands). The resultant 𝜇APE values and corresponding standard deviation
in APE (𝜎APE) for four benchmark CNNs are listed in Table 5.2. The 𝜇APE and 𝜎APE
values in Table 5.2 were obtained for the complete set of individual APEs for all MAC
results required in respective CNNs when the inferences of these CNNs are implemented
on ATRIA, SCOPE-Vanilla and SCOPE-H2D for the ImageNet dataset. Table 5.2 also lists
the inference accuracy results. As evident, ATRIA exhibits 2.9× and 1.5× more 𝜇APE, and
3.2× and 1.6× more 𝜎APE than SCOPE-H2D and SCOPE-Vanilla respectively, on average
across the CNNs. Nevertheless, compared to SCOPE-H2D and SCOPE-Vanilla, ATRIA
exhibits only 3.5% and 0.85% drop in inference accuracy on average across the CNNs,
which we reason is acceptable due to the significant performance benefits of ATRIA, as
evident from Sections 5.5 and 5.5.

Per-MAC Latency Results

Table 5.3 lists our evaluated latency values and number of PEs (#PEs) for ATRIA and
other in-DRAM CNN accelerators. The latency values include values for MUL and ACC in
number of MOCs (#MOCs), latency per MOC in ns, as well as the latency values for LUT-
based B-to-S conversion and pop-count (PC) operations (required for S-to-B conversion).
From Table Table 5.3, ATRIA holds three crucial advantages. First, it exhibits smaller
per-MAC latency over SCOPE, DRISA and LACC Table Table 5.3. This is because ATRIA
performs 16 MAC operations in parallel. For that, ATRIA uses total 5 MOCs (total 85ns

38

Table 5.3: Comparison of various accelerators with ATRIA, in terms of number of PEs (#PEs)
and latency of MUL, ACC, MAC, binary to stochastic conversion (B-to-S), and pop count (PC)
operations.

Latency ValuesVarious
Accelerators MUL

#MOCs
ACC

#MOCs
MOC
(ns)

MAC
(ns)

B-to-S
(ns)

PC
(ns)

#PEs

DRISA-3T1C [98] 200 11 8 1768 - - 32768
DRISA-1T1C-NOR [98] 200 22 10 2110 - - 16384

LACC [94] 1 10 21 231 - - 16384
SCOPE-Vanilla [97] 3 4 8 56 1 176 65536
SCOPE-H2D [97] 21 4 8 200 1 176 65536

ATRIA 3/16 2/16 17 5.25 1 256 4098

latency with each MOC incurring 17ns latency) (Section 5.4); 2 MOCs to copy the operand
rows, 1 MOC to perform 16 in-parallel MULs, 1 MOC to perform 16 in-parallel ACCs,
and 1 MOC to store the MAC result. In Table 5.3, for ATRIA, 2 MOCs for operand row
copy are counted in total MUL MOCs, and 1 MOC for MAC result store is counted in total
ACC MOCs. Thus, by performing 16 MAC operations in parallel, ATRIA achieves shorter
per-MAC latency.

Second, ATRIA can better hide the latency for PC operations, compared to SCOPE. This
is because, SCOPE utilizes full adder-based PC operations that need to be performed inside
PEs. Therefore, despite using the as-late-as-possible (ALAP) scheduling algorithm, PC
operations in SCOPE inevitably stall the PEs. In contrast, ATRIA offloads PC operations
to dedicated serial counters (operating at 2GHz) per PE (Sections 5.4 and 5.4). As a result,
ATRIA does not need to stall PEs for PC operations, enabling itself to better hide PC
latency. Therefore, although ATRIA yields higher latency per PC operation than SCOPE
(Table Table 5.3), ATRIA efficiently hides this higher latency, not letting it affect the
performance.

Third, ATRIA exhibits smaller bottleneck ratio compared to SCOPE and DRISA (see
Fig 5.6(d) in Section 5.5). Bottleneck ratio is defined in Section IV.A. ATRIA achieves
lower bottleneck ratio, because the use of massively large number of PEs in SCOPE and
DRISA results in unavoidable inter-PE communication latency, a substantial portion of
which remains on the critical processing path because of the inherently limited parallelism
available for such inter-PE communications. In contrast, ATRIA is better at hiding the inter-
PE communication latency, due to its smaller number of PEs and its LISA [26] substrate-
based implementation of intra-bank, inter-bank, and inter-PE data communications (Section
5.4).

CNN Inference Performance Results

We evaluate the preformance of ATRIA and compare it with the following inDRAM
CNN accelerators from prior work: DRISA3T1C [98], DRISA1T1CNOR [98], SCOPE-
Vanilla [97], SCOPEH2D [97], and LACC [94]. We consider four CNNs: VGG16 [13],
Alexnet [11], ResNET 50 [15], GoogleNET [14], with the ImageNet dataset. Using the
setup described in Section 5.5, we evaluated latency, FPS, FPS/W/mm2, and bottleneck
ratio, for batch size of 1 and 64. Fig 5.6(a) shows efficiency (FPS/W/mm2) results. For

39

batch size 1, ATRIA is 18×, 64×, 98× and 50× more efficient than DRISA-1T1C-NOR,
DRISA-3T1C, SCOPE-Vanilla, and SCOPE-H2D, respectively, on average across CNNs.
However, ATRIA is 15% less efficient than LACC, due to the LACC’s lower area (Section
5.4). Nevertheless, for batch size 64, ATRIA is more efficient than LACC as well. ATRIA
is 136×, 522×, 3.4×, 71×, and 95× more efficient than DRISA-1T1C-NOR, DRISA-3T1C,
LACC, SCOPE-Vanilla, and SCOPE-H2D, respectively, on average across CNNs. In
general, ATRIA is more efficient due to the following two reasons: (i) better FPS due to
lower per-MAC latency (Table Table 5.3), (ii) reasonable average power consumption of
23.4W.

Figure 5.6: (a) Efficiency (FPS/W/mm2), (b) latency, (c) throughput (FPS), and (d) memory bottle-
neck ratio (MBR) results for various in-DRAM accelerators across CNNs. GM means geometric
mean.

Fig 5.6(b) shows CNN processing latency results normalized w.r.t. ATRIA. For batch
size 1, ATRIA achieves 7.4×, 18×, 3.3×, 6.5×, and 4.4× lower latency than DRISA-1T1C-
NOR, DRISA-3T1C, LACC, SCOPE-Vanilla, and SCOPE-H2D, respectively, on average
across CNNs. Similarly, for batch size 64, ATRIA achieves 44×, 107×, 10×, 1.2×, and
2.6× lower latency than DRISA-1T1C-NOR, DRISA-3T1C, LACC, SCOPE-Vanilla, and
SCOPE-H2D, respectively, on average across CNNs. ATRIA achives lower CNN process-

40

ing latency because of its lower per-MAC latency and its ability of efficienty hiding its
higher S-to-B conversion latency. Moreover, DRISA-1T1C-NOR, DRISA-3T1C, LACC,
SCOPE-Vanilla, SCOPE-H2D, and ATRIA achieve 60×, 59×, 30×, 2×, 6×, and 10× higher
latency for batch size 64 than batch size 1. This is because the higher parallelism of SCOPE
variants (more #PEs in Table Table 5.3) allow them to process larger batch size without
saturating the latency benefits, by distributing the batch processing across multiple PEs.

Fig 5.6(c) shows FPS results. For batch size 1, ATRIA has on average 7.4×, 18×, 3.3×,
6.5×, and 4.4× higher FPS than DRISA-1T1C-NOR, DRISA-3T1C, LACC, SCOPE-Vanilla,
and SCOPE-H2D, respectively. For batch size 64, ATRIA has on average 44×, 107×, 10×,
1.2×, and 2.6× higher FPS than DRISA-1T1C-NOR, DRISA-3T1C, LACC, SCOPE-Vanilla,
and SCOPE-H2D, respectively. ATRIA has higher FPS due to the combined effects of lower
per-MAC latency and lower memory bottleneck ratio (Section 5.5), as discussed next.

Finally, Fig 5.6(d) gives memory bottleneck ratio (MBR) results. MBR for all acceler-
ators reduces for batch size 64 than batch size 1 because increasing batch size to 64 does
not substantially increase the stall time for weighting parameter accesses, but doing so in-
creases CNN processing time due to the required time-sharing of resources across multiple
batch inputs, resulting in lower MBR. For batch size 64, ATRIA has lower MBR than all
other accelerators, except for LACC. LACC has only 1% MBR for batch size 64, which
corroborates the results from [94]. This is because the kernel mapping algorithm used in
LACC enables better resource utilization. SCOPE variants have the highest MBR for both
batch sizes because in SCOPE the latency for S-to-B conversions come in the critical path
(Section 5.5). In contrast, ATRIA is able to better hide this latency to achieve lower MBR.

5.6 Conclusions

In this chapter, we presented an energy-efficient and high-throughput CNN accelerator
called ATRIA, which utilizes the novel concept of bit-parallel rate-coded unary (stochastic)
computing to achieve ultra-low latency for multiply-accumulate (MAC) operations. We
mapped four benchmark CNNs on ATRIA to compare its performance with five state-of-
the-art in-DRAM accelerators from prior work. The results of our analysis show that ATRIA
exhibits only a 3.5% drop in CNN inference accuracy and still achieves improvements of up
to 3.2× in frames-per-second (FPS) and up to 10× in efficiency (FPS/W/mm2), compared
to the best-performing in-DRAM accelerator from prior work. These results corroborate
the excellent capabilities of ATRIA for accelerating the inference tasks of deep CNNs.

41

Chapter 6 A Substrate for In-DRAM StoB for CNN Applications

6.1 Abstract of the chapter

Stochastic Computing (SC)-based in-situ Convolutional Neural Network (CNN) ac-
celerators are a popular approach used to reduce the hardware complexity required for
arithmetic computation, such as Multiply-Accumulate (MAC) and General Matrix Multi-
plication (GEMM) in the CNN accelerator. However, for stochastic in-memory-based CNN
accelerators, the intermediate-layer results of these CNN benchmark applications must be
stored in the binary domain to reduce memory overhead, and Stochastic to Binary (StoB)
conversion becomes a critical component of SC CNN accelerators. The generic counter-
based StoB time consumption increases significantly with the input stochastic bitstream
length.

To address this issue, we propose AGNI, a novel high-performance and energy-efficient
in-memory DRAM-based bit-parallel StoB conversion method with minimal hardware
modification. In this chapter, we introduce a novel Analog-to-Digital Converter (ADC)
technique to extract the analog equivalent voltage of the input stochastic bitstream data,
which is converted to unary data (temporal data) by leveraging the DRAM circuitry. Finally,
the unary data is converted to binary using the priority encoder.

To evaluate the performance of AGNI, we simulate the proposed circuits in LTSPICE
with a 45𝜂𝑚 gpdk technology node. We also perform post-processing using the Python
simulator for the StoB’s output binary bitstream operand lengths ranging from 4-bits to
8-bits. We compare AGNI with existing pop counters (PC), such as parallel PC and
serial PC, regarding the area, energy, and latency. The simulation results show that AGNI
has tremendous improvement in computation speed over similar PCs. Specifically, the
simulation results show that AGNI has a significant Energy-Delay Product (EDP) saving of
350× over similar PC.

We believe that this study opens up new horizons for StoB computing, enabling the
implementation of smaller yet more accurate arithmetic circuits for in-memory accelerators
than conventional StoB conversion.

6.2 Introduction

Convolutional Neural Networks (CNNs) gained immense popularity in recent times
and have been extensively used in many real-world applications related to machine learn-
ing (ML) and Artificial Intelligence (AI) [62] [103]. These CNNs mimic the structure
of the human biological brain’s neural network. CNNs use computationally complex
arithmetic operations like multiply-accumulate (MAC), nonlinear activation, and pooling.
Nonetheless, these CNN functions can be accelerated due to their high degree of compute
parallelism. Their acceleration using conventional ASIC platforms (e.g., Dadiannao [62],
EIE [104]) is challenging for the reason of avoiding the memory wall while accessing
their large number of operands [103]. In CNNs, the significant compute requirement and
data-intensive operations are MAC(multiply and accumulate) operations. Further, the input

42

computation data on the current cutting-edge CNN benchmark applications is massive, such
as RESNET-50 [105], GoogLeNet [5] with tensor size as large as 15GB. Moreover, using
the von-Neumann architecture on this huge amount of data is not energy-efficient and incurs
significant latency for the data movement from the CPU and memory [103].

Several prior works have explored processing-in-memory (PIM) designs based on the
emerging non-volatile memory (NVM) crossbar technologies (e.g., ISAAC [103], PRIME
[106], XNOR-RRAM [107]) as well as the traditional DRAM technology (e.g., DRISA
[108], SCOPE [3], DRACC [109], LACC [58]) to address this data migration length issue.
Such PIM solutions work to prevent data migration in order to balance memory performance
and computational efficiency while processing CNNs locally.

But, computing MAC operation using the PIM is challenging. Analog NVM crossbar-
based PIM CNN MAC accelerators (e.g., ISSAC [103] and PRIME [106]) require power-
inefficient analog-to-digital (ADC) and digital-to-analog (DAC) converters. This additional
circuitry indulges in performance degradation and incurs a huge area overhead. Alterna-
tively, digital in-DRAM-based MAC accelerators breaks a MAC operation into multiple
functionally complete operation cycles (MOCs) [109], such as DRISA (222 MOCs) [108],
DRACC (13 MOCs) [109], and LACC (11 MOCs) [58]. However, these accelerators re-
quire huge MOCs and each MOC can incur up to 49ns and 4nJ of latency and energy,
respectively.

Subsequently, to mitigate large MOCs requirements and area overhead, SCOPE [3] and
ATRIA [4] use a Stochastic computing-based MAC PIM accelerator to reduce the hardware
footprint and leverage computing parallelism. However, in these accelerators, Stochastic to
Binary (StoB) conversion consumes maximum time duration. Even though ATRIA StoB
operations are hidden from the critical path to some extent, they are not always. SCOPE
and ATRIA use a parallel pop counter (PC) and Serial pop counter-based StoB conversion,
respectively. Moreover, this counter circuitry’s overhead and energy consumption depend
on the bit-precision. These DRAM PIM accelerators require high-speed counters circuitry
(GHz range). However, the generic DRAM cells are low-frequency operating and low-power
grids. Thus, this lead to a lot of EM/IR challenges along with fabrication in designing the
high-speed counter circuitry. Thus, there is a need for a StoB converter with the least area
overhead and high energy efficiency in the DRAM PIM accelerator.

This chapter presents a novel in-situ DRAM-based StoB converter called AGNI. AGNI
employs bit parallelism, which helps to perform even 256-bit SN conversion to 8-bit BN
within 55𝑛𝑠 and EDP of just 21.2𝑛𝑠.𝑝𝐽. The area of the overhead of the proposed accel-
erator for the BN length of 8-bit is just 4%, with minimal hardware modifications. AGNI
performs the StoB in 4 steps. READ:- The first step is reading the stochastic number.
S to A:- Second step is to convert race-logic/SC-based unary number into an equivalent
analog voltage (𝑉𝐴𝑁𝐺)(explained in Section V-B). A to U:-Third analog voltage (𝑉𝐴𝑁𝐺) is
converted into the temporal logic-based unary representation using the in-memory-based
ADC network(explained in Section 6.6). U to B:- Finally, the converted temporal unary
number is sent to the priority encoder (PE) to calculate the total number of the ones in the
unary bit stream data. Also, AGNI hides the latency of the PE from the critical path and
thus helps in parallelism.

The organization of this chapter is as follows: Starts with the introduction to StoB
conversion in the CNN accelerators and the need for an efficient StoB converter; Next, we

43

provide the background on the drawbacks of a prior StoB converter for in-memory accel-
erators; Later, architectural overview and hardware modifications are explained; Further,
we analyzed the proposed design and provided a comparison result with previous works;
Finally, we conclude the chapter with future directions.

6.3 Background and related work

The widely used StoB converter is the counter-based technique, i.e., serial pop counter
[110]. This converter works on the principle of cycle-based serial calculation to count the
number of 1s in the bit stream. The latency of the operation increases exponentially with
the Binary number (BN) length. So, to overcome this drawback, researchers use the parallel
pop counter for StoB conversion. Due to the parallel operation of the partial sum creation
using the full adders (FAs) latency of the computation is reduced enormously. In parallel
PC, the latency has reduced dramatically compared to serial PC. However, the hardware
requirement for internal partial sum calculation skyrocketed. Also, these increases in
circuitry result in higher energy consumption and area overhead. Further, to overcome the
overhead area issue, much research is moving toward the approximate parallel PC. This
counter is a hybrid version of parallel PC, but it induces inaccuracy due to the approximation
in the calculation. Also, the area overhead is high compared to serial PC [110]. There is
a need for a novel StoB converter that should be area, and energy-efficient with reduced
latency for in-memory computing-based deep learning applications.

Rate coded unary (Stochastic Number) and Transition coded unary

To clarify the concept of AGNI, we need to give a brief overview of the different
unary representations. Due to the brevity, we are restricting the explanation to a unipolar
format. Unary computing is broadly classified into rate-coded unary (see Fig. 6.1(a)) and
transition-coded unary(see Fig. 6.1(b)). Here in rate coding representation, the information
is contained in the frequency of an event. Rate coding is adopted in stochastic computing.
The positioning of the 1’s in the bit stream is random. Here in Fig. 6.1(a), the value is 4/8,
i.e., 0.5. This probability means seeing one at any bit position is half (0.5).

Similarly, in a transition coded scheme where the timing relation of events contains
information. Here the 1’s and 0’s are found in groups as shown in Fig. 6.1(b).M

Figure 6.1: (a) rate coded unary representation, (b) transition coded unary representation

Flash ADC with intermediate transition coded conversion

Fig. 6.2 shows a schematic of flash ADC with eight inputs. Thus the circuit has eight
voltages comparators (i.e., 𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, 𝐶6, 𝐶7, 𝑎𝑛𝑑 𝐶8) as shown in Fig. 6.2. The

44

Figure 6.2: Flash ADC with a) Input 𝑉𝑖𝑛 = 0.5𝑉𝐷𝐷 , and b) Input 𝑉𝑖𝑛 = 0.25𝑉𝐷𝐷 .

positive terminals of all comparators are connected to the analog input 𝑉𝑖𝑛. The negative
terminal of the comparator is connected to the𝑉𝑅𝐸𝐹 . Now consider the scenario with inputs
equal to 0.5 𝑉𝐷𝐷 , i.e., the output detected by the priority encoder is binary digit four, as
shown in Fig. 6.2(a). The above ADC highlights that intermediate data conversion is in
rate coding format, as shown in Fig. 6.2.

Future, if we change the input analog value, the output binary value detected changes.
For example, from the initial input (𝑉𝑖𝑛) value of 0.5 𝑉𝐷𝐷 , as in the scenario mentioned
above, is changed to 0.25 𝑉𝐷𝐷 , then the binary value detected is two as shown in Fig.
6.2(b).

6.4 Proposed technique to convert the rate coded unary to temporal coded unary

This section is useful in better understanding of AGNI working principle of StoB
conversion. Here the input stochastic number is stored and then converted into analog
equivalent voltage via ADC as shown in Fig. 6.3 using S to A peripheral unit (will be
explained in Section 6.6). This equivalent analog voltage is converted to transition coded
unary by utilsing the A to U peripheral unit (Section 6.6). Next step is the data extraction
of the unary value to compute the number of 1’s in bitstream by using priority encoder of
U to B peripheral unit (Section 6.6). AGNI’s novel technique of converting the stochastic
to transition coded unary number intermediate step helped by not using the performance
in-efficient counter method.

45

Figure 6.3: Schematic layout of AGNI substrate and employed peripherals. Illustration of (a) an
AGNI-modified DRAM tile, (b) an A to U peripheral unit, (c) an S to A peripheral unit, and (d) a
U to B peripheral unit.

6.5 Overview of Our AGNI Substrate

The purpose of our AGNI substrate is to enable in-situ conversion of input stochastic
operands (bit-vectors) into binary numbers. To fulfill this purpose, the AGNI substrate
employs a few modifications in the structure of each tile of a commodity DRAM module.
These modifications are highlighted in Fig. 6.3(a). Evidently, our AGNI substrate logically
groups the bitlines of each DRAM tile into multiple bitline groups (BLgroups). Each
BLgroup corresponds to an input stochastic operand. Therefore, the number of bitlines in a
BLgroup equals the number of bits in an input stochastic operand (i.e., the size of the input
stochastic operand’s bit-vector). Consequently, if the size of each input stochastic operand
is N bits, and if each DRAM tile has a total of L bitlines (L is 256 or 512 typically), then
each DRAM tile contains a total of L/N logical BLgroups, with each BLgroup having a
total of N bitlines.

Further, to enable stochastic-to-binary number conversion of input operands, AGNI
employs additional peripherals in each DRAM tile atop the already existing sense amplifiers
(SAs). As shown in Fig. 6.3(a), these peripherals include per-bitline S to A units, per-
bitline A to U units, per-BLgroup U to B units, and per-BLgroup analog lanes (see LANEs
in the figure). Each LANE is horizontally laid out across a BLgroup and has a capacitor
at the end. From Fig. 6.3(c), Each S to A unit contains two transistors (Fig. 6.3(c)),
whereas each A to U unit contains one transistor (Fig. 6.3(b)). Each U to B unit contains
one isolation transistor (ISO) per bitline (i.e., N ISOs per BLgroup) along with one priority
encoder (PE) and a latch (Fig. 6.3(d)). All S to A and A to U units belonging to a BLgroup
connect their corresponding bitlines and SAs to the corresponding LANE and analog lane

46

capacitor. The N S to A units of a BLgroup enable stochastic-to-analog number conversion;
the N A to U units of the same BLgroup enable analog-to-unary (transition coded unary)
number conversion; and the U to B unit of the same BLgroup enables unary-to-binary
number conversion. Thus, the additional peripherals of AGNI enable one stochastic-to-
analog-to-unary-to-binary number conversion per BLgroup, thereby enabling a total of L/N
such conversions in-parallel per DRAM tile. The operation of our AGNI substrate that
enables such conversions is discussed next.

Figure 6.4: Schematic of AGNI StoB substrate with N = 4 and BN = 2. Consisting of peripheral
structures S to A units, A to U units and U to B unit

6.6 Operation of Our AGNI Substrate

As implied from the previous section, AGNI substrate undertakes stochastic-to-binary
conversion of input operands in the following three sequential steps: (i) stochastic to analog
(S to A) conversion, (ii) analog to transition-coded unary (A to U) conversion, and (iii)
transition-coded unary to binary (U to B) conversion. For these steps to work for an input
stochastic operand, the operand needs to be read into the SAs of its corresponding BLgroup,
which can be achieved by activating the DRAM row that contains the stochastic operand.
Thus, a DRAM row activation must precede the above three steps, to constitute a sequence
of a total of four steps for the operation of AGNI substrate for achieving stochastic-to-binary
number conversion.

To realize these four steps, our AGNI substrate utilizes several timing signals. The
timing signals required for the first step (i.e., DRAM row activation) include the standard

47

DRAM operation signals [111] [112]. The remaining three steps require additional new
timing signals to control the added peripherals of the AGNI substrate. The definitions
and exact uses of these signals are summarized in Table 6.1. These signals affect various
hardware units of the AGNI substrate. This is illustrated in Fig. 6.4 for an example BLgroup
of AGNI substrate with N = 4.

Table 6.1: Definitions and uses of various timing signals employed by AGNI substrate.

Standard DRAM Operation Signals

WL
Signal to turn on a DRAM wordline to

enable charge sharing between
a row of DRAM cells and corresponding bitlines

sense p
sense n

Complementary signals that are used with each SA to
enable the sensing and amplification of the

bitline voltage perturbation

EQ Signal for the precharge unit to
equalize the BL voltages

Newly Added Timing Signals

K1
Signal to turn on S to A units to
enable charge flow from the SAs

of a BLgroup to the analog LANE capacitor

B1
Signal to turn on A to U units to enable charge flow from

the analog LANE capacitor of a BLgroup to
the bitlines

ISO
Signal to turn on/off the isolation transistors, to
connect/disconnect the priority encoder from

a BLgroup

SEL Signal to the MUXEs that enables the selection of
a SA reference voltage (𝑉𝑅𝐸𝐹)

L1 Signal to enable the latch for the binary result

The BLgroup illustrated in Fig. 6.4 has 4 bitlines, i.e., 𝐵𝐿0, 𝐵𝐿1, 𝐵𝐿2, 𝑎𝑛𝑑 𝐵𝐿3. These
bitlines correspond to four DRAM bit-cells, i.e., mb0, mb1, mb2, and mb3, respectively.
From Fig. 6.4, each bitline is connected to a SA (highlighted in light yellow) and a pre-

Table 6.2: Toggle time stamps (↑ or ↓) for various timing signals to realize the four operational steps
of our AGNI substrate.

Activate 0ns (𝐸𝑄 ↑) 5ns (𝐸𝑄 ↓) 7ns (𝑊𝐿 ↑) 9ns (𝑠𝑒𝑛𝑠𝑒 𝑛 ↑) 12ns (𝑊𝐿 ↓)

S to A 13ns (𝐾1 ↑) 37ns (𝐾1 ↓ 𝑠𝑒𝑛𝑠𝑒 𝑛 ↓)

A to U 38ns (𝐸𝑄 ↑)(𝑆𝐸𝐿 ↓) 42ns (𝐸𝑄 ↓) 43ns (𝐵1 ↑) 45ns (𝑠𝑒𝑛𝑠𝑒 𝑛 ↑)

U to B 45ns (𝐼𝑆𝑂 ↑) 51ns (𝐿1 ↑) 52ns (𝐿1 ↓) 55ns (𝐵1 ↓ 𝐼𝑆𝑂 ↓)

48

charge unit (highlighted in light orange). Additionally, each bitline connects to one S to A
unit (highlighted in light red) and a A to U unit (highlighted in light green). Moreover,
all four bitlines of the BLgroup (i.e., 𝐵𝐿0, 𝐵𝐿1, 𝐵𝐿2, 𝑎𝑛𝑑 𝐵𝐿3) connect to one U to B unit
(highlighted in grey), which consists of one N:log2N priority encoder, one log2N-bit latch,
N isolation transistors (ISOs), one resistor ladder based voltage divider, and N multiplexers
that select the 𝑉𝑅𝐸𝐹 values for corresponding SAs. A 𝑉𝑅𝐸𝐹 value is either 𝑉𝐷𝐷/2 or an
appropriate level from the voltage divider. The selection of 𝑉𝑅𝐸𝐹 values from the voltage
divider enables the SAs to operate as voltage comparators that can provide analog-to-unary
conversion (just like flash ADC; Fig. 6.2). In the following subsections, we explain how the
toggling of various timing signals listed in Table 6.1 has to be AGNI signals orchestrated
to realize the four operational steps of AGNI substrate.

The exact time stamps for the toggling of these signals are summarized in Table 6.2. The
time evolution of these signals are also depicted in Fig. 6.5. Note that at the initialization,
these signals are in the OFF state. The time evolution of these signals triggers the voltage
levels corresponding to various DRAM structures (e.g., bitlines, analog capacitor, bit-cells)
to evolve, which is also illustrated in Fig. 6.5. We have evaluated various timing and voltage
signals depicted in Fig. 6.5 by modeling and simulating the circuit shown in Fig. 6.4 using
LTSpice.

DRAM Row Activation (Step 1)

The DRAM row activation step employs EQ, WL, and sense n (sense p) signals to
read the input stochastic operands into the SAs of their corresponding BLgroups. For this
step, EQ is first toggled ON (to a higher voltage level in Fig. 6.5) at 0 ns. At 0 ns, we
consider that SEL has been ON; therefore, at 0 ns, 𝑉𝑅𝐸𝐹 for the SAs has already been
selected to be 𝑉𝐷𝐷/2. As a result, the voltage on the bitlines swiftly settles to 𝑉𝐷𝐷/2 (see
the evolution of voltage on the bitlines in Fig. 6.5(d)). This step is conventionally known
is bitline pre-charging. We are able to achieve swift bitline pre-charging in AGNI because
we consider short bitline DRAM architecture with only 8 cells per bitline [111]. Then, EQ
is toggled OFF at 5 ns. Then, at 7 ns, WL is toggled ON. As a result, the DRAM cells (see
mb0, mb1, mb2, and mb3 in Fig. 6.4) connect to their respective bitlines (see 𝐵𝐿0, 𝐵𝐿1,
𝐵𝐿2, and 𝐵𝐿3 in Fig. 6.4) to start sharing their charge with the bitlines. Due to this charge
sharing, the voltage on the DRAM cells dips (see Fig. 6.5(e) at 7 ns) and the voltage on the
bitlines is perturbed (see Fig. 6.5(d) at 7 ns).

Then, at 9ns, sense n (sense p) is toggled ON (see Fig. 6.5(f)), which enables the SAs
to sense the perturbed bitline voltage and amplify it to the full swing. In Fig. 6.5(d), since
the bitline voltage perturbation is in the positive direction (corresponding to logic ’1’ stored
in the DRAM cells), the bitline voltage is swung to 𝑉𝐷𝐷 by the SAs. After this full-swing
amplification of bitline voltage perturbation, the SAs complete replenishing the DRAM cell
voltage at 11 ns. The perturbation amplification and cell replenishing both occur swiftly
because we consider the short bitline DRAM architecture for AGNI. Then, at 12 ns, WL is
toggled oFF, to disconnect the DRAM cells from the bitlines, to mark the end of the DRAM
row activation step.

Note, during this step, the bitline voltage evolution encounters transient noise at two
events, due to parasitic effects. First, at 5 ns when EQ is toggled OFF. This event is labeled

49

as glitch 1 in Fig. 6.5(d). Second, at 12 ns when WL is toggled OFF (labeled as glitch 2 in
Fig. 6.5(d)).

Figure 6.5: SPICE simulation for AGNI StoB substrate with N = 4. a)voltages of the precharge units
(𝑉𝑅𝐸𝐹) b)Equalizer (EQ) and Latching signals(L1), c) Wordline (WL) and SEL signals, d)Bitline
(BL) voltages e)DRAM cell capacitor voltage, f) sense n and isolation signal, g) charging (K1) and
discharging (B1), and h) capacitor voltage

S to A Conversion (Step 2)

At the end of the DRAM row activation Step 1, the values are latched into the SA.
Now, S to A Conversion step employs sense n (sense p), and 𝐾1 signals to conduct the
conversion of the read stochastic operands to analog voltage. In S to A peripheral unit
consist of a pass transistor and diode i.e., back biased nmos (see Fig. 6.3(c). Due to this
circuitry construction of the S to A unit, when K1 is toggled ON (to higher voltage in Fig.
6.5), SAs that stored with logic 1 are only connected to analog lane, and excluding the SAs
with logic 0. Here 𝐾1 lasts for a brief time of 25ns,i.e. toggle ON at 13ns ,and toggle OFF

50

at 37ns (see Fig. 6.5(g). At the end of 37ns, the stored value at the analog capacitor is the
equivalent to the total number of ones in the rate coded unary bit stream. To better explain
this concept, consider Fig. 6.6, which shows the analog capacitor voltage for N = 4 . Here
if all the input bit streams are logic 1 state (i.e., DRAM cells mb0=mb1=mb2=mb3= logic
1), then the capacitor voltage captured at 52ns is 514mV. This voltage is also called the
𝑉𝑀𝐴𝑋 . Table 6.3 shows the 𝑉𝑀𝐴𝑋 for different BN lengths from 4 bits to 8 bits.

Further, consider in AGNI StoB substrate with BLgroup size four (i.e., N = 4), if all the
DRAM cells are logic ’0’ expect one DRAM bitline cell is at logic ’1’ (i.e., mb3 = mb2
= mb1 = logic ’0’, mb0 = logic ’1’). Then the equivalent voltage captured in the analog
capacitor is 281mV. This Fig. 6.6 also shows that the charging sequence of the analog
capacitor, which starts at 13ns (𝐾1 = toggle ON) and ends at 37ns (𝐾1 = toggle OFF). The
timing sequence is Tabulated in Table 6.3 and the corresponding DRAM signals.

From Fig. 6.6 example with N = 4, we clearly see the four different levels of analog
voltages for four combinations of DRAM cell logic pattern. Similarly, for any BLgroup of
size N, AGNI’s S to A produce N different analog voltage. Hence the stored value at the
analog capacitor is the equivalent to the total number of ones in the rate coded unary bit
stream. This is the main principle of our novel AGNI’s S to A operation.

Figure 6.6: Analog capacitor voltage at different number of 1’s for 4 bit SN

A to U Conversion (Step 3)

As implied in the above Section 6.6 S to A stage, value of the stochastic number (SN) is
stored in the analog capacitor as equivalent analog voltage. Now, in A to U conversion step
employs 𝐸𝑄, 𝑆𝐸𝐿, 𝐵1, and 𝑠𝑒𝑛𝑠𝑒 𝑛 (𝑠𝑒𝑛𝑠𝑒 𝑝) to convert the analog voltage to transition
unary for successfully reading the value by priority encounter (This is similar to as we
explained in Section 6.3). Here AGNI initiate a new read operation sequence at 37ns with
𝐾1 being disabled (i.e., toggled OFF). Now the selection of the 𝑉𝑅𝐸𝐹 is from the resistance
ladder (i.e., 𝑆𝐸𝐿 toggle OFF, as shown in Fig. 6.5(c)). After the BL is equalized to the

51

Table 6.3: MAE, MAPE, RMSE, and 𝑉𝑀𝐴𝑋 of AGNI at different BLgroups lengths (N)

BN length N MAE MAPE% RMSE 𝑉𝑀𝐴𝑋 (𝑚𝑉)
4 bits 16 0.28 3.58 0.41 630
5 bits 32 0.41 3.93 0.50 715
6 bits 64 0.37 1.58 1.03 735
7 bits 128 0.29 0.97 0.43 755
8 bits 256 0.20 0.59 0.35 785

corresponding 𝑉𝑅𝐸𝐹 (as shown in Fig. 6.5(a)) at 42ns. We initiate toggle ON of 𝑠𝑒𝑛𝑠𝑒 𝑛
and 𝐵1 signals for discharging to the 𝐵𝐿. This charge sharing between analog capacitor
and BL is shown in Fig. 6.5(d). With the toggle ON of 𝐵1 signal, charge sharing initiation
at 45𝑛𝑠 a dip in analog capacitor voltage is observed (see Fig. 6.5(h)). Here SA perform
the function of the comparator similar to as explained in the Section 6.3. Now the SAs will
compare the voltages of analog capacitor (𝑉𝐴𝑁𝐺) with reference voltages(𝑉𝑅𝐸𝐹) generated
from the resistance ladder (i.e., 𝑉1, 𝑉2, 𝑉3, and 𝑉3 if N = 4) . In general, SA compares the
analog voltage to N node voltages from the resistance ladder. Here, if the analog voltage
is greater than the 𝑉𝑅𝐸𝐹 , the perturbation is +𝛿V change in the BL voltage and treated as
logic 1. Similarly, if the analog voltage 𝑉𝐴𝑁𝐺 is less than the 𝑉𝑅𝐸𝐹 , the perturbation is -𝛿V
change in the BL voltage and treated as logic 0. The value perceived by the SA will be in
the transition coded unary (see Section 6.3).

During this step, the BL also experiences a third voltage spike, due to switching 𝐵1
signal that leads to charge sharing between the BL and analog capacitor at 45ns. (labeled
as glitch 3 in Fig. 6.5(d)).

U to B Conversion (Step 4)

Here in this step the U to B employs 𝐼𝑆𝑂, 𝐿1, and 𝐵1 signals to perform the unary
coded to binary conversion. The unary transition coded number in previous stage (i.e.,
A to U Section 6.6) at 47ns is converted to binary value by using the priority encoder
(similar to the Section 6.3). Here we employs an isolation signal (ISO) to connect the
priority encoder to the BL as shown in Fig. 6.5(f). The sequence of this U to B starts with
𝐼𝑆𝑂 signal toggle ON (logic 1) at 45ns for a brief of 10ns and ends with toggle OFF at
55ns (see in Fig. 6.5(f)). AGNI wait for 7ns to avoid noise in priority encoder and avoid
the inaccuracy. Now the latching sequence signal L1 is initiated for 1ns, i.e, toggle ON at
51ns and ends with toggle OFF at 52ns (see Fig. 6.5(b)). The binary info is latched into the
log2N bit latch. At the end of 55ns with toggle OFF of signals (i.e., 𝐵1, 𝐼𝑆𝑂) is enforce.

Thus the full cycle of StoB is completed with four distinct steps (i.e, Step 1 -Step 4)
within 55ns. Finally, at the end of 55ns, a new stochastic operand is ready to perform the
StoB conversion.

The proposed AGNI design is re-configurable for any length of StoB based on the DRAM
BLgroups (see Fig. 6.3).

52

6.7 Evaluation

Overhead estimation for the peripheral units

We modeled the proposed design AGNIs on 2D DDR4 512 DRAM organizations for
45nm technology node using CACTI [113]. Also, each DRAM cell consumes 3𝐹2 area,
while the horizontal pitch is 3F. Further, the height of SA , precharge unit, and write
drivers consume 117F, 90F, and 27F respectively [114]. Additionally, the height of the
peripheral units of AGNI such as S to A, A to U and U to B consume 27F, 27F, and 110F
respectively. Therefore, the effective height of the proposed design AGNI design in 2D
DDR4 DRAM tile comes out to be 1934F.

In this Section, we also going to explain the area overhead estimate of the peripheral
units such as charge pump circuits required for the node voltages to perform the AGNI StoB
operations (i.e., A to U step, S to U step). For the analysis purpose, we can compute the
node voltage generated from the resistance ladder via charge pump (CP) [115] [116]. Table
6.4 provides the area overhead involved in CP circuits, dynamic power dissipation, area
of per charge pump (Acp), capacitance per CP, optimal stages in the CP (Nopt) referring
to [115], and total wasted power per CP for different BLgroups (N). From the calculation,
for N = 256 the total wasted power per CP is 6.85E-08mW. Similary, we have provided the
values for rest of the BLgroups N = 16, 32, 64, and 128.

Table 6.4: Charge pump area and power dissipation

N Nopt Ctotal
per CP(fF)

Acp
(um2)

Dynamic
power per

CP (W)

total
wasted power
per CP (mW)

16 2 0.017 0.0087 1.30E-09 3.91E-09
32 2 0.037 0.0186 2.74E-09 8.22E-09
64 2 0.076 0.038 5.55E-09 1.67E-08

128 2 0.154 0.077 1.12E-08 3.37E-08
256 2 0.316 0.158 2.28E-08 6.85E-08

Evaluation Setup

AGNI design is implemented at 45𝜂𝑚 gpdk technology node and LTSPICE as the
SPICE simulator to perform the transient AC analysis of our proposed StoB conversion.
We implemented the AGNI substrate for five BLgroups, i.e., with N = 16, 32, 64, 128, and
256 bits corresponding to binary operand lengths of 4, 5, 6, 7, and 8 bits respectively. Our
analysis is considered with DRAM bitlines (L) of size 512-bitlines. We employed the brute-
force method to consider all the combinations of the stochastic operands. Then we compute
the error introduced in the Stochastic to binary conversion with AGNI substrate. Also,
Table 6.5 provides the mean absolute error (MAE) (Eqn. 6.1), Mean absolute percentage
error (MAPE) (Eqn. 6.2), and Root mean square error (RMSE) (see Eqn. 6.3). Here, in
the below Eqn. (6.1 - 6.3), 𝑦𝑖 is the predicted value, 𝑥𝑖 is the actual value, and 𝑛 is the
total number of data points. Along with this above mentioned error parameters, we also

53

tabulated the 𝑉𝑀𝐴𝑋 for five different BLgroups, (i.e., for N = 16, 32, 64, 128, and 256 bits)
from SPICE simulation.

To analyze the performance of AGNI StoB in a DRAM converter, we are comparing it
with two in-situ popcounters (PCs), i.e., parallel pop counter and serial pop counter. Further,
the values tabulated in Table 6.5 are considered for in-memory computing accelerators with
a parallel pop counter for StoB conversion, used similar to SCOPE [3]. Likewise, the serial
counter’s latency value is considered for in-memory computing such as ATRIA [4]. Table
III shows the area, Energy delay product (EDP), and 𝑎𝑟𝑒𝑎 × 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 for the considered
prior works and AGNI.

𝑀𝐴𝐸 = (
𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑥𝑖)/𝑛) (6.1)

𝑀𝐴𝑃𝐸 =

(
1
𝑛

) 𝑛∑︁
𝑖=1

����(𝑥𝑖 − 𝑦𝑖𝑥𝑖

)���� (6.2)

𝑅𝑀𝑆𝐸 =

√︄(∑𝑛
𝑖=1(𝑦𝑖 − 𝑥𝑖)2

𝑛

)
(6.3)

Results and Discussions

The results show that the mean absolute error of AGNI substrate at higher binary operand
(BN) lengths are better than lower bits. The reason for this degradation in the lower bit is
due to the effects of parasitic capacitance. Hence, the MAE of the AGNI substrate with a
binary operand length of 4 bits is 0.28 higher than the MAE of 0.2 at 8-bit BN length, as
shown in Table 6.3.

Similarly, the mean absolute percentage error (MAPE) of AGNI substrate is 3.58% and
0.59% at 4-bit binary operand length and 8 bits, respectively. Also, as shown in Table 6.3,
the RMSE values at 4 bits and 8 bits BN lengths are 0.41 and 0.35.

From simulation results, our proposed design AGNI outperformed parallel PC in terms
of area and energy savings. Our design demonstrated an area and EDP saving of 390× and
28×, respectively, at 4 bits binary length over parallel PC, as shown in Table 6.5. Further,
AGNI showed significant EDP and area savings with higher BN lengths. This improvement
in our proposed design comparison to parallel PC is the exponential requirement of full
adders components for partial summing [117]. For example, area saving and EDP saving
of 923× and 350×, respectively, are recorded for 8-bit binary operand length. Parallel PC
has a slight edge on the latency over AGNI, but our proposed design saves significant EDP
and area saving justifies this increase in latency.

Similarly, we compared our novel design with a serial PC. The simulation result shows
enormous savings in EDP. Due to the factor of the serial counter being cycle based, we
observed our designs gained EDP savings of 59× and 930× at 4 bits and 8 bits BN lengths
respectively. Further, AGNI also has better area saving over serial PC. From the simulation,
we observe 8× and 96× at 4 bits and 8 bits BN lengths, respectively.

Further, from Table 6.5, AGNI has an 𝑎𝑟𝑒𝑎 × 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 saving of 21× and 23× w.r.t.
Parallel PC and serial PC, respectively, at 4 bits binary operand length. Similarly, at higher

54

Table 6.5: Comparison of EDP, and AREA of prior StoB designs (Parallel PC [3], Serial PC [4]),
and AGNI

BN
operand
Length

Designs Area
(𝑚𝑚2)

EDP
(𝑛𝑠.𝑝𝐽)

Area.latency
(𝑚𝑚2.𝑛𝑠)

8
Parallel PC 24.180 7440.00 483.60
Serial PC 2.560 19660.80 655.36

AGNI 0.026 21.23 1.95

7
Parallel PC 11.700 2880.00 187.20
Serial PC 1.280 4915.20 163.84

AGNI 0.013 10.25 0.95

6
Parallel PC 5.460 1008.00 65.52
Serial PC 0.640 1228.80 40.96

AGNI 0.007 5.03 0.47

5
Parallel PC 2.340 288.00 18.72
Serial PC 0.320 307.20 10.24

AGNI 0.003 2.54 0.23

4
Parallel PC 0.780 36.00 2.34
Serial PC 0.160 76.80 2.56

AGNI 0.002 1.28 0.11

BN length, the AGNI’s 𝑎𝑟𝑒𝑎 × 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 significantly increases. i.e., 247× and 333× over
parallel and serial PC, respectively. Overall, our design has outperformed parallel and serial
PC in terms of area and energy.

For further reference, the simulation files of the AGNI substrate are provided in the
following link AGNI simulations link.

6.8 Conclusion and future scope

In this chapter, we have proposed a novel in-situ StoB converter AGNI for Deep learning
applications by leveraging the DRAM circuitry. The design uses a novel technique of
converting the input stochastic bit stream into an equivalent analog voltage. This analog
voltage is fed into the flash ADC to convert to a unary number. Next, a unary value is
sensed by the priority encoder to extract the binary value. Converting stochastic to unary
mitigate in AGNI, the use of area in-efficient counter-based technique as, in prior works [4]
is mitigated. The results illustrate that the area overhead for peripheral units such as S to A,
A to U, and U to B is minimal i.e., 4% for 8 bits BN length. AGNI has a significant
EDP saving of 350× over parallel PC. These results corroborate the excellent capabilities
of AGNI for accelerating the stochastic in-memory accelerator for deep CNNs.

This chapter can be used as a pathfinder to further enhance the StoB conversion, with
even better latency and EDP saving. There is a lot of scope for improvising the timing and
unary conversion method. This research can even be pushed to a deeper sub-nano meter
technology node to analyze the performance.

55

https://github.com/SupreethMysore/AGNI_SPICE.git

Chapter 7 Conclusions

In summary, the report highlights the significant computational and memory require-
ments of Convolutional Neural Networks (CNNs) and the challenges they pose for traditional
von-Neumann computing architectures. To address these challenges, the report proposes
the Processing-In Memory (PIM) technique, which utilizes different memory technologies
such as DRAM and PCM, with Stochastic arithmetic and minimal add-on logic to reduce
the hardware requirements for CNN’s arithmetic operations.

The report presents designs for scalable Stochastic Number Generator (SNG), DRAM
CNN accelerator, non-volatile memory (NVM) class PCRAM-based CNN accelerator, and
DRAM-based stochastic to binary conversion (StoB) for in-situ deep learning. These de-
signs utilize stochastic computing to reduce the hardware requirements for CNN’s arithmetic
operations and enable energy and time-efficient processing of CNNs.

The report also identifies future research directions for the proposed designs, including
in-situ PCRAM-based SNG, ODIN, ATRIA, and AGNI, and presents initial findings for
these ideas. The proposed solution has the potential to significantly improve the energy
and time efficiency of CNNs, providing a promising path for the future of CNN-based
applications.

In conclusion, the report offers a comprehensive approach to address the challenges
of processing CNNs, and the proposed designs have opened up new research directions
and possibilities for the development of efficient and scalable CNN processing systems.
Overall, the proposed solution has the potential to enable the development of reliable PIM-
based systems with minimal hardware modifications and design complexity, providing a
promising path for the future of CNN-based applications.

56

Chapter 8 Future Direction 1: Optimized GDAC-based SNG, Analysis and
Mitigation of the Impacts of PCRAM Reliability Issues

8.1 Introduction

Our objective is to enhance the performance of the GDAC-SNG [118] and improve
its area and energy efficiency. Furthermore, we analyze the impact of reliability issues
on PCRAM-based SNGs and plan to propose mitigation techniques for these problems in
future work.

Generating a random bitstream to represent an N-bit binary number in the SC domain
using an LFSR-based SNG is not suitable for stochastic PIM-based CNN accelerators.
Thus, we are exploring PCRAM-based SNGs that leverage the inherent stochastic property
of phase change memory cells. However, resistance drift is a reliability issue that affects
PCRAM cells’ performance, as shown in Figure 8.1. We are conducting a thorough study to
understand the impact of these issues on our proposed PCRAM-based SNG (CAPSTONE).

To address these problems, we are designing a new SNG based on the concept of the
GDAC-based SNG [119] that offers better area optimization and lower latencies, as shown
in Figure 8.2.

Figure 8.1: Resistance Drift and broadening in the PCRAM row for SET and RESET state.

In the Stochastic computing (SC) domain, the circuit’s correlation and precision error
are critical metrics to measure Stochastic circuits’ performance as discussed in Chapter 6.
Thus, in this work, we aim to make a detailed analysis of the correlation and precision error
calculation, with and without the impact of physical variations, i.e., PCM drift resistance in
the GST material, which depends on the drift coefficient relevant to time and temperature.
Later, in this chapter, we also intended to introduce a Section on the mitigation technique
to neutralize the performance degradation impact on proposed SNGs due to PCM drift
resistance. Below are the key problems in the GDAC-SNG that we would like to solve.

8.2 Problems in the existing OPAMP-based SNG

The development of Phase Change Random Access Memory (PCRAM) technology
presents certain challenges that need to be addressed. Firstly, there is a need to reduce
the area and latency of operational amplifier (OPAMP) based SNGs. Secondly, correlation

57

Figure 8.2: Illustration of (A) PCRAM cell array, and (B) PCRAM resistance distributions for
SET and RESET cells. (C) block diagram of CAPSTONE PCRAM-based GDAC SNG without
opamp-summer circuit. (D) block diagram of PCRAM-based GDAC SNG [11] (E) PDF and CDF
voltage mapping of 2𝑁 PCRAM cells. (F) flow chart of the CAPSTONE (G) passive averager.

errors need to be addressed to improve the accuracy of PCRAM. Lastly, precision errors due
to PCM resistance drift need to be mitigated to ensure the stable and reliable performance
of the technology. These challenges require further research and development in the field
of PCRAM to overcome and improve the functionality of the technology.

8.3 Key ideas/Approaches

To address the correlation issue, we plan to exploit the properties of PCRAM cells to
manipulate the correlation of the generated stochastic numbers(as shown in Figure 8.2).
Additionally, we aim to use the voltage drift method to solve the correlation error issue of
the PCRAM-based SNG (as shown in Figure 8.3). These proposed solutions require further
research and development to improve the functionality and reliability of the PCRAM-based

58

Figure 8.3: Correlation Manipulation: (A) positive correlation manipulation, (B)Negative correla-
tion, and (C) uncorrelated.

SNG.

8.4 Goals of this work

The objectives of this work are multi-fold. Firstly, we aim to design a PCRAM-based
SNG called CAPSTONE that is energy-efficient and has a small area footprint. CAPSTONE
will incorporate a passive averager-based summer circuit. Secondly, we plan to analyze
the impact of physical variations in PCRAM cells on the performance of CAPSTONE,
particularly resistance drift under different temperature and time conditions. We will also
study the correlation and precision error of CAPSTONE and explore mitigation techniques
for corresponding machine-learning applications. Finally, we will compare CAPSTONE’s
performance with that of other state-of-the-art SNGs such as Halton, VDC (Sobol), and
LFSR [8] [120] [121].

59

Chapter 9 Future direction 2: PSCA – Stochastic Computing based In-PCRAM
Accelerator for CNN Processing

In this work, we are reusing the framework of our previous work ODIN [118] for CNN
acceleration with minimal reads and write operations. In our previous work ODIN [118],
the proposed system has increased the speed of operation by 90.8× over ISAAC crossbar-
based state-of-the-art accelerator. However, there are many reads and writes for a single
MAC operation in the ODIN framework, which will impact the endurance of the PCRAM
cells.

9.1 Motivation

PCRAM has the potential to enable high-performance, in-situ CNN acceleration using
stochastic computing. However, the existing ODIN-based PCRAM CNN accelerator suf-
fers from the drawback of requiring multiple read and write operations for a single MAC
operation, leading to increased latency. To overcome this limitation, we propose PSCA - a
novel Stochastic Computing-Based In-PCRAM Computing Accelerator for CNN Process-
ing. PSCA leverages the bit-parallel accumulation technique introduced in our previous
work, ATRIA [4], to significantly reduce latency for MAC operations. Specifically, PSCA
uses the MUX available at the PCRAM memory bank level to perform multiplication and
accumulation within just two memory operation cycles (MOCs) for 32 stochastic numbers,
each with a 256-bit length.

9.2 Challenges

PCRAM, as a memory device, requires larger sense amplifiers (SAs) when compared to
charge-based memory devices such as DRAM. Because of this requirement for larger SAs,
a single SA is shared by multiple PCRAM bit lines, typically 32-bit lines, which results in a
shortage of resources in the PCRAM subarray for computing. This is a significant issue that
must be addressed when designing PCRAM-based systems. Additionally, there are latency
issues associated with PCRAM when compared to DRAM. The read and write memory
operation times are larger in PCRAM cells than in DRAM cells, which can negatively
impact system performance. It is essential to consider these factors when designing and
optimizing systems that rely on PCRAM as their primary memory device.

9.3 Idea

Below are the steps to follow for the implementation of our proposed design in the
PCRAM-based memory chip:

• The memory chip capacity we considered is 8 Gb (1 GB) capacity, 1 rank, 8 chips
per rank, 8 banks per chip, and 64 subarrays per bank.

60

• Thus, the total number of processing engines will be 4096 PEs, which is equal to 66
𝑚𝑚2 with add-on logic overheads.

• We are considering a small tile size with only 256 cells per Bitline because 𝑇𝑅𝐶𝐷 will
be reduced.

• MUX is already a part of PCRAM, but it is shared among all partitions, so no PALP
is available for computing, only for data movement.

• The overhead for the proposed framework would be to add 512 4-bit random select
codes for 512 MUXs and 512 4-bit latches.

• The memory controller changes are as follows:

– Hierarchical controllers constitute subarray-level controllers, bank-level con-
trollers, and rank-level controllers.

– Subarray-level controllers govern intra-subarray data movement and in-RAM
and in-peripherals feature extraction computing.

– Bank-level controllers govern inter-subarray data movement.
– Each subarray level controller contains a feature extraction block (FEB) that

implements S-to-B, pooling, activation, and B-to-S, as well as input and output
queues and FSMs for time control.

– Bank-level controllers implement subarray-wise input-output queues and FSMs
for control.

• The Stochastic to binary conversion (S-to-B) and binary to Stochastic conversion
(B-to-S) of all parameters are summarized below:

– BtoS: All parameters (weights and activation values) can be stored in memory
in the Stochastic domain to begin with, so at the beginning, store all weights
and input activation values in the Stochastic domain.

– StoB: For each output activation value, the corresponding Stochastic inner
product result gets converted to binary, then pooling and activation are carried
out. It is then converted back to Stochastic and passed on to the bank-level
controller.

9.4 Aim of this work

The aim of this work is summarized as follows: -

• We are going to design the MUX-based bit-parallel Stochastic accumulation approach
to perform 32 MAC operations within 5 MOCs (memory operation cycles).

• Compare PSCA with the state-of-the-art Stochastic computing-based accelerator
SCOPE [3], Binary variant of DRAM-based PIM accelerator DRISA [108], and
NVM based accelerator PRIME [106] on selected CNN applications.

61

• Later, we are planning to include the endurance calculation and mitigation technique
of PSCA for different memory configurations.

• Finally, we intend to analyze the accuracy of PSCA with respect to existing CNN
accelerators such as SCOPE H2D/SCOPE VANILLA [3].

62

Chapter 10 Future Direction 3: In-DRAM BtoS Conversion with Variable
Parametric Precision for Improving the Performance of CNN Applications

10.1 Motivation

Not all CNN applications require the same parametric precision, and different features
of a CNN model may have different precision requirements. As a first step towards in-
DRAM B-to-S conversion for CNN applications with parametric precision requirements,
we propose future work. Due to the progression of precision, even using only the 4 to 6 most
significant bits (MSBs) of an input binary number to determine the target 𝑇𝑅𝐶𝐷 for B-to-S
conversion is feasible. From the initial observation, accuracy degradation of the proposed
design by considering the significant 4 to 6 MSBs is tolerable, especially for inherently
error-tolerant applications such as CNNs, achieving up to 93.75% to 98.43% accuracy in
the converted stochastic numbers (SNs).

Figure 10.1: (a) Gaussian distribution of DRAM 𝑇𝑅𝐶𝐷 activation time, b) DRAM peripheral
connection with addon logic variable timer, (c) enlarged portion of the variable timer with enabled
connection to the sense amplifier.

10.2 Idea

Below are the key highlights of the proposed ideas.

• The working principle is the same as GDAC-SNG but, here the normal distribution
of 𝑇𝑅𝐶𝐷 timing parameter of DRAM cells is considered instead of the PCRAM cell
resistance. Figure 10.1(a) shows the 𝑇𝑅𝐶𝐷 probabilistic distribution (PDF) of this
DRAM cells row.

• To explain, consider binary number (B) from 𝐵𝑁 𝑡𝑜𝐵1 as shown in Figure 10.1(c),
where we considered only the starting 4 most-significant bits for the GDAC compu-

63

tation (i.e., BN to BN-2), and rest of bits are ignored from the 𝑇𝑅𝐶𝐷 delay calculation
(i.e., BN-3 to B1).

• To give a better understanding, consider a 9-bit binary input (B), i.e., N=9, and with
the proposed design idea, it considers only B9 to B6 for B-to-S computation. For this
9-bit binary number to be represented in the stochastic domain successfully without
precision error, we need 29 DRAM cells (i.e., 512 cells). Consider Figure 10.1(a),
which represents the Gaussian distribution of 512 cells in a DRAM row with respect
to the 𝑇𝑅𝐶𝐷 activation parameter.

• If the 𝐵9 binary bit value is 1, then 50% of the DRAM cells are read as logic ’1’
(i.e., 256 out of 512 DRAM cells). Similarly, if B9 and B8 are 1’s, then 75% of the
DRAM cells are read as logic ’1’ (i.e., 384 cells out of 512 cells).

• Likewise, if 𝐵9, 𝐵8, 𝐵7, 𝑎𝑛𝑑𝐵6 values are 1’s, then 93.75% of the DRAM cells are
read as logic ’1’ (i.e., 256 out of 512 DRAM cells).

• Thus, we can have 93.75% precision accuracy for the proposed SNG with just 4 bits
into consideration for B-to-S computation.

• The only add-on logic of the proposed design is the variable timer circuit in the
DRAM cell array, as shown in Figure 10.1(b).

• The arrangement of the variable timer circuitry is as shown in Figure 10.1(c), with 16
saturation counters (i.e., 𝐶1𝑡𝑜𝐶16) and pull-down transistors (i.e., N1 to N16). These
pulldown transistors’ output corresponds to 16 𝑇𝑅𝐶𝐷 timing values from t0 to 𝑡93.75,
as shown in Figure 10.1(a).

• Here in Figure 10.1(c), the output enables signal (EN) from the 4:16 decoder is
connected to the enable signal of the sense amplifier, which corresponds to the 𝑇𝑅𝐶𝐷
timing, causing the sense amplifier (SA) to be active.

• Upon initial observation, it appears that the proposed design’s accuracy degradation
when considering only the significant 4 to 6 MSBs is acceptable, particularly for
applications that are inherently error-tolerant, such as CNNs.

64

Bibliography

[1] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of deep neural
networks: A tutorial and survey,” IEEE JPROC, pp. 2295–2329, 2017.

[2] R. Zunino and P. Gastaldo, “Analog implementation of the softmax function,” in
IEEE International Symposium on Circuits and Systems (ISCAS), vol. 2, 2002, pp.
II–II.

[3] S. Li et al., “Scope: A stochastic computing engine for dram-based in-situ accelera-
tor,” in MICRO, 2018, pp. 696–709.

[4] S. M. Shivanandamurthy et al., “Atria: A bit-parallel stochastic arithmetic based
accelerator for in-dram cnn processing,” in IEEE ISVLSI, 2021, pp. 200–205.

[5] C. Szegedy et al., “Going deeper with convolutions,” in CoRR, vol. abs/1409.4842,
2014. [Online]. Available: http://arxiv.org/abs/1409.4842

[6] Chandra et al., “Low power high performance priority encoder using 2d-array to
3d-array conversion,” Procedia Computer Science, vol. 171, pp. 1037–1045, 2020.

[7] M. K. Qureshi et al., “Scalable high-performance main memory system using phase-
change memory technology,” in SIGARCH. ACM, 2009.

[8] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 12, no. 2s, p. 92, 2013.

[9] A. Ren, Z. Li, C. Ding, Q. Qiu, Y. Wang, J. Li, X. Qian, and B. Yuan, “Sc-dcnn:
Highly-scalable deep convolutional neural network using stochastic computing,” in
ACM ASPLOS, 2017.

[10] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester, D. Blaaauw,
and R. Das, “Neural cache: Bit-serial in-cache acceleration of deep neural networks,”
ACM ISCA, pp. 383–396, 2017.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in Neural Information Processing Sys-
tems, vol. 25, 2012, pp. 1097–1105.

[12] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, and
N. Sun, “Dadiannao: A machine-learning supercomputer,” IEEE MICRO, pp. 609–
622, 2014.

[13] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

65

http://arxiv.org/abs/1409.4842

[14] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in IEEE CVPR, 2015,
pp. 1–9.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in IEEE CVPR, 2016, pp. 770–778.

[16] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee, and V. Srinivas,
“Cacti 7: New tools for interconnect exploration in innovative off-chip memories,”
ACM Transactions on Architecture and Code Optimization, vol. 14, no. 2, pp. 1–25,
2017.

[17] Q. Lou, C. Pan, J. McGuinness, A. Horvath, A. Naeemi, M. Niemier, and X. S. Hu,
“A mixed signal architecture for convolutional neural networks,” ACM Journal on
Emerging Technologies in Computing Systems, vol. 15, no. 2, pp. 1–26, 2019.

[18] B. Zamanlooy and M. Mirhassani, “Efficient VLSI implementation of neural net-
works with hyperbolic tangent activation function,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 22, no. 1, pp. 39–48, 2013.

[19] Q. Deng, L. Jiang, Y. Zhang, M. Zhang, and J. Yang, “Dracc: A DRAM based accel-
erator for accurate CNN inference,” in IEEE/ACM Design Automation Conference
(DAC), 2018, pp. 1–6.

[20] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, “Prime: A novel
processing-in-memory architecture for neural network computation in reram-based
main memory,” in ACM/IEEE International Symposium on Computer Architecture
(ISCA), vol. 44, no. 3, 2016, pp. 27–39.

[21] X. Sun, S. Yin, X. Peng, R. Liu, J.-s. Seo, and S. Yu, “XNOR-RRAM: A scalable
and parallel resistive synaptic architecture for binary neural networks,” in IEEE/ACM
Design Automation and Test in Europe (DATE), 2018, pp. 1423–1428.

[22] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally,
“EIE: Efficient inference engine on compressed deep neural network,” in ACM/IEEE
International Symposium on Computer Architecture (ISCA), vol. 44, no. 3, 2016, pp.
243–254.

[23] B. Jacob, D. Wang, and S. Ng, Memory systems: cache, DRAM, disk. Morgan
Kaufmann, 2010.

[24] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” IEEE TECS, pp. 1–19,
2013.

[25] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhimenko, Y. Luo,
O. Mutlu, P. B. Gibbons, and M. A. Kozuch, “Rowclone: Fast and energy-efficient
in-dram bulk data copy and initialization,” IEEE MICRO, pp. 185–197, 2013.

66

[26] K. K. Chang, P. J. Nair, D. Lee, S. Ghose, M. K. Qureshi, and O. Mutlu, “Low-cost
inter-linked subarrays (lisa): Enabling fast inter-subarray data movement in dram,”
in IEEE HPCA, 2016, pp. 568–580.

[27] Z. Li, A. Ren, J. Li, Q. Qiu, Y. Wang, and B. Yuan, “Dscnn: Hardware-oriented
optimization for stochastic computing based deep convolutional neural networks,” in
IEEE ICCD, 2016, pp. 678–681.

[28] I. G. Thakkar and S. Pasricha, “3d-prowiz: An energy-efficient and optically-
interfaced 3d dram architecture with reduced data access overhead,” IEEE TMSCS,
vol. 1, no. 3, pp. 168–184, 2015.

[29] S. Li et al., “Scope: A stochastic computing engine for dram-based in-situ accelera-
tor,” in Proc. MICRO, 2018.

[30] K. Kim et al., “An energy-efficient random number generator for stochastic circuits,”
in Proc. ASPDAC, 2016.

[31] I. G. Thakkar et al., “Dyphase: A dynamic phase change memory architecture with
symmetric write latency and restorable endurance,” IEEE TCAD, 2017.

[32] G. W. Burr et al., “The inner workings of phase change memory: Lessons from
prototype pcm devices,” in IEEE Globecom, 2010.

[33] L. Jiang et al., “A low power and reliable charge pump design for phase change
memories,” in Proc. ISCA, 2014.

[34] H. F. Chen et al., “Emat: An efficient multi-task architecture for transfer learning
using reram,” in 2018 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), 2018, p. 1.

[35] L. Chang et al., “Corn: In-buffer computing for binary neural network,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2019.

[36] H. Mao, “Lergan: A zero-free low data movement and pim-based gan architecture,” in
Microarchitecture (MICRO) 2018 51st Annual IEEE/ACM International Symposium
on. IEEE, 2018, pp. 669–681.

[37] H. Zhang, “Stateful reconfigurable logic via a single-voltage-gated spin hall-effect
driven magnetic tunnel junction in a spintronic memory,” IEEE Transactions on
Electron Devices, vol. 64, no. 10, pp. 4295–4301, 2017.

[38] L. Wang, “Voltage-controlled magnetic tunnel junctions for processing-in-memory
implementation,” IEEE Electron Device Letters, vol. 39, no. 3, pp. 440–443, 2018.

[39] J. Yu, J. Wu, J. Guo, G. Li, J. Li, L. Li, and Q. Li, “Memristive devices for
computation-in-memory,” in 2018 Design, Automation Test in Europe Conference
Exhibition (DATE). IEEE, 2018, pp. 1646–1651.

67

[40] S. Angizi, M. Daneshtalab, and P. Liljeberg, “Pima-logic: A novel processing-in-
memory architecture for highly flexible and energy-efficient logic computation,” in
2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE, 2018,
pp. 1–6.

[41] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu,
R. S. Williams, and V. Srikumar, “ISAAC: A convolutional neural network accelera-
tor with in-situ analog arithmetic in crossbars,” ACM ISCA, vol. 44, no. 3, pp. 14–26,
2017.

[42] B. Zamanlooy, M. J. Abdollahi Azgomi, and S. Sasanian, “Efficient vlsi imple-
mentation of neural networks with hyperbolic tangent activation function,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22, no. 1, pp.
39–48, 2013.

[43] J. Yue, “Aeris: area/energy-efficient 1t2r reram based processing-in-memory neural
network system-on-a-chip,” p. 146, 2019.

[44] D. Fan and S. Angizi, “Energy efficient in-memory binary deep neural network ac-
celerator with dual-mode sot-mram,” in IEEE International Conference on Computer
Design (ICCD), 2017.

[45] T. Sun, “Fbl (flexible block-wise loading) algorithm for effective resource alloca-
tion in ofdma systems with reduced uplink feedback information,” in IEEE 19th
International Symposium on Personal, Indoor and Mobile Radio Communications,
2008.

[46] A. Agrawal et al., “X-sram: Enabling in-memory boolean computations in cmos
static random-access memories,” Circuits and Systems I: Regular Papers IEEE Trans-
actions on, vol. 65, no. 12, pp. 4219–4232, 2018.

[47] D. Nguyen et al., “Memristive devices for computing: Beyond cmos and beyond
von neumann,” in Very Large-Scale Integration (VLSI-SoC) 2017 IFIP/IEEE Inter-
national Conference on, 2017, pp. 1–10.

[48] S. Li et al., “Pinatubo: A processing in-memory architecture for bulk bitwise opera-
tions in emerging nonvolatile memories,” in DAC, 2016.

[49] F. F. Parveen, “Hielm: Highly flexible in-memory computing using stt mram,” in
Design Automation Conference (ASP-DAC) 2018 23rd Asia and South Pacific, 2018,
pp. 361–366.

[50] S. Li et al., “Pinatubo: A processing in-memory architecture for bulk bitwise opera-
tions in emerging nonvolatile memories,” in DAC, 2016.

[51] M. Nourazar et al., “Code acceleration using memristor-based approximate matrix
multiplier: Application to convolutional neural networks,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 26, no. 12, pp. 2684–2695, 2018.

68

[52] L. Chang, “Dasm: Data-streaming-based computing in nonvolatile memory archi-
tecture for embedded system,” Very Large-Scale Integration (VLSI) Systems IEEE
Transactions on, vol. 27, no. 9, pp. 2684–2695, 2018.

[53] W. Kang and et al., “In-memory processing paradigm for bitwise logic operations in
stt–mram,” IEEE Transactions on Magnetics, vol. 53, no. 11, pp. 1–4, 2017, art no.
6202404.

[54] K. Shin, J.-Y. Park, M. Kim, S. Lee, and T. Kim, “Mcdram: Low latency and
energy-efficient matrix computations in dram,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 37, no. 11, pp. 2613–2622,
2018.

[55] Q. Deng, W. Jiang, J. Cong, X. Qian, and B. Liu, “Lacc: Exploiting lookup table-
based fast and accurate vector multiplication in dram-based cnn accelerator,” in
Design Automation Conference (DAC) 2019 56th ACM/IEEE, 2019, pp. 1–6.

[56] C. Eckert, P. Chi, R. Diamant, A. Gao, and D. Yang, “Neural cache: Bit-serial
in-cache acceleration of deep neural networks,” in ISCA, 2018.

[57] S. Gupta, S. Venkataramani, and K. Roy, “Nnpim: A processing in-memory archi-
tecture for neural network acceleration,” Computers IEEE Transactions on, vol. 68,
no. 9, pp. 1325–1337, 2019.

[58] Q. Den et al., “Lacc: Exploiting lookup table-based fast and accurate vector multi-
plication in dram-based cnn accelerator,” in IEEE DAC, 2019, pp. 1–6.

[59] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun
et al., “Dadiannao: A machine-learning supercomputer,” IEEE MICRO, pp. 609–
622, 2014.

[60] L. N. Smith and N. Topin, “A disciplined approach to neural network hyper-
parameters: Part 1–learning rate, batch size, momentum, and weight decay,” arXiv
preprint arXiv:1803.09820, 2018.

[61] S. Gupta, S. Venkataramani, and K. Roy, “Rapid: A reram processing in-memory
architecture for dna sequence alignment,” in Low Power Electronics and Design
(ISLPED) 2019 IEEE/ACM International Symposium on, 2019, pp. 1–6.

[62] Chen, “Dadiannao: A machine-learning supercomputer,” in IEEE MICRO, 2014,
pp. 609–622.

[63] Liu et al., “Scaling analysis of nanowire phase change memory,” IEEE Electron
Device Letters, vol. 32, no. 9, pp. 1174–1189, 2011.

[64] S. Angizi and et al., “Rimpa: A new reconfigurable dual-mode in-memory process-
ing architecture with spin hall effect-driven domain wall motion device,” in IEEE
Symposium on VLSI, 2017.

69

[65] W. Shen and et al., “Stateful logic operations in one-transistor-one-resistor resistive
random access memory array,” IEEE Electron Device Letters, vol. 40, no. 9, pp.
1538–1541, 2019.

[66] L. Xie, “A mapping methodology of boolean logic circuits on memristor crossbar,”
Computer-Aided Design of Integrated Circuits and Systems IEEE Transactions on,
vol. 37, no. 2, pp. 311–323, 2018.

[67] H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma, “A 64-tile 2.4-mb in-memory-
computing cnn accelerator employing charge-domain compute,” IEEE Journal of
Solid-State Circuits, 2019.

[68] L. Jiang, “Xnor-pop: A processing-in-memory architecture for binary convolutional
neural networks in wide-io2 drams,” in Low Power Electronics and Design (ISLPED
2017 IEEE/ACM International Symposium on, 2017, pp. 1–6.

[69] S. Angizi, “Dima: A depthwise cnn in-memory accelerator,” in Computer-Aided
Design (ICCAD) 2018 IEEE/ACM International Conference on, 2018, pp. 1–8.

[70] J. Sim et al., “Lupis: Latch-up based ultra-efficient processing in-memory system,”
in Quality Electronic Design (ISQED) 2018 19th International Symposium on, 2018,
pp. 55–60.

[71] D. Reis et al., “A computing-in-memory engine for searching on homomorphically
encrypted data,” Exploratory Solid-State Computational Devices and Circuits IEEE
Journal on, vol. 5, no. 2, pp. 123–131, 2019.

[72] Madhavan et al., “High-throughput pattern matching with cmol fpga circuits: Case
for logic-in-memory computing.” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 12, no. 26, pp. 2759–2752, 2018.

[73] H. Mao et al., “Lergan: A zero-free low data movement and pim-based gan archi-
tecture,” in Microarchitecture (MICRO) 2018 51st Annual IEEE/ACM International
Symposium on, 2018, pp. 669–681.

[74] S. Angizi, Z. Shi, M. Gao, M. Xie, and Y. Zhang, “Graphs: A graph processing
accelerator leveraging sot-mram,” in Design Automation Test in Europe Conference
Exhibition (DATE), 2019, pp. 378–383.

[75] S. Jain, A. Sengupta, and K. Roy, “Computing-in-memory with spintronics,” in
Design Automation Test in Europe Conference Exhibition (DATE), 2018, pp. 1640–
1645.

[76] M. Xie, Y. Zhang, S. Angizi, M. Gao, and Z. Shi, “Aim: Fast and energy-efficient
aes in-memory implementation for emerging non-volatile main memory,” in Design
Automation Test in Europe Conference Exhibition (DATE), 2018, pp. 625–628.

[77] X. Williams and N. Mahapatra, “Analysis of recent trends in automatic object identi-
fication,” in International Conference on Computational Science and Computational
Intelligence (CSCI), 2019.

70

[78] W. Burr, “Experimental demonstration and tolerancing of a large-scale neural net-
work (165,000 synapses) using phase-change memory as the synaptic weight ele-
ment,” in IEEE TED, 2015.

[79] P. Chi et al., “Prime: A novel processing-in-memory architecture for neural net-
work computation in reram-based main memory,” in Computer Architecture (ISCA)
ACM/IEEE 43rd Annual International Symposium on, 2016, pp. 27–39.

[80] M. Gao, P. Li, and H. Yang, “Tangram: Optimized coarse-grained dataflow for
scalable nn accelerators,” in Proceedings of the Twenty-Fourth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems.
ACM, 2019, p. 807.

[81] S. Angizi et al., “Imce: Energy-efficient bit-wise in-memory convolution engine for
deep neural network,” in Design Automation Conference (ASP-DAC) 2018 23rd Asia
and South Pacific, 2018, pp. 111–116.

[82] K. Zou, X. Gao, X. Wu, X. Duan, W. Liu, and H. Wang, “Xorim: A case of
in-memory bit-comparator implementation and its performance implications,” in
Design Automation Conference (ASP-DAC) 2018 23rd Asia and South Pacific. IEEE,
2018, pp. 349–354.

[83] S. Hamdioui et al., “Guest editorial memristive-device-based computing,” Very
Large-Scale Integration (VLSI) Systems IEEE Transactions on, vol. 26, no. 12, pp.
2581–2583, 2018.

[84] L. Yang et al., “Optimal application mapping and scheduling for network-on-chips
with computation in stt-ram based router,” Computers IEEE Transactions on, vol. 68,
no. 8, pp. 1174–1189, 2019.

[85] V. Seshadri et al., “Ambit: In-memory accelerator for bulk bitwise operations using
commodity dram technology,” IEEE MICRO, vol. 37, no. 4, pp. 273–287, 2017.

[86] V. Sze et al., “Efficient processing of deep neural networks: A tutorial and survey,”
IEEE JPROC, vol. 105, no. 12, pp. 2295–2329, 2017.

[87] L. Jiang et al., “A low power and reliable charge pump design for phase change
memories,” in Proc. ISCA, 2014.

[88] S. M. Shivanandamurthy et al., “A scalable stochastic number generator for phase
change memory based in-memory stochastic processing: work-in-progress,” in
CODES/ISSS, 2019.

[89] Z. Li et al., “Dscnn: Hardware-oriented optimization for stochastic computing based
deep convolutional neural networks,” in IEEE ICCD, 2016, pp. 678–681.

[90] C. Chandra et al., “Low-cost inter-linked subarrays (lisa): Enabling fast inter-subarray
data movement in dram,” in IEEE HPCA, 2013, pp. 568–580.

71

[91] S. Song et al., “Palp: Enabling and exploiting partition-level parallelism in phase
change memories,” ACM TECS, vol. 18, no. 3, p. 26, 2019.

[92] X. Chen and et al., “A high-throughput and energy-efficient rram-based convolu-
tional neural network using data encoding and dynamic quantization,” in Design
Automation Conference (ASP-DAC) 2018 23rd Asia and South Pacific, 2018, pp.
123–128.

[93] M. K. Qureshi et al., “Scalable high-performance main memory system using phase-
change memory technology,” in ISCA. ACM, 2009.

[94] Q. Deng, Y. Zhang, M. Zhang, and J. Yang, “Lacc: Exploiting lookup table-based
fast and accurate vector multiplication in dram-based cnn accelerator,” in DAC, 2019.

[95] S. Han et al., “Eie: Efficient inference engine on compressed deep neural network,”
in IEEE ISCA, vol. 44, no. 3. ACM, 2009, pp. 243–254.

[96] S. Xiaoyu, Y. Zhang, H. Li, Q. Hu, and L. Shi, “XNOR-RRAM: A scalable and
parallel resistive synaptic architecture for binary neural networks,” in Proceedings of
the Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2018, pp. 1423–1428.

[97] S. Li, A. O. Glova, X. Hu, P. Gu, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and
Y. Xie, “Scope: A stochastic computing engine for dram based in-situ accelerator,”
IEEE MICRO, pp. 696–709, 2018.

[98] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “Drisa: A dram-based
reconfigurable in-situ accelerator,” IEEE MICRO, pp. 288–301, 2017.

[99] A. Biswas et al., “Conv-sram: An energy-efficient sram with in-memory dot-product
computation for low-power convolutional neural networks,” in IEEE JSSC, vol. 54,
no. 1, pp. 217–230, 2018.

[100] A. D. Patil, Z. Miao, A. Shafiee, S. Venkataramani, and K. Sengupta, “An mram-
based deep in-memory architecture for deep neural networks,” in IEEE (ISCAS),
2019.

[101] B. L. Le and et al., “An efficient racetrack memory-based processing-in-memory
architecture for convolutional neural networks,” in IEEE International Symposium on
Parallel and Distributed Processing with Applications and 2017 IEEE International
Conference on Ubiquitous Computing and Communications (ISPA/IUCC), 2017, pp.
383–390.

[102] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch,
O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit: In-memory accelerator for
bulk bitwise operations using commodity DRAM technology,” IEEE MICRO, pp.
273–287, 2017.

72

[103] Shafiee et al., “Isaac: A convolutional neural network accelerator with in-situ analog
arithmetic in crossbars,” in IEEE ISCA, pp. 14–26, 2016.

[104] Han et al., “Eie: Efficient inference engine on compressed deep neural network,” in
IEEE ISCA, vol. 44, no. 3, pp. 243–254, 2016.

[105] v. Krizhe et al., “Imagenet classification with deep convolutional networks,” vol.
1097, 2010.

[106] Chi et al., “Prime: A novel processing-in-memory architecture for neural network
computation in reram-based main memory,” in IEEE ISCA, vol. 44, no. 3, pp. 27–39,
2016.

[107] X. Sun et al., “Xnor-rram: A scalable and parallel resistive synaptic architecture for
binary neural networks,” in IEEE DATE, 2018, pp. 1423–1428.

[108] S. Li et al., “Drisa: A dram-based reconfigurable in-situ accelerator,” in IEEE
MICRO, 2017, pp. 288–301.

[109] Q. Deng et al., “Dracc: A dram based accelerator for accurate cnn inference,” in
IEEE DAC, 2018, pp. 1–6.

[110] Balobas et al., “High-performance and energy-efficient 256-bit cmos priority en-
coder,” in IEEE ISVLSI, 2017, pp. 122–127.

[111] D. Lee et al., “Tiered-latency dram: A low latency and low cost dram architecture,”
in IEEE HPCA, 2013, pp. 615–626.

[112] L. Orosa et al., “Codic: A low-cost substrate for enabling custom in-dram function-
alities and optimizations,” in IEEE ISCA, 2021, pp. 484–497.

[113] Muralimanohar et al., “Cacti 6.0: A tool to model large caches,” vol. 27, p. 28, 2009.

[114] Chang et al., “Understanding reduced-voltage operation in modern dram devices:
Experimental characterization, analysis, and mechanisms,” in IEEE ACM, vol. 1,
no. 1, pp. 1–42, 2017.

[115] L. Jiang et al., “A low power and reliable charge pump design for phase change
memories,” in IEEE ISCA, pp. 397–408, 2014.

[116] I. G. Thakkar et al., “Dyphase: A dynamic phase change memory architecture with
symmetric write latency and restorable endurance,” in IEEE TCAD, vol. 37, pp.
1760–1773, 2017.

[117] K. Kim et al., “Approximate de-randomizer for stochastic circuits,” in IEEE ISOCC,
2015, pp. 123–124.

[118] S. M. Shivanandamurthy, I. G. Thakkar, and S. A. Saleh, “Odin: A bit-parallel
stochastic arithmetic based accelerator for in-situ neural network processing in phase
change ram,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
2021.

73

[119] D. Bhattacharjee, R. Devadoss, and A. Chattopadhyay, “Revamp: Reram based
vliw architecture for in-memory computing,” in Design, Automation Test in Europe
Conference Exhibition (DATE), 2017.

[120] S. H. H. Angizi et al., “Graphs: A graph processing accelerator leveraging sot-mram,”
in DATE. IEEE, 2019, pp. 378–383.

[121] S. Bavikadi, H. Hosseini, and A. Mahdi, “A review of in-memory computing archi-
tectures for machine learning application,” in Proc. GLSVLSI, 2020.

74

Supreeth Mysore Shivanandamurthy
supreethms@uky.edu

Education

• Masters of Technology in VLSI Designs, Vellore Institute of Technology, Vellore,
India, July 2015

• Bachelors of Engineering in Electronics and Communication, VTU University,
India, July 2013

75

mailto:supreethms@uky.edu

	A Phase Change Memory and DRAM Based Framework For Energy-Efficient and High-Speed In-Memory Stochastic Computing
	Recommended Citation

	Abstract
	Dedication
	Acknowledgments
	List of Figures
	List of Tables
	1 Introduction
	1.1 Contributions
	1.2 Report outline

	2 Background and Related Work
	2.1 Convolution Neural Networks (CNNs)
	2.2 State of art machine learning technique
	2.3 Processing in-memory (PIM)

	3 Scalable Stochastic Number Generator for Phase Change Memory (PCM) based In-memory Stochastic Processing
	3.1 Chapter Overview
	3.2 Background: Phase change memory
	3.3 Stochastic Number Generator
	3.4 Results
	3.5 Summary

	4 An Accelerator Based on Parallel SC for In-PCRAM Deep Learning Applications
	4.1 Chapter Overview
	4.2 Introduction
	4.3 Related work and motivation
	4.4 Phase change Ram (PCRAM) architecture
	4.5 Stochastic arithmetic
	4.6 ODIN Framework: overview
	4.7 Integration with heterogeneous computing system
	4.8 Hardware modifications in PCRAM banks
	4.9 Hardware for multiply-accumulate (MAC) operations
	4.10 Hardware for activation and pooling functions
	4.11 Implementation and hardware overheads
	4.12 Overheads of Hardware Modifications
	4.13 Conclusions

	5 A Parallel SC Based In-DRAM CNN Accelerator
	5.1 Chapter Overview
	5.2 Introduction
	5.3 Concept of Bit-Parallel Rate-Coded Unary (stochastic) computing
	5.4 ATRIA: Overview
	5.5 Evaluation
	5.6 Conclusions

	6 A Substrate for In-DRAM StoB for CNN Applications
	6.1 Abstract of the chapter
	6.2 Introduction
	6.3 Background and related work
	6.4 Proposed technique to convert the rate coded unary to temporal coded unary
	6.5 Overview of Our AGNI Substrate
	6.6 Operation of Our AGNI Substrate
	6.7 Evaluation
	6.8 Conclusion and future scope

	7 Conclusions
	8 Future Direction 1: Optimized GDAC-based SNG, Analysis and Mitigation of the Impacts of PCRAM Reliability Issues
	8.1 Introduction
	8.2 Problems in the existing OPAMP-based SNG
	8.3 Key ideas/Approaches
	8.4 Goals of this work

	9 Future direction 2: PSCA – Stochastic Computing based In-PCRAM Accelerator for CNN Processing
	9.1 Motivation
	9.2 Challenges
	9.3 Idea
	9.4 Aim of this work

	10 Future Direction 3: In-DRAM BtoS Conversion with Variable Parametric Precision for Improving the Performance of CNN Applications
	10.1 Motivation
	10.2 Idea

	Bibliography
	Vita

