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ABSTRACT OF DISSERTATION 

 
 
 

Application of Conventional Feedforward and Deep Neural Networks to Power 

Distribution System State Estimation and Forecasting 

 

Classical neural networks such as feedforward multilayer perceptron 

models (MLPs) are well established as universal approximators and as such, show 

promise in applications such as static state estimation in power transmission 

systems. This research investigates the application of conventional neural networks 

(MLPs) and deep learning based models such as convolutional neural networks 

(CNNs) and long short-term memory networks (LSTMs) to mitigate challenges in 

power distribution system state estimation and forecasting based upon conventional 

analytic methods. The ability of MLPs to perform regression to perform power 

system state estimation will be investigated. MLPs are considered based upon their 

promise to learn complex functional mapping between datasets with many features. 

CNNs and LSTMs are considered based upon their promise to perform time-series 

forecasting by learning the autocorrelation of the dataset being predicted. The 

performance of MLPs will be presented in terms of root-mean-square error (RMSE) 

between actual and predicted voltage magnitude and voltage phase angles and 

training execution time for distribution system state estimation (DSSE).  The 

performance of CNNs, and LSTMs will be presented in terms of RMSE between 

actual and predicted real power demand and execution time when performing 

distribution system state forecasting (DSSF). Additionally, Bayesian Optimization 

with Gaussian Processes are used to optimize MLPs for regression. An IEEE 

standard 34-bus test system is used to illustrate the proposed conventional neural 

network and deep learning methods and their effectiveness to perform power 

system state estimation and power system state forecasting respectively. 

 

KEYWORDS: artificial neural networks (ANNs), multilayer perceptron networks (MLPs), 

convolutional neural networks (CNNs), long short-term memory networks 

(LSTMs), distribution system state estimation (DSSE) 
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CHAPTER 1.  PURPOSE AND SIGNIFICANCE OF THE RESEARCH 

1.1 Research Purpose Statement 

In power systems an essential requirement is resiliency. In general, resiliency 

includes the ability of a power system to withstand and recover quickly from events that 

may be considered low-frequency, yet high-impact events or adverse conditions. Examples 

of such events or adverse conditions relate to but are not limited to the following: Extreme 

weather, Natural disasters, man-made outages (physical, cyber, coordinated), lack of 

observability, topology errors, and false data injection attacks (FDIAs) [12]. 

Ensuring robust state estimation in the presence of noisy environments and 

following a cyber-attack to the grid is critical [1]. The state estimation process seeks to 

provide an optimal estimation of the true values of bus voltages and angles and power 

flows across the power system [2]. Thus, state estimation provides the basis or 

enhancement for other power system applications such as system planning, optimization, 

fault analysis, protection, and fault location [3], [4], [5], [6].   

Artificial neural networks have been used in power distribution system state 

estimation. However, there is a lack of analysis and study of which types of ANNs and 

what structures including parameters are most suitable for state estimation applications. 

When designing an ANN for a state estimator, trial and error approach has been common 

and there is to the knowledge of the author of this dissertation no systematic method 

available to guide the process. 

This research aims to perform a comprehensive study of the performance of various 

types of ANNs with different structures and provides a possible optimization method to 

determine the optimal parameters for desired performance metrics. These parameters are 
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referred to as hyperparameters, including model parameters such as number of hidden 

layers and number of neurons in a layer, and algorithm parameters such as adjustable 

learning rate. This research will improve the training efficiency for large power systems. 

This research focuses on application of classical artificial neural networks and deep 

learning networks to distribution system state estimation (DSSE) and distribution system 

state forecasting (DSSF). There are various types of networks such as conventional 

feedforward multilayer perceptron networks (MLPs), convolutional neural networks 

(CNNs), recurrent neural networks (RNNs)/long short-term memory networks (LSTMs), 

and hybrid-neural networks utilizing a combination of network types. Preliminary results 

based on MLPs, CNNs, and LSTMs are presented in this research.  

Hyperparameters may be obtained using optimization methods such as but not 

limited to grid search, genetic algorithms, and Bayesian Optimization with Gaussian 

Processes.  Bayesian Optimization with Gaussian Processes was selected for this research.   

1.2 Dissertation Outline 

CHAPTER 2 presents the background and related work.  The objective of this 

chapter is to provide a background in state estimation and strengthen the case for 

application of deep learning to mitigate challenges of applying classical (analytical) 

techniques to modern power distribution systems. It starts with a review of conventional 

power system state estimation, observability, and resiliency.  It then considers state 

estimation applied to smart distributions systems.  Next, artificial neural networks and 

deep learning applied to power system state estimation, observability, topology errors and 

false data injection attacks are presented.  Next, distribution system state estimation is 

presented.  Included are key characteristics of transmission and distribution systems, 
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functional block diagrams of state estimation and an overview of a state estimator and 

related processes.  The chapter then presents challenges of applying conventional state 

estimation utilizing weighted least square method to distribution systems.  It is noted that 

data driven approaches utilizing deep learning can directly mitigate the challenges of 

applying conventional methods.  Then, a background and definition of challenges to all 

distribution systems such as lack of observability, topology errors and false data injection 

attacks is presented.  It is noted that these challenges exist in all power distribution 

systems and that deep learning may serve as part of solutions to address each.  It should 

also be noted that the research presented in this dissertation does not directly address 

these challenges and mitigation of the challenges is left for future research.   

Next, the chapter presents an introduction to deep learning models utilized in the 

remainder of the research on which this dissertation is based.  Conventional feedforward 

multilayer perceptron models (MLPs) are presented first.  This introduction of MLPs 

includes a visual representation of a perceptron building block of MLP networks and a 

multilayer perceptron model functional representation.  Next, this chapter presents an 

overview of convolutional neural networks and includes a functional representation of 

this model type.  The chapter concludes with a presentation of recurrent neural networks 

(RNNs) in general and long short-term memory networks (LSTMs) in particular.   

CHAPTER 3 presents distribution system state estimation (DSSE) with MLP 

models.  The objective of this chapter is to describe the process of training, testing and 

validating unoptimized MLP models and to introduce hyperparameter optimization based 

upon Bayesian Optimization with Gaussian Processes. It starts with a description of 

DSSE without hyperparameter optimization. Next, the test distribution utilized in the 
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research on which this dissertation is based, is described. The IEEE 34 Node base test 

distribution is presented. Then, the chapter continues with a description of the power flow 

simulation measurement points and quantities. This description includes details of the 

power monitors and voltage measurement locations and the quantities captured at each 

location in the test distribution system. The chapter continues with a description of the 

training, testing and validation data to be used with MLP models.  Next, the network 

model parameters and network hyperparameters for unoptimized conventional 

feedforward MLPs are presented.  Next, the chapter includes a description, details, and 

summary of the actual implementation of the unoptimized MLP model in Python.  Trial 

results for MLP models without hyperparameter optimization are presented.  It should be 

noted that the methodology described in this chapter is considered the “original” 

approach that involves “partial state estimation” owing to the limited monitor locations in 

the test base distribution system.  CHAPTER 4 will expand upon this methodology to 

yield full state estimation.  CHAPTER 3 also presents state estimation and forecasting 

based upon time series physics aware models.  Hourly temperature is considered to 

predict real power demand at the substation bus of the test base feeder system.  The 

average RMSE of real power, reactive power, voltage magnitude, and voltage phase is 

presented for forecast horizons of 24, 168, and 672 hours.  Next, the process of DSSE 

with MLPs with hyperparameter optimization is presented. Bayesian Optimization with 

Gaussian Processes is introduced along with the supporting theory and equations on 

which the Python implementation is based. Next, an example of a one dimensional test 

objective function is presented to illustrate all steps of the optimization process.  The 

chapter then continues with the practical implementation of Bayesian Optimization with 
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Gaussian Processes applied to previously unoptimized MLP models.  Trial results for the 

baseline MLP model without hyperparameter optimization are presented along with the 

hyperparameters selected via Bayesian Optimization.  The chapter ends with a 

presentation of the final optimized model configurations.  

CHAPTER 4 expands upon CHAPTER 3 to present full distribution system state 

estimation with optimized MLP models.  The main objective of CHAPTER 4 is to 

present an improved workflow and methodology over the methodology introduced in the 

early phases of the research on which this dissertation is based.  The chapter starts by 

summarizing the elements of the original workflow and data pipeline.  It presents details 

of the load profiles required, the distribution system simulator, the output of the 

simulator, data pre-processing required to establish the data sets required for training, 

testing and validating machine learning models and a description of the machine learning 

ecosystem that made application of MLPs to power distribution system state estimation 

described in CHAPTER 3 possible.  Next, an improved workflow and data pipeline is 

presented.  The load profile, distribution simulator and machine learning ecosystem are 

described.  Central to the improved workflow, is the introduction of a Python dynamic 

link library (DLL) that enables configuration and control of the distribution system 

simulator.  CHAPTER 4 continues with an explanation of how the updated methodology 

enables full system state estimation by considering all lines and resulting bi-directional 

power flow along with all node voltages and phase angles.  This contrasts with the 

previous methodology that utilized a limited number of lines and buses corresponding to 

the monitors placed in the test feeder system.  Next, the process of gathering training and 

testing data is presented.  Then, the process of randomly selecting lines is presented.  The 
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objective of using percentages of lines (10, 25, 50, 75 and 100) and associated bi-

directional power flow to predict complex voltages at all bus locations is presented.  

Next, unoptimized MLP models are compared with optimized MLP models to perform 

state estimation.  The optimized MLPs utilize Bayesian Optimization with Gaussian 

Processes.  Finally, the hyperparameters selected via Bayesian Optimization are 

presented.   The main takeaway from CHAPTER 4 is that an improved workflow and 

data pipeline enables full system state estimation, which dis not limited by the available 

monitors placed within the power simulator software.  The improved workflow enables 

the possibility of state estimation being applied to much larger distribution systems.  

Application and validation of the improved workflow to larger distributions systems is 

left to future research. 

CHAPTER 5 presents distribution system state forecasting with convolutional 

neural network models.  The objective of CHAPTER 5 is to demonstrate the ability of 

CNNs to be utilized in time-series forecasting. The chapter starts with an introduction to 

time-series forecasting and then presents a structured time series forecasting process.  

Next, data preparation for time-series forecasting with deep learning models is presented.  

Following data preparation, CHAPTER 5 presents hyperparameters selected for 

unoptimized CNN models.  Next, the practical implementation of an unoptimized CNN 

model for time series forecasting in Python is presented. A specific location in the test 

feeder system was selected to demonstrate the forecasting process. Plots for the actual 

and predicted real power, reactive power, voltage magnitude and voltage phase angle for 

an unoptimized CNN model are presented. Next, the effect of adjusting the learning rate 
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manually is presented along with a plot of the actual and predicted reactive power at a 

specific location.   

CHAPTER 6 presents distribution system state forecasting with long short-term 

memory models.  The objective of CHAPTER 6 is to demonstrate the ability of LSTMs 

to be utilized in time-series forecasting.  The chapter starts with data preparation for 

LSTMs and it is noted that the data preparation for time-series data is the same as that for 

CNNs.  Next, practical implementation of an unoptimized LSTM model for time series 

forecasting in Python are presented.  A specific location in the test feeder system was 

selected to demonstrate the forecasting process.  Plots for the actual and predicted real 

power, reactive power, voltage magnitude and voltage phase angle for an unoptimized 

LSTM model is presented.   

CHAPTER 7 presents a comparison of auto regressive models and convolutional 

neural networks for power distribution system time-series forecasting.  The objective is to 

demonstrate that for univariate time-series forecasting, classical and deep learning 

models should be considered as options. The chapter starts with an introduction to a 

“classical” machine learning model used for univariate time-series forecasting (ARIMA).  

Next, CHAPTER 5 is referenced for a review of CNN models and related 

hyperparameters as they will be utilized throughout the comparison. Then a practical 

ARIMA model implementation in Python is presented along with the locations in the test 

feeder on which time-series forecasting will be performed with this model type.  Then 

CHAPTER 7 presents a practical CNN model implementation in Python along with the 

locations in the test feeder on which time-series forecasting will be performed with this 

model type.  Next, the chapter presents plots of actual versus predicted real power, 
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reactive power, voltage magnitude and voltage phase angle at three separate locations in 

the test feeder for both ARIMA and CNN model types.  Finally, the root-mean squared 

errors (RMSE) for predicted values at each location is presented.   

CHAPTER 2. BACKGROUND AND RELATED WORK 

2.1 Introduction 

State estimation research and application has historically been largely focused on 

transmission systems as opposed to distribution systems.  With increasing developments 

of the “smart grid”, increased utilization of phasor measurement units (PMUs) and 

improvements in monitoring and communications, distribution system state estimation 

(DSSE) interest and research has greatly increased in recent years. 

The inherent challenges of application of “conventional” state estimation 

techniques to power distribution systems based upon weighted least squares is well 

established in the literature.  Application of MLPs, featuring feedforward architecture, to 

mitigate the challenges of applying weighted least squares, is also well established in the 

literature.  Additionally, literature review has found research in fault identification on 

electrical transmissions using feedforward neural networks [63] and [65], modular neural 

networks for single transmission lines [64], and transmission fault location techniques 

using traveling wave method and discrete wavelet transform [66]. 

In recent years, “deep learning neural networks” have gained increasing interest not 

only in being able to improve state estimation over conventional techniques utilizing 

weighted least squares, but also in the possibility of being able to address what may be 

considered as “extreme” or “adverse” conditions such as, but not limited to lack of 

observability, topology errors, false data injection attacks, network outages due to weather 

or malicious attack, and variances in weather that may affect distributed power generation 

from solar and wind sources. 
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The literature review supporting this research includes the following major topics: 

• Conventional (Analytical) Power System State Estimation, Resiliency and 

Observability 

• State Estimation Applied to Smart Distribution Systems 

• Artificial Neural Networks and Deep Learning Applied to Power System 

State Estimation, Observability, Topology Errors, and False Data Injection 

Attacks 

2.2 Review of Conventional (Analytical) Power System State Estimation, 

Resiliency and Observability 

Conventional state estimation was introduced in 1970 via a series of papers authored 

by Fred C. Shweppe and J. Wildes [2], [7], [8]. The overall problem, mathematical 

modeling and general algorithm for state estimation, error detection and identification are 

presented in [2]. The key assumption of the classical approach presented is that the state 

estimation vector consisting of the voltage magnitude and phase angles at all generation 

and load buses is static or quasi-static. 

Further assumptions are that the system is balanced, linear and can be accurately 

approximated via an iterative algorithm utilizing weighted least squares as the estimator.   

While these assumptions are reasonable when applied to transmission systems, they are not 

considered reasonable when applied directly to distribution systems. An approximate 

model and the resulting simplifications in state estimation, bad data detection and 

identification are presented in [7].  This model is based on a DC load flow yielding linear 

equations with the following four basic assumptions.  The first assumption is X/R ≫ 1 for 

all lines, where X represents the line impedance and R represents the line resistance.  The 

second assumption is that V ≈ 1 for all buses, where V represents the line to neutral voltage 



10 

 

magnitude.  The third assumption is δi – δk ≈ 0 for all lines, where δi  represents the phase 

angle at node i and δk represents the phase angle at node k. The fourth assumption is that 

the real power measurement errors are uncorrelated with voltage and reactive power 

measurement errors. 

The resulting approximate model, while enabling potential application to 

distribution systems is not readily applicable to state estimation in general for practical 

transmission or distribution networks. Thus, reference [8] addresses implementation 

problems associated with dimensionality, computational efficiency, data storage and the 

time-varying nature of actual power systems. 

The time-variation inherent in power systems is addressed in [9].  This paper is a 

review of dynamic state estimation (DSE) methods as opposed to static state estimation 

(SSE).  These methods are based primarily on Kalman Filtering (KF) techniques, M-

estimation, and the Square Root Filter (SRF) technique which is an alternative 

implementation of KF that is numerically more stable. 

The authors summarize the review by stating that the Kalman Filtering technique, 

while being the most popular, is not necessarily the most accurate.  They also promote 

further research into the application of artificial neural networks (ANNs) in general and/or 

fuzzy logic networks to the dynamic state estimation problem.  The actual architecture of 

either of these two network types were not discussed as part of the review.  

Paper [10] discusses the essential role of power system observability to the state 

estimation problem and presents a theoretical basis for an algorithm to determine 

observability.  The authors emphasize the requirement that conventional or classical state 

estimation methods be applied only to systems that are observable and thus establish that 

an observability test be conducted prior to performing state estimation. 

The algorithm presented is based upon a graph theoretical or topological approach.  

Specifically, the algorithm seeks to determine if the Jacobian of the system parameter 
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network is of full rank.  If so, the power system network is considered observable. The 

challenge facing practical implementation of the proposed algorithm is that it can be 

difficult to provide a “correct” answer of rank in every case.  In other words, most 

techniques provide a floating point computation of rank. 

The references [69], [70], [71] represent performance considerations of the 

weighted least squares state estimation method in the case of topology errors and propose 

potential ways of identifying topology errors for improved state estimation results. 

The challenges to state estimation due to lack of observability are further discussed 

in [11].  The authors reiterate the essential observability criteria needed to perform classical 

state estimation and further surmise that the first step to controllability is observability. The 

definition of observability is generalized from the numerical rank definition proposed in 

[10] to that of “obtaining accurate knowledge about relevant parameters of a system.” 

The authors in [11] suggest that future work involve research into the impacts of 

systems with a larger number of buses than was considered in their simulations and 

consideration of the robustness of the proposed distribution system state estimation 

algorithm. In the paper being referenced, robustness refers to the insensitivity of the state 

estimation algorithm to major deviations in a limited number of redundant measurements. 

The authors in [12] provide an in depth discussion of the growing threats to modern 

power system resiliency that applies to all aspects of the grid (i.e. generation, transmission, 

distribution, distributed generation, micro-grids, etc.)  According to the authors in [12], 

investment in the modernization of the power grid must be done so with a “No Regrets 

Strategy”.  This strategy is based upon the cornerstones of resiliency, flexibility and 

connectivity.  The paper defines resiliency as resistance to high-impact, low frequency 

events such as extreme weather, earthquakes, tsunamis and outages (physical, cyber, 

coordinated).  Flexibility is defined as adaptability to uncertainties such as fuel prices, 

power market prices/incentives, variable generation, consumer behavior, regulation and 

policy.  Connectivity is defined as enhanced interoperability across the electricity 
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enterprise. Connectivity includes advanced sensors, mobile devices, grid modernization 

and two-way flow. 

2.3 State Estimation Applied to Smart Distribution Systems 

Since the introduction and formalization of state estimation applied to power 

systems in the early 1970s, most of the attention has been on application to transmission 

systems.  This is understandable given the challenges presented to this point and those 

expanded upon in section 2.6 of this dissertation. The authors in [13] provide a survey on 

state estimation techniques and challenges in so-called “smart distribution systems”.   

This survey summarizes most of the essential concepts considered to this point.  

Among these concepts are conventional mathematical formulation based upon an iterative 

algorithm utilizing weighted least squares or similar estimator; application of pseudo-

measurements to mitigate lack of sufficient metering to enable system observability; 

consideration of optimal meter placement given the relatively limited metering availability 

in distribution systems; network topology issues and effects on system modeling required 

for accurate distribution state estimation; impacts of renewable penetration; and 

cybersecurity concerns. 

The paper goes further to make a distinction between “conventional” state 

estimation that is considered analytical and deterministic and “modern” state estimation 

that is considered data driven and probabilistic.  Regarding conventional state estimation, 

various “robust state estimators” are presented in Table 1, along with pros and cons of each. 
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Table 1 - Robust State Estimators 

 

Robust State Estimators Pros Cons 

Weighted Least Squares 

(WLS) 

 

Fast, simple, widely used 

 

Sensitive to bad data 

Least Median of Squares 

(LMS) 

 

Robust against bad data High computational 

cost, high measurement 

redundancy 

requirements 

Least Trimmed Squares 

(LTS) 

 

Robust against bad data High computational cost 

and memory 

requirement 

Least Absolute Value (LAV) 

 

Robust against bad data, 

small sensitivity to line 

impedance uncertainty 

 

High computational 

cost, sensitivity to 

leverage points and 

measurement 

redundancy 

 

Generalized Maximum-

likelihood (GM) 

 

Robust against bad data Parameter selection 

sensitivity 

 

 

The authors in [13] identify two major categories of data driven approaches as 

alternatives to conventional state estimation based upon the previous list of estimators.  

Table 2 presents the data driven categories, key characteristics, and applications. 
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Table 2 - Data Driven Approaches to State Estimation 

 

Data Driven Categories Key Characteristics Applications 

Probabilistic and Statistical 

Approaches   

Employ 

spatial/temporal 

correlation and 

historical probability 

distributions 

 

Used widely for 

pseudo-measurement 

generation and 

uncertainty assessment. 

 

Empirical Studies 

Gaussian Mixture Models 

(GMM) 

 

Expectation Maximization 

(EM) 

 

Time-Varying Variation and 

Mean Modeling 

Correlation Analysis 

(between total and individual 

consumption) 

 

Nodal Active-Reactive 

Correlation Analysis 

 

Internodal and Intranodal 

Correlation Modeling 

 

Intertemporal Correlation 

Analysis 

 

Multivariate Complex 

Gaussian Modeling 

 

Constrained Optimization 

 

Learning-Based 

Approaches  

Based on machine 

learning algorithms 

 

Addresses problem of 

active/reactive power 

pseudo-measurement 

generation and 

uncertainty assessment. 

 

Probabilistic Neural Networks 

(PNNs) 

 

Artificial Neural Networks 

(ANNs) 

 

Clustering Algorithms 

 

Parallel Distributed 

Processing Networks (PDPs) 
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Related to the recommendations of notable research directions, the paper in [14] 

presents previous work in the area of state estimation for real-time monitoring of 

distribution systems. While the work presented in this paper is based upon weighted least 

squares estimation, it shows the close correlation of state estimation accuracy to the initial 

starting point selected and accuracy of the forecasted loads.   

Thus, an important takeaway from the work presented in [13] and [14] collectively 

is the idea of establishing a hybrid process involving classical state estimation algorithms 

and data-driven forecasting. The data-driven portions would support the classical state 

estimation algorithm by providing a better starting point than a typical “flat start”, higher 

probability of convergence and produce more accurate pseudo-measurements than those 

queried from large historical data repositories. 

  The design of an off-line planning method to enable real-time monitoring and 

control in systems with limited observability is considered in [15] through consideration 

of robust measurement placement for distribution system state estimation.  The authors in 

this paper propose a robust measurement placement model to maximize estimation 

accuracy for DSSE over a wide-range of worst case operating conditions.   

The problem is formulated as a mixed-integer semi-definite programming problem 

(MISDP). The authors seek to avoid combinatorial complexity through a convex 

relaxation, followed by a local optimization method. The approach in [15] demonstrates 

that accuracy of DSSE can be enhanced significantly by placing a limited number of 

measurements in optimal locations.  Again, the approach taken, can be considered a hybrid 

approach of classical state estimation with updated probabilistic and statistical components 

that seek to minimize the effect of lack of observability on the weighted least squares 

estimator. 

The paper presented in [16], provides a linear state estimation formulation for smart 

distribution systems.  The authors assume the availability of synchro phasors which yield 
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direct voltage phasors at bus locations.  Line power flows and current magnitudes are then 

able to be ascertained via the direct quantities available. 

Reference [16] shows that availability of direct voltage phasors effectively 

linearizes the h(x) coefficient matrix used in classical state estimation so that the result is a 

linear, non-iterative state estimation solution. Results shown in [16] confirm low 

computational burden, accommodation of meshed networks and avoidance of convergence 

issues which may occur in dealing with practical distribution systems with high r/x ratios. 

It should be noted, however that to achieve the results presented in [16], two requirements 

are necessary.  The first requirement is a resolution of +/- 1 μS corresponding to 0.0216 

degree error in a 60-Hz system.  The second requirement is a maximum allowable total 

vector error (TVE) of 1.0% when maximum phase error is 0.57 degrees.  Literature review 

also revealed the IEC/IEEE 60255-118 standard that defines synchro phasor frequency, 

and rate of change of frequency (ROCOF) measurements that ensure interoperability 

between PMU manufacturers [67]. 

  

The authors in [17] present a branch-estimation-based state estimation method for 

radial distribution systems. While this approach utilizes many of the conventional or 

classical state estimation techniques, it has the ability to handle most kinds of real-time 

measurements by decomposing the weighted least squares problem into a series of 

weighted least squares problems such that each sub-problem deals with single-branch 

estimation. 

The establishment of “zones” is a novel idea such that the entire distribution system 

can be comprised of much simpler single-branches and each zone will then correspond to 

a weighted least squares sub problem.  The authors in [17] propose two main parts: load 

allocation and state estimation. The load allocation portion is a real-time load modeling 
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technique that incorporates use of customer class curves and provides a measure of the 

uncertainty (statistics) in the estimates.   

The purpose of the load allocation portion is to produce pseudo-measurements with 

a higher level of accuracy in real-time than historical data that must be retrieved from a 

large data repository.  The state estimation portion then utilizes the pseudo-measurements 

that ensure observability and follows a traditional weighted least squares technique that is 

applied to each “zone”.  The authors propose that a forward/backward sweep scheme 

based upon this method would allow state estimation to be performed accurately for 

large-scale practical distribution systems while not requiring sparse matrix techniques. 

2.4 Artificial Neural Networks and Deep Learning Applied to Power System State 

Estimation, Observability, Topology Errors and False Data Injection Attacks 

The authors in [18] and [19] present Bayesian state estimation for unobservable 

distribution systems via deep learning.  The paper presented in [18] is an introduction and 

[19] provides greater depth and simulation results.  The authors in these papers propose a 

novel state estimation scheme that combines Bayesian inference with deep neural networks 

to minimize the mean squared error of network states in real-time. 

Bayesian inference is used to learn the probability distributions of the net power 

injection from historical measurements. Samples are then generated from the learned 

distributions and passed to a deep neural network to approximate the minimum mean 

squared error (MMSE) estimate of system states. 

The authors contend that this hybrid approach outperforms classical pseudo-

measurement techniques that utilize averaging of historical data and conventional weighted 

least squares estimation. It also outperforms Bayesian state estimation alone or feedforward 

neural network state estimation alone. It should be noted that in [18] and [19], “deep neural 
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networks” are considered to have a relatively larger number of hidden layers than a “flat 

neural network” involving one or two layers. 

For example, the authors in [18] and [19] show that for the tested 85 and 141 bus 

networks, a feedforward neural network of 10 layers or more achieved a mean square error 

(MSE) per bus at a level of 10-5 to 10-6 p.u. on test data, while classical methods using 

weighted least squares had errors several orders of magnitudes or higher.  The authors point 

out that the proposed Hybrid Bayesian-Deep Neural Network approach is less capable of 

adapting to changes such as line and generation outages. Additionally, the training of the 

deep neural network was largely ad hoc and offered little guarantee of performance. 

It was also recommended by the authors that it may prove beneficial to exploit 

temporal dependencies and other types of deep learning networks.  Other possible deep 

learning networks include convolutional neural networks (CNNs), recurrent neural 

networks (RNNs) in general and long short-term memory networks (LSTMs) in particular. 

The authors in [20] also utilize a hybrid Bayesian-Deep Neural Network to achieve what 

is referred to as “high-resolution” and “high-fidelity” state estimation for systems that are 

PMU-unobservable. By high-resolution, the authors mean that states are estimated at the 

PMU-timescale. This is achieved by a Bayesian inference approach utilized in [18] and 

[19]. 

By high-fidelity, the authors are referring to the ability of the state estimation 

algorithm to mitigate bad and malicious data. The main contributions of this paper are a 

proposal of a hybrid Bayesian-Deep Neural Network that performs bad-data 

detection/cleansing and state estimation; development of a generative adversary network 

(GAN) to enable Bayesian state estimation and bad data detection; and an introduction of 

a novel deep learning approach that enables universal bad data detection (UBD) [20]. 

The authors in [20] refer to universal bad data detection as the ability to detect and 

cleanse bad-data without knowledge of whether the source data distributions originated 
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from either regular or abnormal conditions.  Some historical data is assumed to be available 

under regular operating conditions and no abnormal data samples are available. 

The Bayesian inference solution to bad-data detection is particularly advantageous 

for bad-data originating from false data injection attacks given that such detection is 

considered to be a seemingly intractable statistical inference problem. Scalability of any 

state estimation approach to large distribution systems is of practical significance, both 

from the standpoint of convergence and computational efficiency. Thus, even methods that 

converge are not considered practical if they cannot ensure execution time that approaches 

real-time. 

The authors in [21] present a scalable distribution system state estimation approach 

using surrogate modeling with long short-term memory (LSTM) networks.  Surrogate 

modeling in this paper refers to the use of LSTM networks that are built to take previous 

states and output a rough estimate of the current states which is called the surrogate. 

The surrogate is a course but very fast estimate of the state variables. The surrogate 

therefore replaces the unit vector (flat start) traditionally used to initialize the state vector.  

The authors in [21] show that this approach while being suboptimal to the original problem, 

involves minimal computational cost and greatly reduces the cost of iterations and thus 

results in faster convergence. 

Auto encoders are utilized to compress the input to the LSTMs and thus greatly 

increase the scalability.  The authors demonstrate the proposed framework on IEEE-123 

bus and 8500-node test feeders. The authors in [21] note that frequent topology changes 

often occurring in distribution systems was not considered in their study.  They propose 

two potential solutions. The first solution involves training multiple LSTM networks 

responsible for each specific topology.  The second solution proposes the treatment of 

topology status as categorical input of a model with one LSTM network to account for all 

topologies. 
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The authors in [22] investigate a method for detecting false data injection attacks 

in smart grids based upon deep learning. The proposed method utilizes a combination of 

auto encoders and Generative Adversarial Networks (GANs) and can be described as 

employing a “semi-supervised adversarial auto encoder” algorithm.  Semi-supervised 

networks are used to deal with input datasets that are not fully labeled. The authors in [22] 

show that the GAN framework is effective in detection of unobservable FDIAs that would 

otherwise bypass conventional bad data detection methods.  As seen in [21], auto encoders 

enable input compression and thus increase the scalability to larger distribution systems. 

GANs are considered deep learning based networks that establish a min-max 

adversarial game between two neural networks.  One network is referred to as a generator 

(G) and the other network is referred to as the discriminator (D).  Fake samples are 

produced by the generator that follows the distribution of the original real samples. The 

discriminator distinguishes between the generated data samples and the real samples.  

Thus, the training of GANs is performed in two stages.  The first stage involves an update 

to the discriminator using fixed generator parameters so that real samples may be 

distinguished from the generated (fake) samples. The second stage involves an update to 

the generator with fixed discriminator parameters to “fool” the discriminator with the 

generated (fake) samples. 

The authors in [22] contend that the two-player game is globally optimal.  The use 

of GANs is commonly employed in practical systems when there are limited labeled 

measurements available for training. Similar to the suggestion of future research in [21], 

the authors in [22] acknowledge that the proposed method requires collecting data from a 

known topology structure.  Thus, when topology changes occur, it is necessary to store 

corresponding measurements and states along with new topology labels for subsequent 

data analysis. 

The authors leave research related to varying topologies and varying DER 

penetration to future work. The author in [23] presents a study of distribution system state 
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estimation with LSTMs.  As promoted in [22], the author in [23] proposes the use of 

surrogate modeling of distribution system state estimation.  The author describes surrogate 

modeling as a means of solving problems that are challenging to solve or that exhibit low 

computational efficiency. The author in [23] formulates the DSSE surrogate model as a 

deep neural network (DNN) model to approach the problem as a regression problem and a 

LSTM network to approach the problem as a time-series problem.   

The DNN model is a fully-connected feedforward neural network with multiple 

layers to differentiate it from a single or double layer neural network that is considered a 

“shallow neural network”.  As was the case in previous literature that employed LSTMs, 

the author in [23] also utilizes auto encoders to compress the input and thus minimize the 

number of LSTM blocks required for larger distribution systems. 

Comparisons are made between the DNN and the LSTM in terms of RMSE and 

computational efficiency for both IEEE-123 bus and 8500 node systems.  The author in 

[23] also considers the performance of the LSTM network with and without surrogate 

modeling.  A suggestion for future research includes the effect of load profile changes on 

surrogate modeling due to electric vehicle (EV) charging and photovoltaic (PV) generation. 

The author in [24] presents dynamic distribution state estimation using synchro 

phasor data.   The proposed DSSE formulation, although assuming the availability of 

synchro phasor data, is novel in its linearized model and time-varying nature to account for 

dynamic states and data without requiring an iterative method. 

The author in [24] presents a first-order prediction-correction (FOPC) method that 

relies on the Hessian of the cost function.  In other words, the requirements of conventional 

methods of inverse computations are removed and thus, the method presented is very 

attractive for DSSE problems where measurements are collected at high frequency by 

distribution level PMUs. 

The merits of the proposed FOPC method are two-fold.  The first includes 

computational savings by estimating the state before new measurements are collected and 
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processed. This contrasts with conventional computationally expensive iterative 

algorithms without prediction steps.  The second is that FOPC can perform state prediction 

while waiting for measurements to be transferred from PMUs.  Thus, once the 

measurement is received, the correction step may begin immediately. 

While the method presented in [24] is based upon Kalman Filtering techniques as 

opposed to neural networks, it is considered a modern fully data driven approach in that its 

prediction phase attempts to approach an optimal solution of the next time period without 

new observations by exploiting the temporal correlations of the cost function. The 

predicted vector is then corrected using the last measurement in the correction phase. The 

author in [24] suggests that future work explore diverse types of distribution system 

measurements and large-scale system validations using real data. 

The authors in [25] present a deep neural network model for short-term load 

forecasting based on long short-term memory networks (LSTMs) and convolutional neural 

networks (CNNs).  By short-term load forecast, the authors in [25] are referring to forecasts 

of loads from 24 hours to one week. The study compares the performance of models that 

are based upon convolutional neural networks (CNNs) only, long short-term memory 

networks (LSTMs) only, and hybrid-CNN-LSTM models. 

CNNs extract local trends and capture patterns and they are typically used for 

speech recognition, image processing and other tasks on which patterns can be determined.  

LSTMs learn relationships from the data itself when the data is framed as a time-series 

dataset.  In the proposed hybrid-CNN-LSTM model, there is a CNN module that captures 

local trends, a LSTM module that is utilized to learn long-term dependency and a feature-

fusion module that concatenates the output of the CNN and LSTM modules to formulate a 

final prediction. The combined output of the CNN and LSTM is based upon “hidden 

features”.  This refers to predictions and classifications that the deep learning models 

generate that are learned from the data itself as opposed to known categories and features 

being given as input.  
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The authors in [25] contend that hidden feature extraction results in predictions of 

higher accuracy than those obtained through conventional probabilistic and statistical 

inference.  Considering the literature discussed in this section, it is reasonable to conceive 

a scenario in which systems with sufficient PMU availability could utilize a FOPC method 

as presented in [24] as the primary state estimation scheme and deep learning methods such 

as the LSTM based surrogate model presented in [23] and/or the hybrid-CNN-LSTM 

model presented in [25] as the secondary or backup method for state estimation, bad data 

detection and load forecasting. 

2.5 Distribution System State Estimation 

State estimation as it relates to power systems is defined as the vector of the voltage 

magnitudes and angles at all network buses [2]. Essentially, state estimation algorithms 

provide for a means of reducing the impacts of measurement errors, system parameter error 

or topology errors.  

Figure 1 presents an example of both types of power networks and some of the key 

characteristics.  
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Figure 1 - Transmission and Distribution System Key Characteristics 

 

To appreciate the challenges that the emerging smart distribution grid pose to the 

direct application of conventional state estimation, it is essential to first understand the 

inputs and functional blocks that enable state estimation.  Figure 2 provides an overview 

of the inputs and main functional blocks. 

 

 
Figure 2 - Functional Block Diagram of State Estimation 
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Note that the Network Topology Processing functional block verifies the accuracy 

of the network parameters included as Inputs.  The Observability Analysis functional block 

establishes that there is sufficient data available for the State Estimation Algorithm 

functional block.  As discussed earlier, the relative lack of metering in distribution 

networks reduces the “observability” of the system. The ability to meet this challenge, 

while being improved through the implementation of “smart meters” such as PMUs (phasor 

measurement units), will continue to be an inherent challenge in distribution networks as 

opposed to transmission networks. 

The State Estimation Algorithm functional block then seeks to determine a unique 

solution or system state.  Also, critical to the overall state estimation functionality and final 

determination of the system state is the Bad Data Identification and Processing functional 

block that uses statistical techniques (i.e. Chi-square Test) to identify and filter out “noise” 

which may be related to inaccuracies in measurement meters and/or communication system 

failures. Finally, the Human/Machine Interface functional block relates to the software and 

hardware utilized to visualize and otherwise monitor and control the power system.  Further 

challenges beyond lack of metering, are those associated with topology errors and false 

data injection attacks. The terms and consequences of lack of observability, topology errors 

and false data injection attacks will be explained in later sections. 

Figure 3 summarizes the key characteristics of the “conventional” state estimator 

based upon weighted least squares. 
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Figure 3 - State Estimator Overview 

 

Note that the INPUT are typically measurements of P (Real Power), Q (Reactive 

Power), I (Current Flows), and Voltage Magnitudes. The OUTPUT state variables are 

typically voltage magnitudes and voltage phase angles at all buses.  With these two state 

variables, it is then possible to determine the remaining parameters such as Real and 

Reactive Power Injections and Current flow. 

Note that one of the buses can be established as the reference bus or slack bus.  

Thus, if Bus 1 is established as the reference bus, then the phase angle for Bus 1 can be 

removed from the vector representation.  Therefore, if there are n buses in the network, the 

total number of states is given as 2n – 1. It is important to note that conventional state 

estimation applies only to overdetermined systems.   

Overdetermined systems are those in which the number of measurements exceeds 

the number of states.  This critical and limiting requirement for application of conventional 

state estimation can be summarized in two criteria.  The first criteria states that if the 

number of measurements is m, and the number of states is 2n-1, then in state estimation, m 

> 2n -1.   The second criteria states that if m = 2n -1, the problem reduces to a power flow 

solution. 
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Thus, as stated previously, distribution systems with limited measurement devices 

are inherently not overdetermined systems.  For such underdetermined systems that may 

be either transmission or distribution networks lacking sufficient metering, observability is 

reduced and as indicated in Figure 3, the state estimation algorithm must rely upon pseudo-

measurements for the solution to converge.   

The research being presented in this dissertation seeks to contribute to the body of 

knowledge to mitigate this problem by incorporating neural networks and deep learning 

methods. 

2.6 Challenges of Applying Conventional State Estimation Utilizing Weighted 

Least Squares to Distribution Systems 

The most common conventional state estimation algorithm is based upon the 

Weighted Least Squares (WLS) algorithm.  There are fundamental characteristics of 

distribution systems that pose major challenges to the direct application of conventional 

state estimation based upon weighted least squares.  Radial topology yields bi-directional 

power flow.  Reduced observability results from lack of adequate quality and quantity of 

measurement devices resulting in underdetermined systems (number of measurements 

less than number of system states).  Unbalanced lines and loads result in the need to 

consider all phases in the state estimator algorithm.  Unpredictability exists in energy 

sources injecting power back onto the grid (i.e. intermittent sunlight and wind, electric 

vehicles, etc.).  Variability exists in the timing of power utilization throughout the day.  

Low X/R ratios which do not allow for neglecting resistances due to dominant inductive 

terms as is permissible in transmission systems.  Substantial number of nodes that 

combined with the need to consider all phases, results in the need for acquisition, storage, 

and processing of substantial amounts of data.  Excessive noise resulting from the variety 

and lack of standardization of communication schemes between metering devices and the 

central control stations. 
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It should be noted that the limitations listed above are considered “normal 

conditions” inherent in all distribution systems.  The addition of “adverse conditions” noted 

previously further strengthens the case for needed research of methods such as artificial 

neural networks to maintain data integrity of distribution system state estimation and thus 

the overall resiliency of the modern power grid. 

2.7 Lack of Observability in Distribution Systems 

Lack of observability is directly related to the inability to accurately measure and 

store system values (power, voltage magnitude, voltage phase angles and current flow) of 

a distribution system due to lack of measurement devices, failures in devices, 

communication failures and/or malicious attacks that would also fall into the category of 

false data injection attacks.   

While there are increasing advances in application of Phasor Management Units 

(PMUs) and so-called “smart-meters”, in the research on which this dissertation is based, 

there will not be an assumption that these devices are available at every bus location of a 

practical distribution system.  Thus, distribution system state estimation is fundamentally 

challenged by lack of observability. 

2.8 Topology Errors in Distribution Systems 

Topology errors are directly related to errors in determination of system state values 

due to inaccurate determination of system breaker status.  More generally, these errors 

could relate to incorrect determination of any device that involves switching or tap 

positioning.  The false status of system breakers could result from failures in devices, 

communication failures and/or malicious attacks that would also fall into the category of 

false data injection attacks.  Thus, distribution system state estimation is also 

fundamentally challenged by topology errors. 
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2.9 False Data Injection Attacks in Distribution Systems 

False data injection attacks refer to malicious attempts to alter data within 

distribution systems such that the true system state is made inaccurate.  The goal of such 

attacks could be financial, such as controlling aspects of the power market or sabotage to 

the security of the power system resulting in power outages.  It should be noted that with 

advances in smart grid metering and reliance on digital communications, the susceptibility 

of the power grid to false data injection attacks will continue to be a growing security 

concern.  Thus, distribution system state estimation is also fundamentally challenged (even 

threatened), by false data injection attacks. 

It should be noted that identification and mitigation of lack of observability, topology errors 

and false data injection attacks will be left to future research.   These topics are mentioned 

in this dissertation to strengthen the case that classical methods are not sufficient to address 

their existence in distribution systems and data driven solutions proposed in this research 

may serve as a basis for addressing them directly in the future.  

2.10 Conventional Feedforward Multilayer Perceptron Networks (MLPs) 

This type of network is considered the “conventional” or “classical neural network 

model”.  Figure 4 shows a “perceptron”, which is the fundamental building block of 

neural networks, where xi through xm represent inputs, wi through wm represent the 

associated weights, b represents a bias term and webs is its associated weight.  Input 

features are multiplied by weights and the resulting values are summed.  The bias term 

allows for the adjustment of the decision boundary allowing for a better fit of the training 

data and more accurate predictions.  The output of the summation is passed to an 

activation function to yield a final output y. A learning algorithm (i.e. stochastic gradient 
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descent) is then utilized  to find the set of weights and bias that minimizes the error 

between the predicted output and the actual output for every training example. 

 

 

Figure 4 - Perceptron Building Block of MLP Networks 

 

Figure 5 provides a visualization of the functional blocks of a MLP network model. 
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Figure 5 - Multilayer Perceptron (MLP) Model Functional Representation 

 

This type of network is considered a reasonable model for regression and 

classification problems, however, it is limited in terms of its ability to predict or forecast 

sequence or time-series data as it does not maintain and share features between layers.  This 

type of neural network is also limited to how “deep” they can be in terms of number of 

layers that would otherwise enable them to solve more complex problems with greater 

accuracy.  Even with the noted limitations, this network type shows promise in its ability 

to overcome many of the limitations of weighted least squares in state estimation.  The 

principal advantage of this network type as confirmed in this research is the promise of 

being able to accurately learn the mapping of inputs to outputs for a regression problem 

without the requirement of complex and/or large number of equations that would be 

necessary to perform non-linear regression on very large distribution systems. 
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2.11 Convolutional Neural Networks (CNNs) 

This type of network is considered to be an improvement upon the classical MLP 

architecture in that it learns directly from the input data and thus does not require a target 

dataset during training.  Figure 6 below, shows the general structure for a CNN model. 

 

 

Figure 6 - Convolutional Neural Network (CNN) Model Functional Representation 

 

Table 3 presents the fundamental CNN layer types and associated key characteristics of 

each. 
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Table 3 - CNN Layer Types and Key Characteristics 

 

Layer Type Key Characteristics 

Convolutional Layers 

 

Comprised of Filters and Feature Maps 

 

Filters correspond to neurons of the layer 

 

Filters have weighted inputs and produce outputs 

like a neuron 

 

Filters input size is fixed and is a “window” for 

convolution 

 

Feature Maps contain current values within the 

moving filter window 

 

Pooling Layers 

 

Down-sample and consolidate features learned from 

previous feature maps 

 

Serve to generalize or compress features selected 

and reduce overfitting of model training 

 

Simple functionality – selection of either maximum 

or average of input value to establish a new 

compressed feature map 

 

Dropout Layers 

 

Used between other layers to further reduce 

overfitting not completely eliminated by pooling 

layers by randomly excluding neurons 

 

Specified by a Dropout Percentage  

 

Flatten Layers 

 

Converts multidimensional arrays to vectors that can 

be sent to fully connected layers for final processing 

by activation functions 

 

Fully Connected Layers 

 

Normal flat feedforward neural network layer 

 

Contain a ‘softmax’ or nonlinear activation function 

to output probabilities of predicted classes 
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Utilized at the end of network to create 

combinations of nonlinear features used for 

predictions 

 

 

While primarily used in image/object detection and classification, computer vision 

and natural language processing, this network has also gained interest in its ability to 

automatically learn and generalize features from time-series data. 

2.12 Recurrent Neural Networks (RNNs) 

This type of network is also considered to be an improvement upon the classical 

MLP architecture in that it maintains an internal state (memory).  Table 4 presents three 

primary variants of RNNs and key characteristics of each. 

Table 4 - RNN Variants and Key Characteristics 

 

RNN Variant Key Characteristics 

Bidirectional Recurrent Neural Networks 

(BRNN) 

 

RNNs that utilize future data along with 

data from previous inputs to improve 

accuracy 

 

Long Short-Term Memory Networks 

(LSTM) 

 

Discussed in more detail in the section 2.13 

 

Gated Recurrent Units (GRUs) 

 

Like LSTMs, overcome short-term 

memory limitations of the basic RNN 

model 

 

Uses hidden states instead of “cell state” 

utilized by LSTMs 

 

Contains reset and update gates to control 

what information is retained and how much 

of this information to use for making 

predictions 
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This network has also gained interest due to its ability to automatically learn and 

generalize features from time-series data.  Additionally, it maintains and passes features 

between layers and thus very deep structures can be developed without the negative effects 

of exploding or vanishing gradients. 

2.13 Long Short-Term Memory Networks (LSTMs) 

This network is a type of RNN that can learn long-term dependencies between time 

steps of input sequence data by “remembering” the state between predictions. In the 

research being presented, LSTMs will represent the more general RNN network and other 

RNN variants will not be considered.  Table 5 provides more detail on the internal 

architecture of the LSTM unit. 
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Table 5 - LSTM Operations and Purpose 

 

LSTM Operations Purpose 

Step 1 – “Forget Gate”  

 

Determines and eliminates previous information 

deemed as irrelevant and thus not useful  

 

Step 2 – “Store Gate” Determines what new information to maintain as 

new candidate values 

 

Step 3 – “Update Gate” 

 

Updates old cell state to new cell state 

 

Then scales new candidate values by how much it 

was decided to update each state value 

 

Step 4 – “Output Gate” 

 

Determines what is to be output for the next step 

 

Output will be based on cell state, but will be a 

filtered version 

 

First run a sigmoid layer to decide what parts of a 

cell state to output 

 

Then put the cell state through a tanh activation 

function to push values between -1 and 1 and 

multiply it by the output of the sigmoid gate so 

that only the desired parts are output 

 

 

CHAPTER 3. DISTRIBUTION SYSTEM STATE ESTIMATION (DSSE) WITH MULTILAYER 

PERCEPTRON (MLP) MODELS 

3.1 DSSE with MLPs without Hyperparameter Optimization 

Conventional MLP Models were utilized to perform regression to map power data (real 

and reactive power) as inputs to voltage (voltage magnitudes and phase angles) as 

outputs.  Utilization of MLPs for this purpose is reasonable given the ability of a suitable 

MLP to perform as a “universal function approximator”.  The Universal Approximation 
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Theorem states that a neural network with a single hidden layer can approximate any 

arbitrary continuous function given a sufficient number of neurons. This approach, 

however, does not take into consideration time-series features of data such as trend, 

seasonality, and residual noise. For purposes of training a supervised MLP neural 

network to perform regression, it was decided that the power (real and reactive) at each 

bus for all 3 phases would be measured and deemed the “input” dataset. The voltage and 

phase angle at each bus for all 3 phases was selected to be measured and deemed the 

“target” dataset. Note that the voltage dataset will sometimes be referred to as 

“voltage_output” as this dataset is an output of a power flow simulation.   Table 6 

presents a summary of the supervised learning datasets and general structure of power 

flow, training, testing and validation datasets. 
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Table 6 - Supervised Learning Datasets and General Structure 

 

Supervised Learning Data Sets General Structure: (#samples, #features) 

Initial Power Flow Data Input Power Dimensions: (8760, 56) 

 

Target Voltage Dimensions: (8760, 56) 

 

Training Data (70% Split) Input Power Training Dimensions: (6132, 

56) 

  

Output Voltage Training Dimensions: 

(6132, 56) 

 

Testing Data (30% Split) Input Power Testing Dimensions: (2628, 

56) 

 

Output Voltage Testing Dimensions: 

(2628, 56) 

 

Validation Data (New Power Flow with 

different load profile) 

Input Power Validation Dimensions: 

(8760, 56) 

  

Output Voltage Validation Dimensions: 

(8760, 56) – Predicted 

 

3.2 Test Distribution System 

An IEEE 34 Bus Test Feeder radial distribution system was selected as the base test 

distribution system [13]. It is shown below in Figure 7. 
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Figure 7 - IEEE 34 Node Test Base Distribution System 

3.3 Power Flow Simulation Measurement Points and Quantities 

The selected measurement points and quantities are shown in Figure 8.  The labels 

corresponding to the “Key:” represent either a power or voltage “monitor”, which is 

similar to a physical meter and will be discussed in more detail later in this dissertation. 

 

Figure 8 - IEEE 34 Node Test Base Distribution System Measurement Points 

 

Table 7 and Table 8 provide a description of the monitors, their locations in the test 

distribution systems and the quantities they measure.  Note that power monitors capture 
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the real and reactive power flow along the lines between specific nodes as indicated in 

Table 7. Likewise, voltage monitors capture the voltage magnitude and voltage phase 

angle at specific nodes as indicated in Table 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



41 

 

Table 7 - Power Monitor Descriptions and Locations 

 

Monitor: Line Element: From Node: To Node: Quantities: 

B1_power L1 800 802 

Phase A,B,C 

P (kW) and 

Q(kVAR) 

B3_power L3 806 808 

Phase A,B,C 

P (kW) and 

Q(kVAR) 

B5_power L5 808 812 

Phase A,B,C 

P (kW) and 

Q(kVAR) 

B6_power L6 812 814 

Phase A,B,C 

P (kW) and 

Q(kVAR) 

B7_power L7 814 850 

Phase A,B,C 

P (kW) and 

Q(kVAR) 

B24_power L24 850 816 

Phase A,B,C 

P (kW) and 

Q(kVAR) 

B8_power L8 816 818 

Phase A 

P(kW) and 

Q(kVAR) 

B15_power L15 830 854 

Phase A,B,C 

P (kW) and 

Q(kVAR) 

B18_power L18 834 842 

Phase A,B,C 

P (kW) and 

Q(kVAR) 

B27_power L27 854 852 

Phase A,B,C 

P (kW) and 

Q(kVAR) 
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Table 8 - Voltage Monitor Descriptions and Locations 

 

Monitor: Line Element: Node: Quantities: 

B1_voltage L1 800 

Phase A,B,C to 

Neutral 

Voltage Mag. (V)  

and Phase Angle 

(degrees) 

B3_voltage L3 806 

Phase A,B,C to 

Neutral 

Voltage Mag. (V)  

and Phase Angle 

(degrees) 

B5_voltage L5 808 

Phase A,B,C to 

Neutral 

Voltage Mag. (V)  

and Phase Angle 

(degrees) 

B6_voltage L6 812 

Phase A,B,C to 

Neutral 

Voltage Mag. (V)  

and Phase Angle 

(degrees) 

B7_voltage L7 814 

Phase A,B,C to 

Neutral 

Voltage Mag. (V)  

and Phase Angle 

(degrees) 

B24_voltage L24 850 

Phase A,B,C to 

Neutral 

Voltage Mag. (V)  

and Phase Angle 

(degrees) 

B8_voltage L8 816 

Phase A to Neutral 

Voltage Mag. (V)  

and Phase Angle 

(degrees) 

B15_voltage L15 830 
Phase A,B,C to 

Neutral 
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Voltage Mag. (V)  

and Phase Angle 

(degrees) 

B18_voltage L18 834 

Phase A,B,C to 

Neutral 

Voltage Mag. (V)  

and Phase Angle 

(degrees) 

B27_voltage L27 854 

Phase A,B,C to 

Neutral 

Voltage Mag. (V)  

and Phase Angle 

(degrees) 

 

3.4 Training and Testing Data 

For purposes of performing a power flow simulation of the test feeder system to gather 

the power and voltage at each monitor location, Upends (Open Distribution System 

Simulator version 8.5.9.1 64-bit build) from Electric Power Research Institute, Inc. 

(EPRI) was chosen [43]. Note that the convention in OpenDSS is that Phase-1, Phase-2 

and Phase-3 represent phases a, b, and c respectively. It was decided that the loads within 

the test distribution feeder would be varied over a time period of a year (8760 hours) to 

yield a multivariate time-series dataset corresponding to the power and voltage as 

discussed previously. 

To vary the base loads in a realistic manner, historical data from the Electric Reliability 

Council of Texas (ERCOT) was obtained [26]. The load data for the entire ERCOT grid 

for every hour of the entire year of 2018 was selected.  The ERCOT load dataset was then 

used to realistically scale the power (P and Q values) at each node that contains a load to 

establish the needed variation over a period of a year. Note that “ERCOT” is used as the 
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baseline load profile and all references to ERCOT datasets have their origin from the 

baseline power flow simulation just described. 

OpenDSS  was then utilized to perform a power flow simulation of the test feeder 

distribution system and the resulting power and voltage datasets were exported.  This 

exported data serves as the input and target datasets from the test system under normal 

conditions.  Normal conditions mean that the data collected is not subjected to excessive 

noise and/or other conditions such as false data injection attacks.  Training and testing of 

the neural network models described later in this dissertation are based upon this 

simulation data. 

3.5 Validation Data 

It is essential that a trained neural network model be validated with data never seen by 

the network.  Again historical data from the Electric Reliability Council of Texas 

(ERCOT) was obtained. The new data is sample data from the same year as the training 

and testing datasets described previously.  However it originates from data selected from 

another region within the ERCOT grid.  The previous steps related to performing a power 

flow simulation with OpenDSS were repeated with a new load profile to establish 

previously unseen data for validating the various neural network types.  Note that 

“COAST” will be used in descriptions of datasets that have their origin from the power 

flow simulation of the test distribution system performed with varying loads according to 

this load profile. 
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3.6 Unoptimized Conventional Feedforward Multilayer Perceptron Network 

(MLP) 

3.6.1 Network Model Parameters 

• Number of neurons in visible layer (input layer):  56 (Held constant for Trials 1 – 11) 

o Power Monitors:  

▪ B1_power: 6 features (P and Q values for 3 phases) 

▪ B3_power: 6 features (P and Q values for 3 phases) 

▪ B5_power: 6 features (P and Q values for 3 phases) 

▪ B6_power: 6 features (P and Q values for 3 phases) 

▪ B7_power: 6 features (P and Q values for 3 phases) 

▪ B24_power: 6 features (P and Q values for 3 phases) 

▪ B8_power: 2 features (P and Q values for 1 phase) 

▪ B15_power: 6 features (P and Q values for 3 phases) 

▪ B18_power: 6 features (P and Q values for 3 phases) 

▪ B27_power: 6 features (P and Q values for 3 phases) 

 

• Number of hidden layers and number of neurons per hidden layer: 

▪ Adjusted for each trial according to Table 10 

• Number of neurons in output layer:  56 (Held constant for Trials 1 – 11) 

o Voltage Monitors:  

▪ B1_voltage: 6 features (Mag. and Phase values for 3 phases) 

▪ B3_power: 6 features (Mag. and Phase values for 3 phases) 

▪ B5_power: 6 features (Mag. and Phase values for 3 phases) 

▪ B6_power: 6 features (Mag. and Phase values for 3 phases) 

▪ B7_power: 6 features (Mag. and Phase values for 3 phases) 

▪ B24_power: 6 features (Mag. and Phase values for 3 phases) 

▪ B8_power: 2 features (Mag. and Phase values for 2 phases) 

▪ B15_power: 6 features (Mag. and Phase values for 3 phases) 

▪ B18_power: 6 features (Mag. and Phase values for 3 phases) 

▪ B27_power: 6 features (Mag. and Phase values for 3 phases) 

3.6.2 Network Hyperparameters 

• Activation Function per Layer: Rectified Linear Unit (ReLU) 

• Loss Function: Mean Squared Error (MSE) 

• Optimizer: Stochastic Gradient Descent (SGD) 

• Learning Rate: 0.001 

• Batch Size = 10 
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• Epochs = 200 

 

3.7 Implementation of Unoptimized MLP Models for DSSE 

The following section covers the essential elements required to perform distribution 

system state estimation with an unoptimized MLP model.  For brevity, only Trial 1 will 

be shown. 

Code Listing 1 - Unoptimized MLP Model for DSSE  

000 # MLP_Trial_01_Unoptimized.py 

001 # Input Layer: 56 Neurons; 1 Hidden Layer: 56 Neurons; Output 

Layer: 56 Neurons 

002  

003  

004 import time 

005 start_time = time.time() 

006  

007 # Import Required Python Libraries 

008 from pandas import read_csv 

009 import math 

010 import numpy 

011 from keras.models import Sequential 

012 from keras.layers import Dense 

013 from sklearn.model_selection import train_test_split 

014 from sklearn.metrics import mean_squared_error 

015 from sklearn.preprocessing import MinMaxScaler 

016  

017 # Data Normalization 

018 scaler_power_ercot = MinMaxScaler(feature_range=(-1,1),copy=True) 

019 scaler_voltage_ercot = MinMaxScaler(feature_range=(-1,1),copy=True) 

020  

021 scaler_power_coast = MinMaxScaler(feature_range=(-1,1),copy=True) 

022 scaler_voltage_coast = MinMaxScaler(feature_range=(-1,1),copy=True) 

023  

024 # Load Datasets 

025  

026 # EROCT Data used to Train and Test MLP 

027 input_power_ercot_dataframe = 

read_csv('C:/Python/input_power_ercot.csv', header=None) 

028 input_power_ercot = input_power_ercot_dataframe.values 

029 input_power_ercot_normalized = 

scaler_power_ercot.fit_transform(input_power_ercot) 

030  

031 output_voltage_ercot_dataframe = 

read_csv('C:/Python/output_voltage_ercot.csv', header=None) 

032 output_voltage_ercot = output_voltage_ercot_dataframe.values 

033 output_voltage_ercot_normalized = 

scaler_voltage_ercot.fit_transform(output_voltage_ercot) 
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034  

035 # Coast Data used to Validate MLP 

036 input_power_coast_dataframe = 

read_csv('C:/Python/input_power_coast.csv', header=None) 

037 input_power_coast = input_power_coast_dataframe.values 

038 input_power_coast_normalized = 

scaler_power_coast.fit_transform(input_power_coast) 

039  

040 output_voltage_coast_dataframe = 

read_csv('C:/Python/output_voltage_coast.csv', header=None) 

041 output_voltage_coast = output_voltage_coast_dataframe.values 

042 output_voltage_coast_normalized = 

scaler_voltage_coast.fit_transform(output_voltage_coast) 

043  

044 # Split Data Into 70% for Train and 30% for Test 

045 power_train, power_test, voltage_train, voltage_test = 

train_test_split( 

046     input_power_ercot_normalized, output_voltage_ercot_normalized, 

test_size=0.30) 

047  

048 # Define the MLP Model 

049 model = Sequential() 

050 model.add(Dense(56, input_dim=56, activation='relu')) 

051 model.add(Dense(56)) 

052  

053 # Compile the MLP Model 

054 model.compile(loss='mean_squared_error', optimizer='sgd') 

055  

056 # Fit the MLP Model 

057 model.fit(power_train, voltage_train, 

validation_data=(power_test,voltage_test), 

058           epochs=200, batch_size=10, verbose=0) 

059  

060 # Evaluate the MLP Model 

061 trainScore = model.evaluate(power_train, voltage_train, verbose=0) 

062 print('Train Score: %.6f MSE (%.6f RMSE)' % (trainScore, 

math.sqrt(trainScore))) 

063 testScore = model.evaluate(power_test, voltage_test, verbose=0) 

064 print('Test Score: %.6f MSE (%.6f RMSE)' % (testScore, 

math.sqrt(testScore))) 

065  

066 print(' ') 

067  

068 # Make Predictions with the Model 

069 coastScore =  model.evaluate(input_power_coast_normalized, 

output_voltage_coast_normalized, 

070                              verbose=0) 

071 print('Coast Score: %.6f MSE (%.6f RMSE)' % (abs(coastScore), 

math.sqrt(abs(coastScore)))) 

072  

073 print(' ') 

074  

075 print("--- %s seconds ---" % (time.time() - start_time)) 

 

 

Table 9 presents a summary of Code Listing 1. 
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Table 9 - Summary of Code Listing 1 for Unoptimized MLP Model for DSSE 

 

Line #: Description: 

007 - 015 Import essential Python libraries for implementation of an 

unoptimized MLP model for DSSE 

017 - 022 Define “scalar” objects to perform data normalization on source data 

to aid in training performance. 

026 - 033 Import ERCOT data used to train and test the MLP.  Perform data 

normalization. 

035 - 042 Import COAST data used to validate MLP.  Perform normalization. 

044 - 046 Split input data into 70% for training and 30% for testing. 

048 - 051 Define unoptimized MLP model 

054 Compile unoptimized MLP model 

056 – 058 Fit MLP with unoptimized hyperparameters 

060 - 064 Evaluate the unoptimized MLP on training and testing data in terms 

of RMSE. 

068 - 071 Perform DSSE with unoptimized MLP on COAST validation data 

and report RMSE. 

 

The following results are for MLP models trained and tested on ERCOT data and validated 

on COAST data.   

Table 10 presents training, testing and validation root-mean squared errors for eleven MLP 

model architectures. Note that each “Trial” represents a separate MLP model. As indicated 

in Table 10, the number of hidden layers and number of hidden layer neurons were varied. 

The number of input and output layer neurons was held constant at 56 neurons to 

correspond to the number of input and output features.   
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As indicated in this table, 70% of the ERCOT data was used for training and 30% was held 

out for testing. These columns represent the “training error” and “testing error” respectively 

for each model.  The “COAST Act. vs. Est” column shows results for the various 

architectures of the MLP when predicting output voltages and phase angles for COAST 

data that has never been seen by the neural network.  This column represents the “validation 

error” for each model.  Note that RMSE (root mean squared error) throughout this research 

is calculated based upon the following equation. 

 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

2
 

1 

Where ytrue is an array of true target values, ypredicted is an array of predicted target values 

and n is the total number of samples.  

It should also be noted that input data to all neural networks in this research were 

standardized to be in the range of -1 to +1 prior to training, testing and validation.  This 

transformation was performed by the MinMaxScaler function available in Python sklearn 

library [68]. 

The default transformation utilizing this function is a range of 0 to +1, however the 

following equation is used when scaling data to be in the range of -1 to +1: 

 

 
𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =  (

𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
) ∗ 2 − 1 

2 

Where X is the original value, Xscaled is the scaled value, Xmin is minimum value of the 

dataset, and Xmax is the maximum value of X in the dataset. 
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This formula first scales the feature to be in a range between 0 and +1 using the original 

MinMaxScaler formula, then it multiplies the result by 2 and subtracts 1 to scale the range 

to -1 to +1.  Given that the input data is standardized according to equation 2, all RMSE 

values in Table 10 and Table 17 do not carry a physical unit.  The RMSE values presented 

in CHAPTER 5, CHAPTER 6 and CHAPTER 7 that consider time-series forecasting of a 

univariate electrical quantity (Real Power, Reactive Power, Voltage Magnitude and 

Voltage Phase Angle) carry the associated units (kWatts, kVARs, Volts and Degrees 

respectively). 

Table 10 - Performance Results for MLP Models without Hyperparameter 

Optimization 

 

Trial 
Input 

Layer 

Hidden 

Layers 

Output 

Layer 

Train 

RMSE 

(70%) 

Test 

RMSE 

(30%) 

COAST Act. 

vs. Est. RMSE 

1 56 Neurons 

1 Layer 

56 

Neurons 

56 Neurons 0.140927 0.142162 0.323075 

2 56 Neurons 

1 Layer 

112 

Neurons 

56 Neurons 0.140486 0.136711 0.323293 

3 56 Neurons 

1 Layer 

224 

Neurons 

56 Neurons 0.137222 0.137328 0.322124 

4 56 Neurons 

10 Layers 

56 

Neurons 

56 Neurons 0.092110 0.092036 0.318610 

5 56 Neurons 

10 Layers 

112 

Neurons 

56 Neurons 0.091231 0.090394 0.317231 
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3.8 State Estimation and Forecasting Based Upon Time Series Physics Aware 

Models 

To add “awareness” of temporal dynamics and physics inherent in power systems, 

weather data (hourly temperatures at Dallas/Fort Worth International Airport for the 

entire 2018 year) was obtained [27]. The time frame was selected to correspond with the 

original ERCOT datasets discussed previously. Figure 9 provides an example of the 

hourly temperature and real power demand for Dallas/Fort Worth for January 1, 2018.  

6 56 Neurons 

10 Layers 

224 

Neurons 

56 Neurons 0.089581 0.089328 0.333226 

7 56 Neurons 

20 Layers 

56 

Neurons 

56 Neurons 0.085845 0.087380 0.309943 

8 56 Neurons 

20 Layers 

112 

Neurons 

56 Neurons 0.082363 0.082748 0.314640 

9 56 Neurons 

20 Layers 

224 

Neurons 

56 Neurons 0.077807 0.078516 0.314956 

10 56 Neurons 

50 Layers 

224 

Neurons 

56 Neurons 0.076469 0.078396 0.313638 

11 56 Neurons 

100 

Layers 

224 

Neurons 

56 Neurons 0.079144 0.079668 0.307243 
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Figure 9 - Hourly Temperature and Real Power Demand 

 

Figure 9 shows that on January 1, 2018, in Dallas/ Fort Worth there appears to be a 

“negative correlation” between temperature and real power demand.  Thus there exists a 

relationship in which the changing temperature throughout the day results in an increase 

or decrease in the real power demand owing to energy needed for maintaining heating 

resources.  Thus, it was decided that temperature could be used to aid in prediction of real 

and reactive power flow, and subsequently voltage magnitude and voltage phase angle 

for various forecasting time horizons.  

The datasets utilized in this research were restructured such that each “row” of data 

would correspond to a time element (hour) and each “column” of data would represent a 

unique time-series of measurement quantities or “features”.  To simplify the preliminary 

predictive model datasets, it was decided that only the power and voltage data associated 

with the substation bus would be considered. This corresponds to the power and voltage 

data collected at Bus 800 with OpenDSS monitor B1 shown in Figure 8 and is utilized for 

training and testing. Weather data was utilized to train this network type to predict power 
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demand.  Thus, an MLP model was used to learn the mapping of weather data as input 

and power as output through regression.  Then power data (real and reactive powers) 

were then utilized to predict the voltage data (voltage magnitudes and phase angles). 

The results of an unoptimized MLP model utilized to forecast the real power (P), reactive 

power (Q), voltage magnitude (V_mag), and voltage phase angle (V_phase) at the 

substation bus of the test feeder distribution system shown in Figure 8 are presented in 

Table 11, Table 12, and Table 13 for various forecast horizons. These tables also include 

the results of utilizing an unoptimized CNN and unoptimized LSTM model for the same 

purpose and will be discussed in more detail in CHAPTER 5 and CHAPTER 6 that cover 

time-series forecasting with CNNs and LSTMs respectively. 

Table 11 - 24 Hour Forecast (Average RMSE) at Substation Bus  

 

 

Table 11 shows that for a 24 hour forecast horizon, that the unoptimized MLP model 

yielded a significantly higher RMSE for real power than the CNN and LSTM models.  

All three models performed similarly for reactive power.  The MLP model yielded a 

Model 

Real Power – 

24 Hour 

Forecast Avg. 

RMSE 

(kWatts) 

Reactive Power 

– 24 Hour 

Forecast Avg. 

RMSE (kVARs) 

Voltage 

Magnitude – 

24 Hour 

Forecast Avg. 

RMSE (Volts) 

Phase Angle –  

24 Hour Forecast 

Avg. RMSE 

(Degrees) 

 

Execution Time 

(Seconds) 

MLP 142.165531 173.737340 0.042655 0.000119 180 

CNN 

 

51.852689 

 

 

174.998276 

 

70.833594 0.000324 60 

LSTM 76.419820 172.469473 25.603404 0.000109 7200 
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significantly lower RMSE for voltage magnitude than the CNN and LSTM models and 

all three models performed similarly for phase angle in terms of RMSE.  Note that for a 

24 hour forecast horizon, the CNN model resulted in the lowest execution time followed 

by the MLP and LSTM model.  Note that execution time is the total time for the models 

to import training, testing and validation data, perform training and testing and perform 

predictions for the given forecast horizon. 

Extending the forecast horizon to 168 hours and 672 hours, the data in Table 12 and 

Table 13 respectively show relatively better performance of the MLP model when 

forecasting the voltage magnitude and voltage phase angle than the CNN and LSTM 

models considered.  It should also be noted that extending the forecast horizon resulted in 

longer execution times for the CNN model and an inability of the LSTM model to 

converge.  The MLP model did not show an increase in execution time as the forecast 

horizon was extended.   

Table 12 - 168 Hour Forecast (Average RMSE) at Substation Bus 

 

 

Model 

Real Power – 

168 Hour 

Forecast Avg. 

RMSE (Watts) 

Reactive Power 

– 168 Hour 

Forecast Avg. 

RMSE (VARs) 

Voltage 

Magnitude – 

168 Hour Avg. 

RMSE (Volts) 

Phase Angle – 

168 Hour 

Forecast Avg. 

RMSE (Degrees) 

 

Execution Time 

(Seconds) 

MLP 181.882021 176.532732 0.046121 0.000144 

 

180 

CNN 92.732562 172.081075 40.681005 0.000139 

 

120 

LSTM ---- ---- ---- ---- 

 

No Convergence 
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Table 13 - 672 Hour Forecast (Average RMSE) at Substation Bus 

 

Model 

Real Power – 

672 Hour 

Forecast Avg. 

RMSE (Watts) 

Reactive Power 

– 672 Hour 

Forecast Avg. 

RMSE (VARs) 

Voltage 

Magnitude – 

672 Hour Avg. 

RMSE (Volts) 

Phase Angle – 

672 Hour 

Forecast Avg. 

RMSE (Degrees) 

 

Execution Time 

(Seconds) 

MLP 134.544553 174.901558 0.043063 0.000112 

 

180 

CNN 165.820596 172.774166 45.946654 0.000123 

 

240 

LSTM ---- ---- ---- ---- 
 

No Convergence 

 

3.9 DSSE with MLPs with Hyperparameter Optimization 

The exact model, approximate model and practical implementation of power system state 

estimation based upon weighted least squares is presented in [2], [7], and [8] respectively.  

The proposed methods are considered “classical” or “analytical” approaches and have 

found application mainly in power transmission systems. 

The authors in [44] consider the benefits of machine learning to mitigate challenges of 

applying analytical approaches to power distribution system state estimation.  While 

machine learning algorithms show great promise in a vast array of power system 

applications, widespread acceptance and application to mission critical functions will 

require stronger performance guarantees, certifications and elimination of vulnerabilities 

inherent in systems built upon data driven models [45]. 

The emerging smart grid will require increased situational awareness and the necessity to 

utilize vast amounts of data in real-time.  To this end, phasor management units (PMUs) 
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will play an increasing role in ensuring that data is collected in a timely and accurate 

manner.  An overview of the history, benefits of application and initiatives to increase 

PMU penetration in the smart grid can be found in [46] and [47].   

Widespread penetration of PMUs will enable increased accuracy of classical state 

estimation methods by effectively linearizing highly non-linear relationships that make 

numerical and iterative solutions necessary for power flow and state estimation equations.  

This is especially true for power distribution systems. Given the early stages of PMU 

penetration initiatives and prohibitive costs [48], the research on which this dissertation is 

based does not assume widespread availability of PMUs in distribution systems. 

The authors in [44] consider the application of feedforward multilayer perceptron models 

(MLPs) to power distribution system state estimation (DSSE).  These models are 

considered “unoptimized” in the sense that model hyperparameters such as number of 

neurons per hidden layer, learning rate, number of training epochs, and training batch size 

were selected by an ad-hoc approach.   

A key observation from [44] is that for the MLP models considered without 

hyperparameter optimization, there appears to be no significant improvement in 

performing power distribution system state estimation by utilizing more complicated 

networks in terms of number of layers and number of neurons per hidden layer.  Further, 

the ad-hoc approach to hyperparameter selection, lacks constraints on the ranges of 

hyperparameters that could be chosen, thus increasing uncertainty regarding 

convergence, training execution time and hindering a suitable performance guarantee 

required for mission critical functions such as state estimation. 
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To avoid the shortcomings of selecting hyperparameters on an ad-hoc basis, the current 

research seeks to incorporate a suitable optimization technique.  The author’s in [49] 

present a comparison of three common approaches to hyperparameter selection. Grid 

search is considered a traditional method that involves a complete search over a given 

subset of the available hyperparameter space. Random search overrides the complete 

selection of all combinations by their random selection.  Genetic algorithms are used to 

solve optimization and modeling problems by sequentially selecting, combining and 

varying parameters using mechanisms that resemble biological evolution.  

Grid search involves evaluation of all options, even those considered “bad” options.  

Random search, while considered a better option than grid search, does not learn from 

previous samples selected and thus is not considered an optimization approach in the 

sense of converging on an optimal solution with each iteration. Genetic algorithms 

involve excessive training time and are better suited for very large hyperparameter 

spaces. 

The author in [10] presents a method of Bayesian Optimization with Gaussian Processes 

that could be considered an improvement upon both grid search and random search 

methods in terms of providing a structured approach to hyperparameter optimization that 

considers prior selections and avoids combinations already shown to result in poor 

performance. 

3.9.1 Bayesian Optimization with Gaussian Processes 

Bayesian Optimization is based in part on the work of English clergyman Thomas Bayes 

and in particular his theory of probability given in 1764 [32]. Bayes Theorem establishes 

a methodical way of calculating conditional probability [33]. 
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Bayes Theorem is given by the following relationship: 

 

 

 
𝑃(𝐴|𝐵) =  

𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 

3 

Where P(A|B) is the probability of an event A occurring, given that event B has already 

occurred, P(B|A) is the probability of an event B occurring, given that event A has 

already occurred, P(A) is the probability of an event A occurring, and P(B) is the 

probability of an event B occurring. 

Often this equation is stated qualitatively as “Posterior = Prior multiplied by Likelihood 

over Marginal Probability)”.  Thus, Bayes Theorem provides a way to calculate the 

probability of a hypothesis (“belief”) based on its prior probability, the probabilities of 

observing various data given the hypothesis (“belief”) and the set of observed data itself. 

[35]. 

Bayes Theorem is used in machine learning optimization techniques to make use of 

“prior” selections to improve on the selections of future values.  This results in 

establishing regions of higher probability of maximizing (minimizing) an objective 

function and avoiding excess sampling in regions already deemed less likely to result in a 

global maximum (minimum).  

Bayesian Optimization with Gaussian Processes is a technique that has gained significant 

interest in applications on which objective functions are considered "expensive" in terms 

of risk for reward or are otherwise intractable by other optimization techniques. 

By intractable, candidate objective functions are those in which first and second order 

derivatives are not easily evaluated.  Thus, techniques built upon variations of Newton's 
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method and gradient descent are not considered feasible options.  Bayesian Optimization 

with Gaussian Processes is among a class of optimization techniques referred to as 

"derivative free" [34].  Thus, the function itself is considered and not first and second 

order derivatives [28].  It should be noted that there is research into the application of 

Bayesian Optimization that does take advantage of derivative information when available 

and is worthy of future research to compare the performance of the method proposed by 

the authors in [41] to gradient based methods such as stochastic gradient descent utilized 

in MLP to optimize weights and biases during the training process. 

Applications on which Bayesian Optimization with Gaussian Processes (derivative free) 

may be advantageous are oil drilling (very expensive to probe, but potentially high 

return); evaluation of drug candidate efficacy (possible danger in its initial use, but 

potentially helpful to society); and hyperparameter optimization (computationally 

expensive to perform simulations). 

The technique has the added benefit of being tolerant to stochastic noise during the 

optimization process.  Thus, there is promise that applying Bayesian Optimization will 

reduce the inherent stochastic performance of MLP models and move toward the goal of 

establishing stronger performance guarantees and/or certifications needed for more 

widespread acceptance of machine learning as applied to mission critical applications 

such as power system state estimation and state forecasting. The process involves first 

building a “surrogate” for the original objective function often called the "acquisition 

function".  The acquisition function is more tractable than the original objective function 

and an algorithm based upon Bayes Theorem and Gaussian process regression is 

employed to estimate the next search point based upon a score of the most probable 
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region of the parameter space given prior scores of previously sampled regions.   It 

should be noted that this optimization technique is not considered appropriate for 

applications on which curve fitting and linear programming methods are sufficient. 

The goal of the optimization technique is to seek a global maximum (or global 

minimum).  Figure 10 presents basic pseudo-code for the Bayesian Optimization 

algorithm utilized in this research [28]. 

 

Figure 10 - Bayesian Optimization Algorithm 

 

As shown in Figure 10, central to Bayesian optimization is the construction of a posterior 

distribution of functions also known as a Gaussian process prior that best describes the 

objective function to be optimized. As the number of observations grows, the posterior 

distribution improves, and the algorithm becomes more certain of which regions in the 

parameter space are worth exploring.   

Mathematically, a gaussian process will be defined by a mean and covariance function, m 

and k respectively [42]: 

 

 𝑓(𝑥)~𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′)) 4 
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Where, f(x) is an arbitrary function, GP represents a gaussian process or distribution 

over functions completely specified by its mean function m(x) and covariance function, 

k(x, x’).  For any arbitrary x, the GP returns the mean and variance of a normal 

distribution. 

For simplicity, the prior m(x) is often set to zero and the squared exponential function is 

often selected as the covariance function k. 

 
𝑘(𝑥𝑖, 𝑥𝑗) = exp (−

1

2
‖𝑥𝑖 − 𝑥𝑗‖

2
) 

5 

Where xi and xj represent two independent samples.  Points close in proximity are 

expected to have much larger influence on each other than those that are further apart. 

As values get closer together, the function approaches 1 and approaches 0 as the values 

get further apart. 

Note that this function has the property that points close in proximity have a much larger 

influence over each other than those that are more distant thus aiding in convergence.  

Also note that function k is often referred to as the kernel [42].  Equation 5 provides a 

very simple version of the squared exponential function and there are many other more 

sophisticated alternatives that include hyperparameters for controlling “smoothness” and 

variance [40]. 

Note in the Bayesian Algorithm presented in Figure 10 that the acquisition function is 

key to determining the next region or point to sample. Several approaches to the selection 

of the next point to be explored are as follows: 

• Upper Confidence Bound (UCB) 
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• Lower Confidence Bound (LCB) 

• Probability of Improvement (PI) 

• Expected Improvement (EI) 

Upper Confidence Bound (UCB) concerns maximization and is described mathematically 

as the following:  

 𝑈𝐶𝐵(𝑥) =  𝜇(𝑥) + 𝜅𝜎(𝑥)  𝑤ℎ𝑒𝑟𝑒 𝜅 ≥ 0 6 

Where μ(x) represents the “mean function”, σ(x) represents the variance function and κ 

is a scale factor to establish the width of the confidence interval.  Note that the “+” 

operation establishes the upper bound of the confidence interval. 

Lower Confidence Bound (LCB) concerns minimization and is described mathematically 

as the following:  

 

 𝐿𝐶𝐵(𝑥) =  𝜇(𝑥) − 𝜅𝜎(𝑥)  𝑤ℎ𝑒𝑟𝑒 𝜅 ≥ 0 7 

Where μ(x) represents the “mean function”, σ(x) represents the variance function and κ 

is a scale factor to establish the width of the confidence interval.  Note that the “-” 

operation establishes the lower bound of the confidence interval. 

Probability of Improvement (PI) is described mathematically as the following: 

 

 𝑃𝐼(𝑥) = 𝑃(𝑓(𝑥) ≥ 𝑓(𝑥+) + 𝜉 8 

 

 
𝑃𝐼(𝑥) =  Φ (

𝜇(𝑥) − 𝑓(𝑥+) − 𝜉

𝜎(𝑥)
) 

9 
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Where Φ is the normal cumulative distribution function, f(x+) is the incumbent maximum 

value and ξ is a “trade-off parameter” intended to reduce selection of points yielding 

larger gains, but less certainty [42]. 

Expected Improvement is described mathematically as the following [42]: 

 𝐸𝐼(𝑥) = 𝔼[max((𝑓(𝑥∗) − 𝑓(𝑥+), 0)] 10 

Where x* represents the candidate parameters, and x+ represents the current “best 

guess” among the previously evaluated parameters.  The advantage of this function is 

that unlike the original objective function, there is a closed form solution given by 

equations 11 and 12. 

 

 
𝐸𝐼(𝑥) = {

(𝜇(𝑥) − 𝑓(𝑥+) − 𝜉)Φ(𝑧) + 𝜎(𝑥)𝜙(𝑍)  𝑖𝑓 𝜎(𝑥) ≥ 0

0                                                                       𝑖𝑓 𝜎(𝑥) = 0
   

11 

 
𝑍 =  

𝜇(𝑥) − 𝑓(𝑥+) − 𝜉

𝜎(𝑥)
 

 12 

In equations 11 and 12, Φ and ϕ represent the cumulative distribution function (CDF) and 

probability density function (PDF) respectively of a unit Gaussian distribution (zero 

mean and variance equal to 1).   Note that the trade-off parameter ξ is included to 

maintain a balance of “exploration” and “exploitation”.  When exploring, regions where 

the surrogate variance is large is desirable.  When exploiting, regions where the surrogate 

mean is high is desirable.  Thus, the Expected Improvement acquisition function 

considers the probability and magnitude of improvement that a sample may provide and 

thus maintains a balance between global search and local optimization 
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(exploration/exploitation) [42].  According to the literature reviewed as part of the 

research being described in this dissertation, Expected Improvement is by far the most 

prevalent acquisition function used to establish the “next best guess”.   

To implement Bayesian Optimization with Gaussian Processes for power system state 

estimation, it is necessary to establish the following requirements [42]. 

• Minimization - Maximization Transformation: The state estimation problem is 

framed as the minimization of the RMSE of the estimated states while common 

implementation of the Bayesian Optimization algorithm is framed as the 

maximization of an objective function.  Thus a transformation to a maximization 

problem can be made by noting that the maximization of a real-valued function x* 

= argmaxx f(x) can be considered as a minimization problem through a transformed 

function y(x) = - f(x).  Thus, while optimization algorithms are often implemented 

as a maximization problem, the transformation is straightforward. 

• Continuity of the Objective Function:  There will be an assumption of Lipschitz-

Continuity.  Thus a constant C exists, although not generally known such that: 

 ||𝑓(𝑥1) − 𝑓(𝑥2)|| ≤ 𝐶||𝑥1 − 𝑥2|| 13 

for x1, x2 ϵ A (compact set of observations) and C intuitively represents how fast a 

function may change.  

• Global Optimization:  For local maximization problems it is sufficient to find an 

x* such that: 

 𝑓(𝑥∗) ≥ 𝑓(𝑥), ∀𝑥 𝑠. 𝑡.  ||𝑥∗ − 𝑥|| < 𝜀 14 
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For -f(x) that is convex, a local maximum will also be considered a global 

maximum.  In the research being discussed in this dissertation, there will be no 

assumption that -f(x) is convex.  Thus, the advantage of the optimization 

technique being considered is that it will avoid being confined to regions of local 

maxima (minima). 

• Black Box Optimization:  There will be no assumption that the objective 

function has known derivatives.  Thus, the MLP model itself will be treated as a 

black box on which bounds will be made on the hyperparameters on which it is 

being optimized over.  In optimization theory, this assumption is stated as an 

assumption that the bounds are all axis-aligned such that the search space is 

hyperrectangle and of dimension d. 

• Application of an Acquisition Function:  This function, with a closed form 

solution, will be considered more tractable than the objective function being 

optimized however it too will not be assumed to be convex. 

The implementation of Bayesian Optimization with Gaussian Processes was done with 

the BayesOpt Python library [28]. This library is built upon the algorithm presented in 

Figure 10 and the mathematical theory presented in equations 3 – 12.  There are two 

primary functions.  The functions are BayesianOptimization( ) and maximize( ).  

BayesianOptimization has the following general structure: 

 BayesianOptimization( 

    f=black_box_function, 

    pbounds=pbounds, 

    random_state=1, 

) 
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Note in the BayesianOptimization function that there are three essential parameters. 

Parameter "f" is the objective function to be optimized, "pbounds" is the range of 

hyperparameters to be searched over and "random_state" is set with a seed to establish 

repeatability.  The maximize function has the following general structure: 

maximize( 

init_points, 

n_iter 

) 

 

The parameter "init_points" establishes how many initial samples to search over before 

executing the Bayesian Optimization algorithm.  The minimum number for this 

parameter is 2.  The parameter "n_iter" is the number of iterations to execute the 

Bayesian Optimization algorithm search process. 

To illustrate the Bayesian Optimization with Gaussian Processes, a relatively simple 1-

dimensional function is considered that has an easily identifiable global maximum and 

minimum.  The function also includes local maxima and local minima to illustrate the 

ability of the optimization technique to avoid being confined to points that are not 

globally maximum. 

Thus, let the test objective function be defined as follows: 

 
𝑓(𝑥) = sin(𝑥) 𝑒

−(𝑥−10)2

10 + 2cos (𝑥)𝑒
−(𝑥−2)2

10  
15 

Figure 11 is a plot of the test objective function.  It should be noted, that in general 

Bayesian Optimization is applied to objective functions that are not easily expressed 

analytically.  
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Figure 11 - Plot of Test Objective Function 

  

Code Listing 2 – Visualization of Bayesian Optimization with Gaussian Processes 

000 # Bayesian_Optimization_Visualization.py 

001 from bayes_opt import BayesianOptimization 

002 from bayes_opt import UtilityFunction 

003 import numpy as np 

004  

005 import matplotlib.pyplot as plt 

006 from matplotlib import pyplot 

007 from matplotlib import gridspec 

008 #%matplotlib inline 

009  

010 def target(x): 

011     #return -np.sin(x)*np.exp(-x**2) 

012     return (-np.sin(x)*np.exp(-(x-10)**2/10) - 2*np.cos(x)*np.exp(-

(x-2)**2/10)) 

013 x = np.linspace(-2, 10, 10000).reshape(-1, 1) 

014 y = target(x) 

015  

016 pyplot.xlabel('x',fontweight = 'bold', fontsize = 12.0, 

color='black') 

017 pyplot.ylabel('f(x)', fontweight = 'bold', fontsize = 12.0, 

color='black') 

018 pyplot.title('f(x) = sin(x)*exp(-(x-10)**2/10)  +  2*cos(x)*exp(-

(x-2)**2/10))', fontweight = 'bold', fontsize = 12.0,) 

019  

020 plt.plot(x, y); 

021  

022 optimizer = BayesianOptimization(target, {'x': (-2, 10)}, 

random_state=27) 

023 optimizer.maximize(init_points=2, n_iter=0, kappa=5) 

024  
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025 def posterior(optimizer, x_obs, y_obs, grid): 

026     optimizer._gp.fit(x_obs, y_obs) 

027  

028     mu, sigma = optimizer._gp.predict(grid, return_std=True) 

029     return mu, sigma 

030  

031  

032 def plot_gp(optimizer, x, y): 

033     fig = plt.figure(figsize=(16, 10)) 

034     steps = len(optimizer.space) 

035     fig.suptitle( 

036         'Step {}: Gaussian Process and Acquisition 

Function'.format(steps), 

037         fontdict={'size':30} 

038     ) 

039  

040     gs = gridspec.GridSpec(2, 1, height_ratios=[3, 1]) 

041     axis = plt.subplot(gs[0]) 

042     acq = plt.subplot(gs[1]) 

043  

044     x_obs = np.array([[res["params"]["x"]] for res in     

optimizer.res]) 

045     y_obs = np.array([res["target"] for res in optimizer.res]) 

046  

047     mu, sigma = posterior(optimizer, x_obs, y_obs, x) 

048     axis.plot(x, y, linewidth=3, label='Objective Function') 

049     axis.plot(x_obs.flatten(), y_obs, 'D', markersize=8, 

label=u'Sample', color='r') 

050     axis.plot(x, mu, '--', color='k', label='Prediction') 

051  

052     axis.fill(np.concatenate([x, x[::-1]]), 

053               np.concatenate([mu - 1.9600 * sigma, (mu + 1.9600 * 

sigma)[::-1]]), 

054         alpha=.6, fc='c', ec='None', label='Confidence Interval 

(95%)') 

055  

056     axis.set_xlim((-2, 10)) 

057     axis.set_ylim((None, None)) 

058     axis.set_ylabel('Objective Function', fontdict={'size':20}) 

059     axis.set_xlabel('x', fontdict={'size':20}) 

060  

061     utility_function = UtilityFunction(kind="ei", kappa=5, xi=0) 

062     utility = utility_function.utility(x, optimizer._gp, 0) 

063     acq.plot(x, utility, label='Acquisition Function', 

color='green') 

064     acq.plot(x[np.argmax(utility)], np.max(utility), '*', 

markersize=15, 

065               label=u'Next Sample', markerfacecolor='yellow', 

markeredgecolor='k', markeredgewidth=1) 

066  

067     acq.set_xlim((-2, 10)) 

068     acq.set_ylim((0, np.max(utility) + 0.5)) 

069     acq.set_ylabel('Acqusition Function', fontdict={'size':20}) 

070     acq.set_xlabel('x', fontdict={'size':20}) 

071  

072     axis.legend(loc=2, bbox_to_anchor=(1.01, 1), borderaxespad=0.) 

073     acq.legend(loc=2, bbox_to_anchor=(1.01, 1), borderaxespad=0.) 
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074  

075     print() 

076  

077     print('Next Best Guess: x = %.6f , f(x) = %.6f' % 

(x[np.argmax(utility)], np.max(utility))) 

078  

079 plot_gp(optimizer, x, y) 

080  

081 print(' ') 

082 print('After one step of GP (and two random points):') 

083 optimizer.maximize(init_points=0, n_iter=1, kappa=5) 

084 plot_gp(optimizer, x, y) 

085  

086 print(' ') 

087 print('After two steps of GP (and two random points)') 

088 optimizer.maximize(init_points=0, n_iter=1, kappa=5) 

089 plot_gp(optimizer, x, y) 

090  

091 print(' ') 

092 print('After three steps of GP (and two random points)') 

093 optimizer.maximize(init_points=0, n_iter=1, kappa=5) 

094 plot_gp(optimizer, x, y) 

095  

096 print(' ') 

097 print('After four steps of GP (and two random points)') 

098 optimizer.maximize(init_points=0, n_iter=1, kappa=5) 

099 plot_gp(optimizer, x, y) 

100  

101 print(' ') 

102 print('After five steps of GP (and two random points)') 

103 optimizer.maximize(init_points=0, n_iter=1, kappa=5) 

104 plot_gp(optimizer, x, y) 

105  

106 print(' ') 

107 print('After six steps of GP (and two random points)') 

108 optimizer.maximize(init_points=0, n_iter=1, kappa=5) 

109 plot_gp(optimizer, x, y) 

110  

111 print(' ') 

112 print('After seven steps of GP (and two random points)') 

113 optimizer.maximize(init_points=0, n_iter=1, kappa=5) 

114 plot_gp(optimizer, x, y) 

115  

116 print(' ') 

117 print('After eight steps of GP (and two random points)') 

118 optimizer.maximize(init_points=0, n_iter=1, kappa=5) 

119 plot_gp(optimizer, x, y) 

120  

121 print(' ') 

122 print('After nine steps of GP (and two random points)') 

123 optimizer.maximize(init_points=0, n_iter=1, kappa=5) 

124 plot_gp(optimizer, x, y) 

125  

126 print(' ') 

127 print('After ten steps of GP (and two random points)') 

128 optimizer.maximize(init_points=0, n_iter=1, kappa=5) 

129 plot_gp(optimizer, x, y) 
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130  

131 print(' ') 

132 print('After eleven steps of GP (and two random points)') 

133 optimizer.maximize(init_points=0, n_iter=1, kappa=5) 

134 plot_gp(optimizer, x, y) 

135  

136 print(' ') 

137 print('After twelve steps of GP (and two random points)') 

138 optimizer.maximize(init_points=0, n_iter=1, kappa=5) 

139 plot_gp(optimizer, x, y) 

140  

141 print(' ') 

142 print('After thirteen steps of GP (and two random points)') 

143 optimizer.maximize(init_points=0, n_iter=1, kappa=5) 

144 plot_gp(optimizer, x, y) 

145  

146 print(' ') 

147 print('After fourteen steps of GP (and two random points)') 

148 optimizer.maximize(init_points=0, n_iter=1, kappa=5) 

149 plot_gp(optimizer, x, y) 

150  

151 print(' ') 

152 print('After fifteen steps of GP (and two random points)') 

153 optimizer.maximize(init_points=0, n_iter=1, kappa=5) 

154 plot_gp(optimizer, x, y) 

 

Table 14 presents a summary of Code Listing 2 for visualization of Bayesian 

Optimization with Gaussian Processes.  
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Table 14 - Summary of Code Listing 2 for Visualization of Bayesian Optimization 

with Gaussian Processes 

Line #: Description: 

001 - 002 Import Python libraries for Bayesian Optimization 

010 - 012 Define a “target” objective function 

022 Define an “optimizer” and pass the objective function to the 

BayesianOptimization function 

023 Initiate the Bayesian Optimization algorithm via the 

“optimizer.maximize” function.  Two initial random points are 

searched.  Two points are the minimum number of random points to 

initiate the optimization process 

061 Define a “UtilityFunction” that takes as an argument, the type of 

acquisition function to use (i.e., “ucb”, “pi”, “ei”).  Acquisition 

function “ei” represents the Expected Improvement function 

presented in equations 8 - 10 

077 Print “Next Best Guess” result from the Bayesian Optimization with 

Gaussian Process 

083, 088, 093, 

098, 103, 108, 

113, 118, 123, 

128, 133, 138, 

143, 148, 153 

Initiates steps of Bayesian Optimization with Gaussian Processes 

shown in Figures 12-18 

 

The following steps illustrate the process.  Some of the steps are not shown to maintain 

brevity.  Also note that “Step 1 of Optimization” is the initial random sample of the first 

point and is not shown.   



72 

 

In the upper portion of  Figure 12 the objective function, two samples, the prediction, and 

the confidence interval (95%) are notated by the legend.  Note that the “prediction” is 

established by the mean function of the confidence interval.  The two samples shown 

were selected randomly from regions where the variance is large.  This is the 

“exploration” phase of Bayesian Optimization. The lower portion of the figure shows the 

“Acquisition Function” along with the next sample selected by the Bayesian optimizer.  

In this case, the acquisition function is established by the Expected Improvement function 

given in equations 10, 11 and 12 presented earlier in this section.  Note that the “Next 

Best Guess” will be selected where the mean of the acquisition function is high. 
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Figure 12 - Step 2 of Bayesian Optimization with Gaussian Processes 
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Figure 13 - Step 3 of Bayesian Optimization with Gaussian Processes 
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Figure 14 - Step 4 of Bayesian Optimization with Gaussian Processes  
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Figure 15 - Step 11 of Bayesian Optimization with Gaussian Processes 
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Figure 16 - Step 15 of Bayesian Optimization with Gaussian Processes 
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Figure 17 - Step 16 of Bayesian Optimization with Gaussian Processes 
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Figure 18 - Step 17 of Bayesian Optimization with Gaussian Processes 

 

Note that additional steps of the process will continue to converge on the “global 

maximum”.  Also note that in regions where there is a greater likelihood of a maximum, 

there are a higher concentration of points as the “Next Best Guess” will be chosen to 

remain in these regions.  Likewise, regions that did not contain values of sufficient 

probability of “expected improvement” were not sampled again.  Thus, Bayesian 

Optimization with Gaussian Processes will greatly reduce the probability of selecting 

values that will not produce the maximum of the original objective function.     
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3.9.2 Implementation of Bayesian Optimization with Gaussian Processes on MLPs for 

DSSE 

The authors in [51] discuss practical Bayesian Optimization of machine learning 

algorithms and make a distinction between optimization of “learning parameters” such as 

learning rate and batch size and optimization of “model parameters” such as the number 

of layers and number of neurons per hidden layer.  The research on which this 

dissertation is based will consider a combination of both types to be referred to as 

“hyperparameters”. 

Section 3.7 presented the performance of MLPs without hyperparameter optimization for 

DSSE.  The model architectures for each trial shown in Table 10 involved selecting the 

number of hidden layers, number of neurons per hidden layer, and other hyperparameters 

in an “ad-hoc” fashion.  The data show that by holding the following hyperparameters 

constant while randomly adjusting the number of layers and neurons did not result in 

significant improvement in training, testing, and validation RMSE with more complex 

networks. 

Table 15 presents the unoptimized hyperparameters held constant for Trials 1-11 in Table 

10. 
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Table 15 - Unoptimized MLP Hyperparameter Settings 

 

MLP Hyperparameters Settings 

Activation Function per Layer Rectified Linear Unit (ReLU) 

Batch Size 10 

Epochs 200 

Learning Rate 0.001 

Loss Function Mean Squared Error 

Input Layer Neurons 56 

Output Layer Neurons 56 

Optimizer Stochastic Gradient Descent 

(SGD) 

 

Note the Input Layer Neurons and Output Layer Neurons are established by the number 

of features in the complex power (input) and complex voltage (output) gathered from the 

fixed number of monitors placed in the power distribution test system.  In general the 

number of neurons in each of these layers is independent and are not required to be equal. 

Bayesian Optimization was performed on some of the previous trials in addition to new 

random configurations.  The new configurations involved consideration of models with 2 

hidden layers given that the original trials did not contain this configuration. It was 

decided that the following hyperparameters would be held constant given their prevailing 

use in modern machine learning: 

• Activation Function per Layer: ReLU 

• Loss Function: Mean Squared Error 

• Optimizer: Adam optimizer with adjustable learning rate 
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The following hyperparameters were configured to have the following ranges: 

• Hidden Layer Neurons: 1 - 100 

• Learning Rate: 0.0001 - 1.0 

• Batch Size: 1 - 100  

• Epochs: 1 - 300 

 

Bayesian Optimization with Gaussian Processes was used to optimize the MLP network 

corresponding to “Trial 1” in Table 10.  The optimized MLP is labeled as “Trial 1Opt”.  

The results of optimization for this trial and remaining trials for other MLP architectures 

considered are shown in Table 17.  For brevity, the steps below show the critical steps 

required to enable Bayesian Optimization with Gaussian Processes for “Trial 1Opt” only: 

Code Listing 3 - MLP Model Optimized with Bayesian Optimization with Gaussian 

Processes: 

000 # MLP_Trial_01_Optimized.py 

001  

002 import time 

003 start_time = time.time() 

004  

005 # !pip install keras.optimizers 

006 # !pip install bayesian-optimization 

007  

008 # from google.colab import drive 

009 # drive.mount('/content/drive') 

010  

011 import os 

012 os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' 

013  

014 import warnings 

015 warnings.filterwarnings('ignore') 

016  

017 import numpy as np 

018 import numpy 

019 import pandas as pd 

020 from pandas import read_csv 

021 import math 

022 from math import floor 

023 import matplotlib.pyplot as plt 

024 import seaborn as sns 

025 import pickle 

026 from keras.models import Sequential 

027 from keras.layers import Dense, BatchNormalization, Dropout 
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028 from keras.callbacks import EarlyStopping, ModelCheckpoint 

029 from keras.wrappers.scikit_learn import KerasRegressor 

030 from keras.layers import LeakyReLU 

031 from sklearn.model_selection import train_test_split 

032 from sklearn.metrics import mean_squared_error 

033 from sklearn.preprocessing import MinMaxScaler 

034 from sklearn.model_selection import train_test_split 

035 from sklearn.model_selection import cross_val_score 

036 from sklearn.metrics import make_scorer, accuracy_score 

037 from sklearn.model_selection import StratifiedKFold 

038 from sklearn.model_selection import KFold 

039 from tensorflow.keras.optimizers import Adam 

040  

041 # Import BayesianOptimization Library 

042 from bayes_opt import BayesianOptimization 

043  

044 pd.set_option("display.max_columns", None) 

045 LeakyReLU = LeakyReLU(alpha=0.1) 

046  

047 # Make scorer accuracy 

048 score_acc = make_scorer('neg_mean_squared_error') 

049  

050 # Data Normalization 

051 scaler_power_ercot = MinMaxScaler(feature_range=(-1,1),copy=True) 

052 scaler_voltage_ercot = MinMaxScaler(feature_range=(-1,1),copy=True) 

053  

054 scaler_power_coast = MinMaxScaler(feature_range=(-1,1),copy=True) 

055 scaler_voltage_coast = MinMaxScaler(feature_range=(-1,1),copy=True) 

056  

057 # Load Datasets 

058  

059 # EROCT Data used to Train and Test MLP 

060 #input_power_ercot_dataframe = 

read_csv('/content/input_power_ercot.csv', header=None) 

061 input_power_ercot_dataframe = 

read_csv('C:/Python/input_power_ercot.csv', header=None) 

062 input_power_ercot = input_power_ercot_dataframe.values 

063 input_power_ercot_normalized = 

scaler_power_ercot.fit_transform(input_power_ercot) 

064  

065 #input_power_ercot_normalized = input_power_ercot[0:24] 

066  

067 #output_voltage_ercot_dataframe = 

read_csv('/content/output_voltage_ercot.csv', header=None) 

068 output_voltage_ercot_dataframe = 

read_csv('C:/Python/output_voltage_ercot.csv', header=None) 

069 output_voltage_ercot = output_voltage_ercot_dataframe.values 

070 output_voltage_ercot_normalized = 

scaler_voltage_ercot.fit_transform(output_voltage_ercot) 

071  

072 #output_voltage_ercot_normalized = output_voltage_ercot[0:24] 

073  

074 # Coast Data used to Validate MLP 

075 #input_power_coast_dataframe = 

read_csv('/content/input_power_coast.csv', header=None) 

076 input_power_coast_dataframe = 

read_csv('C:/Python/input_power_coast.csv', header=None) 
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077 input_power_coast = input_power_coast_dataframe.values 

078 input_power_coast_normalized = 

scaler_power_coast.fit_transform(input_power_coast) 

079  

080 #output_voltage_coast_dataframe = 

read_csv('/content/output_voltage_coast.csv', header=None) 

081 output_voltage_coast_dataframe = 

read_csv('C:/Python/output_voltage_coast.csv', header=None) 

082 output_voltage_coast = output_voltage_coast_dataframe.values 

083 output_voltage_coast_normalized = 

scaler_voltage_coast.fit_transform(output_voltage_coast) 

084  

085 # Split Data Into 70% for Train and 30% for Test 

086 power_train_normalized, power_test_normalized, 

voltage_train_normalized, voltage_test_normalized = 

train_test_split(input_power_ercot_normalized, 

output_voltage_ercot_normalized, test_size=0.30) 

087  

088 # Set seed 

089 from numpy.random import seed 

090 seed(123) 

091  

092 import os 

093 os.environ['PYTHONHASHSEED']=str(123) 

094  

095 import random 

096 random.seed(123) 

097  

098 import tensorflow as tf 

099 tf.random.set_seed(123) 

100  

101 # Define an Objective Function with Hyperparameters as Arguments 

102 def nn_bo(neurons, learning_rate, batch_size, epochs): 

103     neurons = round(neurons) 

104     batch_size = round(batch_size) 

105     epochs = round(epochs) 

106  

107     def nn_fun(): 

108         opt = Adam(lr = learning_rate) 

109  

110         nn = Sequential() 

111         nn.add(Dense(neurons, input_dim=56, activation='relu')) 

112         nn.add(Dense(56)) 

113         nn.compile(loss='mean_squared_error', optimizer=opt, 

metrics=['mse']) 

114         return nn 

115  

116     es = EarlyStopping(monitor='mean_squared_error', mode='max', 

verbose=0, patience=20) 

117     nn = KerasRegressor(build_fn=nn_fun, epochs=epochs, 

batch_size=batch_size, 

118                          verbose=0) 

119     kfold = KFold(n_splits=5, shuffle=True, random_state=123) 

120     score = cross_val_score(nn, power_train_normalized, 

voltage_train_normalized, cv=kfold).mean() 

121  

122     return score 
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123  

124 # Define the Hyperparameter Space to Optimize Over 

125 params_nn ={ 

126     'neurons': (1, 1000), 

127     'learning_rate':(0.0001, 1), 

128     'batch_size':(1, 10), 

129     'epochs':(1,10) 

130 } 

131  

132 # Run Bayesian Optimization with Gaussian Processes 

133 nn_bo = BayesianOptimization(nn_bo, params_nn, random_state=111) 

134  

135 nn_bo.maximize(init_points=2, n_iter=2) 

136  

137 # Save and Print Hyperparameters Selected via Bayesian Optimization 

138 params_nn_ = nn_bo.max['params'] 

139  

140 params_nn_['neurons'] = round(params_nn_['neurons']) 

141 params_nn_['learning_rate'] = round(params_nn_['learning_rate'], 2) 

142 params_nn_['batch_size'] = round(params_nn_['batch_size']) 

143 params_nn_['epochs'] = round(params_nn_['epochs']) 

144  

145 params_nn_ 

146  

147 print(params_nn_) 

148  

149 # Fit the  Neural Network with Optimized Hyperparameters 

150 def nn_fun(): 

151     opt = Adam(lr = params_nn_['learning_rate']) 

152     nn = Sequential() 

153     nn.add(Dense(params_nn_['neurons'], input_dim=56, 

activation='relu')) 

154     nn.add(Dense(56)) 

155     nn.compile(loss='mean_squared_error', optimizer=opt, 

metrics=['mse']) 

156     return nn 

157  

158 es = EarlyStopping(monitor='mean_squared_error', mode='max', 

verbose=0, patience=20) 

159 nn = KerasRegressor(build_fn=nn_fun, epochs=params_nn_['epochs'], 

batch_size=params_nn_['batch_size'], 

160                          verbose=0) 

161 kfold = KFold(n_splits=5, shuffle=True, random_state=123) 

162 nn.fit(power_train_normalized, voltage_train_normalized, 

validation_data=(power_test_normalized, 

163        voltage_test_normalized), verbose=0) 

164  

165 # Evaluate the MLP Model with Optimized Hyperparameters 

166 trainScore = cross_val_score(nn, power_train_normalized, 

voltage_train_normalized, cv=kfold).mean() 

167 print('ERCOT Train Score: %.6f MSE (%.6f RMSE)' % (abs(trainScore), 

math.sqrt(abs(trainScore)))) 

168  

169 testScore = cross_val_score(nn, power_test_normalized, 

voltage_test_normalized, cv=kfold).mean() 

170 print('ERCOT Test Score: %.6f MSE (%.6f RMSE)' % (abs(testScore), 

math.sqrt(abs(testScore)))) 
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171  

172 print(' ') 

173 # Make Prediction with the Optimimized MLP on Validation Data 

174 coastScore =  cross_val_score(nn, input_power_coast_normalized, 

output_voltage_coast_normalized, 

175                               cv=kfold).mean() 

176  

177 print('Coast Validation Score: %.6f MSE (%.6f RMSE)' % 

(abs(coastScore), 

178                                                         

math.sqrt(abs(coastScore)))) 

179 print(' ') 

180  

181 print("--- %s seconds ---" % (time.time() - start_time)) 

 

Execution of the code listing presented above produced the following results: 

|   iter    |  target   | batch_... |  epochs   | learni... |  neurons  | 

------------------------------------------------------------------------- 

|  1        | -1.032    |  6.51     |  2.522    |  0.4417   |  769.5    | 

|  2        | -0.03407  |  3.658    |  2.342    |  0.03225  |  420.8    | 

|  3        | -0.09807  |  3.074    |  3.462    |  0.1861   |  420.5    | 

|  4        | -0.02204  |  9.955    |  2.796    |  0.05658  |  434.1    | 

========================================================================= 

{'batch_size': 10, 'epochs': 3, 'learning_rate': 0.06, 'neurons': 434} 

ERCOT Train Score: 0.021157 MSE (0.145455 RMSE) 

ERCOT Test Score: 0.023658 MSE (0.153813 RMSE) 

  

Coast Validation Score: 0.019329 MSE (0.139029 RMSE) 

  

--- 92.21797847747803 seconds --- 

 

 

 

Table 16 presents a summary of Code Listing 3 for an MLP model optimized with 

Bayesian Optimization with Gaussian Processes. 
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Table 16 - Summary of Code Listing 3 for MLP Model Optimized with Bayesian 

Optimization with Gaussian Processes 

 

Line #: Description: 

017 - 042 Import essential Python libraries for implementation of MLP model 

for DSSE and Bayesian Optimization with Gaussian Process for 

hyperparameter selection 

050 - 055 Define “scalar” objects to perform data normalization on source data 

to aid in training performance. 

059 - 070 Import ERCOT data used to train and test the MLP.  Perform data 

normalization. 

074 - 083 Import COAST data used to validate MLP.  Perform normalization. 

085 - 086 Split input data into 70% for training and 30% for testing. 

101 - 122 Define objective function with hyperparameters as arguments.  

Hyperparameters to be optimized over are the # of neurons in the 

hidden layer, learning rate for the ADAM optimizer, batch size and # 

of epochs for training. 

107 - 114 Define a parameterized MLP model that is “wrapped” within the 

objective function. 

124 - 129 Define the hyperparameter space to optimize over.  Establish ranges 

for each hyperparameters. 

133 Pass the objective function and parameter space to the 

BayesianOptimization() function. 

135 Initialize Bayesian Optimization with Gaussian Process with the 

maximize() function.  Two initial points will be sampled and the 

Bayesian Optimization algorithm will perform 2 iterations. 

137 - 147 Save and print hyperparameters selected via Bayesian Optimization. 

149 - 156 Fit the MLP with the optimized hyperparameters. 

165 - 170 Evaluate the optimized MLP on training and testing data in terms of 

RMSE. 
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173 - 178 Perform DSSE with optimized MLP on COAST validation data and 

report RMSE. 

 

Table 17 is an extension of Table 10 to include trials (models) with and without 

hyperparameter optimization to compare the performance in training, testing, and 

validation scores (RMSE) as well as execution time on a system with the following 

specifications: 

Processor: Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz   2.81 GHz 

Installed:          RAM 16.0 GB (15.9 GB usable) 

System type: 64-bit operating system, x64-based processor 

 

Table 17 – Performance Results for MLP Models with Hyperparameter 

Optimization 

 

Trial 
Input 

Layer 

Hidden 

Layers 

Output 

Layer 

Train 

RMSE 

(70%) 

Test 

RMSE 

(30%) 

COAST 

Act. vs. 

Est. 

RMSE 

Execution 

Time 

(Seconds) 

1 
56 

Neurons 

1 Layer 

56 

Neurons 

56 

Neurons 
0.140927 0.142162 0.323075 135.453 

1Opt 
56 

Neurons 

1 Layer 

72 

Neurons 

56 

Neurons 
0.128002 0.141306 0.118630 969.183 

2 
56 

Neurons 

1 Layer 

112 

Neurons 

56 

Neurons 
0.140486 0.136711 0.323293 138.883 

2Opt 
56 

Neurons 

1 Layer 

72 

Neurons 

56 

Neurons 
0.128002 0.141306 0.118630 969.183 

3 
56 

Neurons 

1 Layer 

224 

Neurons 

56 

Neurons 
0.137222 0.137328 0.322124 143.491 

3Opt 
56 

Neurons 

1 Layer 

72 

Neurons 

56 

Neurons 
0.128002 0.141306 0.118630 969.183 

3a 
56 

Neurons 

2 Layers 

56 

Neurons 

56 

Neurons 
0.133488 0.132823 0.329049 140.123 
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3aOpt 
56 

Neurons 

2 Layers 

39 

Neurons 

56 

Neurons 
0.072172 0.079611 0.063347 2079.529 

3b 
56 

Neurons 

2 Layers 

224 

Neurons 

56 

Neurons 
0.128535 0.128073 0.335831 176.820 

3bOpt 
56 

Neurons 

2 Layers 

39 

Neurons 

56 

Neurons 
0.072172 0.079611 0.063347 2079.529 

3c 
56 

Neurons 

3 Layers 

56 

Neurons 

56 

Neurons 
0.131211 0.130995 0.336122 142.877 

3cOpt 
56 

Neurons 

3 Layers 

31 

Neurons 

56 

Neurons 
0.077014 0.093673 0.072809 996.437 

3d 
56 

Neurons 

3 Layers 

224 

Neurons 

56 

Neurons 
0.127834 0.127370 0.334619 217.837 

3dOpt 
56 

Neurons 

3 Layers 

31 

Neurons 

56 

Neurons 
0.077014 0.093673 0.072809 996.437 

3e 
56 

Neurons 

4 Layers 

56 

Neurons 

56 

Neurons 
0.130180 0.129626 0.337249 144.387 

3eOpt 
56 

Neurons 

4 Layers 

91 

Neurons 

56 

Neurons 
0.072290 0.092400 0.062920 1168.186 

3f 
56 

Neurons 

4 Layers 

224 

Neurons 

56 

Neurons 
0.125555 0.125256 0.334843 249.738 

3fOpt 
56 

Neurons 

4 Layers 

91 

Neurons 

56 

Neurons 
0.072290 0.092400 0.062920 1168.186 

3g 
56 

Neurons 

5 Layers 

56 

Neurons 

56 

Neurons 
0.130120 0.129770 0.338243 151.583 

3gOpt 
56 

Neurons 

5 Layers 

26 

Neurons 

56 

Neurons 
0.077375 0.105210 0.074014 2090.218 

 

Note that the number of hidden neurons per layer for the trials with the “xxOpt” 

designation was determined by the Bayesian Optimization with Gaussian Processes 

described in section 3.9.1. 
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Note in Table 17 that the column “COAST Act. vs. Est. RMSE” represents the 

“validation error” for data not previously seen by each MLP model.  The Bayesian 

Optimizer selected hyperparameters that reduced validation error over the “unoptimized” 

model configuration for each trial.  The “Execution Time” in Table 17 confirms the 

“exploration/exploitation tradeoff” by the Expected Improvement (EI) acquisition 

function discussed in section 3.9.1.  While improvements were made in the reduction of 

validation error enabled by hyperparameter optimization, the execution time for each trial 

was increased due to the time required to sample regions of the hyperparameter space and 

select the “next best guess” for each subsequent step of optimization as illustrated in the 

example presented in section 3.9.1.  Table 18 provides the hyperparameters selected by 

the Bayesian Optimization process for the trials shown in Table 17. 

Table 18 - Hyperparameters Selected via Bayesian Optimization with Gaussian 

Processes 

 

Trial 
Neurons per 

Hidden Layer 
Learning Rate Epochs Batch Size 

1Opt 72 0.023 29 85 

2Opt 72 0.023 29 85 

3Opt 72 0.023 29 85 

3aOpt 39 0.821 220 93 

3bOpt 39 0.821 220 93 

3cOpt 31 0.010 109 82 

3dOpt 31 0.010 109 82 

3eOpt 91 0.321 87 75 

3fOpt 91 0.321 87 75 

3gOpt 26 0.013 82 33 

 

Table 19 presents a summary of the optimized model configurations MLPs optimized via 

Bayesian Optimization with Gaussian Processes.  The table shows for models with a 

given number of hidden layers, the configuration established by utilizing the 

hyperparameters selected by the optimization process. 
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Table 19 - Optimized Model Configurations 

 

Number of 

Hidden Layers 
Model Configuration 

1 

Input Layer Neurons: 56  

Hidden Layer Neurons: 72 

Output Layer Neurons: 56 

 

Activation Function per Layer: Rectified Linear Unit 

(ReLU) 

Learning Rate: 0.023 

Epochs = 29 

Batch Size = 85 

Loss Function: Mean Squared Error 

Optimizer: Adam Optimizer 

 

2 

Input Layer Neurons: 56  

Hidden Layer Neurons: 39 

Output Layer Neurons: 56 

 

Activation Function per Layer: Rectified Linear Unit 

(ReLU) 

Learning Rate: 0.821 

Epochs = 220 

Batch Size = 93 

Loss Function: Mean Squared Error 

Optimizer: Adam Optimizer 

 

3 

Input Layer Neurons: 56  

Hidden Layer Neurons: 31 

Output Layer Neurons: 56 

 

Activation Function per Layer: Rectified Linear Unit 

(ReLU) 

Learning Rate: 0.010 

Epochs = 109 

Batch Size = 82 

Loss Function: Mean Squared Error 

Optimizer: Adam Optimizer 

 

4 

Input Layer Neurons: 56  

Hidden Layer Neurons: 91 

Output Layer Neurons: 56 

 

Activation Function per Layer: Rectified Linear Unit 

(ReLU) 

Learning Rate: 0.321 

Epochs = 87 

Batch Size = 75 

Loss Function: Mean Squared Error 

Optimizer: Adam Optimizer 

 

5 Input Layer Neurons: 56  
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Hidden Layer Neurons: 26 

Output Layer Neurons: 56 

 

Activation Function per Layer: Rectified Linear Unit 

(ReLU) 

Learning Rate: 0.013 

Epochs = 82 

Batch Size = 33 

Loss Function: Mean Squared Error 

Optimizer: Adam Optimizer 

  

The following observations can be made regarding MLPs considered in this research for 

DSSE: 

• For unoptimized MLPs considered in this current research, there is no notable benefit 

in utilizing increasingly complex models in terms of number of hidden layers and 

number of neurons per hidden layer.  In some cases, there is even diminishing 

performance in terms of the validation error RMSE with more complex models. 

• For unoptimized MLPs considered in this current research, the RMSE for training and 

testing is of a similar scale, however this error metric increases significantly when 

making predictions for validation on data never seen by the network.  This is verified 

in the column "Coast Act. vs. Est. RMSE" in Table 17 .  Thus, the unoptimized MLPs 

considered, exhibit in machine learning terms the condition of “overfitting” in which 

the MLP learns the training dataset quite well, however, fails to generalize to new 

data. 

• For MLPs optimized by the Bayesian Optimization method considered in this 

research, a parameter space of 30x109 combinations can be searched to arrive at a 

combination of hyperparameters to yield a reduction in validation error. 

• For MLPs optimized by the Bayesian Optimization method considered in this 

research, the RMSE for training and testing is of a similar scale to that of unoptimized 
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MLPs, however this error metric is significantly lower when making predictions on 

data never seen by the network.  This is verified in the column "Coast Act. vs. Est. 

RMSE" in Table 17.  Thus Bayesian Optimization applied to MLPs enabled the 

resulting models to better generalize to new data. 

• Bayesian Optimization seeks a “global” solution however there is a trade-off between 

exploration and exploitation of subsets of the hyperparameter space.   

Possible research opportunities may include the following: 

• Investigation of full-state estimation of complex voltages at all buses and nodes 

given power flow through a subset of lines in a test feeder circuit. 

• Investigation of Gaussian Processes with various mean and covariance functions. 

• Investigation of various acquisition functions and related parameters illustrated in 

section 3.9.1.  Thus, the configuration of the parameters of the Gaussian Process 

can be approached as another optimization problem to improve performance. 

• Investigation of the exploration/exploitation tradeoff inherent in Bayesian 

Optimization with Gaussian Process to further improve its performance. 

 

CHAPTER 4. FULL DISTRIBUTION SYSTEM STATE ESTIMATION WITH OPTIMIZED 

MLP MODELS 

Preliminary research on which this dissertation is based involved the placement of power 

and voltage monitors at specific locations in an IEEE-34 Node Test Distribution System 

as shown in Figure 8.  Power monitors captured complex power flowing through specific 

nodes and voltage monitors captured complex voltage at the same nodes.  This data was 

then used to train MLPs to predict complex voltage at the same nodes given new complex 
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power.  An improved methodology captures bi-directional power flow on every line and 

complex voltage at every node to establish training data. The current research 

investigates the effect of utilizing specific percentages of complex power flow with 

randomly selected lines to train MLPs to predict complex voltage at all nodes. The effect 

of Bayesian Optimization with Gaussian Processes is investigated in terms of reducing 

validation error.  The performance of training, testing, and validation is presented in 

terms of root-mean-squared-error (RMSE) and execution time. 

Figure 8 in section 3.3 presents the IEEE test distribution system and measurement points 

considered in the early stages of the research on which this dissertation is based.  The 

number of power and voltage monitors and locations was selected randomly and the MLP 

model hyperparameters such as number of hidden layer neurons, learning rate, batch size 

and number of epochs were selected via an ad hoc approach. Thus, the MLP models were 

considered “unoptimized”.   

As noted in section 3.7, a key observation is that MLP models without hyperparameter 

optimization do not offer significant improvement in RMSE when performing regression 

by utilizing increasingly complicated networks in terms of number of layers and number 

of neurons per layer. 

It was found that improvement in RMSE could be achieved through Bayesian 

Optimization and that a hyperparameter space of 30x109 could be searched at the expense 

of additional training time over that of unoptimized MLP models. 

Additionally, it was found that “optimized” MLP models were able to avoid over-

training and thus generalize better to data never seen by the networks than models with 

the same structure without hyperparameter optimization.  
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The goals of the latest iteration of research described in this chapter are as follows: 

1. Establish an improved methodology and data pipeline [52] for training, testing 

and validation through the integration of a high level programming language 

(Python) and a distribution system simulator (OpenDSS) [53]. 

2. Investigate the effect of utilizing specific percentages of complex power flow 

with randomly selected lines to train MLPs to predict the complex voltage at all 

nodes of the distribution system. 

3. Identify opportunities for improved state estimation given larger power 

distribution systems. 

4.1 Original Workflow and Data Pipeline 

Figure 19 shows a functional diagram of the original workflow and data pipeline for the 

preliminary research on which this dissertation is based. 
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Figure 19 - Original Workflow and Data Pipeline 

 

4.1.1 Load Profile 

 

A load profile provides a means of varying the loads in the distribution system during a 

power flow simulation.  As presented in section 3.4 and 3.5, LoadProfile_ERCOT.csv 

and LoadProfile_COAST.csv represent load profiles associated with two regions within 

the Electric Reliability Council of Texas [10]. The choice of load profiles used in the 

current research is based upon the accessibility of the data and prevalence in power 

system literature and has no other significance. 

4.1.2 Distribution System Simulator 

 

An open source distribution system simulator (OpenDSS) is used for performing power 

flow simulations to gather training, testing and validation datasets. 

Power and voltage monitors are placed at specific locations in the test feeder system.  The 

descriptions, locations and quantities measured were presented previously in section 3.3 of 
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this dissertation.  Power flow simulations were performed based on load profiles to 

establish the datasets for training, testing and validation.   

4.1.3 Raw Data Files Exported from Simulator Monitors 

 

Each OpenDSS monitor provides the capability of exporting raw data files in .csv format.  

Specifically, for the monitors placed in the test feeder system, there are 10 .csv files 

representing the complex power flow through each monitor location and 10 .csv files 

representing the complex voltage at each monitor location. 

These datasets are considered “raw” in the sense that they contain additional information 

not conducive to the machine learning models selected for performing regression.  

For the complex power and voltage datasets, each file contains non-numeric column 

headers describing the numeric data and the corresponding units (i.e. P(kW), Q(kvar), 

V(volts), Vangle(degrees).  Additionally, columns representing the “hour” and “sec” of the 

power flow simulation were included and deemed unnecessary. 

For the complex voltage datasets, current flow per phase was included and deemed 

unnecessary.  It should be noted that for state estimation, current flow could be considered 

an option for future research.  

4.1.4 Data Pre-processing 

In order to prepare and reshape the datasets for processing by multilayer-perceptron 

models considered in this research, it is necessary to establish a single dataset for 

supervised learning comprised of complex power (PQ values) and a single dataset 

comprised of complex voltage (V_mag and V_angle) from all of the separate .csv files.   



98 

 

This task is performed by a high-level programming language (Python) capable of 

looping through a file directory to load and concatenate the separate datasets into the 

required final datasets.  Additionally during this process, column headings and 

extraneous columns are removed.   

The decision of which columns to maintain and which to remove is in the parlance of 

machine learning, referred to as “feature selection” or “feature engineering” [52].  

Additional research may consider the effect of selection of different features for use in 

state estimation.  For example, the authors in [54] consider branch-current based state 

estimation. 

4.1.5 Machine Learning Ecosystem 

The machine learning ecosystem selected in the previous research includes the following: 

Python [62], Sklearn [55],Pandas [56], TensorFlow [57], Keras [58]. 

Once preprocessing is complete, the MLP models could be trained, tested and validated 

for performing state estimation for the limited locations within the test feeder system 

corresponding to the location of the monitors. 

4.2 Improved Workflow and Data Pipeline 

Figure 20 shows a functional diagram of an improved workflow and data pipeline. 
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Figure 20 - Improved Workflow and Data Pipeline 

 

4.2.1 Load Profile 

The load profile .csv files are loaded directly to the Machine Learning Ecosystem.   

4.2.2 Distribution System Simulator 

As shown in Figure 20, a dynamic link library (py_dss_interface.dll) [60] enables 

bidirectional communication between the Machine Learning Ecosystem and the 

distribution system simulator.  This .dll allows for control and configuration of the 
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distribution system simulator to be performed within the Machine Learning Ecosystem. 

This configuration thus simplifies the workflow by establishing the distribution system 

simulator as a dedicated power flow engine. Additionally, the need to place power and 

voltage monitors within the distribution system is removed along with the external data 

processing required in the original workflow. Finally, ability of the distribution system 

simulator to capture bi-directional power flow throughout the entire system and thus state 

estimation of much larger circuits is enabled.    

4.2.3 Machine Learning Ecosystem 

The Machine Learning Ecosystem is again based upon Python supported by machine 

learning libraries of sklearn, Pandas, TensorFlow, and Keras.  Additionally, the 

bayes_opt [59] library is utilized for hyperparameter optimization based upon Bayesian 

Optimization with Gaussian Processes.  The theory and application of this library to the 

research on which this dissertation is based can be found in sections 3.9.1 and 3.9.2. 

As shown in Figure 20, the data pipeline is organized into data processing, model 

training/evaluation, hyperparameter optimization and final evaluation units.   

The profile files are loaded directly to the data processing unit.  A bi-directional path is 

established between the power flow simulation “engine” and the data processing unit 

enabled by the dynamic link library (py_dss_interface.dll).   

Initiation and configuration of the power flow simulation and related parameters such as 

total hours are performed within the machine learning ecosystem.   

The output from the distribution system simulator is retrieved by the data processing unit 

and external processing is not required to concatenate files and eliminate non-numeric 

data.  Complex power through all lines and complex voltage at all nodes are accessible 
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directly via the dynamic link library and read into Python data structures (i.e. Numpy 

Arrays [61] and Pandas Data Frames [56]).  A feedback loop is established between the 

model training/evaluation and hyperparameter optimization units.  The Multilayer 

Perceptron (MLP) model is passed to the hyperparameter optimization unit as an 

argument and the final selection of the MLP hyperparameters is performed via Bayesian 

Optimization with Gaussian Processes.  Finally, the “optimized” MLP model is used to 

perform state estimation by minimizing the root-mean-squared error (RMSE) between 

actual and predicted values of complex voltage given validation data (new complex 

power data). 

Specifically, these improvements enabled the following: 

1. An automated method to perform power flow simulations of a test feeder with any 

number of nodes and lines. 

2. Integration of Python and OpenDSS through the dynamic link library 

“py_dss_interface.dll”. 

3. Ability to automatically acquire complex power through all lines and complex 

voltage at every node for training, testing, and validation thus enabling “full-state 

estimation”. 

4.2.4 Experimental Methodology 

The IEEE 34 Node Test Distribution System that was considered in previous research 

was also used in the updated research methodology discussed in this chapter.  
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4.2.5 Measurement Points and Locations 

The current research features full-state estimation in the sense that all lines and all nodes 

of the distribution feeder are employed in gathering training, testing and validation data. 

Figure 20 provides the line elements and power quantities for the IEEE 34 Node Test 

Distribution system considered in the current research.   

Table 20 - Line Elements and Power Flow 

 

Line 

Element 

 Node Node Quantities 

L1 800 802 
Phase A,B,C 

P (kW) and Q(kVAR) 

L2 802 806 
Phase A,B,C 

P (kW) and Q(kVAR) 

L3 806 808 
Phase A,B,C 

P (kW) and Q(kVAR) 

L4 808 810 
Phase B 

P (kW) and Q(kVAR) 

L5 808 812 
Phase A,B,C 

P (kW) and Q(kVAR) 

L6 812 814 
Phase A,B,C 

P (kW) and Q(kVAR) 

L7 814 850 
Phase A,B,C 

P (kW) and Q(kVAR) 

L8 816 818 
Phase A 

P(kW) and Q(kVAR) 

L9 816 824 
Phase A,B,C 

P (kW) and Q(kVAR) 

L10 818 820 
Phase A 

P(kW) and Q(kVAR) 

L11 820 822 
Phase A 

P (kW) and Q(kVAR) 

L12 824 826 
Phase B 

P (kW) and Q(kVAR) 
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L13 824 828 
Phase A,B,C 

P (kW) and Q(kVAR) 

L14 828 830 
Phase A,B,C 

P (kW) and Q(kVAR) 

L15 830 854 
Phase A,B,C 

P (kW) and Q(kVAR) 

L16 832 858 
Phase A,B,C 

P (kW) and Q(kVAR) 

L17 834 860 
Phase A,B,C 

P (kW) and Q(kVAR) 

L18 834 842 
Phase A,B,C 

P (kW) and Q(kVAR) 

L19 836 840 
Phase A,B,C 

P (kW) and Q(kVAR) 

L20 836 862 
Phase A,B,C 

P (kW) and Q(kVAR) 

L21 842 844 
Phase A,B,C 

P (kW) and Q(kVAR) 

L22 844 846 
Phase A,B,C 

P (kW) and Q(kVAR) 

L23 846 848 
Phase A,B,C 

P (kW) and Q(kVAR) 

L24 850 816 
Phase A,B,C 

P (kW) and Q(kVAR) 

L25 852 832 
Phase A,B,C 

P (kW) and Q(kVAR) 

L26 854 856 
Phase B 

P (kW) and Q(kVAR) 

L27 854 852 
Phase A,B,C 

P (kW) and Q(kVAR) 

L28 858 864 Phase A 
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P (kW) and Q(kVAR) 

L29 858 834 
Phase A,B,C 

P (kW) and Q(kVAR) 

L30 860 836 
Phase A,B,C 

P (kW) and Q(kVAR) 

L31 862 838 
Phase B 

P (kW) and Q(kVAR) 

L32 888 890 
Phase A,B,C 

P (kW) and Q(kVAR) 

 

It should be noted that all lines in the test feeder are being accounted for and the training 

data contains bi-directional power flow between each “Node” pair presented in Table 20.   

Table 21 provides the expanded set of node voltages and phase angles for the IEEE 34 

Node Test Distribution system considered in the current research.   

Table 21 - Node Voltages and Phase Angles 
 

Node Quantities 

800 

Phase A,B,C to Neutral 

Voltage Mag. (V)  and 

Phase Angle (degrees) 

802 

Phase A,B,C to Neutral 

Voltage Mag. (V)  and 

Phase Angle (degrees) 

806 

Phase A,B,C to Neutral 

Voltage Mag. (V)  and 

Phase Angle (degrees) 

808 

Phase A,B,C to Neutral 

Voltage Mag. (V)  and 

Phase Angle (degrees) 

810 

Phase B to Neutral 

Voltage Mag. (V)  and 

Phase Angle (degrees) 

812 Phase A,B,C to Neutral 
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Voltage Mag. (V)  and 

Phase Angle (degrees) 

814 

Phase A,B,C to Neutral 

Voltage Mag. (V)  and 

Phase Angle (degrees) 

850 

Phase A,B,C to Neutral 

Voltage Mag. (V)  and 

Phase Angle (degrees) 

816 

Phase A,B,C to Neutral 

Voltage Mag. (V)  and 

Phase Angle (degrees) 

818 

Phase A to Neutral 

Voltage Mag. (V)  and 

Phase Angle (degrees) 

820 

Phase A to Neutral 

Voltage Mag. (V)  and 

Phase Angle (degrees) 

822 

Phase A to Neutral 

Voltage Mag. (V)  and 

Phase Angle (degrees) 

824 

Phase A,B,C to Neutral 

Voltage Mag. (V)  and 

Phase Angle (degrees) 

826 

Phase B to Neutral 

Voltage Mag. (V)  and 

Phase Angle (degrees) 

828 

Phase A,B,C to Neutral 

Voltage Mag. (V)  and 

Phase Angle (degrees) 

830 

Phase A,B,C to Neutral 

Voltage Mag. (V)  and 

Phase Angle (degrees) 

854 

Phase A,B,C to Neutral 

Voltage Mag. (V)  and 

Phase Angle (degrees) 
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852 

Phase A,B,C to Neutral 

Voltage Mag. (V)  and 

Phase Angle (degrees) 

832 

Phase A,B,C to Neutral 

Voltage Mag. (V)  and 

Phase Angle (degrees) 

858 

Phase A,B,C to Neutral 

Voltage Mag. (V)  and 

Phase Angle (degrees) 

834 

Phase A,B,C to Neutral 

Voltage Mag. (V)  and 

Phase Angle (degrees) 

842 

Phase A,B,C to Neutral 

Voltage Mag. (V)  and 

Phase Angle (degrees) 

844 

Phase A,B,C to Neutral 

Voltage Mag. (V)  and 

Phase Angle (degrees) 

846 

Phase A,B,C to Neutral 

Voltage Mag. (V)  and 

Phase Angle (degrees) 

848 

Phase A,B,C to Neutral 

Voltage Mag. (V)  and 

Phase Angle (degrees) 

860 

Phase A,B,C to Neutral 

Voltage Mag. (V)  and 

Phase Angle (degrees) 

836 

Phase A,B,C to Neutral 

Voltage Mag. (V)  and 

Phase Angle (degrees) 

840 

Phase A,B,C to Neutral 

Voltage Mag. (V)  and 

Phase Angle (degrees) 

862 Phase A,B,C to Neutral 
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Voltage Mag. (V)  and 

Phase Angle (degrees) 

838 

Phase B to Neutral 

Voltage Mag. (V)  and 

Phase Angle (degrees) 

864 

Phase A to Neutral 

Voltage Mag. (V)  and 

Phase Angle (degrees) 

888 

Phase A,B,C to Neutral 

Voltage Mag. (V)  and 

Phase Angle (degrees) 

890 

Phase A,B,C to Neutral 

Voltage Mag. (V)  and 

Phase Angle (degrees) 

856 

Phase B to Neutral 

Voltage Mag. (V)  and 

Phase Angle (degrees) 

 

Note from Table 21 that the complex voltage at every node of the test distribution system 

are accounted for.  

4.2.6 Gather Training/Testing Data 

OpenDSS is used to perform a power flow simulation by utilizing a load profile for the 

ERCOT region.  Execution and control of the OpenDSS power flow simulation is 

performed within the Python ecosystem utilizing py_dss_interface.dll.  The power flow is 

solved for a specified number of hours. The Python ecosystem allows for efficient 

gathering and data processing capability to prepare the complex power flow through all 

lines and complex voltages at all nodes for training and testing MLP models. 
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4.2.7 Perform Random Selection of Lines 

From the entire set of power flow lines, random selection of lines is gathered to establish 

datasets representing complex power flow for 10, 25, 75, and 100% of the lines.  These 

datasets and the specific names of the lines are used as inputs to the next steps to gather 

the validation data and perform predictions.  Table 22 provides the lines that were 

selected for each random trial. 

4.2.8 Gather Validation Data 

OpenDSS is used to perform a power flow simulation by utilizing a load profile for the 

COAST region.  Execution and control of the OpenDSS power flow simulation is 

performed with the Python ecosystem by utilizing py_dss_interface.dll.  The power flow 

is solved for a specified number of hours. 

The line names established in 4.2.7 were used to select the same lines for the validation 

data sets. 

4.2.9 Unoptimized MLP Models 

The datasets acquired in sections 4.2.6 and 4.2.8 were utilized as input to unoptimized 

MLP models.    

4.2.10 Optimized MLP Models 

The datasets acquired in sections 4.2.6 and 4.2.8 were utilized as inputs to MLP models 

with hyperparameters selected by Bayesian Optimization with Gaussian Processes. 
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Table 24, Table 25, and Table 26 provide the results for unoptimized and optimized 

models in terms of training, testing, and validation RMSE and execution time. 

Table 27 provides the hyperparameters selected via Bayesian Optimization. 

Table 22, provides the lines selected from the available lines in Table 20 at percentages 

of 10, 25, 50, 75 and 100%.  

Table 22 - Randomly Selected Lines 

 

Random 

Selection 

% 

 

R1 Lines: 

 

R2 Lines: 

 

R3 Lines: 

 

R4 Lines: 

10 

Line.l4 

Line.l17 

Line.l21 

Line.l6 

Line.l8 

Line.l32 

Line.l16 

Line.l28 

Line.l30 

Line.l4 

Line.l17 

Line.l21 

25 

Line.l4 

Line.l5 

Line.l15 

Line.l19 

Line.l24 

Line.l25 

Line.l31 

Line.l32 

Line.l5 

Line.l14 

Line.l15 

Line.l18 

Line.l20 

Line.l27 

Line.l28 

Line.l29 

 

Line.l9 

Line.l17 

Line.l18 

Line.l20 

Line.l25 

Line.l26 

Line.l29 

Line.l32 

 

Line.l3 

Line.l5 

Line.l8 

Line.l11 

Line.l15 

Line.l18 

Line.l24 

Line.l32 

50 

Line.l4 

Line.l5 

Line.l11 

Line.l12 

Line.l14 

Line.l15 

Line.l16 

Line.l17 

Line.l19 

Line.l20 

Line.l21 

Line.l22 

Line.l23 

Line.l28 

Line.l1 

Line.l3 

Line.l4 

Line.l5 

Line.l9 

Line.l10 

Line.l11 

Line.l16 

Line.l19 

Line.l22 

Line.l26 

Line.l28 

Line.l29 

Line.l30 

Line.l3 

Line.l7 

Line.l8 

Line.l9 

Line.l10 

Line.l17 

Line.l20 

Line.l22 

Line.l23 

Line.l24 

Line.l25 

Line.l27 

Line.l28 

Line.l29 

Line.l1 

Line.l3 

Line.l5 

Line.l7 

Line.l9 

Line.l11 

Line.l13 

Line.l14 

Line.l16 

Line.l17 

Line.l18 

Line.l19 

Line.l23 

Line.l24 
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Line.l30 

Line.l31 

Line.l31 

Line.l32 

Line.l31 

Line.l32 

Line.l28 

Line.l32 

 

75 

Line.l2 

Line.l6 

Line.l7 

Line.l8 

Line.l9 

Line.l10 

Line.l11 

Line.l12 

Line.l13 

Line.l14 

Line.l15 

Line.l16 

Line.l17 

Line.l19 

Line.l20 

Line.l23 

Line.l24 

Line.l26 

Line.l27 

Line.l28 

Line.l29 

Line.l30 

Line.l31 

Line.l32 

Line.l1 

Line.l2 

Line.l5 

Line.l6 

Line.l7 

Line.l9 

Line.l11 

Line.l13 

Line.l14 

Line.l15 

Line.l16 

Line.l17 

Line.l18 

Line.l19 

Line.l21 

Line.l22 

Line.l23 

Line.l24 

Line.l26 

Line.l27 

Line.l28 

Line.l30 

Line.l31 

Line.l32 

Line.l2 

Line.l4 

Line.l5 

Line.l6 

Line.l7 

Line.l9 

Line.l11 

Line.l12 

Line.l13 

Line.l14 

Line.l15 

Line.l17 

Line.l18 

Line.l19 

Line.l20 

Line.l21 

Line.l22 

Line.l23 

Line.l24 

Line.l25 

Line.l26 

Line.l27 

Line.l29 

Line.l30 

Line.l1 

Line.l3 

Line.l4 

Line.l5 

Line.l6 

Line.l7 

Line.l8 

Line.l9 

Line.l10 

Line.l12 

Line.l15 

Line.l16 

Line.l17 

Line.l20 

Line.l21 

Line.l22 

Line.l23 

Line.l24 

Line.l25 

Line.l27 

Line.l28 

Line.l29 

Line.l30 

Line.l31 

100 

Line.l1 

Line.l2 

Line.l3 

Line.l4 

Line.l5 

Line.l6 

Line.l7 

Line.l8 

Line.l9 

Line.l10 

Line.l11 

Line.l12 

Line.l13 

Line.l14 

Line.l15 

Line.l16 

Line.l17 

Line.l18 

Line.l19 

Line.l20 

Line.l21 

Line.l22 

Line.l23 

Line.l24 

Line.l1 

Line.l2 

Line.l3 

Line.l4 

Line.l5 

Line.l6 

Line.l7 

Line.l8 

Line.l9 

Line.l10 

Line.l11 

Line.l12 

Line.l13 

Line.l14 

Line.l15 

Line.l16 

Line.l17 

Line.l18 

Line.l19 

Line.l20 

Line.l21 

Line.l22 

Line.l23 

Line.l24 

Line.l1 

Line.l2 

Line.l3 

Line.l4 

Line.l5 

Line.l6 

Line.l7 

Line.l8 

Line.l9 

Line.l10 

Line.l11 

Line.l12 

Line.l13 

Line.l14 

Line.l15 

Line.l16 

Line.l17 

Line.l18 

Line.l19 

Line.l20 

Line.l21 

Line.l22 

Line.l23 

Line.l24 

Line.l1 

Line.l2 

Line.l3 

Line.l4 

Line.l5 

Line.l6 

Line.l7 

Line.l8 

Line.l9 

Line.l10 

Line.l11 

Line.l12 

Line.l13 

Line.l14 

Line.l15 

Line.l16 

Line.l17 

Line.l18 

Line.l19 

Line.l20 

Line.l21 

Line.l22 

Line.l23 

Line.l24 
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Line.l25 

Line.l26 

Line.l27 

Line.l28 

Line.l29 

Line.l30 

Line.l31 

Line.l32 

Line.l25 

Line.l26 

Line.l27 

Line.l28 

Line.l29 

Line.l30 

Line.l31 

Line.l32 

Line.l25 

Line.l26 

Line.l27 

Line.l28 

Line.l29 

Line.l30 

Line.l31 

Line.l32 

Line.l25 

Line.l26 

Line.l27 

Line.l28 

Line.l29 

Line.l30 

Line.l31 

Line.l32 

 

Table 23 shows the results for random selection of lines corresponding to the column of 

“R1_Lines” in Table 22.  Results for unoptimized and optimized MLP models with 1 

hidden layer utilizing output data from power flow simulations of 720 hours are 

presented. 

Note that for unoptimized models, the size of the Input Layer and Output Layer in terms 

of number of neurons is determined by the number of features of the training data.  For 

example, for trial R1_10, with 10 percent of the total lines selected there are 36 features 

corresponding to the PQ values of each phase of each line.  The Output Layer size of 190 

neurons is fixed owing to the number of features (voltage magnitudes and voltage phase 

angles) comprising the target complex voltage set being predicted.  This voltage dataset 

includes the complex voltage at all nodes and phases of the test distribution system. 

The number of Hidden Layer neurons for the unoptimized models is set equal to the 

number of Input Layer neurons as a “reasonable” starting point and could be set to any 

other number in a scenario of selecting the number of neurons ad-hoc.   

The choice of setting the two sizes equal is to provide some consistency in the 

methodology used in the current research as there are to the knowledge of the author of 

this dissertation no analytical methods to determine the number of neurons in the hidden 

layer. 
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The hyperparameters of the unoptimized models are presented in section 3.6.2 and 

repeated below for convenience. 

 

• Activation Function per Layer: Rectified Linear Unit (ReLU) 

• Batch Size = 10 

• Epochs = 200 

• Learning Rate: 0.001 

• Loss Function: Mean Squared Error 

• Input Layer Neurons: 56  

• Output Layer Neurons: 56 

• Optimizer: Stochastic Gradient Descent 

 

For each “unoptimized” model in Table 23, there is a corresponding optimized model 

with hyperparameters determined by Bayesian Optimization with Gaussian Processes. 

To clarify, “R1_10” corresponds to an unoptimized MLP trained on 10% of the available 

lines in the distribution system to predict the complex voltage at all nodes of the 

distribution system.  Likewise, “R1_10_Opt” corresponds to an optimized version of 

“R1_10” performing the same task with the same 10% selection of lines.  Note that the 

number of Input Layer and Output Layer neurons for the optimized model matches that 

of the unoptimized model in each case given that the same 10% of lines is used for 

training and the same number of complex node voltages are being predicted. 

The Hidden Layer neurons is determined by Bayesian Optimization. Additionally, for 

each optimized model the Learning Rate, Epochs and Batch Size are also determined by 

Bayesian Optimization. The result for optimized models is found in Table 23. 

The columns “Train RMSE (70%)” and “Test RMSE (30%)” correspond to the training 

and testing data RMSE.  The train/test split is set at 70/30.  The column “COAST Act. vs. 

Est. RMSE” corresponds to the validation data RMSE and is the figure of merit for 

comparison of how well the MLP models generalize to new data.  The column 
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“Execution Time (Seconds)” represents the total time of each model to train/test and 

perform predictions.  The data validation error shown in the column “COAST Act. vs. 

Est. RMSE” in Table 23 indicate the trials on which Bayesian Optimization resulted in a 

reduction in error.  It should be noted that most of the trials show improvement through 

optimization at the expense of increased execution time required by the Bayesian 

Optimization with Gaussian Processes.  As discussed in section 3.9.2, the Bayesian 

Optimization process investigated in the current research enables a systematic approach 

to search over a hyperparameter space of 30x109 possibilities. Table 24, Table 25, and 

Table 26 show the results for the other 3 trials of random selection (R2, R3, and R4).  

Note that the highlighted values are those on which Bayesian Optimization did not result 

in a reduction in RMSE for the validation dataset. 
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Table 23 – Performance Comparison of Unoptimized and Optimized MLP 

Networks Under Random Selection (R1) of Lines (Total Hours = 720) 

 

Line % 
Input 

Layer 

Hidden 

Layers 

Output 

Layer 

Train 

RMSE 

(70%) 

Test 

RMSE 

(30%) 

COAST 

Act. vs. 

Est. 

RMSE 

Execution 

Time 

(Seconds) 

R1_10 
36  

Neurons 

1 Layer 

36 

Neurons 

190 

Neurons 
0.048141 0.051349 0.113290 29.247 

R1_10_Opt 
36  

Neurons 

1 Layer 

74 

Neurons 

190 

Neurons 
0.062044 0.095299 0.055176 175.182 

R1_25 
80  

Neurons 

1 Layer 

 80 

Neurons 

190 

Neurons 
0.045688 0.046384 0.099254 28.090 

R1_25_Opt 
80  

Neurons 

1 Layer 

30 

Neurons 

190 

Neurons 
0.180729 0.322345 0.143314 366.843 

R1_50 
152 

Neurons 

1 Layer 

152 

Neurons 

190 

Neurons 
0.041447 0.051087 0.061411 25.912 

R1_50_Opt 
152  

Neurons 

1 Layer 

55 

Neurons 

190 

Neurons 
0.049035 0.057948 0.038316 183.641 

R1_75 
     336 

Neurons 

1 Layer 

336 

Neurons 

190 

Neurons 
0.044454 0.048146 0.055020 39.162 

R1_75_Opt 
336 

Neurons 

1 Layer 

74 

Neurons 

190 

Neurons 
0.047537 0.051982 0.033706 265.670 

R1_100 
548 

Neurons 

1 Layer 

548 

Neurons 

190 

Neurons 
0.043145 0.047000 0.052913 48.736 

R1_100_Opt 
548 

Neurons 

1 Layer 

92 

Neurons 

190 

Neurons 
0.056025 0.053020 0.035677 296.960 
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Table 24 - Performance Comparison of Unoptimized and Optimized MLP Networks 

Under Random Selection (R2) of Lines (Total Hours = 720) 

 

Line % Input 

Layer 

Hidden 

Layers 

Output 

Layer 

Train 

RMSE 

(70%) 

Test 

RMSE 

(30%) 

COAST 

Act. vs. 

Est. 

RMSE 

Execution 

Time 

(Seconds) 

R2_10 28  

Neurons 

1 Layer 

28 

Neurons 

190 

Neurons 

0.050066 0.051851 0.031051 23.463 

R2_10_Opt 28  

Neurons 

1 Layer 

 87 

Neurons 

190 

Neurons 

0.066081 0.068677 0.056953 270.520 

R2_25  88 

Neurons 

1 Layer 

 88 

Neurons 

190 

Neurons 

0.042833 0.051507 0.030713 26.742 

R2_25_Opt  88 

Neurons 

1 Layer 

33  

Neurons 

190 

Neurons 

0.047930 0.057454 0.048139 212.906 

R2_50 268 

Neurons 

1 Layer 

 268 

Neurons 

190 

Neurons 

0.051145 0.053782 0.042308 32.392 

R2_50_Opt 268 

Neurons 

1 Layer 

 100 

Neurons 

190 

Neurons 

0.056522 0.054557 0.051480 1988.112 

R2_75 456 

Neurons 

1 Layer 

456 

Neurons 

190 

Neurons 

0.044707 0.049357 0.034962 42.663 

R2_75_Opt 456 

Neurons 

1 Layer 

 11 

Neurons 

190 

Neurons 

0.051553 0.061514 0.047830 164.720 

R2_100 548 

Neurons 

1 Layer 

 548 

Neurons 

190 

Neurons 

0.042781 0.049381 0.030084 46.130 

R2_100_Opt  548 

Neurons 

1 Layer 

 38 

Neurons 

190 

Neurons 

0.047130 0.055054 0.045304 525.401 
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Table 25 - Performance Comparison of Unoptimized and Optimized MLP Networks 

Under Random Selection (R3) of Lines (Total Hours = 720) 

 

Line % 
Input 

Layer 

Hidden 

Layers 

Output 

Layer 

Train 

RMSE 

(70%) 

Test 

RMSE 

(30%) 

COAST 

Act. vs. 

Est. 

RMSE 

Execution 

Time 

(Seconds) 

R3_10 
28 

 Neurons 

1 Layer 

28  

Neurons 

190 

Neurons 
0.048646 0.049470 0.079072 28.562 

R3_10_Opt 
 28 

Neurons 

1 Layer 

 30 

Neurons 

190 

Neurons 
0.058915 0.064127 0.043230 473.312 

R3_25 
 88 

Neurons 

1 Layer 

 88 

Neurons 

190 

Neurons 
0.037615 0.046131 0.061209 33.262 

R3_25_Opt 
 88 

Neurons 

1 Layer 

 69 

Neurons 

190 

Neurons 
0.044697 0.050339 0.028499 360.209 

R3_50 
188 

Neurons 

1 Layer 

 188 

Neurons 

190 

Neurons 
0.040473 0.048051 0.058768 36.045 

R3_50_Opt 
188 

Neurons 

1 Layer 

 77 

Neurons 

190 

Neurons 
0.048241 0.055870 0.039581 306.078 

R3_75 
 360 

Neurons 

1 Layer 

 360 

Neurons 

190 

Neurons 
0.039080 0.043416 0.053810 39.184 

R3_75_Opt 
 360 

Neurons 

1 Layer 

 72 

Neurons 

190 

Neurons 
0.047118 0.056091 0.034844 1011.391 

R3_100 
 548 

Neurons 

1 Layer 

 548 

Neurons 

190 

Neurons 
0.042287 0.045293 0.055810 51.044 

R3_100_Opt 
 548 

Neurons 

1 Layer 

 77 

Neurons 

190 

Neurons 
0.050010 0.057300 0.038648 767.584 
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Table 26 - Performance Comparison of Unoptimized and Optimized MLP Networks 

Under Random Selection (R4) of Lines (Total Hours = 720) 

 

Line % 
Input 

Layer 

Hidden 

Layers 

Output 

Layer 

Train 

RMSE 

(70%) 

Test 

RMSE 

(30%) 

COAST 

Act. vs. 

Est. 

RMSE 

Execution 

Time 

(Seconds) 

R4_10 
28  

Neurons 

1 Layer 

28  

Neurons 

190 

Neurons 
0.046668 0.048348 0.069602 23.480 

R4_10_Opt 
28  

Neurons 

1 Layer 

8  

Neurons 

190 

Neurons 
0.057249 0.068387 0.044056 162.001 

R4_25 
108 

Neurons 

1 Layer 

108 

Neurons 

190 

Neurons 
0.045170 0.048479 0.072729 37.063 

R4_25_Opt 
108 

Neurons 

1 Layer 

94  

Neurons 

190 

Neurons 
0.071175 0.077030 0.052773 183.495 

R4_50 
300 

Neurons 

1 Layer 

300 

Neurons 

190 

Neurons 
0.047717 0.050853 0.061553 37.291 

R4_50_Opt 
300 

Neurons 

1 Layer 

100 

Neurons 

190 

Neurons 
0.049017 0.056798 0.039105 1111.410 

R4_75 
364 

Neurons 

1 Layer 

364 

Neurons 

190 

Neurons 
0.043033 0.051618 0.060404 43.922 

R4_75_Opt 
364 

Neurons 

1 Layer 

41  

Neurons 

190 

Neurons 
0.049714 0.064112 0.040147 265.596 

R4_100 
548 

Neurons 

1 Layer 

548 

Neurons 

190 

Neurons 
0.043685 0.047946 0.057841 55.095 

R4_100_Opt 
100 

Neurons 

1 Layer 

100 

Neurons 

190 

Neurons 
0.051265 0.057406 0.037380 1395.088 

 

Table 27 presents the hyperparameters selected via the Bayesian Optimization with 

Gaussian Process.  The optimization process was applied to the following hyperparameter 

space: 

• Hidden Layer Neurons: 1 - 100 

• Learning Rate: 0.0001 - 1.0 

• Batch Size: 1 - 100  
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• Epochs: 1 – 300 

 

Note that trial “R1_10_Opt” corresponds to the trial specified by “R1_10_Opt” in Table 

23.  Likewise, the remaining trials in Table 27 correspond to the trials in the column 

“Line %” in Table 23, Table 24, Table 25 and Table 26.  The results presented in this 

dissertation were selected by executing the Bayesian Optimization process 15 times for 

each “Trial” and utilizing the result that corresponds to the best validation error score 

(lowest RMSE).   

Table 27 - Hyperparameters Selected via Bayesian Optimization 

 

Trial 
Neurons per 

Hidden Layer 
Learning Rate Epochs Batch Size 

R1_10_Opt 74 0.0210 71 27 

R1_25_Opt 30 0.4181 291 33 

R1_50_Opt 55 0.0010 178 50 

R1_75_Opt 74 0.0010 198 38 

R1_100_Opt 92 0.0010 260 100 

R2_10_Opt 87 0.0310 181 36 

R2_25_Opt 33 0.0010 161 24 

R2_50_Opt 100 0.0010 164 1 

R2_75_Opt 11 0.0020 228 73 

R2_100_Opt 38 0.0010 243 37 

R3_10_Opt 30 0.0091 127 66 

R3_25_Opt 69 0.0010 300 33 

R3_50_Opt 77 0.0010 241 77 

R3_75_Opt 72 0.0010 200 42 

R3_100_Opt 77 0.0010 251 23 

R4_10_Opt 8 0.0132 195 74 

R4_25_Opt 94 0.0306 85 49 

R4_50_Opt 100 0.0010 244 74 

R4_75_Opt 41 0.0010 189 65 

R4_100_Opt 100 0.0010 224 99 

 

Notable items are as follows from the data: 

• Bayesian Optimization with Gaussian Processes enabled an efficient search of 

hyperparameter space of 30x109 combinations. 
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• A reduction in validation error was achieved for 70% of the trials via Bayesian 

Optimization. 

• In all trials involving Bayesian Optimization with Gaussian Processes, a trade off 

existed in searching for “optimal” hyperparameters and an increase in execution 

time.   

The improved methodology presented in this chapter accomplished the following: 

• Established an improved workflow and data pipeline for training, testing and 

validation through the integration of a high-level programming language (Python) 

and a distribution system simulator (OpenDSS). 

• Demonstrated the ability of an improved workflow and data pipeline to automate 

the acquisition of complex power through all lines and complex voltages at every 

node for training, testing and validation thus enabling “full-state estimation”. 

• Enabled investigation of the effect of utilizing specific percentages of complex 

power flow with randomly selected lines to train MLPs to predict the complex 

voltage at all the nodes. 

• Enabled investigation of the application of Bayesian Optimization with Gaussian 

processes to aid in the improvement (reduction) of validation error through the 

selection of hyperparameters for MLP models (neurons per hidden layer, learning 

rate, epochs, and batch size). 

Items for consideration in future work are as follows: 

• Application of the workflow and data pipeline presented in this dissertation to larger 

test feeder systems (i.e. IEEE 8500 Node Test Feeder). 
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• Investigation of the significance of the lines selected to perform state estimation of 

complex voltage.   

• Investigation of state estimation based upon branch-current flow.  Specifically,  

utilize branch current flow to predict complex voltage utilizing optimized MLP 

models. 

• Investigate Bayesian Optimization with Gaussian Processes with a hyperparameter 

space including number of hidden layers. 

CHAPTER 5. DISTRIBUTION SYSTEM STATE FORECASTING (DSSF) WITH 

CONVOLUTIONAL NEURAL NETWORK (CNN) MODELS 

5.1 Time-Series Forecasting 

In this research, a time-series will be defined as an ordered sequence of values that are 

equally spaced.  A typical time-series for real power flow between two buses in a power 

distribution system is shown below in Figure 21. In particular, this time-series is the real 

power flow between nodes 800 and 802 for phase-a captured each hour of the day 

(10/20/2018) for the test distribution system shown in Figure 7.  Note that this time-series 

is considered "univariate" in that it represents a single value for each time step.   
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Figure 21 - Example Univariate Time Series 

 

Time-series forecasting will be defined as training a statistical, machine learning or deep 

learning model to learn the autocorrelation of a given time series and to perform a 

prediction for a specified prediction horizon.   Thus, framing a problem as a time-series 

forecasting problem is in contrast to framing a problem as a functional regression 

problem in which the mapping of inputs to outputs is learned and new data is predicted 

based upon the input of new previously unseen data.  It should be noted that distribution 

system state estimation (DSSE) with multilayer perceptron (MLP) models presented in 

CHAPTER 3 was framed as a functional regression problem.  Time-series forecasting 

utilizing deep learning techniques does not require and is thus not limited to having to be 

trained on existing historical "input" and "target" datasets. Forecasting models are said to 

therefore "extract" features from the input data itself and perform prediction by learning 

from trend, seasonality, and residual noise within the data itself (autocorrelation).  A 

major motivation for the research based upon machine learning for distribution system 

state forecasting is that predictions of system state can be made without the requirement 
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to train offline with vast amounts of historical data that must be retrieved from a database 

or knowledge of distribution system topology beyond the available measurement devices 

capturing the time-series data.  In order to move toward a higher level of performance 

guarantee required for greater acceptance of machine learning techniques in the power 

industry, the current research being discussed in this dissertation is built upon the idea of 

enhancement of data driven methods with constraints, repeatable processes and a 

structured approach to model design. 

5.1.1 Time-Series Forecasting Process 

Moving towards a repeatable process for time-series forecasting, the methods promoted 

by Hyndman and Athanasopoulos [41] were employed in the research. This process can 

be summarized as follows: 

1. Define the Problem:  Determination of who will be utilizing the forecast and in 

what capacity. 

2. Gather Information and Datasets: Selection of historical data and insights from 

domain experts to aid interpretation of data features and the results of the 

forecasts. 

3. Exploratory Analysis: Utilization of summary statistics to understand trends, 

seasonality, outliers, missing data and anomalies. 

4. Model Selection and Fitting:  Consideration of classical statistical models, 

machine learning, deep learning, etc. and initial fitting of models to make final 

selection of the model type best suited for forecasting given a specific dataset. 

5. Evaluation and Validation of the Chosen Forecasting Model:  Forecasts are 

made with the selected model and relative skill of the model is estimated through 

back-testing with historical data. 

 

These steps are implemented as follows: 

 

1. Define the Problem:   

• Given sufficient historical real power flow, reactive power flow, voltage 

magnitude and voltage phase angle data up to a specified point during 

2018, forecast these quantities for the next 24 hours as a time-series.   

2. Gather Information and Datasets: 

• ERCOT data discussed in section 3.4 will represent the input data. 
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• Real and reactive power flows on phase-a between nodes 854 and 852 as 

measured by monitor B27 in Figure 7 are to be forecasted. 

• Voltage magnitude and voltage phase angles at node 854 as measured by 

monitor B27 in Figure 7 are to be forecasted. 

3. Exploratory Analysis:   

• Plots of the actual time-series were made to understand the nature of the 

dynamics (changes over time) for each quantity under consideration (i.e. 

real power, reactive power, voltage magnitude and voltage phase angle).  

Utilization of deep learning models eliminates the need to identify and 

remove seasonality and trend.  All time-series considered in this research 

were continuous over the time-periods on which the data was gathered. 

4. Model Selection and Fitting: 

• MLPs were considered based upon their simple structure, however not 

deemed strong candidates given their limitations of utilizing data in early 

portions of the time series for forecasting owing to vanishing gradients. 

• CNNs and LSTMs were considered based on their ability to “learn” and 

“remember” features of the source data and thus overcome some of the 

limitations of vanishing gradients. 

5. Evaluation and Validation of the Chosen Forecasting Model: 

• CNN and LSTM models were evaluated in terms of their ability to 

perform time-series forecasting over a 24-hour forecast horizon. 

• Actual data was available for the forecast horizon for comparison of each 

model type.  

• The average RMSE of each model type was determined and each 

forecasted time series was plotted along with the actual time series for 

visual comparison. 

 

5.2 Data Preparation for Time-Series Forecasting with Deep Learning 

Two essential considerations for use of deep learning models such as CNNs and LSTMs 

for time-series forecasting are as follows: 

• Both models require data to be 3-dimensional 

• Performance is greatly affected by number of time-steps, so that sequences with 

more than 400 time steps are split into samples. 

• Order must be maintained with splitting time-series into training and testing 
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The term often used in machine learning is that of “reshaping” original time-series data 

into the general format of [# samples, # time-steps, # features].  In this research the 

following steps were taken to reshape the ERCOT dataset to prepare it for time-series 

forecasting: 

• ERCOT Dataset General Structure: (#time-steps, #features) 

 

o Rows of the dataset correspond to each hour of the year of 2018 

o Columns of the dataset correspond to the real powers, reactive powers, 

voltage magnitudes and voltage phase angles for each bus and each phase 

o Dimensions: (8760, 112) 

 

• Maintaining the temporal ordering of the time-series dataset: 

 

o Splitting the dataset into 80% for Training and 20% for Testing 

o First 7008 hours – Training Dataset Dimensions: (7008, 112) 

o Remaining 1752 hours – Testing Dataset Dimensions: (1752, 112) 

 

• Reshaping the data into 3D-Arrays: (#samples, #time-steps, #features) 

 

o Reshaped Training Dataset Dimensions: (292, 24, 112) 

o Reshaped Testing Dataset Dimensions: (73, 24, 112) 

 

The following should be noted from the reshaping process: 

• The first 7008 hours of the data represent the first 292 days of 2018 in the 

ERCOT region under consideration. 

• The remaining 1752 hours of the data represent the remaining 73 days of 

2018 in the ERCOT region under consideration.  Of the 73 days available 

for testing, only the first day of this period was used as the forecast 

horizon.  This forecast horizon was selected arbitrarily and could have 

been extended for predictions beyond 24 hours. 

• Time-series forecasting considered in this research involved “training” on 

the first 292 days and then using deep learning models to forecast the next 

24 hours beyond this training period.  In this case, a forecast would be 

made for the real power flow, reactive power flow, voltage magnitude and 

voltage phase angle at the monitor location B27 for day 293 of 2018 

(October 20, 2018). 

• The forecasts would then be compared to the known data for this same 

day. 
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5.3 Hyperparameter Selection for Unoptimized CNN Model 

Convolutional Neural Networks are among a class of machine learning models that are 

termed as "deep learning" models to differentiate them from traditional feedforward 

multilayer perceptron models.  While their design and initial inception was largely for use 

in applications such as object recognition, CNNs are being investigated and applied to 

applications related to computer vision, natural language processing and time-series 

forecasting. The three fundamental building blocks of CNNs are convolutional layers, 

pooling layers, and fully-connected layers [29].  CNNs can be designed to perform auto-

regression and classification on time-series data.   

Table 28 presents the hyperparameters considered for the CNN models in this 

dissertation. 

 

Table 28 - CNN Hyperparameters 

 

CNN Hyperparameter Description 

n_input Number of prior inputs for the model (e.g. 24 hours) 

n_filters Number of filter maps in the convolutional layer(s) (e.g. 

100) 

n_kernel Kernel size in the convolutional layer (e.g. 3) 

n_fc Number of neurons in the output fully connected layer (s) 

(e.g. 100) 

n_epochs Number of training epochs (e.g. 10) 

n_batch Number of samples to include in each mini-batch (e.g. 10). 

n_diff Difference order to remove seasonality and trends (e.g. 0 or 

12) 

activation Activation function (e.g. relu) 

loss Loss function to minimize (e.g. mse) 

opt Algorithm to adjust weights, biases and learning rate to 

reduce losses (e.g. adam, sgd) 

lr Learning rate. Step size at each iteration while moving 

toward a minimum of a loss function 
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Table 29 presents the unoptimized CNN hyperparameters settings selected ad hoc.  

 

 

Table 29 - Unoptimized CNN Hyperparameter Settings 

 

CNN Hyperparameter Settings 

n_input 24 

n_filters 32 

n_kernel 3 

n_fc 112 

n_epochs 70 

n_batch 16 

n_diff 0 

activation relu 

loss mse 

opt adam 

lr 0.001 

 

 

5.4 Implementation of Unoptimized CNN Model for Time-Series Forecasting 

The following covers the essential elements required to perform time-series forecasting 

with an unoptimized CNN model.  For brevity, the forecast for real power flow described 

in section 5.2 is shown. 

Code Listing 4 - Unoptimized CNN Model for DSSF 

000 # Unoptimized CNN Model for DSSF 

001 import time 

002 start_time = time.time() 

003  

004 # Import Required Python Libraries 

005 import numpy 

006 import numpy as np 

007 import pandas as pd 

008 from math import sqrt 

009 from numpy import split 

010 from numpy import array 

011 from pandas import read_csv 

012 from matplotlib import pyplot 

013 from keras.models import Sequential 

014 from keras.layers import Dense 

015 from keras.layers import Flatten 
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016 from keras.layers.convolutional import Conv1D 

017 from keras.layers.convolutional import MaxPooling1D 

018 from keras.layers.convolutional import AveragePooling1D 

019 from sklearn.metrics import mean_squared_error 

020 from sklearn.preprocessing import MinMaxScaler 

021 from sklearn.model_selection import train_test_split 

022  

023 # Evaluate one or more daily forecasts against expected values 

024 def evaluate_forecasts(actual, predicted): 

025     scores = list() 

026     # calculate an RMSE score for each day 

027     for i in range(actual.shape[1]): 

028         # calculate mse 

029         mse = mean_squared_error(actual[:, i], predicted[:, i]) 

030         # calculate rmse 

031         rmse = sqrt(mse) 

032         # store 

033         scores.append(rmse) 

034     # calculate overall RMSE 

035     s = 0 

036     for row in range(actual.shape[0]): 

037         for col in range(actual.shape[1]): 

038             s += (actual[row, col] - predicted[row, col])**2 

039     score = sqrt(s / (actual.shape[0] * actual.shape[1])) 

040     return score, scores 

041  

042 # Summarize Scores 

043 def summarize_scores(name, score, scores): 

044     s_scores = ', '.join(['%.6f' % s for s in scores]) 

045     print('%s: [%.6f] %s' % (name, score, s_scores)) 

046  

047 # Convert History into Inputs and Outputs 

048 def to_supervised(train, n_input, n_out=24): 

049     # flatten data 

050     data = train.reshape((train.shape[0]*train.shape[1], 

train.shape[2])) 

051     X, y = list(), list() 

052     in_start = 0 

053     # step over the entire history one time step at a time 

054     for _ in range(len(data)): 

055         # define the end of the input sequence 

056         in_end = in_start + n_input 

057         out_end = in_end + n_out 

058         # ensure we have enough data for this instance 

059         if out_end <= len(data): 

060             X.append(data[in_start:in_end, :]) 

061             y.append(data[in_end:out_end, 50]) 

062         # move along one time step 

063         in_start += 1 

064     return array(X), array(y) 

065  

066 # Train the Model 

067 def build_model(train, n_input): 

068     # prepare data 

069     train_x, train_y = to_supervised(train, n_input) 

070     # define parameters 

071     verbose, epochs, batch_size = 0, 70, 16 
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072     n_timesteps, n_features, n_outputs = train_x.shape[1], 

train_x.shape[2],train_y.shape[1] 

073     # define model 

074     model = Sequential() 

075     model.add(Conv1D(32,3, activation='relu', 

input_shape=(n_timesteps,n_features))) 

076     model.add(MaxPooling1D()) 

077     model.add(Flatten()) 

078     #model.add(Dense(32,3, activation='relu')) 

079     model.add(Dense(n_outputs)) 

080     model.compile(loss='mse', optimizer='adam') 

081     # fit network 

082     model.fit(train_x, train_y, epochs=epochs, 

batch_size=batch_size, verbose=verbose) 

083     #model.summary() 

084     return model 

085  

086 # Make a Forecast 

087 def forecast(model, history, n_input): 

088     # flatten data 

089     data = array(history) 

090     data = data.reshape((data.shape[0]*data.shape[1], 

data.shape[2])) 

091     # retrieve last observations for input data 

092     input_x = data[-n_input:, :] 

093     # reshape into [1, n_input, n] 

094     input_x = input_x.reshape((1, input_x.shape[0], 

input_x.shape[1])) 

095     # forecast the next week 

096     yhat = model.predict(input_x, verbose=0) 

097     # we only want the vector forecast 

098     yhat = yhat[0] 

099     return yhat 

100  

101 # Evaluate a Single Model 

102 def evaluate_model(train, test, n_input, k): 

103     # fit model 

104     model = build_model(train, n_input) 

105     # history is a list of daily data 

106     history = [x for x in train] 

107     # walk-forward validation over each day 

108     predictions = list() 

109     for i in range(len(test)): 

110         # predict the week 

111         yhat_sequence = forecast(model, history, n_input) 

112         # store the predictions 

113         predictions.append(yhat_sequence) 

114         # get real observation and add to history for predicting 

the next day 

115         history.append(test[i, :]) 

116     # evaluate predictions days for each day 

117     predictions = array(predictions) 

118     score, scores = evaluate_forecasts(test[:, :, 50], predictions) 

119     #history_array = array(history) 

120     return score, scores, predictions, history, test 

121  

122 # Load the PV dataset file 
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123 pv_dataframe = pd.read_csv('C:/Python/power_voltage_time-

series_ercot.csv',header=None) 

124 pv = pv_dataframe.values 

125  

126 # Normalize the datasets 

127 scaler_pv = MinMaxScaler(feature_range=(-1,1),copy=True) 

128 pv = scaler_pv.fit_transform(pv) 

129  

130 # Split Dataset into 80% Train and 20% Test 

131 pv_train, pv_test = pv[0:7008], pv[7008:8760] 

132  

133 # First 7008 hours for Training 

134 # Reshape Training time series data into [samples, timesteps, 

features] 

135 # Dividing by 24 hours yields: pv_train 24 dimensions of (292, 24, 

112) 

136 pv_train_24 = array(split(pv_train, len(pv_train)/24)) 

137  

138  

139 # Remaining 1752 hours for Testing 

140 # Reshape Testing time series data into [samples, timesteps, 

features] 

141 # Dividing by 24 hours yields: pv_test 24 dimensions of (73, 24, 

112) 

142 pv_test_24 = array(split(pv_test, len(pv_test)/24)) 

143  

144 # Evaluate Model and Get Scores 

145 n_input = 24 

146 k = 3 

147 score, scores, predictions, history, test = 

evaluate_model(pv_train_24, pv_test_24, 

148                                                            

n_input,k) 

149 history_array = array(history) 

150  

151 # Summarize Scores 

152 summarize_scores('cnn', score, scores) 

153  

154 # Create datasets to plot 

155 p_10_20_2018_actual = pv_test[0:24,50] 

156 p_10_20_2018_predicted = predictions[0,:] 

157  

158  

159 p_10_20_2018_actual_avg = test[:,:,50].mean(axis=0) 

160 p_10_20_2018_predicted_avg = predictions.mean(axis=0) 

161  

162 # Plot Actual versus Predicted 

163 pyplot.xlabel('Hours',fontweight = 'bold', fontsize = 12.0, 

color='black') 

164 pyplot.ylabel('Real Power (kW)', fontweight = 'bold', fontsize = 

12.0, color='black') 

165  

166 pyplot.plot(p_10_20_2018_actual,'g') # plotting t, a separately 

167 pyplot.plot(p_10_20_2018_predicted, 'r') # plotting t, b separately 

168  

169 pyplot.title('CNN - B27 - 10/20/2018', fontweight = 'bold', 

fontsize = 12.0,) 
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170 pyplot.legend(["Actual", "CNN Pred."]) 

171 pyplot.show() 

172  

173 # Export predictions 

174 numpy.savetxt('CNN_B27_Trial_01_24_p.csv', p_10_20_2018_predicted, 

delimiter=",") 

175  

176 print("--- %s seconds ---" % (time.time() - start_time)) 

 

Table 30 presents a summary of Code Listing 4 for an unoptimized CNN model for 

distribution system state forecasting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



131 

 

Table 30 - Summary of Code Listing 4 for an Unoptimized CNN Model for DSSF 

 

Line #: Description: 

004 – 021 Import essential Python libraries for implementation of unoptimized 

CNN model for DSSF 

023 - 040 Define a function to evaluate one or more daily forecasts against 

expected values 

043 – 045 Define a function summarize RMSE scores 

048 – 064 Define a function to convert 3 dimensional data into inputs and 

outputs, thus establishing “supervised” learning 

067 – 084 Define a function to build a unoptimized CNN to perform DSSF 

087 – 099 Define a function to perform a forecast over a specified forecast 

horizon (i.e., 24 hours) 

102 - 120 Define a function to evaluate the forecast based upon RMSE 

123 - 124 Import time-series data 

127 - 128 Perform normalization on input data to improve training 

131 Split time-series data into 80% for training and 20% for testing.  Note 

that the order of the time-series data must be maintained. 

133 – 142 Reshape training and testing data into 3 dimensional format required 

by CNNs. 

144 - 147 Call evaluate_model() function to create a “history” of daily scores 

152 Call summarize_scores() function to return an average hourly RMSE 

for the forecast. 

155 - 171 Plot actual versus predicted real power for a 24 hour forecast horizon. 

174 Export the time-series prediction data. 
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Figure 22 presents the actual and predicted real power at location B27 (Figure 7) for a 24 

hour period utilizing an “unoptimized” CNN model.  Note that the predicted time-series 

has a noticeable “delay” or “lag” relative to the actual time-series in the early portion of 

the prediction.  Later portions of the prediction follow the actual dynamics reasonably 

well.  

 

Figure 22 - Actual and Predicted Real Power at Location at B27 (Unoptimized 

CNN) 

 

Figure 23 presents the actual and predicted reactive power at location B27 (Figure 7) for 

a 24 hour period utilizing an “unoptimized” CNN model.  Note that the predicted time-

series has a “flat” or “constant” waveform.  This result is indicative of “underfitting” in 

which the model does not improve during the training process and maintains either a 

constant or increasing error.  
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Figure 23 - Actual and Predicted Reactive Power at Location B27 (Unoptimized 

CNN) 

 

Figure 24 presents the actual and predicted voltage magnitude at location B27 (Figure 7) 

for a 24 hour period utilizing an “unoptimized” CNN model.  The predicted time-series 

appears to be delayed and has a “reciprocal” relationship to the actual time-series. 
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Figure 24 - Actual and Predicted Voltage Magnitude at Location B27 (Unoptimized 

CNN) 

 

Figure 25 presents the actual and predicted voltage phase angle at location B27 (Figure 7) 

for a 24 hour period utilizing a “unoptimized” CNN model.  The predicted time-series 

appears to track the average value of the actual time-series.  This is also indicative of 

underfitting. 
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Figure 25 - Actual and Predicted Voltage Phase Angle at Location B27 

(Unoptimized CNN) 

 

A possible remedy for the “flat” waveform noted for the prediction of reactive power 

shown in Figure 23 is to adjust the learning rate of the Adam optimizer.  The learning rate 

is the proportion that weights are updated.  A larger value (i.e. 0.5) results in faster initial 

learning during training.  A smaller value (i.e. 1e-06) results in a slower initial learning 

during training.  By default, the learning rate established by the Keras Python library 

used in the implementation of the unoptimized CNN model is 0.001.   

The Adam optimization algorithm has gained considerable attention in recent years as an 

improvement over the classical stochastic gradient descent algorithm that is used in 

machine learning to iteratively adjust network weights during training [37]. 

This method arose to prominence based upon the collaboration of OpenAI and the 

University of Toronto in 2015 [39]. 

The Adam optimizer offers advantages over classical stochastic gradient descent.  The 

Adam optimizer is ideal for non-convex optimization problems, is computationally 

efficient, has low memory requirements, is suitable for large datasets, is well suited for 
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non-stationary objective functions and is tolerant of objective functions with noisy 

gradients. 

The following result was observed for a reduction in the learning rate to a value of 1e-06 

in the forecast of reactive power.  As shown in Figure 26, the reduction in the learning 

rate enabled the model to improve the forecast for reactive power.  

 

Figure 26 - Actual and Predicted Reactive Power at Location B27 (Unoptimized 

CNN – Learning Rate = 1e-06) 

 

CHAPTER 6. DISTRIBUTION SYSTEM STATE FORECASTING (DSSF) WITH LONG 

SHORT-TERM MEMORY (LSTM) MODELS 

6.1 Data Preparation for LSTMs 

Data preparation for LSTMs for time-series forecasting follows the same process as that 

for CNNs discussed in section 5.2. 
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6.2 Hyperparameter Selection for Unoptimized LSTM Model 

Table 31 presents the hyperparameters considered for the LSTM models in this 

dissertation. 

 

Table 31 - LSTM Hyperparameters 

 

LSTM Hyperparameter Description 

n_input Number of prior inputs for the model (e.g. 24 hours) 

n_lstm Number of lstm blocks (e.g. 100) 

n_fc Number of neurons in the output fully connected layer (s) 

(e.g. 100) 

n_epochs Number of training epochs (e.g. 10) 

n_batch Number of samples to include in each mini-batch (e.g. 10). 

n_diff Difference order to remove seasonality and trends (e.g. 0 or 

12) 

activation Activation function (e.g. relu) 

loss Loss function to minimize (e.g. mse) 

opt Algorithm to adjust weights, biases and learning rate to 

reduce losses (e.g. adam, sgd) 

lr Learning rate. Step size at each iteration while moving 

toward a minimum of a loss function 

 

Table 32 presents the unoptimized LSTM hyperparameters settings selected ad hoc.  

 

 

Table 32 - Unoptimized LSTM Hyperparameter Settings 

 

LSTM Hyperparameter Settings 

n_input 24 

n_lstm 150 

n_fc 112 

n_epochs 70 

n_batch 16 

n_diff 0 

activation relu 

loss mse 

opt adam 

lr 0.001 
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6.3 Implementation of Unoptimized LSTM Model for Time-Series Forecasting 

The following covers the essential elements required to perform time-series forecasting 

with an unoptimized LSTM model.  For brevity, the forecast for real power flow 

described section 5.2 is shown. 

Code Listing 5 - Unoptimized LSTM Model for DSSF 

000 # Unoptimized LSTM Model for DSSF 

001 import time 

002 start_time = time.time() 

003  

004 # print("--- %s seconds ---" % (time.time() - start_time) 

005  

006 # Import Required Python Libraries 

007 import numpy 

008 import numpy as np 

009 import pandas as pd 

010 from math import sqrt 

011 from numpy import split 

012 from numpy import array 

013 from pandas import read_csv 

014 from matplotlib import pyplot 

015 from keras.models import Sequential 

016 from keras.layers import Dense 

017 from keras.layers import LSTM 

018 from keras.layers import RepeatVector 

019 from keras.layers import TimeDistributed 

020 from sklearn.metrics import mean_squared_error 

021 from sklearn.preprocessing import StandardScaler, MinMaxScaler 

022 from sklearn.model_selection import train_test_split 

023 from sklearn.metrics import mean_squared_error 

024  

025  

026 # Evaluate one or more daily forecasts against expected values 

027 def evaluate_forecasts(actual, predicted): 

028     scores = list() 

029     # calculate an RMSE score for each day 

030     for i in range(actual.shape[1]): 

031         # calculate mse 

032         mse = mean_squared_error(actual[:, i], predicted[:, i]) 

033         # calculate rmse 

034         rmse = sqrt(mse) 

035         # store 

036         scores.append(rmse) 

037     # calculate overall RMSE 

038     s = 0 

039     for row in range(actual.shape[0]): 
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040         for col in range(actual.shape[1]): 

041             s += (actual[row, col] - predicted[row, col])**2 

042     score = sqrt(s / (actual.shape[0] * actual.shape[1])) 

043     return score, scores 

044  

045 # Summarize Scores 

046 def summarize_scores(name, score, scores): 

047     s_scores = ', '.join(['%.6f' % s for s in scores]) 

048     print('%s: [%.6f] %s' % (name, score, s_scores)) 

049  

050 # Convert History into Inputs and Outputs 

051 def to_supervised(train, n_input, n_out=24): 

052     # flatten data 

053     data = train.reshape((train.shape[0]*train.shape[1], 

train.shape[2])) 

054     X, y = list(), list() 

055     in_start = 0 

056     # step over the entire history one time step at a time 

057     for _ in range(len(data)): 

058         # define the end of the input sequence 

059         in_end = in_start + n_input 

060         out_end = in_end + n_out 

061         # ensure we have enough data for this instance 

062         if out_end <= len(data): 

063             X.append(data[in_start:in_end, :]) 

064             y.append(data[in_end:out_end, 50]) 

065         # move along one time step 

066         in_start += 1 

067     return array(X), array(y) 

068  

069 # Train the Model 

070 def build_model(train, n_input): 

071     # prepare data 

072     train_x, train_y = to_supervised(train, n_input) 

073     # define parameters 

074     verbose, epochs, batch_size = 0, 70, 16 

075     n_timesteps, n_features, n_outputs = train_x.shape[1], 

train_x.shape[2], train_y.shape[1] 

076     # define model 

077     model = Sequential() 

078     model.add(LSTM(150, activation='relu', 

input_shape=(n_timesteps, n_features))) 

079     #model.add(Dense(100, activation='relu')) 

080     model.add(Dense(n_outputs)) 

081     model.compile(loss='mse', optimizer='adam') 

082     # fit network 

083     model.fit(train_x, train_y, epochs=epochs, 

batch_size=batch_size, verbose=verbose) 

084     return model 

085  

086 # Make a Forecast 

087 def forecast(model, history, n_input): 

088  # flatten data 

089  data = array(history) 

090  data = data.reshape((data.shape[0]*data.shape[1], data.shape[2])) 

091  # retrieve last observations for input data 

092  input_x = data[-n_input:, :] 
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093  # reshape into [1, n_input, n] 

094  input_x = input_x.reshape((1, input_x.shape[0], 

input_x.shape[1])) 

095  # forecast the next week 

096  yhat = model.predict(input_x, verbose=0) 

097  # we only want the vector forecast 

098  yhat = yhat[0] 

099  return yhat 

100  

101 # Evaluate a Single Model 

102 def evaluate_model(train, test, n_input, k): 

103     # fit model 

104     model = build_model(train, n_input) 

105     # history is a list of daily data 

106     history = [x for x in train] 

107     # walk-forward validation over each day 

108     predictions = list() 

109     for i in range(len(test)): 

110         # predict the week 

111         yhat_sequence = forecast(model, history, n_input) 

112         # store the predictions 

113         predictions.append(yhat_sequence) 

114         # get real observation and add to history for predicting 

the next day 

115         history.append(test[i, :]) 

116     # evaluate predictions days for each day 

117     predictions = array(predictions) 

118     score, scores = evaluate_forecasts(test[:, :, 50], predictions) 

119     #history_array = array(history) 

120     return score, scores, predictions, history, test 

121  

122 # Load the PV dataset file 

123 pv_dataframe = pd.read_csv('C:/Python/power_voltage_time-

series_ercot.csv',header=None) 

124 pv = pv_dataframe.values 

125  

126 # Normalize the datasets 

127 scaler_pv = MinMaxScaler(feature_range=(-1,1),copy=True) 

128 pv = scaler_pv.fit_transform(pv) 

129  

130 # Split dataset into 80% Train and 20% Test 

131 pv_train, pv_test = pv[0:7008], pv[7008:8760] 

132  

133 # First 7008 hours for Training 

134 # Reshape Training time series data into [samples, timesteps, 

features] 

135 # Dividing by 24 hours yields: pv_train 24 dimensions of (292, 24, 

112) 

136 pv_train_24 = array(split(pv_train, len(pv_train)/24)) 

137  

138 # Remaining 1752 hours for Testing 

139 # Reshape Testing time series data into [samples, timesteps, 

features] 

140 # Dividing by 24 hours yields: pv_test 24 dimensions of (73, 24, 

112) 

141 pv_test_24 = array(split(pv_test, len(pv_test)/24)) 

142  
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143 # Evaluate Model and Get Scores 

144 n_input = 24 

145 k = 3 

146 score, scores, predictions, history, test = 

evaluate_model(pv_train_24, pv_test_24, 

147                                                            

n_input,k) 

148 history_array = array(history) 

149 # summarize scores 

150 summarize_scores('lstm', score, scores) 

151  

152 # Create datasets to plot 

153 p_10_20_2018_actual = pv_test[0:24,50] 

154 p_10_20_2018_predicted = predictions[0,:] 

155  

156 p_10_20_2018_actual_avg = test[:,:,50].mean(axis=0) 

157 p_10_20_2018_predicted_avg = predictions.mean(axis=0) 

158  

159 # Plot Actual versus Predicted 

160 pyplot.xlabel('Hours',fontweight = 'bold', fontsize = 12.0, 

color='black') 

161 pyplot.ylabel('Real Power (kWatts)', fontweight = 'bold', fontsize 

= 12.0, color='black') 

162  

163 pyplot.plot(p_10_20_2018_actual,'g') # plotting t, a separately 

164 pyplot.plot(p_10_20_2018_predicted, 'r') # plotting t, b separately 

165  

166 pyplot.title('LSTM - B27 - 10/20/2018', fontweight = 'bold', 

fontsize = 12.0,) 

167 pyplot.legend(["Actual", "LSTM Pred."]) 

168 pyplot.show() 

169  

170 # Export predictions 

171 numpy.savetxt('LSTM_B27_Trial_01_24_q.csv', p_10_20_2018_predicted, 

delimiter=",") 

172  

173 print("--- %s seconds ---" % (time.time() - start_time)) 

 

Table 33 presents a summary of Code Listing 5 for an unoptimized LSTM model for 

distribution system state forecasting. 
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Table 33 - Summary of Code Listing 5 for Unoptimized LSTM Model for DSSF 

 

Line #: Description: 

006 – 023 Import essential Python libraries for implementation of unoptimized 

LSTM model for DSSF 

027 - 043 Define a function to evaluate one or more daily forecasts against 

expected values 

045 – 048 Define a function summarize RMSE scores 

051 – 067 Define a function to convert 3 dimensional data into inputs and 

outputs, thus establishing “supervised” learning 

070 – 084 Define a function to build a unoptimized LSTM to perform DSSF 

087 – 099 Define a function to perform a forecast over a specified forecast 

horizon (i.e., 24 hours) 

102 - 120 Define a function to evaluate the forecast based upon RMSE 

123 - 124 Import time-series data 

127 - 128 Perform normalization on input data to improve training 

131 Split time-series data into 80% for training and 20% for testing.  Note 

that the order of the time-series data must be maintained. 

134 – 141 Reshape training and testing data into 3 dimensional format required 

by LSTMs. 

144 - 147 Call evaluate_model() function to create a “history” of daily scores 

150 Call summarize_scores() function to return an average hourly RMSE 

for the forecast. 

153 - 168 Plot actual versus predicted real power for a 24 hour forecast horizon. 

171 Export the time-series prediction data. 
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Figure 27 presents the actual and predicted real power at location B27 (Figure 7) for a 24 

hour period utilizing an “unoptimized” LSTM model.  Note that, like the same prediction 

made by an unoptimized CNN in Figure 22, the predicted time-series has a noticeable 

“delay” or “lag” relative to the actual time-series in the early portion of the prediction.  

Later portions of the prediction follow the actual dynamics reasonably well.  

  

Figure 27 - Actual and Predicted Real Power at Location B27 (Unoptimized LSTM) 

 

Figure 28 presents the actual and predicted reactive power at location B27 (Figure 7) for 

a 24hr period utilizing an “unoptimized” LSTM model.  Note that, unlike the 

unoptimized CNN shown in Figure 23, the prediction of reactive power follows the 

dynamics of the actual time-series better with a default learning rate of 0.001. 
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Figure 28 - Actual and Predicted Reactive Power at Location B27 (Unoptimized 

LSTM) 

 

 

Figure 29 presents the actual and predicted voltage magnitude at location B27 (Figure 7) 

for a 24 hour period utilizing an “unoptimized” LSTM model.  Note that the predicted 

time-series appears to be delayed and has a “reciprocal” relationship to the actual time-

series.  This is similar to the prediction of voltage magnitude made with an unoptimized 

CNN in Figure 24. 
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Figure 29 - Actual and Predicted Voltage Magnitude at Location B27 (Unoptimized 

LSTM) 

 

Figure 30 presents the actual and predicted voltage phase angle at location B27 (Figure 7) 

for a 24 hour period utilizing an “unoptimized” LSTM model.  Note that the prediction of 

voltage phase angle made by the unoptimized LSTM follows they dynamics of the actual 

time series better than the unoptimized CNN in Figure 25. 

 

 

Figure 30 - Actual and Predicted Voltage Phase Angle at Location B27 

(Unoptimized LSTM) 

 

 

The following observations can be made regarding the unoptimized LSTM models 

applied to DSSF with a 24 hour forecast horizon: 

• Real Power:  The predicted time-series has a noticeable “delay” or “lag” relative 

to the actual time-series.  

• Reactive Power:  The predicted time-series does not exhibit the “flat” or 

“constant” waveform noted for the CNN model.   
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• Voltage Magnitude:  The predicted time-series exhibits some of the same 

characteristics as the CNN model for the given forecast horizon. 

• Voltage Phase Angle:  The predicted time-series appears to perform slightly better 

than the unoptimized CNN model for the given forecast horizon. 

LSTM models have gained considerable attention in the literature for their ability to 

“learn” and “remember” key “features” of time-series data.  Thus, there is promise that 

for time-series forecasts of increasing length that LSTM models will be less susceptible 

to vanishing and exploding gradients exhibited by MLPs and CNNs used for the same 

purpose.  

CHAPTER 7. A COMPARISON OF AUTO-REGRESSIVE MODELS AND CONVOLUTIONAL 

NEURAL NETWORKS FOR POWER DISTRIBUTION SYSTEM TIME-SERIES 

FORECASTING 

This chapter presents a subset of the continued research into the application of deep 

learning methods to power system distribution state forecasting.  An investigation of 

power distribution time series forecasting utilizing a "classical statistical” method as well 

as a fully data-driven “deep learning” method will be presented.  In particular, 

autoregressive integrated moving average (ARIMA) will be considered as well as 

convolutional neural networks (CNN) for time-series forecasting.  The IEEE standard 34-

bus test system considered previously is used to demonstrate the proposed statistical and 

deep learning methods and their effectiveness for potential application to demand 

forecasting, distribution system state estimation (DSSE), and distribution system state 

forecasting (DSSF).  The methods and results presented in this chapter are based on an 

ad-hoc selection of hyperparameters in order to demonstrate what is possible in terms of 



147 

 

readily applying both conventional and deep learning techniques to time series 

forecasting.  Optimization will be left to subsequent research.  Results of the performance 

of the ARIMA and CNN models will include plots of actual versus predicted real power, 

reactive power, voltage magnitude and voltage phase angle as well as the average root 

mean square error of the time series predictions of these quantities at various locations of 

the test distribution system over a 24-hour forecast horizon.  The results presented in this 

chapter will contribute to the ongoing research into the application of machine learning in 

general and deep learning in particular to power distribution system state estimation and 

forecasting. 

7.1 ARIMA Model 

ARIMA stands for Auto-Regressive Integrated Moving Average. The model is 

statistically based and is defined by the following components: 

• AR: Auto-regression. Determination of the relation of the data to itself.  The 

relationship of observations to previous observations. 

• I: Integrated. Utilization of differencing to make the time series stationary.  

• MA: Moving Average. Application of a moving average to lagged 

observations to determine the dependency between an observation and 

residual error.  

The standard notation used for this model type is ARIMA(p,d,q) where each of the 

hyperparameters are defined as follows: 

• p: The number of lag observations included in the model, also called the 

lag order. 
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• d: The number of times that the raw observations are differenced, also 

called the degree of differencing. 

• q: The size of the moving average window, also called the order of 

moving average. 

7.2 CNN Model 

An introduction to CNN model architecture and hyperparameters is presented in section 

5.3. 

7.3 ARIMA Model Implementation 

The implementation of the ARIMA model was done in Python 3.9.  A multi-variate time 

series consisting of all of the power and voltage measurements discussed in CHAPTER 3 

was available for the ARIMA model.  For purposes of simplicity, only the measurement 

points at locations B1 (substation), B18 and B27 in Figure 7 were considered.  Also, only 

a single phase (phase a) was considered for each measurement point.  Thus, separate 

univariate time series for the real power (P), reactive power (Q), voltage magnitude 

(V_mag) and voltage phase angle (V_phase) were considered. 

Each of these time series was split into 80% for training and 20% for testing. An ARIMA 

model with hyperparameters p = 1, d = 1 and q = 0 was selected ad hoc.  Thus, the model 

featured first order auto regressive terms, first order nonseasonal differencing and no 

lagged forecast errors were used in the prediction equation. 

The model was then used in a walk forward validation loop to forecast the next 24 hours 

beyond the endpoint selected for the training dataset for each univariate time series (P, Q, 

V_mag, and V_phase) at each bus location (B1, B18, and B27). 
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7.4 CNN Model Implementation 

The implementation of the CNN model was done in Python 3.9.  The same datasets, 

measurement points, and training-testing split for the ARIMA Model in section 7.3 were 

also used for the CNN model. 

The unoptimized CNN hyperparameter settings are the same as given in Table 29 

 

7.5 Actual Versus Predicted P, Q, V_mag, V_phase Plots at B1 

Figure 31 presents the actual and predicted real power at the substation (B1 in Figure 7) 

for a 24 hour period using unoptimized ARIMA and CNN models.  Note that both 

models produce a time series prediction that follow the dynamics of the actual time-

series, however the ARIMA model appears to outperform the CNN model over the 

forecast horizon considered.   

 

 

 

 

Figure 31 - Actual versus Predicted Real Power at B1 
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Figure 32 presents the actual and predicted reactive power at the substation (B1 in Figure 

7) for a 24 hour period using unoptimized ARIMA and CNN models.  Note that the 

unoptimized CNN model exhibits a “flat” response indicative of underfitting.  The 

ARIMA appears to outperform the CNN model over the forecast horizon considered, 

however, as shown in Table 34, the RMSE of the CNN model is less than that of the 

ARIMA model.  This scenario suggests that evaluation of overall “performance” of time-

series predictions include multiple figures of merit. 

 

 

 

Figure 33 presents the actual and predicted voltage magnitude at the substation (B1 in 

Figure 7) for a 24 hour period using unoptimized ARIMA and CNN models.  Note that 

the ARIMA model follows the actual time series to such a close degree that there appears 

to be no difference in the ARIMA prediction and the actual time series based upon the 

scale presented. 

Figure 32 - Actual versus Predicted Reactive Power at B1 
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Figure 33 - Actual versus Predicted Voltage Magnitude at B1 

Figure 34 presents on a different scale, the actual and predicted voltage magnitude at the 

substation (B1 in Figure 7) for a 24 hour period using an unoptimized ARIMA model.  

Note that the actual voltage magnitude at the substation changes very little over the 

forecast horizon and the ARIMA model can track the dynamics much better than the 

CNN model.  The RMSE values for the ARIMA and CNN models in Table 34 this result. 

 

 

 

 



152 

 

 

Figure 34 - Actual versus ARIMA Prediction of Voltage Magnitude at B1 

 

Figure 35 presents the actual and predicted voltage phase angle at the substation (B1 in 

Figure 7) for a 24 hour period using unoptimized ARIMA and CNN models.  Note that 

the actual voltage phase angle at the substation changes very little over the forecast 

horizon.  Table 34 shows that the RMSE for the CNN model is significantly lower than 

the ARIMA model. 
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Figure 36 – Actual versus CNN Predicted Voltage Phase Angle at B1 

 

 

7.6 Actual Versus Predicted P, Q, V_mag, V_phase Plots at B18 

Figure 37 presents the actual and predicted real power at the substation (Figure 7) for a 24 

hour period using unoptimized ARIMA and CNN models.  Note that both models produce 

Figure 35 - Actual versus Predicted Voltage Phase Angle at B1 
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a time series prediction that follow the dynamics of the actual time-series, however the 

ARIMA model appears to outperform the CNN model over the forecast horizon 

considered.   

 

 

 

Figure 38 presents the actual and predicted reactive power at location B18 (Figure 7) for 

a 24 hour period using unoptimized ARIMA and CNN models.  Note that the 

unoptimized CNN model exhibits a prediction that aligns with the approximate average 

of the actual time series.  At this location, the ARIMA model does not follow the actual 

time series as well as the CNN model.  

Figure 37 - Actual versus Predicted Real Power at B18 
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Figure 39 presents the actual and predicted voltage magnitude at B18 (Figure 7) for a 24 

hour period using unoptimized ARIMA and CNN models.  In this case, both models are 

responsive to the dynamics of the actual time series, however both models would benefit 

from hyperparameter optimization. 

 

Figure 39 - Actual versus Predicted Voltage Magnitude at B18 

 

Figure 38 - Actual versus Predicted Reactive Power at B18 
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Figure 40 presents the actual and predicted voltage phase angle at location B18 (Figure 7) 

for a 24 hour period using unoptimized ARIMA and CNN models.  In this case, the 

unoptimized CNN model again follows the approximate average of the actual time series.  

According to Table 35, the unoptimized CNN model presents a slightly lower RMSE 

than the ARIMA model. 

 

 

 

 

7.7 Actual Versus Predicted P, Q, V_mag, V_phase Plots at B27 

Figure 41 presents the actual and predicted real power at location B27 (Figure 7) for a 24 

hour period using unoptimized ARIMA and CNN models.  Note that both models produce 

a time series prediction that follow the dynamics of the actual time-series.   

Figure 40 - Actual versus Predicted Voltage Phase Angle at B18 
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Figure 42 presents the actual and predicted reactive power location B27 (Figure 7) for a 

24 hour period using unoptimized ARIMA and CNN models.  Note that the unoptimized 

CNN model exhibits a “flat” response indicative of underfitting.  The ARIMA model 

outperforms the CNN model over the forecast horizon considered.  

 

 

 

Figure 41 - Actual versus Predicted Real Power at B27 

Figure 42 - Actual versus Predicted Reactive Power at B27 
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Figure 43 presents the actual and predicted voltage magnitude location B27 (Figure 7) for 

a 24 hour period using unoptimized ARIMA and CNN models.   

 

 

Figure 43 - Actual versus Predicted Voltage Magnitude at B27 

 

Figure 44 presents the actual and predicted voltage phase angle at location B27 (Figure 7) 

for a 24 hour period using unoptimized ARIMA and CNN models.   

 

 

Figure 44 - Actual versus Predicted Voltage Phase Angle at B27 
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Table 34 - RMSE for Predicted Values at B1 for ARIMA and CNN Models 

 

 

 

 

 

 

Table 35 - RMSE for Predicted Values at B18 for ARIMA and CNN Models 

 

 

 

 

 

 

Table 36 - RMSE for Predicted Values at B27 for ARIMA and CNN Models 

 

 

 

 

 

 

Table 37 presents the RMSE and execution time for predicted values at B27 for the 

unoptimized ARIMA, CNN and LSTMs models presented in this research.   Note that the 

RMSE values for each model type are comparable, however the execution time for the 

time-series prediction is lowest for the CNN model and highest for the LSTM models. 

 

 

 

 P (kW) Q (kVAR) V_mag (V) 
V_phase 

(degrees) 

ARIMA 29.3809441 196.915513 0.044514 0.635800 

CNN 78.454014 164.142076 63.174731 0.000169 

 P (kW) Q (kVAR) V_mag (V) 
V_phase 

(degrees) 

ARIMA 3.849720 215.928072 86.691458 2.474801 

CNN 8.112244 164.142076 101.198798 2.277744 

 P (kW) Q (kVAR) V_mag (V) 
V_phase 

(degrees) 

ARIMA 20.360220 148.037981 93.571318 2.474801 

CNN 49.279813 122.617277 161.039947 1.751593 



160 

 

Table 37 - RMSE and Execution Time for Predicted Values at B27 for ARIMA, 

CNN and LSTM Models 

 

  P (kW) Q (kVAR) V_mag 

(volts) 

V_phase 

(degrees) 

ARIMA 

RMSE 20.360220 148.037981 93.571318 2.474801 

Execution 

Time (seconds) 
275.665 495.134 477.426 486.234 

CNN 

RMSE 49.279813 122.617277 161.039947 1.751593 

Execution 

Time (seconds) 
86.670 86.637 87.372 79.328 

LSTM 

RMSE 61.211237 131.694421 119.390719 6.791523 

Execution 

Time (seconds) 
1059.255 1051.643 918.478 1167.424 

 

 

CHAPTER 8. RESEARCH CONCLUSION 

Chapter 1 of this dissertation introduces the purpose and significance of the research.   

Chapter 2 presents the background and related work.   A key takeaway from this chapter 

is that conventional (analytical) approaches are not sufficient for power distribution 

system state estimation and state forecasting and that application of data driven 

approaches involving deep learning models may help overcome limitations of earlier 

methods.  Chapter 3 presents distribution system state estimation (DSSE) with multilayer 

perceptron models (MLPs).  The main takeaway from the chapter is a demonstration of 

the process of applying MLP models to power distribution system state estimation along 

with a structured methodology of selecting hyperparameters for the same models as an 

improvement over an ad-hoc approach.  Additional layers may also prove 
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counterproductive in terms of higher root mean square error and additional training 

execution time.  Another key result is that Bayesian Optimization with Gaussian 

Processes will greatly reduce the probability of selecting values that will not produce the 

maximum of the original objective function. Chapter 4 presents full distribution system 

state estimation with optimized MLP models.  The main takeaway from Chapter 4 is that 

an improved workflow and data pipeline enables full system state estimation, that is not 

limited by the available monitors placed within the power simulator software.  The 

improved workflow enables the possibility of state estimation being applied to much 

larger distribution systems.  Application and validation of the improved workflow to 

larger distributions systems is left to future research. 

Chapter 5 presented distribution system state forecasting (DSSF) with convolutional 

neural network (CNN) models.  The main takeaway from Chapter 5 is that CNNs may be 

applied to areas other than object recognition and vision systems to perform power 

system state forecasting by learning patterns, seasonality, and trends of a time-series.   

Chapter 6 presents distribution system state forecasting (DSSF) with long short-term 

memory models (LSTMs).  The main takeaway from Chapter 6 is that LSTMs may be 

applied to areas other than speech recognition, language translation and image captioning 

to perform power system state forecasting by learning the autocorrelation of long 

sequence time-series data. 

Chapter 7 presents a comparison of auto-regressive models and convolutional neural 

networks for power distribution system time-series forecasting.  The main takeaway from 

Chapter 7 is that for univariate time-series prediction, classical and deep learning 

methods should be considered as viable options.  Although left for future research, for 
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multivariate time-series forecasting, classical methods such as ARIMA are quite limited 

while deep learning models such as CNNs and LSTMs are viable options. 
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