
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Electrical and
Computer Engineering Electrical and Computer Engineering

2023

Application of Conventional Feedforward and Deep Neural Application of Conventional Feedforward and Deep Neural

Networks to Power Distribution System State Estimation and Networks to Power Distribution System State Estimation and

State Forecasting State Forecasting

James Paul Carmichael
University of Kentucky, jamespcarmichael@gmail.com
Author ORCID Identifier:

https://orcid.org/0009-0005-2824-3391
Digital Object Identifier: https://doi.org/10.13023.etd.2023.054

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Carmichael, James Paul, "Application of Conventional Feedforward and Deep Neural Networks to Power
Distribution System State Estimation and State Forecasting" (2023). Theses and Dissertations--Electrical
and Computer Engineering. 189.
https://uknowledge.uky.edu/ece_etds/189

This Doctoral Dissertation is brought to you for free and open access by the Electrical and Computer Engineering at
UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Electrical and Computer Engineering
by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

https://uknowledge.uky.edu/
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece
https://orcid.org/0009-0005-2824-3391
https://uky.az1.qualtrics.com/jfe/form/SV_0lgcRp2YIfAbzvw
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

James Paul Carmichael, Student

Dr. Yuan Liao, Major Professor

Dr. Daniel L. Lau, Director of Graduate Studies

University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Electrical and
Computer Engineering Electrical and Computer Engineering

2023

Application of Conventional Feedforward and Deep Neural Application of Conventional Feedforward and Deep Neural

Networks to Power Distribution System State Estimation and Networks to Power Distribution System State Estimation and

State Forecasting State Forecasting

James Paul Carmichael
University of Kentucky, jamespcarmichael@gmail.com
Author ORCID Identifier:

https://orcid.org/0009-0005-2824-3391
Digital Object Identifier: https://doi.org/10.13023.etd.2023.054

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Carmichael, James Paul, "Application of Conventional Feedforward and Deep Neural Networks to Power
Distribution System State Estimation and State Forecasting" (2023). Theses and Dissertations--Electrical
and Computer Engineering. 189.
https://uknowledge.uky.edu/ece_etds/189

This Doctoral Dissertation is brought to you for free and open access by the Electrical and Computer Engineering at
UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Electrical and Computer Engineering
by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece
https://orcid.org/0009-0005-2824-3391
https://uky.az1.qualtrics.com/jfe/form/SV_0lgcRp2YIfAbzvw
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

James Paul Carmichael, Student

Dr. Yuan Liao, Major Professor

Dr. Daniel L. Lau, Director of Graduate Studies

Application of Conventional Feedforward and Deep Neural Networks to Power

Distribution System State

Estimation and State Forecasting

__

DISSERTATION

__

A dissertation submitted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy in the

Department of Electrical and Computer Engineering

at the University of Kentucky

By

James P. Carmichael, PE, PMP

Lexington, Kentucky

Director: Dr. Yuan Liao, Professor of Electrical and Computer Engineering

Lexington, Kentucky

2023

Copyright © James P. Carmichael, PE., PMP 2023

https://orcid.org/0009-0005-2824-3391

ABSTRACT OF DISSERTATION

Application of Conventional Feedforward and Deep Neural Networks to Power

Distribution System State Estimation and Forecasting

Classical neural networks such as feedforward multilayer perceptron

models (MLPs) are well established as universal approximators and as such, show

promise in applications such as static state estimation in power transmission

systems. This research investigates the application of conventional neural networks

(MLPs) and deep learning based models such as convolutional neural networks

(CNNs) and long short-term memory networks (LSTMs) to mitigate challenges in

power distribution system state estimation and forecasting based upon conventional

analytic methods. The ability of MLPs to perform regression to perform power

system state estimation will be investigated. MLPs are considered based upon their

promise to learn complex functional mapping between datasets with many features.

CNNs and LSTMs are considered based upon their promise to perform time-series

forecasting by learning the autocorrelation of the dataset being predicted. The

performance of MLPs will be presented in terms of root-mean-square error (RMSE)

between actual and predicted voltage magnitude and voltage phase angles and

training execution time for distribution system state estimation (DSSE). The

performance of CNNs, and LSTMs will be presented in terms of RMSE between

actual and predicted real power demand and execution time when performing

distribution system state forecasting (DSSF). Additionally, Bayesian Optimization

with Gaussian Processes are used to optimize MLPs for regression. An IEEE

standard 34-bus test system is used to illustrate the proposed conventional neural

network and deep learning methods and their effectiveness to perform power

system state estimation and power system state forecasting respectively.

KEYWORDS: artificial neural networks (ANNs), multilayer perceptron networks (MLPs),

convolutional neural networks (CNNs), long short-term memory networks

(LSTMs), distribution system state estimation (DSSE)

Application of Conventional Feedforward and Deep Neural Networks to Power

Distribution System State Estimation and Forecasting

By

James Paul Carmichael

Dr. Yuan Liao

Director of Dissertation

Dr. Daniel L. Lau

Director of Graduate Studies

04/07/2023

 Date

DEDICATION

This dissertation and related PhD research is dedicated to my mother, Carol M. Self.

ACKNOWLEDGMENTS

I would like to express my appreciation and gratitude to those who supported and guided

me through my PhD studies, dissertation defense and completion of my dissertation. First, I

would like to thank my advisor Dr. Yuan Liao. He guided my studies through some very

challenging life events and served a constant supporter. I look forward to collaborating with

him and his future students on research as I move forward in my career as a research scientist.

I would also like to thank my PhD committee members: Dr. Zongming Fei, Dr. Joseph

Sottile, and Dr. Peng Wang. I would also like to thank Dr. Miroslaw Truszcynski for serving as

an outside examiner. I would also like to thank electrical and computer engineering Director of

Graduate Studies, Dr. Daniel Lau. His timely communications and availability to address

questions concerning key milestones and requirements for completion of my PhD studies is

greatly appreciated.

I would also like to thank and acknowledge the U. S. Department of Defense Science,

Mathematics, and Research for Transformation (SMART) Program for helping to fund portions

of my research and for providing opportunities beyond graduation.

Last but not least I would like to thank Kristie L. Wideman for her love and support

through the most challenging periods of my research. It made all the difference in the world.

iv

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... iii

TABLE OF CONTENTS ... iv

LIST OF TABLES .. vii

LIST OF FIGURES .. x

CHAPTER 1. Purpose and Significance of the Research .. 1

1.1 Research Purpose Statement ... 1

1.2 Dissertation Outline .. 2

CHAPTER 2. Background and Related Work ... 8

2.1 Introduction ... 8

2.2 Review of Conventional (Analytical) Power System State Estimation, Resiliency

and Observability .. 9

2.3 State Estimation Applied to Smart Distribution Systems 12

2.4 Artificial Neural Networks and Deep Learning Applied to Power System State

Estimation, Observability, Topology Errors and False Data Injection Attacks 17

2.5 Distribution System State Estimation ... 23

2.6 Challenges of Applying Conventional State Estimation Utilizing Weighted Least

Squares to Distribution Systems ... 27

2.7 Lack of Observability in Distribution Systems ... 28

2.8 Topology Errors in Distribution Systems ... 28

2.9 False Data Injection Attacks in Distribution Systems .. 29

2.10 Conventional Feedforward Multilayer Perceptron Networks (MLPs) 29

2.11 Convolutional Neural Networks (CNNs).. 32

2.12 Recurrent Neural Networks (RNNs) ... 34

2.13 Long Short-Term Memory Networks (LSTMs) ... 35

CHAPTER 3. Distribution System State Estimation (DSSE) with Multilayer Perceptron

(MLP) Models 36

3.1 DSSE with MLPs without Hyperparameter Optimization.................................... 36

v

3.2 Test Distribution System... 38

3.3 Power Flow Simulation Measurement Points and Quantities............................... 39

3.4 Training and Testing Data .. 43

3.5 Validation Data ... 44

3.6 Unoptimized Conventional Feedforward Multilayer Perceptron Network (MLP)45

3.6.1 Network Model Parameters .. 45

3.6.2 Network Hyperparameters .. 45

3.7 Implementation of Unoptimized MLP Models for DSSE 46

3.8 State Estimation and Forecasting Based Upon Time Series Physics Aware Models

 51

3.9 DSSE with MLPs with Hyperparameter Optimization ... 55

3.9.1 Bayesian Optimization with Gaussian Processes ... 57

3.9.2 Implementation of Bayesian Optimization with Gaussian Processes on MLPs

for DSSE ... 80

CHAPTER 4. Full Distribution System State Estimation with Optimized MLP Models 93

4.1 Original Workflow and Data Pipeline .. 95

4.1.1 Load Profile .. 96

4.1.2 Distribution System Simulator .. 96

4.1.3 Raw Data Files Exported from Simulator Monitors 97

4.1.4 Data Pre-processing .. 97

4.1.5 Machine Learning Ecosystem ... 98

4.2 Improved Workflow and Data Pipeline .. 98

4.2.1 Load Profile .. 99

4.2.2 Distribution System Simulator .. 99

4.2.3 Machine Learning Ecosystem ... 100

4.2.4 Experimental Methodology .. 101

4.2.5 Measurement Points and Locations .. 102

4.2.6 Gather Training/Testing Data ... 107

4.2.7 Perform Random Selection of Lines ... 108

4.2.8 Gather Validation Data ... 108

4.2.9 Unoptimized MLP Models ... 108

4.2.10 Optimized MLP Models ... 108

CHAPTER 5. Distribution System State Forecasting (DSSF) with Convolutional Neural

Network (CNN) models .. 120

5.1 Time-Series Forecasting ... 120

5.1.1 Time-Series Forecasting Process .. 122

5.2 Data Preparation for Time-Series Forecasting with Deep Learning 123

vi

5.3 Hyperparameter Selection for Unoptimized CNN Model 125

5.4 Implementation of Unoptimized CNN Model for Time-Series Forecasting 126

CHAPTER 6. Distribution System State Forecasting (DSSF) with Long Short-Term

Memory (LSTM) Models ... 136

6.1 Data Preparation for LSTMs ... 136

6.2 Hyperparameter Selection for Unoptimized LSTM Model 137

6.3 Implementation of Unoptimized LSTM Model for Time-Series Forecasting 138

CHAPTER 7. A Comparison of Auto-Regressive Models and Convolutional Neural

Networks for Power Distribution System Time-Series Forecasting 146

7.1 ARIMA Model .. 147

7.2 CNN Model ... 148

7.3 ARIMA Model Implementation ... 148

7.4 CNN Model Implementation .. 149

7.5 Actual Versus Predicted P, Q, V_mag, V_phase Plots at B1 149

7.6 Actual Versus Predicted P, Q, V_mag, V_phase Plots at B18 153

7.7 Actual Versus Predicted P, Q, V_mag, V_phase Plots at B27 156

CHAPTER 8. Research Conclusion ... 160

REFERENCES ... 163

VITA ... 170

vii

LIST OF TABLES

TABLE 1 - ROBUST STATE ESTIMATORS ... 13

TABLE 2 - DATA DRIVEN APPROACHES TO STATE ESTIMATION ... 14

TABLE 3 - CNN LAYER TYPES AND KEY CHARACTERISTICS ... 33

TABLE 4 - RNN VARIANTS AND KEY CHARACTERISTICS .. 34

TABLE 5 - LSTM OPERATIONS AND PURPOSE.. 36

TABLE 6 - SUPERVISED LEARNING DATASETS AND GENERAL STRUCTURE 38

TABLE 7 - POWER MONITOR DESCRIPTIONS AND LOCATIONS .. 41

TABLE 8 - VOLTAGE MONITOR DESCRIPTIONS AND LOCATIONS .. 42

TABLE 9 - SUMMARY OF CODE LISTING 1 FOR UNOPTIMIZED MLP MODEL FOR DSSE 48

TABLE 10 – PERFORMANCE RESULTS FOR MLP MODELS WITHOUT HYPERPARAMETER

OPTIMIZATION ... 50

TABLE 11 - 24 HOUR FORECAST (AVERAGE RMSE) AT SUBSTATION BUS 53

TABLE 12 - 168 HOUR FORECAST (AVERAGE RMSE) AT SUBSTATION BUS 54

TABLE 13 - 672 HOUR FORECAST (AVERAGE RMSE) AT SUBSTATION BUS 55

TABLE 14 - SUMMARY OF CODE LISTING 2 FOR VISUALIZATION OF BAYESIAN

OPTIMIZATION WITH GAUSSIAN PROCESSES .. 71

TABLE 15 - UNOPTIMIZED MLP HYPERPARAMETER SETTINGS .. 81

TABLE 16 - SUMMARY OF CODE LISTING 3 FOR MLP MODEL OPTIMIZED WITH BAYESIAN

OPTIMIZATION WITH GAUSSIAN PROCESSES .. 87

TABLE 17 – PERFORMANCE RESULTS FOR MLP MODELS WITH HYPERPARAMETER

OPTIMIZATION ... 88

viii

TABLE 18 - HYPERPARAMETERS SELECTED VIA BAYESIAN OPTIMIZATION WITH GAUSSIAN

PROCESSES ... 90

TABLE 19 - OPTIMIZED MODEL CONFIGURATIONS .. 91

TABLE 20 - LINE ELEMENTS AND POWER FLOW .. 102

TABLE 21 - NODE VOLTAGES AND PHASE ANGLES .. 104

TABLE 22 - RANDOMLY SELECTED LINES .. 109

TABLE 23 – PERFORMANCE COMPARISON OF UNOPTIMIZED AND OPTIMIZED MLP

NETWORKS UNDER RANDOM SELECTION (R1) OF LINES (TOTAL HOURS = 720) 114

TABLE 24 - PERFORMANCE COMPARISON OF UNOPTIMIZED AND OPTIMIZED MLP

NETWORKS UNDER RANDOM SELECTION (R2) OF LINES (TOTAL HOURS = 720) 115

TABLE 25 - PERFORMANCE COMPARISON OF UNOPTIMIZED AND OPTIMIZED MLP

NETWORKS UNDER RANDOM SELECTION (R3) OF LINES (TOTAL HOURS = 720) 116

TABLE 26 - PERFORMANCE COMPARISON OF UNOPTIMIZED AND OPTIMIZED MLP

NETWORKS UNDER RANDOM SELECTION (R4) OF LINES (TOTAL HOURS = 720) 117

TABLE 27 - HYPERPARAMETERS SELECTED VIA BAYESIAN OPTIMIZATION 118

TABLE 28 - CNN HYPERPARAMETERS ... 125

TABLE 29 - UNOPTIMIZED CNN HYPERPARAMETER SETTINGS 126

TABLE 30 - SUMMARY OF CODE LISTING 4 FOR AN UNOPTIMIZED CNN MODEL FOR DSSF

... 131

TABLE 31 - LSTM HYPERPARAMETERS ... 137

TABLE 32 - UNOPTIMIZED LSTM HYPERPARAMETER SETTINGS 137

TABLE 33 - SUMMARY OF CODE LISTING 5 FOR UNOPTIMIZED LSTM MODEL FOR DSSF142

TABLE 34 - RMSE FOR PREDICTED VALUES AT B1 FOR ARIMA AND CNN MODELS 159

ix

TABLE 35 - RMSE FOR PREDICTED VALUES AT B18 FOR ARIMA AND CNN MODELS ... 159

TABLE 36 - RMSE FOR PREDICTED VALUES AT B27 FOR ARIMA AND CNN MODELS ... 159

TABLE 37 – RMSE AND EXECUTION TIME FOR PREDICTED VALUES AT B27 FOR ARIMA,

CNN AND LSTM MODELS .. 160

x

LIST OF FIGURES

FIGURE 1 - TRANSMISSION AND DISTRIBUTION SYSTEM KEY CHARACTERISTICS 24

FIGURE 2 - FUNCTIONAL BLOCK DIAGRAM OF STATE ESTIMATION 24

FIGURE 3 - STATE ESTIMATOR OVERVIEW ... 26

FIGURE 4 - PERCEPTRON BUILDING BLOCK OF MLP NETWORKS 30

FIGURE 5 - MULTILAYER PERCEPTRON (MLP) MODEL FUNCTIONAL REPRESENTATION ... 31

FIGURE 6 - CONVOLUTIONAL NEURAL NETWORK (CNN) MODEL FUNCTIONAL

REPRESENTATION .. 32

FIGURE 7 - IEEE 34 NODE TEST BASE DISTRIBUTION SYSTEM .. 39

FIGURE 8 - IEEE 34 NODE TEST BASE DISTRIBUTION SYSTEM MEASUREMENT POINTS 39

FIGURE 9 - HOURLY TEMPERATURE AND REAL POWER DEMAND 52

FIGURE 10 - BAYESIAN OPTIMIZATION ALGORITHM .. 60

FIGURE 11 - PLOT OF TEST OBJECTIVE FUNCTION ... 67

FIGURE 12 - STEP 2 OF BAYESIAN OPTIMIZATION WITH GAUSSIAN PROCESSES 73

FIGURE 13 - STEP 3 OF BAYESIAN OPTIMIZATION WITH GAUSSIAN PROCESSES 74

FIGURE 14 - STEP 4 OF BAYESIAN OPTIMIZATION WITH GAUSSIAN PROCESSES 75

FIGURE 15 - STEP 11 OF BAYESIAN OPTIMIZATION WITH GAUSSIAN PROCESSES 76

FIGURE 16 - STEP 15 OF BAYESIAN OPTIMIZATION WITH GAUSSIAN PROCESSES 77

FIGURE 17 - STEP 16 OF BAYESIAN OPTIMIZATION WITH GAUSSIAN PROCESSES 78

FIGURE 18 - STEP 17 OF BAYESIAN OPTIMIZATION WITH GAUSSIAN PROCESSES 79

FIGURE 19 - ORIGINAL WORKFLOW AND DATA PIPELINE .. 96

FIGURE 20 - IMPROVED WORKFLOW AND DATA PIPELINE ... 99

FIGURE 21 - EXAMPLE UNIVARIATE TIME SERIES .. 121

xi

FIGURE 22 - ACTUAL AND PREDICTED REAL POWER AT LOCATION AT B27 (UNOPTIMIZED

CNN) ... 132

FIGURE 23 - ACTUAL AND PREDICTED REACTIVE POWER AT LOCATION B27 (UNOPTIMIZED

CNN) ... 133

FIGURE 24 - ACTUAL AND PREDICTED VOLTAGE MAGNITUDE AT LOCATION B27

(UNOPTIMIZED CNN) .. 134

FIGURE 25 - ACTUAL AND PREDICTED VOLTAGE PHASE ANGLE AT LOCATION B27

(UNOPTIMIZED CNN) .. 135

FIGURE 26 - ACTUAL AND PREDICTED REACTIVE POWER AT LOCATION B27 (UNOPTIMIZED

CNN – LEARNING RATE = 1E-06) .. 136

FIGURE 27 - ACTUAL AND PREDICTED REAL POWER AT LOCATION B27 (UNOPTIMIZED

LSTM)... 143

FIGURE 28 - ACTUAL AND PREDICTED REACTIVE POWER AT LOCATION B27 (UNOPTIMIZED

LSTM)... 144

FIGURE 29 - ACTUAL AND PREDICTED VOLTAGE MAGNITUDE AT LOCATION B27

(UNOPTIMIZED LSTM) .. 145

FIGURE 30 - ACTUAL AND PREDICTED VOLTAGE PHASE ANGLE AT LOCATION B27

(UNOPTIMIZED LSTM) .. 145

FIGURE 31 - ACTUAL VERSUS PREDICTED REAL POWER AT B1 149

FIGURE 32 - ACTUAL VERSUS PREDICTED REACTIVE POWER AT B1 150

FIGURE 33 - ACTUAL VERSUS PREDICTED VOLTAGE MAGNITUDE AT B1 151

FIGURE 34 - ACTUAL VERSUS ARIMA PREDICTION OF VOLTAGE MAGNITUDE AT B1 152

FIGURE 35 - ACTUAL VERSUS PREDICTED VOLTAGE PHASE ANGLE AT B1 153

file:///C:/UK_Research/Dissertation_2023/Dissertation_JCarmichael_04072023.docx%23_Toc131788507
file:///C:/UK_Research/Dissertation_2023/Dissertation_JCarmichael_04072023.docx%23_Toc131788508
file:///C:/UK_Research/Dissertation_2023/Dissertation_JCarmichael_04072023.docx%23_Toc131788511

xii

FIGURE 36 – ACTUAL VERSUS CNN PREDICTED VOLTAGE PHASE ANGLE AT B1 153

FIGURE 37 - ACTUAL VERSUS PREDICTED REAL POWER AT B18 154

FIGURE 38 - ACTUAL VERSUS PREDICTED REACTIVE POWER AT B18 155

FIGURE 39 - ACTUAL VERSUS PREDICTED VOLTAGE MAGNITUDE AT B18 155

FIGURE 40 - ACTUAL VERSUS PREDICTED VOLTAGE PHASE ANGLE AT B18 156

FIGURE 41 - ACTUAL VERSUS PREDICTED REAL POWER AT B27 157

FIGURE 42 - ACTUAL VERSUS PREDICTED REACTIVE POWER AT B27 157

FIGURE 43 - ACTUAL VERSUS PREDICTED VOLTAGE MAGNITUDE AT B27 158

FIGURE 44 - ACTUAL VERSUS PREDICTED VOLTAGE PHASE ANGLE AT B27 158

file:///C:/UK_Research/Dissertation_2023/Dissertation_JCarmichael_04072023.docx%23_Toc131788513
file:///C:/UK_Research/Dissertation_2023/Dissertation_JCarmichael_04072023.docx%23_Toc131788514
file:///C:/UK_Research/Dissertation_2023/Dissertation_JCarmichael_04072023.docx%23_Toc131788516
file:///C:/UK_Research/Dissertation_2023/Dissertation_JCarmichael_04072023.docx%23_Toc131788517
file:///C:/UK_Research/Dissertation_2023/Dissertation_JCarmichael_04072023.docx%23_Toc131788518

1

CHAPTER 1. PURPOSE AND SIGNIFICANCE OF THE RESEARCH

1.1 Research Purpose Statement

In power systems an essential requirement is resiliency. In general, resiliency

includes the ability of a power system to withstand and recover quickly from events that

may be considered low-frequency, yet high-impact events or adverse conditions. Examples

of such events or adverse conditions relate to but are not limited to the following: Extreme

weather, Natural disasters, man-made outages (physical, cyber, coordinated), lack of

observability, topology errors, and false data injection attacks (FDIAs) [12].

Ensuring robust state estimation in the presence of noisy environments and

following a cyber-attack to the grid is critical [1]. The state estimation process seeks to

provide an optimal estimation of the true values of bus voltages and angles and power

flows across the power system [2]. Thus, state estimation provides the basis or

enhancement for other power system applications such as system planning, optimization,

fault analysis, protection, and fault location [3], [4], [5], [6].

Artificial neural networks have been used in power distribution system state

estimation. However, there is a lack of analysis and study of which types of ANNs and

what structures including parameters are most suitable for state estimation applications.

When designing an ANN for a state estimator, trial and error approach has been common

and there is to the knowledge of the author of this dissertation no systematic method

available to guide the process.

This research aims to perform a comprehensive study of the performance of various

types of ANNs with different structures and provides a possible optimization method to

determine the optimal parameters for desired performance metrics. These parameters are

2

referred to as hyperparameters, including model parameters such as number of hidden

layers and number of neurons in a layer, and algorithm parameters such as adjustable

learning rate. This research will improve the training efficiency for large power systems.

This research focuses on application of classical artificial neural networks and deep

learning networks to distribution system state estimation (DSSE) and distribution system

state forecasting (DSSF). There are various types of networks such as conventional

feedforward multilayer perceptron networks (MLPs), convolutional neural networks

(CNNs), recurrent neural networks (RNNs)/long short-term memory networks (LSTMs),

and hybrid-neural networks utilizing a combination of network types. Preliminary results

based on MLPs, CNNs, and LSTMs are presented in this research.

Hyperparameters may be obtained using optimization methods such as but not

limited to grid search, genetic algorithms, and Bayesian Optimization with Gaussian

Processes. Bayesian Optimization with Gaussian Processes was selected for this research.

1.2 Dissertation Outline

CHAPTER 2 presents the background and related work. The objective of this

chapter is to provide a background in state estimation and strengthen the case for

application of deep learning to mitigate challenges of applying classical (analytical)

techniques to modern power distribution systems. It starts with a review of conventional

power system state estimation, observability, and resiliency. It then considers state

estimation applied to smart distributions systems. Next, artificial neural networks and

deep learning applied to power system state estimation, observability, topology errors and

false data injection attacks are presented. Next, distribution system state estimation is

presented. Included are key characteristics of transmission and distribution systems,

3

functional block diagrams of state estimation and an overview of a state estimator and

related processes. The chapter then presents challenges of applying conventional state

estimation utilizing weighted least square method to distribution systems. It is noted that

data driven approaches utilizing deep learning can directly mitigate the challenges of

applying conventional methods. Then, a background and definition of challenges to all

distribution systems such as lack of observability, topology errors and false data injection

attacks is presented. It is noted that these challenges exist in all power distribution

systems and that deep learning may serve as part of solutions to address each. It should

also be noted that the research presented in this dissertation does not directly address

these challenges and mitigation of the challenges is left for future research.

Next, the chapter presents an introduction to deep learning models utilized in the

remainder of the research on which this dissertation is based. Conventional feedforward

multilayer perceptron models (MLPs) are presented first. This introduction of MLPs

includes a visual representation of a perceptron building block of MLP networks and a

multilayer perceptron model functional representation. Next, this chapter presents an

overview of convolutional neural networks and includes a functional representation of

this model type. The chapter concludes with a presentation of recurrent neural networks

(RNNs) in general and long short-term memory networks (LSTMs) in particular.

CHAPTER 3 presents distribution system state estimation (DSSE) with MLP

models. The objective of this chapter is to describe the process of training, testing and

validating unoptimized MLP models and to introduce hyperparameter optimization based

upon Bayesian Optimization with Gaussian Processes. It starts with a description of

DSSE without hyperparameter optimization. Next, the test distribution utilized in the

4

research on which this dissertation is based, is described. The IEEE 34 Node base test

distribution is presented. Then, the chapter continues with a description of the power flow

simulation measurement points and quantities. This description includes details of the

power monitors and voltage measurement locations and the quantities captured at each

location in the test distribution system. The chapter continues with a description of the

training, testing and validation data to be used with MLP models. Next, the network

model parameters and network hyperparameters for unoptimized conventional

feedforward MLPs are presented. Next, the chapter includes a description, details, and

summary of the actual implementation of the unoptimized MLP model in Python. Trial

results for MLP models without hyperparameter optimization are presented. It should be

noted that the methodology described in this chapter is considered the “original”

approach that involves “partial state estimation” owing to the limited monitor locations in

the test base distribution system. CHAPTER 4 will expand upon this methodology to

yield full state estimation. CHAPTER 3 also presents state estimation and forecasting

based upon time series physics aware models. Hourly temperature is considered to

predict real power demand at the substation bus of the test base feeder system. The

average RMSE of real power, reactive power, voltage magnitude, and voltage phase is

presented for forecast horizons of 24, 168, and 672 hours. Next, the process of DSSE

with MLPs with hyperparameter optimization is presented. Bayesian Optimization with

Gaussian Processes is introduced along with the supporting theory and equations on

which the Python implementation is based. Next, an example of a one dimensional test

objective function is presented to illustrate all steps of the optimization process. The

chapter then continues with the practical implementation of Bayesian Optimization with

5

Gaussian Processes applied to previously unoptimized MLP models. Trial results for the

baseline MLP model without hyperparameter optimization are presented along with the

hyperparameters selected via Bayesian Optimization. The chapter ends with a

presentation of the final optimized model configurations.

CHAPTER 4 expands upon CHAPTER 3 to present full distribution system state

estimation with optimized MLP models. The main objective of CHAPTER 4 is to

present an improved workflow and methodology over the methodology introduced in the

early phases of the research on which this dissertation is based. The chapter starts by

summarizing the elements of the original workflow and data pipeline. It presents details

of the load profiles required, the distribution system simulator, the output of the

simulator, data pre-processing required to establish the data sets required for training,

testing and validating machine learning models and a description of the machine learning

ecosystem that made application of MLPs to power distribution system state estimation

described in CHAPTER 3 possible. Next, an improved workflow and data pipeline is

presented. The load profile, distribution simulator and machine learning ecosystem are

described. Central to the improved workflow, is the introduction of a Python dynamic

link library (DLL) that enables configuration and control of the distribution system

simulator. CHAPTER 4 continues with an explanation of how the updated methodology

enables full system state estimation by considering all lines and resulting bi-directional

power flow along with all node voltages and phase angles. This contrasts with the

previous methodology that utilized a limited number of lines and buses corresponding to

the monitors placed in the test feeder system. Next, the process of gathering training and

testing data is presented. Then, the process of randomly selecting lines is presented. The

6

objective of using percentages of lines (10, 25, 50, 75 and 100) and associated bi-

directional power flow to predict complex voltages at all bus locations is presented.

Next, unoptimized MLP models are compared with optimized MLP models to perform

state estimation. The optimized MLPs utilize Bayesian Optimization with Gaussian

Processes. Finally, the hyperparameters selected via Bayesian Optimization are

presented. The main takeaway from CHAPTER 4 is that an improved workflow and

data pipeline enables full system state estimation, which dis not limited by the available

monitors placed within the power simulator software. The improved workflow enables

the possibility of state estimation being applied to much larger distribution systems.

Application and validation of the improved workflow to larger distributions systems is

left to future research.

CHAPTER 5 presents distribution system state forecasting with convolutional

neural network models. The objective of CHAPTER 5 is to demonstrate the ability of

CNNs to be utilized in time-series forecasting. The chapter starts with an introduction to

time-series forecasting and then presents a structured time series forecasting process.

Next, data preparation for time-series forecasting with deep learning models is presented.

Following data preparation, CHAPTER 5 presents hyperparameters selected for

unoptimized CNN models. Next, the practical implementation of an unoptimized CNN

model for time series forecasting in Python is presented. A specific location in the test

feeder system was selected to demonstrate the forecasting process. Plots for the actual

and predicted real power, reactive power, voltage magnitude and voltage phase angle for

an unoptimized CNN model are presented. Next, the effect of adjusting the learning rate

7

manually is presented along with a plot of the actual and predicted reactive power at a

specific location.

CHAPTER 6 presents distribution system state forecasting with long short-term

memory models. The objective of CHAPTER 6 is to demonstrate the ability of LSTMs

to be utilized in time-series forecasting. The chapter starts with data preparation for

LSTMs and it is noted that the data preparation for time-series data is the same as that for

CNNs. Next, practical implementation of an unoptimized LSTM model for time series

forecasting in Python are presented. A specific location in the test feeder system was

selected to demonstrate the forecasting process. Plots for the actual and predicted real

power, reactive power, voltage magnitude and voltage phase angle for an unoptimized

LSTM model is presented.

CHAPTER 7 presents a comparison of auto regressive models and convolutional

neural networks for power distribution system time-series forecasting. The objective is to

demonstrate that for univariate time-series forecasting, classical and deep learning

models should be considered as options. The chapter starts with an introduction to a

“classical” machine learning model used for univariate time-series forecasting (ARIMA).

Next, CHAPTER 5 is referenced for a review of CNN models and related

hyperparameters as they will be utilized throughout the comparison. Then a practical

ARIMA model implementation in Python is presented along with the locations in the test

feeder on which time-series forecasting will be performed with this model type. Then

CHAPTER 7 presents a practical CNN model implementation in Python along with the

locations in the test feeder on which time-series forecasting will be performed with this

model type. Next, the chapter presents plots of actual versus predicted real power,

8

reactive power, voltage magnitude and voltage phase angle at three separate locations in

the test feeder for both ARIMA and CNN model types. Finally, the root-mean squared

errors (RMSE) for predicted values at each location is presented.

CHAPTER 2. BACKGROUND AND RELATED WORK

2.1 Introduction

State estimation research and application has historically been largely focused on

transmission systems as opposed to distribution systems. With increasing developments

of the “smart grid”, increased utilization of phasor measurement units (PMUs) and

improvements in monitoring and communications, distribution system state estimation

(DSSE) interest and research has greatly increased in recent years.

The inherent challenges of application of “conventional” state estimation

techniques to power distribution systems based upon weighted least squares is well

established in the literature. Application of MLPs, featuring feedforward architecture, to

mitigate the challenges of applying weighted least squares, is also well established in the

literature. Additionally, literature review has found research in fault identification on

electrical transmissions using feedforward neural networks [63] and [65], modular neural

networks for single transmission lines [64], and transmission fault location techniques

using traveling wave method and discrete wavelet transform [66].

In recent years, “deep learning neural networks” have gained increasing interest not

only in being able to improve state estimation over conventional techniques utilizing

weighted least squares, but also in the possibility of being able to address what may be

considered as “extreme” or “adverse” conditions such as, but not limited to lack of

observability, topology errors, false data injection attacks, network outages due to weather

or malicious attack, and variances in weather that may affect distributed power generation

from solar and wind sources.

9

The literature review supporting this research includes the following major topics:

• Conventional (Analytical) Power System State Estimation, Resiliency and

Observability

• State Estimation Applied to Smart Distribution Systems

• Artificial Neural Networks and Deep Learning Applied to Power System

State Estimation, Observability, Topology Errors, and False Data Injection

Attacks

2.2 Review of Conventional (Analytical) Power System State Estimation,

Resiliency and Observability

Conventional state estimation was introduced in 1970 via a series of papers authored

by Fred C. Shweppe and J. Wildes [2], [7], [8]. The overall problem, mathematical

modeling and general algorithm for state estimation, error detection and identification are

presented in [2]. The key assumption of the classical approach presented is that the state

estimation vector consisting of the voltage magnitude and phase angles at all generation

and load buses is static or quasi-static.

Further assumptions are that the system is balanced, linear and can be accurately

approximated via an iterative algorithm utilizing weighted least squares as the estimator.

While these assumptions are reasonable when applied to transmission systems, they are not

considered reasonable when applied directly to distribution systems. An approximate

model and the resulting simplifications in state estimation, bad data detection and

identification are presented in [7]. This model is based on a DC load flow yielding linear

equations with the following four basic assumptions. The first assumption is X/R ≫ 1 for

all lines, where X represents the line impedance and R represents the line resistance. The

second assumption is that V ≈ 1 for all buses, where V represents the line to neutral voltage

10

magnitude. The third assumption is δi – δk ≈ 0 for all lines, where δi represents the phase

angle at node i and δk represents the phase angle at node k. The fourth assumption is that

the real power measurement errors are uncorrelated with voltage and reactive power

measurement errors.

The resulting approximate model, while enabling potential application to

distribution systems is not readily applicable to state estimation in general for practical

transmission or distribution networks. Thus, reference [8] addresses implementation

problems associated with dimensionality, computational efficiency, data storage and the

time-varying nature of actual power systems.

The time-variation inherent in power systems is addressed in [9]. This paper is a

review of dynamic state estimation (DSE) methods as opposed to static state estimation

(SSE). These methods are based primarily on Kalman Filtering (KF) techniques, M-

estimation, and the Square Root Filter (SRF) technique which is an alternative

implementation of KF that is numerically more stable.

The authors summarize the review by stating that the Kalman Filtering technique,

while being the most popular, is not necessarily the most accurate. They also promote

further research into the application of artificial neural networks (ANNs) in general and/or

fuzzy logic networks to the dynamic state estimation problem. The actual architecture of

either of these two network types were not discussed as part of the review.

Paper [10] discusses the essential role of power system observability to the state

estimation problem and presents a theoretical basis for an algorithm to determine

observability. The authors emphasize the requirement that conventional or classical state

estimation methods be applied only to systems that are observable and thus establish that

an observability test be conducted prior to performing state estimation.

The algorithm presented is based upon a graph theoretical or topological approach.

Specifically, the algorithm seeks to determine if the Jacobian of the system parameter

11

network is of full rank. If so, the power system network is considered observable. The

challenge facing practical implementation of the proposed algorithm is that it can be

difficult to provide a “correct” answer of rank in every case. In other words, most

techniques provide a floating point computation of rank.

The references [69], [70], [71] represent performance considerations of the

weighted least squares state estimation method in the case of topology errors and propose

potential ways of identifying topology errors for improved state estimation results.

The challenges to state estimation due to lack of observability are further discussed

in [11]. The authors reiterate the essential observability criteria needed to perform classical

state estimation and further surmise that the first step to controllability is observability. The

definition of observability is generalized from the numerical rank definition proposed in

[10] to that of “obtaining accurate knowledge about relevant parameters of a system.”

The authors in [11] suggest that future work involve research into the impacts of

systems with a larger number of buses than was considered in their simulations and

consideration of the robustness of the proposed distribution system state estimation

algorithm. In the paper being referenced, robustness refers to the insensitivity of the state

estimation algorithm to major deviations in a limited number of redundant measurements.

The authors in [12] provide an in depth discussion of the growing threats to modern

power system resiliency that applies to all aspects of the grid (i.e. generation, transmission,

distribution, distributed generation, micro-grids, etc.) According to the authors in [12],

investment in the modernization of the power grid must be done so with a “No Regrets

Strategy”. This strategy is based upon the cornerstones of resiliency, flexibility and

connectivity. The paper defines resiliency as resistance to high-impact, low frequency

events such as extreme weather, earthquakes, tsunamis and outages (physical, cyber,

coordinated). Flexibility is defined as adaptability to uncertainties such as fuel prices,

power market prices/incentives, variable generation, consumer behavior, regulation and

policy. Connectivity is defined as enhanced interoperability across the electricity

12

enterprise. Connectivity includes advanced sensors, mobile devices, grid modernization

and two-way flow.

2.3 State Estimation Applied to Smart Distribution Systems

Since the introduction and formalization of state estimation applied to power

systems in the early 1970s, most of the attention has been on application to transmission

systems. This is understandable given the challenges presented to this point and those

expanded upon in section 2.6 of this dissertation. The authors in [13] provide a survey on

state estimation techniques and challenges in so-called “smart distribution systems”.

This survey summarizes most of the essential concepts considered to this point.

Among these concepts are conventional mathematical formulation based upon an iterative

algorithm utilizing weighted least squares or similar estimator; application of pseudo-

measurements to mitigate lack of sufficient metering to enable system observability;

consideration of optimal meter placement given the relatively limited metering availability

in distribution systems; network topology issues and effects on system modeling required

for accurate distribution state estimation; impacts of renewable penetration; and

cybersecurity concerns.

The paper goes further to make a distinction between “conventional” state

estimation that is considered analytical and deterministic and “modern” state estimation

that is considered data driven and probabilistic. Regarding conventional state estimation,

various “robust state estimators” are presented in Table 1, along with pros and cons of each.

13

Table 1 - Robust State Estimators

Robust State Estimators Pros Cons

Weighted Least Squares

(WLS)

Fast, simple, widely used

Sensitive to bad data

Least Median of Squares

(LMS)

Robust against bad data High computational

cost, high measurement

redundancy

requirements

Least Trimmed Squares

(LTS)

Robust against bad data High computational cost

and memory

requirement

Least Absolute Value (LAV)

Robust against bad data,

small sensitivity to line

impedance uncertainty

High computational

cost, sensitivity to

leverage points and

measurement

redundancy

Generalized Maximum-

likelihood (GM)

Robust against bad data Parameter selection

sensitivity

The authors in [13] identify two major categories of data driven approaches as

alternatives to conventional state estimation based upon the previous list of estimators.

Table 2 presents the data driven categories, key characteristics, and applications.

14

Table 2 - Data Driven Approaches to State Estimation

Data Driven Categories Key Characteristics Applications

Probabilistic and Statistical

Approaches

Employ

spatial/temporal

correlation and

historical probability

distributions

Used widely for

pseudo-measurement

generation and

uncertainty assessment.

Empirical Studies

Gaussian Mixture Models

(GMM)

Expectation Maximization

(EM)

Time-Varying Variation and

Mean Modeling

Correlation Analysis

(between total and individual

consumption)

Nodal Active-Reactive

Correlation Analysis

Internodal and Intranodal

Correlation Modeling

Intertemporal Correlation

Analysis

Multivariate Complex

Gaussian Modeling

Constrained Optimization

Learning-Based

Approaches

Based on machine

learning algorithms

Addresses problem of

active/reactive power

pseudo-measurement

generation and

uncertainty assessment.

Probabilistic Neural Networks

(PNNs)

Artificial Neural Networks

(ANNs)

Clustering Algorithms

Parallel Distributed

Processing Networks (PDPs)

15

Related to the recommendations of notable research directions, the paper in [14]

presents previous work in the area of state estimation for real-time monitoring of

distribution systems. While the work presented in this paper is based upon weighted least

squares estimation, it shows the close correlation of state estimation accuracy to the initial

starting point selected and accuracy of the forecasted loads.

Thus, an important takeaway from the work presented in [13] and [14] collectively

is the idea of establishing a hybrid process involving classical state estimation algorithms

and data-driven forecasting. The data-driven portions would support the classical state

estimation algorithm by providing a better starting point than a typical “flat start”, higher

probability of convergence and produce more accurate pseudo-measurements than those

queried from large historical data repositories.

 The design of an off-line planning method to enable real-time monitoring and

control in systems with limited observability is considered in [15] through consideration

of robust measurement placement for distribution system state estimation. The authors in

this paper propose a robust measurement placement model to maximize estimation

accuracy for DSSE over a wide-range of worst case operating conditions.

The problem is formulated as a mixed-integer semi-definite programming problem

(MISDP). The authors seek to avoid combinatorial complexity through a convex

relaxation, followed by a local optimization method. The approach in [15] demonstrates

that accuracy of DSSE can be enhanced significantly by placing a limited number of

measurements in optimal locations. Again, the approach taken, can be considered a hybrid

approach of classical state estimation with updated probabilistic and statistical components

that seek to minimize the effect of lack of observability on the weighted least squares

estimator.

The paper presented in [16], provides a linear state estimation formulation for smart

distribution systems. The authors assume the availability of synchro phasors which yield

16

direct voltage phasors at bus locations. Line power flows and current magnitudes are then

able to be ascertained via the direct quantities available.

Reference [16] shows that availability of direct voltage phasors effectively

linearizes the h(x) coefficient matrix used in classical state estimation so that the result is a

linear, non-iterative state estimation solution. Results shown in [16] confirm low

computational burden, accommodation of meshed networks and avoidance of convergence

issues which may occur in dealing with practical distribution systems with high r/x ratios.

It should be noted, however that to achieve the results presented in [16], two requirements

are necessary. The first requirement is a resolution of +/- 1 μS corresponding to 0.0216

degree error in a 60-Hz system. The second requirement is a maximum allowable total

vector error (TVE) of 1.0% when maximum phase error is 0.57 degrees. Literature review

also revealed the IEC/IEEE 60255-118 standard that defines synchro phasor frequency,

and rate of change of frequency (ROCOF) measurements that ensure interoperability

between PMU manufacturers [67].

The authors in [17] present a branch-estimation-based state estimation method for

radial distribution systems. While this approach utilizes many of the conventional or

classical state estimation techniques, it has the ability to handle most kinds of real-time

measurements by decomposing the weighted least squares problem into a series of

weighted least squares problems such that each sub-problem deals with single-branch

estimation.

The establishment of “zones” is a novel idea such that the entire distribution system

can be comprised of much simpler single-branches and each zone will then correspond to

a weighted least squares sub problem. The authors in [17] propose two main parts: load

allocation and state estimation. The load allocation portion is a real-time load modeling

17

technique that incorporates use of customer class curves and provides a measure of the

uncertainty (statistics) in the estimates.

The purpose of the load allocation portion is to produce pseudo-measurements with

a higher level of accuracy in real-time than historical data that must be retrieved from a

large data repository. The state estimation portion then utilizes the pseudo-measurements

that ensure observability and follows a traditional weighted least squares technique that is

applied to each “zone”. The authors propose that a forward/backward sweep scheme

based upon this method would allow state estimation to be performed accurately for

large-scale practical distribution systems while not requiring sparse matrix techniques.

2.4 Artificial Neural Networks and Deep Learning Applied to Power System State

Estimation, Observability, Topology Errors and False Data Injection Attacks

The authors in [18] and [19] present Bayesian state estimation for unobservable

distribution systems via deep learning. The paper presented in [18] is an introduction and

[19] provides greater depth and simulation results. The authors in these papers propose a

novel state estimation scheme that combines Bayesian inference with deep neural networks

to minimize the mean squared error of network states in real-time.

Bayesian inference is used to learn the probability distributions of the net power

injection from historical measurements. Samples are then generated from the learned

distributions and passed to a deep neural network to approximate the minimum mean

squared error (MMSE) estimate of system states.

The authors contend that this hybrid approach outperforms classical pseudo-

measurement techniques that utilize averaging of historical data and conventional weighted

least squares estimation. It also outperforms Bayesian state estimation alone or feedforward

neural network state estimation alone. It should be noted that in [18] and [19], “deep neural

18

networks” are considered to have a relatively larger number of hidden layers than a “flat

neural network” involving one or two layers.

For example, the authors in [18] and [19] show that for the tested 85 and 141 bus

networks, a feedforward neural network of 10 layers or more achieved a mean square error

(MSE) per bus at a level of 10-5 to 10-6 p.u. on test data, while classical methods using

weighted least squares had errors several orders of magnitudes or higher. The authors point

out that the proposed Hybrid Bayesian-Deep Neural Network approach is less capable of

adapting to changes such as line and generation outages. Additionally, the training of the

deep neural network was largely ad hoc and offered little guarantee of performance.

It was also recommended by the authors that it may prove beneficial to exploit

temporal dependencies and other types of deep learning networks. Other possible deep

learning networks include convolutional neural networks (CNNs), recurrent neural

networks (RNNs) in general and long short-term memory networks (LSTMs) in particular.

The authors in [20] also utilize a hybrid Bayesian-Deep Neural Network to achieve what

is referred to as “high-resolution” and “high-fidelity” state estimation for systems that are

PMU-unobservable. By high-resolution, the authors mean that states are estimated at the

PMU-timescale. This is achieved by a Bayesian inference approach utilized in [18] and

[19].

By high-fidelity, the authors are referring to the ability of the state estimation

algorithm to mitigate bad and malicious data. The main contributions of this paper are a

proposal of a hybrid Bayesian-Deep Neural Network that performs bad-data

detection/cleansing and state estimation; development of a generative adversary network

(GAN) to enable Bayesian state estimation and bad data detection; and an introduction of

a novel deep learning approach that enables universal bad data detection (UBD) [20].

The authors in [20] refer to universal bad data detection as the ability to detect and

cleanse bad-data without knowledge of whether the source data distributions originated

19

from either regular or abnormal conditions. Some historical data is assumed to be available

under regular operating conditions and no abnormal data samples are available.

The Bayesian inference solution to bad-data detection is particularly advantageous

for bad-data originating from false data injection attacks given that such detection is

considered to be a seemingly intractable statistical inference problem. Scalability of any

state estimation approach to large distribution systems is of practical significance, both

from the standpoint of convergence and computational efficiency. Thus, even methods that

converge are not considered practical if they cannot ensure execution time that approaches

real-time.

The authors in [21] present a scalable distribution system state estimation approach

using surrogate modeling with long short-term memory (LSTM) networks. Surrogate

modeling in this paper refers to the use of LSTM networks that are built to take previous

states and output a rough estimate of the current states which is called the surrogate.

The surrogate is a course but very fast estimate of the state variables. The surrogate

therefore replaces the unit vector (flat start) traditionally used to initialize the state vector.

The authors in [21] show that this approach while being suboptimal to the original problem,

involves minimal computational cost and greatly reduces the cost of iterations and thus

results in faster convergence.

Auto encoders are utilized to compress the input to the LSTMs and thus greatly

increase the scalability. The authors demonstrate the proposed framework on IEEE-123

bus and 8500-node test feeders. The authors in [21] note that frequent topology changes

often occurring in distribution systems was not considered in their study. They propose

two potential solutions. The first solution involves training multiple LSTM networks

responsible for each specific topology. The second solution proposes the treatment of

topology status as categorical input of a model with one LSTM network to account for all

topologies.

20

The authors in [22] investigate a method for detecting false data injection attacks

in smart grids based upon deep learning. The proposed method utilizes a combination of

auto encoders and Generative Adversarial Networks (GANs) and can be described as

employing a “semi-supervised adversarial auto encoder” algorithm. Semi-supervised

networks are used to deal with input datasets that are not fully labeled. The authors in [22]

show that the GAN framework is effective in detection of unobservable FDIAs that would

otherwise bypass conventional bad data detection methods. As seen in [21], auto encoders

enable input compression and thus increase the scalability to larger distribution systems.

GANs are considered deep learning based networks that establish a min-max

adversarial game between two neural networks. One network is referred to as a generator

(G) and the other network is referred to as the discriminator (D). Fake samples are

produced by the generator that follows the distribution of the original real samples. The

discriminator distinguishes between the generated data samples and the real samples.

Thus, the training of GANs is performed in two stages. The first stage involves an update

to the discriminator using fixed generator parameters so that real samples may be

distinguished from the generated (fake) samples. The second stage involves an update to

the generator with fixed discriminator parameters to “fool” the discriminator with the

generated (fake) samples.

The authors in [22] contend that the two-player game is globally optimal. The use

of GANs is commonly employed in practical systems when there are limited labeled

measurements available for training. Similar to the suggestion of future research in [21],

the authors in [22] acknowledge that the proposed method requires collecting data from a

known topology structure. Thus, when topology changes occur, it is necessary to store

corresponding measurements and states along with new topology labels for subsequent

data analysis.

The authors leave research related to varying topologies and varying DER

penetration to future work. The author in [23] presents a study of distribution system state

21

estimation with LSTMs. As promoted in [22], the author in [23] proposes the use of

surrogate modeling of distribution system state estimation. The author describes surrogate

modeling as a means of solving problems that are challenging to solve or that exhibit low

computational efficiency. The author in [23] formulates the DSSE surrogate model as a

deep neural network (DNN) model to approach the problem as a regression problem and a

LSTM network to approach the problem as a time-series problem.

The DNN model is a fully-connected feedforward neural network with multiple

layers to differentiate it from a single or double layer neural network that is considered a

“shallow neural network”. As was the case in previous literature that employed LSTMs,

the author in [23] also utilizes auto encoders to compress the input and thus minimize the

number of LSTM blocks required for larger distribution systems.

Comparisons are made between the DNN and the LSTM in terms of RMSE and

computational efficiency for both IEEE-123 bus and 8500 node systems. The author in

[23] also considers the performance of the LSTM network with and without surrogate

modeling. A suggestion for future research includes the effect of load profile changes on

surrogate modeling due to electric vehicle (EV) charging and photovoltaic (PV) generation.

The author in [24] presents dynamic distribution state estimation using synchro

phasor data. The proposed DSSE formulation, although assuming the availability of

synchro phasor data, is novel in its linearized model and time-varying nature to account for

dynamic states and data without requiring an iterative method.

The author in [24] presents a first-order prediction-correction (FOPC) method that

relies on the Hessian of the cost function. In other words, the requirements of conventional

methods of inverse computations are removed and thus, the method presented is very

attractive for DSSE problems where measurements are collected at high frequency by

distribution level PMUs.

The merits of the proposed FOPC method are two-fold. The first includes

computational savings by estimating the state before new measurements are collected and

22

processed. This contrasts with conventional computationally expensive iterative

algorithms without prediction steps. The second is that FOPC can perform state prediction

while waiting for measurements to be transferred from PMUs. Thus, once the

measurement is received, the correction step may begin immediately.

While the method presented in [24] is based upon Kalman Filtering techniques as

opposed to neural networks, it is considered a modern fully data driven approach in that its

prediction phase attempts to approach an optimal solution of the next time period without

new observations by exploiting the temporal correlations of the cost function. The

predicted vector is then corrected using the last measurement in the correction phase. The

author in [24] suggests that future work explore diverse types of distribution system

measurements and large-scale system validations using real data.

The authors in [25] present a deep neural network model for short-term load

forecasting based on long short-term memory networks (LSTMs) and convolutional neural

networks (CNNs). By short-term load forecast, the authors in [25] are referring to forecasts

of loads from 24 hours to one week. The study compares the performance of models that

are based upon convolutional neural networks (CNNs) only, long short-term memory

networks (LSTMs) only, and hybrid-CNN-LSTM models.

CNNs extract local trends and capture patterns and they are typically used for

speech recognition, image processing and other tasks on which patterns can be determined.

LSTMs learn relationships from the data itself when the data is framed as a time-series

dataset. In the proposed hybrid-CNN-LSTM model, there is a CNN module that captures

local trends, a LSTM module that is utilized to learn long-term dependency and a feature-

fusion module that concatenates the output of the CNN and LSTM modules to formulate a

final prediction. The combined output of the CNN and LSTM is based upon “hidden

features”. This refers to predictions and classifications that the deep learning models

generate that are learned from the data itself as opposed to known categories and features

being given as input.

23

The authors in [25] contend that hidden feature extraction results in predictions of

higher accuracy than those obtained through conventional probabilistic and statistical

inference. Considering the literature discussed in this section, it is reasonable to conceive

a scenario in which systems with sufficient PMU availability could utilize a FOPC method

as presented in [24] as the primary state estimation scheme and deep learning methods such

as the LSTM based surrogate model presented in [23] and/or the hybrid-CNN-LSTM

model presented in [25] as the secondary or backup method for state estimation, bad data

detection and load forecasting.

2.5 Distribution System State Estimation

State estimation as it relates to power systems is defined as the vector of the voltage

magnitudes and angles at all network buses [2]. Essentially, state estimation algorithms

provide for a means of reducing the impacts of measurement errors, system parameter error

or topology errors.

Figure 1 presents an example of both types of power networks and some of the key

characteristics.

24

Figure 1 - Transmission and Distribution System Key Characteristics

To appreciate the challenges that the emerging smart distribution grid pose to the

direct application of conventional state estimation, it is essential to first understand the

inputs and functional blocks that enable state estimation. Figure 2 provides an overview

of the inputs and main functional blocks.

Figure 2 - Functional Block Diagram of State Estimation

25

Note that the Network Topology Processing functional block verifies the accuracy

of the network parameters included as Inputs. The Observability Analysis functional block

establishes that there is sufficient data available for the State Estimation Algorithm

functional block. As discussed earlier, the relative lack of metering in distribution

networks reduces the “observability” of the system. The ability to meet this challenge,

while being improved through the implementation of “smart meters” such as PMUs (phasor

measurement units), will continue to be an inherent challenge in distribution networks as

opposed to transmission networks.

The State Estimation Algorithm functional block then seeks to determine a unique

solution or system state. Also, critical to the overall state estimation functionality and final

determination of the system state is the Bad Data Identification and Processing functional

block that uses statistical techniques (i.e. Chi-square Test) to identify and filter out “noise”

which may be related to inaccuracies in measurement meters and/or communication system

failures. Finally, the Human/Machine Interface functional block relates to the software and

hardware utilized to visualize and otherwise monitor and control the power system. Further

challenges beyond lack of metering, are those associated with topology errors and false

data injection attacks. The terms and consequences of lack of observability, topology errors

and false data injection attacks will be explained in later sections.

Figure 3 summarizes the key characteristics of the “conventional” state estimator

based upon weighted least squares.

26

Figure 3 - State Estimator Overview

Note that the INPUT are typically measurements of P (Real Power), Q (Reactive

Power), I (Current Flows), and Voltage Magnitudes. The OUTPUT state variables are

typically voltage magnitudes and voltage phase angles at all buses. With these two state

variables, it is then possible to determine the remaining parameters such as Real and

Reactive Power Injections and Current flow.

Note that one of the buses can be established as the reference bus or slack bus.

Thus, if Bus 1 is established as the reference bus, then the phase angle for Bus 1 can be

removed from the vector representation. Therefore, if there are n buses in the network, the

total number of states is given as 2n – 1. It is important to note that conventional state

estimation applies only to overdetermined systems.

Overdetermined systems are those in which the number of measurements exceeds

the number of states. This critical and limiting requirement for application of conventional

state estimation can be summarized in two criteria. The first criteria states that if the

number of measurements is m, and the number of states is 2n-1, then in state estimation, m

> 2n -1. The second criteria states that if m = 2n -1, the problem reduces to a power flow

solution.

27

Thus, as stated previously, distribution systems with limited measurement devices

are inherently not overdetermined systems. For such underdetermined systems that may

be either transmission or distribution networks lacking sufficient metering, observability is

reduced and as indicated in Figure 3, the state estimation algorithm must rely upon pseudo-

measurements for the solution to converge.

The research being presented in this dissertation seeks to contribute to the body of

knowledge to mitigate this problem by incorporating neural networks and deep learning

methods.

2.6 Challenges of Applying Conventional State Estimation Utilizing Weighted

Least Squares to Distribution Systems

The most common conventional state estimation algorithm is based upon the

Weighted Least Squares (WLS) algorithm. There are fundamental characteristics of

distribution systems that pose major challenges to the direct application of conventional

state estimation based upon weighted least squares. Radial topology yields bi-directional

power flow. Reduced observability results from lack of adequate quality and quantity of

measurement devices resulting in underdetermined systems (number of measurements

less than number of system states). Unbalanced lines and loads result in the need to

consider all phases in the state estimator algorithm. Unpredictability exists in energy

sources injecting power back onto the grid (i.e. intermittent sunlight and wind, electric

vehicles, etc.). Variability exists in the timing of power utilization throughout the day.

Low X/R ratios which do not allow for neglecting resistances due to dominant inductive

terms as is permissible in transmission systems. Substantial number of nodes that

combined with the need to consider all phases, results in the need for acquisition, storage,

and processing of substantial amounts of data. Excessive noise resulting from the variety

and lack of standardization of communication schemes between metering devices and the

central control stations.

28

It should be noted that the limitations listed above are considered “normal

conditions” inherent in all distribution systems. The addition of “adverse conditions” noted

previously further strengthens the case for needed research of methods such as artificial

neural networks to maintain data integrity of distribution system state estimation and thus

the overall resiliency of the modern power grid.

2.7 Lack of Observability in Distribution Systems

Lack of observability is directly related to the inability to accurately measure and

store system values (power, voltage magnitude, voltage phase angles and current flow) of

a distribution system due to lack of measurement devices, failures in devices,

communication failures and/or malicious attacks that would also fall into the category of

false data injection attacks.

While there are increasing advances in application of Phasor Management Units

(PMUs) and so-called “smart-meters”, in the research on which this dissertation is based,

there will not be an assumption that these devices are available at every bus location of a

practical distribution system. Thus, distribution system state estimation is fundamentally

challenged by lack of observability.

2.8 Topology Errors in Distribution Systems

Topology errors are directly related to errors in determination of system state values

due to inaccurate determination of system breaker status. More generally, these errors

could relate to incorrect determination of any device that involves switching or tap

positioning. The false status of system breakers could result from failures in devices,

communication failures and/or malicious attacks that would also fall into the category of

false data injection attacks. Thus, distribution system state estimation is also

fundamentally challenged by topology errors.

29

2.9 False Data Injection Attacks in Distribution Systems

False data injection attacks refer to malicious attempts to alter data within

distribution systems such that the true system state is made inaccurate. The goal of such

attacks could be financial, such as controlling aspects of the power market or sabotage to

the security of the power system resulting in power outages. It should be noted that with

advances in smart grid metering and reliance on digital communications, the susceptibility

of the power grid to false data injection attacks will continue to be a growing security

concern. Thus, distribution system state estimation is also fundamentally challenged (even

threatened), by false data injection attacks.

It should be noted that identification and mitigation of lack of observability, topology errors

and false data injection attacks will be left to future research. These topics are mentioned

in this dissertation to strengthen the case that classical methods are not sufficient to address

their existence in distribution systems and data driven solutions proposed in this research

may serve as a basis for addressing them directly in the future.

2.10 Conventional Feedforward Multilayer Perceptron Networks (MLPs)

This type of network is considered the “conventional” or “classical neural network

model”. Figure 4 shows a “perceptron”, which is the fundamental building block of

neural networks, where xi through xm represent inputs, wi through wm represent the

associated weights, b represents a bias term and webs is its associated weight. Input

features are multiplied by weights and the resulting values are summed. The bias term

allows for the adjustment of the decision boundary allowing for a better fit of the training

data and more accurate predictions. The output of the summation is passed to an

activation function to yield a final output y. A learning algorithm (i.e. stochastic gradient

30

descent) is then utilized to find the set of weights and bias that minimizes the error

between the predicted output and the actual output for every training example.

Figure 4 - Perceptron Building Block of MLP Networks

Figure 5 provides a visualization of the functional blocks of a MLP network model.

31

Figure 5 - Multilayer Perceptron (MLP) Model Functional Representation

This type of network is considered a reasonable model for regression and

classification problems, however, it is limited in terms of its ability to predict or forecast

sequence or time-series data as it does not maintain and share features between layers. This

type of neural network is also limited to how “deep” they can be in terms of number of

layers that would otherwise enable them to solve more complex problems with greater

accuracy. Even with the noted limitations, this network type shows promise in its ability

to overcome many of the limitations of weighted least squares in state estimation. The

principal advantage of this network type as confirmed in this research is the promise of

being able to accurately learn the mapping of inputs to outputs for a regression problem

without the requirement of complex and/or large number of equations that would be

necessary to perform non-linear regression on very large distribution systems.

32

2.11 Convolutional Neural Networks (CNNs)

This type of network is considered to be an improvement upon the classical MLP

architecture in that it learns directly from the input data and thus does not require a target

dataset during training. Figure 6 below, shows the general structure for a CNN model.

Figure 6 - Convolutional Neural Network (CNN) Model Functional Representation

Table 3 presents the fundamental CNN layer types and associated key characteristics of

each.

33

Table 3 - CNN Layer Types and Key Characteristics

Layer Type Key Characteristics

Convolutional Layers

Comprised of Filters and Feature Maps

Filters correspond to neurons of the layer

Filters have weighted inputs and produce outputs

like a neuron

Filters input size is fixed and is a “window” for

convolution

Feature Maps contain current values within the

moving filter window

Pooling Layers

Down-sample and consolidate features learned from

previous feature maps

Serve to generalize or compress features selected

and reduce overfitting of model training

Simple functionality – selection of either maximum

or average of input value to establish a new

compressed feature map

Dropout Layers

Used between other layers to further reduce

overfitting not completely eliminated by pooling

layers by randomly excluding neurons

Specified by a Dropout Percentage

Flatten Layers

Converts multidimensional arrays to vectors that can

be sent to fully connected layers for final processing

by activation functions

Fully Connected Layers

Normal flat feedforward neural network layer

Contain a ‘softmax’ or nonlinear activation function

to output probabilities of predicted classes

34

Utilized at the end of network to create

combinations of nonlinear features used for

predictions

While primarily used in image/object detection and classification, computer vision

and natural language processing, this network has also gained interest in its ability to

automatically learn and generalize features from time-series data.

2.12 Recurrent Neural Networks (RNNs)

This type of network is also considered to be an improvement upon the classical

MLP architecture in that it maintains an internal state (memory). Table 4 presents three

primary variants of RNNs and key characteristics of each.

Table 4 - RNN Variants and Key Characteristics

RNN Variant Key Characteristics

Bidirectional Recurrent Neural Networks

(BRNN)

RNNs that utilize future data along with

data from previous inputs to improve

accuracy

Long Short-Term Memory Networks

(LSTM)

Discussed in more detail in the section 2.13

Gated Recurrent Units (GRUs)

Like LSTMs, overcome short-term

memory limitations of the basic RNN

model

Uses hidden states instead of “cell state”

utilized by LSTMs

Contains reset and update gates to control

what information is retained and how much

of this information to use for making

predictions

35

This network has also gained interest due to its ability to automatically learn and

generalize features from time-series data. Additionally, it maintains and passes features

between layers and thus very deep structures can be developed without the negative effects

of exploding or vanishing gradients.

2.13 Long Short-Term Memory Networks (LSTMs)

This network is a type of RNN that can learn long-term dependencies between time

steps of input sequence data by “remembering” the state between predictions. In the

research being presented, LSTMs will represent the more general RNN network and other

RNN variants will not be considered. Table 5 provides more detail on the internal

architecture of the LSTM unit.

36

Table 5 - LSTM Operations and Purpose

LSTM Operations Purpose

Step 1 – “Forget Gate”

Determines and eliminates previous information

deemed as irrelevant and thus not useful

Step 2 – “Store Gate” Determines what new information to maintain as

new candidate values

Step 3 – “Update Gate”

Updates old cell state to new cell state

Then scales new candidate values by how much it

was decided to update each state value

Step 4 – “Output Gate”

Determines what is to be output for the next step

Output will be based on cell state, but will be a

filtered version

First run a sigmoid layer to decide what parts of a

cell state to output

Then put the cell state through a tanh activation

function to push values between -1 and 1 and

multiply it by the output of the sigmoid gate so

that only the desired parts are output

CHAPTER 3. DISTRIBUTION SYSTEM STATE ESTIMATION (DSSE) WITH MULTILAYER

PERCEPTRON (MLP) MODELS

3.1 DSSE with MLPs without Hyperparameter Optimization

Conventional MLP Models were utilized to perform regression to map power data (real

and reactive power) as inputs to voltage (voltage magnitudes and phase angles) as

outputs. Utilization of MLPs for this purpose is reasonable given the ability of a suitable

MLP to perform as a “universal function approximator”. The Universal Approximation

37

Theorem states that a neural network with a single hidden layer can approximate any

arbitrary continuous function given a sufficient number of neurons. This approach,

however, does not take into consideration time-series features of data such as trend,

seasonality, and residual noise. For purposes of training a supervised MLP neural

network to perform regression, it was decided that the power (real and reactive) at each

bus for all 3 phases would be measured and deemed the “input” dataset. The voltage and

phase angle at each bus for all 3 phases was selected to be measured and deemed the

“target” dataset. Note that the voltage dataset will sometimes be referred to as

“voltage_output” as this dataset is an output of a power flow simulation. Table 6

presents a summary of the supervised learning datasets and general structure of power

flow, training, testing and validation datasets.

38

Table 6 - Supervised Learning Datasets and General Structure

Supervised Learning Data Sets General Structure: (#samples, #features)

Initial Power Flow Data Input Power Dimensions: (8760, 56)

Target Voltage Dimensions: (8760, 56)

Training Data (70% Split) Input Power Training Dimensions: (6132,

56)

Output Voltage Training Dimensions:

(6132, 56)

Testing Data (30% Split) Input Power Testing Dimensions: (2628,

56)

Output Voltage Testing Dimensions:

(2628, 56)

Validation Data (New Power Flow with

different load profile)

Input Power Validation Dimensions:

(8760, 56)

Output Voltage Validation Dimensions:

(8760, 56) – Predicted

3.2 Test Distribution System

An IEEE 34 Bus Test Feeder radial distribution system was selected as the base test

distribution system [13]. It is shown below in Figure 7.

39

Figure 7 - IEEE 34 Node Test Base Distribution System

3.3 Power Flow Simulation Measurement Points and Quantities

The selected measurement points and quantities are shown in Figure 8. The labels

corresponding to the “Key:” represent either a power or voltage “monitor”, which is

similar to a physical meter and will be discussed in more detail later in this dissertation.

Figure 8 - IEEE 34 Node Test Base Distribution System Measurement Points

Table 7 and Table 8 provide a description of the monitors, their locations in the test

distribution systems and the quantities they measure. Note that power monitors capture

40

the real and reactive power flow along the lines between specific nodes as indicated in

Table 7. Likewise, voltage monitors capture the voltage magnitude and voltage phase

angle at specific nodes as indicated in Table 8.

41

Table 7 - Power Monitor Descriptions and Locations

Monitor: Line Element: From Node: To Node: Quantities:

B1_power L1 800 802

Phase A,B,C

P (kW) and

Q(kVAR)

B3_power L3 806 808

Phase A,B,C

P (kW) and

Q(kVAR)

B5_power L5 808 812

Phase A,B,C

P (kW) and

Q(kVAR)

B6_power L6 812 814

Phase A,B,C

P (kW) and

Q(kVAR)

B7_power L7 814 850

Phase A,B,C

P (kW) and

Q(kVAR)

B24_power L24 850 816

Phase A,B,C

P (kW) and

Q(kVAR)

B8_power L8 816 818

Phase A

P(kW) and

Q(kVAR)

B15_power L15 830 854

Phase A,B,C

P (kW) and

Q(kVAR)

B18_power L18 834 842

Phase A,B,C

P (kW) and

Q(kVAR)

B27_power L27 854 852

Phase A,B,C

P (kW) and

Q(kVAR)

42

Table 8 - Voltage Monitor Descriptions and Locations

Monitor: Line Element: Node: Quantities:

B1_voltage L1 800

Phase A,B,C to

Neutral

Voltage Mag. (V)

and Phase Angle

(degrees)

B3_voltage L3 806

Phase A,B,C to

Neutral

Voltage Mag. (V)

and Phase Angle

(degrees)

B5_voltage L5 808

Phase A,B,C to

Neutral

Voltage Mag. (V)

and Phase Angle

(degrees)

B6_voltage L6 812

Phase A,B,C to

Neutral

Voltage Mag. (V)

and Phase Angle

(degrees)

B7_voltage L7 814

Phase A,B,C to

Neutral

Voltage Mag. (V)

and Phase Angle

(degrees)

B24_voltage L24 850

Phase A,B,C to

Neutral

Voltage Mag. (V)

and Phase Angle

(degrees)

B8_voltage L8 816

Phase A to Neutral

Voltage Mag. (V)

and Phase Angle

(degrees)

B15_voltage L15 830
Phase A,B,C to

Neutral

43

Voltage Mag. (V)

and Phase Angle

(degrees)

B18_voltage L18 834

Phase A,B,C to

Neutral

Voltage Mag. (V)

and Phase Angle

(degrees)

B27_voltage L27 854

Phase A,B,C to

Neutral

Voltage Mag. (V)

and Phase Angle

(degrees)

3.4 Training and Testing Data

For purposes of performing a power flow simulation of the test feeder system to gather

the power and voltage at each monitor location, Upends (Open Distribution System

Simulator version 8.5.9.1 64-bit build) from Electric Power Research Institute, Inc.

(EPRI) was chosen [43]. Note that the convention in OpenDSS is that Phase-1, Phase-2

and Phase-3 represent phases a, b, and c respectively. It was decided that the loads within

the test distribution feeder would be varied over a time period of a year (8760 hours) to

yield a multivariate time-series dataset corresponding to the power and voltage as

discussed previously.

To vary the base loads in a realistic manner, historical data from the Electric Reliability

Council of Texas (ERCOT) was obtained [26]. The load data for the entire ERCOT grid

for every hour of the entire year of 2018 was selected. The ERCOT load dataset was then

used to realistically scale the power (P and Q values) at each node that contains a load to

establish the needed variation over a period of a year. Note that “ERCOT” is used as the

44

baseline load profile and all references to ERCOT datasets have their origin from the

baseline power flow simulation just described.

OpenDSS was then utilized to perform a power flow simulation of the test feeder

distribution system and the resulting power and voltage datasets were exported. This

exported data serves as the input and target datasets from the test system under normal

conditions. Normal conditions mean that the data collected is not subjected to excessive

noise and/or other conditions such as false data injection attacks. Training and testing of

the neural network models described later in this dissertation are based upon this

simulation data.

3.5 Validation Data

It is essential that a trained neural network model be validated with data never seen by

the network. Again historical data from the Electric Reliability Council of Texas

(ERCOT) was obtained. The new data is sample data from the same year as the training

and testing datasets described previously. However it originates from data selected from

another region within the ERCOT grid. The previous steps related to performing a power

flow simulation with OpenDSS were repeated with a new load profile to establish

previously unseen data for validating the various neural network types. Note that

“COAST” will be used in descriptions of datasets that have their origin from the power

flow simulation of the test distribution system performed with varying loads according to

this load profile.

45

3.6 Unoptimized Conventional Feedforward Multilayer Perceptron Network

(MLP)

3.6.1 Network Model Parameters

• Number of neurons in visible layer (input layer): 56 (Held constant for Trials 1 – 11)

o Power Monitors:

▪ B1_power: 6 features (P and Q values for 3 phases)

▪ B3_power: 6 features (P and Q values for 3 phases)

▪ B5_power: 6 features (P and Q values for 3 phases)

▪ B6_power: 6 features (P and Q values for 3 phases)

▪ B7_power: 6 features (P and Q values for 3 phases)

▪ B24_power: 6 features (P and Q values for 3 phases)

▪ B8_power: 2 features (P and Q values for 1 phase)

▪ B15_power: 6 features (P and Q values for 3 phases)

▪ B18_power: 6 features (P and Q values for 3 phases)

▪ B27_power: 6 features (P and Q values for 3 phases)

• Number of hidden layers and number of neurons per hidden layer:

▪ Adjusted for each trial according to Table 10

• Number of neurons in output layer: 56 (Held constant for Trials 1 – 11)

o Voltage Monitors:

▪ B1_voltage: 6 features (Mag. and Phase values for 3 phases)

▪ B3_power: 6 features (Mag. and Phase values for 3 phases)

▪ B5_power: 6 features (Mag. and Phase values for 3 phases)

▪ B6_power: 6 features (Mag. and Phase values for 3 phases)

▪ B7_power: 6 features (Mag. and Phase values for 3 phases)

▪ B24_power: 6 features (Mag. and Phase values for 3 phases)

▪ B8_power: 2 features (Mag. and Phase values for 2 phases)

▪ B15_power: 6 features (Mag. and Phase values for 3 phases)

▪ B18_power: 6 features (Mag. and Phase values for 3 phases)

▪ B27_power: 6 features (Mag. and Phase values for 3 phases)

3.6.2 Network Hyperparameters

• Activation Function per Layer: Rectified Linear Unit (ReLU)

• Loss Function: Mean Squared Error (MSE)

• Optimizer: Stochastic Gradient Descent (SGD)

• Learning Rate: 0.001

• Batch Size = 10

46

• Epochs = 200

3.7 Implementation of Unoptimized MLP Models for DSSE

The following section covers the essential elements required to perform distribution

system state estimation with an unoptimized MLP model. For brevity, only Trial 1 will

be shown.

Code Listing 1 - Unoptimized MLP Model for DSSE

000 # MLP_Trial_01_Unoptimized.py

001 # Input Layer: 56 Neurons; 1 Hidden Layer: 56 Neurons; Output

Layer: 56 Neurons

002

003

004 import time

005 start_time = time.time()

006

007 # Import Required Python Libraries

008 from pandas import read_csv

009 import math

010 import numpy

011 from keras.models import Sequential

012 from keras.layers import Dense

013 from sklearn.model_selection import train_test_split

014 from sklearn.metrics import mean_squared_error

015 from sklearn.preprocessing import MinMaxScaler

016

017 # Data Normalization

018 scaler_power_ercot = MinMaxScaler(feature_range=(-1,1),copy=True)

019 scaler_voltage_ercot = MinMaxScaler(feature_range=(-1,1),copy=True)

020

021 scaler_power_coast = MinMaxScaler(feature_range=(-1,1),copy=True)

022 scaler_voltage_coast = MinMaxScaler(feature_range=(-1,1),copy=True)

023

024 # Load Datasets

025

026 # EROCT Data used to Train and Test MLP

027 input_power_ercot_dataframe =

read_csv('C:/Python/input_power_ercot.csv', header=None)

028 input_power_ercot = input_power_ercot_dataframe.values

029 input_power_ercot_normalized =

scaler_power_ercot.fit_transform(input_power_ercot)

030

031 output_voltage_ercot_dataframe =

read_csv('C:/Python/output_voltage_ercot.csv', header=None)

032 output_voltage_ercot = output_voltage_ercot_dataframe.values

033 output_voltage_ercot_normalized =

scaler_voltage_ercot.fit_transform(output_voltage_ercot)

47

034

035 # Coast Data used to Validate MLP

036 input_power_coast_dataframe =

read_csv('C:/Python/input_power_coast.csv', header=None)

037 input_power_coast = input_power_coast_dataframe.values

038 input_power_coast_normalized =

scaler_power_coast.fit_transform(input_power_coast)

039

040 output_voltage_coast_dataframe =

read_csv('C:/Python/output_voltage_coast.csv', header=None)

041 output_voltage_coast = output_voltage_coast_dataframe.values

042 output_voltage_coast_normalized =

scaler_voltage_coast.fit_transform(output_voltage_coast)

043

044 # Split Data Into 70% for Train and 30% for Test

045 power_train, power_test, voltage_train, voltage_test =

train_test_split(

046 input_power_ercot_normalized, output_voltage_ercot_normalized,

test_size=0.30)

047

048 # Define the MLP Model

049 model = Sequential()

050 model.add(Dense(56, input_dim=56, activation='relu'))

051 model.add(Dense(56))

052

053 # Compile the MLP Model

054 model.compile(loss='mean_squared_error', optimizer='sgd')

055

056 # Fit the MLP Model

057 model.fit(power_train, voltage_train,

validation_data=(power_test,voltage_test),

058 epochs=200, batch_size=10, verbose=0)

059

060 # Evaluate the MLP Model

061 trainScore = model.evaluate(power_train, voltage_train, verbose=0)

062 print('Train Score: %.6f MSE (%.6f RMSE)' % (trainScore,

math.sqrt(trainScore)))

063 testScore = model.evaluate(power_test, voltage_test, verbose=0)

064 print('Test Score: %.6f MSE (%.6f RMSE)' % (testScore,

math.sqrt(testScore)))

065

066 print(' ')

067

068 # Make Predictions with the Model

069 coastScore = model.evaluate(input_power_coast_normalized,

output_voltage_coast_normalized,

070 verbose=0)

071 print('Coast Score: %.6f MSE (%.6f RMSE)' % (abs(coastScore),

math.sqrt(abs(coastScore))))

072

073 print(' ')

074

075 print("--- %s seconds ---" % (time.time() - start_time))

Table 9 presents a summary of Code Listing 1.

48

Table 9 - Summary of Code Listing 1 for Unoptimized MLP Model for DSSE

Line #: Description:

007 - 015 Import essential Python libraries for implementation of an

unoptimized MLP model for DSSE

017 - 022 Define “scalar” objects to perform data normalization on source data

to aid in training performance.

026 - 033 Import ERCOT data used to train and test the MLP. Perform data

normalization.

035 - 042 Import COAST data used to validate MLP. Perform normalization.

044 - 046 Split input data into 70% for training and 30% for testing.

048 - 051 Define unoptimized MLP model

054 Compile unoptimized MLP model

056 – 058 Fit MLP with unoptimized hyperparameters

060 - 064 Evaluate the unoptimized MLP on training and testing data in terms

of RMSE.

068 - 071 Perform DSSE with unoptimized MLP on COAST validation data

and report RMSE.

The following results are for MLP models trained and tested on ERCOT data and validated

on COAST data.

Table 10 presents training, testing and validation root-mean squared errors for eleven MLP

model architectures. Note that each “Trial” represents a separate MLP model. As indicated

in Table 10, the number of hidden layers and number of hidden layer neurons were varied.

The number of input and output layer neurons was held constant at 56 neurons to

correspond to the number of input and output features.

49

As indicated in this table, 70% of the ERCOT data was used for training and 30% was held

out for testing. These columns represent the “training error” and “testing error” respectively

for each model. The “COAST Act. vs. Est” column shows results for the various

architectures of the MLP when predicting output voltages and phase angles for COAST

data that has never been seen by the neural network. This column represents the “validation

error” for each model. Note that RMSE (root mean squared error) throughout this research

is calculated based upon the following equation.

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)

2

1

Where ytrue is an array of true target values, ypredicted is an array of predicted target values

and n is the total number of samples.

It should also be noted that input data to all neural networks in this research were

standardized to be in the range of -1 to +1 prior to training, testing and validation. This

transformation was performed by the MinMaxScaler function available in Python sklearn

library [68].

The default transformation utilizing this function is a range of 0 to +1, however the

following equation is used when scaling data to be in the range of -1 to +1:

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 = (

𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
) ∗ 2 − 1

2

Where X is the original value, Xscaled is the scaled value, Xmin is minimum value of the

dataset, and Xmax is the maximum value of X in the dataset.

50

This formula first scales the feature to be in a range between 0 and +1 using the original

MinMaxScaler formula, then it multiplies the result by 2 and subtracts 1 to scale the range

to -1 to +1. Given that the input data is standardized according to equation 2, all RMSE

values in Table 10 and Table 17 do not carry a physical unit. The RMSE values presented

in CHAPTER 5, CHAPTER 6 and CHAPTER 7 that consider time-series forecasting of a

univariate electrical quantity (Real Power, Reactive Power, Voltage Magnitude and

Voltage Phase Angle) carry the associated units (kWatts, kVARs, Volts and Degrees

respectively).

Table 10 - Performance Results for MLP Models without Hyperparameter

Optimization

Trial
Input

Layer

Hidden

Layers

Output

Layer

Train

RMSE

(70%)

Test

RMSE

(30%)

COAST Act.

vs. Est. RMSE

1 56 Neurons

1 Layer

56

Neurons

56 Neurons 0.140927 0.142162 0.323075

2 56 Neurons

1 Layer

112

Neurons

56 Neurons 0.140486 0.136711 0.323293

3 56 Neurons

1 Layer

224

Neurons

56 Neurons 0.137222 0.137328 0.322124

4 56 Neurons

10 Layers

56

Neurons

56 Neurons 0.092110 0.092036 0.318610

5 56 Neurons

10 Layers

112

Neurons

56 Neurons 0.091231 0.090394 0.317231

51

3.8 State Estimation and Forecasting Based Upon Time Series Physics Aware

Models

To add “awareness” of temporal dynamics and physics inherent in power systems,

weather data (hourly temperatures at Dallas/Fort Worth International Airport for the

entire 2018 year) was obtained [27]. The time frame was selected to correspond with the

original ERCOT datasets discussed previously. Figure 9 provides an example of the

hourly temperature and real power demand for Dallas/Fort Worth for January 1, 2018.

6 56 Neurons

10 Layers

224

Neurons

56 Neurons 0.089581 0.089328 0.333226

7 56 Neurons

20 Layers

56

Neurons

56 Neurons 0.085845 0.087380 0.309943

8 56 Neurons

20 Layers

112

Neurons

56 Neurons 0.082363 0.082748 0.314640

9 56 Neurons

20 Layers

224

Neurons

56 Neurons 0.077807 0.078516 0.314956

10 56 Neurons

50 Layers

224

Neurons

56 Neurons 0.076469 0.078396 0.313638

11 56 Neurons

100

Layers

224

Neurons

56 Neurons 0.079144 0.079668 0.307243

52

Figure 9 - Hourly Temperature and Real Power Demand

Figure 9 shows that on January 1, 2018, in Dallas/ Fort Worth there appears to be a

“negative correlation” between temperature and real power demand. Thus there exists a

relationship in which the changing temperature throughout the day results in an increase

or decrease in the real power demand owing to energy needed for maintaining heating

resources. Thus, it was decided that temperature could be used to aid in prediction of real

and reactive power flow, and subsequently voltage magnitude and voltage phase angle

for various forecasting time horizons.

The datasets utilized in this research were restructured such that each “row” of data

would correspond to a time element (hour) and each “column” of data would represent a

unique time-series of measurement quantities or “features”. To simplify the preliminary

predictive model datasets, it was decided that only the power and voltage data associated

with the substation bus would be considered. This corresponds to the power and voltage

data collected at Bus 800 with OpenDSS monitor B1 shown in Figure 8 and is utilized for

training and testing. Weather data was utilized to train this network type to predict power

53

demand. Thus, an MLP model was used to learn the mapping of weather data as input

and power as output through regression. Then power data (real and reactive powers)

were then utilized to predict the voltage data (voltage magnitudes and phase angles).

The results of an unoptimized MLP model utilized to forecast the real power (P), reactive

power (Q), voltage magnitude (V_mag), and voltage phase angle (V_phase) at the

substation bus of the test feeder distribution system shown in Figure 8 are presented in

Table 11, Table 12, and Table 13 for various forecast horizons. These tables also include

the results of utilizing an unoptimized CNN and unoptimized LSTM model for the same

purpose and will be discussed in more detail in CHAPTER 5 and CHAPTER 6 that cover

time-series forecasting with CNNs and LSTMs respectively.

Table 11 - 24 Hour Forecast (Average RMSE) at Substation Bus

Table 11 shows that for a 24 hour forecast horizon, that the unoptimized MLP model

yielded a significantly higher RMSE for real power than the CNN and LSTM models.

All three models performed similarly for reactive power. The MLP model yielded a

Model

Real Power –

24 Hour

Forecast Avg.

RMSE

(kWatts)

Reactive Power

– 24 Hour

Forecast Avg.

RMSE (kVARs)

Voltage

Magnitude –

24 Hour

Forecast Avg.

RMSE (Volts)

Phase Angle –

24 Hour Forecast

Avg. RMSE

(Degrees)

Execution Time

(Seconds)

MLP 142.165531 173.737340 0.042655 0.000119 180

CNN

51.852689

174.998276

70.833594 0.000324 60

LSTM 76.419820 172.469473 25.603404 0.000109 7200

54

significantly lower RMSE for voltage magnitude than the CNN and LSTM models and

all three models performed similarly for phase angle in terms of RMSE. Note that for a

24 hour forecast horizon, the CNN model resulted in the lowest execution time followed

by the MLP and LSTM model. Note that execution time is the total time for the models

to import training, testing and validation data, perform training and testing and perform

predictions for the given forecast horizon.

Extending the forecast horizon to 168 hours and 672 hours, the data in Table 12 and

Table 13 respectively show relatively better performance of the MLP model when

forecasting the voltage magnitude and voltage phase angle than the CNN and LSTM

models considered. It should also be noted that extending the forecast horizon resulted in

longer execution times for the CNN model and an inability of the LSTM model to

converge. The MLP model did not show an increase in execution time as the forecast

horizon was extended.

Table 12 - 168 Hour Forecast (Average RMSE) at Substation Bus

Model

Real Power –

168 Hour

Forecast Avg.

RMSE (Watts)

Reactive Power

– 168 Hour

Forecast Avg.

RMSE (VARs)

Voltage

Magnitude –

168 Hour Avg.

RMSE (Volts)

Phase Angle –

168 Hour

Forecast Avg.

RMSE (Degrees)

Execution Time

(Seconds)

MLP 181.882021 176.532732 0.046121 0.000144

180

CNN 92.732562 172.081075 40.681005 0.000139

120

LSTM ---- ---- ---- ----

No Convergence

55

Table 13 - 672 Hour Forecast (Average RMSE) at Substation Bus

Model

Real Power –

672 Hour

Forecast Avg.

RMSE (Watts)

Reactive Power

– 672 Hour

Forecast Avg.

RMSE (VARs)

Voltage

Magnitude –

672 Hour Avg.

RMSE (Volts)

Phase Angle –

672 Hour

Forecast Avg.

RMSE (Degrees)

Execution Time

(Seconds)

MLP 134.544553 174.901558 0.043063 0.000112

180

CNN 165.820596 172.774166 45.946654 0.000123

240

LSTM ---- ---- ---- ----

No Convergence

3.9 DSSE with MLPs with Hyperparameter Optimization

The exact model, approximate model and practical implementation of power system state

estimation based upon weighted least squares is presented in [2], [7], and [8] respectively.

The proposed methods are considered “classical” or “analytical” approaches and have

found application mainly in power transmission systems.

The authors in [44] consider the benefits of machine learning to mitigate challenges of

applying analytical approaches to power distribution system state estimation. While

machine learning algorithms show great promise in a vast array of power system

applications, widespread acceptance and application to mission critical functions will

require stronger performance guarantees, certifications and elimination of vulnerabilities

inherent in systems built upon data driven models [45].

The emerging smart grid will require increased situational awareness and the necessity to

utilize vast amounts of data in real-time. To this end, phasor management units (PMUs)

56

will play an increasing role in ensuring that data is collected in a timely and accurate

manner. An overview of the history, benefits of application and initiatives to increase

PMU penetration in the smart grid can be found in [46] and [47].

Widespread penetration of PMUs will enable increased accuracy of classical state

estimation methods by effectively linearizing highly non-linear relationships that make

numerical and iterative solutions necessary for power flow and state estimation equations.

This is especially true for power distribution systems. Given the early stages of PMU

penetration initiatives and prohibitive costs [48], the research on which this dissertation is

based does not assume widespread availability of PMUs in distribution systems.

The authors in [44] consider the application of feedforward multilayer perceptron models

(MLPs) to power distribution system state estimation (DSSE). These models are

considered “unoptimized” in the sense that model hyperparameters such as number of

neurons per hidden layer, learning rate, number of training epochs, and training batch size

were selected by an ad-hoc approach.

A key observation from [44] is that for the MLP models considered without

hyperparameter optimization, there appears to be no significant improvement in

performing power distribution system state estimation by utilizing more complicated

networks in terms of number of layers and number of neurons per hidden layer. Further,

the ad-hoc approach to hyperparameter selection, lacks constraints on the ranges of

hyperparameters that could be chosen, thus increasing uncertainty regarding

convergence, training execution time and hindering a suitable performance guarantee

required for mission critical functions such as state estimation.

57

To avoid the shortcomings of selecting hyperparameters on an ad-hoc basis, the current

research seeks to incorporate a suitable optimization technique. The author’s in [49]

present a comparison of three common approaches to hyperparameter selection. Grid

search is considered a traditional method that involves a complete search over a given

subset of the available hyperparameter space. Random search overrides the complete

selection of all combinations by their random selection. Genetic algorithms are used to

solve optimization and modeling problems by sequentially selecting, combining and

varying parameters using mechanisms that resemble biological evolution.

Grid search involves evaluation of all options, even those considered “bad” options.

Random search, while considered a better option than grid search, does not learn from

previous samples selected and thus is not considered an optimization approach in the

sense of converging on an optimal solution with each iteration. Genetic algorithms

involve excessive training time and are better suited for very large hyperparameter

spaces.

The author in [10] presents a method of Bayesian Optimization with Gaussian Processes

that could be considered an improvement upon both grid search and random search

methods in terms of providing a structured approach to hyperparameter optimization that

considers prior selections and avoids combinations already shown to result in poor

performance.

3.9.1 Bayesian Optimization with Gaussian Processes

Bayesian Optimization is based in part on the work of English clergyman Thomas Bayes

and in particular his theory of probability given in 1764 [32]. Bayes Theorem establishes

a methodical way of calculating conditional probability [33].

58

Bayes Theorem is given by the following relationship:

𝑃(𝐴|𝐵) =

𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)

3

Where P(A|B) is the probability of an event A occurring, given that event B has already

occurred, P(B|A) is the probability of an event B occurring, given that event A has

already occurred, P(A) is the probability of an event A occurring, and P(B) is the

probability of an event B occurring.

Often this equation is stated qualitatively as “Posterior = Prior multiplied by Likelihood

over Marginal Probability)”. Thus, Bayes Theorem provides a way to calculate the

probability of a hypothesis (“belief”) based on its prior probability, the probabilities of

observing various data given the hypothesis (“belief”) and the set of observed data itself.

[35].

Bayes Theorem is used in machine learning optimization techniques to make use of

“prior” selections to improve on the selections of future values. This results in

establishing regions of higher probability of maximizing (minimizing) an objective

function and avoiding excess sampling in regions already deemed less likely to result in a

global maximum (minimum).

Bayesian Optimization with Gaussian Processes is a technique that has gained significant

interest in applications on which objective functions are considered "expensive" in terms

of risk for reward or are otherwise intractable by other optimization techniques.

By intractable, candidate objective functions are those in which first and second order

derivatives are not easily evaluated. Thus, techniques built upon variations of Newton's

59

method and gradient descent are not considered feasible options. Bayesian Optimization

with Gaussian Processes is among a class of optimization techniques referred to as

"derivative free" [34]. Thus, the function itself is considered and not first and second

order derivatives [28]. It should be noted that there is research into the application of

Bayesian Optimization that does take advantage of derivative information when available

and is worthy of future research to compare the performance of the method proposed by

the authors in [41] to gradient based methods such as stochastic gradient descent utilized

in MLP to optimize weights and biases during the training process.

Applications on which Bayesian Optimization with Gaussian Processes (derivative free)

may be advantageous are oil drilling (very expensive to probe, but potentially high

return); evaluation of drug candidate efficacy (possible danger in its initial use, but

potentially helpful to society); and hyperparameter optimization (computationally

expensive to perform simulations).

The technique has the added benefit of being tolerant to stochastic noise during the

optimization process. Thus, there is promise that applying Bayesian Optimization will

reduce the inherent stochastic performance of MLP models and move toward the goal of

establishing stronger performance guarantees and/or certifications needed for more

widespread acceptance of machine learning as applied to mission critical applications

such as power system state estimation and state forecasting. The process involves first

building a “surrogate” for the original objective function often called the "acquisition

function". The acquisition function is more tractable than the original objective function

and an algorithm based upon Bayes Theorem and Gaussian process regression is

employed to estimate the next search point based upon a score of the most probable

60

region of the parameter space given prior scores of previously sampled regions. It

should be noted that this optimization technique is not considered appropriate for

applications on which curve fitting and linear programming methods are sufficient.

The goal of the optimization technique is to seek a global maximum (or global

minimum). Figure 10 presents basic pseudo-code for the Bayesian Optimization

algorithm utilized in this research [28].

Figure 10 - Bayesian Optimization Algorithm

As shown in Figure 10, central to Bayesian optimization is the construction of a posterior

distribution of functions also known as a Gaussian process prior that best describes the

objective function to be optimized. As the number of observations grows, the posterior

distribution improves, and the algorithm becomes more certain of which regions in the

parameter space are worth exploring.

Mathematically, a gaussian process will be defined by a mean and covariance function, m

and k respectively [42]:

 𝑓(𝑥)~𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′)) 4

61

Where, f(x) is an arbitrary function, GP represents a gaussian process or distribution

over functions completely specified by its mean function m(x) and covariance function,

k(x, x’). For any arbitrary x, the GP returns the mean and variance of a normal

distribution.

For simplicity, the prior m(x) is often set to zero and the squared exponential function is

often selected as the covariance function k.

𝑘(𝑥𝑖, 𝑥𝑗) = exp (−

1

2
‖𝑥𝑖 − 𝑥𝑗‖

2
)

5

Where xi and xj represent two independent samples. Points close in proximity are

expected to have much larger influence on each other than those that are further apart.

As values get closer together, the function approaches 1 and approaches 0 as the values

get further apart.

Note that this function has the property that points close in proximity have a much larger

influence over each other than those that are more distant thus aiding in convergence.

Also note that function k is often referred to as the kernel [42]. Equation 5 provides a

very simple version of the squared exponential function and there are many other more

sophisticated alternatives that include hyperparameters for controlling “smoothness” and

variance [40].

Note in the Bayesian Algorithm presented in Figure 10 that the acquisition function is

key to determining the next region or point to sample. Several approaches to the selection

of the next point to be explored are as follows:

• Upper Confidence Bound (UCB)

62

• Lower Confidence Bound (LCB)

• Probability of Improvement (PI)

• Expected Improvement (EI)

Upper Confidence Bound (UCB) concerns maximization and is described mathematically

as the following:

 𝑈𝐶𝐵(𝑥) = 𝜇(𝑥) + 𝜅𝜎(𝑥) 𝑤ℎ𝑒𝑟𝑒 𝜅 ≥ 0 6

Where μ(x) represents the “mean function”, σ(x) represents the variance function and κ

is a scale factor to establish the width of the confidence interval. Note that the “+”

operation establishes the upper bound of the confidence interval.

Lower Confidence Bound (LCB) concerns minimization and is described mathematically

as the following:

 𝐿𝐶𝐵(𝑥) = 𝜇(𝑥) − 𝜅𝜎(𝑥) 𝑤ℎ𝑒𝑟𝑒 𝜅 ≥ 0 7

Where μ(x) represents the “mean function”, σ(x) represents the variance function and κ

is a scale factor to establish the width of the confidence interval. Note that the “-”

operation establishes the lower bound of the confidence interval.

Probability of Improvement (PI) is described mathematically as the following:

 𝑃𝐼(𝑥) = 𝑃(𝑓(𝑥) ≥ 𝑓(𝑥+) + 𝜉 8

𝑃𝐼(𝑥) = Φ (

𝜇(𝑥) − 𝑓(𝑥+) − 𝜉

𝜎(𝑥)
)

9

63

Where Φ is the normal cumulative distribution function, f(x+) is the incumbent maximum

value and ξ is a “trade-off parameter” intended to reduce selection of points yielding

larger gains, but less certainty [42].

Expected Improvement is described mathematically as the following [42]:

 𝐸𝐼(𝑥) = 𝔼[max((𝑓(𝑥∗) − 𝑓(𝑥+), 0)] 10

Where x* represents the candidate parameters, and x+ represents the current “best

guess” among the previously evaluated parameters. The advantage of this function is

that unlike the original objective function, there is a closed form solution given by

equations 11 and 12.

𝐸𝐼(𝑥) = {

(𝜇(𝑥) − 𝑓(𝑥+) − 𝜉)Φ(𝑧) + 𝜎(𝑥)𝜙(𝑍) 𝑖𝑓 𝜎(𝑥) ≥ 0

0 𝑖𝑓 𝜎(𝑥) = 0

11

𝑍 =

𝜇(𝑥) − 𝑓(𝑥+) − 𝜉

𝜎(𝑥)

 12

In equations 11 and 12, Φ and ϕ represent the cumulative distribution function (CDF) and

probability density function (PDF) respectively of a unit Gaussian distribution (zero

mean and variance equal to 1). Note that the trade-off parameter ξ is included to

maintain a balance of “exploration” and “exploitation”. When exploring, regions where

the surrogate variance is large is desirable. When exploiting, regions where the surrogate

mean is high is desirable. Thus, the Expected Improvement acquisition function

considers the probability and magnitude of improvement that a sample may provide and

thus maintains a balance between global search and local optimization

64

(exploration/exploitation) [42]. According to the literature reviewed as part of the

research being described in this dissertation, Expected Improvement is by far the most

prevalent acquisition function used to establish the “next best guess”.

To implement Bayesian Optimization with Gaussian Processes for power system state

estimation, it is necessary to establish the following requirements [42].

• Minimization - Maximization Transformation: The state estimation problem is

framed as the minimization of the RMSE of the estimated states while common

implementation of the Bayesian Optimization algorithm is framed as the

maximization of an objective function. Thus a transformation to a maximization

problem can be made by noting that the maximization of a real-valued function x*

= argmaxx f(x) can be considered as a minimization problem through a transformed

function y(x) = - f(x). Thus, while optimization algorithms are often implemented

as a maximization problem, the transformation is straightforward.

• Continuity of the Objective Function: There will be an assumption of Lipschitz-

Continuity. Thus a constant C exists, although not generally known such that:

 ||𝑓(𝑥1) − 𝑓(𝑥2)|| ≤ 𝐶||𝑥1 − 𝑥2|| 13

for x1, x2 ϵ A (compact set of observations) and C intuitively represents how fast a

function may change.

• Global Optimization: For local maximization problems it is sufficient to find an

x* such that:

 𝑓(𝑥∗) ≥ 𝑓(𝑥), ∀𝑥 𝑠. 𝑡. ||𝑥∗ − 𝑥|| < 𝜀 14

65

For -f(x) that is convex, a local maximum will also be considered a global

maximum. In the research being discussed in this dissertation, there will be no

assumption that -f(x) is convex. Thus, the advantage of the optimization

technique being considered is that it will avoid being confined to regions of local

maxima (minima).

• Black Box Optimization: There will be no assumption that the objective

function has known derivatives. Thus, the MLP model itself will be treated as a

black box on which bounds will be made on the hyperparameters on which it is

being optimized over. In optimization theory, this assumption is stated as an

assumption that the bounds are all axis-aligned such that the search space is

hyperrectangle and of dimension d.

• Application of an Acquisition Function: This function, with a closed form

solution, will be considered more tractable than the objective function being

optimized however it too will not be assumed to be convex.

The implementation of Bayesian Optimization with Gaussian Processes was done with

the BayesOpt Python library [28]. This library is built upon the algorithm presented in

Figure 10 and the mathematical theory presented in equations 3 – 12. There are two

primary functions. The functions are BayesianOptimization() and maximize().

BayesianOptimization has the following general structure:

 BayesianOptimization(

 f=black_box_function,

 pbounds=pbounds,

 random_state=1,

)

66

Note in the BayesianOptimization function that there are three essential parameters.

Parameter "f" is the objective function to be optimized, "pbounds" is the range of

hyperparameters to be searched over and "random_state" is set with a seed to establish

repeatability. The maximize function has the following general structure:

maximize(

init_points,

n_iter

)

The parameter "init_points" establishes how many initial samples to search over before

executing the Bayesian Optimization algorithm. The minimum number for this

parameter is 2. The parameter "n_iter" is the number of iterations to execute the

Bayesian Optimization algorithm search process.

To illustrate the Bayesian Optimization with Gaussian Processes, a relatively simple 1-

dimensional function is considered that has an easily identifiable global maximum and

minimum. The function also includes local maxima and local minima to illustrate the

ability of the optimization technique to avoid being confined to points that are not

globally maximum.

Thus, let the test objective function be defined as follows:

𝑓(𝑥) = sin(𝑥) 𝑒

−(𝑥−10)2

10 + 2cos (𝑥)𝑒
−(𝑥−2)2

10
15

Figure 11 is a plot of the test objective function. It should be noted, that in general

Bayesian Optimization is applied to objective functions that are not easily expressed

analytically.

67

Figure 11 - Plot of Test Objective Function

Code Listing 2 – Visualization of Bayesian Optimization with Gaussian Processes

000 # Bayesian_Optimization_Visualization.py

001 from bayes_opt import BayesianOptimization

002 from bayes_opt import UtilityFunction

003 import numpy as np

004

005 import matplotlib.pyplot as plt

006 from matplotlib import pyplot

007 from matplotlib import gridspec

008 #%matplotlib inline

009

010 def target(x):

011 #return -np.sin(x)*np.exp(-x**2)

012 return (-np.sin(x)*np.exp(-(x-10)**2/10) - 2*np.cos(x)*np.exp(-

(x-2)**2/10))

013 x = np.linspace(-2, 10, 10000).reshape(-1, 1)

014 y = target(x)

015

016 pyplot.xlabel('x',fontweight = 'bold', fontsize = 12.0,

color='black')

017 pyplot.ylabel('f(x)', fontweight = 'bold', fontsize = 12.0,

color='black')

018 pyplot.title('f(x) = sin(x)*exp(-(x-10)**2/10) + 2*cos(x)*exp(-

(x-2)**2/10))', fontweight = 'bold', fontsize = 12.0,)

019

020 plt.plot(x, y);

021

022 optimizer = BayesianOptimization(target, {'x': (-2, 10)},

random_state=27)

023 optimizer.maximize(init_points=2, n_iter=0, kappa=5)

024

68

025 def posterior(optimizer, x_obs, y_obs, grid):

026 optimizer._gp.fit(x_obs, y_obs)

027

028 mu, sigma = optimizer._gp.predict(grid, return_std=True)

029 return mu, sigma

030

031

032 def plot_gp(optimizer, x, y):

033 fig = plt.figure(figsize=(16, 10))

034 steps = len(optimizer.space)

035 fig.suptitle(

036 'Step {}: Gaussian Process and Acquisition

Function'.format(steps),

037 fontdict={'size':30}

038)

039

040 gs = gridspec.GridSpec(2, 1, height_ratios=[3, 1])

041 axis = plt.subplot(gs[0])

042 acq = plt.subplot(gs[1])

043

044 x_obs = np.array([[res["params"]["x"]] for res in

optimizer.res])

045 y_obs = np.array([res["target"] for res in optimizer.res])

046

047 mu, sigma = posterior(optimizer, x_obs, y_obs, x)

048 axis.plot(x, y, linewidth=3, label='Objective Function')

049 axis.plot(x_obs.flatten(), y_obs, 'D', markersize=8,

label=u'Sample', color='r')

050 axis.plot(x, mu, '--', color='k', label='Prediction')

051

052 axis.fill(np.concatenate([x, x[::-1]]),

053 np.concatenate([mu - 1.9600 * sigma, (mu + 1.9600 *

sigma)[::-1]]),

054 alpha=.6, fc='c', ec='None', label='Confidence Interval

(95%)')

055

056 axis.set_xlim((-2, 10))

057 axis.set_ylim((None, None))

058 axis.set_ylabel('Objective Function', fontdict={'size':20})

059 axis.set_xlabel('x', fontdict={'size':20})

060

061 utility_function = UtilityFunction(kind="ei", kappa=5, xi=0)

062 utility = utility_function.utility(x, optimizer._gp, 0)

063 acq.plot(x, utility, label='Acquisition Function',

color='green')

064 acq.plot(x[np.argmax(utility)], np.max(utility), '*',

markersize=15,

065 label=u'Next Sample', markerfacecolor='yellow',

markeredgecolor='k', markeredgewidth=1)

066

067 acq.set_xlim((-2, 10))

068 acq.set_ylim((0, np.max(utility) + 0.5))

069 acq.set_ylabel('Acqusition Function', fontdict={'size':20})

070 acq.set_xlabel('x', fontdict={'size':20})

071

072 axis.legend(loc=2, bbox_to_anchor=(1.01, 1), borderaxespad=0.)

073 acq.legend(loc=2, bbox_to_anchor=(1.01, 1), borderaxespad=0.)

69

074

075 print()

076

077 print('Next Best Guess: x = %.6f , f(x) = %.6f' %

(x[np.argmax(utility)], np.max(utility)))

078

079 plot_gp(optimizer, x, y)

080

081 print(' ')

082 print('After one step of GP (and two random points):')

083 optimizer.maximize(init_points=0, n_iter=1, kappa=5)

084 plot_gp(optimizer, x, y)

085

086 print(' ')

087 print('After two steps of GP (and two random points)')

088 optimizer.maximize(init_points=0, n_iter=1, kappa=5)

089 plot_gp(optimizer, x, y)

090

091 print(' ')

092 print('After three steps of GP (and two random points)')

093 optimizer.maximize(init_points=0, n_iter=1, kappa=5)

094 plot_gp(optimizer, x, y)

095

096 print(' ')

097 print('After four steps of GP (and two random points)')

098 optimizer.maximize(init_points=0, n_iter=1, kappa=5)

099 plot_gp(optimizer, x, y)

100

101 print(' ')

102 print('After five steps of GP (and two random points)')

103 optimizer.maximize(init_points=0, n_iter=1, kappa=5)

104 plot_gp(optimizer, x, y)

105

106 print(' ')

107 print('After six steps of GP (and two random points)')

108 optimizer.maximize(init_points=0, n_iter=1, kappa=5)

109 plot_gp(optimizer, x, y)

110

111 print(' ')

112 print('After seven steps of GP (and two random points)')

113 optimizer.maximize(init_points=0, n_iter=1, kappa=5)

114 plot_gp(optimizer, x, y)

115

116 print(' ')

117 print('After eight steps of GP (and two random points)')

118 optimizer.maximize(init_points=0, n_iter=1, kappa=5)

119 plot_gp(optimizer, x, y)

120

121 print(' ')

122 print('After nine steps of GP (and two random points)')

123 optimizer.maximize(init_points=0, n_iter=1, kappa=5)

124 plot_gp(optimizer, x, y)

125

126 print(' ')

127 print('After ten steps of GP (and two random points)')

128 optimizer.maximize(init_points=0, n_iter=1, kappa=5)

129 plot_gp(optimizer, x, y)

70

130

131 print(' ')

132 print('After eleven steps of GP (and two random points)')

133 optimizer.maximize(init_points=0, n_iter=1, kappa=5)

134 plot_gp(optimizer, x, y)

135

136 print(' ')

137 print('After twelve steps of GP (and two random points)')

138 optimizer.maximize(init_points=0, n_iter=1, kappa=5)

139 plot_gp(optimizer, x, y)

140

141 print(' ')

142 print('After thirteen steps of GP (and two random points)')

143 optimizer.maximize(init_points=0, n_iter=1, kappa=5)

144 plot_gp(optimizer, x, y)

145

146 print(' ')

147 print('After fourteen steps of GP (and two random points)')

148 optimizer.maximize(init_points=0, n_iter=1, kappa=5)

149 plot_gp(optimizer, x, y)

150

151 print(' ')

152 print('After fifteen steps of GP (and two random points)')

153 optimizer.maximize(init_points=0, n_iter=1, kappa=5)

154 plot_gp(optimizer, x, y)

Table 14 presents a summary of Code Listing 2 for visualization of Bayesian

Optimization with Gaussian Processes.

71

Table 14 - Summary of Code Listing 2 for Visualization of Bayesian Optimization

with Gaussian Processes

Line #: Description:

001 - 002 Import Python libraries for Bayesian Optimization

010 - 012 Define a “target” objective function

022 Define an “optimizer” and pass the objective function to the

BayesianOptimization function

023 Initiate the Bayesian Optimization algorithm via the

“optimizer.maximize” function. Two initial random points are

searched. Two points are the minimum number of random points to

initiate the optimization process

061 Define a “UtilityFunction” that takes as an argument, the type of

acquisition function to use (i.e., “ucb”, “pi”, “ei”). Acquisition

function “ei” represents the Expected Improvement function

presented in equations 8 - 10

077 Print “Next Best Guess” result from the Bayesian Optimization with

Gaussian Process

083, 088, 093,

098, 103, 108,

113, 118, 123,

128, 133, 138,

143, 148, 153

Initiates steps of Bayesian Optimization with Gaussian Processes

shown in Figures 12-18

The following steps illustrate the process. Some of the steps are not shown to maintain

brevity. Also note that “Step 1 of Optimization” is the initial random sample of the first

point and is not shown.

72

In the upper portion of Figure 12 the objective function, two samples, the prediction, and

the confidence interval (95%) are notated by the legend. Note that the “prediction” is

established by the mean function of the confidence interval. The two samples shown

were selected randomly from regions where the variance is large. This is the

“exploration” phase of Bayesian Optimization. The lower portion of the figure shows the

“Acquisition Function” along with the next sample selected by the Bayesian optimizer.

In this case, the acquisition function is established by the Expected Improvement function

given in equations 10, 11 and 12 presented earlier in this section. Note that the “Next

Best Guess” will be selected where the mean of the acquisition function is high.

73

Figure 12 - Step 2 of Bayesian Optimization with Gaussian Processes

74

Figure 13 - Step 3 of Bayesian Optimization with Gaussian Processes

75

Figure 14 - Step 4 of Bayesian Optimization with Gaussian Processes

76

Figure 15 - Step 11 of Bayesian Optimization with Gaussian Processes

77

Figure 16 - Step 15 of Bayesian Optimization with Gaussian Processes

78

Figure 17 - Step 16 of Bayesian Optimization with Gaussian Processes

79

Figure 18 - Step 17 of Bayesian Optimization with Gaussian Processes

Note that additional steps of the process will continue to converge on the “global

maximum”. Also note that in regions where there is a greater likelihood of a maximum,

there are a higher concentration of points as the “Next Best Guess” will be chosen to

remain in these regions. Likewise, regions that did not contain values of sufficient

probability of “expected improvement” were not sampled again. Thus, Bayesian

Optimization with Gaussian Processes will greatly reduce the probability of selecting

values that will not produce the maximum of the original objective function.

80

3.9.2 Implementation of Bayesian Optimization with Gaussian Processes on MLPs for

DSSE

The authors in [51] discuss practical Bayesian Optimization of machine learning

algorithms and make a distinction between optimization of “learning parameters” such as

learning rate and batch size and optimization of “model parameters” such as the number

of layers and number of neurons per hidden layer. The research on which this

dissertation is based will consider a combination of both types to be referred to as

“hyperparameters”.

Section 3.7 presented the performance of MLPs without hyperparameter optimization for

DSSE. The model architectures for each trial shown in Table 10 involved selecting the

number of hidden layers, number of neurons per hidden layer, and other hyperparameters

in an “ad-hoc” fashion. The data show that by holding the following hyperparameters

constant while randomly adjusting the number of layers and neurons did not result in

significant improvement in training, testing, and validation RMSE with more complex

networks.

Table 15 presents the unoptimized hyperparameters held constant for Trials 1-11 in Table

10.

81

Table 15 - Unoptimized MLP Hyperparameter Settings

MLP Hyperparameters Settings

Activation Function per Layer Rectified Linear Unit (ReLU)

Batch Size 10

Epochs 200

Learning Rate 0.001

Loss Function Mean Squared Error

Input Layer Neurons 56

Output Layer Neurons 56

Optimizer Stochastic Gradient Descent

(SGD)

Note the Input Layer Neurons and Output Layer Neurons are established by the number

of features in the complex power (input) and complex voltage (output) gathered from the

fixed number of monitors placed in the power distribution test system. In general the

number of neurons in each of these layers is independent and are not required to be equal.

Bayesian Optimization was performed on some of the previous trials in addition to new

random configurations. The new configurations involved consideration of models with 2

hidden layers given that the original trials did not contain this configuration. It was

decided that the following hyperparameters would be held constant given their prevailing

use in modern machine learning:

• Activation Function per Layer: ReLU

• Loss Function: Mean Squared Error

• Optimizer: Adam optimizer with adjustable learning rate

82

The following hyperparameters were configured to have the following ranges:

• Hidden Layer Neurons: 1 - 100

• Learning Rate: 0.0001 - 1.0

• Batch Size: 1 - 100

• Epochs: 1 - 300

Bayesian Optimization with Gaussian Processes was used to optimize the MLP network

corresponding to “Trial 1” in Table 10. The optimized MLP is labeled as “Trial 1Opt”.

The results of optimization for this trial and remaining trials for other MLP architectures

considered are shown in Table 17. For brevity, the steps below show the critical steps

required to enable Bayesian Optimization with Gaussian Processes for “Trial 1Opt” only:

Code Listing 3 - MLP Model Optimized with Bayesian Optimization with Gaussian

Processes:

000 # MLP_Trial_01_Optimized.py

001

002 import time

003 start_time = time.time()

004

005 # !pip install keras.optimizers

006 # !pip install bayesian-optimization

007

008 # from google.colab import drive

009 # drive.mount('/content/drive')

010

011 import os

012 os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'

013

014 import warnings

015 warnings.filterwarnings('ignore')

016

017 import numpy as np

018 import numpy

019 import pandas as pd

020 from pandas import read_csv

021 import math

022 from math import floor

023 import matplotlib.pyplot as plt

024 import seaborn as sns

025 import pickle

026 from keras.models import Sequential

027 from keras.layers import Dense, BatchNormalization, Dropout

83

028 from keras.callbacks import EarlyStopping, ModelCheckpoint

029 from keras.wrappers.scikit_learn import KerasRegressor

030 from keras.layers import LeakyReLU

031 from sklearn.model_selection import train_test_split

032 from sklearn.metrics import mean_squared_error

033 from sklearn.preprocessing import MinMaxScaler

034 from sklearn.model_selection import train_test_split

035 from sklearn.model_selection import cross_val_score

036 from sklearn.metrics import make_scorer, accuracy_score

037 from sklearn.model_selection import StratifiedKFold

038 from sklearn.model_selection import KFold

039 from tensorflow.keras.optimizers import Adam

040

041 # Import BayesianOptimization Library

042 from bayes_opt import BayesianOptimization

043

044 pd.set_option("display.max_columns", None)

045 LeakyReLU = LeakyReLU(alpha=0.1)

046

047 # Make scorer accuracy

048 score_acc = make_scorer('neg_mean_squared_error')

049

050 # Data Normalization

051 scaler_power_ercot = MinMaxScaler(feature_range=(-1,1),copy=True)

052 scaler_voltage_ercot = MinMaxScaler(feature_range=(-1,1),copy=True)

053

054 scaler_power_coast = MinMaxScaler(feature_range=(-1,1),copy=True)

055 scaler_voltage_coast = MinMaxScaler(feature_range=(-1,1),copy=True)

056

057 # Load Datasets

058

059 # EROCT Data used to Train and Test MLP

060 #input_power_ercot_dataframe =

read_csv('/content/input_power_ercot.csv', header=None)

061 input_power_ercot_dataframe =

read_csv('C:/Python/input_power_ercot.csv', header=None)

062 input_power_ercot = input_power_ercot_dataframe.values

063 input_power_ercot_normalized =

scaler_power_ercot.fit_transform(input_power_ercot)

064

065 #input_power_ercot_normalized = input_power_ercot[0:24]

066

067 #output_voltage_ercot_dataframe =

read_csv('/content/output_voltage_ercot.csv', header=None)

068 output_voltage_ercot_dataframe =

read_csv('C:/Python/output_voltage_ercot.csv', header=None)

069 output_voltage_ercot = output_voltage_ercot_dataframe.values

070 output_voltage_ercot_normalized =

scaler_voltage_ercot.fit_transform(output_voltage_ercot)

071

072 #output_voltage_ercot_normalized = output_voltage_ercot[0:24]

073

074 # Coast Data used to Validate MLP

075 #input_power_coast_dataframe =

read_csv('/content/input_power_coast.csv', header=None)

076 input_power_coast_dataframe =

read_csv('C:/Python/input_power_coast.csv', header=None)

84

077 input_power_coast = input_power_coast_dataframe.values

078 input_power_coast_normalized =

scaler_power_coast.fit_transform(input_power_coast)

079

080 #output_voltage_coast_dataframe =

read_csv('/content/output_voltage_coast.csv', header=None)

081 output_voltage_coast_dataframe =

read_csv('C:/Python/output_voltage_coast.csv', header=None)

082 output_voltage_coast = output_voltage_coast_dataframe.values

083 output_voltage_coast_normalized =

scaler_voltage_coast.fit_transform(output_voltage_coast)

084

085 # Split Data Into 70% for Train and 30% for Test

086 power_train_normalized, power_test_normalized,

voltage_train_normalized, voltage_test_normalized =

train_test_split(input_power_ercot_normalized,

output_voltage_ercot_normalized, test_size=0.30)

087

088 # Set seed

089 from numpy.random import seed

090 seed(123)

091

092 import os

093 os.environ['PYTHONHASHSEED']=str(123)

094

095 import random

096 random.seed(123)

097

098 import tensorflow as tf

099 tf.random.set_seed(123)

100

101 # Define an Objective Function with Hyperparameters as Arguments

102 def nn_bo(neurons, learning_rate, batch_size, epochs):

103 neurons = round(neurons)

104 batch_size = round(batch_size)

105 epochs = round(epochs)

106

107 def nn_fun():

108 opt = Adam(lr = learning_rate)

109

110 nn = Sequential()

111 nn.add(Dense(neurons, input_dim=56, activation='relu'))

112 nn.add(Dense(56))

113 nn.compile(loss='mean_squared_error', optimizer=opt,

metrics=['mse'])

114 return nn

115

116 es = EarlyStopping(monitor='mean_squared_error', mode='max',

verbose=0, patience=20)

117 nn = KerasRegressor(build_fn=nn_fun, epochs=epochs,

batch_size=batch_size,

118 verbose=0)

119 kfold = KFold(n_splits=5, shuffle=True, random_state=123)

120 score = cross_val_score(nn, power_train_normalized,

voltage_train_normalized, cv=kfold).mean()

121

122 return score

85

123

124 # Define the Hyperparameter Space to Optimize Over

125 params_nn ={

126 'neurons': (1, 1000),

127 'learning_rate':(0.0001, 1),

128 'batch_size':(1, 10),

129 'epochs':(1,10)

130 }

131

132 # Run Bayesian Optimization with Gaussian Processes

133 nn_bo = BayesianOptimization(nn_bo, params_nn, random_state=111)

134

135 nn_bo.maximize(init_points=2, n_iter=2)

136

137 # Save and Print Hyperparameters Selected via Bayesian Optimization

138 params_nn_ = nn_bo.max['params']

139

140 params_nn_['neurons'] = round(params_nn_['neurons'])

141 params_nn_['learning_rate'] = round(params_nn_['learning_rate'], 2)

142 params_nn_['batch_size'] = round(params_nn_['batch_size'])

143 params_nn_['epochs'] = round(params_nn_['epochs'])

144

145 params_nn_

146

147 print(params_nn_)

148

149 # Fit the Neural Network with Optimized Hyperparameters

150 def nn_fun():

151 opt = Adam(lr = params_nn_['learning_rate'])

152 nn = Sequential()

153 nn.add(Dense(params_nn_['neurons'], input_dim=56,

activation='relu'))

154 nn.add(Dense(56))

155 nn.compile(loss='mean_squared_error', optimizer=opt,

metrics=['mse'])

156 return nn

157

158 es = EarlyStopping(monitor='mean_squared_error', mode='max',

verbose=0, patience=20)

159 nn = KerasRegressor(build_fn=nn_fun, epochs=params_nn_['epochs'],

batch_size=params_nn_['batch_size'],

160 verbose=0)

161 kfold = KFold(n_splits=5, shuffle=True, random_state=123)

162 nn.fit(power_train_normalized, voltage_train_normalized,

validation_data=(power_test_normalized,

163 voltage_test_normalized), verbose=0)

164

165 # Evaluate the MLP Model with Optimized Hyperparameters

166 trainScore = cross_val_score(nn, power_train_normalized,

voltage_train_normalized, cv=kfold).mean()

167 print('ERCOT Train Score: %.6f MSE (%.6f RMSE)' % (abs(trainScore),

math.sqrt(abs(trainScore))))

168

169 testScore = cross_val_score(nn, power_test_normalized,

voltage_test_normalized, cv=kfold).mean()

170 print('ERCOT Test Score: %.6f MSE (%.6f RMSE)' % (abs(testScore),

math.sqrt(abs(testScore))))

86

171

172 print(' ')

173 # Make Prediction with the Optimimized MLP on Validation Data

174 coastScore = cross_val_score(nn, input_power_coast_normalized,

output_voltage_coast_normalized,

175 cv=kfold).mean()

176

177 print('Coast Validation Score: %.6f MSE (%.6f RMSE)' %

(abs(coastScore),

178

math.sqrt(abs(coastScore))))

179 print(' ')

180

181 print("--- %s seconds ---" % (time.time() - start_time))

Execution of the code listing presented above produced the following results:

| iter | target | batch_... | epochs | learni... | neurons |

| 1 | -1.032 | 6.51 | 2.522 | 0.4417 | 769.5 |

| 2 | -0.03407 | 3.658 | 2.342 | 0.03225 | 420.8 |

| 3 | -0.09807 | 3.074 | 3.462 | 0.1861 | 420.5 |

| 4 | -0.02204 | 9.955 | 2.796 | 0.05658 | 434.1 |

===

{'batch_size': 10, 'epochs': 3, 'learning_rate': 0.06, 'neurons': 434}

ERCOT Train Score: 0.021157 MSE (0.145455 RMSE)

ERCOT Test Score: 0.023658 MSE (0.153813 RMSE)

Coast Validation Score: 0.019329 MSE (0.139029 RMSE)

--- 92.21797847747803 seconds ---

Table 16 presents a summary of Code Listing 3 for an MLP model optimized with

Bayesian Optimization with Gaussian Processes.

87

Table 16 - Summary of Code Listing 3 for MLP Model Optimized with Bayesian

Optimization with Gaussian Processes

Line #: Description:

017 - 042 Import essential Python libraries for implementation of MLP model

for DSSE and Bayesian Optimization with Gaussian Process for

hyperparameter selection

050 - 055 Define “scalar” objects to perform data normalization on source data

to aid in training performance.

059 - 070 Import ERCOT data used to train and test the MLP. Perform data

normalization.

074 - 083 Import COAST data used to validate MLP. Perform normalization.

085 - 086 Split input data into 70% for training and 30% for testing.

101 - 122 Define objective function with hyperparameters as arguments.

Hyperparameters to be optimized over are the # of neurons in the

hidden layer, learning rate for the ADAM optimizer, batch size and #

of epochs for training.

107 - 114 Define a parameterized MLP model that is “wrapped” within the

objective function.

124 - 129 Define the hyperparameter space to optimize over. Establish ranges

for each hyperparameters.

133 Pass the objective function and parameter space to the

BayesianOptimization() function.

135 Initialize Bayesian Optimization with Gaussian Process with the

maximize() function. Two initial points will be sampled and the

Bayesian Optimization algorithm will perform 2 iterations.

137 - 147 Save and print hyperparameters selected via Bayesian Optimization.

149 - 156 Fit the MLP with the optimized hyperparameters.

165 - 170 Evaluate the optimized MLP on training and testing data in terms of

RMSE.

88

173 - 178 Perform DSSE with optimized MLP on COAST validation data and

report RMSE.

Table 17 is an extension of Table 10 to include trials (models) with and without

hyperparameter optimization to compare the performance in training, testing, and

validation scores (RMSE) as well as execution time on a system with the following

specifications:

Processor: Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz 2.81 GHz

Installed: RAM 16.0 GB (15.9 GB usable)

System type: 64-bit operating system, x64-based processor

Table 17 – Performance Results for MLP Models with Hyperparameter

Optimization

Trial
Input

Layer

Hidden

Layers

Output

Layer

Train

RMSE

(70%)

Test

RMSE

(30%)

COAST

Act. vs.

Est.

RMSE

Execution

Time

(Seconds)

1
56

Neurons

1 Layer

56

Neurons

56

Neurons
0.140927 0.142162 0.323075 135.453

1Opt
56

Neurons

1 Layer

72

Neurons

56

Neurons
0.128002 0.141306 0.118630 969.183

2
56

Neurons

1 Layer

112

Neurons

56

Neurons
0.140486 0.136711 0.323293 138.883

2Opt
56

Neurons

1 Layer

72

Neurons

56

Neurons
0.128002 0.141306 0.118630 969.183

3
56

Neurons

1 Layer

224

Neurons

56

Neurons
0.137222 0.137328 0.322124 143.491

3Opt
56

Neurons

1 Layer

72

Neurons

56

Neurons
0.128002 0.141306 0.118630 969.183

3a
56

Neurons

2 Layers

56

Neurons

56

Neurons
0.133488 0.132823 0.329049 140.123

89

3aOpt
56

Neurons

2 Layers

39

Neurons

56

Neurons
0.072172 0.079611 0.063347 2079.529

3b
56

Neurons

2 Layers

224

Neurons

56

Neurons
0.128535 0.128073 0.335831 176.820

3bOpt
56

Neurons

2 Layers

39

Neurons

56

Neurons
0.072172 0.079611 0.063347 2079.529

3c
56

Neurons

3 Layers

56

Neurons

56

Neurons
0.131211 0.130995 0.336122 142.877

3cOpt
56

Neurons

3 Layers

31

Neurons

56

Neurons
0.077014 0.093673 0.072809 996.437

3d
56

Neurons

3 Layers

224

Neurons

56

Neurons
0.127834 0.127370 0.334619 217.837

3dOpt
56

Neurons

3 Layers

31

Neurons

56

Neurons
0.077014 0.093673 0.072809 996.437

3e
56

Neurons

4 Layers

56

Neurons

56

Neurons
0.130180 0.129626 0.337249 144.387

3eOpt
56

Neurons

4 Layers

91

Neurons

56

Neurons
0.072290 0.092400 0.062920 1168.186

3f
56

Neurons

4 Layers

224

Neurons

56

Neurons
0.125555 0.125256 0.334843 249.738

3fOpt
56

Neurons

4 Layers

91

Neurons

56

Neurons
0.072290 0.092400 0.062920 1168.186

3g
56

Neurons

5 Layers

56

Neurons

56

Neurons
0.130120 0.129770 0.338243 151.583

3gOpt
56

Neurons

5 Layers

26

Neurons

56

Neurons
0.077375 0.105210 0.074014 2090.218

Note that the number of hidden neurons per layer for the trials with the “xxOpt”

designation was determined by the Bayesian Optimization with Gaussian Processes

described in section 3.9.1.

90

Note in Table 17 that the column “COAST Act. vs. Est. RMSE” represents the

“validation error” for data not previously seen by each MLP model. The Bayesian

Optimizer selected hyperparameters that reduced validation error over the “unoptimized”

model configuration for each trial. The “Execution Time” in Table 17 confirms the

“exploration/exploitation tradeoff” by the Expected Improvement (EI) acquisition

function discussed in section 3.9.1. While improvements were made in the reduction of

validation error enabled by hyperparameter optimization, the execution time for each trial

was increased due to the time required to sample regions of the hyperparameter space and

select the “next best guess” for each subsequent step of optimization as illustrated in the

example presented in section 3.9.1. Table 18 provides the hyperparameters selected by

the Bayesian Optimization process for the trials shown in Table 17.

Table 18 - Hyperparameters Selected via Bayesian Optimization with Gaussian

Processes

Trial
Neurons per

Hidden Layer
Learning Rate Epochs Batch Size

1Opt 72 0.023 29 85

2Opt 72 0.023 29 85

3Opt 72 0.023 29 85

3aOpt 39 0.821 220 93

3bOpt 39 0.821 220 93

3cOpt 31 0.010 109 82

3dOpt 31 0.010 109 82

3eOpt 91 0.321 87 75

3fOpt 91 0.321 87 75

3gOpt 26 0.013 82 33

Table 19 presents a summary of the optimized model configurations MLPs optimized via

Bayesian Optimization with Gaussian Processes. The table shows for models with a

given number of hidden layers, the configuration established by utilizing the

hyperparameters selected by the optimization process.

91

Table 19 - Optimized Model Configurations

Number of

Hidden Layers
Model Configuration

1

Input Layer Neurons: 56

Hidden Layer Neurons: 72

Output Layer Neurons: 56

Activation Function per Layer: Rectified Linear Unit

(ReLU)

Learning Rate: 0.023

Epochs = 29

Batch Size = 85

Loss Function: Mean Squared Error

Optimizer: Adam Optimizer

2

Input Layer Neurons: 56

Hidden Layer Neurons: 39

Output Layer Neurons: 56

Activation Function per Layer: Rectified Linear Unit

(ReLU)

Learning Rate: 0.821

Epochs = 220

Batch Size = 93

Loss Function: Mean Squared Error

Optimizer: Adam Optimizer

3

Input Layer Neurons: 56

Hidden Layer Neurons: 31

Output Layer Neurons: 56

Activation Function per Layer: Rectified Linear Unit

(ReLU)

Learning Rate: 0.010

Epochs = 109

Batch Size = 82

Loss Function: Mean Squared Error

Optimizer: Adam Optimizer

4

Input Layer Neurons: 56

Hidden Layer Neurons: 91

Output Layer Neurons: 56

Activation Function per Layer: Rectified Linear Unit

(ReLU)

Learning Rate: 0.321

Epochs = 87

Batch Size = 75

Loss Function: Mean Squared Error

Optimizer: Adam Optimizer

5 Input Layer Neurons: 56

92

Hidden Layer Neurons: 26

Output Layer Neurons: 56

Activation Function per Layer: Rectified Linear Unit

(ReLU)

Learning Rate: 0.013

Epochs = 82

Batch Size = 33

Loss Function: Mean Squared Error

Optimizer: Adam Optimizer

The following observations can be made regarding MLPs considered in this research for

DSSE:

• For unoptimized MLPs considered in this current research, there is no notable benefit

in utilizing increasingly complex models in terms of number of hidden layers and

number of neurons per hidden layer. In some cases, there is even diminishing

performance in terms of the validation error RMSE with more complex models.

• For unoptimized MLPs considered in this current research, the RMSE for training and

testing is of a similar scale, however this error metric increases significantly when

making predictions for validation on data never seen by the network. This is verified

in the column "Coast Act. vs. Est. RMSE" in Table 17 . Thus, the unoptimized MLPs

considered, exhibit in machine learning terms the condition of “overfitting” in which

the MLP learns the training dataset quite well, however, fails to generalize to new

data.

• For MLPs optimized by the Bayesian Optimization method considered in this

research, a parameter space of 30x109 combinations can be searched to arrive at a

combination of hyperparameters to yield a reduction in validation error.

• For MLPs optimized by the Bayesian Optimization method considered in this

research, the RMSE for training and testing is of a similar scale to that of unoptimized

93

MLPs, however this error metric is significantly lower when making predictions on

data never seen by the network. This is verified in the column "Coast Act. vs. Est.

RMSE" in Table 17. Thus Bayesian Optimization applied to MLPs enabled the

resulting models to better generalize to new data.

• Bayesian Optimization seeks a “global” solution however there is a trade-off between

exploration and exploitation of subsets of the hyperparameter space.

Possible research opportunities may include the following:

• Investigation of full-state estimation of complex voltages at all buses and nodes

given power flow through a subset of lines in a test feeder circuit.

• Investigation of Gaussian Processes with various mean and covariance functions.

• Investigation of various acquisition functions and related parameters illustrated in

section 3.9.1. Thus, the configuration of the parameters of the Gaussian Process

can be approached as another optimization problem to improve performance.

• Investigation of the exploration/exploitation tradeoff inherent in Bayesian

Optimization with Gaussian Process to further improve its performance.

CHAPTER 4. FULL DISTRIBUTION SYSTEM STATE ESTIMATION WITH OPTIMIZED

MLP MODELS

Preliminary research on which this dissertation is based involved the placement of power

and voltage monitors at specific locations in an IEEE-34 Node Test Distribution System

as shown in Figure 8. Power monitors captured complex power flowing through specific

nodes and voltage monitors captured complex voltage at the same nodes. This data was

then used to train MLPs to predict complex voltage at the same nodes given new complex

94

power. An improved methodology captures bi-directional power flow on every line and

complex voltage at every node to establish training data. The current research

investigates the effect of utilizing specific percentages of complex power flow with

randomly selected lines to train MLPs to predict complex voltage at all nodes. The effect

of Bayesian Optimization with Gaussian Processes is investigated in terms of reducing

validation error. The performance of training, testing, and validation is presented in

terms of root-mean-squared-error (RMSE) and execution time.

Figure 8 in section 3.3 presents the IEEE test distribution system and measurement points

considered in the early stages of the research on which this dissertation is based. The

number of power and voltage monitors and locations was selected randomly and the MLP

model hyperparameters such as number of hidden layer neurons, learning rate, batch size

and number of epochs were selected via an ad hoc approach. Thus, the MLP models were

considered “unoptimized”.

As noted in section 3.7, a key observation is that MLP models without hyperparameter

optimization do not offer significant improvement in RMSE when performing regression

by utilizing increasingly complicated networks in terms of number of layers and number

of neurons per layer.

It was found that improvement in RMSE could be achieved through Bayesian

Optimization and that a hyperparameter space of 30x109 could be searched at the expense

of additional training time over that of unoptimized MLP models.

Additionally, it was found that “optimized” MLP models were able to avoid over-

training and thus generalize better to data never seen by the networks than models with

the same structure without hyperparameter optimization.

95

The goals of the latest iteration of research described in this chapter are as follows:

1. Establish an improved methodology and data pipeline [52] for training, testing

and validation through the integration of a high level programming language

(Python) and a distribution system simulator (OpenDSS) [53].

2. Investigate the effect of utilizing specific percentages of complex power flow

with randomly selected lines to train MLPs to predict the complex voltage at all

nodes of the distribution system.

3. Identify opportunities for improved state estimation given larger power

distribution systems.

4.1 Original Workflow and Data Pipeline

Figure 19 shows a functional diagram of the original workflow and data pipeline for the

preliminary research on which this dissertation is based.

96

Figure 19 - Original Workflow and Data Pipeline

4.1.1 Load Profile

A load profile provides a means of varying the loads in the distribution system during a

power flow simulation. As presented in section 3.4 and 3.5, LoadProfile_ERCOT.csv

and LoadProfile_COAST.csv represent load profiles associated with two regions within

the Electric Reliability Council of Texas [10]. The choice of load profiles used in the

current research is based upon the accessibility of the data and prevalence in power

system literature and has no other significance.

4.1.2 Distribution System Simulator

An open source distribution system simulator (OpenDSS) is used for performing power

flow simulations to gather training, testing and validation datasets.

Power and voltage monitors are placed at specific locations in the test feeder system. The

descriptions, locations and quantities measured were presented previously in section 3.3 of

97

this dissertation. Power flow simulations were performed based on load profiles to

establish the datasets for training, testing and validation.

4.1.3 Raw Data Files Exported from Simulator Monitors

Each OpenDSS monitor provides the capability of exporting raw data files in .csv format.

Specifically, for the monitors placed in the test feeder system, there are 10 .csv files

representing the complex power flow through each monitor location and 10 .csv files

representing the complex voltage at each monitor location.

These datasets are considered “raw” in the sense that they contain additional information

not conducive to the machine learning models selected for performing regression.

For the complex power and voltage datasets, each file contains non-numeric column

headers describing the numeric data and the corresponding units (i.e. P(kW), Q(kvar),

V(volts), Vangle(degrees). Additionally, columns representing the “hour” and “sec” of the

power flow simulation were included and deemed unnecessary.

For the complex voltage datasets, current flow per phase was included and deemed

unnecessary. It should be noted that for state estimation, current flow could be considered

an option for future research.

4.1.4 Data Pre-processing

In order to prepare and reshape the datasets for processing by multilayer-perceptron

models considered in this research, it is necessary to establish a single dataset for

supervised learning comprised of complex power (PQ values) and a single dataset

comprised of complex voltage (V_mag and V_angle) from all of the separate .csv files.

98

This task is performed by a high-level programming language (Python) capable of

looping through a file directory to load and concatenate the separate datasets into the

required final datasets. Additionally during this process, column headings and

extraneous columns are removed.

The decision of which columns to maintain and which to remove is in the parlance of

machine learning, referred to as “feature selection” or “feature engineering” [52].

Additional research may consider the effect of selection of different features for use in

state estimation. For example, the authors in [54] consider branch-current based state

estimation.

4.1.5 Machine Learning Ecosystem

The machine learning ecosystem selected in the previous research includes the following:

Python [62], Sklearn [55],Pandas [56], TensorFlow [57], Keras [58].

Once preprocessing is complete, the MLP models could be trained, tested and validated

for performing state estimation for the limited locations within the test feeder system

corresponding to the location of the monitors.

4.2 Improved Workflow and Data Pipeline

Figure 20 shows a functional diagram of an improved workflow and data pipeline.

99

Figure 20 - Improved Workflow and Data Pipeline

4.2.1 Load Profile

The load profile .csv files are loaded directly to the Machine Learning Ecosystem.

4.2.2 Distribution System Simulator

As shown in Figure 20, a dynamic link library (py_dss_interface.dll) [60] enables

bidirectional communication between the Machine Learning Ecosystem and the

distribution system simulator. This .dll allows for control and configuration of the

100

distribution system simulator to be performed within the Machine Learning Ecosystem.

This configuration thus simplifies the workflow by establishing the distribution system

simulator as a dedicated power flow engine. Additionally, the need to place power and

voltage monitors within the distribution system is removed along with the external data

processing required in the original workflow. Finally, ability of the distribution system

simulator to capture bi-directional power flow throughout the entire system and thus state

estimation of much larger circuits is enabled.

4.2.3 Machine Learning Ecosystem

The Machine Learning Ecosystem is again based upon Python supported by machine

learning libraries of sklearn, Pandas, TensorFlow, and Keras. Additionally, the

bayes_opt [59] library is utilized for hyperparameter optimization based upon Bayesian

Optimization with Gaussian Processes. The theory and application of this library to the

research on which this dissertation is based can be found in sections 3.9.1 and 3.9.2.

As shown in Figure 20, the data pipeline is organized into data processing, model

training/evaluation, hyperparameter optimization and final evaluation units.

The profile files are loaded directly to the data processing unit. A bi-directional path is

established between the power flow simulation “engine” and the data processing unit

enabled by the dynamic link library (py_dss_interface.dll).

Initiation and configuration of the power flow simulation and related parameters such as

total hours are performed within the machine learning ecosystem.

The output from the distribution system simulator is retrieved by the data processing unit

and external processing is not required to concatenate files and eliminate non-numeric

data. Complex power through all lines and complex voltage at all nodes are accessible

101

directly via the dynamic link library and read into Python data structures (i.e. Numpy

Arrays [61] and Pandas Data Frames [56]). A feedback loop is established between the

model training/evaluation and hyperparameter optimization units. The Multilayer

Perceptron (MLP) model is passed to the hyperparameter optimization unit as an

argument and the final selection of the MLP hyperparameters is performed via Bayesian

Optimization with Gaussian Processes. Finally, the “optimized” MLP model is used to

perform state estimation by minimizing the root-mean-squared error (RMSE) between

actual and predicted values of complex voltage given validation data (new complex

power data).

Specifically, these improvements enabled the following:

1. An automated method to perform power flow simulations of a test feeder with any

number of nodes and lines.

2. Integration of Python and OpenDSS through the dynamic link library

“py_dss_interface.dll”.

3. Ability to automatically acquire complex power through all lines and complex

voltage at every node for training, testing, and validation thus enabling “full-state

estimation”.

4.2.4 Experimental Methodology

The IEEE 34 Node Test Distribution System that was considered in previous research

was also used in the updated research methodology discussed in this chapter.

102

4.2.5 Measurement Points and Locations

The current research features full-state estimation in the sense that all lines and all nodes

of the distribution feeder are employed in gathering training, testing and validation data.

Figure 20 provides the line elements and power quantities for the IEEE 34 Node Test

Distribution system considered in the current research.

Table 20 - Line Elements and Power Flow

Line

Element

 Node Node Quantities

L1 800 802
Phase A,B,C

P (kW) and Q(kVAR)

L2 802 806
Phase A,B,C

P (kW) and Q(kVAR)

L3 806 808
Phase A,B,C

P (kW) and Q(kVAR)

L4 808 810
Phase B

P (kW) and Q(kVAR)

L5 808 812
Phase A,B,C

P (kW) and Q(kVAR)

L6 812 814
Phase A,B,C

P (kW) and Q(kVAR)

L7 814 850
Phase A,B,C

P (kW) and Q(kVAR)

L8 816 818
Phase A

P(kW) and Q(kVAR)

L9 816 824
Phase A,B,C

P (kW) and Q(kVAR)

L10 818 820
Phase A

P(kW) and Q(kVAR)

L11 820 822
Phase A

P (kW) and Q(kVAR)

L12 824 826
Phase B

P (kW) and Q(kVAR)

103

L13 824 828
Phase A,B,C

P (kW) and Q(kVAR)

L14 828 830
Phase A,B,C

P (kW) and Q(kVAR)

L15 830 854
Phase A,B,C

P (kW) and Q(kVAR)

L16 832 858
Phase A,B,C

P (kW) and Q(kVAR)

L17 834 860
Phase A,B,C

P (kW) and Q(kVAR)

L18 834 842
Phase A,B,C

P (kW) and Q(kVAR)

L19 836 840
Phase A,B,C

P (kW) and Q(kVAR)

L20 836 862
Phase A,B,C

P (kW) and Q(kVAR)

L21 842 844
Phase A,B,C

P (kW) and Q(kVAR)

L22 844 846
Phase A,B,C

P (kW) and Q(kVAR)

L23 846 848
Phase A,B,C

P (kW) and Q(kVAR)

L24 850 816
Phase A,B,C

P (kW) and Q(kVAR)

L25 852 832
Phase A,B,C

P (kW) and Q(kVAR)

L26 854 856
Phase B

P (kW) and Q(kVAR)

L27 854 852
Phase A,B,C

P (kW) and Q(kVAR)

L28 858 864 Phase A

104

P (kW) and Q(kVAR)

L29 858 834
Phase A,B,C

P (kW) and Q(kVAR)

L30 860 836
Phase A,B,C

P (kW) and Q(kVAR)

L31 862 838
Phase B

P (kW) and Q(kVAR)

L32 888 890
Phase A,B,C

P (kW) and Q(kVAR)

It should be noted that all lines in the test feeder are being accounted for and the training

data contains bi-directional power flow between each “Node” pair presented in Table 20.

Table 21 provides the expanded set of node voltages and phase angles for the IEEE 34

Node Test Distribution system considered in the current research.

Table 21 - Node Voltages and Phase Angles

Node Quantities

800

Phase A,B,C to Neutral

Voltage Mag. (V) and

Phase Angle (degrees)

802

Phase A,B,C to Neutral

Voltage Mag. (V) and

Phase Angle (degrees)

806

Phase A,B,C to Neutral

Voltage Mag. (V) and

Phase Angle (degrees)

808

Phase A,B,C to Neutral

Voltage Mag. (V) and

Phase Angle (degrees)

810

Phase B to Neutral

Voltage Mag. (V) and

Phase Angle (degrees)

812 Phase A,B,C to Neutral

105

Voltage Mag. (V) and

Phase Angle (degrees)

814

Phase A,B,C to Neutral

Voltage Mag. (V) and

Phase Angle (degrees)

850

Phase A,B,C to Neutral

Voltage Mag. (V) and

Phase Angle (degrees)

816

Phase A,B,C to Neutral

Voltage Mag. (V) and

Phase Angle (degrees)

818

Phase A to Neutral

Voltage Mag. (V) and

Phase Angle (degrees)

820

Phase A to Neutral

Voltage Mag. (V) and

Phase Angle (degrees)

822

Phase A to Neutral

Voltage Mag. (V) and

Phase Angle (degrees)

824

Phase A,B,C to Neutral

Voltage Mag. (V) and

Phase Angle (degrees)

826

Phase B to Neutral

Voltage Mag. (V) and

Phase Angle (degrees)

828

Phase A,B,C to Neutral

Voltage Mag. (V) and

Phase Angle (degrees)

830

Phase A,B,C to Neutral

Voltage Mag. (V) and

Phase Angle (degrees)

854

Phase A,B,C to Neutral

Voltage Mag. (V) and

Phase Angle (degrees)

106

852

Phase A,B,C to Neutral

Voltage Mag. (V) and

Phase Angle (degrees)

832

Phase A,B,C to Neutral

Voltage Mag. (V) and

Phase Angle (degrees)

858

Phase A,B,C to Neutral

Voltage Mag. (V) and

Phase Angle (degrees)

834

Phase A,B,C to Neutral

Voltage Mag. (V) and

Phase Angle (degrees)

842

Phase A,B,C to Neutral

Voltage Mag. (V) and

Phase Angle (degrees)

844

Phase A,B,C to Neutral

Voltage Mag. (V) and

Phase Angle (degrees)

846

Phase A,B,C to Neutral

Voltage Mag. (V) and

Phase Angle (degrees)

848

Phase A,B,C to Neutral

Voltage Mag. (V) and

Phase Angle (degrees)

860

Phase A,B,C to Neutral

Voltage Mag. (V) and

Phase Angle (degrees)

836

Phase A,B,C to Neutral

Voltage Mag. (V) and

Phase Angle (degrees)

840

Phase A,B,C to Neutral

Voltage Mag. (V) and

Phase Angle (degrees)

862 Phase A,B,C to Neutral

107

Voltage Mag. (V) and

Phase Angle (degrees)

838

Phase B to Neutral

Voltage Mag. (V) and

Phase Angle (degrees)

864

Phase A to Neutral

Voltage Mag. (V) and

Phase Angle (degrees)

888

Phase A,B,C to Neutral

Voltage Mag. (V) and

Phase Angle (degrees)

890

Phase A,B,C to Neutral

Voltage Mag. (V) and

Phase Angle (degrees)

856

Phase B to Neutral

Voltage Mag. (V) and

Phase Angle (degrees)

Note from Table 21 that the complex voltage at every node of the test distribution system

are accounted for.

4.2.6 Gather Training/Testing Data

OpenDSS is used to perform a power flow simulation by utilizing a load profile for the

ERCOT region. Execution and control of the OpenDSS power flow simulation is

performed within the Python ecosystem utilizing py_dss_interface.dll. The power flow is

solved for a specified number of hours. The Python ecosystem allows for efficient

gathering and data processing capability to prepare the complex power flow through all

lines and complex voltages at all nodes for training and testing MLP models.

108

4.2.7 Perform Random Selection of Lines

From the entire set of power flow lines, random selection of lines is gathered to establish

datasets representing complex power flow for 10, 25, 75, and 100% of the lines. These

datasets and the specific names of the lines are used as inputs to the next steps to gather

the validation data and perform predictions. Table 22 provides the lines that were

selected for each random trial.

4.2.8 Gather Validation Data

OpenDSS is used to perform a power flow simulation by utilizing a load profile for the

COAST region. Execution and control of the OpenDSS power flow simulation is

performed with the Python ecosystem by utilizing py_dss_interface.dll. The power flow

is solved for a specified number of hours.

The line names established in 4.2.7 were used to select the same lines for the validation

data sets.

4.2.9 Unoptimized MLP Models

The datasets acquired in sections 4.2.6 and 4.2.8 were utilized as input to unoptimized

MLP models.

4.2.10 Optimized MLP Models

The datasets acquired in sections 4.2.6 and 4.2.8 were utilized as inputs to MLP models

with hyperparameters selected by Bayesian Optimization with Gaussian Processes.

109

Table 24, Table 25, and Table 26 provide the results for unoptimized and optimized

models in terms of training, testing, and validation RMSE and execution time.

Table 27 provides the hyperparameters selected via Bayesian Optimization.

Table 22, provides the lines selected from the available lines in Table 20 at percentages

of 10, 25, 50, 75 and 100%.

Table 22 - Randomly Selected Lines

Random

Selection

%

R1 Lines:

R2 Lines:

R3 Lines:

R4 Lines:

10

Line.l4

Line.l17

Line.l21

Line.l6

Line.l8

Line.l32

Line.l16

Line.l28

Line.l30

Line.l4

Line.l17

Line.l21

25

Line.l4

Line.l5

Line.l15

Line.l19

Line.l24

Line.l25

Line.l31

Line.l32

Line.l5

Line.l14

Line.l15

Line.l18

Line.l20

Line.l27

Line.l28

Line.l29

Line.l9

Line.l17

Line.l18

Line.l20

Line.l25

Line.l26

Line.l29

Line.l32

Line.l3

Line.l5

Line.l8

Line.l11

Line.l15

Line.l18

Line.l24

Line.l32

50

Line.l4

Line.l5

Line.l11

Line.l12

Line.l14

Line.l15

Line.l16

Line.l17

Line.l19

Line.l20

Line.l21

Line.l22

Line.l23

Line.l28

Line.l1

Line.l3

Line.l4

Line.l5

Line.l9

Line.l10

Line.l11

Line.l16

Line.l19

Line.l22

Line.l26

Line.l28

Line.l29

Line.l30

Line.l3

Line.l7

Line.l8

Line.l9

Line.l10

Line.l17

Line.l20

Line.l22

Line.l23

Line.l24

Line.l25

Line.l27

Line.l28

Line.l29

Line.l1

Line.l3

Line.l5

Line.l7

Line.l9

Line.l11

Line.l13

Line.l14

Line.l16

Line.l17

Line.l18

Line.l19

Line.l23

Line.l24

110

Line.l30

Line.l31

Line.l31

Line.l32

Line.l31

Line.l32

Line.l28

Line.l32

75

Line.l2

Line.l6

Line.l7

Line.l8

Line.l9

Line.l10

Line.l11

Line.l12

Line.l13

Line.l14

Line.l15

Line.l16

Line.l17

Line.l19

Line.l20

Line.l23

Line.l24

Line.l26

Line.l27

Line.l28

Line.l29

Line.l30

Line.l31

Line.l32

Line.l1

Line.l2

Line.l5

Line.l6

Line.l7

Line.l9

Line.l11

Line.l13

Line.l14

Line.l15

Line.l16

Line.l17

Line.l18

Line.l19

Line.l21

Line.l22

Line.l23

Line.l24

Line.l26

Line.l27

Line.l28

Line.l30

Line.l31

Line.l32

Line.l2

Line.l4

Line.l5

Line.l6

Line.l7

Line.l9

Line.l11

Line.l12

Line.l13

Line.l14

Line.l15

Line.l17

Line.l18

Line.l19

Line.l20

Line.l21

Line.l22

Line.l23

Line.l24

Line.l25

Line.l26

Line.l27

Line.l29

Line.l30

Line.l1

Line.l3

Line.l4

Line.l5

Line.l6

Line.l7

Line.l8

Line.l9

Line.l10

Line.l12

Line.l15

Line.l16

Line.l17

Line.l20

Line.l21

Line.l22

Line.l23

Line.l24

Line.l25

Line.l27

Line.l28

Line.l29

Line.l30

Line.l31

100

Line.l1

Line.l2

Line.l3

Line.l4

Line.l5

Line.l6

Line.l7

Line.l8

Line.l9

Line.l10

Line.l11

Line.l12

Line.l13

Line.l14

Line.l15

Line.l16

Line.l17

Line.l18

Line.l19

Line.l20

Line.l21

Line.l22

Line.l23

Line.l24

Line.l1

Line.l2

Line.l3

Line.l4

Line.l5

Line.l6

Line.l7

Line.l8

Line.l9

Line.l10

Line.l11

Line.l12

Line.l13

Line.l14

Line.l15

Line.l16

Line.l17

Line.l18

Line.l19

Line.l20

Line.l21

Line.l22

Line.l23

Line.l24

Line.l1

Line.l2

Line.l3

Line.l4

Line.l5

Line.l6

Line.l7

Line.l8

Line.l9

Line.l10

Line.l11

Line.l12

Line.l13

Line.l14

Line.l15

Line.l16

Line.l17

Line.l18

Line.l19

Line.l20

Line.l21

Line.l22

Line.l23

Line.l24

Line.l1

Line.l2

Line.l3

Line.l4

Line.l5

Line.l6

Line.l7

Line.l8

Line.l9

Line.l10

Line.l11

Line.l12

Line.l13

Line.l14

Line.l15

Line.l16

Line.l17

Line.l18

Line.l19

Line.l20

Line.l21

Line.l22

Line.l23

Line.l24

111

Line.l25

Line.l26

Line.l27

Line.l28

Line.l29

Line.l30

Line.l31

Line.l32

Line.l25

Line.l26

Line.l27

Line.l28

Line.l29

Line.l30

Line.l31

Line.l32

Line.l25

Line.l26

Line.l27

Line.l28

Line.l29

Line.l30

Line.l31

Line.l32

Line.l25

Line.l26

Line.l27

Line.l28

Line.l29

Line.l30

Line.l31

Line.l32

Table 23 shows the results for random selection of lines corresponding to the column of

“R1_Lines” in Table 22. Results for unoptimized and optimized MLP models with 1

hidden layer utilizing output data from power flow simulations of 720 hours are

presented.

Note that for unoptimized models, the size of the Input Layer and Output Layer in terms

of number of neurons is determined by the number of features of the training data. For

example, for trial R1_10, with 10 percent of the total lines selected there are 36 features

corresponding to the PQ values of each phase of each line. The Output Layer size of 190

neurons is fixed owing to the number of features (voltage magnitudes and voltage phase

angles) comprising the target complex voltage set being predicted. This voltage dataset

includes the complex voltage at all nodes and phases of the test distribution system.

The number of Hidden Layer neurons for the unoptimized models is set equal to the

number of Input Layer neurons as a “reasonable” starting point and could be set to any

other number in a scenario of selecting the number of neurons ad-hoc.

The choice of setting the two sizes equal is to provide some consistency in the

methodology used in the current research as there are to the knowledge of the author of

this dissertation no analytical methods to determine the number of neurons in the hidden

layer.

112

The hyperparameters of the unoptimized models are presented in section 3.6.2 and

repeated below for convenience.

• Activation Function per Layer: Rectified Linear Unit (ReLU)

• Batch Size = 10

• Epochs = 200

• Learning Rate: 0.001

• Loss Function: Mean Squared Error

• Input Layer Neurons: 56

• Output Layer Neurons: 56

• Optimizer: Stochastic Gradient Descent

For each “unoptimized” model in Table 23, there is a corresponding optimized model

with hyperparameters determined by Bayesian Optimization with Gaussian Processes.

To clarify, “R1_10” corresponds to an unoptimized MLP trained on 10% of the available

lines in the distribution system to predict the complex voltage at all nodes of the

distribution system. Likewise, “R1_10_Opt” corresponds to an optimized version of

“R1_10” performing the same task with the same 10% selection of lines. Note that the

number of Input Layer and Output Layer neurons for the optimized model matches that

of the unoptimized model in each case given that the same 10% of lines is used for

training and the same number of complex node voltages are being predicted.

The Hidden Layer neurons is determined by Bayesian Optimization. Additionally, for

each optimized model the Learning Rate, Epochs and Batch Size are also determined by

Bayesian Optimization. The result for optimized models is found in Table 23.

The columns “Train RMSE (70%)” and “Test RMSE (30%)” correspond to the training

and testing data RMSE. The train/test split is set at 70/30. The column “COAST Act. vs.

Est. RMSE” corresponds to the validation data RMSE and is the figure of merit for

comparison of how well the MLP models generalize to new data. The column

113

“Execution Time (Seconds)” represents the total time of each model to train/test and

perform predictions. The data validation error shown in the column “COAST Act. vs.

Est. RMSE” in Table 23 indicate the trials on which Bayesian Optimization resulted in a

reduction in error. It should be noted that most of the trials show improvement through

optimization at the expense of increased execution time required by the Bayesian

Optimization with Gaussian Processes. As discussed in section 3.9.2, the Bayesian

Optimization process investigated in the current research enables a systematic approach

to search over a hyperparameter space of 30x109 possibilities. Table 24, Table 25, and

Table 26 show the results for the other 3 trials of random selection (R2, R3, and R4).

Note that the highlighted values are those on which Bayesian Optimization did not result

in a reduction in RMSE for the validation dataset.

114

Table 23 – Performance Comparison of Unoptimized and Optimized MLP

Networks Under Random Selection (R1) of Lines (Total Hours = 720)

Line %
Input

Layer

Hidden

Layers

Output

Layer

Train

RMSE

(70%)

Test

RMSE

(30%)

COAST

Act. vs.

Est.

RMSE

Execution

Time

(Seconds)

R1_10
36

Neurons

1 Layer

36

Neurons

190

Neurons
0.048141 0.051349 0.113290 29.247

R1_10_Opt
36

Neurons

1 Layer

74

Neurons

190

Neurons
0.062044 0.095299 0.055176 175.182

R1_25
80

Neurons

1 Layer

 80

Neurons

190

Neurons
0.045688 0.046384 0.099254 28.090

R1_25_Opt
80

Neurons

1 Layer

30

Neurons

190

Neurons
0.180729 0.322345 0.143314 366.843

R1_50
152

Neurons

1 Layer

152

Neurons

190

Neurons
0.041447 0.051087 0.061411 25.912

R1_50_Opt
152

Neurons

1 Layer

55

Neurons

190

Neurons
0.049035 0.057948 0.038316 183.641

R1_75
 336

Neurons

1 Layer

336

Neurons

190

Neurons
0.044454 0.048146 0.055020 39.162

R1_75_Opt
336

Neurons

1 Layer

74

Neurons

190

Neurons
0.047537 0.051982 0.033706 265.670

R1_100
548

Neurons

1 Layer

548

Neurons

190

Neurons
0.043145 0.047000 0.052913 48.736

R1_100_Opt
548

Neurons

1 Layer

92

Neurons

190

Neurons
0.056025 0.053020 0.035677 296.960

115

Table 24 - Performance Comparison of Unoptimized and Optimized MLP Networks

Under Random Selection (R2) of Lines (Total Hours = 720)

Line % Input

Layer

Hidden

Layers

Output

Layer

Train

RMSE

(70%)

Test

RMSE

(30%)

COAST

Act. vs.

Est.

RMSE

Execution

Time

(Seconds)

R2_10 28

Neurons

1 Layer

28

Neurons

190

Neurons

0.050066 0.051851 0.031051 23.463

R2_10_Opt 28

Neurons

1 Layer

 87

Neurons

190

Neurons

0.066081 0.068677 0.056953 270.520

R2_25 88

Neurons

1 Layer

 88

Neurons

190

Neurons

0.042833 0.051507 0.030713 26.742

R2_25_Opt 88

Neurons

1 Layer

33

Neurons

190

Neurons

0.047930 0.057454 0.048139 212.906

R2_50 268

Neurons

1 Layer

 268

Neurons

190

Neurons

0.051145 0.053782 0.042308 32.392

R2_50_Opt 268

Neurons

1 Layer

 100

Neurons

190

Neurons

0.056522 0.054557 0.051480 1988.112

R2_75 456

Neurons

1 Layer

456

Neurons

190

Neurons

0.044707 0.049357 0.034962 42.663

R2_75_Opt 456

Neurons

1 Layer

 11

Neurons

190

Neurons

0.051553 0.061514 0.047830 164.720

R2_100 548

Neurons

1 Layer

 548

Neurons

190

Neurons

0.042781 0.049381 0.030084 46.130

R2_100_Opt 548

Neurons

1 Layer

 38

Neurons

190

Neurons

0.047130 0.055054 0.045304 525.401

116

Table 25 - Performance Comparison of Unoptimized and Optimized MLP Networks

Under Random Selection (R3) of Lines (Total Hours = 720)

Line %
Input

Layer

Hidden

Layers

Output

Layer

Train

RMSE

(70%)

Test

RMSE

(30%)

COAST

Act. vs.

Est.

RMSE

Execution

Time

(Seconds)

R3_10
28

 Neurons

1 Layer

28

Neurons

190

Neurons
0.048646 0.049470 0.079072 28.562

R3_10_Opt
 28

Neurons

1 Layer

 30

Neurons

190

Neurons
0.058915 0.064127 0.043230 473.312

R3_25
 88

Neurons

1 Layer

 88

Neurons

190

Neurons
0.037615 0.046131 0.061209 33.262

R3_25_Opt
 88

Neurons

1 Layer

 69

Neurons

190

Neurons
0.044697 0.050339 0.028499 360.209

R3_50
188

Neurons

1 Layer

 188

Neurons

190

Neurons
0.040473 0.048051 0.058768 36.045

R3_50_Opt
188

Neurons

1 Layer

 77

Neurons

190

Neurons
0.048241 0.055870 0.039581 306.078

R3_75
 360

Neurons

1 Layer

 360

Neurons

190

Neurons
0.039080 0.043416 0.053810 39.184

R3_75_Opt
 360

Neurons

1 Layer

 72

Neurons

190

Neurons
0.047118 0.056091 0.034844 1011.391

R3_100
 548

Neurons

1 Layer

 548

Neurons

190

Neurons
0.042287 0.045293 0.055810 51.044

R3_100_Opt
 548

Neurons

1 Layer

 77

Neurons

190

Neurons
0.050010 0.057300 0.038648 767.584

117

Table 26 - Performance Comparison of Unoptimized and Optimized MLP Networks

Under Random Selection (R4) of Lines (Total Hours = 720)

Line %
Input

Layer

Hidden

Layers

Output

Layer

Train

RMSE

(70%)

Test

RMSE

(30%)

COAST

Act. vs.

Est.

RMSE

Execution

Time

(Seconds)

R4_10
28

Neurons

1 Layer

28

Neurons

190

Neurons
0.046668 0.048348 0.069602 23.480

R4_10_Opt
28

Neurons

1 Layer

8

Neurons

190

Neurons
0.057249 0.068387 0.044056 162.001

R4_25
108

Neurons

1 Layer

108

Neurons

190

Neurons
0.045170 0.048479 0.072729 37.063

R4_25_Opt
108

Neurons

1 Layer

94

Neurons

190

Neurons
0.071175 0.077030 0.052773 183.495

R4_50
300

Neurons

1 Layer

300

Neurons

190

Neurons
0.047717 0.050853 0.061553 37.291

R4_50_Opt
300

Neurons

1 Layer

100

Neurons

190

Neurons
0.049017 0.056798 0.039105 1111.410

R4_75
364

Neurons

1 Layer

364

Neurons

190

Neurons
0.043033 0.051618 0.060404 43.922

R4_75_Opt
364

Neurons

1 Layer

41

Neurons

190

Neurons
0.049714 0.064112 0.040147 265.596

R4_100
548

Neurons

1 Layer

548

Neurons

190

Neurons
0.043685 0.047946 0.057841 55.095

R4_100_Opt
100

Neurons

1 Layer

100

Neurons

190

Neurons
0.051265 0.057406 0.037380 1395.088

Table 27 presents the hyperparameters selected via the Bayesian Optimization with

Gaussian Process. The optimization process was applied to the following hyperparameter

space:

• Hidden Layer Neurons: 1 - 100

• Learning Rate: 0.0001 - 1.0

• Batch Size: 1 - 100

118

• Epochs: 1 – 300

Note that trial “R1_10_Opt” corresponds to the trial specified by “R1_10_Opt” in Table

23. Likewise, the remaining trials in Table 27 correspond to the trials in the column

“Line %” in Table 23, Table 24, Table 25 and Table 26. The results presented in this

dissertation were selected by executing the Bayesian Optimization process 15 times for

each “Trial” and utilizing the result that corresponds to the best validation error score

(lowest RMSE).

Table 27 - Hyperparameters Selected via Bayesian Optimization

Trial
Neurons per

Hidden Layer
Learning Rate Epochs Batch Size

R1_10_Opt 74 0.0210 71 27

R1_25_Opt 30 0.4181 291 33

R1_50_Opt 55 0.0010 178 50

R1_75_Opt 74 0.0010 198 38

R1_100_Opt 92 0.0010 260 100

R2_10_Opt 87 0.0310 181 36

R2_25_Opt 33 0.0010 161 24

R2_50_Opt 100 0.0010 164 1

R2_75_Opt 11 0.0020 228 73

R2_100_Opt 38 0.0010 243 37

R3_10_Opt 30 0.0091 127 66

R3_25_Opt 69 0.0010 300 33

R3_50_Opt 77 0.0010 241 77

R3_75_Opt 72 0.0010 200 42

R3_100_Opt 77 0.0010 251 23

R4_10_Opt 8 0.0132 195 74

R4_25_Opt 94 0.0306 85 49

R4_50_Opt 100 0.0010 244 74

R4_75_Opt 41 0.0010 189 65

R4_100_Opt 100 0.0010 224 99

Notable items are as follows from the data:

• Bayesian Optimization with Gaussian Processes enabled an efficient search of

hyperparameter space of 30x109 combinations.

119

• A reduction in validation error was achieved for 70% of the trials via Bayesian

Optimization.

• In all trials involving Bayesian Optimization with Gaussian Processes, a trade off

existed in searching for “optimal” hyperparameters and an increase in execution

time.

The improved methodology presented in this chapter accomplished the following:

• Established an improved workflow and data pipeline for training, testing and

validation through the integration of a high-level programming language (Python)

and a distribution system simulator (OpenDSS).

• Demonstrated the ability of an improved workflow and data pipeline to automate

the acquisition of complex power through all lines and complex voltages at every

node for training, testing and validation thus enabling “full-state estimation”.

• Enabled investigation of the effect of utilizing specific percentages of complex

power flow with randomly selected lines to train MLPs to predict the complex

voltage at all the nodes.

• Enabled investigation of the application of Bayesian Optimization with Gaussian

processes to aid in the improvement (reduction) of validation error through the

selection of hyperparameters for MLP models (neurons per hidden layer, learning

rate, epochs, and batch size).

Items for consideration in future work are as follows:

• Application of the workflow and data pipeline presented in this dissertation to larger

test feeder systems (i.e. IEEE 8500 Node Test Feeder).

120

• Investigation of the significance of the lines selected to perform state estimation of

complex voltage.

• Investigation of state estimation based upon branch-current flow. Specifically,

utilize branch current flow to predict complex voltage utilizing optimized MLP

models.

• Investigate Bayesian Optimization with Gaussian Processes with a hyperparameter

space including number of hidden layers.

CHAPTER 5. DISTRIBUTION SYSTEM STATE FORECASTING (DSSF) WITH

CONVOLUTIONAL NEURAL NETWORK (CNN) MODELS

5.1 Time-Series Forecasting

In this research, a time-series will be defined as an ordered sequence of values that are

equally spaced. A typical time-series for real power flow between two buses in a power

distribution system is shown below in Figure 21. In particular, this time-series is the real

power flow between nodes 800 and 802 for phase-a captured each hour of the day

(10/20/2018) for the test distribution system shown in Figure 7. Note that this time-series

is considered "univariate" in that it represents a single value for each time step.

121

Figure 21 - Example Univariate Time Series

Time-series forecasting will be defined as training a statistical, machine learning or deep

learning model to learn the autocorrelation of a given time series and to perform a

prediction for a specified prediction horizon. Thus, framing a problem as a time-series

forecasting problem is in contrast to framing a problem as a functional regression

problem in which the mapping of inputs to outputs is learned and new data is predicted

based upon the input of new previously unseen data. It should be noted that distribution

system state estimation (DSSE) with multilayer perceptron (MLP) models presented in

CHAPTER 3 was framed as a functional regression problem. Time-series forecasting

utilizing deep learning techniques does not require and is thus not limited to having to be

trained on existing historical "input" and "target" datasets. Forecasting models are said to

therefore "extract" features from the input data itself and perform prediction by learning

from trend, seasonality, and residual noise within the data itself (autocorrelation). A

major motivation for the research based upon machine learning for distribution system

state forecasting is that predictions of system state can be made without the requirement

122

to train offline with vast amounts of historical data that must be retrieved from a database

or knowledge of distribution system topology beyond the available measurement devices

capturing the time-series data. In order to move toward a higher level of performance

guarantee required for greater acceptance of machine learning techniques in the power

industry, the current research being discussed in this dissertation is built upon the idea of

enhancement of data driven methods with constraints, repeatable processes and a

structured approach to model design.

5.1.1 Time-Series Forecasting Process

Moving towards a repeatable process for time-series forecasting, the methods promoted

by Hyndman and Athanasopoulos [41] were employed in the research. This process can

be summarized as follows:

1. Define the Problem: Determination of who will be utilizing the forecast and in

what capacity.

2. Gather Information and Datasets: Selection of historical data and insights from

domain experts to aid interpretation of data features and the results of the

forecasts.

3. Exploratory Analysis: Utilization of summary statistics to understand trends,

seasonality, outliers, missing data and anomalies.

4. Model Selection and Fitting: Consideration of classical statistical models,

machine learning, deep learning, etc. and initial fitting of models to make final

selection of the model type best suited for forecasting given a specific dataset.

5. Evaluation and Validation of the Chosen Forecasting Model: Forecasts are

made with the selected model and relative skill of the model is estimated through

back-testing with historical data.

These steps are implemented as follows:

1. Define the Problem:

• Given sufficient historical real power flow, reactive power flow, voltage

magnitude and voltage phase angle data up to a specified point during

2018, forecast these quantities for the next 24 hours as a time-series.

2. Gather Information and Datasets:

• ERCOT data discussed in section 3.4 will represent the input data.

123

• Real and reactive power flows on phase-a between nodes 854 and 852 as

measured by monitor B27 in Figure 7 are to be forecasted.

• Voltage magnitude and voltage phase angles at node 854 as measured by

monitor B27 in Figure 7 are to be forecasted.

3. Exploratory Analysis:

• Plots of the actual time-series were made to understand the nature of the

dynamics (changes over time) for each quantity under consideration (i.e.

real power, reactive power, voltage magnitude and voltage phase angle).

Utilization of deep learning models eliminates the need to identify and

remove seasonality and trend. All time-series considered in this research

were continuous over the time-periods on which the data was gathered.

4. Model Selection and Fitting:

• MLPs were considered based upon their simple structure, however not

deemed strong candidates given their limitations of utilizing data in early

portions of the time series for forecasting owing to vanishing gradients.

• CNNs and LSTMs were considered based on their ability to “learn” and

“remember” features of the source data and thus overcome some of the

limitations of vanishing gradients.

5. Evaluation and Validation of the Chosen Forecasting Model:

• CNN and LSTM models were evaluated in terms of their ability to

perform time-series forecasting over a 24-hour forecast horizon.

• Actual data was available for the forecast horizon for comparison of each

model type.

• The average RMSE of each model type was determined and each

forecasted time series was plotted along with the actual time series for

visual comparison.

5.2 Data Preparation for Time-Series Forecasting with Deep Learning

Two essential considerations for use of deep learning models such as CNNs and LSTMs

for time-series forecasting are as follows:

• Both models require data to be 3-dimensional

• Performance is greatly affected by number of time-steps, so that sequences with

more than 400 time steps are split into samples.

• Order must be maintained with splitting time-series into training and testing

124

The term often used in machine learning is that of “reshaping” original time-series data

into the general format of [# samples, # time-steps, # features]. In this research the

following steps were taken to reshape the ERCOT dataset to prepare it for time-series

forecasting:

• ERCOT Dataset General Structure: (#time-steps, #features)

o Rows of the dataset correspond to each hour of the year of 2018

o Columns of the dataset correspond to the real powers, reactive powers,

voltage magnitudes and voltage phase angles for each bus and each phase

o Dimensions: (8760, 112)

• Maintaining the temporal ordering of the time-series dataset:

o Splitting the dataset into 80% for Training and 20% for Testing

o First 7008 hours – Training Dataset Dimensions: (7008, 112)

o Remaining 1752 hours – Testing Dataset Dimensions: (1752, 112)

• Reshaping the data into 3D-Arrays: (#samples, #time-steps, #features)

o Reshaped Training Dataset Dimensions: (292, 24, 112)

o Reshaped Testing Dataset Dimensions: (73, 24, 112)

The following should be noted from the reshaping process:

• The first 7008 hours of the data represent the first 292 days of 2018 in the

ERCOT region under consideration.

• The remaining 1752 hours of the data represent the remaining 73 days of

2018 in the ERCOT region under consideration. Of the 73 days available

for testing, only the first day of this period was used as the forecast

horizon. This forecast horizon was selected arbitrarily and could have

been extended for predictions beyond 24 hours.

• Time-series forecasting considered in this research involved “training” on

the first 292 days and then using deep learning models to forecast the next

24 hours beyond this training period. In this case, a forecast would be

made for the real power flow, reactive power flow, voltage magnitude and

voltage phase angle at the monitor location B27 for day 293 of 2018

(October 20, 2018).

• The forecasts would then be compared to the known data for this same

day.

125

5.3 Hyperparameter Selection for Unoptimized CNN Model

Convolutional Neural Networks are among a class of machine learning models that are

termed as "deep learning" models to differentiate them from traditional feedforward

multilayer perceptron models. While their design and initial inception was largely for use

in applications such as object recognition, CNNs are being investigated and applied to

applications related to computer vision, natural language processing and time-series

forecasting. The three fundamental building blocks of CNNs are convolutional layers,

pooling layers, and fully-connected layers [29]. CNNs can be designed to perform auto-

regression and classification on time-series data.

Table 28 presents the hyperparameters considered for the CNN models in this

dissertation.

Table 28 - CNN Hyperparameters

CNN Hyperparameter Description

n_input Number of prior inputs for the model (e.g. 24 hours)

n_filters Number of filter maps in the convolutional layer(s) (e.g.

100)

n_kernel Kernel size in the convolutional layer (e.g. 3)

n_fc Number of neurons in the output fully connected layer (s)

(e.g. 100)

n_epochs Number of training epochs (e.g. 10)

n_batch Number of samples to include in each mini-batch (e.g. 10).

n_diff Difference order to remove seasonality and trends (e.g. 0 or

12)

activation Activation function (e.g. relu)

loss Loss function to minimize (e.g. mse)

opt Algorithm to adjust weights, biases and learning rate to

reduce losses (e.g. adam, sgd)

lr Learning rate. Step size at each iteration while moving

toward a minimum of a loss function

126

Table 29 presents the unoptimized CNN hyperparameters settings selected ad hoc.

Table 29 - Unoptimized CNN Hyperparameter Settings

CNN Hyperparameter Settings

n_input 24

n_filters 32

n_kernel 3

n_fc 112

n_epochs 70

n_batch 16

n_diff 0

activation relu

loss mse

opt adam

lr 0.001

5.4 Implementation of Unoptimized CNN Model for Time-Series Forecasting

The following covers the essential elements required to perform time-series forecasting

with an unoptimized CNN model. For brevity, the forecast for real power flow described

in section 5.2 is shown.

Code Listing 4 - Unoptimized CNN Model for DSSF

000 # Unoptimized CNN Model for DSSF

001 import time

002 start_time = time.time()

003

004 # Import Required Python Libraries

005 import numpy

006 import numpy as np

007 import pandas as pd

008 from math import sqrt

009 from numpy import split

010 from numpy import array

011 from pandas import read_csv

012 from matplotlib import pyplot

013 from keras.models import Sequential

014 from keras.layers import Dense

015 from keras.layers import Flatten

127

016 from keras.layers.convolutional import Conv1D

017 from keras.layers.convolutional import MaxPooling1D

018 from keras.layers.convolutional import AveragePooling1D

019 from sklearn.metrics import mean_squared_error

020 from sklearn.preprocessing import MinMaxScaler

021 from sklearn.model_selection import train_test_split

022

023 # Evaluate one or more daily forecasts against expected values

024 def evaluate_forecasts(actual, predicted):

025 scores = list()

026 # calculate an RMSE score for each day

027 for i in range(actual.shape[1]):

028 # calculate mse

029 mse = mean_squared_error(actual[:, i], predicted[:, i])

030 # calculate rmse

031 rmse = sqrt(mse)

032 # store

033 scores.append(rmse)

034 # calculate overall RMSE

035 s = 0

036 for row in range(actual.shape[0]):

037 for col in range(actual.shape[1]):

038 s += (actual[row, col] - predicted[row, col])**2

039 score = sqrt(s / (actual.shape[0] * actual.shape[1]))

040 return score, scores

041

042 # Summarize Scores

043 def summarize_scores(name, score, scores):

044 s_scores = ', '.join(['%.6f' % s for s in scores])

045 print('%s: [%.6f] %s' % (name, score, s_scores))

046

047 # Convert History into Inputs and Outputs

048 def to_supervised(train, n_input, n_out=24):

049 # flatten data

050 data = train.reshape((train.shape[0]*train.shape[1],

train.shape[2]))

051 X, y = list(), list()

052 in_start = 0

053 # step over the entire history one time step at a time

054 for _ in range(len(data)):

055 # define the end of the input sequence

056 in_end = in_start + n_input

057 out_end = in_end + n_out

058 # ensure we have enough data for this instance

059 if out_end <= len(data):

060 X.append(data[in_start:in_end, :])

061 y.append(data[in_end:out_end, 50])

062 # move along one time step

063 in_start += 1

064 return array(X), array(y)

065

066 # Train the Model

067 def build_model(train, n_input):

068 # prepare data

069 train_x, train_y = to_supervised(train, n_input)

070 # define parameters

071 verbose, epochs, batch_size = 0, 70, 16

128

072 n_timesteps, n_features, n_outputs = train_x.shape[1],

train_x.shape[2],train_y.shape[1]

073 # define model

074 model = Sequential()

075 model.add(Conv1D(32,3, activation='relu',

input_shape=(n_timesteps,n_features)))

076 model.add(MaxPooling1D())

077 model.add(Flatten())

078 #model.add(Dense(32,3, activation='relu'))

079 model.add(Dense(n_outputs))

080 model.compile(loss='mse', optimizer='adam')

081 # fit network

082 model.fit(train_x, train_y, epochs=epochs,

batch_size=batch_size, verbose=verbose)

083 #model.summary()

084 return model

085

086 # Make a Forecast

087 def forecast(model, history, n_input):

088 # flatten data

089 data = array(history)

090 data = data.reshape((data.shape[0]*data.shape[1],

data.shape[2]))

091 # retrieve last observations for input data

092 input_x = data[-n_input:, :]

093 # reshape into [1, n_input, n]

094 input_x = input_x.reshape((1, input_x.shape[0],

input_x.shape[1]))

095 # forecast the next week

096 yhat = model.predict(input_x, verbose=0)

097 # we only want the vector forecast

098 yhat = yhat[0]

099 return yhat

100

101 # Evaluate a Single Model

102 def evaluate_model(train, test, n_input, k):

103 # fit model

104 model = build_model(train, n_input)

105 # history is a list of daily data

106 history = [x for x in train]

107 # walk-forward validation over each day

108 predictions = list()

109 for i in range(len(test)):

110 # predict the week

111 yhat_sequence = forecast(model, history, n_input)

112 # store the predictions

113 predictions.append(yhat_sequence)

114 # get real observation and add to history for predicting

the next day

115 history.append(test[i, :])

116 # evaluate predictions days for each day

117 predictions = array(predictions)

118 score, scores = evaluate_forecasts(test[:, :, 50], predictions)

119 #history_array = array(history)

120 return score, scores, predictions, history, test

121

122 # Load the PV dataset file

129

123 pv_dataframe = pd.read_csv('C:/Python/power_voltage_time-

series_ercot.csv',header=None)

124 pv = pv_dataframe.values

125

126 # Normalize the datasets

127 scaler_pv = MinMaxScaler(feature_range=(-1,1),copy=True)

128 pv = scaler_pv.fit_transform(pv)

129

130 # Split Dataset into 80% Train and 20% Test

131 pv_train, pv_test = pv[0:7008], pv[7008:8760]

132

133 # First 7008 hours for Training

134 # Reshape Training time series data into [samples, timesteps,

features]

135 # Dividing by 24 hours yields: pv_train 24 dimensions of (292, 24,

112)

136 pv_train_24 = array(split(pv_train, len(pv_train)/24))

137

138

139 # Remaining 1752 hours for Testing

140 # Reshape Testing time series data into [samples, timesteps,

features]

141 # Dividing by 24 hours yields: pv_test 24 dimensions of (73, 24,

112)

142 pv_test_24 = array(split(pv_test, len(pv_test)/24))

143

144 # Evaluate Model and Get Scores

145 n_input = 24

146 k = 3

147 score, scores, predictions, history, test =

evaluate_model(pv_train_24, pv_test_24,

148

n_input,k)

149 history_array = array(history)

150

151 # Summarize Scores

152 summarize_scores('cnn', score, scores)

153

154 # Create datasets to plot

155 p_10_20_2018_actual = pv_test[0:24,50]

156 p_10_20_2018_predicted = predictions[0,:]

157

158

159 p_10_20_2018_actual_avg = test[:,:,50].mean(axis=0)

160 p_10_20_2018_predicted_avg = predictions.mean(axis=0)

161

162 # Plot Actual versus Predicted

163 pyplot.xlabel('Hours',fontweight = 'bold', fontsize = 12.0,

color='black')

164 pyplot.ylabel('Real Power (kW)', fontweight = 'bold', fontsize =

12.0, color='black')

165

166 pyplot.plot(p_10_20_2018_actual,'g') # plotting t, a separately

167 pyplot.plot(p_10_20_2018_predicted, 'r') # plotting t, b separately

168

169 pyplot.title('CNN - B27 - 10/20/2018', fontweight = 'bold',

fontsize = 12.0,)

130

170 pyplot.legend(["Actual", "CNN Pred."])

171 pyplot.show()

172

173 # Export predictions

174 numpy.savetxt('CNN_B27_Trial_01_24_p.csv', p_10_20_2018_predicted,

delimiter=",")

175

176 print("--- %s seconds ---" % (time.time() - start_time))

Table 30 presents a summary of Code Listing 4 for an unoptimized CNN model for

distribution system state forecasting.

131

Table 30 - Summary of Code Listing 4 for an Unoptimized CNN Model for DSSF

Line #: Description:

004 – 021 Import essential Python libraries for implementation of unoptimized

CNN model for DSSF

023 - 040 Define a function to evaluate one or more daily forecasts against

expected values

043 – 045 Define a function summarize RMSE scores

048 – 064 Define a function to convert 3 dimensional data into inputs and

outputs, thus establishing “supervised” learning

067 – 084 Define a function to build a unoptimized CNN to perform DSSF

087 – 099 Define a function to perform a forecast over a specified forecast

horizon (i.e., 24 hours)

102 - 120 Define a function to evaluate the forecast based upon RMSE

123 - 124 Import time-series data

127 - 128 Perform normalization on input data to improve training

131 Split time-series data into 80% for training and 20% for testing. Note

that the order of the time-series data must be maintained.

133 – 142 Reshape training and testing data into 3 dimensional format required

by CNNs.

144 - 147 Call evaluate_model() function to create a “history” of daily scores

152 Call summarize_scores() function to return an average hourly RMSE

for the forecast.

155 - 171 Plot actual versus predicted real power for a 24 hour forecast horizon.

174 Export the time-series prediction data.

132

Figure 22 presents the actual and predicted real power at location B27 (Figure 7) for a 24

hour period utilizing an “unoptimized” CNN model. Note that the predicted time-series

has a noticeable “delay” or “lag” relative to the actual time-series in the early portion of

the prediction. Later portions of the prediction follow the actual dynamics reasonably

well.

Figure 22 - Actual and Predicted Real Power at Location at B27 (Unoptimized

CNN)

Figure 23 presents the actual and predicted reactive power at location B27 (Figure 7) for

a 24 hour period utilizing an “unoptimized” CNN model. Note that the predicted time-

series has a “flat” or “constant” waveform. This result is indicative of “underfitting” in

which the model does not improve during the training process and maintains either a

constant or increasing error.

133

Figure 23 - Actual and Predicted Reactive Power at Location B27 (Unoptimized

CNN)

Figure 24 presents the actual and predicted voltage magnitude at location B27 (Figure 7)

for a 24 hour period utilizing an “unoptimized” CNN model. The predicted time-series

appears to be delayed and has a “reciprocal” relationship to the actual time-series.

134

Figure 24 - Actual and Predicted Voltage Magnitude at Location B27 (Unoptimized

CNN)

Figure 25 presents the actual and predicted voltage phase angle at location B27 (Figure 7)

for a 24 hour period utilizing a “unoptimized” CNN model. The predicted time-series

appears to track the average value of the actual time-series. This is also indicative of

underfitting.

135

Figure 25 - Actual and Predicted Voltage Phase Angle at Location B27

(Unoptimized CNN)

A possible remedy for the “flat” waveform noted for the prediction of reactive power

shown in Figure 23 is to adjust the learning rate of the Adam optimizer. The learning rate

is the proportion that weights are updated. A larger value (i.e. 0.5) results in faster initial

learning during training. A smaller value (i.e. 1e-06) results in a slower initial learning

during training. By default, the learning rate established by the Keras Python library

used in the implementation of the unoptimized CNN model is 0.001.

The Adam optimization algorithm has gained considerable attention in recent years as an

improvement over the classical stochastic gradient descent algorithm that is used in

machine learning to iteratively adjust network weights during training [37].

This method arose to prominence based upon the collaboration of OpenAI and the

University of Toronto in 2015 [39].

The Adam optimizer offers advantages over classical stochastic gradient descent. The

Adam optimizer is ideal for non-convex optimization problems, is computationally

efficient, has low memory requirements, is suitable for large datasets, is well suited for

136

non-stationary objective functions and is tolerant of objective functions with noisy

gradients.

The following result was observed for a reduction in the learning rate to a value of 1e-06

in the forecast of reactive power. As shown in Figure 26, the reduction in the learning

rate enabled the model to improve the forecast for reactive power.

Figure 26 - Actual and Predicted Reactive Power at Location B27 (Unoptimized

CNN – Learning Rate = 1e-06)

CHAPTER 6. DISTRIBUTION SYSTEM STATE FORECASTING (DSSF) WITH LONG

SHORT-TERM MEMORY (LSTM) MODELS

6.1 Data Preparation for LSTMs

Data preparation for LSTMs for time-series forecasting follows the same process as that

for CNNs discussed in section 5.2.

137

6.2 Hyperparameter Selection for Unoptimized LSTM Model

Table 31 presents the hyperparameters considered for the LSTM models in this

dissertation.

Table 31 - LSTM Hyperparameters

LSTM Hyperparameter Description

n_input Number of prior inputs for the model (e.g. 24 hours)

n_lstm Number of lstm blocks (e.g. 100)

n_fc Number of neurons in the output fully connected layer (s)

(e.g. 100)

n_epochs Number of training epochs (e.g. 10)

n_batch Number of samples to include in each mini-batch (e.g. 10).

n_diff Difference order to remove seasonality and trends (e.g. 0 or

12)

activation Activation function (e.g. relu)

loss Loss function to minimize (e.g. mse)

opt Algorithm to adjust weights, biases and learning rate to

reduce losses (e.g. adam, sgd)

lr Learning rate. Step size at each iteration while moving

toward a minimum of a loss function

Table 32 presents the unoptimized LSTM hyperparameters settings selected ad hoc.

Table 32 - Unoptimized LSTM Hyperparameter Settings

LSTM Hyperparameter Settings

n_input 24

n_lstm 150

n_fc 112

n_epochs 70

n_batch 16

n_diff 0

activation relu

loss mse

opt adam

lr 0.001

138

6.3 Implementation of Unoptimized LSTM Model for Time-Series Forecasting

The following covers the essential elements required to perform time-series forecasting

with an unoptimized LSTM model. For brevity, the forecast for real power flow

described section 5.2 is shown.

Code Listing 5 - Unoptimized LSTM Model for DSSF

000 # Unoptimized LSTM Model for DSSF

001 import time

002 start_time = time.time()

003

004 # print("--- %s seconds ---" % (time.time() - start_time)

005

006 # Import Required Python Libraries

007 import numpy

008 import numpy as np

009 import pandas as pd

010 from math import sqrt

011 from numpy import split

012 from numpy import array

013 from pandas import read_csv

014 from matplotlib import pyplot

015 from keras.models import Sequential

016 from keras.layers import Dense

017 from keras.layers import LSTM

018 from keras.layers import RepeatVector

019 from keras.layers import TimeDistributed

020 from sklearn.metrics import mean_squared_error

021 from sklearn.preprocessing import StandardScaler, MinMaxScaler

022 from sklearn.model_selection import train_test_split

023 from sklearn.metrics import mean_squared_error

024

025

026 # Evaluate one or more daily forecasts against expected values

027 def evaluate_forecasts(actual, predicted):

028 scores = list()

029 # calculate an RMSE score for each day

030 for i in range(actual.shape[1]):

031 # calculate mse

032 mse = mean_squared_error(actual[:, i], predicted[:, i])

033 # calculate rmse

034 rmse = sqrt(mse)

035 # store

036 scores.append(rmse)

037 # calculate overall RMSE

038 s = 0

039 for row in range(actual.shape[0]):

139

040 for col in range(actual.shape[1]):

041 s += (actual[row, col] - predicted[row, col])**2

042 score = sqrt(s / (actual.shape[0] * actual.shape[1]))

043 return score, scores

044

045 # Summarize Scores

046 def summarize_scores(name, score, scores):

047 s_scores = ', '.join(['%.6f' % s for s in scores])

048 print('%s: [%.6f] %s' % (name, score, s_scores))

049

050 # Convert History into Inputs and Outputs

051 def to_supervised(train, n_input, n_out=24):

052 # flatten data

053 data = train.reshape((train.shape[0]*train.shape[1],

train.shape[2]))

054 X, y = list(), list()

055 in_start = 0

056 # step over the entire history one time step at a time

057 for _ in range(len(data)):

058 # define the end of the input sequence

059 in_end = in_start + n_input

060 out_end = in_end + n_out

061 # ensure we have enough data for this instance

062 if out_end <= len(data):

063 X.append(data[in_start:in_end, :])

064 y.append(data[in_end:out_end, 50])

065 # move along one time step

066 in_start += 1

067 return array(X), array(y)

068

069 # Train the Model

070 def build_model(train, n_input):

071 # prepare data

072 train_x, train_y = to_supervised(train, n_input)

073 # define parameters

074 verbose, epochs, batch_size = 0, 70, 16

075 n_timesteps, n_features, n_outputs = train_x.shape[1],

train_x.shape[2], train_y.shape[1]

076 # define model

077 model = Sequential()

078 model.add(LSTM(150, activation='relu',

input_shape=(n_timesteps, n_features)))

079 #model.add(Dense(100, activation='relu'))

080 model.add(Dense(n_outputs))

081 model.compile(loss='mse', optimizer='adam')

082 # fit network

083 model.fit(train_x, train_y, epochs=epochs,

batch_size=batch_size, verbose=verbose)

084 return model

085

086 # Make a Forecast

087 def forecast(model, history, n_input):

088 # flatten data

089 data = array(history)

090 data = data.reshape((data.shape[0]*data.shape[1], data.shape[2]))

091 # retrieve last observations for input data

092 input_x = data[-n_input:, :]

140

093 # reshape into [1, n_input, n]

094 input_x = input_x.reshape((1, input_x.shape[0],

input_x.shape[1]))

095 # forecast the next week

096 yhat = model.predict(input_x, verbose=0)

097 # we only want the vector forecast

098 yhat = yhat[0]

099 return yhat

100

101 # Evaluate a Single Model

102 def evaluate_model(train, test, n_input, k):

103 # fit model

104 model = build_model(train, n_input)

105 # history is a list of daily data

106 history = [x for x in train]

107 # walk-forward validation over each day

108 predictions = list()

109 for i in range(len(test)):

110 # predict the week

111 yhat_sequence = forecast(model, history, n_input)

112 # store the predictions

113 predictions.append(yhat_sequence)

114 # get real observation and add to history for predicting

the next day

115 history.append(test[i, :])

116 # evaluate predictions days for each day

117 predictions = array(predictions)

118 score, scores = evaluate_forecasts(test[:, :, 50], predictions)

119 #history_array = array(history)

120 return score, scores, predictions, history, test

121

122 # Load the PV dataset file

123 pv_dataframe = pd.read_csv('C:/Python/power_voltage_time-

series_ercot.csv',header=None)

124 pv = pv_dataframe.values

125

126 # Normalize the datasets

127 scaler_pv = MinMaxScaler(feature_range=(-1,1),copy=True)

128 pv = scaler_pv.fit_transform(pv)

129

130 # Split dataset into 80% Train and 20% Test

131 pv_train, pv_test = pv[0:7008], pv[7008:8760]

132

133 # First 7008 hours for Training

134 # Reshape Training time series data into [samples, timesteps,

features]

135 # Dividing by 24 hours yields: pv_train 24 dimensions of (292, 24,

112)

136 pv_train_24 = array(split(pv_train, len(pv_train)/24))

137

138 # Remaining 1752 hours for Testing

139 # Reshape Testing time series data into [samples, timesteps,

features]

140 # Dividing by 24 hours yields: pv_test 24 dimensions of (73, 24,

112)

141 pv_test_24 = array(split(pv_test, len(pv_test)/24))

142

141

143 # Evaluate Model and Get Scores

144 n_input = 24

145 k = 3

146 score, scores, predictions, history, test =

evaluate_model(pv_train_24, pv_test_24,

147

n_input,k)

148 history_array = array(history)

149 # summarize scores

150 summarize_scores('lstm', score, scores)

151

152 # Create datasets to plot

153 p_10_20_2018_actual = pv_test[0:24,50]

154 p_10_20_2018_predicted = predictions[0,:]

155

156 p_10_20_2018_actual_avg = test[:,:,50].mean(axis=0)

157 p_10_20_2018_predicted_avg = predictions.mean(axis=0)

158

159 # Plot Actual versus Predicted

160 pyplot.xlabel('Hours',fontweight = 'bold', fontsize = 12.0,

color='black')

161 pyplot.ylabel('Real Power (kWatts)', fontweight = 'bold', fontsize

= 12.0, color='black')

162

163 pyplot.plot(p_10_20_2018_actual,'g') # plotting t, a separately

164 pyplot.plot(p_10_20_2018_predicted, 'r') # plotting t, b separately

165

166 pyplot.title('LSTM - B27 - 10/20/2018', fontweight = 'bold',

fontsize = 12.0,)

167 pyplot.legend(["Actual", "LSTM Pred."])

168 pyplot.show()

169

170 # Export predictions

171 numpy.savetxt('LSTM_B27_Trial_01_24_q.csv', p_10_20_2018_predicted,

delimiter=",")

172

173 print("--- %s seconds ---" % (time.time() - start_time))

Table 33 presents a summary of Code Listing 5 for an unoptimized LSTM model for

distribution system state forecasting.

142

Table 33 - Summary of Code Listing 5 for Unoptimized LSTM Model for DSSF

Line #: Description:

006 – 023 Import essential Python libraries for implementation of unoptimized

LSTM model for DSSF

027 - 043 Define a function to evaluate one or more daily forecasts against

expected values

045 – 048 Define a function summarize RMSE scores

051 – 067 Define a function to convert 3 dimensional data into inputs and

outputs, thus establishing “supervised” learning

070 – 084 Define a function to build a unoptimized LSTM to perform DSSF

087 – 099 Define a function to perform a forecast over a specified forecast

horizon (i.e., 24 hours)

102 - 120 Define a function to evaluate the forecast based upon RMSE

123 - 124 Import time-series data

127 - 128 Perform normalization on input data to improve training

131 Split time-series data into 80% for training and 20% for testing. Note

that the order of the time-series data must be maintained.

134 – 141 Reshape training and testing data into 3 dimensional format required

by LSTMs.

144 - 147 Call evaluate_model() function to create a “history” of daily scores

150 Call summarize_scores() function to return an average hourly RMSE

for the forecast.

153 - 168 Plot actual versus predicted real power for a 24 hour forecast horizon.

171 Export the time-series prediction data.

143

Figure 27 presents the actual and predicted real power at location B27 (Figure 7) for a 24

hour period utilizing an “unoptimized” LSTM model. Note that, like the same prediction

made by an unoptimized CNN in Figure 22, the predicted time-series has a noticeable

“delay” or “lag” relative to the actual time-series in the early portion of the prediction.

Later portions of the prediction follow the actual dynamics reasonably well.

Figure 27 - Actual and Predicted Real Power at Location B27 (Unoptimized LSTM)

Figure 28 presents the actual and predicted reactive power at location B27 (Figure 7) for

a 24hr period utilizing an “unoptimized” LSTM model. Note that, unlike the

unoptimized CNN shown in Figure 23, the prediction of reactive power follows the

dynamics of the actual time-series better with a default learning rate of 0.001.

144

Figure 28 - Actual and Predicted Reactive Power at Location B27 (Unoptimized

LSTM)

Figure 29 presents the actual and predicted voltage magnitude at location B27 (Figure 7)

for a 24 hour period utilizing an “unoptimized” LSTM model. Note that the predicted

time-series appears to be delayed and has a “reciprocal” relationship to the actual time-

series. This is similar to the prediction of voltage magnitude made with an unoptimized

CNN in Figure 24.

145

Figure 29 - Actual and Predicted Voltage Magnitude at Location B27 (Unoptimized

LSTM)

Figure 30 presents the actual and predicted voltage phase angle at location B27 (Figure 7)

for a 24 hour period utilizing an “unoptimized” LSTM model. Note that the prediction of

voltage phase angle made by the unoptimized LSTM follows they dynamics of the actual

time series better than the unoptimized CNN in Figure 25.

Figure 30 - Actual and Predicted Voltage Phase Angle at Location B27

(Unoptimized LSTM)

The following observations can be made regarding the unoptimized LSTM models

applied to DSSF with a 24 hour forecast horizon:

• Real Power: The predicted time-series has a noticeable “delay” or “lag” relative

to the actual time-series.

• Reactive Power: The predicted time-series does not exhibit the “flat” or

“constant” waveform noted for the CNN model.

146

• Voltage Magnitude: The predicted time-series exhibits some of the same

characteristics as the CNN model for the given forecast horizon.

• Voltage Phase Angle: The predicted time-series appears to perform slightly better

than the unoptimized CNN model for the given forecast horizon.

LSTM models have gained considerable attention in the literature for their ability to

“learn” and “remember” key “features” of time-series data. Thus, there is promise that

for time-series forecasts of increasing length that LSTM models will be less susceptible

to vanishing and exploding gradients exhibited by MLPs and CNNs used for the same

purpose.

CHAPTER 7. A COMPARISON OF AUTO-REGRESSIVE MODELS AND CONVOLUTIONAL

NEURAL NETWORKS FOR POWER DISTRIBUTION SYSTEM TIME-SERIES

FORECASTING

This chapter presents a subset of the continued research into the application of deep

learning methods to power system distribution state forecasting. An investigation of

power distribution time series forecasting utilizing a "classical statistical” method as well

as a fully data-driven “deep learning” method will be presented. In particular,

autoregressive integrated moving average (ARIMA) will be considered as well as

convolutional neural networks (CNN) for time-series forecasting. The IEEE standard 34-

bus test system considered previously is used to demonstrate the proposed statistical and

deep learning methods and their effectiveness for potential application to demand

forecasting, distribution system state estimation (DSSE), and distribution system state

forecasting (DSSF). The methods and results presented in this chapter are based on an

ad-hoc selection of hyperparameters in order to demonstrate what is possible in terms of

147

readily applying both conventional and deep learning techniques to time series

forecasting. Optimization will be left to subsequent research. Results of the performance

of the ARIMA and CNN models will include plots of actual versus predicted real power,

reactive power, voltage magnitude and voltage phase angle as well as the average root

mean square error of the time series predictions of these quantities at various locations of

the test distribution system over a 24-hour forecast horizon. The results presented in this

chapter will contribute to the ongoing research into the application of machine learning in

general and deep learning in particular to power distribution system state estimation and

forecasting.

7.1 ARIMA Model

ARIMA stands for Auto-Regressive Integrated Moving Average. The model is

statistically based and is defined by the following components:

• AR: Auto-regression. Determination of the relation of the data to itself. The

relationship of observations to previous observations.

• I: Integrated. Utilization of differencing to make the time series stationary.

• MA: Moving Average. Application of a moving average to lagged

observations to determine the dependency between an observation and

residual error.

The standard notation used for this model type is ARIMA(p,d,q) where each of the

hyperparameters are defined as follows:

• p: The number of lag observations included in the model, also called the

lag order.

148

• d: The number of times that the raw observations are differenced, also

called the degree of differencing.

• q: The size of the moving average window, also called the order of

moving average.

7.2 CNN Model

An introduction to CNN model architecture and hyperparameters is presented in section

5.3.

7.3 ARIMA Model Implementation

The implementation of the ARIMA model was done in Python 3.9. A multi-variate time

series consisting of all of the power and voltage measurements discussed in CHAPTER 3

was available for the ARIMA model. For purposes of simplicity, only the measurement

points at locations B1 (substation), B18 and B27 in Figure 7 were considered. Also, only

a single phase (phase a) was considered for each measurement point. Thus, separate

univariate time series for the real power (P), reactive power (Q), voltage magnitude

(V_mag) and voltage phase angle (V_phase) were considered.

Each of these time series was split into 80% for training and 20% for testing. An ARIMA

model with hyperparameters p = 1, d = 1 and q = 0 was selected ad hoc. Thus, the model

featured first order auto regressive terms, first order nonseasonal differencing and no

lagged forecast errors were used in the prediction equation.

The model was then used in a walk forward validation loop to forecast the next 24 hours

beyond the endpoint selected for the training dataset for each univariate time series (P, Q,

V_mag, and V_phase) at each bus location (B1, B18, and B27).

149

7.4 CNN Model Implementation

The implementation of the CNN model was done in Python 3.9. The same datasets,

measurement points, and training-testing split for the ARIMA Model in section 7.3 were

also used for the CNN model.

The unoptimized CNN hyperparameter settings are the same as given in Table 29

7.5 Actual Versus Predicted P, Q, V_mag, V_phase Plots at B1

Figure 31 presents the actual and predicted real power at the substation (B1 in Figure 7)

for a 24 hour period using unoptimized ARIMA and CNN models. Note that both

models produce a time series prediction that follow the dynamics of the actual time-

series, however the ARIMA model appears to outperform the CNN model over the

forecast horizon considered.

Figure 31 - Actual versus Predicted Real Power at B1

150

Figure 32 presents the actual and predicted reactive power at the substation (B1 in Figure

7) for a 24 hour period using unoptimized ARIMA and CNN models. Note that the

unoptimized CNN model exhibits a “flat” response indicative of underfitting. The

ARIMA appears to outperform the CNN model over the forecast horizon considered,

however, as shown in Table 34, the RMSE of the CNN model is less than that of the

ARIMA model. This scenario suggests that evaluation of overall “performance” of time-

series predictions include multiple figures of merit.

Figure 33 presents the actual and predicted voltage magnitude at the substation (B1 in

Figure 7) for a 24 hour period using unoptimized ARIMA and CNN models. Note that

the ARIMA model follows the actual time series to such a close degree that there appears

to be no difference in the ARIMA prediction and the actual time series based upon the

scale presented.

Figure 32 - Actual versus Predicted Reactive Power at B1

151

Figure 33 - Actual versus Predicted Voltage Magnitude at B1

Figure 34 presents on a different scale, the actual and predicted voltage magnitude at the

substation (B1 in Figure 7) for a 24 hour period using an unoptimized ARIMA model.

Note that the actual voltage magnitude at the substation changes very little over the

forecast horizon and the ARIMA model can track the dynamics much better than the

CNN model. The RMSE values for the ARIMA and CNN models in Table 34 this result.

152

Figure 34 - Actual versus ARIMA Prediction of Voltage Magnitude at B1

Figure 35 presents the actual and predicted voltage phase angle at the substation (B1 in

Figure 7) for a 24 hour period using unoptimized ARIMA and CNN models. Note that

the actual voltage phase angle at the substation changes very little over the forecast

horizon. Table 34 shows that the RMSE for the CNN model is significantly lower than

the ARIMA model.

153

Figure 36 – Actual versus CNN Predicted Voltage Phase Angle at B1

7.6 Actual Versus Predicted P, Q, V_mag, V_phase Plots at B18

Figure 37 presents the actual and predicted real power at the substation (Figure 7) for a 24

hour period using unoptimized ARIMA and CNN models. Note that both models produce

Figure 35 - Actual versus Predicted Voltage Phase Angle at B1

154

a time series prediction that follow the dynamics of the actual time-series, however the

ARIMA model appears to outperform the CNN model over the forecast horizon

considered.

Figure 38 presents the actual and predicted reactive power at location B18 (Figure 7) for

a 24 hour period using unoptimized ARIMA and CNN models. Note that the

unoptimized CNN model exhibits a prediction that aligns with the approximate average

of the actual time series. At this location, the ARIMA model does not follow the actual

time series as well as the CNN model.

Figure 37 - Actual versus Predicted Real Power at B18

155

Figure 39 presents the actual and predicted voltage magnitude at B18 (Figure 7) for a 24

hour period using unoptimized ARIMA and CNN models. In this case, both models are

responsive to the dynamics of the actual time series, however both models would benefit

from hyperparameter optimization.

Figure 39 - Actual versus Predicted Voltage Magnitude at B18

Figure 38 - Actual versus Predicted Reactive Power at B18

156

Figure 40 presents the actual and predicted voltage phase angle at location B18 (Figure 7)

for a 24 hour period using unoptimized ARIMA and CNN models. In this case, the

unoptimized CNN model again follows the approximate average of the actual time series.

According to Table 35, the unoptimized CNN model presents a slightly lower RMSE

than the ARIMA model.

7.7 Actual Versus Predicted P, Q, V_mag, V_phase Plots at B27

Figure 41 presents the actual and predicted real power at location B27 (Figure 7) for a 24

hour period using unoptimized ARIMA and CNN models. Note that both models produce

a time series prediction that follow the dynamics of the actual time-series.

Figure 40 - Actual versus Predicted Voltage Phase Angle at B18

157

Figure 42 presents the actual and predicted reactive power location B27 (Figure 7) for a

24 hour period using unoptimized ARIMA and CNN models. Note that the unoptimized

CNN model exhibits a “flat” response indicative of underfitting. The ARIMA model

outperforms the CNN model over the forecast horizon considered.

Figure 41 - Actual versus Predicted Real Power at B27

Figure 42 - Actual versus Predicted Reactive Power at B27

158

Figure 43 presents the actual and predicted voltage magnitude location B27 (Figure 7) for

a 24 hour period using unoptimized ARIMA and CNN models.

Figure 43 - Actual versus Predicted Voltage Magnitude at B27

Figure 44 presents the actual and predicted voltage phase angle at location B27 (Figure 7)

for a 24 hour period using unoptimized ARIMA and CNN models.

Figure 44 - Actual versus Predicted Voltage Phase Angle at B27

159

Table 34 - RMSE for Predicted Values at B1 for ARIMA and CNN Models

Table 35 - RMSE for Predicted Values at B18 for ARIMA and CNN Models

Table 36 - RMSE for Predicted Values at B27 for ARIMA and CNN Models

Table 37 presents the RMSE and execution time for predicted values at B27 for the

unoptimized ARIMA, CNN and LSTMs models presented in this research. Note that the

RMSE values for each model type are comparable, however the execution time for the

time-series prediction is lowest for the CNN model and highest for the LSTM models.

 P (kW) Q (kVAR) V_mag (V)
V_phase

(degrees)

ARIMA 29.3809441 196.915513 0.044514 0.635800

CNN 78.454014 164.142076 63.174731 0.000169

 P (kW) Q (kVAR) V_mag (V)
V_phase

(degrees)

ARIMA 3.849720 215.928072 86.691458 2.474801

CNN 8.112244 164.142076 101.198798 2.277744

 P (kW) Q (kVAR) V_mag (V)
V_phase

(degrees)

ARIMA 20.360220 148.037981 93.571318 2.474801

CNN 49.279813 122.617277 161.039947 1.751593

160

Table 37 - RMSE and Execution Time for Predicted Values at B27 for ARIMA,

CNN and LSTM Models

 P (kW) Q (kVAR) V_mag

(volts)

V_phase

(degrees)

ARIMA

RMSE 20.360220 148.037981 93.571318 2.474801

Execution

Time (seconds)
275.665 495.134 477.426 486.234

CNN

RMSE 49.279813 122.617277 161.039947 1.751593

Execution

Time (seconds)
86.670 86.637 87.372 79.328

LSTM

RMSE 61.211237 131.694421 119.390719 6.791523

Execution

Time (seconds)
1059.255 1051.643 918.478 1167.424

CHAPTER 8. RESEARCH CONCLUSION

Chapter 1 of this dissertation introduces the purpose and significance of the research.

Chapter 2 presents the background and related work. A key takeaway from this chapter

is that conventional (analytical) approaches are not sufficient for power distribution

system state estimation and state forecasting and that application of data driven

approaches involving deep learning models may help overcome limitations of earlier

methods. Chapter 3 presents distribution system state estimation (DSSE) with multilayer

perceptron models (MLPs). The main takeaway from the chapter is a demonstration of

the process of applying MLP models to power distribution system state estimation along

with a structured methodology of selecting hyperparameters for the same models as an

improvement over an ad-hoc approach. Additional layers may also prove

161

counterproductive in terms of higher root mean square error and additional training

execution time. Another key result is that Bayesian Optimization with Gaussian

Processes will greatly reduce the probability of selecting values that will not produce the

maximum of the original objective function. Chapter 4 presents full distribution system

state estimation with optimized MLP models. The main takeaway from Chapter 4 is that

an improved workflow and data pipeline enables full system state estimation, that is not

limited by the available monitors placed within the power simulator software. The

improved workflow enables the possibility of state estimation being applied to much

larger distribution systems. Application and validation of the improved workflow to

larger distributions systems is left to future research.

Chapter 5 presented distribution system state forecasting (DSSF) with convolutional

neural network (CNN) models. The main takeaway from Chapter 5 is that CNNs may be

applied to areas other than object recognition and vision systems to perform power

system state forecasting by learning patterns, seasonality, and trends of a time-series.

Chapter 6 presents distribution system state forecasting (DSSF) with long short-term

memory models (LSTMs). The main takeaway from Chapter 6 is that LSTMs may be

applied to areas other than speech recognition, language translation and image captioning

to perform power system state forecasting by learning the autocorrelation of long

sequence time-series data.

Chapter 7 presents a comparison of auto-regressive models and convolutional neural

networks for power distribution system time-series forecasting. The main takeaway from

Chapter 7 is that for univariate time-series prediction, classical and deep learning

methods should be considered as viable options. Although left for future research, for

162

multivariate time-series forecasting, classical methods such as ARIMA are quite limited

while deep learning models such as CNNs and LSTMs are viable options.

163

REFERENCES

[1] Soltan, S., Mittal, P., and Poor, H. V. (2018). Bayesian regression for

robust power grid state estimation following a cyber-physical attack. In:

2018 IEEE Power and Energy Society General Meeting (PESGM), p. 1–5.

doi: 10.1109/PESGM.2018.8586142

[2] Schweppe, Fred C, and Wildes, J. Power System Static-State Estimation, Part I: Exact

Model. IEEE Transactions on Power Apparatus

and Systems PAS-89.1 (1970): 120-25.

[3] Fan, W., and Liao, Y. (2018). Fault Identification and Location for Distribution

Network with Distributed Generations. Int. J. Emer. Electr. Power Syst. 19, 1–13.

doi: 10.1515/ijeeps-2018-0048

[4] Fan, W., and Liao, Y. (2019). Microgrid Operation Optimization Considering

Storage Devices, Electricity Transactions and Reserve. Int. J. Emerging Electr.

Power Syst. 20, 1–17. doi: 10.1515/ijeeps-2019-0003

[5] Fan, W. (2019). Advanced Fault Area Identification and Fault Location for

Transmission and Distribution Systems, Dissertation. USA.

[6] Fan,W., Hossan,M. S., Zheng, H., Cook, A., Zaid, S., and Fard, S. A. (2021). A CVR

On/Off Status Detection Algorithm for Measurement and Verification. In: 2021

IEEE Power and Energy Society Innovative Smart Grid Technologies Conference

(ISGT),Washington, DC. USA. p. 1–5. doi: 10.1109/ISGT49243.2021.9372257

[7] Schweppe, Fred C, and Rom, Douglas B. "Power System Static-State Estimation, Part

II: Approximate Model." IEEE Transactions on

Power Apparatus and Systems PAS-89.1 (1970): 125-30.

[8] Schweppe, Fred C. "Power System Static-State Estimation, Part III: Implementation."

IEEE Transactions on Power Apparatus and Systems

PAS-89.1 (1970): 130-35.

[9] Shivakumar, N.R, and Jain, A. "A Review of Power System Dynamic State Estimation

Techniques." 2008 Joint International Conference on

Power System Technology and IEEE Power India Conference (2008): 1-6.

[10] Krumpholz, G. R, Clements, K. A, and Davis, P. W. "Power System Observability: A

Practical Algorithm Using Network Topology." IEEE

Transactions on Power Apparatus and Systems PAS-99.4 (1980): 1534-542.

164

[11] Urban Kuhar, Gregor Kosec, and Ales Svigelj, Observability in Distribution Systems,

January 2020 – Full Textbook

[12] Electric Power Research Institute (EPRI), Electrical Power System Resiliency:

Challenges and Opportunities, EPRI White Papers, February 2016

[13] Kaveh Dehghanpour, Zhaoyu Wang , Jianhui Wang ,Yuxuan Yuan and Fankun Bu,

A Survey on State Estimation Techniques and Challenges in Smart

Distribution Systems, IEEE Transactions on Smart Grid, Vol. 10, No. 2, March 2019

[14] Baran, M.E, and Kelley, A.W. "State Estimation for Real-time Monitoring of

Distribution Systems." IEEE Transactions on Power Systems 9.3

(1994): 1601-609.

[15] Yao, Yiyun, Liu, Xuan, and Li, Zuyi. "Robust Measurement Placement for

Distribution System State Estimation." IEEE Transactions on

Sustainable Energy 10.1 (2019): 364-74. Web.

[16] Haughton, Daniel A, and Heydt, G. T. "A Linear State Estimation Formulation for

Smart Distribution Systems." IEEE Transactions on Power

Systems 28.2 (2013): 1187-195.

[17] Youman Deng, Ying He, and Boming Zhang. "A Branch-estimation-based State

Estimation Method for Radial Distribution Systems." IEEE Transactions

on Power Delivery 17.4 (2002): 1057-062.

[18] Mestav, Kursat Rasim, Luengo-Rozas, Jaime, and Tong, Lang. "State Estimation for

Unobservable Distribution Systems via Deep Neural Networks."

2018 IEEE Power & Energy Society General Meeting (PESGM) (2018): 1-5.

[19] K. R. Mestav, J. Luengo-Rozas and L. Tong, "Bayesian State Estimation for

Unobservable Distribution Systems via Deep Learning," in IEEE

Transactions on Power Systems, vol. 34, no. 6, pp. 4910-4920, Nov. 2019, doi:

10.1109/TPWRS.2019.2919157.

[20] K. R. Mestav, L. Tong, " Learning the Unobservable: High-Resolution State

Estimation via Deep Learning," 2019 57th Annual Allerton Conference

on Communication, Control, and Computing (Allerton) Allerton Park and Retreat Center

Monticello, IL, USA, September 24-27, 2019

[21] Cao, Zhiyuan, Wang, Yubo, Chu, Chi-Cheng, and Gadh, Rajit. "Scalable Distribution

Systems State Estimation Using Long Short-Term Memory Networks

as Surrogates." IEEE Access 8 (2020): 23359-3368.

165

[22] Zhang, Ying, Wang, Jianhui, and Chen, Bo. "Detecting False Data Injection Attacks

in Smart Grids: A Semi-Supervised Deep Learning Approach."

IEEE Transactions on Smart Grid 12.1 (2021): 623-34.

[23] Cao, Z. (2020). Data Driven State Estimation in Distribution Systems. UCLA.

ProQuest ID: Cao_ucla_0031D_19094. Merritt ID: ark:/13030/m5n358fb.

Retrieved from https://escholarship.org/uc/item/2p33m7wg

[24] Song, Jianhan, Dall'Anese, Emiliano, Simonetto, Andrea, and Zhu, Hao. "Dynamic

Distribution State Estimation Using Synchrophasor Data." IEEE

Transactions on Smart Grid 11.1 (2020): 821-31.

[25] Tian C, Ma J, Zhang C, Zhan P. A Deep Neural Network Model for Short-Term Load

Forecast Based on Long Short-Term Memory Network and Convolutional

Neural Network. Energies. 2018; 11(12):3493. https://doi.org/10.3390/en11123493

[26] ERCOT Historical Load Data, https://www.ercot.com/gridinfo/load/load_hist

[27] Dallas/Fort Worth International Airport Historical Weather,

https://www.meteoblue.com/en/weather/archive/export/dallas%2ffort-worth-

international-airport_united-states_4684943

[28] Frazier, Peter I. A Tutorial on Bayesian Optimization, arXiv:1807.02811v1

July 10, 2018

[29] Brownlee, Jason. Deep Learning with Python, Machine Learning Mastery, 2021, pp.

107-108

[30] Adams, Ryan P. A Tutorial on Bayesian Optimization. School of Engineering and

Applied Sciences Harvard University,

https://www.iro.umontreal.ca/~bengioy/cifar/NCAP2014-

summerschool/slides/Ryan_adams_140814_bayesopt_ncap.pdf, 2018

[31] Dugan, Roger. IEEE 34 Node Test Feeder. IEEE Power Engineering Society, (2004):

pg. 2

[32] O'Connor, J.J. and Robertson, E.F., Thomas Bayes, Available from

https://mathshistory.st-andrews.ac.uk/Biographies/Bayes/, accessed April 03, 2022.

[33] Brownlee, Jason. A Gentle Introduction to Bayes Theorem for Machine Learning,

Machine Learning Mastery, Available from https://machinelearningmastery.com/bayes-

theorem-for-machine-learning/, accessed April 03, 2022.

166

[34] Larson, J., Menickelly, M., & Wild, S. M. (2019). Derivative-free optimization

methods. ArXiv. https://doi.org/10.1017/S0962492919000060

[35] Vink, Ritchie. Algorithm Breakdown: Bayesian Optimization, Available from

https://www.ritchievink.com/blog/2019/08/25/algorithm-breakdown-bayesian-

optimization/, accessed April 03, 2022.

[36] Brownlee, Jason. How to Work Through a Time Series Forecast Project, Machine

Learning Mastery, Available from https://machinelearningmastery.com/work-time-series-

forecast-project/, accessed April 03, 2022.

[37] ADAM, https://keras.io/api/optimizers/adam/, Retrieved on 01/02/2023

[38] Brownlee, Jason. Gentle Introduction to the Adam Optimization Algorithm for Deep

Learning, Machine Learning Mastery, Available from

https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/,

accessed April 03, 2022.

[39] Kingma, Diederik and Ba, Jimmy. Adam: A Method for Stochastic Optimization.

Presented at 3rd International Conference for Learning Representations, San Diego, 2015,

https://arxiv.org/abs/1412.6980

[40] C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the

MIT Press, 2006,

ISBN 026218253X. Massachusetts Institute of Technology.

www.GaussianProcess.org/gpml

[41] Wu, J., Poloczek, M., Wilson, A. G., Frazier, Peter I., Bayesian Optimization with

Gradients, 31st Conference on Neural Information Processing Systems (NIPS 2017), Long

Beach, CA, USA.

[42] Brochu, Eric et al. “A Tutorial on Bayesian Optimization of Expensive Cost

Functions, with Application to Active User Modeling and Hierarchical Reinforcement

Learning.” ArXiv abs/1012.2599 (2010)

[43] OpenDSS, https://www.epri.com/pages/sa/opendss, Retrieved on 02/01/2023

[44] James Carmichael, Yuan Liao, Application of Deep Neural Networks to Distribution

System State Estimation and Forecasting, Front. Sustain. Cities,

https://doi.org/10.3389/frsc.2021.814037, January 07, 2022

167

[45] Y. Chen, Y. Tan and D. Deka, Is Machine Learning in Power Systems Vulnerable?,

2018 IEEE International Conference on Communications, Control, and Computing

Technologies for Smart Grids (SmartGridComm), 2018, pp. 1-6, doi:

10.1109/SmartGridComm.2018.8587547

[46] Synchrophasor System Benefits Fact Sheet, North American Synchrophasor Initiative

(NASPI), https://www.naspi.org/, Retrieved on May 05, 2022

[47] Synchrophasor Monitoring for Distribution Systems: Technical Foundations and

Applications, NASPI Distribution Task Team, January 2018

[48] Factors Affecting PMU Installation Costs, U.S. Department of Energy,

https://www.energy.gov/oe/articles/factors-affecting-pmu-installation-costs-october-

2014, Retrieved on 02/01/2023

[49] Grid Search, Random Search, Genetic Algorithm: A Big Comparison for NAS

Petro Liashchynskyi, Pavlo Liashchynskyi, https://doi.org/10.48550/arXiv.1912.06059,

Submitted on 12 Dec 2019

[50] Frazier, Peter I. A Tutorial on Bayesian Optimization,

https://doi.org/10.48550/arXiv.1807.02811, July 10, 2018

[51] Snoek, J., Larochelle, H., Adams, Ryan P., Practical Bayesian Optimization of

Machine Learning Algorithms, https://doi.org/10.48550/arXiv.1206.2944, Submitted on

13 Jun 2012

[52] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand

Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg,

Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu

Perrot, Édouard Duchesnay; Scikit-learn: Machine Learning in Python, Journal of Machine

Learning Research 12(85):2825−2830, 2011.

[53] OpenDSS, https://www.epri.com/pages/sa/opendss, Retrieved on 02/01/2023

[54] M. E. Baran and A. W. Kelley, "A branch-current-based state estimation method for

distribution systems," in IEEE Transactions on Power Systems, vol. 10, no. 1, pp. 483-491,

Feb. 1995, doi: 10.1109/59.373974.

[55] sklearn https://scikit-learn.org/stable/, Retrieved on 02/01/2023

[56] Pandas Dataframes, https://pandas.pydata.org/docs/getting_started/index.html,

Retrieved on 02/01/2023

168

[57] Tensorflow, https://www.tensorflow.org/, Retrieved on 02/01/2023

[58] Keras, https://keras.io/, Retrieved on 02/01/2023

[59] Ruben Martinez-Cantin, BayesOpt: A Bayesian Optimization Library for Nonlinear

Optimization, Experimental Design and Bandits. Journal of Machine Learning Research,

15(Nov):3735--3739, 2014.

[60] Paulo Radatz, Enio Viana, Rodolfo Pilar Londero. py_dss_interface, https://py-dss-

interface.readthedocs.io/en/latest/readme.html, Retrieved on 02/01/2023

[61] Numpy, https://numpy.org/, Retrieved on 02/01/2023

[62] Python, https://www.python.org/, Retrieved on 02/01/2023

[63] Chris Asbery and Yuan Liao, “Fault identification on electrical transmission lines

using artificial neural networks,” Electric Power Components and Systems, vol. 49, no.

13-14, 2021.

[64] Chris Asbery, Yuan Liao, “Electric transmission system fault identification using

modular artificial neural networks for single transmission lines,” Power System

Conference, Clemson, SC, March 10-13, 2020.

[65] Chris Asbery, Yuan Liao, “Electric transmission system fault identification using

artificial neural networks,” International Energy & Sustainability Conference 2019,

Farmingdale, NY, USA, October 17 - 18, 2019.

[66] Wesley Fluty, Yuan Liao, “Electric transmission fault location techniques using

traveling wave method and discrete wavelet transform,” Power System

Conference, Clemson, SC, March 10-13, 2020.

[67] "IEEE/IEC International Standard - Measuring relays and protection equipment - Part

118-1: Synchrophasor for power systems - Measurements," in IEC/IEEE 60255-118-

1:2018 , vol., no., pp.1-78, 19 Dec. 2018, doi: 10.1109/IEEESTD.2018.8577045.

[68] sklearn.preproccessing.MinMaxScaler, https://scikit-

learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html ,

Retrieved on 03/28/2023

[69] Jiaxiong Chen, 2013, Dissertation, University of Kentucky, Power System State

Estimation Using Phasor Measurement Units.

[70] Jiaxiong Chen and Yuan Liao, “Investigation of WLS state estimation convergence

under topology errors and load increment,” International Journal of Automation and

Logistics, vol. 1, no. 1, pp. 47-60, 2013.

https://py-dss-interface.readthedocs.io/en/latest/readme.html
https://py-dss-interface.readthedocs.io/en/latest/readme.html
https://numpy.org/
https://www.python.org/
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

169

[71] Jiaxiong Chen, Yuan Liao, Bei Gou, “Study of WLS state estimation convergence

characteristics under topology errors,” SoutheastCon, Jacksonville, Florida, April 04-07,

2013.

170

VITA

1. Educational Institutions

o August 2014 – Present

▪ PhD. Student

▪ Department of Electrical and Computer Engineering, University of

Kentucky, Lexington, Kentucky, USA

o December 1997 – August 1999

▪ Master of Engineering in Electrical Engineering

▪ Department of Electrical Engineering, University of Louisville,

Louisville, Kentucky, USA

o August 1991 – December 1997

▪ Bachelor of Science in Electrical Engineering

▪ Department of Electrical Engineering, University of Louisville,

Louisville, Kentucky, USA

2. Professional Positions

o January 2014 – Present

▪ Adjunct Online Faculty

▪ School of Science, Technology, Engineering, and Mathematics

o February 2018 – January 2020

▪ Senior Data Scientist

▪ Humana, Inc., Louisville, Kentucky, USA

o August 2007 – February 2018

▪ Program Manager

▪ Humana, Inc., Louisville, Kentucky, USA

3. Scholastic and professional honors

o SMART Scholarship – April 2022

o Tennessee Valley Authority Fellowship – August 2014

o Project Management Professional Certification (PMP) – March 2010

o Professional Engineering License, State of Kentucky, December 2003

4. Professional publications

o James Carmichael and Yuan Liao, "Application of Deep Neural Networks to

Distribution System State Estimation and State Forecasting", Frontiers In

Sustainable Cities - Smart Technologies and Cities · Jan 7, 2022,

https://doi.org/10.3389/frsc.2021.814037

5. Student: James P. Carmichael

https://doi.org/10.3389/frsc.2021.814037

	Application of Conventional Feedforward and Deep Neural Networks to Power Distribution System State Estimation and State Forecasting
	Recommended Citation

	Application of Conventional Feedforward and Deep Neural Networks to Power Distribution System State Estimation and State Forecasting
	Recommended Citation

	TITLE PAGE
	ABSTRACT OF DISSERTATION
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1. PURPOSE AND SIGNIFICANCE OF THE RESEARCH
	1.1 Research Purpose Statement
	1.2 Dissertation Outline

	CHAPTER 2. BACKGROUND AND RELATED WORK
	2.1 Introduction
	2.2 Review of Conventional (Analytical) Power System State Estimation, Resiliency and Observability
	2.3 State Estimation Applied to Smart Distribution Systems
	2.4 Artificial Neural Networks and Deep Learning Applied to Power System State Estimation, Observability, Topology Errors and False Data Injection Attacks
	2.5 Distribution System State Estimation
	2.6 Challenges of Applying Conventional State Estimation Utilizing Weighted Least Squares to Distribution Systems
	2.7 Lack of Observability in Distribution Systems
	2.8 Topology Errors in Distribution Systems
	2.9 False Data Injection Attacks in Distribution Systems
	2.10 Conventional Feedforward Multilayer Perceptron Networks (MLPs)
	2.11 Convolutional Neural Networks (CNNs)
	2.12 Recurrent Neural Networks (RNNs)
	2.13 Long Short-Term Memory Networks (LSTMs)

	CHAPTER 3. DISTRIBUTION SYSTEM STATE ESTIMATION (DSSE) WITH MULTILAYER PERCEPTRON (MLP) MODELS
	3.1 DSSE with MLPs without Hyperparameter Optimization
	3.2 Test Distribution System
	3.3 Power Flow Simulation Measurement Points and Quantities
	3.4 Training and Testing Data
	3.5 Validation Data
	3.6 Unoptimized Conventional Feedforward Multilayer Perceptron Network (MLP)
	3.6.1 Network Model Parameters
	3.6.2 Network Hyperparameters

	3.7 Implementation of Unoptimized MLP Models for DSSE
	3.8 State Estimation and Forecasting Based Upon Time Series Physics Aware Models
	3.9 DSSE with MLPs with Hyperparameter Optimization
	3.9.1 Bayesian Optimization with Gaussian Processes
	3.9.2 Implementation of Bayesian Optimization with Gaussian Processes on MLPs for DSSE

	CHAPTER 4. FULL DISTRIBUTION SYSTEM STATE ESTIMATION WITH OPTIMIZED MLP MODELS
	4.1 Original Workflow and Data Pipeline
	4.1.1 Load Profile
	4.1.2 Distribution System Simulator
	4.1.3 Raw Data Files Exported from Simulator Monitors
	4.1.4 Data Pre-processing
	4.1.5 Machine Learning Ecosystem

	4.2 Improved Workflow and Data Pipeline
	4.2.1 Load Profile
	4.2.2 Distribution System Simulator
	4.2.3 Machine Learning Ecosystem
	4.2.4 Experimental Methodology
	4.2.5 Measurement Points and Locations
	4.2.6 Gather Training/Testing Data
	4.2.7 Perform Random Selection of Lines
	4.2.8 Gather Validation Data
	4.2.9 Unoptimized MLP Models
	4.2.10 Optimized MLP Models

	CHAPTER 5. DISTRIBUTION SYSTEM STATE FORECASTING (DSSF) WITH CONVOLUTIONAL NEURAL NETWORK (CNN) MODELS
	5.1 Time-Series Forecasting
	5.1.1 Time-Series Forecasting Process

	5.2 Data Preparation for Time-Series Forecasting with Deep Learning
	5.3 Hyperparameter Selection for Unoptimized CNN Model
	5.4 Implementation of Unoptimized CNN Model for Time-Series Forecasting

	CHAPTER 6. DISTRIBUTION SYSTEM STATE FORECASTING (DSSF) WITH LONG SHORT-TERM MEMORY (LSTM) MODELS
	6.1 Data Preparation for LSTMs
	6.2 Hyperparameter Selection for Unoptimized LSTM Model
	6.3 Implementation of Unoptimized LSTM Model for Time-Series Forecasting

	CHAPTER 7. A COMPARISON OF AUTO-REGRESSIVE MODELS AND CONVOLUTIONAL NEURAL NETWORKS FOR POWER DISTRIBUTION SYSTEM TIME-SERIES FORECASTING
	7.1 ARIMA Model
	7.2 CNN Model
	7.3 ARIMA Model Implementation
	7.4 CNN Model Implementation
	7.5 Actual Versus Predicted P, Q, V_mag, V_phase Plots at B1
	7.6 Actual Versus Predicted P, Q, V_mag, V_phase Plots at B18
	7.7 Actual Versus Predicted P, Q, V_mag, V_phase Plots at B27

	CHAPTER 8. RESEARCH CONCLUSION
	REFERENCES
	VITA

