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FIGURE 3.6. Hepatic expression of genes in lean and obese mice infected with control 

adenovirus (Con) or G5G8 in the presence and absence of EZ. A) Relative abundance of 

hepatic mRNAs of genes involved in cholesterol biosynthesis: SREBP-2, HMGCR, HMGCS. 

B) Relative abundance of hepatic mRNAs of genes involved in liver cholesterol uptake: 

LDLR, LRP-1, VLDLR. Values represent mean ± SD of data from three animals in each 

group. * p<0.05.   
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DISCUSSION 

 

Mice lacking functional leptin or its receptor have decreased levels of hepatic 

ABCG5/G8, reduced biliary cholesterol excretion and increased HDL cholesterol 

associated with a delayed clearance of these particles. In the present study, I tested the 

hypothesis that accelerating biliary cholesterol excretion by adenoviral expression of 

ABCG/5G8 could correct dyslipidemia in db/db mice. These results demonstrate that 

accelerating biliary cholesterol excretion can reduce both HDL and large HDL1 particles 

characteristic of db/db mice when cholesterol absorption is inhibited with EZ. However, 

the combination of these treatments failed to fully correct dyslipidemia. This may be 

due to the acute nature of the experiment; perhaps sustained expression of ABCG5/G8 

in the presence of EZ could fully restore the lipoprotein profile in db/db mice. 

 

The role of enhanced ABCG5/G8 activity in opposing plasma accumulation of dietary 

cholesterol in ApoB containing lipoproteins is well established [244]. In the present 

study, hepatic ABCG5/G8 partially corrected a dyslipidemia characterized by increased 

cholesterol in ApoA containing lipoproteins in mice maintained on low cholesterol diets. 

The classical view of RCT presumes that cholesterol elimination requires delivery of 

cholesterol from peripheral tissues to the liver. However, an emerging body of literature 

supports a significant role for transintestinal excretion of cholesterol and recent studies 

have produced conflicting results on the necessity of biliary cholesterol excretion on 

macrophage RCT [172, 174, 245-247]. The relative contribution of this alternative 

pathway on overall RCT and in opposing the accumulation of endogenously synthesized 

cholesterol in plasma is not known. 

 

The data are consistent with previous reports that EZ promotes transintestinal 

elimination of cholesterol. Despite a five-fold increase in fecal sterol loss, EZ treatment 

alone failed to lower serum cholesterol in db/db mice. My analysis of hepatic and 

intestinal gene expression as well as lipids in these tissues and bile did not reveal the 
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source for increased fecal sterols in EZ treated mice. Similarly, biliary cholesterol 

excretion was increased almost eight-fold in ABCG5/G8 infected mice in the absence of 

EZ without a reduction in plasma cholesterol. Clearly, this level of excretion reduced the 

regulatory pool of cholesterol in hepatocytes which unregulated the expression of 

cholesterol synthetic genes. However, I saw no increase in hepatic SR-BI or LDLR mRNAs. 

This observation suggests that biliary cholesterol excretion and hepatic uptake of HDL 

are functionally uncoupled. Whether this is a common feature or unique to db/db mice 

it is not known. 

 

Although leptin has been shown to increase SR-BI levels in ob/ob liver, there are 

conflicting reports on whether the abundance of the HDL receptor is reduced [232, 241]. 

Unfortunately, our study does nothing to resolve this issue. In independent cohorts of 

db/db mice I obtained different results for SR-BI levels in the liver. Housing, diet, light: 

dark cycle and other conditions of animal husbandry were not different between these 

two groups. Although these mice were of different ages, this explanation is unsatisfying. 

What can be said is that there is no correlation between HDL levels in plasma and 

alterations in SR-BI abundance in db/db mice. It is also important to note that I did not 

determine HDL clearance rates or other measures of SR-BI function in the studies.  

 

In conclusion, effective cholesterol lowering via enhanced biliary excretion was entirely 

dependent on EZ treatment. Put another way, reducing plasma cholesterol by inhibition 

of cholesterol absorption was entirely dependent on enhanced biliary cholesterol 

excretion. These observations reveal the requirement for a cooperative relationship 

between the liver and intestine for reducing plasma cholesterol in db/db mice. 
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Chapter 4:  PLANT STEROLS INFLUENCE ABC TRANSPORTER EXPRESSION, 

CHOLESTEROL EFFLUX AND INFLAMMATORY CYTOKINE SECRETION IN MACROPHAGE 

FOAM CELLS 

 

 

INTRODUCTION 

 

A number of functional foods contain added phytosterols, a mixture of commonly 

consumed non-cholesterol sterols (sitosterol, campesterol and stigmasterol) found in 

the oils of the seeds, beans, and legumes of the plants from which they are extracted 

[18]. When supplied at a dose of 2-4 g per day, phytosterol-esters and their fully 

hydrogenated stanol-ester derivatives reduce LDL cholesterol by approximately 10%, 

even when added to statin therapy [248-250]. However, patients consuming 

phytosterols in the form of supplements and functional foods have increased 

phytosterols in plasma and tissues [18, 248-251]. It is not known if this increase in 

plasma phytosterols is required for their cholesterol lowering effect, nor is it known if 

this level of accumulation confers cardiovascular risk or benefit. 

 

There is considerable controversy in the literature concerning the association between 

plasma levels of plant sterols and the incidence of cardiovascular disease [248, 250, 

252]. As with the clinical data, studies in mouse models of atherosclerosis have 

generated mixed results. Phytosterol supplementation in mice lacking one copy of the 

LDL receptor resulted in a reduction in both plasma cholesterol and vascular lesion area 

[22]. However, a more recent study in ApoE deficient mice showed that phytosterol 

supplementation impaired endothelial function, increased lesion size following cerebral 

artery occlusion, and increased atherosclerotic lesion area compared to mice treated 

with the cholesterol absorption inhibitor, EZ [251]. In fact, patients that reported regular 

use of phytosterol supplements had the highest phytosterol concentrations in both 
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plasma and lesions [251]. However, no conclusions can be made concerning the role of 

phytosterols in disease progression. 

 

Studies addressing cardiovascular phenotypes in both humans and rodents have 

generally been limited to commercially available mixtures of phytosterols. However, it is 

clear from a variety of in vitro studies that individual phytosterols have distinct 

biological activities that include the modulation of signaling pathways and activation of 

cellular stress responses, growth arrest, and death mechanisms [253-255]. Many of 

these have implications for lipid metabolism, inflammation and the development of 

cardiovascular disease. The pro-apoptotic characteristics of sitosterol recognize this 

plant sterol as cytotoxic and chemotherapeutic-sensitizing agent to cancer cell lines 

[255, 256]. Stigmasterol and campesterol, but not sitosterol, interfere with SREBP 

processing and reduce the expression of genes in the cholesterol biosynthetic and 

uptake pathways in Y1 adrenal cells [257]. Independently of SREBP processing, 

stigmasterol is shown to be an LXR ligand that promotes the expression of ABCA1 and 

ABCG1, two transporters involved in the reverse cholesterol transport pathway that 

opposes cholesterol accumulation in tissues [257, 258]. Conversely, stigmasterol had no 

effect on LXR dependent gene expression, and antagonized FXR and PXR activity in 

hepatocytes [259]. Collectively, these observations indicate that the biological activity of 

phytosterols is both cell-type and sterol specific. 

 

Campesterol, sitosterol and stigmasterol individually have the potential to decrease 

apoB hepatic levels and retard the production of atherogenic lipoproteins in liver 

(HepG2) and intestinal (CaCo-2) cell lines [27]. Whereas stigmasterol has the ability to 

suppress hepatic HMGR and CYP7A1 activity, reduce cholesterol absorption and 

decrease hepatic cholesterol content when fed to rats, sitosterol accelerates cholesterol 

synthesis and induces cell death in mouse peritoneal macrophages [28-30].  
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Experimental Rationale 

There is inconsistency in the literature regarding the beneficial or deleterious effects of 

plant sterols. Although phytosterols accumulate in vascular lesions, the actions of 

phytosterols on macrophage function are poorly understood. Clearly, plant sterols 

confer LXR agonist activity or/and interfere with SREBP processing influencing 

cholesterol homeostasis. We hypothesized that individual phytosterols would 

differentially influence macrophage ABC transporter abundance, cholesterol efflux and 

inflammatory cytokine secretion. 

 

 

EXPERIMENTAL PROCEDURES 

 

Reagents and Buffers: Stigmasterol, 22(R)-dehydrocholesterol, and 5µ-cholestane were 

purchased from Steraloids (Newport, RI). Cholesterol, β-sitosterol, campesterol, 

brassicasterol, Phorbol 12-myristate 13-acetate (PMA) and 1α, 2α[3H ]-cholesterol were 

purchased from Sigma (St. Louis, MO). Sterols were solubilized in 100% ethanol at a final 

concentration of 5 mg/ml. RPMI 1640 medium, Fetal Bovine Serum (FBS), and L-

glutamine were purchased from Atlanta Biologicals (Lawrenceville, GA). 

Penicillin/Streptomycin was obtained from Invitrogen/Gibco (Carlsbad, CA). Human Apo 

A-I was purchased from Biodesign International (Saco, ME). Anti-ABCG1 antibody was 

purchased from GeneTex (San Antonio, TX). Anti-ABCA1 antibody was a kind gift from 

Mason Freeman (Harvard Medical School, Boston, MA). Quantitative real-time PCR, the 

preparation of membrane proteins, SDS-PAGE, and immunoblotting were conducted as 

described in CHAPTER 2. 

 

Animals and Cell Culture: All animal procedures were conducted in accordance with the 

University animal care and use committee. C57BL6/J male mice (Jackson Laboratories, 8-

10 weeks) were injected intraperitoneally with 2 ml of sterile 10% Brewer’s 

thioglycollate medium. Five days after injection, macrophages were collected by 
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peritoneal lavage using sterile phosphate-buffered saline (PBS). Mouse peritoneal 

macrophages (MPMs) were washed with PBS, recovered by centrifugation at 500 x g (10 

min, 22oC), suspended in Medium A (RPMI 1640 containing 10 mM HEPES buffer, 

gentamicin (50 µg/ml), streptomycin (100 µg/ml), penicillin (100 IU/ml), and sodium 

bicarbonate (2 g/L), 7.5% FBS). Cells (9 x 106) were plated in 10 cm dishes for 4 hours. 

Cells were washed once, fed Medium A and cultured for 24 hr prior to initiation of 

experiments. For treatment with sterols, cells were incubated in Medium B (RPMI 1640 

containing 10 mM HEPES buffer, gentamicin (50 µg/ml), streptomycin (100 µg/ml), 

penicillin (100 IU/ml), and sodium bicarbonate (2 g/L), 2 mg/ml fatty acid free BSA). 

Medium C consisted of Medium B supplemented with sodium compactin (5 µM) and 

mevalonate (50 µM). 

 

Human monocyte/macrophages (THP-1) were obtained from the American Type Culture 

Collection (ATCC) and maintained in Medium D (RPMI 1640 containing 10 mM HEPES 

buffer, gentamicin (50 µg/ml), streptomycin (100 µg/ml), penicillin (100 IU/ml), and 

sodium bicarbonate (2 g/L), 5% FBS) according to the suppliers instructions. For studies 

of THP-1 macrophages, monocytes were seeded at a density of 1.5 x 106 cells per well in 

6-well plates in Medium D containing 50 ng/ml phorbol myristate acetate (PMA) and 

allowed to differentiate into macrophages for 72 hrs. Following differentiation, the 

medium was removed, the cells were washed twice with Medium B, and treatments 

applied as in MPMs as indicated. 

 

Lipoproteins: Low density lipoprotein (LDL; d=1.020-1.063 g/ml) and HDL (d=1.063-1.21 

g/ml) were isolated as previously described and generously provided by Dr. Marcielle de 

Beer (Cardiovascular Research Center, University of Kentucky) [260]. Aggregated LDL 

(agLDL) preparation: isolated LDL (1 mg/ml protein) was aggregated by vortexing for 1 

min. To break large aggregates, the solution was sonicated for 10 min (70% duty cycle) 

on ice using a Branson Sonifier and passed through a 0.45 µm filter. Measurement of 

thiobarbituric acid-reactive substances (TBARS) was conducted to confirm the absence 
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of oxidation during the aggregation procedure. For the incorporation of phytosterols 

into agLDL, aggregation was conducted in the presence of the indicated sterol. 

Partitioning of exogenously added sterols into agLDL was confirmed using [3H]-

cholesterol and [3H]-sitosterol. Greater than 99% of labeled sterols were TCA 

precipitable under these conditions (not shown). 

 

Cholesterol Loading and Analysis: To measure cholesterol loading, macrophages were 

incubated for 48 hr at 37°C in Medium B alone, in the presence of the indicated sterols 

delivered in ethanol, or in 100 µg protein/ml agLDL containing the indicated sterols and 

their concentrations. Following extensive washing, total cellular lipids were extracted 

twice with 2 ml of hexane:isopropanol (3:2), dried under nitrogen gas and suspended in 

1 ml of 33% KOH (in ethanol) containing 5 µg of 5α-cholestane as an internal standard. 

Samples were saponified at 70oC for 2 h. Water (1 ml) and petroleum ether (2 ml) were 

added to each sample. Samples were vigorously vortexed for 2 min, centrifuged (2000 x 

g, 10min, and 22oC), and the organic phase collected, and dried under nitrogen gas. 

Sterols were derivatized using N,O-Bis(trimethylsilyl)trifluoroacetamide:pyridine (1:1) 

(Sigma) and assayed by gas chromatography-mass spectroscopy (GC-MS) as previously 

described [261]. Cell proteins were solublized in 1N NaOH overnight and total protein 

determined by BCA assay (Pierce). Total cellular sterol content was expressed as µg 

sterol per mg total cell protein after normalization to the internal standard. The limit of 

detection for sterols by GC-MS is 50 ng/mg total cell protein. 

 

Cholesterol Efflux: THP-1 and mouse peritoneal macrophages were loaded with agLDL 

(100 µg/ml protein) containing the indicated sterols and 1 µCi/ml [3H]-cholesterol for 24 

hours in Medium E (RPMI 1640 containing 10 mM HEPES buffer, gentamicin (50 µg/ml), 

streptomycin (100 µg/ml), penicillin (100 IU/ml), and 2 g/L sodium bicarbonate, 1% FBS). 

[3H]-cholesterol (10 µCi/mg LDL protein) was added to LDL prior to aggregation. Cells 

were washed and allowed to equilibrate in Medium F (RPMI 1640, 10 mM HEPES buffer, 

0.2 mg/ml fatty acid free BSA) for 1 hr. Cells were washed and cholesterol efflux was 
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Next I determined if the effect of stigmasterol on ABCA1 abundance was associated with 

changes in mRNA levels for this and other LXR target genes (Figure 4.3). Each of the LXR 

target genes was increased by stigmasterol, but not sitosterol.  

 

 

 

FIGURE 4.3. Effect of stigmasterol on the expression of LXR (A) and SREBP1 (B), SREBP2 

(C) and selected target genes in MPMs. Macrophages were incubated in Medium C 
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(Control) or Medium C supplemented with LXR agonist, TO901317 (1 µM) was used as a 

positive control, sitosterol (10 µg/ml), stigmasterol (10 µg/ml), or 25-OH-C (1 µg/ml) for 

24 hrs. Total RNA was isolated and processed for quantitative RT-PCR. Data represent 

the mean ± SD. (*) denote significant differences from control treated cells at p < 0.01. 

 

 

Similarly, campesterol did not alter LXR target gene expression. We also evaluated 

expression of SREBPs and selected targets. Not surprisingly, SREBP-1c was also 

upregulated by stigmasterol as well as its downstream targets fatty acid synthase (FASN) 

and acetyl-CoA carboxylase (ACC1). However, stigmasterol had no effect on SREBP2 or 

its target genes, suggesting the mechanism by which stigmasterol suppresses LDLR 

protein is post-transcriptional, distinct from that of 25-OH-C, and independent of 

interference with SREBP processing. 

 

Although plant sterols may affect gene expression and cholesterol trafficking when 

added directly to the culture medium, macrophage foam cells acquire plant sterols from 

modified lipoproteins in vivo. Moreover, increased atherogenicity is suggested to occur 

when lipid stores are accumulated in the lysosomes and are less available for efflux from 

the macrophages compared to cytoplasmic occlusions [264]. Commonly used ox-LDL 

and acetylated LDL (ac-LDL) when incubated with MPMs accumulate cholesterol 

predominantly in cytoplasmic occlusions [265]. In addition, LDL aggregates are poorly 

processed by MPMs [266]. Therefore we selected THP-1 cells since these cells are an 

established model of macrophage foam cells that readily internalize and process agLDL 

in lysosomes [267]. First, I confirmed that the effects of individual phytosterols on ABC 

transporter expression would persist in lipid loaded cells and that they were not unique 

to MPMs. Following differentiation, THP-1 macrophages were cultured with medium 

supplemented with agLDL (Control) or agLDL prepared in the presence of the indicated 

sterol. As a positive control, cells were incubated in medium containing both agLDL and 

an LXR agonist (TO901317).   
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FIGURE 4.4. Effect of major phytosterols on expression of ABCA1 and ABCG1 and 

cholesterol efflux to ApoAI and HDL in agLDL loaded THP-1 macrophages. A) 

Immunoblotting analysis for levels of ABCA1 and ABCG1 after 48 hr incubation in Media 

E containing carrier (agLDL, 100 mg/g protein), T0901317 (10 μM) and designated 

sterols (10 μg/ml). B) Percent cholesterol efflux assay measured in a parallel 

experiment. [3H]-cholesterol (10 µCi/mg LDL protein) was added to LDL prior to 

aggregation. Data are the mean ± SD of three replicates. (*) denote significant 

differences (P< 0.05) compared to control cells. 
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As an additional control, agLDL was prepared in the presence of cholesterol to maintain 

equality of total added sterols. Following 48 hr of treatment, membrane proteins were 

prepared and analyzed by SDS-PAGE and immunoblotting (Figure 4.4 A). Incubation of 

THP-1 macrophages with agLDL in the absence of additional sterols increases ABCA1 and 

suppresses LDLR below the limits of detection (not shown). The addition of the LXR 

agonist further increased ABCA1 protein in agLDL loaded macrophages. ABCG1 was also 

increased in THP-1 loaded macrophages, the measurements of which proved difficult in 

mouse macrophages using commercially available antibodies. The incorporation of 

cholesterol, sitosterol and campesterol in agLDL had no effect on ABCA1 or ABCG1 

abundance. Consistent with mRNA data in MPMs, the inclusion of stigmasterol in agLDL 

increased both transporters in human macrophages, whereas other phytosterols had no 

effect. 

 

 

TABLE 4.1:  Cellular sterol content (µg/mg total cell protein) following incubation with 

agLDL prepared in the presence (+) of the indicated sterol 

Sterol 
Control 

agLDL + 

Carrier Cholesterol Stigmasterol Sitosterol Campesterol 

Cholesterol 
7.89 

± 0.74 
42.96 
± 5.74 

47.36 
± 6.52 

49.00 
± 6.18 

45.21 
± 10.18 

44.68 
± 1.92 

Stigmasterol    
6.41 

± 2.43 
  

Sitosterol     
5.28 

± 1.22 
 

Campesterol      
14.16 
± 1.01 

Total Sterols 
7.89 

± 1.04 
42.96 
± 5.74 

47.36 
± 6.52 

55.41 
± 5.14 

50.49 
± 3.65 

58.84 
± 3.37 

 

Values represent means ±SD. Empty cells indicate that levels were below the limits of 

detection by GC-MS (50 ng/mg total cell protein). 
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Cellular sterol content was determined before and after incubation with agLDL (Table 

4.1). Lipids were extracted and analyzed by GC-MS. Incubation of THP-1 macrophages 

with agLDL resulted in a 5-6 fold increase in total cellular sterol content. The addition of 

phytosterols collectively and individually had no effect on the extent of cholesterol 

accumulation or total cellular sterol content when compared to the cholesterol control, 

indicating that changes in ABC transporter expression are not merely a function of total 

cholesterol or sterol content of THP-1 macrophages. 

 

Next I determined if phytosterols altered efflux of cholesterol from agLDL loaded THP-1 

macrophages to apoA-I and HDL (Figure 4.4 B). THP-1 monocytes were differentiated 

into macrophages and incubated with agLDL prepared in the presence of [3H]-

cholesterol and the indicated sterol for 48 hours (100 μg/ml LDL, 10 μg/ml sterol, 1 

μCi/ml [3H]-cholesterol). Following the loading phase, the cells were washed and 

allowed to equilibrate in serum free medium for 1 hr. The equilibration medium was 

removed, the cells were washed and the medium replaced in Medium B containing 

apoA-I (30 μg/ml) or HDL (100 μg/ml) for 4hr. Relative to control cells, in which no 

additional sterols were added to the LDL aggregates, TO901317 enhanced efflux of [3H]-

cholesterol to both apoA-I and HDL. Sitosterol had no effect on efflux to either acceptor, 

although there was a tendency for a decrease to HDL. The presence of stigmasterol 

increased efflux to apoA-I by 25% and tended to increase efflux to HDL. Campesterol 

resulted in a modest, but significant decrease in efflux to HDL, but did not alter efflux to 

apoA-I. These results indicate that the effects of individual phytosterols on ABC 

transporter expression and cholesterol efflux are directly correlated in human cultured 

macrophages.   
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Figure 4.5. Sterol loading of THP-1 cells induces the synthesis and secretion of TNFα, 

IL-6 and IL-1β. THP-1 macrophages were incubated in medium (control), agLDL (carrier) 

or agLDL with the indicated sterol (10 µg/ml) for 48 h. As a positive control for activation 

of macrophages, cells were incubated for 24 hr in the presence of IFNγ ng/ml) followed 

by LPS (100 ng/ml). The amount of A) TNFα, B) IL-6 and C) IL-1β released to the media 

were analyzed by CBA assay. Data are the mean ± SEM of six replicates. ** p < 0.01 vs. 

untreated control, * p < 0.05 vs. untreated control, † p < 0.05 vs. AgLDL + carrier.  
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Beyond the accumulation of lipid, macrophages contribute to the inflammatory state of 

the atherosclerotic lesion. To determine if phytosterols alter the inflammatory response 

to agLDL loading, I evaluated the secretion of inflammatory cytokines in the culture 

medium using a commercially available cytometric bead assay (CBA) inflammation panel 

(Figure 4.5). First, I used pretreatment with interferon (IFN)-γ followed by 

lipopolysaccharide (LPS) as a control for classical activation of macrophages. Following 

pretreatment with IFN-γ, LPS dramatically increased the secretion of TNFα, IL-6 and IL-

1β. Compared to untreated cells, incubation with agLDL increased the expression of 

each of these proinflammatory cytokines. The effect of phytosterols on the response to 

agLDL loading was assessed by comparing the levels of secreted cytokines to cells 

treated with agLDL prepared in the presence of the carrier (ethanol). The presence of 

stigmasterol decreased agLDL-induced secretion of TNFα, IL-6 and IL-1β. The presence 

of sitosterol increased the secretion of TNFα and IL-1β, but not IL-6. Campesterol had no 

effect on the inflammatory response to agLDL. Levels of IL-8 were unaffected by 

treatments. IL-10 and IL12p70 were below the limits of detection in our assay (not 

shown). 
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DISCUSSION 

 

These studies report that stigmasterol increases expression of ABCA1 and ABCG1, 

enhances cholesterol efflux, and decreases the inflammatory response to uptake of 

modified lipoproteins in multiple models of macrophage foam cells. Conversely, 

sitosterol exacerbated the inflammatory response of agLDL loading and tended to 

decrease cholesterol efflux. Although campesterol had no effect on the abundance of 

ABC transporters or secretion of cytokines, it had a modest inhibitory effect on 

cholesterol efflux from agLDL loaded macrophages to HDL. 

 

The increase in efflux to apoA-I and HDL in the presence of stigmasterol is presumably 

mediated by the increase in ABCA1 and ABCG1 protein, respectively. However, a role for 

other sterol transporting proteins such as SR-BI, CD36 and ABCG4 cannot be excluded. 

Further complicating matters is the fact that LXR agonists have been shown to enhance 

efflux of cholesterol by promoting the transport of cholesterol to the cell surface in 

human macrophages [268]. Given that stigmasterol interacts with at least two 

independent sterol sensing mechanisms in other cell types, the precise mechanism(s) by 

which stigmasterol enhances cholesterol efflux to apoA-I and HDL in macrophages 

remains difficult to definitively establish. Similarly, the mechanism for suppression of 

inflammatory cytokine secretion remains unknown, but is likely related to activation of 

LXR signaling based on the increase in LXR target genes by this sterol and emerging role 

of this nuclear hormone receptor in the suppression of inflammation [269].  

 

The suppression of LDLR by stigmasterol appears to be independent of disruptions in 

SREBP2 processing since target genes for this transcription factor are unaffected by this 

phytosterol. It is tempting to speculate that the mechanism is also LXR dependent based 

on recent reports of LXR-mediated LDLR degradation [104]. However, I did not pursue 

this effect of stigmasterol in macrophage foam cells since lipid loading in the absence of 
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stigmasterol or the synthetic LXR ligand is sufficient to suppress LDLR levels below the 

limits of detection.  

 

In general terms, the effects of sitosterol were opposite of stigmasterol. Sitosterol 

increased the inflammatory response of agLDL loaded macrophages and tended to 

reduce cholesterol efflux. However, sitosterol had no effect on immunoreactive levels of 

ABC transporters or mRNA levels of any of the transcripts examined. Previous reports in 

macrophages and other cell types indicate that sitosterol inhibits cell growth, activates 

components of the integrated stress response and at sufficient concentrations is toxic to 

cells [254, 255]. I did not observe cytotoxicity with sitosterol treatment in these studies, 

but it is important to note that it did not quantify direct measures of cellular stress since 

these effects were beyond the scope of our study. 

 

These studies add to a growing body of literature demonstrating that individual 

phytosterols affect a number of signaling, trafficking, and enzymatic mechanisms with 

implications in the development and progression of cardiovascular disease. The relative 

abundance of stigmasterol in commercially available phytosterol supplements and 

functional foods compounded with its limited absorption make it unlikely that the levels 

of this individual phytosterol accumulate in sufficient quantities to have a significant 

positive impact on the reverse cholesterol transport or inflammatory pathways within 

macrophages. However, supplying stigmasterol as the sole source of phytosterol in the 

diet increased its levels to 20 μg/ml in serum and reduced cholesterol absorption, 

plasma cholesterol and hepatic HMGCR activity, suggesting that the beneficial effects of 

this phytosterol are achievable [30]. 

 

A critical question with respect to the use of phytosterols as supplements and within 

functional foods is whether the benefits of cholesterol lowering are greater than 

potential risk associated with the accumulation of plant sterols in plasma and tissues. It 

is important to note that humans consume significant amounts of phytosterols 
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depending on their diet and phytosterol supplements are generally regarded as safe. 

However, cholesterol lowering therapies persist for decades. Increasing phytosterol 

consumption to levels sufficient for cholesterol lowering, particularly in patients that 

harbor polymorphisms in ABCG5/ABCG8, may limit cardiovascular benefit depending on 

sterol composition. On the other hand, added benefit may be achievable through the 

use of supplements enriched in stigmasterol or other 22-dehydrosterols. Additional 

studies of individual phytosterols are required to determine if sterol composition can be 

optimized to achieve added cardiovascular benefit beyond cholesterol lowering. 
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Chapter 5:  SUMMARY OF RESEARCH 

 

The clinical and epidemiological importance of CVD related to vascular lesion 

development has been growing rapidly in the recent decades. Obesity, insulin resistance 

and hypercholesterolemia are frequent metabolic derangements found in patients with 

progressing atherosclerosis, and are often linked to impaired reverse cholesterol 

transport (RCT). RCT is an atheroprotective process whereby ABC cholesterol 

transporters (ABCA1, ABCG1 and ABCG5/G8) play a crucial role in initiating the 

movement of cholesterol from peripheral tissues and vascular lesion macrophages to 

the liver as well as promoting hepatic cholesterol excretion out of the body. The major 

findings of these studies are the post-transcriptional regulation of the ABCG5/G8 

complex and its cooperate role in the liver and intestine in the process of maintaining 

cholesterol homeostasis. My data demonstrated that a defect in the leptin axis is 

associated with reductions in ABCG5/G8 protein. Leptin replacement and caloric 

restriction restored ABCG5/G8 abundance which were further associated with increased 

biliary cholesterol excretion and corrected hypercholesterolemia in ob/ob mice. 

Although TUDCA treatment and liver specific ABCG5/G8 adenoviral replacement 

increased ABCG5/G8 protein expression and accelerated biliary cholesterol secretion, it 

failed to correct dyslipidemia in obese db/db mice. Further, adenoviral ABCG5/G8 

ameliorated high cholesterol levels only when cholesterol reabsorption was inhibited, 

underscoring the collaborative role between hepatic and intestinal ABCG5/G8. In the 

last chapter, my in vitro studies reported that phytosterols influence the initial step of 

RCT and had diverse effects on cholesterol efflux and pro-inflammatory response in 

macrophage foam cells.  

 

Beyond the fact that ABCG5 and ABCG8 are N-linked glycoproteins which reside in the 

ER as monomers and require CNX or CRT for proper protein folding for heterodimer 

complex formation and trafficking to the cell surface, little is known about the post-

transcriptional regulation of these cholesterol transporters. To gain insight into the 
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process, series of in vivo experiments were conducted in leptin-axis defective mice 

(db/db and ob/ob). These strains exhibit pronounced obesity, dyslipidemia and reduced 

biliary cholesterol secretion. In fact, the mice remain resistant to gallstone formation 

while maintained on high cholesterol and cholate diet, suggesting an effect of leptin 

deficiency on hepatobiliary regulation [214]. Hepatic immunoblot analysis from db/db 

and ob/ob mice revealed that impaired cholesterol excretion into the bile is associated 

with a reduction in ABCG5/G8 protein. This decrease did not correlate with a reduction 

in messenger RNA of the sterol transporters. Cell culture studies indicated that the half-

life of the immature forms of ABCG5 and ABCG8 are significantly shorter compared to 

the mature forms, but the two forms of the proteins are present in similar amount [74]. 

My animal studies revealed that there was a difference between the processed and 

unprocessed form of ABCG5 and ABCG8 in wild type control mice, suggesting efficient 

assembly of the complex in the ER and/or prolonged stability of the post-Golgi complex 

in vivo. Caloric restriction and leptin replacement increased the stability of the 

unprocessed protein form and restored the mature ABCG5/G8 form in ob/ob mice, 

repairing biliary cholesterol secretion. In fact, leptin administration alone increased 

ABCG5/G8 levels greater than those detected in wild type and pair-fed mice. However, 

there was no correlation between cholesterol transporter expression and biliary 

cholesterol concentrations, which possibly has a gallstone protective function. 

Cholesterol transport from the hepatocyte into the bile is a complex process which is 

still under investigation. Expressed in locations where bile acids are present in high 

concentrations, ABCG5/G8 acts as a floppase, transferring cholesterol from the inner to 

the outer leaflet of the plasma membrane [239]. In cell models, ABCG5/G8 cholesterol 

efflux is greatly dependent on mixed bile salt micelles which serve as a cholesterol 

acceptor [54]. Lastly, Harvey et al. have demonstrated that bile acids stimulate ATP 

hydrolysis in ABCG5/G8, possibly promoting an active confirmation of the complex. 

 

The exact mechanism by which leptin signaling normalized abundance of the 

transporters remains unknown. The uncoupling of biliary cholesterol concentrations 
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from ABCG5/G8 protein levels suggest that ABCG5/G8 transporter activity is regulated 

beyond abundance of mRNA and protein. Indeed, Cohen et al have reported that 

intracerebroventricular leptin administration in rats exerts the same effect in liver 

metabolism as intravenously administration, indicating that the hepatic response to 

leptin is conducted through the central nervous system [270]. However, direct 

activation of hepatic leptin signaling is not excluded since many of the leptin receptor 

(ObR) spliced forms were found also in liver. Additional experiments need to be 

conducted in order to be determined whether hepatic ObR-s independently triggers 

leptin signaling activation.  

 

Obesity and insulin resistance have been associated with ER-stress. It has been 

demonstrated that obesity creates ER-stress and initiates the unfolded protein response 

signaling pathways not only in peripheral tissues but in the hypothalamus, which 

sequentially leads to inhibition of leptin receptor signaling and promotes leptin 

resistance [219, 271]. Dietary restriction has been shown to have beneficial effects on 

obesity and insulin resistance, indicating possible ER-stress amelioration. Alleviation of 

ER-stress with the chemical chaperons PBA and TUDCA sensitized leptin receptor 

signaling in the hypothalamus and corrected hyperglycemia in ob/ob mice [219, 271]. 

However, this mechanism is not dependent entirely on CNS since PBA-treatment in 

db/db mice did not exert leptin-sensitizing effect in hypothalamus but decreased blood 

glucose levels, indicating direct effect of the molecular chaperone in liver. My results 

revealed that long term treatment (10 days) with TUDCA improved glycemic control and 

increased ABCG5/G8 transporter in db/db mice. However, the TUDCA effect was not 

genotype specific, since transporter protein levels were increased in wild-type mice, 

suggesting that the ER may possess a significant number of ABCG5 and ABCG8 

monomers, which shortly after synthesis are degraded and never become functionally 

active. However, little is known about TUDCA mechanism of action as a molecular 

chaperone. In addition, TUDCA belongs to the hydrophilic class of bile acids and 

although it is a very weak agonist it could possibly activate FXR suppressing Cyp7a1. 
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Moreover, acute liver perfusion with TUDCA increases biliary cholesterol secretion 

[239]. A similar bile acid, cholic acid, elevates ABCG5/G8 protein and mRNA abundance 

in wild-type mice and loses its effect in FXR knockouts [202]. Recently, an FXR response 

element was identified in the promoter unit of ABCG5 and ABCG8 [87]. However, in the 

current research increased ABCG5 and ABCG8 transcription upon TUDCA treatment was 

not detected. It could be speculated that TUDCA could act via the membrane bound bile 

acid receptor TGR5 since the activation and translocation of CFTR (ABCC7) is up-

regulated via TGR5 agonists [272]. Although biliary cholesterol composition was no 

different compared to wild type controls, TGR5 deficient mice, similar to ob/ob and 

db/db mice, had low biliary cholesterol saturation index and were resistant to gallstones 

when fed on lithogenic diet [273]. The existence of such mechanism regulating 

ABCG5/G8 complex requires further investigation.  

 

Both db/db and ob/ob develop premature insulin resistance and are a useful model in 

type 2 diabetes studies. To investigate whether a lack of insulin signaling on ABCG5/G8 

stability and exclude a possible influence of obesity, protein levels of the sterol 

transporters where evaluated in STZ-induced type 1 diabetic lean mice. Besides the 

differences in blood glucose levels, STZ mice demonstrated similar immunoreactive 

ABCG5/G8 levels, indicating that hyperglycemia is not sufficient to disrupt ABCG5/G8 

post-translational regulation. Conversely, insulin resistant and predisposed to gallstone 

formation LIRKO mice are characterized with increased expression of ABCG5 and ABCG8 

mRNA levels in a FOXO1 dependent manner resulting in accelerated biliary cholesterol 

concentration [86]. The discrepancy in the results could only be explained with the 

genetic background of the animal models and requires further investigation. 

 

Hypercholesterolemia and obesity in leptin axis defective db/db and ob/ob mice is 

fundamentally different from that seen in high cholesterol diet models, which is 

characterized by increased VLDL and LDL cholesterol. However, this model provides the 

opportunity to investigate the development of obesity and dyslipidemia on low 
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cholesterol diets. Ob/ob and db/db mice are one of the few mouse models of 

genetically predisposed hypercholesterolemia associated with leptin deficiency, where 

cholesterol accumulates in both HDL and a large HDL (HDL1) fractions. Leptin 

replacement in ob/ob mice restored biliary cholesterol elimination, increased both SR-BI 

and ABCG5/G8 proteins, and normalized plasma HDL [216, 241, 242]. Because the 

molecular mechanism of action initiated by the hormone remained elusive, it has been 

suggested that impaired apoprotein clearance is due to reduction in HDL receptor (SR-

BI) protein and mRNA abundance [241]. However, there is controversy as to whether 

SR-BI is changed [232]. In order to clarify the ambiguous data regarding protein and 

transcript SR-BI abundance in ob/ob and db/db mice, I used 2 cohorts of mice of 

different ages. Whereas older db/db mice had no change in HDL receptor expression 

compared to lean controls, the younger cohort had significant reductions in both SR-BI 

protein and mRNA. Unfortunately, my studies cannot provide sufficient explanation for 

the differences in SR-BI. It can only be concluded that there is no correlation between 

HDL levels in plasma and alterations in SR-BI abundance in db/db mice.  

 

Chapter 3 addresses the question as to whether acceleration of biliary cholesterol 

excretion by liver-specific adenoviral expression of ABCG5/G8 could correct dyslipidemia 

in db/db mice. In order to prevent possible reabsorption of cholesterol from the small 

intestine, db/db mice were supplemented with EZ, which blocks fractional absorption 

via the NPC1L1 dependent pathway. Consistent with the observations in Chapter 2, 

expression of adenoviral ABCG5/8 in liver accelerated biliary cholesterol secretion. 

However, ABCG5/G8 did not have an effect on plasma cholesterol levels. As a 

compensatory effect, the reduced regulatory pool of cholesterol in hepatocytes resulted 

in upregulated expression of cholesterol synthetic genes. However, I saw no increase in 

hepatic SR-BI or LDLR mRNAs. This observation suggests that biliary cholesterol 

excretion and hepatic uptake of HDL are functionally uncoupled. Whether this is a 

common feature or unique to db/db mice it is not known. Similarly, EZ treatment alone 

increased FNS drastically but failed to lower serum cholesterol in db/db mice. Only in 
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combination with EZ, ABCG5/G8 could partially correct the dyslipidemic profile in db/db 

mice maintained on low cholesterol diet. These observations underscore the role of 

biliary cholesterol secretion and fractional intestinal absorption on plasma cholesterol. 

Undoubtedly, plasma cholesterol regulation requires a cooperative relationship 

between the liver and intestine.  

 

Beyond its role in liver, ABCG5/G8 in the intestine is the primary defense for PS 

accumulation in the body. Sharing similar properties with cholesterol, dietary PS 

compete with cholesterol for micellar solubilization and thereby interfere with 

cholesterol absorption. PS dietary supplementation has been used as a cholesterol-

lowering therapeutic reducing LDL-cholesterol level. However, the action of PS goes 

beyond a simple replacement of cholesterol. PS are bioactive molecules with both cell-

type and sterol specific effects [255, 257, 258]. Conflicting research reports in humans 

and mice discuss the beneficial and deleterious effects of plant sterols on dyslipidemia 

and atherosclerosis [22, 251]. In fact, various reports demonstrate that different dietary 

sterols have diverse effects on SREBP-processing and LXR-target genes involved in 

cholesterol metabolism [257, 258]. ABCA1 and ABCG1, two cholesterol transporters 

involved in the initial step of RCT and oppose cholesterol accumulation in tissues, have 

been demonstrated to be influenced by PS. The studies in Chapter 4 report the effect of 

agLDL loaded with commonly encountered dietary sterols on mouse peritoneal and 

human macrophages. Stigmasterol increased expression of ABCA1 and ABCG1 and 

enhanced cholesterol efflux. Stigmasterol decreased the inflammatory response to 

uptake of modified lipoproteins, whereas sitosterol impaired the inflammatory response 

of agLDL loading. Conversely, sitosterol and campesterol did not change ABCA1 and 

ABCG1 abundance but tended to decrease cholesterol efflux. Campesterol had a modest 

inhibitory effect on cholesterol efflux from agLDL loaded macrophages to HDL. The 

increase in efflux to apoA-I and HDL in the presence of stigmasterol perhaps was 

predominantly facilitated by the upregulation of ABCA1 and ABCG1. However, the exact 

mechanism by which stigmasterol promoted cholesterol efflux from macrophages is 
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difficult to determine since stigmasterol interacts with at least two independent sterol 

sensing mechanisms (LXR and SREBP-2 dependent gene regulation). Likewise, the 

mechanism for suppression of inflammatory cytokine secretion remained unclear. This 

possibly is likely related to LXR activation based on the increase in LXR target genes by 

this sterol and the emerging role of LXR in the suppression of inflammation [269]. In 

contrast to other reports, stigmasterol did not have an effect on SREBP-2 transcription 

factor. Therefore, the suppression of LDLR by stigmasterol possibly relies on LXR 

dependent mechanism based on recent reports of LXR-mediated LDLR degradation 

[104]. Although my in vitro studies demonstrated beneficial effects of stigmasterol on 

macrophage function, the relative absorption and abundance of stigmasterol in PS 

supplements and functional foods suggests it is unlikely that stigmasterol will 

accumulates in sufficient quantities to have a significant positive impact on RCT or 

inflammatory pathways within macrophages.  

 

This research demonstrated that leptin signaling corrected hypercholesterolemia and 

restored hepatic ABCG5/G8 abundance post-transcriptionally. However, neither 

hepatic-specific ABCG5/G8 expression, nor inhibition of intestinal cholesterol absorption 

can normalize elevated plasma cholesterol in db/db mice. This finding identified not 

only distinct role for hepatic and intestinal ABCG5/G8 in modulating sterol metabolism 

but underscored the obligate cooperative relationship between liver and intestine in 

regulating plasma cholesterol content. Conversely, ABCG5/G8 in the intestine acts as a 

primary defense against PS absorption. Very low concentrations of biologically active PS 

influence the initial step of RCT pathway and the proinflammatory response in 

macrophage foam cells in vascular lesions. Understanding the nature of the interactions 

between cholesterol, PS, nuclear hormone receptors and ABC transporters involved in 

RCT is critical for the development of novel therapies for regulation of lipid homeostasis.  

 

 

Copyright © Nadezhda S. Sabeva 2011  
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APPENDICES 

 

ABBREVIATIONS 

 

ABCA1, ABCG1, ABCG5, ABCG8 ATP-binding cassette (ATP) transporter A1, G1, G5; G8; 

ACAT, acyl-CoA: cholesterol acyltransferase; apo-A1, apoB-48, apoB-100, apolipoprotein 

A1, B48, B100; CA, BA, bile acid; BS, bile salt; cholic acid; CDCA, chenodeoxycholic acid; 

CYP7A1, cholesterol 7α-hydroxylase; CYP8B1, sterol 12α-hydroxylase; CYP27A1, sterol 

27 hydroxylase; DCA, deoxycholic acid; ER, endoplasmic reticulum; FH, familial 

hypocholesterolemia; FC, free cholesterol; FNS, fecal neutral sterols; FXR, farnesoid-x-

receptors; HDL, high density lipoprotein; HMGS, HMG CoA synthase; HMGR, HMG-CoA 

reductase; IDL, intermediate density lipoprotein; LCA, lithocholic acid; LDL, low density 

lipoprotein; LDLR, low density lipoprotein receptor; LRH-1, liver receptor homolog-1; 

LRP, LDLR related protein; LXR, liver-X-receptors; MTTP, microsomal triglyceride transfer 

protein; NPC1L1, Niemann-Pick disease type C1 gene-like 1; PL, phospholipids; PS, plant 

sterol; PBA, 4-phenyl butyric acid; SREBP, sterol response element binding protein; SRE, 

SREBE response element; SR-BI, scavenger receptor class B type 1; TD, Tangier disease; 

TUDCA, tauroursodeaxycholic acid; VLDL, very low density lipoprotein; UPR, unfolded 

protein response; 7α-OH-C, 7α-hydroxycholesterol; 25-OH-C, 25-OH cholesterol; 
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EXPERIMENTAL PROCEDURE PROTOCOLS 

 

A: PREPARATION OF MEMBRANE PROTEINS FROM TISSUES 

Solutions: 

Membrane Buffer:     500 ml 

20 mM Tris-Cl (pH 7.5)    10 ml 1 M Tris 

2 mM MgCl2     1 ml 1 M MgCl2 

0.25 M sucrose      42.8 g 

Add Tris and MgCl2 to 400 ml water, pH to 7.5.  Add sucrose and qs to 500 ml. Store at 

4oC for up to 1 month. Add protease inhibitors immediately prior to use. 

1:100  Protease Inhibitor Cocktail 

4X Protein Sample Buffer:   500 ml  

120 mM Tris base    60 ml 1M Tris 

40 mM EDTA     40 ml 1M EDTA 

4% SDS      20 g  

20% glycerol     100 ml 

0.025% bromophenol blue   125 mg 

Add Tris, EDTA , SDS and 25 ml water and pH to 6.8.  Add bromophenol blue and 

glycerol and qs to 50 ml.  Membrane proteins are typically solubilized in 3% SDS.  

1X Protein Sample Buffer:  

4X Buffer     2.5 ml 

10% SDS     2 ml 

Water      5.5 ml 

 

Protocol: 

1. Weigh out tissue (pulverized) 0.2 g for everything except fat (for fat use 0.4 g) into 

14 ml Falcon (2059) tubes containing 1.2 ml of membrane buffer.  

2. Homogenize approx. 1 min and put on ice (Turax Homogenizer) 

3. Spin for 10 min., 3500 rpm @ 4 oC (~2000 x g) 
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4. Remove 1 ml of supernatant.  Do not take any of the pellet or fat/junk that may be 

on top of supernatant. 

5. Place in centrifuge tube for Ti 50.4 (3 ml) rotor. 

6. Centrifuge at 100,000 x g (30, 500 rpm), 60 min, 4oC. 

7. Decant supernatant.  Leave tube upside down to drain for 1 min.   

8. Suspend pellet in 1X sample buffer (100 µl - 250µl). Use pipette or insulin syringe 

(Baxter 59505-1) to completely resuspend pellet. 

9. Transfer to 1.5 ml eppendorf tube. Store at –20 oC. Do not add β-ME until preparing 

samples for gel. 

10. Determine protein concentration with BCA. Use 2-5 µl in BCA protein assay 

11. Immediately prior to SDS-PAGE, add β-ME to a final concentration of 1.2% and heat 

at 95oC for 5 min. 

12. Load 50 ug protein/ lane. 

 

 

B: SDS PAGE 

Solutions: 

Acrylamide: bisacrylamide – 37.5:1 

Lower Tris 

 500 ml 

Tris-base (1.5 M) 90.75 g 

SDS (0.4 %) 20 ml (10%) 

ddH2O qs to 500ml 

pH to 8.8 with HCl and store at 4oC 

 

Upper Tris 

 200 ml 

Tris-base (0.5 M) 29.2 g 

SDS (0.4 %) 0.8 g 

ddH2O qs to 200ml 

pH to 6.8 with HCl and store at 4oC 
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10X Running Buffer 

 1.0 L 

Tris-base (1X: 25 mM) 30 g 

Glycine (1X: 192 mM) 144 g 

SDS (1X: 0.1% w:v ) 10 g 

ddH2O qs to 1.0 L 

10X Transfer Buffer 

 1.0 L 

Tris-base (25 mM) 30 g 

Glycine (192 mM) 144 g 

ddH2O qs to 1.0 L 

No need to pH; pre-chill 1X to 4oC. 

 

5X Sample Buffer 

 50 mL 

Tris Base (0.3125 M) 1.89 g 

SDS (2.5%) 12.5 ml of 10% stock 

glycerol (50%) 25 ml 

bromophenol blue (0.125%) 62.5 mg 

ddH2O qd to 50 ml 

 

Protocol: 

1. Wash glass spacers and combs in EtOH, and assemble plates. 

2. Pour resolving gel to 0.5 cm below comb. 

 

Mini Gels (18ml/2 gels) 

Percent Gel 10 % 
ddH2O 9.0 ml 
lower tris 4.5 ml 
40% acryl-

bis 

4.5 ml 
10% aps 180 µl 
Temed 20 µl 
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1. Overlay with water saturated isobutanol and allow to polymerize. 

2. Rinse top of gel with distilled H2O.  Remove remaining water with filter paper. 

3. Insert comb and pour stacking gel. 

 

Mini (6 ml) 

 3.0% 4.0% 

ddH2O 4.0 ml 3.9 ml 

upper Tris 1.5 ml 1.5 ml 

acryl-bis 450 µl 600 µl 

10% APS 60 µl 60 µl 

TEMED 10 µl 20 µl 

 

1. Allow to polymerize and submerge in 1X Running Buffer until use. 

2. Heat samples to 95oC for 5 min. and quick spin. While samples are heating, remove 

comb and rinse wells with running buffer. 

3. Run at 50 mAmps (constant current)  

4. Stain gels overnight with coomassie and distain. 

 

Transfer to nitrocellulose membrane for western blot 

1. Remove stacking gel and soak in 1X Transfer Buffer for 5 min. 

2. Cut two pieces of filter paper and 1 piece of nitrocellulose membrane for each gel. 

3. Pre-wet nitrocellulose membrane in 1X Transfer Buffer for 5 min. 

4. Build sandwich at 4oC Transfer Buffer, and run at 200 mAmps (constant current) for 

2hrs. 

5. After transfer, trim excess membrane and allow drying at room temp. 

 

Transfer to nitrocellulose membrane for western blot 

1. Remove stacking gel and soak in 1X Transfer Buffer for 5 min. 

2. Cut two pieces of filter paper and 1 piece of nitrocellulose membrane for each gel. 

3. Wet in 1X Transfer Buffer for 5 min. 
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4. Build sandwich in cold (4oC) Transfer Buffer, and run at 200 mAmps (constant 

current) for 2 hrs.  

5. After transfer, trim excess membrane and do not allow nitrocellulose to dry  

 

 

C: WESTERN BLOTTING 

Solutions: 

10X TBS     1 L 

Tris-base (200 mM)   24.2 g 

NaCl (1.37 M)    80.0 g 

ddH2O     qs to 1 L 

pH to 7.6 with HCl 

 

10% Tween 20    500 ml 

Tween 20    50 ml 

TBS     450 ml. Store at 4oC 

 

TBST (Wash Buffer)   1 L 

10% Tween 20 (0.2 %)   20 ml 

10X TBS     100ml. qs to 1 L 

 

Blotting Buffer    100 ml 

Carnation dry milk (5 %)   5.0 g 

10% Tween 20 (0.2 %)   2 ml 

1X TBS     qs to 100 ml 

Alternatively, add 5 g dry milk to 100 ml Wash buffer. 

 

Stripping Buffer    1 L 

Tris-base (62.5 mM)   1M 62.5 ml 
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SDS (2.0 %)    20 ml 10% SDS 

β-mercaptoethanol (100 mM) 78 ml 

Add Tris to 750 ml water and pH to 6.7. Add SDS, β-ME and qs to 1L. 

 

Protocol: 

1. Block membrane with Blotting Buffer for 30 min at room temp. 

2. Pour off Blotting Buffer and incubate with 1o antibody for 1 hr at room temp., or 4oC 

overnight. 

3. Remove 1o antibody and wash 15 min at room temp.  Change Wash Buffer every 5 

min. 

4. Incubate with 2o antibody for 30 min at room temp. 

5. Remove 2o antibody and wash 15 min at room temp.  Change Wash Buffer every 5 

min. 

6. Wash with TBS for 5 min. 

7. Develop with ECL reagent 

8. Immediately prior to use combine 3 ml of reagent A with 3 ml reagent B for each 

membrane and vortex. Place membrane in a clean dish, add ECl reagent and 

incubate for 5 min. at room temp. Wrap membrane in food service film and 

immediately expose to film (typically 30 s, 60 s, 3 min. and 5 min.; however, some 

reactions may take longer to develop). 

 

 

D: STEROLS ANALYSIS IN BILE/PLASMA 

1. Put 100 l ISTD (internal standard, 100l   100 g/ml 5-cholestane =10 g 5-

cholestane. ISTD is 100 g/ml 5-cholestane) in culture tubes (10 g 5-cholestane). 

2. Pipette 10 l bile/plasma in tubes. 

3. Put freshly prepared 1 ml hydrolysis solution in each tube. KOH stock solution: 10 

mol/L. Every 6 ml KOH stock solution mixed with 94 ml Ethanol. 
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4. Heat at 90-100C for two hours for saponification. (During saponification, vortex 

tubes) 

5. Cool down to room temperature. 

6. Put 1 ml of distilled water in each tube and vortex. 

7. Put 2 ml petroleum ether in each tube and vortex vigorously for 10 to 15 seconds.  

8. Centrifuge at 2800 rpm for 15-20 min. 

9. Remove the upper phase (petroleum phase) to a test tube. 

10. Put 2 ml petroleum ether in each tube and vortex vigorously for 10 to 15 seconds.  

11. Centrifuge at 2800 rpm for 15-20 min. 

12. Remove the upper phase (petroleum phase) to the same test tube and dry down 

under nitrogen stream.  

13. Add 100 l Tri-sil reagent in each test tube and mix it. 

14. Transfer it to GC vial and heat at 75C for 15-30 min. 

15. Cool down to room temperature and transfer the solution into GC insert and put the 

insert back to GC vial. 

16. Run samples on GC-MS. 

 

 

E: HEPATIC LIPIDS EXTRACTION PROTOCOL  

Folch reagent/BHT:  280 ml chloroform + 140 ml methanol (2:1) + 42mg BHT (to 

100ug/ml) 

1. Prepare Folch reagent/BHT. 

2. Cut 100 mg of liver (0.1 g) and put in dounce test tube. Homogenize using dounce 

pestle. 

3. After three/four ups and downs, insert 1 ml of MBTS/OG and homogenize a little 

more. Put the dounce test tube in ice and wait 30 min for extraction. 

4. Add 2 ml of Folch/BHT reagent. Vortex for 3 x 10 sec (vortex all samples once, then 

twice, then three times. Leave 5 min. waiting time between each vortex). 
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5. The solution should look like floating milky-powders right now. Centrifuge at 2000 

rpm for 10 min at RT. (RPM = 2000, RCF = 850, Rotor (the big wheel and its name) = 

S-5.1, Time = 10 min, Temp = 22ºC). 

6.  After centrifugation, the solution should have three phases  

 methanol phase 

 protein & nucleic acid phase 

 chloroform and FA phase at bottom  

7. Move majority of LOWER PHASE to reaction tube with glass pipet, dry under N2 to 

about 100 µl. 

8. Add 1 volume (200 µl) of 1% Triton x 100 in CHCl3. 

9. Dry down by N2. 

10. Add 0.5 volume (100 µl) of H2O. 

11. Measure cholesterol and TG, and PL with Wako Kit. 

 

 

F: LIPID EXTRACTION FROM CELLS 

Protocol: 

1. Rinse plates 2X with 3 mL PBS (4oC). 

2 Scrape dishes in 3 mL of PBS and transfer to a 12x75mm glass tube. 

3. Vortex and take a 100 L aliquot for protein determination. 

4. Centrifuge at 1000 x g for 5 min. (4oC), and aspirate PBS. 

5. Add 2 mL 3:2 hexane: isopropanol. Vortex! 

6. Incubate and for 10 min. (20oC). 

7. Centrifuge at 1000 x g for 5 min. (4oC), and transfer supernatant to a fresh 12x75 

mm tube 

8. To pellet, add 2 mL 3:2 hexane: isopropanol. Vortex! 

9. Incubate and for 10 min. (20oC). 

10. Centrifuge at 1000 x g for 5 min. (4oC), and transfer supernatant to 12x75 mm tube 

(7). 
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11. Evaporate to dryness under N2 (g). 

12. Solubilize the extracted lipids in a suitable solvent. 

For Storage: Suspend in 500 L of CHCl3, flush with N2 (g) and store at -20oC 

For TLC: Suspend in 200 L of 1:1 CHCl3:CH3OH (must be used immediately) 

For Enzymatic Cholesterol Assays:  Suspend in 2 mL 1% Triton in CHCl3.  Solution can be 

stored at -20oC.  

Notes: If the cells are in 6-well or 12-well plates, Hexane: Isopropanol 1mL or 0.5mL, 

respectively can be added directly to the plate.  After extraction, aspirate the solvent 

and proceed with step 11. 

 

 

G: FECAL NEUTRAL STEROL ASSAY 

1. Let samples dry on 37ºC for couple days. Grind them. 

2. Weight out exactly 0.25g aliquot of dried, ground stool and place in a f. a. tube. Add 2.5ml 

ethanol, vortex, then add 0.5ml of 10N NaOH and vortex again. 

3. Add 2.5ml water and 2.5ml ethanol to the dried residue, place tubes in water bath at about 

45-50ºC for a few min. Remove tubes, vortex, then add 2.5ml PE (petroleum ether) and 

0.5ml of 5-cholestene standard in hexane (1.0mg/ml). Shake tubes vigorous for about one 

min. Centrifuge tubes after balancing. Spin for 10min @ 1500rpm until the phases fully 

separate. 

4. If the sample were derived from animals fed diet with no added cholesterol than take 1 ml 

aliquot of PE phase for GC. For samples from cholesterol-fed animals take 1 ml PE aliquot. 

5. Pipette PE aliquot into 12 x 75mm glass disposable tubes, dry under air, and then redissolve 

sterols in 400 µl hexane. Transfer 2 x 200µl to GC vial. 

6. Run samples on GC at a temperature of 280ºC and using a 10 min run time. Run duplicates 

of the following standard mixtures before and after the samples. 

a) Cholesterol: 5-cholesten (1:1). Ratio of peak areas should be 0.88-0.90 

b) β-coprostanol: 5-Cholestene (1:1). Ratio should be 0.90-0.91 

c) α-Cholestanone: 5-Cholestene (1:1). Ratio should be 0.95-0.96. 

7. Each of these standards mixtures is prepared using 20mg of each sterol per 100ml hexane.  
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The peak area for 5-cholestene should be about the same for all samples. If not, shake tubes 

again vigorously, centrifuge again and repeat the assay on another aliquot of the upper phase. 

sample  =  x 

std     1 

8. Calculate the amount of cholesterol, coprostanol and cholestanone and sum these to obtain 

the total neutral sterol content of the stool sample.  

 

Sterol standards for Fecal Neutral Sterol 

5-cholestene        Sigma 

5α-cholestan-3-one (Cholestanone)    Steraloids 

5α-cholestan-3β-ol (coprostan-3-ol) coprostanol   Sigma 

 

 

H: CHOLESTEROL LOADING AND ANALYSIS IN THP1 CELLS 

Culture medium: RPMI 1640 + 10% FBS + 1%P/S 

Assay Medium: RPMI 1640 + 1%P/S+ 1% FBS alone and either 100 µg protein/ml AgLDL 

+/- plant sterols.  

 

Day0 

1. Culture THP 1 cells @ 37 C in 10 cm dish / 9x106. (Control; AgLDL + 20 µg/ml 

cholesterol; AgLDL + 20 µg/ml stigmasterol; AggLDL+20 µg/ml sitosterol) 

2. Use RPMI 1640 medium +10% FBS +1%P/S+ 200 µg/ml PMA 

Day3 

1. To measure the sterol loading, macrophages were incubated for 3-4 days at 37C in 

culture medium containing 1% FBS alone and either 100 µg protein/ml AgLDL +/- 

plant sterols.  

2. Change the sterol medium every3-4 days 
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Aggregation of LDL 

LDL stock  5.06 mg/ml 

 Add 3mg LDL /30 ml assay medium (5ml in each dish) 

 Split this volume in 3, 50 ml polypropylene conical tubes (30 X 115 mm) Falcon. 

 Add the appropriate amount of sterol in the desired concentration. 

 Aggregate by vortex 1 min on ice to break up large aggregates and passed through a 

0.45 µm filter. This produces small (~ 30-75 nm) aggregates that produce maximal 

uptake and lysosomal delivery. 

Day 6 

1. Aspirate the medium. 

2. Wash with 2 x PSB. 

3. Add 1 ml Membrane buffer.  

4. Prepare membrane samples for western blot 

5. Blot for AbCG1, ABCA1. 

 

 

I: CELLULAR CHOLESTEROL EFFLUX ASSAY ([3H]-CHOLESTEROL LABELED CELLS) 

The following protocol was developed for the efflux of cellular cholesterol from THP1 

cells to HDL. Other extra-cellular cholesterol acceptors may be substituted for HDL. 

Many cell types have been examined for cellular cholesterol efflux. For other cell types 

simply substitute their respective media for RPMI. 

 

I. Reagents 

Growth Medium: RPMI 1640 + 10% FBS + 1% P/S + 10ng/ml PMA 

Labeling Medium: RPMI 1640 + 10% FBLPPS + 1% P/S + 1 µCi/ml [3H]-Cholesterol 

(NEN #NET 725) +/- 100µg/ml agLDL+/- 20 µg/ml plant sterols 

 

STOCK [3H]-Cholesterol 1.0 µCi/ml 

    57.6 µCi /mmol  
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    FW 386.7 

 

Assay Medium: RPMI 1640 + 0.2% FAF-BSA (Roche #100 377) 

PBS: Dulbecco’s PBS without Mg2+/Ca2+ 

PBS-FAF BSA: PBS + 0.02 % FAF-BSA 

Solubilization Solution: 0.1N NaOH + 0.1% SDS 

II. Cell Culture (Day 0) 

All assays are done in triplicate.  Seed cells at7 x106 cells/well in 12 well plates in Growth 

Medium (37oC, 8.8% CO2) 

III. Labeling of Cells (Day 3) 

a. Aspirate growth medium 

b. Wash cells 2X with PBS (37oC) 

c. Add 1 ml Labeling Medium 

 

Row # Labeling Medium AgLDL Plant sterols 

#1 + + ─ 

#2 + + T comp 

#3 + + Stigmasterol 

#4 + + Β-Sitosterol 

 

d. Incubate 12-16 h (37oC, 8.8% CO2) 

IV. Efflux Assay (Day 4) 

a. Aspirate Labeling Medium (Store all liquid radioactive waste in appropriate 

container) 

b. Wash 2X with Assay Medium (37oC) 

c. Add 1 ml Assay Medium  

d. Incubate for 1 h (37oC, 8.8% CO2) 

e. Aspirate medium 

f. Add 0.7 ml of Assay Medium containing desired amount of 30 µg/ml apoA-I or other 

acceptor  



 

109 

 

g. Incubate 100 µl from each well and pool in the appropriate 1.5 ml tube for desired 

time (37oC, 8.8% CO2). 

 15 min; 30 min; 60 min (1 hour); 120 min (2 hours); 240 min (4 hours); 480 min ( 8 

hours) 

 

All subsequent steps should be done on ice or in the cold room with pre-chilled 

solutions 

h. Transfer Assay Medium to 1.5 ml tube 

i. Centrifuge at 1000 x g for 10 min 

ii. Transfer supernatants to scintillation vials containing 10 ml scintillation 

cocktail 

i. Wash cells 3X with PBS-FAF BSA (4oC) 

j. Wash cells 2X with PBS (4oC) 

k. Add 0.5 ml Solubilization Solution to cells and incubate on rotator (30 min, RT). 

l. Transfer solubilized cells to 1.5 ml centrifuge tube 

V. Data analysis 

a. Determine protein concentration of solubilized cells 

b. After protein assay is complete, transfer solubilized cells to scintillation vials 

containing 10 ml scintillation cocktail 

c. Count on beta counter (Program #44: 2 min, Sigma, 2%, H#, SL DPM) 

d. Express counts from medium and cells in pmol cholesterol /mg total cell protein to 

normalize for cell numbers 

e. Calculate Efflux as percent of total cellular cholesterol (Medium/ Cells + Medium) 
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