
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Electrical and
Computer Engineering Electrical and Computer Engineering

2022

Developing Reactive Distributed Aerial Robotics Platforms for Developing Reactive Distributed Aerial Robotics Platforms for

Real-time Contaminant Mapping Real-time Contaminant Mapping

Joshua Ashley
University of Kentucky, jashley2017@gmail.com
Author ORCID Identifier:

https://orcid.org/0000-0002-4971-8756
Digital Object Identifier: https://doi.org/10.13023/etd.2022.378

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Ashley, Joshua, "Developing Reactive Distributed Aerial Robotics Platforms for Real-time Contaminant
Mapping" (2022). Theses and Dissertations--Electrical and Computer Engineering. 186.
https://uknowledge.uky.edu/ece_etds/186

This Master's Thesis is brought to you for free and open access by the Electrical and Computer Engineering at
UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Electrical and Computer Engineering
by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

https://uknowledge.uky.edu/
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece
https://orcid.org/0000-0002-4971-8756
https://uky.az1.qualtrics.com/jfe/form/SV_0lgcRp2YIfAbzvw
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Joshua Ashley, Student

Dr. Biyun Xie, Major Professor

Dr. Daniel Lau, Director of Graduate Studies

Developing Reactive Distributed Aerial Robotics Platforms for Real-time

Contaminant Mapping

Thesis

A thesis submitted in partial

fulfillment of the requirements for

the Master’s degree in the College of

Engineering at the University of

Kentucky

By

Joshua A. Ashley

Lexington, Kentucky

Directors: Dr. Biyun Xie, Professor of Electrical Engineering and Dr. Michael

Sama, Professor of Biosystems and Agricultural Engineering

Lexington, Kentucky

2022

Copyright© Joshua A. Ashley 2022

ABSTRACT OF THESIS

Developing Reactive Distributed Aerial Robotics Platforms for Real-time

Contaminant Mapping

The focus of this research is to design a sensor data aggregation system and centralized
sensor-driven trajectory planning algorithm for fixed-wing aircraft to optimally assist
atmospheric simulators in mapping the local environment in real-time. The proposed
application of this work is to be used in the event of a hazardous contaminant leak
into the atmosphere as a fleet of sensing unmanned aerial vehicles (UAVs) could
provide valuable information for evacuation measures. The data aggregation system
was designed using a state-of-the-art networking protocol and radio with DigiMesh
and a process/data management system in the ROS2 DDS. This system was tested to
consistently operate within the latencies and distances tolerated for the project while
being highly extensible to sensor configurations. The problem of creating optimal
trajectory planning for exploration has been modelled accurately using partially-
observable Markov decision processes (POMDP). Deep Reinforcement learning (DRL)
is commonly applied to approximate optimal solutions within a POMDP as it can be
analytically intractable for complex state spaces. This research produces a POMDP
that describes this exploration problem and applies the state-of-the-art soft actor-
critic (SAC) reinforcement learning algorithm to create a policy that produces near-
optimal trajectories within this new POMDP. A subset of the spatially relevant input
is used instead of complete state during training and a turn-taking sequential planner
is designed for using multiple UAVs to help mitigate scalability problems that come
with multi-UAV coordination. The learned policy from SAC can outperform a greedy
and fixed trajectory on 1, 2, and 3 UAVs by a 30% margin on average. The turn-taking
strategy provides small, but repeatable scaling benefits while the windowed input
results in a 50%-60% increase in reward versus trained networks without windowed
input. The proposed planning algorithm is effective in dynamic map exploration
and has the potential to increase UAV effectiveness in atmospheric contaminant leak
monitoring as it is expanded to be integrated on real-world UAVs.

KEYWORDS: aerial, robotics, planning, reinforcement learning, UAVs

Joshua A. Ashley

October 22, 2022

Developing Reactive Distributed Aerial Robotics Platforms for Real-time

Contaminant Mapping

By

Joshua A. Ashley

Dr. Biyun Xie & Dr. Michael Sama

Directors of Thesis

Dr. Daniel Lau

Director of Graduate Studies

October 22, 2022

Date

ACKNOWLEDGMENTS

.

This work could not have been accomplished without the continuous mentor-

ship and support of my research from my faculty advisors, Dr. Biyun Xie and Dr.

Michael Sama. I would also like to thank my other committee member Dr. Jesse

Hoagg for his leading role on the DART project for which my work was a part of and

his enthusiasm for my contributions to the project.

Additionally I would like to thank the National Science Foundation (NSF

Grant #1932105) and the University of Kentucky Aerial Research Lab for the con-

tinued support throughout the completion of this degree.

iii

TABLE OF CONTENTS

Acknowledgments . iii

List of Tables . vi

List of Figures . vii

Chapter 1 Introduction . 1

1.1 Application and Significance . 1

1.2 Objective . 3

1.3 Literature Review . 3

1.3.1 Long Range Network Protocols 3

1.3.2 Networking Middleware . 4

1.3.3 Aerial Gas Detection Methods 5

1.3.4 POMDPs for Aerial Mapping and Exploration 6

Chapter 2 Designing a Data Aggregation System 7

2.1 System Design . 7

2.1.1 Overview . 7

2.1.2 Sensor Abstraction . 7

2.1.3 High-Level Protocol . 9

2.1.4 Message Serialization . 10

2.1.5 Network Setup . 12

2.1.6 GPS Timing . 13

2.2 Design Validation . 13

2.2.1 Experiment Setup . 14

2.2.2 Results . 15

iv

2.2.3 Conclusion . 15

Chapter 3 Creating a Sensor-driven Multi-UAV Trajectory Planning Algorithm 18

3.1 Problem Model . 18

3.1.1 Overview . 18

3.1.2 WRF Model . 19

3.1.3 Belief Model . 20

3.1.4 Aircraft Model . 23

3.1.5 POMDP Model . 23

3.2 Methodology . 24

3.2.1 Using Soft Actor Critic to Approximate the Optimal Solution

of a POMDP . 24

3.2.2 Neural Network Architecture and Training 26

3.2.3 Reducing State Dimensionality by Accounting for Environment

Dynamics . 27

3.2.4 Extension to Multiple UAVs 29

3.3 Results . 31

3.3.1 Model Verification Process . 31

3.3.2 Simulation Comparison for One UAV 34

3.3.3 Simulation Comparison for Multiple UAVs 35

3.4 Conclusion . 37

Chapter 4 Conclusion . 39

4.1 Summary . 39

4.2 Future Work . 40

Bibliography . 41

Vita . 46

v

LIST OF TABLES

1.1 Mesh network protocol comparison . 4

2.1 Messages from UAV to ground station 10

2.2 Messages from ground station to UAV 10

2.3 Packet delay metrics for one and two UAVs 16

3.1 Training Hyperparameters . 27

vi

LIST OF FIGURES

1.1 A visualization of how a mobile sensing platform can be used in a con-

taminant leak scenario is shown. As the platform passes through the

contaminant it is able to measure the local atmospheric properties to help

aid in estimating the contaminant trajectory. 2

1.2 A visualization of a flat mesh network. In a flat mesh network, all devices

have the same role allowing them to send their own data along the network

and act as a router for other data. 5

2.1 A visualization the data flow from a sensor to the ground station and

ground applications through the described system. 8

2.2 The packet layout for an example ROS2 message type following the se-

rialization method described in this section. The packet header consists

of a sensor code and GPS time which consume 10 bytes followed by the

byte-indexed sensor data. 12

2.3 The computer hardware that is put on the UAVs during flight is shown.

All sensor data is aggregated to the Raspberry Pi and then transmitted

over the DigiMesh network. The Neo-M8P RTK GPS is used to associate

all sensor readings to a GPS time and location with high accuracy. . . . 15

2.4 Maps of the packet delay from the first two experiments. The position

of the points correspond to the recorded position of the UAV when that

packet information was recorded and the color of the points indicate the

delay. 16

vii

3.1 An overview of the data relationship of the each component model is

shown. This overview shows the positive feedback relationship between

new actions taken by the policy and information gain that increases model

accuracy. 19

3.2 A visualization of how measurements within the flowfield affect the belief

space in different ways is shown. The values within the belief map are color

coded with higher confidences being assigned green and lower confidences

being assigned red. The arrows represent the direction and magnitude

of the wind vector for each cell. An image of the belief map before, Fig.

3.2(a) and after measurements from within two different flow fields is made

at point x = 20, y = 20 is shown, Fig. 3.2(b) and Fig. 3.2(c). 21

3.3 The data-flow diagram for a training iteration in SAC. Replay memory is

the input data which consists of a representative data set of the POMDP.

Yellow boxes indicate the parameter update functions with the blue boxes

showing the network that receives those updates. 27

3.4 The structure of the neural networks that are trained by SAC is shown.

Both the DQNs and policy networks use this structure with only a differ-

ent output layer. The output layer shown describes the stochastic policy

output which is a distribution N (µa, σa). 28

3.5 An example of the total state being sliced into a window based on the

current location of the UAV. This slice is what is given to the trained

agent which produces an action from that windowed input. 30

3.6 Training progress is made over 1,200,000 iterations. Reward is taken over

an average of 50 verification runs. The yellow and grey dotted line shows

the baseline average reward of the lawnmower and greedy policies respec-

tively. 32

viii

3.7 Training progress is made over 800,000 iterations. A ’crash’ is qualified

by the UAV going out of the boundary of the map. The yellow and grey

dotted line shows the baseline average reward of the lawnmower and greedy

policies respectively. 33

3.8 The generated policy by the proposed algorithm produces a trajectory

that is compared to the other policies in this figure. Fig. 3.8(a) shows the

starting value map. Fig. 3.8(b) shows the trajectory made by the agent

produced by SAC. Fig. 3.8(c) shows the greedy policy trajectory. Fig.

3.8(d) shows the fixed trajectory. 35

3.9 The different policies’ reward are compared over 100 runs for 1, 2, and 3

UAVs flying simultaneously. This shows a clustered column chart of the

mean and standard deviation for the reward across these 100 runs for each. 37

3.10 Example trajectories made by multiple UAVs using the turn-taking strat-

egy on the trained policy is shown. Fig. 3.10(a) is the starting value map

that is given to the policy as input, and fig. 3.10(b) is the resulting total

trajectories planned by the policy and the resulting impact on the map. 38

ix

Chapter 1 Introduction

1.1 Application and Significance

Predicting airborne pollutant dispersion is a highly complex problem to model with

real world relevance in emergency situations. A large amount of variables in the

atmosphere determine contaminant transport such as local geography, turbulence,

and heat which in most situations must be accounted for over a large area with these

variables changing at small scales. This contributes to the problem of simulating con-

taminant transport even with sparse point measurements which may not adequately

quantify the contaminant distribution in a dynamic environment [25]. Mobile sensing

systems deployed on a fixed-wing unmanned aerial vehicle (UAV) provide an oppor-

tunity to obtain airborne measurements of information such as contaminant concen-

trations and wind speeds at optimal positions and times for detecting an unplanned

release of contaminant. Therefore, UAVs used in conjunction with simulation have

the potential to improve our understanding of contaminant distribution by moving

the sensor through the contaminant or by quantifying the environmental conditions

that control contaminant transport [27]. Fig. 1.1 shows a real world example scenario

of such a contaminant leak with a mobile sensing platform. The colored lines in the

figure correspond to UAV trajectories taken during the flight. In this example three

fixed-wing UAVs are flying simultaneously.

In a 2010-2014 registry tracked by the U.S. Department of Health and Human

Services (HHS), hazardous emergencies involving toxic substances reported from nine

states were the cause of 5,134 injuries and 190 fatalities [20] with natural gas being

the most frequent substance. At a national scale, the number of injuries and fatal-

ities are likely much higher. In the US there have been a multitude of high profile

natural gas leaks. These leaks pose the risk of explosion exemplified by an incident

1

Figure 1.1: A visualization of how a mobile sensing platform can be used in a
contaminant leak scenario is shown. As the platform passes through the contaminant
it is able to measure the local atmospheric properties to help aid in estimating the
contaminant trajectory.

in Edison, New Jersey in 1994 which destroyed or damaged 14 apartment buildings.

They also pose the risk of exposure as was observed in the Aliso Canyon natural

gas leak where 2,200 families were relocated due to an unusual increase in illnesses

such as nausea, severe nosebleeds, and common infections [8, 15]. The Aliso Canyon

leak in particular has a pre-existing example of aircraft being used for estimation of

point source emissions with some effect [10]. This study also highlights a broader

application of the work from this project in modelling urban greenhouse gas emis-

sions. Better analysis of these urban environments could provide tools for planning

and mitigation of greenhouse gas toxicity in urban populations. A system that better

predicts real-time contaminant distribution would be able to better inform emergency

response and evacuation which could prevent injuries and even save lives [5].

However, the problem of real-time contaminant tracking with mobile platforms

poses a variety of technical challenges that must first be addressed before an effective

2

system can be deployed. The overall goal of the project is to develop a real-time,

sensor-driven flight system that can efficiently and accurately map and predict the

surrounding atmospheric environment in the event of a major contaminant being

introduced into the atmosphere.

1.2 Objective

The focus of this work is to describe two contributions in designing these sensor-driven

flight systems. The first contribution, detailed in Chapter 2, addresses the challenge

of real-time sensor data aggregation of multi-UAV systems. The contaminant sim-

ulation will be hosted on a centralized server in order to perform model adaptation

in real time. This server also needs to be fed environmental information gathered

by the UAVs in real time so that the system can produce the most recent and accu-

rate model possible of the current weather environment. Therefore, some real-time

data aggregation system is required. The second contribution, detailed in Chapter

3, shows an approach to sensor-driven trajectory planning specifically tailored to

near-optimal contaminant mapping using deep reinforcement learning (DRL). This

algorithm quantifies prediction confidences in the model from simulation to inform

the UAVs’ trajectories towards areas that would best increase the simulation con-

fidence in the future. The remainder of this chapter is dedicated to the literature

review investigating the current technologies applicable to these problems.

1.3 Literature Review

1.3.1 Long Range Network Protocols

The application of distributed aerial robotics presents challenges not only at the

application level of the network, but additionally at the lower levels of protocol and

hardware. The problem, as described in [11], is that UAVs require an ad-hoc network

3

Table 1.1: Mesh network protocol comparison

Protocol Range
(km/node)

RTT Delay (s
@ 60 Bytes)

Reconfigurablity

DigiMesh 0.1-4 0.14 High (Flat Network)
LoraMesh 1-13 1 High (Flat Network)
ZigBee 0.01-4 0.14 Medium (Hierarchical)

that can reconfigure itself at high speeds. This survey categorizes the objective of

sensing with multiple UAVs as an infrastructure-based mesh network with centralized

control.

[21] uses LoRa mesh networking in emergency environmental monitoring for UAVs

but notes the low network bandwidth in addition to high end-to-end delay that makes

for difficulties in centralized planning. [31] and [17] compare implementations of the

two mesh networking protocols Zigbee and Digimesh on Xbee radio hardware. The

results show that DigiMesh has advantages in throughput requirements and versatility

given that DigiMesh is a flat network while Zigbee is not [17]. Additionally, while

Zigbee does have lower packet round trip time (RTT), the difference is small enough

to warrant the trade-off in selecting DigiMesh. Table 1.3.1 shows a very short synopsis

of relevant factors compiled from the literature leading to choosing DigiMesh.

1.3.2 Networking Middleware

With the low-level protocol selected, there needs to be an application-level system

that manages the transport of sensor information over the network coming from a

wide variety of sensor types asynchronously. Robot operating system 2 (ROS2) is a

robotics and networking middleware that utilizes a data distribution service (DDS)

for efficient and reliable inter-process communication both locally and globally within

a network [26]. ROS2 therefore provides a scalable solution for multi-UAV networked

communication system. [23] use ROS2 to scale micro-aerial vehicles (MAVs) swarms

in a truly distributed system. [33] uses ROS and ROS2 to create a decentralized

4

Figure 1.2: A visualization of a flat mesh network. In a flat mesh network, all
devices have the same role allowing them to send their own data along the network
and act as a router for other data.

cooperative search algorithm using multiple UAVs leveraging ROS for the interface

with controls and telemetry and ROS2 as the communication middleware.

1.3.3 Aerial Gas Detection Methods

Existing studies approach the problem of aerial gas detection and sampling using

hovering vehicles such as quad-copters [1, 3] or hexa-copters [24, 30]. These studies

note limitations or trade-offs in measurement accuracy and flight time due to larger

copters that can fly longer having a larger impact on the local wind environment.

Fixed-wing UAVs have an advantage in this regard for wind measurements as they

are able to use simpler sensors, such as 5-hole probes, that can more easily be placed

to avoid the atmospheric influence of the aircraft [32]. Fixed-wing UAVs also benefit

from being faster and more efficient which increases the area coverage of each UAV.

Exploiting the high correlation between gas and wind measurements allows for

simplified simulation and mapping of gas in mobile robotics. This shows that a

multivariate Gaussian joint estimation is accurate in simulating the fluid-dynamics

5

generated ground truth [9]. A similar approach to this Gaussian joint estimation is

used in this thesis. The problem of trajectory planning to take wind measurements

within this map has been formulated as an optimization of information theoretic

and has been evaluated to be performant in comparison to other methods such as

Kullback-Leibler divergence, random walk, and fixed trajectories [2, 7, 14]. However

these strategies focus on maximizing immediate rewards with points of high informa-

tion gain that lead to sub-optimal trajectories over the course of a complete path.

1.3.4 POMDPs for Aerial Mapping and Exploration

Partially observable Markov decision processes (POMDPs) offer a more complete

formulation of the information theoretic approach to map exploration. Map explo-

ration uses the Bellman equation and measurement expectations to inform the total

future potential reward of taking certain actions out to an infinite time horizon [29].

However, POMDPs can quickly become computation intractable with complex envi-

ronments. Approximate solutions to POMDP models have been applied to fixed-wing

UAV map exploration problems. One such example uses state space discretization

and a direct asynchronous graph search to simplify computation [22]. The method

still requires high online computation and does not scale to multiple UAVs. A more

scalable approach to the problem uses deep reinforcement learning (DRL) specifically

using deep Q-networks (DQN) to learn the value function associated to the POMDP

iteratively through training [16]. The method requires high offline computation dur-

ing training and needs to retrain the DQN for each possible quantity of UAVs.

Copyright© Joshua A. Ashley, 2022.

6

Chapter 2 Designing a Data Aggregation System

2.1 System Design

2.1.1 Overview

The flow of data from the sensor to the ground station is the primary goal of au-

tomation in this work. Firstly, the data is collected from the sensor which is a very

sensor-specific operation and requires a sensor interface be developed for each type

of sensor used. Once the sensor interface extracts the data, that sensor data is then

published over the ROS2 DDS as messages. Messages are serialized according to the

process outlined in section 2.1.4 and sent over the DigiMesh network as the ROS2

DDS cannot be asserted over the entire network due to bandwidth and latency con-

straints. Instead highly compressed messages are transmitted with specifications of

how to decompress them present on both the planes and ground station. The ground

station receives and deserializes these messages back into their sensor data. Once

deserialized, the sensor data is formatted into a database entry with the associated

tags to relate it to its respective sensor type. The entry is inserted into a local time-

series database that is optimized for asynchronous modifications and accesses of time

series data. These asynchronous accesses are how ground-based applications are able

to access sensor data in real time or any relevant historical sensor data.

2.1.2 Sensor Abstraction

In ROS2, self-contained processes called nodes are connected though a data distribu-

tions service (DDS) using a message passing schema. These nodes provide the ability

to interface with this DDS with interruptable callbacks for receiving data (subscrip-

tion) and continuous loops for collecting data (publication). On top of these nodes

7

Figure 2.1: A visualization the data flow from a sensor to the ground station and
ground applications through the described system.

an abstraction called sensor nodes was created to generically handle the message

serialization for transmitting and categorization/tagging for database entry.

The creator of a sensor node writes a program very similar in form to a simple

publisher [26] with the primary difference of inheriting from a class ’Sensor’ instead

of the ROS2 class ’Node’. The intermediate nodes recognize publishers produced by

the sensor node and creates a specification for each publisher that details how to

serialize each sub-component of messages from the publisher and assigns names and

tags used to categorize the resulting message in the database.

Both the UAV and ground station share a parsing function that can generate a

strictly-ordered specification of how to serialize a ROS2 message type. The sensor

specifications are constructed by associating ROS2 message primitives (i.e. int8,

float32, etc.) with Python ’struct’ format codes. The parsing function iterates

through each attribute of the ROS2 message accumulating format codes as it dis-

covers these primitives. This process creates the most compact serialization of a

ROS2 message without compression.

8

2.1.3 High-Level Protocol

In order to accommodate automatic serialization of sensor information at scale a high-

level protocol was designed to encode sensor data with minimal bandwidth. The

protocol exploits the fact that each node has the same ROS2 environment. Upon

startup of the system, the first messages across the network are produced by the

UAVs which send specifications for each of their sensor types. These specifications

have three parts: the first character is ’0’ which is a reserved sensor code for specifying

sensor messages, then there is the sensor code corresponding to the specified sensor

type, and finally the import path for the sensor’s ROS message type. These messages

are parsed by a function that can determine deserialization rules for a given sensor

purely from the import path of its respective ROS message and therefore the only

information that needs to be transmitted is the import path.

The sensor specification is sent to the ground station and once it is successfully

parsed it sends an acknowledgement to the UAV. The underlying DigiMesh protocol

allows for the functionality of being able to address a message to a specific device.

All UAVs transmit specifically to the ground station device and acknowledgements

from the ground station go back to the UAV that sent the message. The message

is the same ’0’ code followed by the sensor code being acknowledged. The allows

the UAV to confirm that a sensor’s data is ready to be sent over network and can

provide information for debugging. Once the sensor specification has be sent and

acknowledged, sensor information of that type can start to be transmitted over the

network. Each sensor message starts with the corresponding sensor code of that

sensor type followed by the GPS time that the sensor data was recorded. The final

part of the packet is the serialized sensor data itself. For the purposes of tagging the

data descriptively, a dedicated sensor code is given to allow the UAV to transmit its

machine name. The ground station can then associate an Xbee device address to a

specific UAV in real time.

9

Table 2.1: Messages from UAV to ground station

Example Description
0,4,environ msgs.Pth,pth msg Sensor code 4 is a pressure, tempera-

ture, humidity (PTH) message
2,plane1 This UAV’s hostname is ‘plane1’
4,\x02\x88\x91\x0b\xfb\x1a Sensor data for sensor code 4
\xb4\xd8A\x00\ x00\xa0A\x9a
\x99\x99A\xcd\xcc\x9cAff
\xaaB\x00\ x00\xa0A

Table 2.2: Messages from ground station to UAV

Example Description
0,4 Acknowledge sensor code 4
1,4 Unknown sensor code 4
3 Unknown plane hostname

In addition to this core set of messages, an additional two codes have been added

in the event that there is a miscommunication or reset of the ground station. The first

code occurs when the ground station does not recognize sensor information coming

from a UAV. In this event the ground station will send an ’unknown sensor’ message

with the respective code to the UAV and the UAV will resend that sensor message

type. An example of this message coming from the GSU when it cannot recognize

sensor code 4 is shown here. There is also an ’unknown hostname’ message that the

GSU can send to a UAV to request the re-sending of that UAV’s hostname. The

message is simply to send the ’unknown hostname’ code to that respective UAV.

Tables 2.1.3 and 2.1.3 show examples of these messages as they would be sent from

either the UAV to the ground station or vice versa.

2.1.4 Message Serialization

ROS2 contains a small set of primitive data types that all other ROS2 messages

are built atop. Aside from ’string’, which is dynamically allocated with pointers,

primitives have a static memory size and therefore the memory size of each primitive

10

can be known at the time of message definition. ROS2 also enables the ability to

create static and dynamic arrays of primitives within messages, the prior retaining

the same feature of static memory size as the primitives. These primitives and arrays

of primitives form the basis of parsing ROS2 messages into a highly compact serialized

form. At the start of the program, each ROS2 message type in use by sensors on the

system is recursively parsed until all terminal nodes in the recursion tree are primitive

types. These terminal nodes are compiled into a list ordered by their depth-first

occurrence in the ROS2 message tree. The resulting list of primitive types is used by

the system to serialize every message of the corresponding type as it is queued to be

transmitted.

There are several constraints on the parsed message in order to ensure that the

message can be sent through the network. Firstly, only statically-sized message at-

tributes can be used in serialization. All dynamic arrays and strings are removed

in parsing and, if no message data remains, the message is logged locally instead of

transmitted. This ensures the parsed packet will always be smaller than the maximum

allowed packet size. It also allows deserialization to work from payload byte positions

rather than needing extra delimiters and termination bytes to parse serialized packets.

Second, the parsed message cannot be greater than the maximum payload size which

is determined by the radio and protocol. DigiMesh and Digi devices permit 255 byte

payloads, with the floating-point timestamp consuming 8 bytes and the high-level

protocol described in subsection 2.1.3 requiring only 2 additional bytes for transmit-

ting sensor data. If the primitive list for a message type exceeds this maximum size,

a truncated version of the list is transmitted with the full list being logged locally.

Finally, if the ROS2 message type contains the attribute DONT TRANSMIT, that

message type is logged locally and not transmitted as a way to control the network

from the message definitions. An example of a serialized ROS2 message using this

method is shown in Fig. 2.2.

11

Figure 2.2: The packet layout for an example ROS2 message type following the
serialization method described in this section. The packet header consists of a sensor
code and GPS time which consume 10 bytes followed by the byte-indexed sensor data.

2.1.5 Network Setup

The network for the devices are of two parts. The first part is enabled by the ROS2

DDS which is transparent over UDP/IP communication and is enabled on the plat-

forms though 802.11 WiFi. This transparency allows UAV-to-UAV communication

as long as they are in range of one another. An application example of this fea-

ture can be seen in formation flying where high bandwidth, low latency telemetry

communication within the formation is required [13].

The second part of the network is the longer range, higher latency DigiMesh net-

work that enables ground-to-plane communication. DigiMesh is a proprietary mesh

networking system designed by Digi Internation Inc. that is particularly effective in

flying adhoc networks (FANETs) due to its ability to re-route the network during

flight. Ground-to-plane communication allows the development of central sensor-

driven planning algorithms like the system that will be described in Chapter 3 of this

thesis.

In addition to these two networks, the UAVs have the ability to store data locally

as necessary. This can be specified in the creation of a type of message that does not

need to be transmitted or it is automatically decided based on prohibitively the large

data sizes present in particular messages. For example, the packet serializer takes

12

into account the size, in bytes, that a serialized message from a specification will be

and if this size is larger than the maximum DigiMesh packet size it will opt to log that

data instead of transmitting to preserve bandwidth. With this policy, sensor data

such as video capture or high-frequency wind measurements would be automatically

logged locally.

2.1.6 GPS Timing

In order to accurately relate sensor information between one another, GPS time is

leveraged as a universal time stamping mechanism for all sensors. A ROS2 pub-

lisher was created to distribute the GPS time throughout the system as it was made

available. It does so by recording a timestamp from the GPS every time it receives

an interrupt from the GPS’s pulse-per-second (PPS) signal over the Raspberry Pi’s

general purpose inputs and outputs (GPIO). This node publishes a time reference

message that relates a system time t to the acquired GPS time tg. These time ref-

erences are used to linearly interpolate system time to GPS time, so that as sensor

data is recorded in system time it can be accurately be converted into GPS time [19].

Equation 2.1 shows the interpolation equation to determine GPS time for a new sys-

tem time and two GPS points. ts is the system time the sample was taken, t1 and

t2 are the system time of the two GPS samples and tg1 and tg2 are the GPS times of

the two GPS samples. Finally, tgs is the interpolated GPS time that the sample was

taken.

tgs = tg1 ∗
ts–t1
t2–t1

∗ tg2–tg1 (2.1)

2.2 Design Validation

The primary metrics to evaluate this design has to do with packet consistency es-

pecially under a significant system load. The experiments conducted were therefore

13

designed to test the variability of the packet delay and dropout under a variety of

flight scenarios.

Packet delay was measured from the sensor GPS time, to the GPS time that

it’s corresponding database entry was created which would accurately represent the

packet’s end-to-end delay. Maximum packet delay was set within the radio configu-

ration to be 10 s and would indicate a packet dropout. Different flight scenarios were

used to test their effect on these two metrics: packet delay and packet dropout rate.

2.2.1 Experiment Setup

Two experiments were conducted to test the relationship between distance and packet

consistency. Fig. 2.3 shows the assembled hardware for these experiments. A UAV

was flown to different distances from the ground station (located at (38.12N, 84.498E))

while taking lateral passes at incremental distances. The first experiment was con-

ducted only with a ground station emulating a point-to-point network, and the second

experiment had another node in the mesh located at (38.126N, 84.486E). This ex-

periment was conducted twice over the course of development to test new features

and improvements in the design. For completeness, both test results are included in

Table 2.3 with the most recent experiment labelled as ’new’.

Additional experiments were conducted with the system as incremental improve-

ments and feature additions were made. One such test involved 4 UAV devices active

on the ground simultaneously. Each UAV transmitted GPS information and some of

the UAVs had additional sensors which included PTH probes and a high data-rate

analog-to-digital (ADC) converter to test the system’s capability to log data over the

network and locally simultaneously.

14

Figure 2.3: The computer hardware that is put on the UAVs during flight is shown.
All sensor data is aggregated to the Raspberry Pi and then transmitted over the
DigiMesh network. The Neo-M8P RTK GPS is used to associate all sensor readings
to a GPS time and location with high accuracy.

2.2.2 Results

As can be seen in Fig. 2.4, the addition of one other node drastically increased the

packet consistency of the system as it made each node more resistant to occlusions

and propagation loss over long distances. This can be seen by the substantial drop

in packet loss shown in in Table 2.3. In the most recent experiment median packet

delay fell due to increases in efficiency of the protocol and serialization pipeline. The

network did experience marginally more packet loss likely due to an increased load

on the network. The use of more sensors and an extended time in the air meant that

the total packets transmitted was much more for the most recent test.

2.2.3 Conclusion

The objective of this work was to create a distributed system capable of aggregating

sensor data to a ground station in real time. This is a requirement of the larger project

15

Figure 2.4: Maps of the packet delay from the first two experiments. The position
of the points correspond to the recorded position of the UAV when that packet
information was recorded and the color of the points indicate the delay.

Table 2.3: Packet delay metrics for one and two UAVs

Single Node Net-
work

Two Node Net-
work

Two Node Net-
work (new)

Packet Drop Rate
(%)

7.3 0.8 2

Mean Delay (s) 1.62 1.16 1.12
1st Quartile (s) 0.90 0.894 0.36
Median Delay (s) 0.91 0.90 0.48
3rd Quartile (s) 1.576 0.916 1.41
Total Packets 647 680 1785

as the gas simulation must be computed centrally with access to sensor information

from all UAVs. It was decided to design a system underlying ROS2 and DigiMesh

to make it robust and easily-extensible. Multiple experiments were carried out both

in the air and on the ground to validate the different system features such as hybrid

16

networked and local data logging, full sensor modularity, mesh networking, etc. The

experiments showed each of these features to be functional and that the system as a

whole has the potential to fulfill the gas detection project requirements.

Future work on the UAVMesh platform should be primarily focused on the ad-

dition of new sensors, radios, and applications as the core architecture is tested and

complete. Additional stress tests of the concept with more drones, sensors, and

bandwidth would also provide interesting insight to the efficacy of the system at

scale. Work on the project is tracked through its Github page and corresponding

documentation.

Copyright© Joshua A. Ashley, 2022.

17

Chapter 3 Creating a Sensor-driven Multi-UAV Trajectory Planning

Algorithm

3.1 Problem Model

3.1.1 Overview

The tested data aggregation system described in Chapter 2 allows for the creation

of a centralized sensor-driven trajectory planning system. The requirements of this

system is that it needs to be able to make trajectory decisions for each UAV. It needs

to do so based on current partial knowledge of the environment with the objective of

maximizing future information gain about the local atmospheric environment. The

following section will describe how this system can be modelled in such a way that it

can be optimized through DRL.

The input to the system is a map M relating wind vectors (u, v) to spatial points

(x, y) generated by the WRF model from recorded sensor data. WRF generates this

information using complex atmospheric simulation. The belief space, B, quantifies the

prediction of the WRF model based on known measurement accuracies and their role

in the model’s prediction. The aircraft model establishes the observer’s interaction

with its environment and creates the action space. The POMDP model creates the

relationship between the environment states and UAV actions, M(s, a), as well as the

associated rewards. The rewards in exploration relate to the change in belief, c(x,y),

of our environment, known as information gain IZ . Fig. 3.1 shows how each model

is connected for the entire system and how the positive feedback system is used to

inform future decisions. The details of each model will be described in the following

subsections.

18

Figure 3.1: An overview of the data relationship of the each component model is
shown. This overview shows the positive feedback relationship between new actions
taken by the policy and information gain that increases model accuracy.

3.1.2 WRF Model

When modelling contaminant transport in a given space, measuring and simulating

wind behavior jointly increases model accuracy [9]. Given a grid of spatial points

M = {(x, y)} such that x, y ∈ Z and 0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax where xmax and ymax

are determined by the bounds and resolution of the map. A wind vector, (u, v) ∈ R2,

must be assigned to each point to qualify the movement of particles though this

space. This relationship between a (u, v) vector and (x, y) point produces a vector

field otherwise known by the WRF model as a flow field. The UAVs are able to take

partially-accurate measurements Z = {(x, y, u, v, t)} of wind vectors at a given point

in this space and time t. The WRF model therefore interpolates and extrapolates the

19

measured information from the plane to create a complete, but approximate, map

of the local weather environment W(m,Z) → (u, v) ∀ m ∈ M. This approximation

is qualified by the belief model in the subsequent subsection and is the basis for the

trajectory planning throughout the thesis.

3.1.3 Belief Model

The belief model is based on the way the WRFmodel makes predictions. The observer

gives measurements z with a low-but-present inaccuracy at specific points within M .

The WRF model must then extrapolate forward through M using z and therefore

compounding this inaccuracy with distance from z. This inaccuracy results in the

prediction confidence decaying exponentially from the point of the measurement.

Taking a measurement has a radial effect of the surrounding value as there is a

spatial relationship between measurements. Therefore the area around the point of

measurement in the belief map will have its confidence increased upon the measure-

ment being taken. To establish a relationship between the measurement and resulting

impact on the belief map, the radial effect is determined by a Gaussian distribution

whose mean is the point of observation and variance is proportional to the measured

wind vector σx ∝ u, σy ∝ v. This results in larger wind vectors having larger impact

on the map in the respective direction of the the wind vector itself. This is to provide

the simulation with a feedback mechanism where certain measurements are seen as

having higher map impact than others which will also be true in the more complex

case. Fig. 3.2 visualizes how the measurement of u and v at a given point can affect

the belief in different ways. The belief confidence is shown as a color grid where red

is lower confidence and green is higher confidence. The wind vectors are shown by

the arrows. Both measurements start from the same belief map shown in Fig. 3.2(a).

The impact each measurement has on the belief map are different in shape due to the

wind vectors pointing in different directions between each measurement. Fig. 3.2(b)

20

mainly impacts in the y direction since the wind is mostly pointing in the y direction

and Fig. 3.2(c) impacts both the x and y confidences since the wind vector is pointing

roughly equally in both.

(a) (b)

(c)

Figure 3.2: A visualization of how measurements within the flowfield affect the belief
space in different ways is shown. The values within the belief map are color coded
with higher confidences being assigned green and lower confidences being assigned
red. The arrows represent the direction and magnitude of the wind vector for each
cell. An image of the belief map before, Fig. 3.2(a) and after measurements from
within two different flow fields is made at point x = 20, y = 20 is shown, Fig. 3.2(b)
and Fig. 3.2(c).

The key to measuring information gain from the belief space is to quantify the

entropy of a given belief space and compare the change in entropy from taking an

action in a given state. A confidence, c(x,y), is assigned to each point in M creating

the set B = {c(x,y) ∀ (x, y)} which describes the confidence that the simulation

has correctly predicted the measurement at each point. Therefore, event C(x,y) is

the event that the simulation has predicted correctly at the location of (x, y), thus

21

P (C(x,y) = correct) = c(x,y) and P (C(x,y) = incorrect) = 1 − c(x,y). The entropy of

the probability distribution of a discrete event is the summation of entropy at each

possibility

(3.1)HP (C(x,y)) = −[c(x,y) ∗ log(c(x,y)) + (1− c(x,y)) ∗ log(1− c(x,y))] .

The observer is capable of taking a measurement z = (x, y, u, v) that includes its

position and wind vector at the current state of the observer. The goal of information

gain is to find out what the change in entropy would be if a measurement z were taken,

which is the event Z. The change in entropy can be obtained using the principle of

mutual information

EZ [∆H(C(x,y)|Z)] = Hp(C(x,y)) +

∫
P (Z|s, a)∗

[P (C(x,y)|Z) ∗ log(P (C(x,y)|Z))+

(1− P (C(x,y)|Z)) ∗ log(1− P (C(x,y)|Z))]dz,

(3.2)

where P (C(x,y)|Z) is the effect the measurement has on the confidence at the point

(x, y) which was establish earlier as the Gaussian distribution characterised by the

measurement P (C(x,y)|Z) = N ((zx, zy), (zu, zv)) [29]. In practice, if a measurement

gives a lower c(x,y) than was previously there it does not replace the prior value in

the belief map. Since each measurement is used by the simulation to extrapolate all

other states in the space, the total information gain must account for all (x, y) in M

at each measurement

IZ(s, a) =
∑

x,y∈M

EZ [∆H(C(x,y)|Z)]. (3.3)

Note that observation Z is a measurement done when the observer is at the next state

s′, and therefore state s, and action a, are variables in the information gain function.

22

3.1.4 Aircraft Model

The fixed-wing aircraft model is taken from a simple, two-dimensional case [6]. The

aircraft has the ability to control its roll angle ϕ which turns the plane. The UAV also

has a constant velocity vp since this can be handled by inner-loop control [34]. With

these constraints, the plane’s state can therefore be described with three variables:

position in 2D space x, y and heading or yaw ψ. The state-action relationship comes

from the UAV’s dynamics model

ẋ = vp cos(ψ)

ẏ = vp sin(ψ)

ψ̇ =
g

vp
tan(ϕ),

(3.4)

where g is the acceleration due to gravity.

3.1.5 POMDP Model

A POMDP associates state-action pairs with the set of possible next states and reward

that results in taking the action in that state M(s, a) → (s′, r). Traditionally, in an

POMDP, there is a probability of transition between states P (s′|s, a) that is non-

zero for multiple different next states, and is therefore probabilistic. This allows an

POMDP to take into account external environmental effects that could affect state

(i.e. wind gusts moving the UAV). However, the solution model does not change for

a probabilistic vs. deterministic versions of the POMDP and therefore the simple

simulation uses deterministic behavior.

The state s for this problem has two parts. The first part is the observer state

which consists of three variables, two describing spatial position (xp, yp), and one de-

scribing orientation ψp of the plane forming the vector sp = (xp, yp, ψp). For the second

part of the state, each point in map M is given wind vector (u, v) and measurement

23

confidence c. Therefore a vector of three values describing the u, v, and c is given for

each spatial point in the map forming the map state sm = {(um, vm, cm) | m ∀ M}.

Thus the state is completely defined by s = (sm, sp).

The action space is the control allowed for a single UAV. Referring to the previous

subsection, the aircraft model in 2D allows for a single control of roll angle ϕ. The

model allows for continuous control and is bound by a maximum roll of the aircraft

which is 40 degrees.

The primary component of the reward function is the information gain function

IZ described in the belief model. The second component of the reward function

pertains to the simulation’s finishing states. If the plane goes out of bounds, the run

is terminated and the reward that is given is negative. If the plane stays in bounds

for the duration of the flight it is rewarded

(3.5)r(s, a) =


20 time expired

−20 out of bounds

IZ(s, a) otherwise

.

3.2 Methodology

3.2.1 Using Soft Actor Critic to Approximate the Optimal Solution of a

POMDP

The Bellman equation describes the solution to a POMDP given an infinite-discounted

time horizon requiring infinite computation

Q(s, a) = r(s, a) + λ

∫
P (s′|s, a) ∗max

a′
(Q′(s′, a′))ds′. (3.6)

where λ is the discount factor for each subsequent future state. This equation poses

a multitude of issues for an analytical solution including a recurrent future term

in Q′ and an integral over an continuous variable in s. Certain simplifications and

24

constraints make it such that the Q-function is able to be reasonably approximated

using reinforcement learning [28]. For instance, the determination of future states and

actions can be derived from the policy and simulation iteratively instead of analyzing

all of the state and action space.

The type of reinforcement learning used in this algorithm to approximate a tractable

solution to the Bellman equation is soft actor-critic (SAC), which trains three net-

works [12]. One network learns the optimal policy πθ(s) for a given state where θ

are the policy network parameters. The other two networks estimate the Q-function

Qϕ1(s, a) and Qϕ2(s, a) where ϕ1 and ϕ2 are the Q-network parameters. Training

iterations for the networks consist of regression over data sets D of recorded infor-

mation called experience replay. In experience replay, states-action pairs taken in

the simulator are recorded as sets of state, next state, action, reward, and a boolean

denoting whether this is a terminal state (s, s′, a, r, d). Training of the DQNs works

very similarly to standalone DQN applications. Mean-squared Bellman error (MSBE)

is used as the basis of the loss function

L(D) = E
(s,s′,a,r,d)∼D

[(Q(s, a)− (r + λmax
a′

(Q′(s′, a′))))2]. (3.7)

In training the DQNs, SAC utilizes the strategies target Q-networks, Polyak av-

eraging [4], and dual-clipped Q-networks [12], to improve network stability and avoid

local minima in the the Q-value estimation. These strategies result in the final loss

function for the DQNs as

L(ϕi, D) = E
(s,a,s′,r,d)∼D

[(Qϕi
− y(r, s′, d))2] (3.8)

where

y(r, s′, d) = r + λ(1− d)min
i=1,2

Qϕi,targ
(s′, π(s′)) (3.9)

25

The policy network attempts to select the optimal action for any given state. In

SAC, this network is a stochastic policy πθ(s) = N (µa, σa) that is entropy regularized

using its loss function. Entropy regularization incentivizes exploration by rewarding a

higher entropy stochastic policy. This entropy term means that the policy is optimized

according to the loss

L(θ,D) = − E
s∼D
a∼π

[Qϕ(s, a)− αlog(πθ(a|s))]. (3.10)

Fig. 3.3 shows the data flow of the replay memory components through the

SAC algorithm during training. Parts of the replay memory are used to generate

loss values to update the Q-network and policy network. The target Q-network is

updated intermittently from the main Q-network parameters.

3.2.2 Neural Network Architecture and Training

SAC was used to train the following network model. The network has the same hidden

layers for both policy and Q-networks while only the inputs and outputs change. It is

non-sequential and processes the UAV state using a deep, densely-connected network

while it processes the belief image using convolutional layers. It then combines both

’sides’ of the network using dense layers to produce a single set of outputs. Fig. 3.4

describes the structure of the networks used in this study.

Training was done using on a NVIDIA Volta GPU using pytorch for 300,000-

1,200,000 training iterations. The optimizer chosen is the first-order, gradient-based

optimizer Adam [18]. Table 3.1 shows the hyperparameters used for training the

networks. If any hyperparameter is excluded from this list, the default supplied by

pytorch and Adam was used. Training on this configuration takes approximately 48

hours to complete 1,000,000 training iterations.

26

Figure 3.3: The data-flow diagram for a training iteration in SAC. Replay memory is
the input data which consists of a representative data set of the POMDP. Yellow boxes
indicate the parameter update functions with the blue boxes showing the network that
receives those updates.

Table 3.1: Training Hyperparameters

λ Bellman discount factor 0.95
τ Polyak average rate 0.007
lr Learning rate 0.00005
α Entropy weight 0.1
Batch size # of elements to train on 256
U Updates per step 0.2
n Steps to update target Q-

network
20

3.2.3 Reducing State Dimensionality by Accounting for Environment Dy-

namics

Although SAC and the described network is able to train effectively with the state

space describing the entire map at each point, a large portion of that information may

27

Figure 3.4: The structure of the neural networks that are trained by SAC is shown.
Both the DQNs and policy networks use this structure with only a different output
layer. The output layer shown describes the stochastic policy output which is a
distribution N (µa, σa).

not be useful to the UAV even when planning long horizons. This is because of the

relationship between the Q-value and the spatial distance of map points to the UAV

in its current position. The UAV is only able to move at a finite speed within the map

and therefore the points in the map that are closer to the UAV will occur in fewer

state transitions of the POMDP yielding a higher potential value due to the discount

factor. For example, if you have a point in the map whose reward is estimated to be

20 and it would take 10 state transitions in order to get to that point, the maximum

possible impact of that reward on the current true Q-value would be 20 ∗ λ10 or

approximately 11.9 for a discount factor of 0.95. While if the value of 20 only took 5

28

state transitions in order to get to that point, the maximum impact would be 20 ∗ λ5

or approximately 15.4 for the same discount factor. Taken to the extreme, as the

distance from the current UAV position increases, the maximum possible impact on

the Q-value of a given point in the map asymptotically approaches zero.

In setting a threshold, ϵ, for how small of a potential impact the algorithm con-

siders, a window size that is significantly smaller than the total map size can be used

as input to the network. Equation 3.11 uses the speed of the plane in meters per

second, vp, the conversion of time to steps in the POMDP, dt, the current discount

factor, λ, and this threshold ϵ to determine what the relevant map radius is

radius = logλ(ϵ) ∗ v ∗ dt. (3.11)

Using the tested simulation parameters of v = 2, dt = 0.2, λ = 0.95, and ϵ = 0.05

yields a window radius of 23. This significantly reduces the window size from 100 x

50 cells to 46 x 46 cells while only compromising a total possible 5% impact on the

accuracy of the approximated Q-value.

As shown in Fig. 3.5, during training and verification using the windowed method

a slice of the current total map state will be given to the network based on the UAV’s

position and calculated window size. This also makes the network input independent

to map size and shape since the windows are purely dependent on simulation param-

eters. Therefore the network policy would only need to be retrained for new UAV

dynamics or model parameters, which is the case regardless of the windowed method,

but would not need to be retrained for new areas or flight boundaries.

3.2.4 Extension to Multiple UAVs

Using the above method of SAC to train an agent for trajectory planning of one UAV,

extension to multiple UAVs produces the challenge of an explosion in action space

29

Figure 3.5: An example of the total state being sliced into a window based on the
current location of the UAV. This slice is what is given to the trained agent which
produces an action from that windowed input.

as one increases the available control decisions. Given that each UAV can make

an independent action from one another at any given time step, the combination

of potential actions scales polynomially with an increase in UAVs. A turn-taking

strategy is proposed to allow the UAVs to act separately from one another which

increases scalability and improves transfer learning given that in any case the model

must only look at one UAV at a time. As the UAVs move through the environment,

they impact the belief map. This impact can be extrapolated forward in time with

some confidence using the current expectation values as detailed in (3.3). In turn-

taking, the policy network is used to plan a UAV’s trajectory forward in time an

amount of steps, called the horizon, and the impact to the belief map is recorded.

This impact will be shared and used as the global belief map for all other UAVs. As

new measurements are actually obtained, the original belief map will be updated to

represent reality and the planning will repeat with this new map. Therefore, each

30

UAV sees the plan of the other UAVs for those time steps through the belief map

before making a plan of its own. No UAV will be allowed to plan farther in the future

than the current segment of time such that one UAV does not get too far ahead of

any other. The turn order of the UAVs is decided by the current maximal Q-value

from the Q-network in the set of UAVs still to go in the current turn. Given that the

Q-value is accurate, this means that the UAVs with the most potential gain in the

following steps are allowed to take precedent over UAVs with less.

3.3 Results

3.3.1 Model Verification Process

During and after training the models undergo periodic verification. This verification

is done by running 100 validation episodes of the simulation and recording the re-

ward and crash rate for each. A crash is defined as the UAV going outside of the

map boundary and can be mitigated by an inner-loop controller during real flight.

The episodes are generated with random starting states including placement of the

UAVs and map values. The map components, u, v and c, that form M and B are

generated by randomly sampling a sparse grid of points and then doing cubic inter-

polation between each point to achieve the desired map resolution. This makes for

a realistic atmospheric environment as the result is a continuous and differentiable

map of points. Additionally, this yields a much larger sample space than any available

dataset as well as allowing explicit adjustments to emulate the scale and resolution

the real-world application will work within.

To validate the proposed algorithm, a greedy policy and fixed-trajectory pol-

icy were chosen for comparison. Additionally, policies generated with and without

windowed input will be tested on simulations with and without turn-taking to cross-

examine the impact of both of these additions. The greedy policy only takes into

account the immediate, highest-reward action. The fixed-trajectory policy generates

31

a ’lawnmower’ pattern from the start point of the UAV. All policies were tested on

one, two, and three UAVs in the simulation to show the increase in reward with

scaling.

Figure 3.6: Training progress is made over 1,200,000 iterations. Reward is taken
over an average of 50 verification runs. The yellow and grey dotted line shows the
baseline average reward of the lawnmower and greedy policies respectively.

Fig. 3.6 shows the verification rewards as the agents receive more training updates.

The green and blue points in the figure represent the average verification reward for a

network trained using a windowed state space and a network trained using a complete

state space, respectively, while their corresponding lines represent a moving average

to visualize trends during training. The dashed yellow and grey lines show the average

reward of the fixed and greedy policies respectively to indicate when in each trained

policy surpasses these benchmarks. As seen in Fig. 3.6 the majority of reward gains

from training the network without a windowed state space happen within the first

200,000 training iterations. After this point, the algorithm continues to increase the

agent’s average reward but the primary gains are from metrics other than reward.

The network with a windowed state space reaches near a maximum reward within

100,000 training iterations.

32

Figure 3.7: Training progress is made over 800,000 iterations. A ’crash’ is qualified
by the UAV going out of the boundary of the map. The yellow and grey dotted line
shows the baseline average reward of the lawnmower and greedy policies respectively.

Fig. 3.7 shows the crash rate over the verification runs as the agents receive more

training updates. The green and blue points in the figure represent the average ver-

ification reward for a network trained using a windowed state space and a network

trained using a complete state space, respectively. The dashed yellow and grey lines

show the crash rate of the fixed and greedy policies respectively to indicate when in

each trained policy surpasses these benchmarks. The crash rate of the fixed trajecto-

ries is 0 in all cases due to the trajectory being hard-coded not to crash. The network

trained with complete state space progressively decreases its crash rate throughout

the entirety of training. The crash rate of the network with a windowed state space

drops to 0 within 100,000 training iterations and mostly stays close to 0 throughout

training.

33

3.3.2 Simulation Comparison for One UAV

Fig. 3.8 shows an example of UAV trajectories taken by each policy. Fig. 3.8(a)

shows the starting confidence map each policy was provided. Fig. 3.8(b), 3.8(c),

and 3.8(d) show the trajectories taken by the trained agent, greedy policy, and fixed-

trajectory policy, respectively and their resulting impact on the confidence map. The

confidence map is shown with low-confidence areas colored red and high-confidence

areas colored green. The wind vectors are omitted from the visualization to reduce

clutter. Intuitively, as the UAVs visit a location, the confidence at and near that

location increases. As the UAVs spend more time away from a location, the confidence

decreases as any measurement from that area becomes more irrelevant for a dynamic

environment.

As shown in Fig. 3.8(b), the trained policy is able to take into account long-term

rewards available on the map which allows the trajectories to more often converge on

global maxima of value. The greedy policy, as shown in Fig. 3.8(c), is unable to take

this into account and will often get stuck in local maxima which it will quickly exploit

and be left with a high long-term penalty. The fixed trajectory policy, as shown in

3.8(d), is simply a maximization of area coverage and therefore does not utilize the

confidence map. The fixed trajectory gets the benefit of a nearly non-existent crash

rate but the disadvantage of low average value exploitation per unit time.

For instance, when the agent is nearby a small, local reward but could take a

penalty in order to find larger, lower-confidence areas it will take the penalty while

the greedy case would stay trapped in the small, local reward. This behavior can be

exemplified in Fig. 3.8(b) as the agent reaches the low-confidence region between x ∈

[20, 35], y ∈ [25, 35] while the greedy case does not. The fixed trajectory encounters

good and bad value by circumstance of the random environment, and therefore can see

high penalty when the regions generated around the UAV’s starting point have high

confidence. For instance the fixed trajectory in Fig. 3.8(d) has the UAV spending a

34

large amount of time in the high-confidence region x ∈ [45, 55], y ∈ [20, 40].

(a) (b)

(c) (d)

Figure 3.8: The generated policy by the proposed algorithm produces a trajectory
that is compared to the other policies in this figure. Fig. 3.8(a) shows the starting
value map. Fig. 3.8(b) shows the trajectory made by the agent produced by SAC.
Fig. 3.8(c) shows the greedy policy trajectory. Fig. 3.8(d) shows the fixed trajectory.

3.3.3 Simulation Comparison for Multiple UAVs

The main metric when looking at the scalability of each respective policy is to look

at how the average reward increases with the addition of more UAVs. In an ideal

circumstance, the addition of a another UAV would proportionally increase the total

reward earned in the simulation up until the number of UAVs are able to completely

exploit the information gain in the map. Fig. 3.9 shows a segmented bar chart of the

35

mean and standard deviation for the average reward of each policy at 1, 2, and 3 UAVs

over 100 runs each. As shown in Fig. 3.9, each method gets close to this scaling for

the increase in UAVs into the environment. As more reward is accrued by the UAVs,

less information and therefore potential future reward becomes available. Fig 3.10

shows 3 UAVs taking trajectories in the same map over the same period of time. Each

UAV trajectory is differentiated by the colors blue, green, and orange. Fig. 3.10(b)

shows that the UAVs will take trajectories that avoid visiting the same areas as other

UAVs in quick succession. When put in similar starting states, such as the orange

and blue trajectories, the UAVs will take different trajectory decisions at key points

that allow them to acquire their own reward. This effect is shown on Fig. 3.10(b) in

the bottom right quadrant of the map when the UAVs have overlapping trajectories

to start but diverge quickly in order to obtain a wider-spread of information. The

orange trajectory goes near the bottom of the y axis, the blue trajectory goes above

it, and the green trajectory attempts to avoid the quadrant altogether. While there

is inevitably overlap between the trajectories due to the map size, the UAVs succeed

in minimizing overlap at most points in the trajectory. This results in the learned

policy acquiring over 30% more reward per UAV than than the fixed policy for the

agents not using a windowed input.

Fig. 3.9 also shows the comparison in of the agents with combinations of with

and without turn-taking and with and without a windowed input. The impact of

turn-taking is relatively small, but highly repeatable. The turn-taking strategy is

hypothesized to have an increased impact as the problem scales to more UAVs which

is corroborated by the data shown in this figure. For the case of three UAVs, a 5%

increase with the turn-taking strategy as opposed to without is observed for both

the windowed and not windowed input agents. The windowed input however has a

very large impact on the collected reward by the agent as it attributes to a 50% to

60% increase in reward per UAV for 1, 2, and 3 UAVs. This validates that reducing

36

the state space complexity at the sacrifice of marginal reward potential can be very

beneficial to the success of the policy for this application.

Figure 3.9: The different policies’ reward are compared over 100 runs for 1, 2, and
3 UAVs flying simultaneously. This shows a clustered column chart of the mean and
standard deviation for the reward across these 100 runs for each.

3.4 Conclusion

Using a probabilistic model that collaborates with the behavior of the WRF model

gives much more information about the surrounding weather environment than any

sparse set of measurements would give on its own. This drastically reduces the amount

of work and time the UAVs need to create an accurate map. The turn-taking strat-

egy of the UAVs means that the reinforcement learning and action space is agnostic

to the amount of UAVs in the environment, increasing the scalability of the prob-

lem. Given a sufficiently accurate simulation of the future effect that each UAV will

have on the map’s accuracy, this should produce similar results to taking all actions

in parallel while improving tractability. Additionally using a subset, or window, of

37

(a) (b)

Figure 3.10: Example trajectories made by multiple UAVs using the turn-taking
strategy on the trained policy is shown. Fig. 3.10(a) is the starting value map that is
given to the policy as input, and fig. 3.10(b) is the resulting total trajectories planned
by the policy and the resulting impact on the map.

the current complete map state based on spatial relevance to the UAV can lead to

a drastic decrease in state space complexity and corresponding increases in overall

reward. These results provide promise for expansion of the algorithm to more com-

plex scenarios as the project progresses closer to real flight. Future work will involve

addressing the challenges of integrating and testing this algorithm onto the described

implementation from Chapter 2. This process will likely require an increasingly com-

plex atmospheric simulation and subsequent probabilistic model based on the current

work of the UKY DART project as well as a more complex UAV dynamics model of

flight to increase accuracy of the policy between simulation and reality.

Copyright© Joshua A. Ashley, 2022.

38

Chapter 4 Conclusion

4.1 Summary

The objective of this work was to describe the contributions made towards designing

real-time, sensor-driven flight system that can efficiently and accurately map sur-

rounding atmospheric environment. The first contribution, detailed in Chapter 2,

was to design a real-time sensor data aggregation system to enable UAVs to commu-

nicate important information for atmospheric simulation during flight. The system

was built using a state-of-the-art mesh networking protocol, DigiMesh, and an inter-

process data distribution system (DDS) ROS2. Automation and abstractions were

designed to make communication with the ground station as efficient over the network

as possible while still allow for ease of development when introducing new sensors.

Over the course of multiple experiments, the system was able to meet the latency

and distance requirements of the project while also introducing a variety of new

features and sensors. The second contribution, detailed in 3, was the creation of a

sensor-driven trajectory planning algorithm for optimizing information gain of the at-

mospheric simulation over the course of the trajectory. This planning algorithm was

modelled as a robotic exploration problem with a POMDP that could be optimized

using a DRL agent. In order to introduce multiple UAV’s a turn-taking strategy dur-

ing verification. This allowed the UAVs to plan ahead a certain distance in time such

that each UAV could plan sequentially and not require retraining of the DRL agent

with the addition of more UAVs. The state space of POMDP was drastically reduced

in training the DRL agent by taking into account the spatial relevance of points to the

UAV’s position. The DRL agent in conjunction with these two enhancements yield a

result that was 80%-115% more performant than a fixed trajectory focused on area

coverage for all scenarios of 1, 2, and 3 UAVs. These results shows the efficacy of the

39

algorithm for expansion to more complex simulations that bridge the gap between

simulation and real flight.

4.2 Future Work

Future work on both systems pertain roughly to scaling the designs as the over-

all project proceeds closer to real flights. The data aggregation platform will likely

require integration of new sensors, radios, and end applications but the core architec-

ture of the design is tested and complete. Additional stress tests of the system using

fixed-wing drones, more sensors, and higher bandwidth are planned and will provide

interesting insight into the efficacy of the system at scale. Work on the project is

tracked through its Github page and corresponding documentation. Future work on

the sensor-driven flight planning algorithm must also address the challenges of effec-

tive implementation in the real scenario. This will likely require increasingly complex

atmospheric simulation with using the WRF model directly and more complex UAV

dynamics that better represent the UAVs that will be used in the project.

Copyright© Joshua A. Ashley, 2022.

40

Bibliography

[1] L. Bing, M. Qing-Hao, W. Jia-Ying, S. Biao, and W. Ying. Three-dimensional

gas distribution mapping with a micro-drone. In 2015 34th Chinese Control

Conference (CCC), pages 6011–6015. IEEE, 2015.

[2] J. R. Bourne, M. N. Goodell, X. He, J. A. Steiner, and K. K. Leang. Decentralized

multi-agent information-theoretic control for target estimation and localization:

Finding gas leaks. The International Journal of Robotics Research, 39(13):1525–

1548, 2020.

[3] J. Burgués, V. Hernández, A. J. Lilienthal, and S. Marco. Smelling nano aerial

vehicle for gas source localization and mapping. Sensors, 19(3):478, 2019.

[4] S. Dankwa and W. Zheng. Twin-delayed DDPG: A deep reinforcement learning

technique to model a continuous movement of an intelligent robot agent. In

Proceedings of the 3rd International Conference on Vision, Image and Signal

Processing, pages 1–5, 2019.

[5] S. Devarakonda, P. Sevusu, H. Liu, R. Liu, L. Iftode, and B. Nath. Real-time air

quality monitoring through mobile sensing in metropolitan areas. In Proceedings

of the 2nd ACM SIGKDD international workshop on urban computing, pages

1–8, 2013.

[6] L. E. Dubins. On curves of minimal length with a constraint on average curva-

ture, and with prescribed initial and terminal positions and tangents. American

Journal of mathematics, 79(3):497–516, 1957.

41

[7] C. Ercolani, L. Tang, A. A. Humne, and A. Martinoli. Clustering and informative

path planning for 3D gas distribution mapping: Algorithms and performance

evaluation. IEEE Robotics and Automation Letters, 7(2):5310–5317, 2022.

[8] S. Favot. Health officials: Porter ranch gas leak may cause long-term health

effects. Los Angeles Daily News, 2015.

[9] A. Gongora, J. Monroy, and J. Gonzalez-Jimenez. Joint estimation of gas

and wind maps for fast-response applications. Applied Mathematical Modelling,

87:655–674, 2020.

[10] S. Gourdji, V. Yadav, A. Karion, K. Mueller, S. Conley, T. Ryerson, T. Nehrkorn,

and E. Kort. Reducing errors in aircraft atmospheric inversion estimates of

point-source emissions: the aliso canyon natural gas leak as a natural tracer

experiment. Environmental Research Letters, 13(4):045003, 2018.

[11] L. Gupta, R. Jain, and G. Vaszkun. Survey of important issues in uav communi-

cation networks. IEEE Communications Surveys & Tutorials, 18(2):1123–1152,

2015.

[12] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy

maximum entropy deep reinforcement learning with a stochastic actor. In Inter-

national conference on machine learning, pages 1861–1870. PMLR, 2018.

[13] C. Heintz and J. B. Hoagg. Formation control for fixed-wing uavs modeled with

extended unicycle dynamics that include attitude kinematics on so(m) and speed

constraints. Proceedings of American Control Conference.

[14] M. Hutchinson, C. Liu, P. Thomas, and W.-H. Chen. Unmanned aerial vehicle-

based hazardous materials response: Information-theoretic hazardous source

search and reconstruction. IEEE Robotics Automation Magazine, 27(3):108–

119, 2020.

42

[15] M. Jerrett. Community monitoring around the porter ranch natural gas leak

disaster. In ISEE Conference Abstracts, 2016.

[16] K. D. Julian and M. J. Kochenderfer. Distributed wildfire surveillance with

autonomous aircraft using deep reinforcement learning. Journal of Guidance,

Control, and Dynamics, 42(8):1768–1778, 2019.

[17] A. Khalifeh, H. Salah, S. Alouneh, A. Al-Assaf, and K. Darabkh. Performance

evaluation of digimesh and zigbee wireless mesh networks. In 2018 Interna-

tional Conference on Wireless Communications, Signal Processing and Network-

ing (WiSPNET), pages 1–6, 2018.

[18] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

[19] K. Y. Koo, D. Hester, and S. Kim. Time synchronization for wireless sensors

using low-cost gps module and arduino. Frontiers in Built Environment, 4:82,

2019.

[20] N. Melnikova, J. Wu, P. Ruiz, and M. F. Orr. National toxic substances incidents

program—nine states, 2010–2014. MMWR Surveillance Summaries, 69(2):1,

2020.

[21] M. Pan, C. Chen, X. Yin, and Z. Huang. Uavs-aided emergency environmental

monitoring in infrastructure-less areas: Lora mesh networking approach. IEEE

Internet of Things Journal, PP:1–1, 07 2021.

[22] L. Paull, C. Thibault, A. Nagaty, M. Seto, and H. Li. Sensor-driven area coverage

for an autonomous fixed-wing unmanned aerial vehicle. IEEE Transactions on

Cybernetics, 44(9):1605–1618, 2014.

43

[23] J. P. Queralta, Y. Xianjia, L. Qingqing, and T. Westerlund. Towards large-scale

scalable mav swarms with ros2 and uwb-based situated communication. arXiv

preprint arXiv:2104.09274, 2021.

[24] M. Rossi and D. Brunelli. Gas sensing on unmanned vehicles: Challenges and

opportunities. 2017 New Generation of CAS (NGCAS), pages 117–120, 2017.

[25] I. Senocak, N. W. Hengartner, M. B. Short, and W. B. Daniel. Stochastic event

reconstruction of atmospheric contaminant dispersion using Bayesian inference.

Atmospheric Environment, 42(33):7718–7727, 2008.

[26] M. Steven, F. Tully, B. Gerkey, L. Chris, and W. William. Robotoperatingsys-

tem2:design,architecture,andusesinthewild. ScienceRobotics, 7(66):eabm6074,

2022.

[27] S. Subchan, B. A. White, A. Tsourdos, M. Shanmugavel, and R. Żbikowski.

Dubins path planning of multiple UAVs for tracking contaminant cloud. IFAC

Proceedings Volumes, 41(2):5718–5723, 2008.

[28] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The

MIT Press, second edition, 2018.

[29] S. Thrun, W. Burgard, and D. Fox. Probalistic robotics. Kybernetes, 2006.

[30] T. F. Villa, F. Salimi, K. Morton, L. Morawska, and F. Gonzalez. Development

and validation of a UAV based system for air pollution measurements. Sensors,

16(12):2202, 2016.

[31] B. A. Visan. DigiMesh Reliability in High Speed Vehicular Applications. PhD

thesis, Purdue University, 2017.

44

[32] B. M. Witte, R. F. Singler, and S. C. C. Bailey. Development of an unmanned

aerial vehicle for the measurement of turbulence in the atmospheric boundary

layer. Atmosphere, 8(10), 2017.

[33] G. Xu, Z. Yang, W. Lu, and L. Zhang. Decentralized multi-uav cooperative

search based on ros1 and ros2. In International Conference on Autonomous

Unmanned Systems, pages 2427–2435. Springer, 2021.

[34] G. Yang and V. Kapila. Optimal path planning for unmanned air vehicles with

kinematic and tactical constraints. In Proceedings of the 41st IEEE Conference

on Decision and Control, 2002., volume 2, pages 1301–1306. IEEE, 2002.

45

Vita

Joshua Ashley

Place of Birth:

• Louisville, KY

Education:

• University of Kentucky, Lexington, KY

M.S. in Electrical Engineering, Dec. 2022

in progress

• University of Kentucky, Lexington, KY

B.S. in Computer Engineering, Dec. 2020

magna cum laude

Professional Positions:

• Graduate Research Assistant, University of Kentucky Spring 2020–Fall 2022

Honors

• Kentucky Excellence Scholarship, University of Kentucky

• Provost Scholarship, University of Kentucky

Publications & Preprints:

• J. Qin, J. Ashley and B. Xie, ”Hand Gesture Recognition Based on a Noncon-

vex Regularization,” 2021 IEEE International Conference on Mechatronics and

Automation (ICMA), 2021

46

	Developing Reactive Distributed Aerial Robotics Platforms for Real-time Contaminant Mapping
	Recommended Citation

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Application and Significance
	1.2 Objective
	1.3 Literature Review
	1.3.1 Long Range Network Protocols
	1.3.2 Networking Middleware
	1.3.3 Aerial Gas Detection Methods
	1.3.4 POMDPs for Aerial Mapping and Exploration

	2 Designing a Data Aggregation System
	2.1 System Design
	2.1.1 Overview
	2.1.2 Sensor Abstraction
	2.1.3 High-Level Protocol
	2.1.4 Message Serialization
	2.1.5 Network Setup
	2.1.6 GPS Timing

	2.2 Design Validation
	2.2.1 Experiment Setup
	2.2.2 Results
	2.2.3 Conclusion

	3 Creating a Sensor-driven Multi-UAV Trajectory Planning Algorithm
	3.1 Problem Model
	3.1.1 Overview
	3.1.2 WRF Model
	3.1.3 Belief Model
	3.1.4 Aircraft Model
	3.1.5 POMDP Model

	3.2 Methodology
	3.2.1 Using Soft Actor Critic to Approximate the Optimal Solution of a POMDP
	3.2.2 Neural Network Architecture and Training
	3.2.3 Reducing State Dimensionality by Accounting for Environment Dynamics
	3.2.4 Extension to Multiple UAVs

	3.3 Results
	3.3.1 Model Verification Process
	3.3.2 Simulation Comparison for One UAV
	3.3.3 Simulation Comparison for Multiple UAVs

	3.4 Conclusion

	4 Conclusion
	4.1 Summary
	4.2 Future Work

	Bibliography
	Vita

