Combinational dormancy of Vicia angustifolia seed and its ecological significance

Rui Zhang, Tingshan Li, Xiaowen Hu and Yanrong Wang

State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, People’s Republic of China.

Contact email: yrwang@lzu.edu.cn

Keywords: Combinational seed dormancy, hydrotime model, Vicia angustifolia.

Introduction

Combinational dormancy is a common phenomenon in seed of temperate legume species, however, less is known about its ecological role in an alpine environment (Hu et al. 2013). Vicia angustifolia is an annual herbaceous legume, widely distributed in the Qinghai-Tibet Plateau. The purpose of this study is to explore the seed dormancy characteristics of V. angustifolia and its ecological significance.

Materials and methods

Fresh and one year stored V. angustifolia seed was used for the present study. Fresh and one year stored seeds were incubated at 20°C for 14 days to test the impermeability of the seed coat. To characterize seed germination response to temperature and water potential (ψ), fresh and 1-year-stored scarified seeds were tested for germination at PEG solutions with different water potentials at 10, 15 and 20°C, respectively. To test seed physiological state in the field, fifteen nylon bags with 100 seeds each were placed on the soil surface in Xiahe County after they were harvested on October 2011. Seeds were exhumed in December, February and April, and were germinated at 20°C in the dark. The number of dead, germinated, imbibed ungerminated and hard (unimbibed) seeds were counted after 14 days. Germination times of stored and fresh seeds were analyzed by repeated probit regression based on the hydrotime model to estimate water relation parameters (Bradford 1990).

Table 1. Germination percentage and germination rate (T50) of fresh and 1-year-old scarified seeds of V. angustifolia incubated at 10, 15 and 20°C for 28 days. Different letters for Germination and T50 indicate significant differences.

<table>
<thead>
<tr>
<th>Seed lot</th>
<th>Germination (%)</th>
<th>T50 (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10°C</td>
<td>15°C</td>
</tr>
<tr>
<td>Fresh</td>
<td>96 ± 2 a</td>
<td>98 ± 1 a</td>
</tr>
<tr>
<td>Stored</td>
<td>93 ± 3 a</td>
<td>93 ± 3 a</td>
</tr>
</tbody>
</table>

Table 2. Characterization of the germination responses of V. angustifolia seed lots to water potential at 10, 15 and 20°C by parameters of the hydrotime model. θH, hydrotime constant; ψb(50), median base water potential; R², coefficient of determination of regression

<table>
<thead>
<tr>
<th>Seed lots</th>
<th>θH (MPa.d)</th>
<th>ψb(50) (MPa)</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh seed</td>
<td>4.8</td>
<td>2.8</td>
<td>4.2</td>
</tr>
<tr>
<td>Stored seed</td>
<td>5.9</td>
<td>4.7</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Results and Discussion

After one year storage, hard seed increased from 25% to 90% (data not shown). This indicates physical dormancy (PY) existed both in fresh and 1-year-stored seed. Moreover, storage under dry conditions makes seeds become impermeable. PY have been proposed as an important mechanism in preventing germination after seed dispersal (Van Assche and Vandeloek 2010). However, in the present study this seems to be not the case, because percentage of hard seed at harvest was low, and an increase trend was not observed when exposed to the field, though it did increase when dry stored in the laboratory.

Consistent with the reports on physiological dormancy (PD) in seeds of other herbaceous Fabaceae species, scarified stored V. angustifolia seeds germinated faster and higher than fresh seeds especially at higher temperature such as 20°C (Table 1). Thus, we conclude that the embryos of V. angustifolia have some degree of PD, and thus combinational dormancy in this species. Moreover, the expression of seed dormancy at high temperature is often interpreted as a mechanism to prevent seed germination under high summer temperature (Van Assche and Vandeloek 2010). However, this is not the case in the present study because temperature during the seed dispersal season is not high enough to prevent seed germination. The hydrotime model revealed that stored V. angustifolia seeds had a significantly lower ψb (50) than fresh seeds (Table 2).
A higher $\psi_b (50)$ implies that germination of fresh seeds will be greatly reduced or prevented when water availability is limited, which may partly explain why seeds did not germinate in the field although temperatures were appropriate for germination. Further, the burial experiment showed that the percentage of imbibed non-germinated seeds decreased from 56 to 35% after 6 months’ burial (Fig. 1), implying that PD was alleviated during this time and that germination occurs in early spring.

Conclusion

In brief, *V. angustifolia* exhibited combinational seed dormancy, and physiological dormancy (PD) plays an important role in preventing seed germination after dispersal by shifting $\psi_b (50)$ to a more positive value.

Acknowledgments

Supported by the Natural Science Foundation for the Youth of China (31001030) and the Fundamental Research Funds for the Central Universities (lzujbky-2012-99).

References