






In serial dilution culture assays, the wsc1Δ and mid2Δ strains both
shared enhanced sensitivity to 1 mM H2O2 treatment (Figure 6C) but
not at lower concentrations when compared to wild type control
strains (data not shown). In this assay, Wsc1p exhibited a similar
growth phenotype under oxidative stress by hydrogen peroxide
as Mid2p. Deletion of Mid2p interactors ras2Δ, atx1Δ, and grx1Δ
caused enhanced sensitivity to H2O2 at concentrations of 1 mMH2O2

(Figure 6C). Similar results were observed in broth cultures
(Figure S5). The ras2Δwsc1Δ double mutant strain as did ras2Δmid2Δ
exhibited a synthetic growth defect under oxidative stress conditions
with 1 mM H2O2 whereas the remaining Wsc1p interactors’ single
mutants were resistant (Wt) (Table 5) and were not tested further.
These results suggested that the interacting protein pairs Ras2p-
Wsc1p and Ras2p-Mid2p are required for resistance to oxidative
stress conditions (Figure 6C).

The wsc1Δ and mid2Δ strains both shared increased sensitivity to
75 ng/ml Caspofungin treatment (Figure 6D). Similar results were
observed when we compared their growth phenotypes with growth
curves in broth cultures (Figure S6). Though the ras2Δ and zeo1Δ
mutants did not exhibit any growth sensitivity to Caspofungin com-
pared to the wild-type (Figure 6D), they exhibited a strong phenotype
when coupled with their corresponding sensor mutant in the double
mutant combinations: ras2Δmid2Δ, ras2Δwsc1Δ, zeo1Δmid2Δ, and
zeo1Δwsc1Δ, and were thus included in the proposed Caspofungin
signaling complex (Figure 6B). The zeo1Δmid2Δ mutant combination
showed the weakest genetic interaction effect of the four tested. These
double mutant strains were each tested for phosphorylation status of
Slt2p (Figure 7).

The Ras2p, Grx1p and Zeo1p are not required for Slt2p
phosphorylation in response to Caspofungin treatment
while Ras2p is required for Slt2p phosphorylation in
response to oxidative stress
To assess if the observed growth reduction in null single and double
mutant strains could be associated with Slt2p regulation, we conducted
western blot analysis of Slt2p/Mpk1p phosphorylation (P-Slt2p) status
in strains cultured in the presence of 1 mM H2O2 or 75 ng/ml Caspo-
fungin (Figures 7A and 7B respectively).

Exposure of yeast cultures to 1 mMH2O2 induces accumulation of
P-Slt2p in the wild type control strain (average of triplicate experiments
shown in Figure 7A, and an illustrative example shown in Figure S7).
In the mid2Δ and atx1Δ single mutants, there was accumulation of
P-Slt2p in the presence of 1 mMH2O2 similar to the wild type control
strain. Thus, the phosphorylation status of Slt2p could not be correlated
with the growth inhibition phenotype in these strains. However, the
mid2Δatx1Δ double mutant combination exhibited a genetic interaction
that prevented the accumulation of P-Slt2p in response to oxidative stress
(Figure 7A). The grx1Δ single mutant and mid2Δgrx1Δ double mutant
strains were each unable able to accumulate the P-Slt2p. Thus, in the case
of the interaction between Grx1p andMid2p, the phosphorylation status
of Slt2p and the growth inhibition phenotype were correlated.

Deletion of the RAS2 gene increased baseline phosphorylation of
Slt2p in the absence of 1 mM H2O2 treatment (Figure 7A). However,
when treated with 1mM H2O2 the ras2Δ mutant failed to accumulate
P-Slt2p above the untreated baseline level. Therefore, an association
could be established between Ras2p expression, CWI pathway activation,
and oxidative stress resistance.

Figure 5 Proposed physical inter-
actome for Wsc1p and Mid2p as
determined by iMYTH with valida-
tion by at least one alternative
physical method. Zeo1p and Pst2p
are protein interactors that were
previously reported in the SGD
as interactors for Mid2p. For this
reason these were connected to
Mid2p in this interactome. Color
codes indicate biological and bio-
chemical functions.
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The wsc1Δ strain was unable to accumulate P-Slt2p above the un-
treated baseline level when treated with 1mM H2O2 (Figure 7A) while
the double mutant combination of ras2Δwsc1Δ caused a dramatic drop
in P-Slt2p levels under the same treatment. These results indicated that
the Ras2p-Wsc1p interaction is required for P-Slt2p accumulation in
the response to oxidative stress and can be associated with CWI path-
way activation. Similar to wsc1Δ, the ras2Δmid2Δ double mutant
strains underwent reduced cell growth and decreased accumulation
of P-Slt2p in response to 1 mMH2O2 (Figures 6C and 7A respectively),
indicating that the physical interactions between Ras2p and Mid2p are
important for resistance to oxidative stress and could be associated
with CWI pathway activation. In control experiments, we excluded that
H2O2 alone causes chemical interference with Slt2p phosphorylation
because the wild-type control was able to accumulate P-Slt2p in the
presence of 1mM H2O2 (Figure 7A).

It is known that Caspofungin inhibits b-1,3-glucan synthase. We
therefore observed that upon exposure to 75 ng/ml Caspofungin, cali-
brated as the IC50 for this drug on agar cultures, the wild-type strain
accumulated P-Slt2p above the untreated baseline level (Figure 7B).
Upon treatment with 75 ng/ml Caspofungin, the mid2Δ, wsc1Δ,
zeo1Δ, and ras2Δ single mutant strains all accumulated P-Slt2p at levels

similar to the wild-type control strain (Figure 7B). Only the double
mutant strains ras2Δmid2Δ and ras2Δwsc1Δwere unable to accumulate
P-Slt2p levels in response to Caspofungin treatment (Figure 7B). These
observations correlated with their inability to grow on agar cultures
treated with 75 ng/ml Caspofungin. Thus, the physical interactions
betweenRas2p-Mid2p and Ras2p-Wsc1pwere important for resistance
to cell wall stress by Caspofungin and could be associated with CWI
pathway activation.

DISCUSSION
The purpose of this study was to identify novel interacting protein
partners of yeast transmembrane stress receptor proteins Wsc1 and
Mid2, and to determine if they are required for survival under specific
stress conditions, or be functionally associated to CWI signaling. We
used the iMYTH technique to identify putative novel interacting pro-
tein partners. Confirmatory iMYTH testing was performed. This
resulted in the identification of 14 Wsc1p and 31 Mid2p interactors.
Two interactors of Mid2p, namely Zeo1p (Green et al. 2003) and Pst2p
(Tarassov et al. 2008) were previously reported in other studies and
were revalidated in this iMYTH screen. These interacting proteins
represented important biological functions that include stress response,
cell wall organization, protein phosphorylation, signal transduction,
protein targeting, cytoskeleton organization, DNA repair, protein reg-
ulation, ribosome metabolism, and protein transport as well four with
previously unknown functions. Of particular interest for potential roles
in regulating Wsc1p and Mid2p signaling were Ras2p, Zeo1p, and
Yck1p because of their known localization at the plasma membrane
compartment and their respective biological process categories related
to signaling: “G-protein”, “adaptor protein”, and “protein kinase”
respectively.

Validation of iMYTH interacting protein partners by alternative
physical methods such as affinity purification (AP) or immunoprecip-
itation(IP)coupledwithmass spectrometryorwesternblotting (Table2,
Table 3, Table 4 and Figure 4 respectively) resulted in a physical inter-
actome of lower complexity with only 13 proteins compared to the
initial combined iMYTH interactome of 34. Surprisingly, eight out of
the 13 interactor proteins were shared between both sensors (Figure 5).
This result provided supporting evidence for the functional redundancy
that exists betweenWsc1p and Mid2p, despite these being members of
different protein families (Gray et al. 1997; Torres et al. 2002).

The classificationof candidates among these 13 interactorproteins as
components of putative stress signaling complexes was based on three
general criteria: 1) their cellular localization at the plasma membrane
compartment, 2) a biochemical function that may be associated with a
signaling protein function such as: a protein kinase, a GTP binding
protein, an adaptor protein, a regulatory protein, and 3) functional
genetic test results of null mutants that were consistent with a role in the
stress response such as growth inhibition or failure to accumulate
P-Slt2p, commonly used as an indirect measure of CWI pathway acti-
vation. By these criteria, we identified components of two putative
signaling complexes defined by plasma membrane localization, bio-
chemical function(s), and protein-protein interactions identified in null
deletion strains with bait-prey combinations, that exhibited the stron-
gest growth sensitivity to stress conditions. Two four-protein com-
plexes are proposed for H2O2-induced oxidative stress resistance
(Figure 6A) and for Caspofungin-induced cell wall stress resistance
respectively (Figure 6B).

At the coreof theputative signaling complexes for bothoxidativeand
cell wall stress are the signaling proteins Wsc1, Mid2 and Ras2. Al-
though we expected that Wsc1p and Mid2p would participate in the
activation of Pkc1p (Heinisch et al. 2010), they each shared Ras2p as an

n Table 5 Susceptibility of deletion strains to antifungal
treatments�

Strain
1mM
H2O2

150 mg/ml
CFW

75 ng/ml
CSP

0.75 mg/ml
AMPB

wsc1Δ S S S Wt
mid2Δ S Wt S Wt
abp1D Wt Wt Wt Wt
atx1D S Wt S Wt
bgl2D Wt Wt Wt Wt
crn1D Wt Wt Wt Wt
egd1D Wt Wt Wt Wt
egd2D Wt Wt Wt Wt
fpr1D Wt Wt Wt Wt
grx1D S Wt S Wt
gtt1D Wt Wt Wt Wt
msh6D Wt Wt Wt Wt
mek1Δ Wt Wt Wt Wt
par32D Wt Wt Wt Wt
pdc1D Wt Wt Wt Wt
pst2D Wt Wt Wt Wt
ras2D S Wt Wt Wt
rpl24aD Wt Wt Wt Wt
rpl40aD Wt Wt S Wt
rps0bD Wt Wt Wt Wt
sgt2D Wt Wt Wt Wt
ssb1D Wt Wt S Wt
sso2D Wt Wt Wt Wt
yck1D Wt Wt Wt Wt
ypl199cD Wt Wt Wt Wt
zeo1D Wt Wt Wt Wt
atx1Dmid2D S — S —

grx1Dmid2D S — S —

ras2Dmid2D S — S —

ras2Dwsc1D S — S —

zeo1Dmid2D — — Wt —

zeo1Dwsc1D — — S —

cof1D, fas1D, fba1D, mtr3D, pga3D, rps31D, and ypl238cD strains were
not tested because are nonviable. The strains lnp1D, ssb2D, and tef1D were
not available in this study. H2O2 = Hydrogen Peroxide; CFW = Calcofluor White;
CSP = Caspofungin; AMPB = Amphotericin B; Wt = growth equivalent to wild
type; S = sensitive or growth two dilutions less than wild type; - = not tested.
�A representative drop dilution assay is shown in Figure S10.
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interactor. Ras2p has been previously described as a positive regulator
of adenylate cyclase (Broek et al. 1985; Toda et al. 1985) and it is related
to the CWI and TOR pathways through Rom2p (Park et al. 2005).
Furthermore, Ras2p and Wsc1p have a genetic interaction under heat
shock stress (Verna et al. 1997). However, our study is the first one
demonstrating a physical interaction between Ras2p and Wsc1p or
Mid2p. It is now evident from this study that Ras2p interacts physically
with Wsc1p or Mid2p and that it can regulate the accumulation of
P-Slt2p by a mechanism possibly related to CWI pathway although
the participation of Ras2p in a cAMP-independent mechanism for
stress response has not been dismissed (Shama et al. 1998). Although
the mechanism was not deciphered in this study, these results provide
circumstantial evidence for a crosstalk mechanism between Pkc1p and
the Pkap complex mediated by Ras2p. Such a crosstalk mechanismwas
previously proposed by others for the stress sensorMtl1p (a member of
the Mid2p family) (Petkova et al. 2010).

Grx1p functions as a Glutathione-dependent disulfide oxido-reduc-
tase that protects cells from oxidative damage (Luikenhuis et al. 1998),
while Atx1p is a cytosolic copper metallochaperone (Lin and Culotta
1995) required for resistance to oxidative damage by 1 mM H2O2.
Neither of these proteins are associated with the plasma membrane
compartment yet both were proven to interact physically with Mid2p,

and were functionally associated with accumulation of P-Slt2 and cell
survival under oxidative stress. Because they did not re-validate their
iMYTH interaction by physical testing methods such as IP-MS,
AP-MS, or AP-WB, we propose that these cytoplasmic proteins are
likely to be transient interactors that share weak interactions with
Mid2p as a putative oxidative stress signaling complex (Figure 5).
The other Mid2p interactor specifically associated with Caspofungin
stress signaling was Ras2p that also functions in the oxidative stress
responsemechanismdiscussed above. The Caspofungin stress response
signaling complex also shares the Wsc1p-Ras2p-Mid2p interaction,
with the addition of Zeo1p, which was previously identified as an
interactor of Wsc1p and Mid2p (Philip and Levin 2001; Vay et al.
2004) as an adaptor protein for Rom2p.

Surprisingly, Rom2p was not identified in our iMYTH screens.
Also, Wsc1p-Rom2p and Mid2p-Rom2p interactions were not vali-
dated by AP-WB using Wsc1p or Mid2p as baits or in an inverted
format using Rom2p as bait and Wsc1p or Mid2p as preys in separate
pull-down experiments. To explain the difficulty in detecting the pu-
tative Wsc1p-Rom2p and Mid2p-Rom2p complexes, we believe that
the result may have been due to a low level of expression of the Rom2p-
TAP fusion protein in the total protein extracts employed in the
AP-WB experiments. Supporting this argument was the observation

Figure 6 Components of putative signaling complex
required for resistance to oxidative stress (A) and
Caspofungin (B). Hydrogen Peroxide and Caspofun-
gin interactomes refined from the functional test
results. The Caspofungin interactome included Ras2
and Zeo1 signaling proteins. Viability analysis of
single and double mutants exposed at different
concentrations of Hydrogen Peroxide (C) and Cas-
pofungin (D). The plates were inspected after 3 days
of incubation. Color codes for A and B are as in
Figure 5.

1098 | E. Santiago-Cartagena et al.

http://www.yeastgenome.org/locus/S000005042/overview
http://www.yeastgenome.org/locus/S000004363/overview
http://www.yeastgenome.org/locus/S000005042/overview
http://www.yeastgenome.org/locus/S000005534/overview
http://www.yeastgenome.org/locus/S000005042/overview
http://www.yeastgenome.org/locus/S000005534/overview
http://www.yeastgenome.org/locus/S000004324/overview
http://www.yeastgenome.org/locus/S000005042/overview
http://www.yeastgenome.org/locus/S000005534/overview
http://www.yeastgenome.org/locus/S000004324/overview
http://www.yeastgenome.org/locus/S000000012/overview
http://www.yeastgenome.org/locus/S000005042/overview
http://www.yeastgenome.org/locus/S000000201/overview
http://www.yeastgenome.org/locus/S000005042/overview
http://www.yeastgenome.org/locus/S000003255/overview
http://www.yeastgenome.org/locus/S000004324/overview
http://www.yeastgenome.org/locus/S000000540/overview
http://www.yeastgenome.org/locus/S000005203/overview
http://www.yeastgenome.org/locus/S000004324/overview
http://www.yeastgenome.org/locus/S000000012/overview
http://www.yeastgenome.org/locus/S000004324/overview
http://www.yeastgenome.org/locus/S000004324/overview
http://www.yeastgenome.org/locus/S000005042/overview
http://www.yeastgenome.org/locus/S000005534/overview
http://www.yeastgenome.org/locus/S000005042/overview
http://www.yeastgenome.org/locus/S000004324/overview
http://www.yeastgenome.org/locus/S000005469/overview
http://www.yeastgenome.org/locus/S000005534/overview
http://www.yeastgenome.org/locus/S000004324/overview
http://www.yeastgenome.org/locus/S000004363/overview
http://www.yeastgenome.org/locus/S000004363/overview
http://www.yeastgenome.org/locus/S000005534/overview
http://www.yeastgenome.org/locus/S000004363/overview
http://www.yeastgenome.org/locus/S000004324/overview
http://www.yeastgenome.org/locus/S000004363/overview
http://www.yeastgenome.org/locus/S000005534/overview
http://www.yeastgenome.org/locus/S000004324/overview
http://www.yeastgenome.org/locus/S000004363/overview
http://www.yeastgenome.org/locus/S000005534/overview
http://www.yeastgenome.org/locus/S000004324/overview
http://www.yeastgenome.org/locus/S000005534/overview
http://www.yeastgenome.org/locus/S000004363/overview
http://www.yeastgenome.org/locus/S000004324/overview
http://www.yeastgenome.org/locus/S000004363/overview
http://www.yeastgenome.org/locus/S000004363/overview


that Zeo1p, also reported to be an interactor of Mid2p (Saccharomyces
Genome Database, www.yeastgenome.org), exhibited relatively high
expression levels in total protein extracts, was identified with very high
frequency in our iMYTH screens employing the same prey library, and
was consistently re-confirmed by alternative protein-protein interac-
tion assays. Furthermore, the iMYTH experimental design used in this
study was not conducted as a saturation screen for Wsc1p or Mid2p
interacting partners. Therefore, there may have been Rom2p prey
clones sparsely represented in the prey cDNA library that were not
selected by the random screening approach employed here.

BecauseWsc1p andMid2p were previously described to respond to
thermal stress in a similar way (23), we also conducted an iMYTH
screen for heat stress at 37�. A dramatic reduction in the complexity
of the 30� iMYTH interactomes of Wsc1p and Mid2p was observed
(Figure S9). We interpreted that the observed reduction in the number
of interactions was due to the destabilization of the 30� interacting
partners at the higher temperature, with only the most stable interac-
tions remaining at 37�. Heat stress resulted in 2 iMYTH interactions for
Wsc1p (Ade2p, an Phosphoribosylaminoimidazole carboxylase and
Egd2p, the alpha subunit of the nascent polypeptide-associated com-
plex (NAC), and 6 for Mid2p (Egd2p already described; Zeo1p, an
adaptor protein for Rom2p; Ras2p, a small GTP binding protein; and
ribosomal proteins Rpl11b, and Rps1b). The predominant interactor at
37� was Egd2p which was a shared between Wsc1p and Mid2p. While
Ras2p, Rps1bp, andRpl11bp knockout strains were previously reported
to exhibit increased heat sensitivity in null mutant strains (Sinha et al.
2008; Ma et al. 2012), we did not observe temperature such sensitivity
in our null mutant strains for any of these proteins nor were they
required for accumulation P-Slt2p at 37� (data not shown). Therefore,

no specific function could be ascribed to any of theseMid2p interactors
in the heat stress response mechanism.

The Wsc1p interactors Ypl238cp and Pst2p, previously annotated
in the SGD as “putative proteins of unknown function” were validated
by confirmatory physical tests. Ypl238cp, is described as an integral
component of the membrane for which there is no known biological
function (www.yeastgenome.org). Pst2p, which also shares interaction
with Mid2p, is described as a protein with similarity to a family of
flavodoxin-like proteins; that is induced by oxidative stress (Grandori
and Carey 1994; Lee et al. 1999; Aittamaa et al. 2001). Yet, we could not
ascribe any specific function for Pst2p in the oxidative stress protection
tests used in this study. Nonetheless, we are confident that the interac-
tion of Ypl238c and Pst2p with Wsc1p and Mid2p has been convinc-
ingly confirmed by this study and that these new annotations will be
added. It is an intruiging possibility that Yck1p, identified as a shared
interactor of Wsc1p and Mid2p, could represent the phosphorylating
kinase for these stress sensors. However, the existence of the paralog
Yck2p with which it shares redundant functions, limited our ability to
detect an effect of individual yck1Δ and yck2Δ deletions on the accu-
mulation of P-Slt2p, while the yck1Δyck2Δ double mutant is inviable.
Future studies of Yck1p and Yck2p phosphoproteomes must be di-
rected at testing Wsc1p or Mid2p as potential substrates.

Sequence conservation of the S. cerevisiae stress sensor Wsc1p and
Mid2p is observed amongmedically and commercially important fungi
such as Kluyveromycs lactis (Rodicio et al. 2008), Aspergillus fumigatus
(Dichtl et al. 2012), Candida albicans and Candida glabrata (Candida
Genome Database). It is to be expected that at least some of the new
interactions detected in this work may thus also be conserved and
provide possible targets for the development of antifungal drugs.

Figure 7 Western blot densitometry analysis of phos-
pho-Slt2p levels in null mutants treated with 1mM H2O2

(A) and 75ng/mL of Caspofungin (B). Wild type, single
and double mutants cultures at OD600 �0.7-0.9 were
incubated with or without the treatment for 1 hr at 27�.
Extracts prepared from each strain were immunoblot-
ted with anti-phospho p44/42 MAPK rabbit monoclonal
antibody (or P-Slt2p). The intensities of P-Slt2p were
measured and normalized to Pgk1p level. The values
are plotted as the fold change respect to wild type cells
at 27� (Control). The number above the dark gray bars
represent the fold change relative to the wild type con-
trol. A representative blot image of H2O2 and Caspo-
fungin is showed in the Figure S7 and S8, respectively.
The data shown mean 6 SEM of n $ 3.
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