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Chronic Voluntary Alcohol Drinking
Causes Anxiety-like Behavior,
Thiamine Deficiency, and Brain
Damage of Female Crossed High
Alcohol Preferring Mice
Hong Xu1, Hui Li 2, Dexiang Liu3, Wen Wen2, Mei Xu1, Jacqueline A. Frank1, Jing Chen4,
Haining Zhu4, Nicholas J. Grahame5 and Jia Luo2,6*

1Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY,
United States, 2Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States,
3Department of Medical Psychology, Shandong University School of Medicine, Jinan, China, 4Department of Molecular and
Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, United States, 5Department of Psychology,
Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States, 6Iowa City VA Health Care System, Iowa City,
IA, United States

The central nervous system is vulnerable to chronic alcohol abuse, and alcohol
dependence is a chronically relapsing disorder which causes a variety of physical and
mental disorders. Appropriate animal models are important for investigating the underlying
cellular and molecular mechanisms. The crossed High Alcohol Preferring mice prefer
alcohol to water when given free access. In the present study, we used female cHAP mice
as a model of chronic voluntary drinking to evaluate the effects of alcohol on
neurobehavioral and neuropathological changes. The female cHAP mice had free-
choice access to 10% ethanol and water, while control mice had access to water
alone at the age of 60-day-old. The mice were exposed to alcohol for 7 months then
subjected to neurobehavioral tests including open field (OF), elevated plus maze (EPM),
and Morris water maze (MWM). Results from OF and EPM tests suggested that chronic
voluntary drinking caused anxiety-like behaviors. After behavior tests, mice were
sacrificed, and brain tissues were processed for biochemical analyses. Alcohol altered
the levels of several neurotransmitters and neurotrophic factors in the brain including
gamma-Aminobutyric acid (GABA), corticotropin-releasing factor, cAMP response
element-binding protein (CREB) and brain-derived neurotrophic factor. Alcohol
increased the expression of neuroinflammation markers including interleukin-6 (IL-6),
tumor necrosis factor alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1) and
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C-C chemokine receptor 2 (CCR2). Alcohol also induced cleaved caspase-3 and glial
fibrillary acidic protein, indicative of neurodegeneration and gliosis. In addition, alcohol
inhibited the expression of thiamine transporters in the brain and reduced thiamine levels in
the blood. Alcohol also caused oxidative stress and endoplasmic reticulum (ER) stress,
and stimulated neurogenesis.

Keywords: alcohol use disorder, endoplasmic reticulum stress, oxidative stress, neurodegeneration,
neuroinflammation

INTRODUCTION

Alcohol use disorder (AUD) is a chronically relapsing disorder
characterized by compulsive alcohol consumption that can cause
a variety of physical and mental problems (Grant et al., 2004;
Bouchery et al., 2011). It is one of the most prevalent mental
disorders in the United States with nearly one-third of adults
experiencing it at some point in their lifetime (Grant et al., 2004;
Grant et al., 2006; Grant et al., 2015). AUD is comorbid with other
mental disorders, particularly anxiety disorder (Kushner et al.,
2000; Burns and Teesson, 2002; Petry et al., 2005; Schneier et al.,
2010). Anxiety is another common psychiatric condition
characterized by excessive fear of the situation (McLean and
Anderson, 2009; Bandelow and Michaelis, 2015). Clinical studies
have shown AUD and anxiety can both act to initiate and
reinforce each other (Kushner et al., 2000; Schneier et al.,
2010). Many population surveys have consistently shown that
AUD is more common in men whereas anxiety is more prevalent
in women (Lewis et al., 1996; Kessler et al., 1997; Hasin et al.,
2007). However, the national survey on gender-specific
comorbidity rates for AUD and anxiety has indicated that
alcohol-dependent women may almost double the risk of
developing co-occurring anxiety relative to alcohol-dependent
men (Kessler et al., 1997). Although much progress has been
made in understanding AUD and many treatment options are
available, patients with AUD tend to relapse and their recovery is
often compromised, which may result from the failure to treat the
comorbid anxiety (Randall et al., 2001; Terra et al., 2006; Schneier
et al., 2010).

It is important to investigate whether there is a causative role
of alcohol-induced brain injury or neurochemical alterations in
the anxiety associated with alcohol abuse. Neurotransmitters are
chemical molecules that are synthesized and released by neurons
to transmit a message by binding to their receptors of target cells
across the synapse. Disruption of neurotransmitter systems is
associated with alcohol abuse and anxiety. Alcohol affects
multiple neurotransmitter systems and neuropeptides in the
brain’s reward and stress circuits including gamma-
aminobutyric acid (GABA) and corticotropin-releasing factor
(CRF) systems. GABA is the primary inhibitory
neurotransmitter in the brain. Alcohol can act on the
presynaptic neurons to increase GABA release or act on the
postsynaptic neurons to enhance the activity of GABA receptor
(Banerjee, 2014). GABAergic inhibitory transmission is involved
in alcohol drinking behavior (Roberto et al., 2003; Roberto et al.,
2004) and anxiety (Kalueff and Nutt, 2007). CRF is a
neuropeptide that can function as a neurotransmitter in

stress-related behaviors in mood and anxiety disorders (Koob
and Thatcher-Britton, 1985; Risbrough and Stein, 2006; Binder
and Nemeroff, 2010). CFR signaling in the amygdala has been
shown to mediate alcohol-induced GABA release (Bajo et al.,
2008). In addition, CRF signaling has been shown to play a role in
drinking behavior in alcoholism and is associated with anxiety-
like behavior (Zorrilla et al., 2014).

As suggested by clinical studies and research using animal
models, alcohol-induced neurodegeneration in multiple brain
regions may underlie neurocognitive deficits in AUD (Harper,
1998; Crews, 2008; Kamal et al., 2020). However, the cellular and
molecular mechanisms underlying alcohol-induced
neurodegeneration remains unclear. There are several
proposed mechanisms for alcohol-induced neurodegeneration.
Oxidative stress has been implicated as a key mechanism
underlying alcohol-induced neurodegeneration (Chen and Luo,
2010; Yang and Luo, 2015). Oxidative stress is defined as the
imbalance between the reactive oxygen species (ROS) and
antioxidants. Moreover, oxidative stress is associated with
alcohol-induced anxiety-like behavior (Brocardo et al., 2012).
Endoplasmic reticulum (ER) stress is another potential
mechanism for alcohol-induced brain damage in both
developing and adult brains (Yang and Luo, 2015). In
addition, neuroinflammation is often associated with
neurodegeneration and has been implicated in the
pathophysiology of AUD (Hurley and Tizabi, 2013; Ramesh
et al., 2013; Kempuraj et al., 2016; Coppens et al., 2019;
Erickson et al., 2019). It is therefore important to establish
appropriate animal models to elucidate these potential
mechanisms.

Mice that are willing to voluntarily drink alcohol over an
extended period, achieving pharmacologically relevant blood
alcohol concentrations (BACs), may model chronic alcohol
abuse in humans. The selectively bred crossed High Alcohol
Preferring (cHAP) mice, bred for high ethanol intake when 10%
ethanol and water are concurrently available for a month, have
been shown to voluntarily consume high amounts of alcohol and
demonstrate relatively high BACs that are comparable to those
observed in alcohol-dependent humans (Matson and Grahame,
2013; Matson et al., 2014; Xu et al., 2019). We have previously
used male cHAP mice to determine the effect of chronic
voluntary alcohol on neurochemical alterations and thiamine
contents in the brain. We demonstrated that chronic voluntary
alcohol exposure increased oxidative stress, endoplasmic
reticulum (ER) stress and neuronal apoptosis, and decreased
thiamine levels in the brain of male cHAP mice. In the
present study, we sought to determine the neurobehavioral
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and biochemical consequences of chronic alcohol voluntary
exposure in female cHAP mice. For the comparison to male
cHAP, we also investigated the effects of alcohol on
neurochemical changes and thiamine contents in female
cHAP mice.

MATERIALS AND METHODS

Materials
Bromodeoxyuridine (BrdU) was obtained from Thermo Fisher
Scientific (Rockford, IL). CREB, GFAP, Anti-cleaved caspase-3
and anti-Ki-67 antibodies were obtained from Cell Signaling
Technology (Danvers, MA). Anti-BrdU antibody was obtained
from Thermo Fisher Scientific (Waltham, MA). Antibodies
directed against BDNF, CCR2, MCP-1, MANF, GPR30, TNFα,
doublecortin, and OCT1were obtained fromAbcam (Cambridge,
MA). Biotinylated goat anti-rabbit IgG was obtained from Vector
Laboratories Inc. (Burlingame, CA). Alexa 488-conjugated goat
anti-rabbit IgG was obtained from Invitrogen (Carlsbad, CA).
Antibodies directed against CRF, NRG1, ErbB4, Caspase-12,
CHOP, XBP-1s, ATF6, DNP, and HNE were obtained from
Santa Cruz Biotech (Santa Cruz, CA). Anti-SLC19A2 antibody
and 3, 3′-diaminobenzidine (DAB) were obtained from Sigma-
Aldrich (St. Louis, MO). Anti-IL-6 and anti-SLC19A3 antibodies
were obtained from Proteintech (Rosemont, IL). GABA ELISA kit
(gAB; RK00663) was obtained from ABclonal (Woburn, MA).
Anti-Iba-1 antibody was obtained from Wako Chemicals
United States (Richmond, VA).

Experimental Design
The female cHAP mice were maintained in a 12:12 reverse light
cycle colony room (lights on at 21:00 h and off at 09:00 h) with
free access to 10% ethanol (v/v) solution and water during the
period of 7-month alcohol drinking. After that, alcohol solution
was removed, and animals were switched to standard light-dark
cycle (lights on at 07:00 h and off at 21:00 h) for 1 week. The
animals were then subjected to various behavioral tests including
open field (OF), elevated plus maze (EPM), and Morris water
maze (MWM) tests. EPM was conducted a week after OF and
MWM was performed 4 days after EPM. After MWM, animals
were injected with BrdU for 2 days, and then sacrificed. The and
brain tissues and blood were collected and subjected to
neurochemical analyses.

Animals and Alcohol Exposure Method
Female cHAP mice from the 31st generation of selection were
obtained from Dr. Nicholas J. Grahame at Indiana University
Purdue University Indianapolis (Indianapolis, IN, United States)
and housed in the University of KentuckyMedical Center Animal
Care Facilities. Two-month-old mice were used because they are
comparable to human young adults; alcohol usage during this
period more likely develops alcohol dependence (Lundahl et al.,
1997; Grant, 1998; Hingson et al., 2006; Nair et al., 2016). Female
mice were chosen to model the comorbidity of anxiety and AUD
because alcohol-dependent women are more likely to develop
anxiety than alcohol-dependent men (Kessler et al., 1997), and to

compare to the results obtained from male mice (Xu et al., 2019).
Animals were maintained in a reverse light cycle colony room in
which lights were in 12:12 reverse light-dark cycle. The dark cycle
started at 9:00 am. All mice had ad libitum access to food and
water throughout the experiment. All experimental procedures
were approved by the Institutional Animal Care and Use
Committee (IACUC) at the University of Kentucky and
performed following regulations for the Care and Use of
Laboratory Animals set forth by the National Institutes of
Health (NIH) Guide. Mice were given access to alcohol at
60 days of age. The mice had 24-hour-free-choice access to
10% ethanol (v/v) solution and water. Alcohol and drinking
water were provided with 50 ml test tube water bottle (#20872,
Arcata Pet Supplies, Arcata, CA) fit with a stainless-steel sipper
tube (Model OCT-100, Ancare, Belmont, NY). The water bottles
were changed every 2 days with freshly prepared ethanol in
drinking water or drinking water. The average intake of
alcohol was 10.88 ± 0.20 g/kg/d. Mice were weighed before
and after alcohol drinking and there was no significant
difference between the control and alcohol drinking group
(data not shown). After 7 months of alcohol consumption,
mice were tested for behavioral scoring, then sacrificed and
the brain tissues were harvested for neurochemical studies.
The whole blood was also collected for LC-MS analysis of
thiamine concentration.

Determination of Blood Alcohol
Concentrations (BACs)
Blood samples were collected at 26 weeks of free-choice access to
alcohol and water. The blood was drawn from the tail veins 4 h
after the onset of the dark cycle. The time point was selected
because the cHAP mice drink more in the dark and peak BECs
were observed in the dark cycle (Matson and Grahame, 2013;
Matson et al., 2014). The plasma supernatant was extracted, and
BACs were measured using an Analox Alcohol Analyzer (Analox
Instruments, Lunenburg, MA).

Behavior Tests
All behavior tests were conducted one week after the alcohol
drinking had ended and they were 4–7 days apart to ensure
adequate rest and stress relief of animals. Open field (OF) was
the first test and it was conducted in two consecutive days; then
Elevated plus maze (EPM) was applied in 1 day; whereas Morris
water maze (MWM) was completed in five consecutive days.
With the lights on at 07:00 h, off at 21:00 h, OF and EPM were
conducted at similar times in the morning between 08:00–12:
00 h, whereas MWM was conducted between at 12:00–16:00 h
according to the standard protocol of rodent behavior core at
United Kingdom.

Open Field
Open field (OF) test is commonly used to measure the levels of
exploration and anxiety-like behavior in response to novel
environment in mice (Seibenhener and Wooten, 2015). OF
was performed in the Rodent Behavior Core (RBC) at the
University of Kentucky following the standard procedure for
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two consecutive days. Prior to the test, animals were brought into
the testing room and placed in cleaning cages for 10 min as
habituation period. Each mouse was then placed in a square
chamber measured 50 cm (length) × 50 cm (width) × 38 cm
height with opaque white walls in a multi-unit open field
maze (San Diego Instruments), and its activity was recorded
for 15 min using EthoVision XT 8.0 video tracking software
(Noldus Information Technology, Leesburg, VA,
United States). The distance traveled (cm), movement time (s),
velocity (cm/s) and time spent in the center zone (s) were
recorded and automatically calculated. Center zone is defined
as the central area of the chamber measured 25 cm (length) ×
25 cm (width). Distance traveled and movement speeds are
measures of locomotor activity, whereas the time spent in the
center zone is a measure of anxiety in mice.

Elevated Plus Maze
Elevated plus maze (EPM) is primarily used to assess anxiety-
related behavior in rodents (Walf and Frye, 2007). It was
conducted under low ambient light conditions with white
noise to minimize extraneous auditory stimuli. The EPM
apparatus consisted of four arms, two without walls, two
enclosed with walls, and each arm measured 30 cm (length) ×
6 cm (width). Each mouse was tested in a single session of 5 min
to explore the maze. The maze was cleaned after each test with
Nature’s Miracle enzymatic cleaning solution to remove animal
odors. Animal movements were recorded using EthoVision XT
8.0 video tracking software (Noldus Information Technology,
Leesburg, VA, United States). The time spent in each arm and the
entries into each arm were analyzed.

Morris Water Maze
The Morris water maze (MWM) is one of most common
behavioral tests of spatial learning for rodents (Vorhees and
Williams, 2006). The MWM was performed based on a
previously published method with some modifications (Xu
et al., 2018). Briefly, each mouse was placed in a round plastic
tub with a diameter of 108 cm filled with white-painted water at
the temperature of 22–23°C to locate and escape onto a
submerged platform. Four visible cues were placed at different
points around the tub. Each animal was placed at random
locations distal to the platform and allowed to swim to find
the hidden platform. If the animal failed to locate the platform
within 1 min, it would be gently guided to and remained on the
platform for 10 s. Each animal was then placed in a warm cage
with a heating pad underneath. There were approximately 5 min
in between trials. Each mouse was given four daily trials for five
consecutive days. Animal movements were recorded and
analyzed using EthoVision XT 8.0 video tracking software
(Noldus Information Technology, Leesburg, VA, United States).

Quantification of Thiamine Concentrations
in the Whole Blood
The determination of thiamine concentration in the blood was
performed based on a previously described method with some
modifications (Kato et al., 2015; Xu et al., 2019). Briefly, whole

blood (100 μL) was mixed with 100 μL of 1.2 M ice-cold
perchloric acid and kept at 0°C for 15 min. The mixture was
centrifuged for 30 min at 15,000 g. 150 μL of supernatant was
collected and incubated with 150 μL of 0.6 M KOH/1.8 M
potassium acetate for neutralization; then the mixture was
centrifuged for 30 min at 15,000 g for desalting. The
supernatant (250 μL) was mixed with 250 μL of 4%
phosphatase acid and hydrolyzed overnight at room
temperature. After that, the supernatant (90 μL) was collected
and analyzed for thiamine content. A quadruple volume of
acetonitrile/methanol (9:1; v/v) containing an internal standard
thiamine-D3 was added to the 90 μL supernatant. The mixture
was vortexed and centrifuged for 10 min at 12,000 g. The
supernatant was transferred to a new vial, dried with
SpeedVac until the final volume was 90 μL. An aliquot of the
samples was injected into a LC-MS/MS for the analysis of
thiamine concentration.

BrdU Labeling, Immunohistochemistry and
Immunofluorescent Staining
BrdU incorporation labels mitotic cells in the S phase and is used
to monitor cell proliferation in the brain. After the last behavioral
test (MWM), mice received an intraperitoneal injection of BrdU
(50 mg/kg) for two consecutive days. Mice were then anesthetized
by intraperitoneal injection of ketamine/xylazine (100 mg/kg/
10 mg/kg) and perfused with 0.1 M potassium phosphate
buffer (pH 7.2), followed by 4% paraformaldehyde in PBS (pH
7.4). The brain tissues were dissected and postfixed in 4%
paraformaldehyde for 48 h followed by cryoprotection in 30%
sucrose in PBS. Brains were sectioned (sagittal or coronal section)
on a sliding microtome (Leica Microsystems, Wetzlar, Germany)
at a thickness of 10 μm at an interval of 20 μm. The sections were
then mounted onto Superfrost Plus slides (Fisher).

The immunohistochemical (IHC) staining for NGR1, GPR30,
CREB, GFAP, Iba-1, BrdU, doublecortin (DCX), Ki67, and
cleaved-caspase-3 in the whole brain was performed as
previously described (Xu et al., 2019). Neurochemical
alterations in some brain regions, such as PFC and
hippocampus, were examined and analyzed. Briefly, the
mounted sections were incubated in 0.3% H2O2 in methanol
for 30 min at room temperature and then treated with 0.1%
Triton X-100 for 10 min in PBS. The sections were washed with
PBS three times and then blocked with 1% BSA and 0.01% Triton
X-100 for 1 h at room temperature. The sections were incubated
with anti-NGR1 (1:200), anti-GPR30 (1:100), anti-CREB (1:200),
anti-GFAP (1:200), anti-Iba-1(1:200), anti-cleaved caspase-3 (1:
200), anti-BrdU antibody (1:50), anti-DCX (1:1,000), or anti-Ki-
67 antibodies (1:400) overnight at 4°C. Negative controls were
performed by omitting the primary antibody. After rinsing in
PBS, sections were incubated with a biotinylated goat anti-rabbit
IgG (1:200) for 1 h at room temperature. The sections were
washed 3 times with PBS, then incubated in
avidin–biotin–peroxidase complex (1:100 in PBS) for 1 h and
developed in 0.05% 3,3′-diaminobenzidine (DAB) containing
0.003% H2O2 in PBS. To quantify positive cells, the positive
cells were counted at ×20 magnification from five microscopic
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fields in the SVZ or DG area from each brain. The average of the
positive cells from 4-5 consecutive sections were analyzed using
the software of Image lab 5.2 (Bio-Rad Laboratories, Hercules,
CA) for each brain.

Immunoblotting
The brain tissues from the whole brain were frozen in liquid
nitrogen and stored at −80°C. Proteins were extracted as
previously described (Xu et al., 2019). In brief, the tissues were
homogenized using an ice-cold lysis buffer containing 50 mM
Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM EGTA, 1 mM PMSF,
0.5% NP-40, 0.25% SDS, 5 μg/ml leupeptin, and 5 μg/ml
aprotinin. Homogenates were centrifuged at 20,000 g for
30 min at 4°C and the supernatant fraction was collected.
Aliquots of the protein samples (30 μg) were separated on an
SDS-polyacrylamide gel by electrophoresis. The separated
proteins were transferred to nitrocellulose membranes. The
membranes were blocked with either 5% milk or 5% bovine
serum albumins (BSA) or at room temperature for 1 h.
Subsequently, the membranes were probed with primary
antibodies directed against target proteins overnight at 4°C.
After three quick washes in TPBS, the membranes were
incubated with a secondary antibody conjugated to
horseradish peroxidase. The immune complexes were detected
by the enhanced chemiluminescence method. The density of
immunoblotting was quantified with the software of Quantity
One (Bio-Rad Laboratories, Hercules, CA).

Quantitative Real-Time RT-PCR
Total RNA from the brain was extracted using Trizol Reagent
(Life Technologies) and treated with RNA-free DNAase I to
remove remnant DNA as described previously (Kim et al.,
2014). 1 μg of total RNA was used for first strand cDNA
synthesis (Promega, A3500). Quantitative real-time RT-PCR
was performed on a Light cycler 480 system (Roche) using a
Power SYBR Green PCR Master kit (Invitrogen, 4368706) with
cDNA and primers (1 μM) according to the manufacturer’s
recommendation. The primers used for this study were
purchased from Fisher Scientific and were as follows: TNF-α,
Mm099999068; IL-6, Mm00446190. The relative difference
between control and treatment group was expressed and
calculated as relative increases using 2-ΔΔCt and setting
control as 1.

Measurement of Estradiol, Progesterone
and GABA
General Gamma-Aminobutyric Acid ELISA Kit was used to
measure GABA concentrations in the homogenized brain
tissues. The brain tissues were homogenized in an ice-cold
lysis buffer containing 50 mM Tris-HCl (pH 7.5), 150 mM
NaCl, 1 mM EGTA, 1 mM PMSF, 0.5% NP-40, 0.25% SDS,
5 μg/ml leupeptin, and 5 μg/ml aprotinin. Homogenates were
centrifuged at 20,000 g for 30 min at 4°C and the supernatant
fraction was collected. After 100-fold dilution, the optical density
of glutamate and GABA was measured at 450 nm using Beckman
Coulter DTX880 Multimode Detector according to the

manufacturer’s protocol. The concentrations of GABA were
calculated based on a standard optical density.

The measurement of estradiol and progesterone in blood
plasma was performed by the Ligand Assay and Analysis Core
in Center for Research in Reproduction (CRR) at University of
Virginia. The plasma in mouse blood was collected following the
standard protocol published by CRR. Briefly, whole mouse blood
was collected with anticoagulant. The blood sample was then
centrifuged at 2000 × g for 15 min at room temperature. The
plasma was then transferred into a polypropylene tube and stored
at −20°C until shipment for analysis.

Statistical Analysis
All values were reported as mean ± SEM. A statistical analysis was
performed using Graphpad Prism 6 (San Diego, CA,
United States) and SPSS software 19 (IBM, Armonk, NY,
YSA). t-test was used for the data analysis of and EPM,
protein markers and molecules between control and alcohol
groups. ANOVA was performed to compare difference
between treatments with repeated measure factors being day.
The Greenhouse–Geisser correction was used to correct the F
statistic and assess significance if necessary. Differences were
considered significant if the p value was smaller than 0.05.

RESULTS

Chronic Voluntary Alcohol Exposure
Causes Anxiety-like Behaviors in Female
cHAP Mice
The animals were weighed before alcohol drinking and
3.5 months after alcohol drinking. The mean body weight of
the control and the alcohol drinking group before alcohol
drinking was 22.8 ± 0.4 g and 22.2 ± 0.5 g, respectively. The
mean body weight of the control and the alcohol drinking group
after 3.5 months of alcohol drinking was 22.2 ± 0.3 g and 23.0 ±
0.5 g, respectively.

The blood alcohol concentrations (BACs) were determined
26 weeks into the alcohol drinking history. The mean BAC was
77.9 ± 8.51 mg/dl. In the open field (OF) test, we measured the
total distance traveled and time spent in the center in two
consecutive days. Because the data are similar in both days, we
averaged the data, so each data point represents the mean of the
measurements of 2 days in Figure 1A. The total distance traveled
by the control mice was 7,132 ± 368.4 cm (mean ± SEM) (n � 7)
which was not significantly different from that by the alcohol-
exposedmice (7,294 ± 1,237 cm, n � 7) [t (12) � 0.1255, p � 0.902]
(Figure 1A). The time spent in the center by the alcohol-exposed
mice (98.11 ± 13.46 s, n � 7), however, was significantly lower
than that by the control mice (182.0 ± 15.77 s, n � 7) [t (12) �
4.047, p � 0.002] (Figure 1B), suggesting anxiety-like behaviors.

We then conducted elevated plus maze (EPM) and measured
the time and entry number in open and closed arms. The
percentage of time in open arms for the alcohol-exposed mice
was measured as 18.90% ± 3.11% (n � 7) which was significantly
lower than that for the control mice 31.69% ± 3.31% (n � 7)
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[t (12) � 2.816, p � 0.016] (Figure 1C). The percentage of entry
numbers of open arms for the alcohol-exposed mice was
31.75% ± 5.40% (n � 7) which was also significantly lower
than that for the control mice 45.33% ± 2.97% (n � 7) [t (12)
� 2.202, p � 0.048] (Figure 1D). These results indicated anxiety-
like behavior in alcohol-exposed mice.

In addition, we applied Morris water maze (MWM) to
determine whether spatial learning was affected by alcohol
exposure. Animals were trained with four trials per day for
5 days and the time required to locate the hidden platform in
water maze were analyzed and presented in Figure 1E. The
statistical analysis indicated there was a significant main effect

FIGURE 1 | Effects of 7 months of voluntary alcohol drinking on anxiety-like behavior in female cHAP mice. After that, mice were subjected to Open Field (OF) test
(A,B), Elevated Plus Maze (EPM) test (C,D), and Morris Water Maze (MWM) test (E). The total distance traveled (A) and the time spent in the center (B) in OF was
measured and presented as the mean ± SEM (n � 7) in each group. The percentage of time spent in open arms (C) and percentage of entry numbers into open arms (D)
in EPM were quantified and presented the mean ± SEM (n � 7). (E) The spatial learning and memory were evaluated by MWM. The total latency escape time was
measured and presented as the mean ± SEM (n � 7). Unpaired student t-test was used to assess the difference between control and alcohol-exposed group. *p < 0.05
denotes a statistically significant difference from the control group.

FIGURE 2 | Effects of chronic alcohol exposure on the levels of GABA and neurotrophic factors in the brain. (A) The concentration of GABA in the brain was
determined by ELISA as described in the Materials and Methods. n � 7, *p < 0.05 denotes a statistically significant difference from the control. (B) The expression of
CREB in the cerebrum was determined by immunohistochemistry (IHC). (C) The numbers of CREB-positive cells in the hippocampus or prefrontal cortex (PFC) were
determined. The results were expressed as themean ± SEM; n � 4, *p < 0.05 denotes a statistically significant difference from the control group. (D) The expression
of CREBwas determined by immunoblotting (IB). (E) The relative amounts of CREBwere quantified and normalized to the expression of actin. (F) The expression of CRF,
BDNF and MANF in the cerebrum was determined by IB. (G) The relative amounts of CRF, BDNF and MANF were quantified and normalized to the expression of actin.
The results were expressed as the mean ± SEM, n � 4 for each group. *p < 0.05 denotes a statistically significant difference from the control group.
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of day [F (4, 48) � 7.294, p < 0.001] but not treatment [F (1, 12) �
1.959, p � 0.187]. The interaction of day by treatment was not
significant [F (4, 48) � 0.226, p � 0.922]. Therefore, alcohol
exposure did not alter spatial learning.

Chronic Voluntary Alcohol Exposure Alters
the Levels of Neurotransmitters and
Neurotrophic Factors That Are Related to
the Regulation of Anxiety
γ-Aminobutyric acid (GABA) is themajor inhibitory neurotransmitter
controlling synaptic transmission and neuronal excitability.
GABAergic inhibitory transmission is involved in the effects of
alcohol exposure on the brain and anxiety behaviors (Roberto et al.,
2003; Roberto et al., 2004; Kalueff and Nutt, 2007). We measured the
GABA concentration in the brain after 7 months of alcohol exposure.
As shown in Figure 2A, alcohol exposure significantly increased the
concentration of GABA in the brain; it was 84.82 ± 7.72 (pg/ml) in the
alcohol-exposed group (n � 7) and 58.89 ± 6.39 (pg/ml) in the control
mice (n � 7) [t (12) � 2.587, p � 0.024].

We next examined the expression of several neurotrophic
factors/growth factors that are known to play a role in anxiety and
alcoholism, such as CRF, CREB, and BDNF (Bolaños and Nestler,
2004; Pandey et al., 2004; Govindarajan et al., 2006; Uddin and
Singh, 2007; Baiamonte et al., 2014; Roberto et al., 2017). As
shown in Figures 2B–E, chronic alcohol exposure decreased the

number of CREB-positive cells in the prefrontal cortex (PFC) and
hippocampus [t (6) � 3.758, p � 0.0094], and down-regulated the
expression of CREB in the brain [t (6) � 2.660, p � 0.038]. On the
other hand, alcohol exposure increased the levels of CRF [t (6) �
2.481, p � 0.048] and BDNF [t (6) � 3.143, p � 0.016] in the brain
without affecting MANF [t (6) � 1.360, p � 0.229], a protein
involved in ER function (Figures 2F,G).

Chronic Voluntary Alcohol Exposure
Causes Oxidative Stress, ER Stress and
Apoptosis in the Brain
Since oxidative stress and ER stress play an important role in alcohol-
induced damage to the CNS (Yang and Luo, 2015), we sought to
investigate the effect of chronic alcohol exposure on oxidative stress
and ER stress in the brain. 4-hydroxynonenal (4-HNE) and 2, 4-
dinitrophenol (DNP) are reliable biomarkers for lipid peroxidation
and protein oxidation, respectively (Perluigi et al., 2014). As shown in
Figures 3A,B, chronic alcohol drinking significantly increased the
expression of 4-HNE [t (6) � 2.925, p � 0.026], and DNP [t (6) �
3.915, p � 0.008] in the brain, indicating the induction of oxidative
stress. Furthermore, chronic alcohol drinking upregulated the
expression of a number of markers for ER stress, such as ATF-6 [t
(6) � 2.822, p� 0.030], CHOP [t (6) � 2.718, p � 0.035], Caspase-12 [t
(6) � 3.341, p � 0.01], and XBP-1s [t (6) � 3.016, p � 0.024] in the
brain, indicative of ER stress (Figures 3C,D).

FIGURE 3 | Effects of chronic alcohol exposure on oxidative stress and ER stress in the brain. (A) The expression of 4-HNE and DNP in the cerebrum was
determined by IB. (B) The relative amounts of 4-HNE and DNP were quantified and normalized to the expression of actin. (C) The expression of ER stress markers, ATF-
6, CHOP, Caspase-12, and XBP-1s in the cerebrumwas determined by IB. The relative amounts of expression were quantified and normalized to the expression of actin.
(D) The relative amounts of ER stress markers were quantified and normalized to the expression of actin. The results were expressed as the mean ± SEM; n � 4 for
each group. *p < 0.05 denotes a statistically significant difference from the control group.
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We next sought to determine whether alcohol caused neuronal
apoptosis in the brain. As shown in Figures 4A,B, the alcohol-
induced increase in cleaved-caspase-3 was shown by
immunoblotting analysis [t (6) � 2.567, p � 0.043], indicating
apoptosis in the brain. Consistently, alcohol increased the
expression of cleaved-caspase-3 in the PFC and the dentate
gyrus (DG) of hippocampus was revealed by IHC [t (6) �
2.756, p � 0.033] (Figures 4C,D).

Chronic Voluntary Exposure Induces
Neuroinflammation and Glial Activation in
the Brain
Alcohol-induced damage to the brain is usually accompanied by
neuroinflammation (Chastain and Sarkar, 2014; Zhang and Luo,
2019). We sought to determine whether chronic alcohol exposure
induced neuroinflammation. Interleukin-6 (IL-6), tumor necrosis
factor alpha (TNFα), monocyte chemoattractant protein-1 (MCP-
1) and its receptor CCR2 are major pro-inflammatory cytokines/
chemokines that are involved alcohol-induced in injuries in the CNS
(Vallier̀es and Rivest, 1999; Alfonso-Loeches et al., 2016; Zhang et al.,
2018). Alcohol exposure significantly increased the protein levels of

TNFα [t (6) � 3.172, p � 0.019] but not IL-6 [t (6) � 0.502, p � 0.634]
in the brain of female cHAP mice (Figures 5A,B). Chronic alcohol
drinking also significantly upregulated the expression of MCP-1 [t (6)
� 3.039, p � 0.023] and CCR2 [t (6) � 2.916, p � 0.027] in the brain
(Figures 5C,D), indicating the induction of neuroinflammation.

We further determined whether chronic alcohol exposure
activated astrocytes or microglia. As shown in Figure 6, the
IHC study indicated that GFAP positive cells were increased in
the hippocampus of alcohol-exposed mice [t (6) � 4.77, p � 0.008]
(Figures 6A–C). This was confirmed by immunoblotting analysis
which indicated that chronic alcohol exposure increased the
expression of GFAP [t (6) � 3.123, p � 0.020] (Figures 6D,E),
suggesting gliosis in the brain. However, alcohol exposure did not
activate microglia and alter Iba1 expression (data not shown).

Chronic Voluntary Alcohol Exposure
Reduces Thiamine Concentration in the
Blood, and the Expression of GPR30 in the
Brain
Thiamine deficiency (TD) has long been associated with
alcohol-induced brain damages (Leevy and Baker, 1968;

FIGURE 4 | Effects of chronic alcohol exposure on the expression of activated caspase-3. (A) The expression of cleaved caspase-3 in the cerebrum was
determined by IB. (B) The relative amounts of expression were quantified and normalized to the expression of actin. The result was expressed as the mean ± SEM; n � 4.
*p < 0.05 denotes a statistically significant difference from the control group. (C) The expression of cleaved caspase-3 in the prefrontal cortex (PFC) and the dentate gyrus
(DG) of the hippocampus was examined by IHC; bar � 50 μm. Arrows indicate cells that are positive for cleaved caspase-3. (D) The numbers of cleaved caspase 3-
positive cells in the hippocampus and PFC were determined. The results were expressed as the mean ± SEM; n � 4.
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Woodhill and Nobile, 1972; Butterworth, 1995). We sought to
determine whether alcohol exposure reduced thiamine level in
the blood. As shown in Table 1, the concentration of thiamine in
alcohol-exposed mice was 0.03 + 0.003 nmol/ml (n � 8), while it
was 0.66 ± 0.15 nmol/ml in control animals (n � 8) [t (14) �
4.25, p � 0.001]. Alcohol exposure also significantly reduced the
expression of thiamine transporters SLC19A2 [t (6) � 2.656, p �
0.038], SLC19A3 [t (6) � 3.056, p � 0.022], and OCT1 [t (6) �
2.502, p � 0.046] in the brain (Figure 7). However, alcohol did
not alter these thiamine transporters in the liver (data not
shown).

There is a gender difference in the neurobiology of anxiety,
and females face twice the risk of anxiety disorder as males
(Lebron-Milad and Milad, 2012; Cover et al., 2014; Bale and
Epperson, 2015), which suggests that sexual hormones may
play a role. G-protein-coupled estrogen receptor (ER) known
as GPR30 has been implicated in the rodent anxiety response.
We determined the expression of GPR30 in the brain.
Chronic alcohol exposure significantly decreased the level
of GPR30 [t (6) � 2.484, p � 0.048] (Figures 8A,B) in the
brain. However, there was no significant difference of
estradiol and progesterone concentrations in the blood
between control and alcohol-exposed mice. The
concentration of estradiol in the blood was 6.31 ±
1.75 (pg/ml)(n � 5), and 5.18 ± 0.84 (pg/ml) in alcohol-
exposed (n � 5) and control group (n � 5), respectively [t
(8) � 0.581, p � 0.577] (Figure 8C). The concentration of
progesterone in the blood was 4.13 ± 1.36 (ng/ml), and 2.59 ±
0.68 (ng/ml) in alcohol-exposed (n � 8) and control group (n
� 8) for respectively [t (14) � 1.01, p � 0.329] (Figure 8D).

Chronic Voluntary Alcohol Exposure
Stimulated Neurogenesis in the Brain
We investigated the effect of chronic alcohol exposure on the
neurogenesis in the subventricular zone (SVZ) and the dentate
gyrus (DG) of the hippocampus. As shown in Figure 9, alcohol
exposure increased the number of BrdU-positive cells [t (4) �
3.16 , p � 0.034 ] and DCX-positive cells [t (4) � 4.50 , p � 0.011 ]
in the DG; Alcohol exposure also increased the number of BrdU-
positive cells (t (5) � 3.17 , p � 0.025 ] and Ki67-positive cells [t (6)
� 3.62 , p � 0.01 ] in the SVZ, indicating enhanced proliferation of
neural progenitors.

DISCUSSION

In the present study, we used female cHAP mice to investigate
chronic voluntary alcohol drinking-induced neurobehavioral and
neurochemical alterations. The mice drank alcohol for 7 months,
which is roughly equivalent to 20 years of drinking in humans
extrapolated as a proportion of the lifespan. These are the first
data showing behavioral symptoms of alcohol withdrawal in these
mice, which are quite resistant to more conventional measures of
withdrawal, such as handling induced convulsions following
multiple rounds of chronic vapor exposure and withdrawal
over several weeks (Lopez et al., 2011). Our study suggests
that cHAP mice are valuable in their ability to use voluntary
drinking to model both behavioral and biochemical effects of
chronic alcohol consumption and subsequent short-term
withdrawal in human AUD.

FIGURE 5 | Effects of chronic alcohol exposure on inflammatory cytokines/chemokines in the brain. (A) The expression of IL-6 and TNFα in the brain was
determined with IB. (B) The relative expression of IL-6 and TNFαwas quantified as described above. Each data point was the mean ± SEM; n � 4. *p < 0.05, statistically
significant difference from the control group. (C) The expression of MCP-1 and CCR2 in the brain was determined with IB. (D) The relative expression of MCP-1 and
CCR2 was quantified. Each data point was the mean ± SEM; n � 4. *p < 0.05, statistically significant difference from control group.
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Chronic Voluntary Alcohol Drinking Induces
Anxiety-like Behaviors
We conducted three behavioral tests: Open Field (OF), Elevated
Plus Maze (EPM) andMorris water maze (MWM) to evaluate the
neurobehavioral consequences of 7-month voluntarily alcohol
drinking on female cHAP mice (Figure 1). In OF, the female
cHAP mice after 7 months of voluntarily alcohol drinking
showed no deficits in their locomotor activity but displayed
anxiety-like behaviors by spending less time in the center
(46.1% reduction). In EPM, the alcohol-exposed animals
demonstrated anxiety-like behaviors by spending 40.4% less
time and 30.0% less entry number in the open arms. These
findings are consistent with a broad range of literature
indicating changes in anxiety and stress sensitivity following
chronic ethanol exposure (Becker, 2012), but is the first time
that any behavioral symptoms of withdrawal have been observe in
cHAPmice. InMWM, however, there was no effect of a history of
alcohol drinking on latency to escape, suggesting that spatial
learning was not affected by alcohol exposure. Previous studies
demonstrating decreased MWM learning after alcohol exposure
were in rats (Lukoyanov et al., 1999; Novier et al., 2016), and it is
unclear why we did not observe these changes in this study, but
species may be a factor. Besides species, the age of animals being

studied is a potential factor. For example, adolescents are more
sensitive to alcohol-induced impairments in the acquisition of
spatial learning and memory than adult rats (Acheson et al.,
2001). Moreover, the duration of withdrawal may also be a factor.
Chronic alcohol consumption for 8 weeks (20% ethanol in liquid
diet) followed by a three or 12-weeks of withdrawal period
produced significant deficits in learning and memory in male
mice (Farr et al., 2005).

Overall, these findings may be of particular interest because
comorbidity of AUD and anxiety is more common in women
(Kessler et al., 1997) though AUD ismore common inmen (Lewis
et al., 1996; Kessler et al., 1997; Hasin et al., 2007). Given that mice

FIGURE 6 | Effects of chronic ethanol exposure on astrocyte activation. (A) The expression of GFAP in the mouse brain was examined by IHC. The rectangle insets
indicate an area of the hippocampus. (B) The rectangle insets in (A) are shown in higher magnifications. (C) The GFAP-positive cells in the hippocampus were quantified.
The result was expressed as the mean ± SEM, n � 3 for each group. *p < 0.05 denotes a statistically significant difference from the control group. (D) The protein levels of
GFAP were examined by IB. (E) The relative amounts of GFAP expression were quantified and normalized to the expression of actin. The result was expressed as
the mean ± SEM, n � 4 for each group. *p < 0.05 denotes a statistically significant difference from the control group.

TABLE 1 | Thiamine concentrations in the whole blood.

Average thiamine concentration
(nmol/ml)

Control EtOH

Mean 0.66 0.03*
SEM 0.15 0.003

Effects of chronic alcohol exposure on thiamine concentrations in the blood. The
concentration of thiamine in the bloodwas determined by LC-MS/MS as described in the
“Materials and Methods”. The results were expressed as mean ± SEM; n � 8 for both
control and EtOH group. *denotes a statistical difference, p < 0.05.
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were showing elevated anxiety at least a week following the
cessation of voluntary alcohol access, these findings are
consistent with the idea that chronic drug self-administration
causes homeostatic alterations in reward and stress systems that
persist following cessation of drug use (Breese et al., 2005; Koob
et al., 2014), and may drive subsequent relapse. In our previous
study using male cHAP, we did not evaluate the effects of alcohol
exposure on neurobehavioral outcomes, and therefore cannot
make a conclusion whether this is a sex-specific effect.
Nonetheless, the model of chronic voluntarily alcohol
exposure in female cHAP mice could be useful to study the
comorbidity of AUD with anxiety.

We examined several molecules/proteins that are known to be
alcohol-sensitive and related to the control of anxiety behavior.
We found that alcohol exposure increased GABA, CRF and
BDNF, while decreasing CREB in the brain (Figure 2).
GABAergic inhibitory transmission has been implicated as a
contributory factor to the complex relationship between
alcoholism and anxiety (Silberman et al., 2009). While some
previous studies have showed that chronic alcohol exposure
reduces GABA transmission (Hunt, 1983), other have
demonstrated that chronic alcohol treatment increases GABA
transmission in central amygdala (CeA) which is a brain region
involved in anxiety and alcohol consumption behavior (Roberto

FIGURE 7 | Effects of chronic alcohol exposure on the expression of thiamine transporters in the brain. (A) The expression of thiamine transporters (SLC19A2,
SLC19A3, and OCT1) in the cerebrum was determined by IB. (B) The relative amounts of expression were quantified and normalized to the expression of actin. The
results were expressed as the mean ± SEM, n � 4 for each group. *p < 0.05 denotes a statistically significant difference from the control group.

FIGURE 8 | Effects of chronic alcohol exposure on the expression of G-protein-coupled estrogen receptor (GPR30) in the brain, and estradiol/progesterone levels
in the blood. (A) The expression of GPR30 in the cerebrum was determined by IB. (B) The relative amounts of expression were quantified and normalized to the
expression of actin. The results were expressed as the mean ± SEM, n � 4 for each group. *p < 0.05 denotes a statistically significant difference from the control group.
The concentration of estradiol (C) and progesterone (D) in the blood was determined by ELISA as described in theMaterials and Methods. n � 5 for estradiol test,
and n � 8 for progesterone test.
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et al., 2003; Koob, 2004; Roberto et al., 2004). We showed that
chronic voluntarily alcohol drinking increased the levels of GABA
in the brain tissues of female cHAP mice. A further study
examining some brain structures specifically involved in the
anxiety response, such as the amygdala may be necessary to
establish a role of altered GABA levels in anxiety-like behaviors in
this model. In addition, it may be desirable to treat these alcohol-
exposed cHAP mice with GABA antagonists to determine
whether GABA signaling is indeed involved in alcohol-induced
anxiety.

CRF has been identified as a mediator of alcohol’s action on
GABA signaling in the CeA as alcohol-enhanced GABA signaling
was blocked in CeA neurons in CRF1 receptor knockout mice
(Nie et al., 2004). CRF and CRFR1 receptors have been implied in
alcohol consumption (Lodge and Lawrence, 2003; Hansson et al.,
2006; Cippitelli et al., 2012; Lowery-Gionta et al., 2012). Chronic
feeding of alcoholic liquid diet increased the mRNA level of CRF
in the CeA (Läck et al., 2005). CRF signaling may also be involved
in anxiety behavior as CRF administration caused anxiety (Dunn
and Berridge, 1990), whereas CRFR1 antagonists or knock-out of
CRFR1 reduced anxiety-like behavior (Timpl et al., 1998; Zorrilla

et al., 2002; Müller et al., 2003; Henckens et al., 2016). Therefore,
the increased CRF level in alcohol-exposed cHAP mice, may
contribute to alcohol consumption and anxiety-like behaviors.
However, as discussed above, it is desirable to examine the levels
of CRF in some brain regions that are involved in the regulation
of anxiety, such as the amygdala. Further experiments using
CRFR1 antagonists or knock out of CFR/CRFR1 in this model
are necessary to confirm its role.

The neurotrophin BDNF is affected by alcohol exposure and
associated with alcohol drinking behaviors (McGough et al., 2004;
Jeanblanc et al., 2009; Logrip et al., 2009; Tapocik et al., 2014;
Stragier et al., 2015). BDNF expression appears to have an inverse
correlation with alcohol intake. There were a number of studies
showing decreased BDNF level promoted behavioral responses to
alcohol whereas increased level of BDNF attenuated alcohol
preference (McGough et al., 2004; Jeanblanc et al., 2009).
However, the findings regarding the relationship between
BDNF level and anxiety disorder are not consistent in either
animal models (Chen et al., 2006; Govindarajan et al., 2006;
Monteggia et al., 2007) or human studies (Maina et al., 2010;
Molendijk et al., 2011; Wang et al., 2011). The increased BDNF

FIGURE 9 | Effects of chronic alcohol exposure on neurogenesis in the subventricular zone (SVZ) and dentate gyrus (DG) of the hippocampus. Both control and
alcohol-exposedmice received BrdU injection. (A)BrdU-positive cells in the DG and SVZwere determined by IHC. Arrows indicate BrdU-positive cells; bar � 50 μm. The
expression of doublecortin (DCX) in the DG of the hippocampus and Ki67 in the SVZ were examined by IHC. Arrows indicate DCX- and Ki67-positive cells; bar � 20 μm.
(B) The number of DCX-, BrdU-, and Ki67-positive cells in the DG and SVZ was quantified as described in the “Materials and Methods” section. The results were
expressed as mean ± SEM, n � 3 or 4 for each group. *p < 0.05 denotes a statistically significant difference from the control group.
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level observed in the alcohol-exposed cHAP in this study, may
account for the neurogenesis observed in the DG and SVZ
(Figure 9). However, the impact of increased BDNF levels on
anxiety in this study is unclear. Therefore, future studies using
BDNF knockout mice or knockdown in this model will be desired
to further determine the role of BDNF.

CREB is an alcohol-sensitive transcription factor (Uddin and
Singh, 2007). Reduced levels of CREB and pCREB have been
linked to the high anxiety and excessive alcohol intake in alcohol-
preferring rats (Pandey et al., 2005). In addition, partial deletion
of CREB caused alcohol-drinking and anxiety-like behaviors in
mice (Pandey et al., 2004). We showed that the expression of
CREB protein was decreased in the brain, particularly in the
hippocampus and prefrontal cortex (PFC), the two brain regions
that are involved in the control of stress-related behaviors (Russo
and Nestler, 2013) and alcohol drinking behaviors (Koob and
Roberts, 1999). A further study on the levels of CREB in other
brain regions, such as the CeA and medial nuclei of amygdala
(MeA), may be necessary to draw a conclusion. In addition, to
determine whether the reduced CREB level contributes to
alcohol-induced anxiety of in cHAP mice, we may infuse
activators for CREB’s upstream protein kinase PKA, or
Neuropeptide Y, one of the CREB-targeted genes, into the
amygdala, hippocampus or prefrontal cortex in future study.

The female sex hormones and their receptors have been
proposed to modulate anxiety in both humans (Maeng and
Milad, 2015; Li and Graham, 2017) and rodents (Zimmerberg
and Farley, 1993; Toufexis, 2007; Domonkos et al., 2017). We
demonstrate that chronic voluntary alcohol drinking decreased
G-protein-coupled estrogen receptor GPR30 in the brain while
had little effect on estradiol/progesterone levels in the blood. It
has been shown that administration of GPR30 agonist G-1 can
decrease anxiety in female mice suggesting anxiolytic effects of
GPR30 (Tian et al., 2013; Anchan et al., 2014; Liu et al., 2015).
Future experiments using GPR30 agonist G-1 will be able to
determine the role of GPR30 in alcohol-induced anxiety in female
cHAP mice.

Chronic Voluntary Alcohol Drinking Induced
Oxidative Stress, ER Stress,
Neuroinflammation and
Neurodegeneration.
Oxidative stress, ER stress, neuroinflammation have been
proposed as potential mechanisms for alcohol-induced
neurodegeneration. For example, oxidative stress is associated
with alcohol-induced neurodegeneration in vitro and in vivo
(Chen and Luo, 2010; Hernández et al., 2016). There have
been many studies showing a correlation between oxidative
stress and alcohol dependence (Thome et al., 1997; Das et al.,
2007; Haorah et al., 2008; Galicia-Moreno and Gutierrez-Reyes,
2014; Muñiz Hernandez et al., 2014). The link between oxidative
stress and anxiety has been established in human patients or
animal models and oxidative stress has been suggested to play a
causative role in anxiety (Bouayed et al., 2009; Hovatta et al.,
2010). Similar to our previous findings in male cHAP mice (Xu
et al., 2019), chronic voluntary alcohol drinking also caused

oxidative stress in female cHAP mice. Therefore, alcohol-
induced oxidative stress in cHAP mice is not gender-specific.
To further determine whether oxidative stress is involved in the
alcohol dependence and anxiety in this model, future studies
could use antioxidants or free radical scavengers in alcohol-
drinking cHAP mice.

ER stress is another potential mechanism for alcohol-induced
brain damage in both developing and adult brains (Yang and Luo,
2015). Similar to our previous findings in male cHAP mice (Xu
et al., 2019), chronic voluntary alcohol drinking caused ER stress
in female cHAP mice. There is little information regarding the
role of ER stress in alcohol-drinking behaviors. However, ER
stress may play a critical role in stress-related behaviors as
treatment of 4-phenylbutyrate (4-PBA), a known ER stress
inhibitor, alleviated anxiety-like behaviors in a mouse model
for diffuse axonal injury (Huang et al., 2019). The
administration of 4-PBA, and edaravone, a free radical
scavenger, improved chronic restraint stress (CRS)-induced
anxiety-like behaviors in mice which were accompanied with
inhibition of oxidative stress, neuroinflammation and ER stress
(Jangra et al., 2017).

In addition, chronic alcohol voluntary drinking caused
caspase-3 activation in the brain, particularly the PFC and
hippocampus, indicative of apoptosis. The PFC and
hippocampus are parts of the brain reward circuitry that is
vulnerable to alcohol exposure (Sunkesula et al., 2008; Wang
et al., 2018; Xu et al., 2019). Again, these findings are consistent
with our previous results obtained from male cHAP mice (Xu
et al., 2019).

The alcohol-induced neurodegeneration in both adult and
developing brain is often accompanied by neuroinflammation
and gliosis (Alfonso-Loeches et al., 2013; Pascual et al., 2014;
Tajuddin et al., 2014; Zhang and Luo, 2019). We showed that
chronic alcohol exposure induced neuroinflammation which was
demonstrated by the increased expression of proinflammatory
TNFα, MCP-1 and its receptor CCR2 but not IL-6; alcohol also
increased gliosis which was indicated by increased GFAP-labeled
astrocytes (He and Crews, 2008; Sullivan and Zahr, 2008). The
alcohol-induced neuroinflammation may also contribute to the
anxiety-like behavior as higher basal levels of TNFα and MCP-1
were observed in patients with anxiety (Vogelzangs et al., 2016).
Treatment TNFα inhibitors have been shown to improve the
symptoms of anxiety in patients (Ertenli et al., 2012) and animals
(Haji et al., 2012).

Chronic Voluntary Alcohol Drinking
Reduced Thiamine in the Blood
Thiamine deficiency (TD) has long been associated with
alcoholism (Leevy and Baker, 1968; Woodhill and Nobile, 1972;
Butterworth, 1995) and has been implicated as a key factor for
alcohol-induced brain damages (Martin et al., 2003; Liu et al.,
2017). Our recent publication indicated thiamine deficiency can
cause anxiety-like behaviors (Li et al., 2020). Xu et al. showed
chronic voluntary alcohol drinking caused a significant decrease in
the levels of thiamine in the brain but not the blood of male cHAP
mice (Xu et al., 2019). In the present study, alcohol drinking
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significantly reduced thiamine concentration in the blood of female
cHAP (Table 1), and decreased the expression of thiamine
transporters (SLC19A2, SLC19A3, and OCT1) in female cHAP
mice (Figure 7). Our previous study showed that alcohol exposure
down-regulated the expression of SLC19A3, but not SLC19A2 and
OCT1 in male cHAP mice (Xu et al., 2019). Due to some technical
problems, we were unable to detect and quantify thiamine in the
brain of female cHAP mice. Further effort is needed to evaluate
thiamine levels in the brain of female cHAP mice. The reduced
levels of thiamine either in the brain and blood may contribute to
anxiety-like behaviors.

Chronic Voluntary Alcohol Drinking
Stimulated Neurogenesis in the Brain
Depending on the paradigms of alcohol exposure and
experimental models employed, alcohol exposure could either
inhibit or stimulate neurogenesis (Nixon and Crews, 2002; He
et al., 2005; Ieraci and Herrera, 2007; Klintsova et al., 2007; Morris
et al., 2010; Hamilton et al., 2011). In the current study, we used
multiple markers, such as DCX, BrdU and Ki67 to monitor
neurogenesis and demonstrated that chronic voluntary alcohol
drinking increased the neurogenesis in the DG and SVZ of female
cHAP mice. This findings is consistent with the result obtained
from male cHAP mice (Xu et al., 2019). Therefore, the effect of
chronic voluntary alcohol drinking on the neurogenesis in cHAP
mice is not gender specific. The enhanced neurogenesis observed
in these two regions may result from the increased BDNF
expression and/or compensatory response to alcohol-induced
neuronal damage.

In summary, chronic voluntary alcohol drinking caused
anxiety-like behaviors, and altered the expression of several
neurotransmitters and neurotrophic factors associated with the
regulation of anxiety in female cHAP mice. In comparison with
our previous study in male cHAP mice, the current results
indicate that alcohol-induced damage and neurochemical
changes to the brain, such as oxidative stress, ER stress,
neurodegeneration and neurogenesis, are similar between male
and female mice and not gender-specific. It appears that the effect
of alcohol exposure on thiamine concentrations in the blood and
the expression of thiamine transporters is different between male

and female cHAP mice. Further studies are needed to investigate
the underlying mechanisms.
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