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RESEARCH ARTICLE Open Access

APOΕ4 lowers energy expenditure in
females and impairs glucose oxidation by
increasing flux through aerobic glycolysis
Brandon C. Farmer1, Holden C. Williams1,2, Nicholas A. Devanney1,2, Margaret A. Piron1, Grant K. Nation1,
David J. Carter1, Adeline E. Walsh1, Rebika Khanal1, Lyndsay E. A. Young3, Jude C. Kluemper1, Gabriela Hernandez1,
Elizabeth J. Allenger1, Rachel Mooney1, Lesley R. Golden1, Cathryn T. Smith1, J. Anthony Brandon1,
Vedant A. Gupta4, Philip A. Kern5,6, Matthew S. Gentry3, Josh M. Morganti2,7, Ramon C. Sun7 and
Lance A. Johnson1,2*

Abstract

Background: Cerebral glucose hypometabolism is consistently observed in individuals with Alzheimer’s disease
(AD), as well as in young cognitively normal carriers of the Ε4 allele of Apolipoprotein E (APOE), the strongest
genetic predictor of late-onset AD. While this clinical feature has been described for over two decades, the
mechanism underlying these changes in cerebral glucose metabolism remains a critical knowledge gap in the field.

Methods: Here, we undertook a multi-omic approach by combining single-cell RNA sequencing (scRNAseq) and
stable isotope resolved metabolomics (SIRM) to define a metabolic rewiring across astrocytes, brain tissue, mice,
and human subjects expressing APOE4.
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Results: Single-cell analysis of brain tissue from mice expressing human APOE revealed E4-associated decreases in
genes related to oxidative phosphorylation, particularly in astrocytes. This shift was confirmed on a metabolic level
with isotopic tracing of 13C-glucose in E4 mice and astrocytes, which showed decreased pyruvate entry into the
TCA cycle and increased lactate synthesis. Metabolic phenotyping of E4 astrocytes showed elevated glycolytic
activity, decreased oxygen consumption, blunted oxidative flexibility, and a lower rate of glucose oxidation in the
presence of lactate. Together, these cellular findings suggest an E4-associated increase in aerobic glycolysis (i.e. the
Warburg effect). To test whether this phenomenon translated to APOE4 humans, we analyzed the plasma
metabolome of young and middle-aged human participants with and without the Ε4 allele, and used indirect
calorimetry to measure whole body oxygen consumption and energy expenditure. In line with data from E4-
expressing female mice, a subgroup analysis revealed that young female E4 carriers showed a striking decrease in
energy expenditure compared to non-carriers. This decrease in energy expenditure was primarily driven by a lower
rate of oxygen consumption, and was exaggerated following a dietary glucose challenge. Further, the stunted
oxygen consumption was accompanied by markedly increased lactate in the plasma of E4 carriers, and a pathway
analysis of the plasma metabolome suggested an increase in aerobic glycolysis.

Conclusions: Together, these results suggest astrocyte, brain and system-level metabolic reprogramming in the
presence of APOE4, a ‘Warburg like’ endophenotype that is observable in young females decades prior to clinically
manifest AD.

Keywords: APOE, Apolipoprotein E, Aerobic glycolysis, Energy expenditure, Metabolism, Alzheimer’s disease

Background
The Ε4 allele of Apolipoprotein E (APOE) confers more
risk (up to 15 fold) for the development of late-onset
Alzheimer’s disease (AD) than any other gene [1, 2].
While E4 is a strong contributor to late-onset AD risk,
the effect is even greater in females [3]. Female E4 car-
riers have an increased odds ratio for AD [4], increased
incidence of AD [5], elevated hazard ratio for conversion
to mild cognitive impairment [6], increased CSF tau [7],
and reduced hippocampal volume [8], compared to male
E4 carriers. To date, studies investigating the mechanism
by which Ε4 and sex increase disease risk have primarily
focused on the important associations of Ε4 with the
neuropathological hallmarks of AD – i.e. the increased
amyloid load seen in Ε4 carriers [9, 10] and the APOE-
dependence of tau propagation [11, 12].
Alternatively, investigating Ε4 carriers who have not

yet developed neuropathology may provide insight into
early E4 mechanisms and unveil additional therapeutic
targets for the prevention of AD. For example, an early
and consistent biological hallmark of AD is cerebral
glucose hypometabolism as observed by 18F-fluorodeox-
yglucose positron emission tomography (FDG-PET)
imaging [13–15]. Interestingly, Ε4 carriers also display
an “AD-like” pattern of decreased glucose metabolism
by FDG-PET long before clinical symptomology [16, 17].
Since glucose hypometabolism occurs early in AD and
early in Ε4 carriers, it may represent a critical initial
phase of AD pathogenesis that predisposes individuals to
subsequent symptomology.
Beyond this FDG-PET finding, it is not clear if APOE

has other discernable metabolic effects in pre-cognitively

impaired young people, and clinical research focused on
how APOE may regulate metabolism outside of the brain
is limited [18]. Most studies have utilized a targeted re-
placement mouse model of APOE in which the murine
Apoe alleles are replaced by the human orthologs [19,
20]. For example, several studies have found Ε4 mice to
exhibit increased susceptibility to insulin resistance, and
one report characterized E4 mice as deficient in extract-
ing energy from dietary sources [21–23]. While these
preclinical studies have been critical to our understand-
ing of Ε4-associated impairments in glucose metabolism,
the mechanism underlying these changes, and the extent
to which systemic glucose metabolism is regulated
by APOE in young healthy humans, remain largely
unknown.
In the current study, we combined single-cell RNA se-

quencing (scRNAseq) and stable isotope resolved meta-
bolomics (SIRM) to define a metabolic shift toward
aerobic glycolysis across astrocytes, brain tissue, mice,
and human subjects expressing APOE4. We highlight an
astrocyte-directed shift in gene expression away from
oxidative phosphorylation in the brains of mice express-
ing human E4, and confirm this metabolic reprogram-
ming through the use of isotopic tracing of 13C-glucose
in both E4 mice and astrocytes. To test whether this
phenomenon translated to APOE4 humans, we used
indirect calorimetry to measure whole body oxygen con-
sumption and energy expenditure in young and middle-
aged human participants with and without the Ε4 allele.
Strikingly, a subgroup analysis revealed that young fe-
male E4 carriers showed a significant decrease in resting
energy expenditure compared to non-carriers, a decrease
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driven primarily by reductions in oxygen consumption.
Interestingly, this stunted oxygen consumption was ex-
aggerated following a dietary glucose challenge and was
accompanied by markedly increased lactate in the
plasma of E4 carriers. Together, these results suggest
astrocyte, brain and system-level metabolic reprogram-
ming in the presence of APOE4, a pro-glycolytic shift
that is observable in young women decades prior to clin-
ically manifest AD.

Materials and methods
Clinical research study design
The study objectives were to i) determine if APOE geno-
type influences peripheral and cerebral metabolism in
young cognitively normal human subjects, and if so, ii)
elucidate potential mechanisms using mouse and cell
models of human APOE. For the clinical research study,
healthy volunteers between 18 and 65 were prescreened
for diagnoses that may affect cognitive function (ex.
stroke, Parkinson’s), metabolic diseases (diabetes), alco-
holism, drug abuse, chronic major psychiatric disorders,
medications that interfere with cognition (narcotic anal-
gesics, anti-depressants), medications that interfere with
first use of energy expenditure (EE), expand abbreviation
(stimulants, beta-blockers) and vision or hearing deficits
that may interfere with testing. The prescreening check-
list with a full list of medications and conditions ex-
cluded for can be found in the supplemental materials
(Extended Data Table 5). Eligible candidates were
brought in for informed consent after a 12-h fast in
which subjects were asked not to exercise and to abstain
from everything except for water. We employed a power
analysis based on a feasibility study, and the required
sample size per group for a power level of 0.9 was calcu-
lated to be n = 30 per “group” (i.e. E2+, E3/E3 and E4+),
for a total of 90 subjects. To account for potential biological
outliers, non-consenting subjects, and post-recruitment
exclusion criteria being met, we recruited a total of 100
individuals for this observational study. The study was con-
ducted under Clinical Trial #: NCT03109661, and support-
ing data can be found at https://clinicaltrials.gov/ct2/show/
NCT03109561. The primary outcome measure was to
measure resting state respiratory quotient in cognitively
normal participants with various APOE genotypes using in-
direct calorimetry. Secondary measures included measuring
respiratory quotient during a cognitive task and other out-
come measures included biospecimen (urine and blood)
analysis. Data acquisition was blinded as APOE genotypes
were determined after the study. Prior to unblinding to
APOE genotype, individuals who had IC values more than
2 standard deviations from the mean were excluded from
analysis, leaving 94 individuals for analysis. Following
completion of the study, several subgroup analyses were
pursued, including analyses of age and sex as variables. As

we were primarily interested in APOE effects in young indi-
viduals, we stratified our sample population into a young
cohort (under 40 years old) and a middle-aged cohort (40–
65 years old). We chose 40 as the age-cutoff based on a
meta-analysis of APOE genotype and AD-risk which found
the Ε4 effect on disease to be observable in individuals 40
and over [4]. Body mass index (BMI), waist to hip ratio,
and blood pressure were first recorded. Thereafter, partici-
pants were fitted with an airtight mask that was connected
to an MGC Diagnostics Ultima CPX metabolic cart which
measures VO2, VCO2, and respiratory rate. EE is defined as
the amount of energy an individual uses to maintain
homeostasis in kcal per day, and can be calculated using
the Weir eq. (EE = 1.44 (3.94 VO2 + 1.11 VCO2) [24]. EE is
composed of the resting energy expenditure (REE), the
thermic effect of feeding (TEF), and activity related energy
expenditure (AEE). In motionless and fasted humans, EE is
equivalent to the REE since the TEF and AEE have been
controlled for. Participants were instructed to remain mo-
tionless and to refrain from sleep for 30min as data was
gathered. All testing occurred between 8:30–11:30 am in a
temperature controlled (20–22 °C) out-patient research unit
(Center for Clinical and Translational Science, University of
Kentucky). Body temperature was taken periodically via
temporal thermometer to ensure thermostasis and provide
intermittent stimulation to ensure wakefulness. After the
resting period came a 30min cognitive test period. We then
introduced a novel-image-novel-location (NINL) object
recognition test consisting of a series of images which par-
ticipants were later asked to recall. This test has been
shown previously to study APOE allele effects on cognition
[25]. After the cognitive test period, a blood draw was taken
via venipuncture and placed on ice. Participants then con-
sumed a sugary milk drink consisting of 50 g of sugar
dissolved in whole milk. The drink was consumed within a
2 min time span. The mask was then refitted and
participants were instructed to again remain motionless for
30min for data collection. Data from the first 5min of the
study time periods were excluded to allow a 5 min steady
state adjustment [26, 27]. After the glucose challenge, par-
ticipants provided a second blood sample (~ 45min after
the initial blood draw). Participants then exited the study
and were compensated for their participation.

APOE genotyping
APOE genotype was determined by extracting genomic
DNA from participants’ blood samples using a GenElute
Blood Genomic DNA Kit (Sigma). After confirming con-
centration and quality by Nanodrop, APOE genotype
was determined using PCR with TaqMan assay primers
for the two allele-determining SNPs of APOE: rs7412
and rs429358 (Thermo). Positive controls for the six
possible APOE genotypes were included with each assay.
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Plasma metabolomics and GCMS sample preparation
Plasma was separated from blood by centrifugation at
2500 x g for 10 min at 4 °C, and stored in 200uL
aliquots at − 80 °C until further use. Upon thawing, ice
cold 100% methanol solution containing 40 nM L-nor-
valine (internal standard) was added to 80 μl of plasma
and kept on ice for 20 min with regular vortexing. The
solution was then centrifuged for 10 min (14,000 rpm,
4 °C). Supernatant containing polar metabolites was re-
moved to a new tube and kept at − 80 °C until prepped
for GCMS analysis. Polar metabolites were thawed on
ice then dried under vacuum. The dried pellet was dis-
solved in 50 μL methoxyamine HCl-pyridine (20 mg/
ml) solution and heated 60 min at 60 °C. Following
heating, samples were transferred to v-shaped glass
chromatography vials and 80 μl of MTSFA + 1% TMCS
(Thermo Scientific) was added. Samples were then
heated for 60 min at 60 °C, allowed to cool to room
temperature, and then analyzed via GCMS with pa-
rameters as previously described [28]. Briefly, a GC
temperature gradient of 130 °C was held for 4 min, ris-
ing at 6 °C/min to 243 °C, rising at 60 °C/min to 280 °C
and held for 2 min. Electron ionization energy was set
to 70 eV. Scan and full scan mode used for metabolite
analysis, spectra were translated to relative abundance
using the Automated Mass Spectral Deconvolution
and Identification System (AMDIS) software with re-
tention time and fragmentation pattern matched to
FiehnLib library with a confidence score of > 80. Chro-
matograms were quantified using Data Extraction for
Stable Isotope-labelled metabolites (DExSI) with a pri-
mary ion and two or more matching qualifying ions.
Metabolite quantification was normalized to relative
abundance of internal standard (L-norvaline), brain
and cell data also normalized to protein concentration.
Metabolomics data was analyzed using the web-based
data processing tool Metaboanalyst [29]. Metabolites
significantly altered by APOE genotype and/or time
point were defined by ANOVA and subsequent false
discovery rate cutoff of < 0.05. All identified metabo-
lites for which > 75% of participants had a measurable
concentration were included, and missing values were
estimated with an optimized random forest method
[30]. For the pathway impact analysis, the parameters
were set to ‘global test’ and ‘Relative-betweenness Cen-
trality’, a node centrality measure which reflects meta-
bolic pathway ‘hub’ importance. For enrichment
analyses, parameters were set to “Pathway-associated
metabolite sets (SMPDB)”, a library that contains 99
metabolite sets based on normal human metabolism.
For both pathway and impact analyses, only metabolic
pathways with 3+ metabolites represented in our data
set were included, and a false discovery rate cutoff of
< 0.05 was utilized.

Mice and metabolic phenotyping
Mice expressing human APOE display many of the
phenotypic characteristics observed in humans including
several metabolic variations noted in epidemiological
studies [31–33]. In this “knock-in” model, the mouse
Apoe locus is targeted and replaced with the various hu-
man APOE alleles, thereby remaining under control of
the endogenous mouse Apoe promoter and resulting in
a physiologically relevant pattern and level of human
APOE expression [17, 19, 34–37]. Mice used in this
study were homozygous for either the human E3 or E4
alleles, aged 2–4 months (young) and group housed in
sterile micro-isolator cages (Lab Products, Maywood,
NJ), and fed autoclaved food and acidified water ad libi-
tum. Animal protocols were reviewed and approved by
the University of Kentucky Institutional Animal Use and
Care Committee. Human E3 and Ε4 mice were evaluated
by indirect calorimetry (TSE Systems, Chesterfield, MO).
Mouse body composition was measured using EchoMRI
(Echo Medical Systems, Houston, TX) the morning prior
to being singly housed in the indirect calorimetry sys-
tem. Mice were acclimated to singly housed cage condi-
tions for 1 week prior to beginning data recording. After
5 days on standard chow diet (Teklad Global 18% pro-
tein rodent diet; 2018; Teklad, Madison, WI), mice were
fasted overnight before being introduced to a high carb
diet (Open Source Diets, Control Diet for Ketogenic Diet
with Mostly Cocoa Butter, D10070802) for 5 days. Mice
were monitored for O2 consumption, CO2 production,
movement, and food and water consumption. Chambers
were sampled in succession and were reported as the
average of 30 min intervals in reference to an unoccu-
pied chamber. To negate the effects of activity on EE
readouts, we chose to only analyze the light cycles of the
mice where activity, and feeding, is minimal. The EE
then becomes analogous to a “resting” EE similar to the
resting period in the human study and differences ob-
served are likely due to basal metabolic rate differences
instead of confounding factors such as feeding and
activity [38].

Cell culture
Primary astrocytes were isolated from postnatal day 0–4
pups of mice homozygous for E3 or Ε4. The brain was
surgically excised and meninges were removed from cor-
tical tissue in cold DMEM. Tissue from pups of the
same genotype was pooled and coarsely chopped to en-
courage suspension. Tissue homogenates were incubated
in serum free DMEM with 0.25% trypsin and DNAse for
30 min with gentle shaking. Cell suspension was then fil-
tered through 40 μm strainer and spun for 5 min at 1100
x g. Suspended primary cells were then plated in a poly-
lysine coated plate and allowed to grow to confluence in
Advanced DMEM (Gibco) with 10% FBS. Immortalized
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astrocytes were derived from targeted replacement mice
expressing human APOE alleles (kind gift from Dr.
David Holtzman). These immortalized cell lines secrete
human ApoE in HDL-like particles at equivalent levels
to primary astrocytes from targeted replacement APOE
knock-in mice and have been relied upon for studies of
APOE’s role in astrocyte metabolism by several groups
[39–41]. Cells were maintained in Advanced DMEM
(Gibco) supplemented with 1 mM sodium pyruvate, 1X
Geneticin, and 10% fetal bovine serum unless otherwise
noted.

Single-cell RNA sequencing
Brain tissues were processed for creating single cell sus-
pensions as previously described [42]. Briefly, 11–12
month old female E3/E3 and E4/E4 mice (pooled n = 3
per genotype) were anesthetized via 5.0% isoflurane be-
fore exsanguination and transcardial perfusion with ice-
cold Dulbecco’s phosphate buffered saline (DPBS; Gibco
# 14040133). Following perfusion, brains were quickly
removed and a whole right hemispheres sans brainstem
and cerebellum were quickly minced using forceps on
top of an ice-chilled petri dish. Minced tissue from the 3
pooled hemispheres per genotype were immediately
transferred into gentleMACS C-tube (Miltenyi #130–
093-237) containing Adult Brain Dissociation Kit (ADBK)
enzymatic digest reagents (Miltenyi #130–107-677) pre-
pared according to manufacturer’s protocol. Tissues were
dissociated using the “37C_ABDK” protocol on the gentle-
MACS Octo Dissociator instrument (Miltenyi #130–095-
937) with heaters attached. After tissue digestion, cell sus-
pensions were processed for debris removal and filtered
through 70 μm mesh cell filters following the manufac-
turer’s suggested ABDK protocol. The resultant suspen-
sion was filtered sequentially two more times using fresh
30 μm mesh filters. Cell viability was checked using AO/PI
viability kit (Logos Biosystems # LGBD10012) both cell
suspensions were determined to have > 88% viable cells.
Following viability and counting, cells were diluted to
achieve a concentration of ~ 1000 cells/100uL. The diluted
cell suspensions were loaded onto the 10x Genomics
Chromium Controller. Each sample was loaded into a sep-
arate channel on the Single Cell 3′ Chip and libraries were
prepared using the Chromium v3 Single Cell 3′ Library
and Gel Bead Kit (10x Genomics). Final library quantifica-
tion and quality check was performed using BioAnalyzer
(Agilent), and sequencing performed on a NovaSeq 6000
S4 flow cell, 150 bp Paired-End sequencing (Novogene).
Raw sequencing data was de-multiplexed and aligned
using Cell Ranger (10x Genomics), and further processed
using Partek software. Gene ontology and pathway enrich-
ment analyses were performed using Partek’s “filter
groups” feature to selectively analyze astrocytes, followed
by gene set enrichment with a set threshold of q < 0.05,

followed by the “differential analysis > pathway analysis”
features. To remove likely multiplet and dead cells, cells
were discarded if they had total read counts less than 50
or greater than 50,000 UMIs, or mitochondrial read
counts more than 30%. UMAP projections were visualized
with 20 principal components. Clusters were assigned to
cell types using known marker genes. Two small clusters
(< 250 cells) were removed from downstream analysis due
to suspected doublets/triplets based on positive gene ex-
pression of multiple cell-specific gene markers (astrocytes,
microglia, mural cells and/or endothelial cells). The final
dataset consisted of a total of 18,167 cells (8216 and 9951
cells from E3 and E4, respectively) that passed quality con-
trol thresholds.

Glucose tracing in vivo
Female TR mice homozygous for E3 or Ε4 (12–13
month) were fasted for 2–3 h then, via oral gavage, ad-
ministered 250 μL [U-13C] glucose solution at a concen-
tration of 2 g/kg of body weight based on average cohort
bodyweight. 45 min following gavage, mice were eutha-
nized by cervical dislocation, brains were removed and
quickly washed twice in PBS, once in H2O then frozen
in liquid N2. Tissues were kept at − 80 °C until ground
under liquid N2 using a Freezer/Mill Cryogenic Grinder
(SPEX SamplePrep model 9875D). Approximately 60 mg
of tissue was placed in a 1.5 mL tube then 1mL extrac-
tion buffer (50% methanol, 20 nM norvaline) was added
followed by a brief vortex and placement on ice for 20
min (briefly vortexed every 5 min). Samples were then
centrifuged at 14,000 rpm, 4 °C for 10 min. The super-
natant containing polar metabolites was moved to a new
tube and kept at − 80 °C until prepped for GCMS. The
resulting pellet was re-suspended in RIPA buffer (Sigma)
and protein concentration was measured with BCA kit
(Pierce) for normalization.

Glucose metabolism assays
For glucose oxidation assays, astrocytes were plated in a
24-well plate at 300,000 cells/well with 500 μL of main-
tenance media (Advanced DMEM, 10% FBS, 1% sodium
pyruvate, 0.4% Geneticin) and incubated at 5% CO2 and
37 °C and allowed to grow to confluence for 24 h. Using
a previously published protocol [43], cells were then in-
cubated with 1 μCi/mL [U-14C] glucose in maintenance
media (25 mM glucose) or starvation media (same as
maintenance except 0 mM glucose) for 3 h. Buffered
14CO2 in the media was then liberated by addition of 1
M perchloric acid and captured on a filter paper disc
pre-soaked with 1 N sodium hydroxide using airtight
acidification vials. Radioactivity of the filter paper was
measured in a Microbeta 2 Scintillation Counter (Perkin
Elmer) after addition of 3 mL Ultima-Gold Scintillation
Fluid. For glucose tracing in primary astrocytes, cells
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were plated in a 6-well plate at 600,000 cell/well in
astrocyte growth media (Advanced DMEM, 10% FBS,
1% sodium pyruvate, 1% penicillin-streptomycin) and in-
cubated at 5% CO2 and 37 °C. After 48 h, growth media
was replaced with tracer media (Glucose-free DMEM
containing 10% dialyzed FBS, 10 mM [U-13C] glucose)
and incubated under previous conditions for 24 h at
which time quenching and metabolite extraction were
carried out as follows: Plates were retrieved from incuba-
tor and placed on ice, tracer media removed and wells
washed once with ice-cold PBS. Immediately following
washing, 1 mL of ice-cold extraction buffer (50% metha-
nol, 20 nM norvaline) was added to quench enzymatic
activity and plates were placed at − 20 °C for 10 min.
Cellular contents were then scraped with a cell-scraper
in extraction buffer and collected into 1.5 mL and tubes
placed on ice for 20 min with regular vortexing. Samples
were then centrifuged at 14,000 rpm, 10min, 4 °C after
which supernatant containing polar metabolites were re-
moved to a new tube and frozen at − 80 °C until prepped
for GCMS analysis. The resulting pellet was re-suspended
in RIPA buffer (Sigma) and protein concentration was
measured with BCA kit (Pierce) for normalization.

Mitochondrial respiration assays
Astrocytes were plated at 40,000 cells/well in mainten-
ance media and grown to confluence for 24 h. The fol-
lowing day media was replaced with assay running
media (Seahorse XF Base Medium, 1 mM pyruvate, 2
mM glutamine, and 10 mM glucose) and after 1 h oxy-
gen Consumption rate (OCR) and extracellular acidifica-
tion rate (ECAR) were measured using a Seahorse 96XF
instrument as previously described [44]. Baseline mea-
surements of ECAR and OCR were taken prior to injec-
tion of mitochondrial inhibitor oligomycin (4 μM) and
glycolytic inhibitor 2-deoxyglucose (500 mM). Manufac-
turer protocols were followed for the glycolysis stress
test assay and Mito fuel flex assay (Category # 103260
Agilent). Briefly, the glycolysis stress test assesses the
ability of cells to respond to challenging conditions by
increase the rate of glycolytic activity. Glycolytic capacity
refers to the glycolytic response to energetic demand
from stress (Glycolytic capacity = ECAR post-oligomycin
– Baseline ECAR) while glycolytic reserve refers to the
capacity available to utilize glycolysis beyond the basal
rate (Glycolytic reserve = ECAR post-oligomycin –
ECAR post-glucose). The Mito Fuel Flex assay assesses
mitochondrial energy consumption by measuring
respiration in the presence or absence of fuel pathway
inhibitors (UK5099; BPTES; Etomoxir). The following
equations were used in the calculations of mitochondrial
flexibility parameters: Dependency (%) = [(Baseline OCR
- Target inhibitor OCR)/ (Baseline OCR - All inhibitors
of OCR)] × 100%. Capacity (%) = 1 / [(Baseline OCR -

Other two inhibitors of OCR)/(Baseline OCR - All inhib-
itors of OCR)] × 100%. Flexibility (%) = Capacity (%) -
Dependency (%).

Statistical analysis
All results are reported as mean +/− SEM unless other-
wise stated. For comparisons between two groups, an
unpaired two-tailed Student’s t-test was used. For pair-
wise comparison of two time points a paired two-tailed
Student’s t-test was used. One-way analysis of variance
(ANOVA) was used for comparing multiple groups
followed by Sidak’s multiple comparisons test. Two-way
ANOVA with repeated measures was used for time
course analyses. Covariates for the clinical study in-
cluded age, sex, BMI, waist to hip ratio, blood pressure,
and body temperature. Pearson r correlation test was
used for correlative analysis. For dependent variables
with categorical independent variables we analyzed co-
variance (ANCOVA) to assess collinearity. P < 0.05 was
considered significant.

Results
Single-cell RNA sequencing highlights a role for APOE4 in
astrocyte oxidative phosphorylation and glycolysis
Given the outsized role of APOE in modulating AD risk,
we first undertook an unbiased survey of E4 effects in
various cell types by performing single cell RNA sequen-
cing (scRNA-seq) on brain tissue from female mice ex-
pressing human E3 or E4. To visualize and identify cell
populations with distinct transcriptional signatures, we
performed a Uniform Manifold Approximation and Pro-
jection (UMAP) on a total of 18,167 cells (E3 8216; E4
9951) from pooled (n = 3) whole brain tissue (Fig. 1a;
Supplemental Fig. 1a). We then used a list of established
marker genes to assign cluster identity (Fig. 1b), includ-
ing four clusters that highly expressed Aldoc, Aqp4, Gja1
and Aldh1l1, which we assigned as astrocytes (Fig. 1b,
blue; Supplemental Fig. 1b). Notably, these astrocyte
clusters showed both the highest expression of APOE
(Fig. 1c) and the highest cumulative expression of a list
of 39 genes directly involved in glycolysis (Fig. 1d).
When we performed a sub-UMAP on only astrocytes,
the cells clustered into eight unique subpopulations with
distinct transcriptional signatures (Fig. 1e; Supplemental
Table 1). Interestingly, APOE expression was higher in
E4 astrocytes, an effect primarily driven by clusters 1, 2,
3 and 5 (Supplemental Fig. 2). As expected based on
previous bulk sequencing studies of human APOE mice
and APOE genotyped human brain tissue, a number of
other differentially expressed genes (DEGs) were noted
between E4 vs E3 cells, including 562 DEGs specifically
in astrocytes (Fig. 1f; Supplemental File 1). Notably, gene
ontology (GO) analyses of all cells underscored a number
of metabolic processes, including several mitochondrial
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related GO terms (Fig. 1g). In particular, pathway enrich-
ment analyses specifically highlighted “Alzheimer’s
disease” and “oxidative phosphorylation” as top hits in
astrocytes (Fig. 1h), where a number of genes related to
mitochondrial beta-oxidation showed lower expression in
the presence of E4 (Supplemental Figs. 3 and 4).

Stable isotope resolved metabolomics reveals increased
lactate synthesis and decreased glucose entry into the
TCA cycle in Ε4 brains and astrocytes
The single-cell gene expression patterns suggested
astrocyte-directed changes in glycolysis and oxidative
phosphorylation in E4 cells. To test whether the gene

Fig. 1 Single-cell RNA sequencing highlights E4-associated changes in glycolysis and oxidative phosphorylation in astrocytes. Whole brain tissue
from E3 and E4 mice was digested and subjected to single-cell RNA sequencing (scRNA-seq). a UMAP visualization of cells from E3 and E4 mouse
brains (3 pooled hemi-brains per genotype). Cells are colored by cell type. b Assignment of clusters to specific cell types based on expression of
known gene markers (astrocytes, Aldoc; microglia, Tmem119; macrophages, Mgl2; oligodendrocytes, Mog; choroid plexus, Kl; ependymal cells,
Foxj1; mural cells, Vtn; Ednothelial cells, Emnc; meningeal, Slc47a1; neuroprogenitor cells, Dcx). c, d Expression of both APOE (c) and glycolysis
genes (d) was highest in astrocyte cell populations. Glycolysis gene expression is shown as the sum of the expression of 39 detected genes
belonging to the KEGG pathway “glycolysis and gluconeogenesis”. e UMAP visualization of astrocytes (Aldoc+ cells). Cells are colored by cluster. f
Volcano plot showing differentially expressed genes in E3 and E4 astrocytes. g, h Gene ontology (g) and pathway enrichment (h) analyses
highlights APOE-associated gene expression changes in metabolic pathways, particularly mitochondrial complex and oxidative phosphorylation
(highlighted in red). Abbreviations: CMV, cytomegalovirus; EC, endocannabinoid; ER, endoplasmic reticulum; GnRH, Gonadotropin-releasing hormone;
HV, herpesvirus; KS, Kaposi sarcoma; NAFLD, non-alcoholic fatty liver disease; NT, Neurotrophin; reg., regulation
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expression patterns observed in the scRNAseq analysis
held in whole brain tissue, we measured gene expression
of select genes encoding for rate-limiting enzymes within
glycolysis and the TCA cycle. While there were no sig-
nificant differences between E3 and E4 expressing mouse
brain tissue, there was a consistent trend of increased
glycolysis and decreased TCA cycle gene expression in
female E4 brains compared to E3 (Supplemental Fig. 5a).
Astrocytes are the primary source of both cerebral lactate
(the end product of glycolysis) [45] and ApoE [37]. There-
fore, we next utilized stable isotope resolved metabolomics
(SIRM) to quantitatively assess glucose utilization in vivo
in mice expressing human E3 or E4 and in vitro in primary
astrocytes expressing human APOE (Fig. 2a). Fasted E3
and Ε4 mice were administered an oral gavage of fully
labeled [U-13C] glucose and brain tissue was collected 45
min later for mass spectrometry analysis of 13C enrichment
in central carbon metabolites. Notably, the brains of Ε4
mice showed significantly higher 13C-lactate (fully labeled,
m + 3) compared to E3 mice (Fig. 2b).
We next incubated primary astrocytes expressing E3

or E4 with [U-13C] glucose and collected cell lysates 24 h
later for 13C enrichment analysis. While there were no
APOE differences in monocarboxylate transporter gene
(Slc16a1, Slc16a3) or protein (MCT1, MCT4) expression
in astrocytes nor whole brain tissue (Supplemental
Figure 5b-c), E4 astrocytes did show a significant
increase in both gene expression of Ldha as well as the
amount of lactate dehydrogenase (LDH) protein, the
enzyme responsible for interconversion of pyruvate and
lactate (Supplemental Fig. 5d-e). Additionally, E4
astrocytes showed a significant increase in 13C-glucose
conversion to lactate (Fig. 2c-d), indicative of higher
LDH activity. Perhaps unsurprisingly, lactate generation
was higher in astrocytes (a highly glycolytic cell type)
compared to whole brain homogenates (Fig. 2b vs d).
Conversely, E4 astrocytes displayed substantially lower
13C enrichment of TCA intermediates compared to E3
astrocytes, suggesting decreased glucose entry into the
TCA cycle (Fig. 2e). To confirm these results, we per-
formed an independent 13C-glucose tracing experiment
in immortalized astrocytes expressing human E3 or Ε4
[46] and quantified 13C-lactate production using nuclear
magnetic resonance (NMR) spectroscopy (Fig. 2f). Again,
Ε4 astrocytes showed significantly higher lactate synthe-
sis, as evidenced by increased 13C-lactate both intracellu-
larly and in the media (Fig. 2f, insert). Together, these
data describe an Ε4-associated increase in glucose flux
into late glycolysis at the expense of entry into the TCA
cycle for oxidative phosphorylation.

Ε4 astrocytes exhibit impairments in glucose oxidation
To functionally assess astrocyte glycolytic flux in vitro,
we measured the extracellular acidification rate (ECAR,

a marker of glycolysis and lactate export) before and
after glucose injection. E4 astrocytes displayed signifi-
cantly higher ECAR after addition of glucose compared
to E3 astrocytes, as well as a higher glycolytic capacity,
suggesting these cells shunt more glucose to lactate (Fig.
2g-h). Ε4 astrocytes also displayed a significantly lower
oxygen consumption rate (OCR), both before and after
addition of glucose to the media, suggesting an inherent
reduction in oxidative metabolism (Fig. 2i-j). Together
these data further support an E4-associated shift toward
glycolysis (Fig. 2k). We next measured glucose oxidation
by treating astrocytes with radiolabeled 14C-glucose and
capturing the oxidative product 14CO2. Ε4 astrocytes ox-
idized less glucose to CO2 compared to E3, but only
when the radiolabel ([nM]) was given with a substantial
amount of non-labeled glucose ([mM]) (Fig. 2l). Ε4 as-
trocytes also displayed decreased capacity and flexibility
in regards to glucose oxidation, as they were relatively
unable to increase glucose oxidation when other fuel
sources (fatty acids and glutamine) were inhibited (Fig.
2m). We reasoned that lower rates of glucose oxidation
in a glucose rich environment in E4 cells may be due to
increased conversion of glucose to lactate, which in turn
inhibits downstream oxidative processes [47]. Therefore,
we tested glucose oxidation following lactate supplemen-
tation, and found that Ε4 astrocytes oxidize less glucose
in the presence of lactate than E3 astrocytes (Fig. 2n).
Together, these results suggest that Ε4 astrocytes exhibit
increased reliance on aerobic glycolysis and are less flex-
ible and less able to oxidize glucose, a phenotype seem-
ingly exacerbated by a high glucose environment and/or
the presence of lactate.

Ε4 mice fail to increase energy expenditure on a high
carbohydrate diet
Given the apparent shift toward aerobic glycolysis in the
brain and astrocytes of mice expressing APOE4, we next
asked if this metabolic reprogramming was a global
phenomenon (i.e. could it be detected with whole body
measures). Indirect calorimetry (IC) assesses energy ex-
penditure by measuring metabolic gases to calculate the
energy released when substrates are oxidized. Energy ex-
penditure (EE) is estimated using the Weir eq. (EE = 3.9
* VO2 + 1.11 VCO2), with the assumption that anaerobic
respiration is negligible and substrates are fully oxidized
to CO2 [24]. However, this assumption is confounded
when energy is derived through non-oxidative processes
such as aerobic glycolysis – a phenomenon in which glu-
cose is fully metabolized to lactate despite normoxia
[48]. To test whether mice expressing APOE4 display an
aerobic glycolysis related shift in metabolism, we used
IC to track energy expenditure in mice expressing
human E3 or E4. Young mice carrying the human E4
allele exhibited significantly lower EE, VCO2, and VO2
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Fig. 2 E4 increases lactate production in mouse brain and E4 astrocytes show increased glycolytic flux and lower oxidative respiration. a
Experimental design (13C, blue filled circles; 12C, white circles; (m + n, where n is the number of 13C labeled carbons within a metabolite). [U-13C]
glucose was administered in vivo to E3 (n = 6) and E4 (n = 8) mice via oral gavage, brain tissue was collected after 45 min, and metabolites
analyzed for 13C enrichment in pyruvate and lactate. E3 and E4 expressing astrocytes were cultured in [U-13C] glucose media for 24 h, media
collected, cells washed, and metabolites analyzed for 13C enrichment (n = 6). b While fully labeled pyruvate is present in similar amounts in E3
and E4 brains, lactate synthesized from 13C-glucose is higher in E4 mouse brains. c-e Primary astrocytes expressing E4 show increased 13C
enrichment in lactate (c), higher LDH activity (d), and decreased 13C enrichment in the TCA cycle (average of all detected TCA intermediates) (e).
f Increased lactate synthesis as measured by HSQCAD NMR spectroscopy (n = 3). Representative NMR spectra (f) showing E4 astrocytes have both
increased intracellular 13C-lactate and export more lactate into extracellular media (bar graph insert). g Extracellular acidification rate (ECAR) of
E3 and E4 primary astrocytes shown over time during the glycolysis stress test (n = 24 for both groups). h Contributions to ECAR at baseline, in
response to glucose (glycolysis), in response to stress (glycolytic capacity), and un-tapped reserve were calculated. i Oxygen consumption rate
(OCR) during the glycolysis stress test assay was graphed over time and j represented as average respiration before and after glucose. k
Metabolic phenotypes of E3 and E4 astrocytes were characterized by plotting ECAR vs. OCR. l E3 and E4 astrocytes were incubated in glucose
free media (−) or glucose rich media (+) and oxidation of 1.0 μCi/mL 14C-glucose was measured by trapping 14CO2 and counting radio activity.
(*P < 0.05 unpaired t-test, two-tailed, n = 4 per genotype). m Glucose oxidation capacity, dependency, and flexibility was assessed in E3 and E4
astrocytes via the Mito Fuel Flex Assay. n E3 and E4 astrocytes were incubated in 1.0 μCi/mL 14C-glucose with (+) or without (−) 12.5 mM lactate
(n = 3). (b-l,n, *P < 0.05, ***P < 0.001, ****P < 0.0001, unpaired t-test, two tailed) (m, *P < 0.05 Two-way ANOVA, Sidak’s multiple comparisons test)
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compared to young E3 mice during their inactive period
(light cycle) (Fig. 3a-c). Since mouse IC cages allow for a
prolonged and controlled assessment of metabolism, we
provided a long-term glucose challenge by way of a high
carbohydrate diet (HCD). Interestingly, these E4-
associated decreases were exaggerated following introduc-
tion of the HCD; Ε4 mice again showed substantially
lower EE, VCO2, and VO2 compared to E3 mice (Fig. 3d-
f). Further, when we analyzed the HCD-induced change in
EE, VCO2, and VO2 from baseline (normal chow), we
found both genotypes to show significant positive changes
except for E4 VO2 (Fig. 3i). This suggests that E4 mice fail
to increase oxygen consumption in response to excess
dietary carbohydrates. These changes occurred independ-
ently of differences in activity and food intake, and was
not explained by differences in body weight (Fig. 3j-l).
Together, these data suggest that Ε4 acts in young mice to
lower energy expenditure via a mechanism outside of the
typical contributions of feeding, body mass, and activity.

Young female Ε4 carriers have a lower resting energy
expenditure
We next asked if this E4-associated shift toward aerobic
glycolysis observed in cell and animal models translated
to APOE4+ humans. To test this, we used IC to test the
effect of APOE on whole body metabolism in a cohort of
healthy, cognitively normal young and middle-aged

volunteers (Supplemental Tables 2 and 3). Using a mo-
bile metabolic cart designed to measure VO2 and VCO2,
we assessed exhaled breath measures of volunteers at
rest, during a cognitive task, and after a glucose chal-
lenge (Fig. 4a and Supplemental Fig. 6). We began each
session by assessing the resting energy expenditure
(REE) and respiratory exchange ratio (RER) of partici-
pants. After a five-minute buffer to achieve steady state
[26, 27], we recorded REE over a 25 min period at 15 s
intervals and averaged the RER and REE for each indi-
vidual. There was no APOE effect on RER (Supplemental
Fig. 7). Consistent with previous studies, we found REE
and age to be negatively correlated (Fig. 4c). However,
when we stratified our analysis by E4 status, linear regres-
sion revealed significantly different slopes between carriers
and non-carriers, suggesting an Ε4-associated confound in
the age versus energy expenditure relationship (Fig. 4d).
We then separated Ε4+ and Ε4- individuals into young

(< 40 years of age) and middle aged (40–65 years of age) co-
horts based on previous literature [4, 17]. After adjusting
for covariates, we observed a significantly lower REE in fe-
male Ε4 carriers compared to non-carriers, particularly in
the young cohort (Fig. 4e). This E4 effect on REE was not
significant in males (Supplemental Fig. 8), together suggest-
ing that there is no age-related REE decline in E4 carriers,
and that the energy expenditure-APOE interaction is modi-
fied by sex, with female Ε4 carriers displaying lower REE.

Fig. 3 E4 mice have lower energy expenditure and fail to increase oxygen consumption following a high carbohydrate diet. a-f Female E3 and
E4 mice were housed individually for 48 h with ad libitum access to normal chow (a-c) or a high carbohydrate diet (HCD) (d-f) and energy
expenditure (EE), VCO2 and VO2 were measured. Dark cycles are indicated in grey with light cycles in white. Light cycles were used for calculating
averages of EE, VCO2 and VO2 (shown to the right) (***P < 0.0001, ****P < 0.00001, unpaired t-test, two-tailed; E3 n = 13, E4 n = 20). j Activity and k
food consumption during light cycles were averaged for E3 and E4 mice (E3 n = 10, E4 n = 14). l Analysis of covariance was performed by
separately correlating average EE and body weight for E3 and E4 mice. (Spearman correlation r = 0.86, ***P < 0.001)
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E4 does not alter cognitive energy expenditure
Given the critical role of APOE in modulating cognitive
function and dementia risk, we next tested if a mental
stressor would reveal further genotype-specific differ-
ences in energy expenditure. To avoid potential con-
founding readouts of movement, subjects were asked to
remain perfectly still while completing a challenging
Novel Image Novel Location test (Supplemental Fig. 6c).
We observed a significant increase in average EE during
the cognitive challenge in all subjects (Fig. 4f). However,
we found no difference in cognitive energy expenditure
(CEE), nor in test response accuracy, between Ε4 carriers
and non-carriers (Fig. 4g and Supplemental Fig. 9). To
our knowledge, only two other studies have attempted

to utilize IC to quantify the contribution of cerebral acti-
vation (i.e. a mental task) to whole body metabolic mea-
sures [49, 50]. While we did not observe an APOE effect
on metabolic measures during the cognitive challenge,
we did find that IC is a sensitive tool to evaluate meta-
bolic changes due to mental stress, as all participants
showed a significant increase in energy expenditure (Fig. 4f).

Female E4 carriers have a blunted increase in oxygen
consumption after a dietary glucose challenge
We next sought to measure the thermic effect of feeding
(TEF) - a constituent of EE that indicates the energy
used to absorb, digest, and metabolize dietary energy
[51, 52]. To induce TEF, all participants consumed a

Fig. 4 Female Ε4 carriers show lower resting energy expenditure and lower thermic effect of feeding after a glucose challenge. a Experimental design
of study. Individual components of energy expenditure (EE) were assessed in three distinct periods. Resting energy expenditure (REE) was assessed
during the resting period. Cognitive energy expenditure (CEE) was assessed during the cognitive challenge and defined as difference in the area under
the curve (AUC) of EE during the cognitive challenge and the AUC of EE from the resting period. Thermic effect of feeding (TEF) was assessed during
the glucose challenge and calculated as the difference in AUC of EE during the glucose challenge and AUC of REE. b APOE genotypes of subjects
represented in the study (E4- n = 61, E4+ n = 33; E2/E4 n = 2, E2/E3 n = 10, E3/E3 n = 51, E3/E4 n = 28, E4/E4 n = 3). c Correlation of average REE with
participant age (Pearson correlation R2 = 0.11, **P < 0.01, n = 94). d Correlation of average REE and participant age separated by Ε4 carriers (purple) and
non-carriers (blue) (Ε4- R2 = 0.233, ****P < 0.0001; Ε4+ R2 = 0.0042, P = 0.719, E4- n = 61 and E4+ n = 33). Shaded areas refer to 95% confidence intervals.
e Average REE for all, young, and middle-age E4- (n = 44, 33, and 11 respectively) and E4+ females (n = 27, 20, and 7 respectively) (*P < 0.05, **P < 0.01,
unpaired t-test, two-tailed). f Average EE between resting and cognitive test periods in young (n = 71) and middle-aged (n = 23) participants. (***P <
0.001, paired t-test, two-tailed). g CEE for all female participants and for the two age cohorts. h Average EE between resting and glucose challenge
periods in young and middle-aged participants (***P < 0.001, paired t-test, two-tailed). i TEF for all females and for the two age cohorts, further
separated by Ε4 carriers and non-carriers. (*P < 0.05, unpaired t-test, two-tailed)
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high carbohydrate drink in less than 2 min (Supplemental
Fig. 6d). Energy expenditure during the dietary challenge
increased significantly in all participants (Fig. 4h), and
similar to resting EE, young female E4 carriers displayed a
significantly lower TEF than non-carriers (Fig. 4i).
Plotting the time course of EE after participants con-

sumed the glucose drink revealed a dramatically blunted
energy response in E4+ individuals, an effect driven by
E4+ females (Fig. 5a and Supplemental Fig. 10). Further
stratification by individual genotypes showed a clear
stepwise effect of APOE (Fig. 5b). Post-glucose drink
VCO2 values revealed a similar, but non-significant
trend of lower CO2 production in E4 carriers
(Supplemental Fig. 11). Importantly, we observed that
while non-carriers significantly increased their oxygen

consumption following the glucose drink, female Ε4
carriers did not, as noted by significant E4-associated
decreases in total oxygen consumption across the post-
glucose period (Fig. 5c-d).

Targeted metabolomics reveals glycolysis as a
differentially regulated pathway in Ε4+ plasma
To determine if the observed APOE differences in en-
ergy expenditure were reflected in the plasma metabo-
lome, we conducted a targeted metabolomics analysis of
human plasma samples before and after the glucose
challenge (Supplemental Table 4). A pathway analysis of
the plasma metabolome before the glucose drink
highlighted E4-associated differences in glycolysis and
pyruvate metabolism (Fig. 5e), and further analyses of

Fig. 5 Ε4 carriers show lower energy expenditure, decreased oxygen consumption, and pro-glycolytic changes in the plasma metabolome. a, c
Energy expenditure (EE) (a) and VO2 (c) of female Ε4 carriers (purple) and Ε4 non-carriers (blue) during the glucose challenge. Values shown are
means (lines) +/− SEM (shaded). (E4- n = 44, E4+ n = 27; *P < 0.05, Two-way ANOVA repeated measures) (b, d) Incremental area under the curve
(AUC) of EE (b) and VO2 (d) was determined by Ε4 carriage and further by respective APOE genotypes in all participants. (E4- n = 61, E4+ n = 33;
E2/E4 n = 2, E2/E3 n = 10, E3/E3 n = 51, E3/E4 n = 28, E4/E4 n = 3) (*P < 0.05, **P < 0.01, unpaired t-test, two-tailed; #P < 0.05 One-way ANOVA). e, h
Pathway impact analysis highlights pyruvate metabolism and glycolysis as pathways significantly altered by E4 carriage in human plasma at
baseline (e), while multiple carbohydrate and lipid processing pathways are altered by E4 carriage following the glucose drink (h) (FDR < 0.01). f,
i Volcano plots showing changes in plasma metabolites. Lactate was the most significantly altered metabolite by APOE genotype at baseline (f),
while multiple metabolites differed post-glucose drink (i) (ANOVA, FDR < 0.05). g Lactate values in individual subjects as determined by GC-MS
analysis. j Enrichment analysis highlights multiple metabolic pathways as significantly altered by E4 carriage following the glucose drink, including
the top hit of ‘Warburg effect’. All comparisons are E4+ (n = 33) vs E4- (n = 61)
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individual metabolites revealed lactate as the metabolite
most strongly affected by E4 carriage (Fig. 5f). Indeed,
E4 carriers displayed dramatically higher plasma lactate
concentrations before and after the glucose drink
(Fig. 5g, Supplemental Fig. 12). Following the glucose
challenge, there was an increase in the number of
carbohydrate processing pathways and metabolites
that were differentially altered in Ε4 carriers (Fig. 5h, i),
and a pathway enrichment analysis highlighted top hits of
“Warburg effect” and “Transfer of acetyl groups into
mitochondria” (Fig. 5j). Together, analysis of the
plasma metabolome from cognitively E4+ individuals
suggests a preference for aerobic glycolysis compared
to non-carriers.

Discussion
In the current study, we used indirect calorimetry to
show that APOE4 reduces energy expenditure in a
cohort of young, cognitively normal females, a
phenomenon exacerbated by a dietary glucose challenge.
Analysis of the plasma metabolome revealed E4-
associated increases in pathways related to carbohydrate
processing, specifically aerobic glycolysis, highlighted by
higher concentrations of the glycolytic end-product
lactate. By applying single-cell RNA sequencing and
stable isotope-resolved metabolomics in vivo, along
with functional assays of cellular respiration in vitro,
we discovered that both E4 expressing mouse brains
and E4 expressing astrocytes increase glucose flux
through aerobic glycolysis at the expense of TCA cycle
entry and oxidative phosphorylation. Cumulatively,
these data highlight a novel mechanism whereby Ε4
lowers energy expenditure in young women and de-
creases glucose oxidation by redirecting flux through
aerobic glycolysis.
These results are congruent with other studies of

APOΕ4 and AD. For example, a recent study by our
group demonstrated that Ε4 astrocytes have increased
lactate production [53], and neurons expressing Ε4 ex-
hibit increased reliance on glycolysis for ATP production
with apparent deficits in mitochondrial respiration [54].
Similarly, a recent study by Qi et al. showed increased
rates of glycolysis in E4-expressing primary astrocytes, as
measured using the Seahorse ECAR assay. The authors
also showed an increase in aerobic glycolysis in hippo-
campal slices collected from E4 mice, compared to E3
mice [55]. While these results are in agreement with our
own findings here, Qi et al. conversely report an in-
crease, rather than decrease, in oxygen consumption in
primary astrocytes expressing E4 [55]. The reason for
this discrepancy is not immediately clear, but may be
due to differing glucose concentrations (10 vs 25 mM)
present in the media. In addition to modulating glucose
metabolism in astrocytes, APOE may drive metabolic

changes in microglia as suggested by a recent study by
Konttinen and colleagues [56]. In that study, iPSC-
derived microglia expressing E4 had lower respiration,
decreased ATP production, and lower rates of glycolysis
compared to E3 microglia, and this broad metabolic qui-
escence was associated with decreased functionality [56].
Given the important interplay between metabolism and
immune cell phenotype [57], further exploration of the
potential role of APOE in regulating immunometabolism
is likely warranted. Interestingly, another study showed
that fibroblasts from AD patients show a ‘Warburg-type’
(aerobic glycolysis) shift from oxidative phosphorylation
to glycolysis with increased lactate production [58].
Aerobic glycolysis refers to the metabolism of glucose to
lactate instead of the oxidative TCA cycle, despite the
presence of abundant oxygen. In the brain, this
phenomenon occurs in young individuals with a peak
around 5 years of age (when 30% of cerebral glucose is
processed anaerobically), and then steadily declines with
age [59]. Aerobic glycolysis in the brain appears to be
cell and region specific, with astrocytes playing a major
role in certain regions such as the dorsolateral prefrontal
cortex, precuneus, and the posterior cingulate cortex
[60]. Importantly, areas associated with aerobic glycolysis
also overlap with areas known to accumulate amyloid β,
indicating that the anaerobic metabolism of certain brain
regions may possibly predict amyloid burden in later life
[61]. Furthermore, recent proteomic profiling of over
2000 AD brain samples revealed that changes in the ex-
pression of proteins involved in glial metabolism was the
most significant module associated with AD pathology
and cognitive decline [62]. Increased expression of en-
zymes in this module included lactate dehydrogenase,
pyruvate kinase, and glyceraldehyde-3-phosphate de-
hydrogenase, all of which are elevated in aerobic glycoly-
sis phenotypes.
Interestingly, recent evidence has shown that lactate is

an energy substrate used by the brain [63] and a com-
petitive glucose alternative [64–66]. Lactate has also
been shown to decrease FDG-PET signal [67]. An in-
crease in astrocyte-derived lactate in Ε4 carriers may
compete with glucose as a substrate for brain metabol-
ism and decrease CMRglc. While we did not find any
significant differences in MCT1 or MCT4 expression be-
tween E3 and E4 astrocytes or mouse brain tissue,
changes in the expression of the various lactate trans-
porters, and thus shuttling from astrocytes to neurons,
may help explain these findings in the more complex
setting of the human brain. For example, the monocar-
boxylate transporter MCT2 was found to be upregu-
lated, while MCT4 was downregulated, in postmortem
brain tissue of young APOE4 carriers [68]. Further, an
increase in aerobic glycolysis might also act to lower
energy expenditure, as glycolysis produces only 2 mol of
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ATP compared to the 34mol of ATP from a mole of glucose
metabolized via mitochondrial oxidative phosphorylation.
This balance of anaerobic glycolysis versus oxidative
phosphorylation behaves reciprocally [69]. Increased
mitochondrial ATP production downregulates glycoly-
sis, while glycolytic ATP synthesis can suppress aer-
obic respiration [70]. Given our findings of lower O2

consumption and increased production of lactate, we
speculate that E4 carriers have lower energy expend-
iture due to glycolysis being less energetically costly
than downstream pathways.
Our study has several limitations. First, as this was an

exploratory clinical research trial, sample size calcula-
tions were difficult to estimate and the primary outcome
measure of the study was to measure resting state re-
spiratory quotient in cognitively normal participants
with various APOE genotypes. Thus, our findings that
APOE4-associated differences in EE, VO2, and VCO2,
were limited to young female E4 carriers, resulted from
subsequent subgroup analyses. Future a priori studies in
larger and more diverse cohorts will be necessary to fully
clarify whether this E4-associated decrease in EE is sex-
specific. Additionally, as a primary goal was to assess in-
dividual metabolic responses to glucose, we performed
blood draws immediately prior and immediately after
the glucose challenge. It may be possible that mental
stress during the cognitive challenge (which occurred
prior to the first blood draw) altered the plasma metabo-
lome beyond the normal resting state. Further, as with
all plasma metabolomics studies, the tissue of origin of
the metabolites measured remains unknown. For ex-
ample, are they brain derived, hepatic in origin, or syn-
thesized in another peripheral tissue such as skeletal
muscle or adipose tissue? A similar limitation in reso-
lution exists in regards to energy expenditure, as the IC
measures reported here are a summation of both brain
and peripheral energy utilization. Several of these per-
ipheral tissues, most notably liver and adipose tissue, are
known to synthesize substantial amounts of APOE, and
future studies leveraging mouse models of APOE will be
important in clarifying the contributions of brain vs per-
iphery in the metabolic changes observed here. Another
potential confounder is that we provided glucose in the
form of a sugary milk drink for the glucose challenge.
While we used 50 g of sugar based on clinical guidelines
for glucose challenges [71], milk also includes fats and
proteins. However, the high relative content of carbohy-
drates to other macronutrients ensures that any ob-
served response (particularly at the ~ 30min time point
analyzed) can be primarily attributed to carbohydrate
metabolism. Indeed, the pathways most altered by the
glucose challenge included galactose metabolism, starch
and sucrose metabolism, and glycolysis. Finally, while we
found E2 to be associated with lower plasma lactate and

higher EE relative to non-E2 carriers, the study did not
include any homozygous E2 carriers and the low overall
allele frequency makes interpretation challenging. Still,
these results are intriguing based on E2 being a known
protective allele for AD [2, 4], and further study of en-
ergy expenditure and glucose metabolism in E2 carriers
is warranted.
Current understanding of the development of late-

onset AD supports a triad of primary risk factors: E4, fe-
male sex, and old age. However, detecting symptoms of
eventual cognitive decline in young asymptomatic indi-
viduals is critical for primary prevention of AD [72].
Given the largely disappointing trial outcomes of drugs
targeting AD neuropathology [73], these therapies may
be intervening after a ‘point of no return’ and thus offer
minimal benefit in prognosis [74]. In order to design
therapies for early interventions in those at risk for AD,
we must first identify measurable biomarkers whose se-
verity and/or change over time correlate with risk for
clinically observable AD. In the current study, we used
indirect calorimetry to show that APOE4 reduces energy
expenditure in a cohort of young cognitively normal fe-
males, a phenomenon exacerbated by a dietary glucose
challenge. While using indirect calorimetry for metabolic
studies is common in clinical settings and exercise stud-
ies [75, 76], to our knowledge the method has not been
previously applied to investigate biomarkers of cognitive
impairment. Thus, repurposing IC to study the meta-
bolic effects of an AD risk factor such as Ε4 represents a
mobile, simple, and cost-effective new approach.
Although resting energy expenditure was significantly

lower in female E4 carriers at rest, the most striking ef-
fect of APOE was observed after participants underwent
a dietary carbohydrate challenge. There, E4+ individuals
failed to increase VO2, leading to a significantly lower
EE compared to non-carriers. Given the decreased VO2

and increased plasma lactate concentrations in Ε4+ sub-
jects, we hypothesize that these individuals are diverting
a higher fraction of glucose to aerobic glycolysis as op-
posed to oxidative phosphorylation. Along these lines,
analysis of the plasma metabolome revealed E4-
associated increases in pathways primarily related to
carbohydrate processing, specifically aerobic glycolysis.
These results were in line with our results from mouse
and cell models of APOE4, where our application of
scRNAseq, stable isotope-resolved metabolomics and
functional assays of cellular respiration showed that both
E4 expressing mouse brains and E4 expressing astrocytes
increase glucose flux through aerobic glycolysis at the ex-
pense of TCA cycle entry and oxidative phosphorylation.

Conclusions
Cumulatively, these data highlight a novel mechanism
whereby Ε4 lowers energy expenditure in females and
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decreases glucose oxidation by redirecting flux through
aerobic glycolysis (Summary Fig.). While many questions
remain, our study highlights novel roles for APOE and
sex in modulating systemic and cerebral glucose metab-
olism and provides a feasible method to assess APOE-
dependent metabolic signatures in pre-symptomatic
young individuals. These findings provide important
insights that may help to define dietary and pharmaco-
logical approaches to delay or prevent incipient AD in
high-risk individuals.
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Additional file 1. Differentially expressed genes in astrocytes (E4/E4 vs
E3/E3).

Additional file 2: Supplemental Table 1. Top 25 genes classifying the
eight distinct astrocyte clusters identified in scRNAseq analysis of E3 and
E4 mouse brains (clusters visualized in Fig. 1e). Supplemental Table 2.
Age, sex, and APOE genotype of cognitively normal individuals according
to Ε4 carriage and age cohort (young = 18–39, middle-aged = 40–65).
Values represent means +/− (SD). Supplemental Table 3. Clinical char-
acteristics of cognitively unimpaired individuals according to Ε4 carriage
and age cohort (young = 18–39, middle-aged = 40–65). Values represent
means +/− (SD). Ca, Caucasian; AA, African American; His, Hispanic; A,
Asian; BMI, body mass index. Supplemental Table 4. Plasma metabo-
lites of study participants analyzed by gas chromatography – before and
after a dietary glucose challenge. Supplemental Table 5. Pre-screening
checklist. A response of “yes” to any of the following resulted in exclusion
from the study. Supplemental Fig. 1. Cluster cell counts. Number of
cells in each graph-based cluster from all cells (a), and astrocytes only
(b). Bars represent mean number of cells in each cluster, with the num-
ber of E3 cells (circles) and E4 cells (squares) noted by symbols. Supple-
mental Fig. 2. APOE expression in single-cells and specific astrocyte
clusters. (a) UMAP visualization of E3 (left) and E4 (right) cells showing ex-
pression of APOE. APOE expression is primarily limited to cells identified
as astrocytes. (b) Expression of APOE in astrocyte-only UMAP (Aldoc +
cells). Inset shows the 8 distinct astrocyte clusters. (c) Violin plots show-
ing expression of APOE in all astrocytes (left) and within each astrocyte
cluster (right). (**P < 0.01, ***P < 0.001, unpaired t-test, two-tailed). Sup-
plemental Fig. 3. E4 is associated with decreases in many genes of the
oxidative phosphorylation KEGG pathway. Pathway map for KEGG path-
way “Oxidative Phosphorylation” showing genes differentially expressed
between E3 and E4 astrocytes. Genes highlighted in green are downreg-
ulated in E4, genes in red are upregulated in E4. Supplemental Fig. 4.
E4 is associated with decreases in many genes of the “Alzheimer’s dis-
ease” KEGG pathway. Pathway map for KEGG pathway “Oxidative Phos-
phorylation” showing genes differentially expressed between E3 and E4
astrocytes. Genes highlighted in green are downregulated in E4, genes in
red are upregulated in E4. Supplemental Fig. 5. LDH expression is in-
creased in E4 astrocytes; MCT expression is unchanged. (a) Gene expres-
sion of critical enzymes in glycolysis and TCA cycle in whole brain
homogenates from female E3 and E4 mice. Hk, hexokinase; Pfk, phospho-
fructokinase; Ldh, lactate dehydrogenase; Aco, aconitase; Idh, isocitrate de-
hydrogenase; Ogdh, oxoglutarate dehydrogenase; Sdh, succinate
dehydrogenase; Mdh, malate dehydrogenase; Cs, citrate synthase. Data

analyzed by multiple t-tests with Sidak multiple comparison correction.
(b) Slc16a1 and Slc16a3 gene expression in astrocytes from the scRNAseq
data from Fig. 1 (left), in primary astrocytes isolated from E3 or E4 mice
(middle), and in whole brain homogenates from female E3 or E4 mice
(right). (c) MCT1 and MCT4 expression was quantified in brain tissue from
mice expressing E3 or E4 via western blot (n = 7–8). MCT expression nor-
malized to β-actin loading control and expressed as a percent of E3
(value/mean E3). (d) Ldha and Ldhb gene expression in primary astro-
cytes. All gene expression values expressed as a percent of E3 (value/
mean E3). *P < 0.05, **P < 0.01, t-test. (e) LDH protein expression was
measured via western blot in primary astrocytes expressing E3 or E4 (n =
8). LDH expression normalized to β-actin loading control and expressed
as a percent of E3 (value/mean E3). *p < 0.05, t-test. Supplemental
Fig. 6. Human indirect calorimetry study design. (a) Representative time
course of energy expenditure (EE) measures during the three periods of
the study (rest in gray, cognitive challenge in green, and glucose chal-
lenge in orange). Data was only analyzed during the last 25 min of the
resting and glucose periods and during a common 5–15 min span during
the cognitive challenge in which all 100 subjects were actively engaged
in the task – denoted by grey bar on x axis. Blood was drawn immedi-
ately prior and after the glucose challenge. (b) Representative photo of a
participant during the resting challenge connected to the Ultima MGX in-
direct calorimetry (IC) system. (c) Example slides from the Novel Image
Novel Location test used as a cognitive challenge. (d) The glucose chal-
lenge consisted of a blood draw, followed by ingestion of the 50 g sugar
drink (all subjects consumed drink within 90 s), followed by IC measure-
ment, and a second blood draw. Supplemental Fig. 7. Respiratory Ex-
change Ratio (RER) does not differ by APOE genotype. Respiratory
exchange ratio (RER) (VCO2/VO2) was not significantly different between
APOE genotypes across any of the three periods tested. Supplemental
Fig. 8. E4 effect on resting energy expenditure (a) E4 non-carriers’ (n =
61; blue) and E4 carriers’ (n = 33; purple) average resting energy expendi-
tures were determined and stratified by young and middle-aged. (*P <
0.05, ***P < 0.001, unpaired t-test, two-tailed). (b) This was repeated for
only male participants (*P < 0.05, unpaired t-test, two-tailed; E4- total n =
17, young n = 13, middle-aged n = 4; E4+ total n = 6, young n = 5,
middle-aged n = 1). (c) Average EE was plotted over the resting period
for females and (d) males. Dotted lines indicate liner regression results
and shaded area are SEMs. Supplemental Fig. 9. Novel image novel lo-
cation object recognition test response accuracy by APOE genotype. (a)
The novel-image-novel-location (NINL) object recognition test contains 7
sets of 12 slides. Each slide has 3 images and 4 possible locations. Each
slide is viewed for eight seconds in the order as follows: See Set A, See
Set B. Test Set A, See Set C, Test Set B, See Set D, Test Set C, etc. To be
considered correct, subjects must identify both the type of change and
in which quadrant the change has occurred. The test is designed so that
on average subjects answer 60–80% of questions correctly. Total percent
correct was calculated for each genotype (b) and stratified by E4 carriage.
(c) Individual slopes of EE after the cognitive challenge showing an aver-
age decrease in EE after the challenge. Supplemental Fig. 10. E4 effect
on energy expenditure during glucose challenge in all subjects (left col-
umn), and in males only (right column) (a) Energy expenditure (b) VCO2

and (c) VO2 was plotted over the glucose challenge period in all E4- (n =
61; blue) and E4+ (n = 33; purple) participants. (*P < 0.05, Two-way
ANOVA repeated measures). (d) Thermic effect of feeding was deter-
mined as a ratio of E4 non-carriers in all, young, and middle-aged partici-
pants. (**P < 0.01, unpaired t-test, two-tailed) (e) Energy expenditure (f)
VCO2 and (g) VO2 was plotted over the glucose challenge period in male
participants (E4- n = 17; E4+ n = 6). Dotted lines show linear regression
trend line, shaded areas refer to SEM. (h) Thermic effect of feeding was
determined as a ratio of E4 non-carriers in all, young, and middle-aged
male participants. Supplemental Fig. 11. VCO2 values during the glu-
cose challenge period. (a) Time course of average VCO2 values of Ε4-
and Ε4+ females during the glucose challenge period. Dashed lines refer
to linear regression result. (b) AUC of VCO2 for all participants. (a, Two-
way ANOVA repeated measures; b, One-way ANOVA). Supplemental
Fig. 12. Plasma lactate assessed via enzymatic assay. (a) Lactate values
quantified by GCMS (relative abundance, y-axis) strongly correlate with
lactate values (uM) assessed via enzymatic assay. (b) E4 carriers had
higher plasma lactate pre-drink and a trend toward higher lactate
post-drink (p = 0.09) compared to non-carriers, as measured via
enzymatic assay.
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