Fatty Acid Analysis of the Transgenic Tobacco Expressing A Delta 6-Desaturase Gene from *Microula sikkimensis*

Shujuan Wu
Lanzhou University, China

Lijing Zhang
Lanzhou University, China

Xiaolong Chen
Lanzhou University, China

Xiumei Miao
Lanzhou University, China

Decao Niu
Lanzhou University, China

See next page for additional authors

Follow this and additional works at: https://uknowledge.uky.edu/igc

Part of the [Plant Sciences Commons](https://uknowledge.uky.edu/igc) and the [Soil Science Commons](https://uknowledge.uky.edu/igc)

This document is available at https://uknowledge.uky.edu/igc/22/1-4/20

The XXII International Grassland Congress (Revitalising Grasslands to Sustain Our Communities) took place in Sydney, Australia from September 15 through September 19, 2013.
Publisher: New South Wales Department of Primary Industry, Kite St., Orange New South Wales, Australia

This Event is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in International Grassland Congress Proceedings by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Presenter Information
Shujuan Wu, Lijing Zhang, Xiaolong Chen, Xiumei Miao, Decao Niu, and Hua Fu

This event is available at UKnowledge: https://uknowledge.uky.edu/igc/22/1-4/20
Fatty acid analysis of the transgenic tobacco expressing a delta 6-desaturase gene from \textit{Microula sikkimensis}

\textbf{Shujuan Wu, Lijing Zhang, Xiaolong Chen, Xiumei Miao, Decao Niu and Hua Fu}

The State Key Laboratory of Grassland Farming Systems, College of Pastoral Agriculture Science and Technology, Lanzhou University, P O Box 61, Lanzhou 730000, People’s Republic of China

Contact email: lijingzhang@lzu.edu.cn

\textbf{Keywords:} Delta 6-desaturase, transgenic tobacco, fatty acid analysis, \(\gamma\)-linolenic acid, octadecatetraenoic acid.

\section*{Introduction}

\(\gamma\)-Linolenic acid (GLA, 18:3\(\Delta^6,9,12 \)) and octadecatetraenoic acid (OTA, 18:4\(\Delta^6,9,12,15 \)) are important polyunsaturated fatty acids (PUFAs), which have been proved to be benefit for human health (Fan and Chapkin 1998; Whelan 2009). Currently, fish are the predominant source of PUFAs. However, with the growth of world’s population and the more nutrition requirements, fishery resources are shrinking. Alternative sources of PUFAs are being investigated (Truksa \textit{et al.} 2009). The major oil crops do not contain GLA and OTA, only several plant species contain these important fatty acids in their leaf lipids and seed oils (Zhou \textit{et al.} 2006). Genetic modification of oil crops may be an effective approach to produce these fatty acids. This process requires an enzyme–delta 6-desaturase, which can introduce a double bond at the delta 6 position (Mees \textit{et al.} 1998a). Tobacco (NC89) was transformed by the leaf \textit{Agrobacterium tumefaciens} MsD6DES gene in plants, the gene was introduced into tobacco under the control of CaMV 35S promoter via \textit{Agrobacterium} tumefaciens GV3101 by freeze–thaw transformation method (Chen \textit{et al.} 1994). Tobacco (NC89) was transformed by the leaf disk method according to Horsch \textit{et al.} (1985). Initial transformants were selected by 20 \(\mu\)g/ml hygromycin B.

\section*{Fatty acid analysis}

Extraction and methylation of fatty acid from tobacco leaves were carried out according to the method of Mao \textit{et al.} (2012). Gas chromatography-mass spectrometry (GC-MS) 6890N /5975C (Agilent Technologies) was used to analyze the fatty acid methyl esters. Gas chromatography was as follows: 70\(^\circ\)C for 3 min, followed by a gradient of 15\(^\circ\)C/min from 70\(^\circ\)C to 190\(^\circ\)C, 2 min at 190\(^\circ\)C, and a gradient of 5\(^\circ\)C/min from 190\(^\circ\)C to 230\(^\circ\)C and 12 min at 230\(^\circ\)C. The fatty acid methyl esters were identified using the NIST 08 mass spectrum libraries by comparison of retention times with standard compounds (Sigma, United States).

\section*{Results}

To determine the function of the MsD6DES gene in plants, the gene was introduced into tobacco under the control of CaMV 35S promoter via \textit{Agrobacterium} tumefaciens transformation. Wild-type tobacco had no GLA and OTA but significant amount of linoleic acid (LA, 18:2\(\Delta^9,12 \)) and \(\alpha\)-linolenic acid (ALA, 18:3\(\Delta^9,12,15 \)), which are substrates for biosynthesis of GLA and OTA, respectively. The fatty acid composition of transgenic tobaccos containing only the empty plastid was similar to that of wild-type plants, while, two novel fatty acids GLA and OTA were present in transgenic tobaccos with pCAM1301-MsD6D. The content of GLA was 1.2\% of total fatty acids in leaf lipids, which was slightly less than that of OTA (1.6\% of total fatty acids). The combined delta 6-desatured fatty acids reached 2.8\% of total fatty acids. The conversion rate of LA to GLA and ALA to OTA were 8.4 and 3.4, respectively (Table 1).

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
\textbf{Plant} & \textbf{Fatty acid (%)} & & & & & & \\
\hline
 & 16:0 & 18:0 & 18:1 & LA & GLA & ALA & OTA \\
\hline
WT\(^a\) & 16.3±0.2 & 4.1±0.1 & 3.0±0.1 & 15.6±0.3 & – & 51.6±1.1 & – \\
\hline
pCAMBIA\(^b\) & 15.7±0.1 & 4.6±0.1 & 3.7±0.1 & 14.8±0.5 & – & 52.8±0.3 & – \\
\hline
MsD6D\(^c\) & 18.8±0.4 & 3.5±0.2 & 2.7±0.2 & 13.1±0.2 & 1.2±0.1 & 45.2±0.8 & 1.6±0.1 \\
\hline
\end{tabular}
\caption{Fatty acid composition (% w/w) in transgenic tobacco leaves}
\end{table}

\(^a\) Wild type tobacco; \(^b\) Transgenic tobacco plants containing the empty pCAMBIA1301 vector; \(^c\) Transgenic tobacco plants expressing the MsD6DES gene; \(^d\) Conversion rate of the total available substrate to the desaturated product

© 2013 Proceedings of the 22nd International Grassland Congress 389
Discussion

In this research, two novel fatty acids GLA and OTA were detected in transgenic plants. Delta 6-desaturases from some plants exhibited different substrate selectivity. In this study, the content of OTA in transgenic tobacco leaves was slightly higher than that of GLA. It may be due to the amount of ω3 substrate α-linolenic acid (ALA, 18:3\(^{\Delta 9, 12, 15}\)) was higher than that of ω6 substrate linoleic acid (LA, 18:2\(^{\Delta 9, 12}\)). However, the conversion rate of LA to GLA was 2.5 times higher than that of ALA to OTA. It appears that the MsD6DES gene prefers the ω3 substrate ALA to the ω6 substrate LA (Table 1). Similar results were found in *Echium gentianoides* and *Echium plantagineum* (García-Maroto et al., 2006; Zhou et al., 2006). However, the delta 6-desaturase gene from *Primula vialii* showed a preference for the substrate ALA (Sayanova et al., 2003). Further work will be continued to characterize the other functions of the MsD6DES and the PUFA metabolic pathway. Understanding the PUFA biosynthesis may be benefit for engineering the oilseed plants to produce these useful fatty acids.

Acknowledgments

This work was supported by the National Basic Research Program of China (2007CB108903), the National Support Project for Science and Technology in China (2012BAD13B05) and the Special Fund for Agroscientific Research in the Public Interest (201203041).

References

Whelan J (2009) Dietary stearidonic acid is a long chain (n-3) polyunsaturated fatty acid with potential health benefits. *Journal of Nutrition* 139, 5-10.