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RESEARCH ARTICLE Open Access

Adaptation mechanism and tolerance of
Rhodopseudomonas palustris PSB-S under
pyrazosulfuron-ethyl stress
Xiang-Wen Luo1,2†, De-Yang Zhang1,2†, Teng-Hui Zhu2, Xu-Guo Zhou3, Jing Peng1,2, Song-Bai Zhang1* and
Yong Liu1,2*

Abstract

Background: Pyrazosulfuron-ethyl is a long lasting herbicide in the agro-ecosystem and its residue is toxic to crops
and other non-target organisms. A better understanding of molecular basis in pyrazosulfuron-ethyl tolerant organisms
will shed light on the adaptive mechanisms to this herbicide.

Results: Pyrazosulfuron-ethyl inhibited biomass production in Rhodopseudomonas palustris PSB-S, altered cell
morphology, suppressed flagella formation, and reduced pigment biosynthesis through significant suppression of
carotenoids biosynthesis. A total of 1127 protein spots were detected in the two-dimensional gel electrophoresis.
Among them, 72 spots representing 56 different proteins were found to be differently expressed using MALDI-
TOF/TOF-MS, including 26 up- and 30 down-regulated proteins in the pyrazosulfuron-ethyl-treated PSB-S cells.
The up-regulated proteins were involved predominantly in oxidative stress or energy generation pathways, while
most of the down-regulated proteins were involved in the biomass biosynthesis pathway. The protein expression
profiles suggested that the elongation factor G, cell division protein FtsZ, and proteins associated with the ABC
transporters were crucial for R. palustris PSB-S tolerance against pyrazosulfuron-ethyl.

Conclusion: Up-regulated proteins, including elongation factor G, cell division FtsZ, ATP synthase, and superoxide
dismutase, and down-regulated proteins, including ALS III and ABC transporters, as well as some unknown proteins
might play roles in R. palustris PSB-S adaptation to pyrazosulfuron-ethyl induced stresses. Functional validations of these
candidate proteins should help to develope transgenic crops resistant to pyrazosulfuron-ethyl.

Keywords: Pyrazosulfuron-ethyl, Rhodopseudomonas palustris PSB-S, Cytology, Proteomic, Adaption mechanism

Background
Pyrazosulfuron-ethyl, one of the acetolactate synthase
(ALS; EC4.1.3.18) inhibiting herbicides in the sulphony-
lurea family [1], has been widely used to control weed
growth in commercial cereal, soybean, and vegetable
fields. Due to its high herbicidal activity (2–100 g/hm2),
specific plant selectivity, very low aquatic life toxicity,
and low bio-concentration in the non-targeted organ-
isms [2, 3], utilization of pyrazosulfuron-ethyl in China

has been increased significantly to reduce the labor in-
tensity and increase the input-output ratio [4]. However,
pyrazosulfuron-ethyl is also known to be a long lasting
herbicide in the agro-ecosystem (t1/2 > 74.6 d for
pyrazosulfuron-ethyl in soil with half maximum water
holding capacity) [5], and its residue is toxic to certain
food crops and others organisms [6, 7]. This sensitivity
limited the potential application of pyrazosulfuron-ethyl
in many important food crops.
Chemicals of sulfonylurea family could change the

cell structure of mouse pancreatic β-cells and pancre-
atic islet cells [8, 9]. Sulphonylurea herbicide
tribenuron-methyl could change anther cell morph-
ology and resulted in male sterility of rapeseed
(Brassica napus) and Arabidopsis [10]. The plastid
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ultrastructure was abnormal in pollen mother cells and
tapetal cells in male sterility of Brassica napus L treated
by sulphonylurea herbicide monosulfuron ester sodium
[11]. Pyrazosulfuron-ethyl also alter the cell structure
of degrading microbacteria [12]. It is rational to deduce
pyrazosulfuron-ethyl alter the cell morphology of or-
ganism, which should be one of the vital adaptation
against pyrazosulfuron-ethyl.
To counteract the toxicity of pyrazosulfuron-ethyl

residual in the agro-ecosystem, crops need to be im-
proved to show better tolerance or resistance to
pyrazosulfuron-ethyl treatment though various adap-
tions and/or modifications [13, 14]. To date, only a
few genes, including ALS genes and cytochrome P-450
gene, were cloned and characterized to be resistant
genes against herbicides in the sulphonylurea family
[15–17]. However, successful incorporation of these
resistant genes into commercial crops still needs time
and effort.
Proteomics is a quick and high throughput technol-

ogy for identifications of proteins in cells or in tissues
grown under various conditions. One of the protomic
technologies utilizes two-dimensional gel electrophor-
esis followed by protein identifications through mass
spectrometry. It has been employed by many research
groups to uncover the strategies used by plants to
combat stresses caused by herbicide applications [18,
19]. To date, this technology has not been used to
elucidate the molecular mechanisms controlling the
resistance in bacteria to sulphonylurea herbicides,
despite of the current knowledge on toxicology of de-
creasing diversity of soil microbial communities and
inhibiting population growth tests to Azospirillum
lipoferum and Bacillus megaterium against sulphony-
lurea herbicides [20].
Bacterial strains belong to genus Rhodopseudomonas

are known have excellent capacities of hydrogen produc-
tion, carbon dioxide fixation and organic compounds
degradation [21]. Moreover, R. sp. S9–1 was documented
with high concentration pyrazosulfuron-ethyl tolerance
(upto 800 μg/ml), which probably contributed to its
mutant ALS gene [22]. However, the adaption mechanism
of bacterial strains of Rhodopseudomonas under
pyrazosulfuron-ethyl stress remained unclear. R. palustris
PSB-S was isolated and characterized to be resistant to
pyrazosulfuron-ethyl at a concentration of 200 μg/mL
[23]. In this study, we conducted cytological and protein
expression studies using pyrazosulfuron-ethyl treated and
non-treated PSB-S cells through electron microscopy and
2-dimensional gel-based comparative proteome. We
consider that the results presented in this paper may pro-
vide useful information or potential strategies to improve
crop sensitivity to this herbicide through molecular
manipulations.

Methods
Bacterial strain, culture conditions and growth media
Rhodopseumonas palustris PSB-S was identified previ-
ously (DDBJ/ENA/GenBank accession no. of draft gen-
omic sequence: JHAA00000000) and stored at − 80 °C
till use.
Culture medium [24] used in this study contained 2.0

g Sodium L-malatate, 2.0 g Sodium glutamate, 1.0 mg
KH2PO4, 0.5 g NaHCO3, 0.2 g MgSO4·7H2O, 0.1 g
CaCl2·2H2O, 2.0 mg MnSO4·H2O, 0.5 mg FeSO4·7H2O,
0.5 mg CoCl2·2H2O, and 0.5 g yeast extract in one liter
deionized H2O. For solid medium, 15 g technical grade
agar was added to one liter liquid medium. After auto-
claving, pyrazosulfuron-ethyl was added to the medium
at specific concentrations as stated below.
Approximately 109 cfu/mL cells were inoculated to a

120 ml growth medium in 130 mL serum bottles with
airproofed rubber plugs and the cultures were grown in
a chamber illuminated at approximately 3000 lx and at
30 ± 1 °C. Growth of the cultures was determined by
Spectrophotometry at 660 nm.

Scanning and transmission electron microscopy
(SEM and TEM)
Morphology of R. palustris PSB-S cells was determined
by SEM. Briefly, freshly prepared and concentrated cell
suspensions were fixed and dried before SEM using an
JEXL-230 scanning electron microscope (Japan) as
described previously [25].
To determine ultrastructural changes in the R. palus-

tris PSB-S cell, cells were fixed and then embedded in
LR White resin as described [25]. The specimens were
sectioned with a Leica EM UC7 Ultramicrotome (Leica
Microsystems, Germany). The sections (70 nm thick)
were mounted on 600-mesh formvar-coated copper
grids, and examined and photographed under a trans-
mission electron microscope (JEM-1230, JEOL, Tokyo,
Japan) as described [25].

Quantification of photopigments in strain PSB-S cells
Photopigments in strain PSB-S cells were extracted using
a modified methanol/acetone extraction method [26].
The cells were collected by centrifuging, rinsed and re-
suspended in ddH2O. Sonicated cell broth was extracted
with methanol and acetone. The photopigment Caroten-
oid (Car) was then quantified by the Jassen formula, C
= (D·V·f × 10)/2500 [C, Car quantification (mg); V, total
volume of extract buffer; f, dilution fold; D, photodensity
of Car at the maximum absorption peak]. The photopig-
ment bacteriochlorin (Bchl) was calculated by the
Beer-Lambert-Bouguer law, C = D·V·F/(a·L) × 103 [a, ex-
tinction coefficient (L/g·cm); L, optical distance (cm)].
Quantification of total photopigments was determined
by addition of Car and Bchl.
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Protein extraction
Total protein was extracted from R. palustris PSB-S culture
cells using a bacterial protein extraction kit (BigBlueInterac-
tive, NY). Concentrations of total protein in extracts were
estimated by the Bradford assay [27]. For each treatment,
three protein extracts from three different flasks were
prepared.

Protein separation and quantification through 2D-DIGE
electrophoresis
The resulting total protein samples were rehydrated in
the sample buffer [8M urea, 2M thiourea, 0.5% CHAPS,
40 mM Tris-base, 0.02% bromophenol blue, 1.2% DTT,
carrier ampholytes 0.52% (v/v) Pharmalyte] and sepa-
rated on non-linear pH 4–7 gradient immobiline Dry-
Strips (17 cm-long) (GE Healthcare Bio-Sciences AB,
Beijing). For the second dimension separation, strips
were cup-loaded at the anodic side of 12% SDS-PAGE
gels (18 × 20 cm) after overnight rehydration at room
temperature [28].

Comparative analysis and protein identification
Gels were stained with Coomassie blue and images of
the gels (three gels per sample) were captured using the
TyphoonTM 9410 scanner (GE Healthcare) after
destaining [54]. Protein spot were quantified based on
the digitized staining intensity within the spot boundar-
ies and used for calculations of protein expressions. The
normalized expression profile data were then used to
statistically determine the expression changes of individ-
ual protein spots. Protein spots showing t ≤ 0.05 by the
Student-T test were considered to be significantly differ-
entially regulated.
The protein identification process was as previ-

ously reported [29]. The protein spots of interest
were digested in-gel with bovine trypsin, extracted
with 0.1% trifluoroacetic acid in 60% acetonitrile,
and analyzed by mass spectrometry (4700 Proteomics
Analyzer, ABI, CA) equipped with a pulsed N2 laser
(337 nm). Calibrations were conducted using the
standard peptides. All peptide mass fingerprint spec-
tra were internally calibrated with the trypsin autoly-
sis peaks, and all the known contaminants were
excluded during the process. The measured tryptic
peptide masses were used for a MASCOT (version
2.2) search at the nonredundant NCBI (NCBInr)
database and Swissprot database. The peptide mass
spectra searching parameters were set as: fragment
mass tolerance: ±0.1 Da, fragment mass/mass toler-
ance: ±0.5 Da, variable modification: oxidation, and
fixed modification of cysteine by carboxymethyl (car-
bamidomethylation, C), and peptide missed cleavage:
1+. Proteins identified by MALDI-TOF/TOF-MS/MS

with C.I. % scores above 95% were selected and con-
sidered as significant.

Bioinformatics analysis
The GO enrichment analysis was performed using the
Blast2GO [30]. Metabolic pathways of the identified pro-
teins were generated according to the KEGG database
(http://www.genome.jp//kegg/). In addition, the deferen-
tially expressed proteins were further analyzed using the
Search Tool for the Retrieval of Interacting Genes/Pro-
teins (STRING; http://string.embl.de/) to build a func-
tional protein association network.

Total RNA preparation and quantitative RT-PCR (qRT-PCR)
Total RNA from cells of R. palustris PSB-S was ex-
tracted using TRIzol® reagent as instructed (Invitrogen,
Beijing). The quality of total RNA samples was assessed
by agarose gel electrophoresis and the concentration of
total RNA was estimated using a spectrophotometer.
cDNA synthesis was performed using an M-MLV RTase
cDNA synthesis kit (TranGen, Beijing). Quantitative
PCR (qPCR) was performed using the TransStart Green
qPCR SuperMix UDG (TranGen, Beijing). The qPCR re-
action mixture (20 μL) consisted of 0.5 μL cDNA, 10 μL
UDG, F/R primer (0.5 μL/each), and 8.5 μL ddH2O. After
2 min incubation at 50 °C, the reaction was set at 95 °C
for 10 min followed by 44 cycles of amplification (95 °C
for 5 s, 60 °C for 15 s and 72 °C for 10 s). The last step
reaction was carried out at 95 °C for 15 s, 65 °C for 5 s
and 95 °C for 5 s. Expression level of ribulose 1,5-bispho-
sphate carboxylase/oxygenase (RubisCO) gene [19] was
used as the internal control during the study. Relative
expression of each gene was determined using the rela-
tive quantification (ddCt) method and was based on
three biological replicates. All the primers used for
qRT-PCR are listed in Additional file 1: Table S2.

Statistical analysis
All the statistical analyses were performed using the
Data Processing System (DPS, version 9.50) [31]. Values
are showed as mean ± standard deviation (SD). Samples
showing ρ < 0.05 were considered to be statistically sig-
nificant different.

Results
Pyrazosulfuron-ethyl inhibited the growth of R. palustris
PSB-S
The growth of strain PSB-S in PSB medium is shown in
Fig. 1. The result of cultivation phase (day 3–11) indi-
cated that the growth of strain PSB-S was significantly
inhibited in growth medium containing 50 μg/mL
pyrazosulfuron-ethyl, especially during in the exponen-
tial growth phase (i.e., day 3–7). The biomass of strain
PSB-S cells grown in the PSB medium with 50 μg/mL
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pyrazosulfuron-ethyl at day 3–7 were only about 15–
36% of the cells grown in the PSB medium. During the
equilibrium phase of cell growth (i.e., day 7–9), the
growth of cells in the PSB medium with 50 μg/mL
pyrazosulfuron-ethyl was increased rapidly. After day 9,
the biomass of cells grown in the PSB medium with
50 μg/mL pyrazosulfuron-ethyl remained stable till day
11 but still significantly lower than the biomass of cells
grown in the PSB medium without pyrazosulfuron-ethyl.
Consequently, PSB-S cells were harvested at 7 days post
culturing in the PSB medium with or without 50 μg/ml
pyrazosulfuron-ethyl and used for further cytological
and proteomic analyses.

Effect of pyrazosulfuron-ethyl on R. palustris PSB-S cell
morphology
Surface morphology of pyrazosulfuron-ethyl-treated
cells was examined by scanning electron microscopy
and compared with that shown by the control cells
(Fig. 2). Three distinct changes were observed on the
surface of pyrazosulfuorn-ethyl-treated bacterial cells.
First, pyrazosulfuorn-ethyl treatment inhibited polar
flagella generation on bacterial cells. Second, the
pyrazosulfuorn-ethyl-treated cells appeared significantly
longer (0.74 ± 0.05 μm in diameter and 2.16 ± 0.38 μm in
length) than that of the control cells (0.62 ± 0.04 μm in
diameter and 3.38 ± 0.54 μm in length). Third, the
pyrazosulfuorn-ethyl-treated cells often bent (see white
arrows) and budded (see red arrows) while the control
cells remained oval or short rod like shapes.
Intracellular alterations caused by pyrazosulfuron-ethyl

treatment was studied by transmission electron micros-
copy (TEM). PSB-S cells treated with pyrazosulfuron-ethyl
were fixed, embedded and sectioned for TEM. Under the
electron microscope, electron dense areas were observed
alongside the cell membrane (arrows, Fig. 3). These

electron dense areas are known to accumulate lamella
photo-pigments. Compared with the control cells, the
electron dense areas in the pyrazosulfuron-ethyl-treated
cells was smaller, suggesting inhibition of photo-pigments
biosynthesis in these cells.
Two known photo-pigments, bacteriochlorin and caroten-

oid, were extracted from the pyrazosulfuron-ethyl-treated
or non-treated strain PSB-S cells and quantified
(Fig. 4). The result indicated that the accumulation of
carotenoid in the pyrazosulfuron-ethyl-treated cells
was significantly inhibited by about 23.04% compared
with the control cells. The biosynthesis of bacteriochlorin
in the pyrazosulfuron-ethyl-treated cells was, however, not
affected significantly by the pyrazosulfuron-ethyl treat-
ment. Although the total photo-pigments biosynthesis in
the pyrazosulfuron-ethyl-treated cells was inhibited sig-
nificantly, this inhibition was likely caused by the reduc-
tion of carotenoid biosynthesis.

2-DE gel and mass spectrometry of protein patterns from
R. palustris PSB-S cells
To reveal the protein expression changes in R. palustris
PSB-S cells under pyrazosulfuron-ethyl stress, we ex-
tracted total protein from R. palustris PSB-S cells treated
with 50 μg/mL pyrazosulfuron or non-treated control
cells for proteome profile analyses by 2-DE. Protein ex-
tracts from three independent biological samples per
treatment were visualized individually in three technical
replicate gels for comparison. About 1127 detectable
protein spots were counted in each gel after Coomassie
Brilliant Blue staining (Fig. 5). The three sets of inde-
pendent biological samples ensured that the changes of
protein abundance in cells were reproducible and thus
reliable. Analyses of the gel images showed that over 246
protein spots were altered significantly in their expres-
sion according to the t-test (t < 0.05). Of these identified

Fig. 1 Effect of pyrazosulfuron-ethyl on R. palustris PSB-S growth. R. palustris PSB-S cultured in the PSB medium without 50 μg/ml pyrazosulfuron-
ethyl was used as a control CK. Cell biomass was measured at 1 to 17 days post culturing
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protein spots, 102 spots were suitable for further ana-
lyses by Mass Spectrometry. After mass spectrometry,
the protein spots were annotated using the Uniprot
Knowledgebase (www.uniprot.org) or the NCBI
(www.ncbi.nlm.nih.gov) database with BLASTP. Iden-
tities of 56 protein spots were successfully identified
while the other 46 protein spots remained unidentified
mainly due to their lower total ion score [C.I.; < 95%
(data not shown)].
Twenty six up- and thirty down-regulated proteins in

R. palustris PSB-S cells are shown in Additional file 1:
Table S1. The protein displaying the highest up-regulation
was elongation factor G (gi|169,830,041; + 24.83 fold;
protein spot number 1703), followed by a cell division

associated protein FtsZ (gi|115,524,129; + 7.49 fold;
protein spot 1604) and the ATP synthase subunit alpha
(gi|169,826,598; + 3.49 fold; protein spot 3507). The
protein showing the strongest down-regulation was a
periplasmic component of an ABC-type branched-chain
amino acid transport complex (gi|115,525,850; − 0.07 fold;
protein spot 7310) followed by a protein with unknown
function (hypothetical protein MT1820.1; gi|15,841,238;
− 0.13 fold; protein spot 6621).
Ten differential expressed proteins, including five

up-regulated and five down-regulated proteins, were
selected for validation analyses through quantitative
RT-PCR (qRT-PCR) using specific primers (Additional
file 1: Table S2). Results of the analyses indicated that

Fig. 2 Effect of pyraxosulfuron-ethyl on R. palustris PSB-S cell morphology. (a) CK; (b) pyraxosulfuron-ethyl. The cells were harvested at 7 days post
culturing and examined by Scanning Electron Microscopy. R. palustris PSB-S cells showing curving or budding are indicated with white and red
arrows, respectively. Bar = 5 μm

Fig. 3 Internal changes in R. palustris PSB-S cells treated with pyraxosulfuron-ethyl. (a) CK; (b) pyrazosulfuron-ethyl. R. palustris PSB-S cells were
fixed and embedded in the resin. Thin sections of the cells were examined for internal changes by TEM. Electron dense areas in the cells are
indicated with arrows
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the transcriptional levels of the selected genes agreed
with the protein expression profiles determined by the
proteomic analyses (Additional file 1: Figure S1).
The identified differentially expressed proteins were

used to determine the enriched GO categories, including
biological processes, molecular functions and cellular
localizations. The main enriched categories for the up-

and down-regulated proteins are shown in Additional
file 1: Fig. S2. The three major groups in the biological
processes category contained proteins involved in bio-
logical processes, small molecule metabolic processes
and biosynthetic processes (Additional file 1: Figure
S2A). The four main groups in the cellular localization
category were proteins related to cellular component,

Fig. 4 Effect of pyraxosulfuron-ethyl treatment on photo-pigments biosynthesis. Accumulation of carotenoid and bacteriochlorin in the pyraxosulfuron-
ethyl treated (pyraxosulfuron-ethyl) or non-treated control (CK) PSB-S cells was measured using a modified methanol/acetone extraction method. Each
treatment had three biological replicates. *, p< 0.05. Car, Carotenoid accumulation; Bchl, Bacteriochlorin accumulation; Total, total amount of Carotenoid
and Bacteriochlorin

Fig. 5 Proteome profiles for pyrazosulfuron-ethyl-treated (pyrazosulfuron-ethyl) or non-treated control (CK) R. palustris PSB-S cells. (a) CK; (b)
pyrazosulfuron-ethyl. Total protein was isolated from harvested cells and separated through 2-Dimensional Gel Electrophoresis (2DGE). After
staining with Coomassie blue, the gels were scanned using the TyphoonTM 9410 scanner. Deferentially expressed protein spots are indicated
with arrows and the numbers of the protein spots are shown adjacent to the arrows
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cell, cytoplasm, and intracellular (Additional file 1: Fig-
ure S2B). For the molecular function category, most
up-regulated proteins were grouped in the molecular
function, ion binding, transferase activity, and oxidore-
ductase activity groups. The down-regulated proteins
were, however, grouped in the molecular function, ion
binding, and ATPase activity groups respectively (Add-
itional file 1: Figure S2C).
In addition to GO, protein-protein interaction net-

works were also predicted in this study using STRING
Database (http://string-db.org/, version 10.0). As shown
in Fig. 6, the deferentially expressed proteins were
mainly enriched in the term synthesis and degradation
of ketone bodies (RPA4156) and was connected to
electron-transfer-flavoprotein (etfA) based on protein
homology. Term cysteine and methionine metabolism
(RPE_4204) was connected to malate dehydrogenase
(mdh) based on protein homology and term cell division
(RPE_2116) was linked to gene co-occurance. Term cel-
lular component organization (RPE_2116) was con-
nected to transcription elongation (nusG) as gene
co-occurrance.
RPA4156, etfA and their connected proteins are in-

volved in energy generation and homeostasis. These pro-
teins may affect bacterial cell survival. RPE_4204 and
mdh, and RPE_2116 and its interacted proteins are
known to participate in proteins synthesis and multipli-
cation. These proteins may be crucial for bacterial cells
propagation. RPE_2116, nusG and their interacted pro-
teins are known to be responsible for protein translation,
biosynthesis and cell structure. These protein may affect
bacterium cell morphology.

Discussion
Effect of pyrazosulfuron-ethyl on R. palustris PSB-S cell
cytological changes
Pyrazosulfuron-ethyl was reported to inhibit the activ-
ities of cellulolytic, proteolytic and phosphate solubiliz-
ing enzymes in soil bacteria [20]. In this study, the
cytological changes in R. palustris PSB-S cells treated
with pyrazosulfuron-ethyl included decrease of biomass
and cell size (Fig. 2). These changes may correlate with
the 7.49-fold up-regulation of cell division protein FtsZ
(protein spot 1604) in the pyrazosulfuron-ethyl-treated
cells. It was previously reported that FtsZ protein could
regulate the initial peptidoglycan synthesis, inhibit cell
division during the onset of cytokinesis, and increase the
length of bacterial and archaea cells [32]. Flagella bio-
synthesis was reported to be controlled by fla genes and
the cognate CheY protein [33]. In the current study, the
expressions of fla proteins and the CheY protein were
apparently not affected by pyrazosulfuron-ethyl treat-
ment according to the 2-DE gel analyses (Fig. 5,
Additional file 1: Table S1). We speculate that the loss of
polar flagella formation on the pyrazosulfuron-ethyl-treated
cells was caused by a significant reduction of biomass
production in the pyrazosulfuron-ethyl-treated cells. It is
also possible that of our 2-DE gel analyses were not
sensitive enough to detect the changes of these proteins as
previously described [34].
R. palustris can proliferate through two major devel-

opmental processes (i.e., binary fission under oxygen
limitation and illumination conditions or budding) [35].
Because pyrazosulfuron-ethyl treatment could induce R.
palustris PSB-S cells to bud under the oxygen limitation

Fig. 6 Protein-protein interaction networks predicted for differentially expressed proteins using STRING Database version 10.0
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and illumination conditions, it is possible that the
stresses caused by pyrazosulfuron-ethyl treatment per-
turbed the development of PSB-S cells. The reason why
R. palustris PSB-S can tolerate pyrazosulfuron-ethyl
treatment might be interpreted as the bacteria has
evolved both proliferation strategies mentioned above to
counteract the toxicity of pyrazosulfuron-ethyl.

Photopigment biosynthesis and photosynthetic rate
Rhodopseudomonas bacteria are purple nonsulfur photo-
trophic organisms with unique abilities to use light as its
energy source for photosynthesis. The photosynthetic re-
action complexes of Rhodopseudomonas bacteria contain
two photopigments (bacteriochlorin b and carotenoid)
that can convert carbon dioxide to cell mass [36]. Results
obtained in this study showed that pyrazosulfuron-ethyl
could significantly inhibit the biosynthesis of carotenoid
(Figs. 3 and 4), leading to a decrease in light aggregation
capacity [37]. As a compensation, the photosynthetic rate
in pyrazosulfuron-ethyl-treated R. palustris PSB-S cells
was up-regulated (protein spot 3507) (Additional file 1:
Table S1, KO00195, http://www.genome.jp/kegg-bin/
show_pathway?ko00195). This increased photosynthetic
rate may be considered as a strategy used by R. palustris
PSB-S cells to counteract the reduction of light aggrega-
tion. This strategy may serve as a crucial defense mechan-
ism in R. palustris PSB-S cells against pyrazosulfuron-ethyl
toxicity.

Cell homeostasis
Maintenance of a relatively constant internal cytosol
concentrations under different environmental stresses is
essential for most organisms to survive [38].
Pyrazosulfuron-ethyl is known to be hydrophobic [39].
This character may allow it to permeate into cells and
change the homeostasis of R. palustris PSB-S cells. To
counteract the perturbation, R. palustris PSB-S cells
down-regulated the expressions of proteins belonging to
the ABS transporter family (i.e., protein spot 5001, 8113,
6115, 7308, 7313, 7103 and 7310; Additional file 1: Table S1)
upon pyrazosulfuron-ethyl treatment. The down-regulation
of these ABS transporter family protein expressions might
resulted in limitation of pyrazosulfuron-ethyl penetration
into cytoplasm through cell membrane [40]. Prevention or
limitation of pyrazosulfuron-ethyl penetration into cell may
be crucial for R. palustris PSB-S to survive under the
pyrazosulfuron-ethyl stress.

Pyrazosulfuron-ethyl inactive target proteins
The active mechanism of herbicides in the sulfonylurea
family to kill weeds is to inhibit the catalytic activity of
acetolactate synthase (ALS), rather than to inhibit the
biosynthesis of ALS [41]. This active mechanism may
not apply to the results obtained in this study because

our qRT-PCR (Additional file 1: Fig. S1) and proteome
(Additional file 1: Table S1) analyses demonstrated that
the expression of ALS 3 catalytic subunit (protein spot
7613) and ALS 3 regulatory subunit (protein spot 8002),
the large and small subunit of ALS 3 protein complex,
were significantly down-regulated.
Plants harboring mutant acetolactate synthase (ALS)

genes were shown to be resistant to sulfonylurea herbi-
cides [42–44]. It was also reported that although the
activities of Salmonella typhimurium ALS II/ALS III or
Escherichai coli ALS III could be inhibited by
sulfometuron-methyl, their ALS I was insensitive to sul-
fometuron methyl [41, 45]. Like E. coli, R. palustris ALS
I and ALS III are encoded by ilvB and ilvHI, respectively,
while the missed ALS II is encoded by ilvG [46, 47]. In
this study, the expression of both ALS III subunits were
suppressed by pyrazosulfuron-ethyl treatment while the
expression of ALS I protein remained unchanged. This
finding may explain why R. palustris PSB-S is resistant
to pyrazosulfuron-ethyl application in field.
In bacteria, the function of ALS is known to involve iso-

leucine and valine biosynthesis [48]. It is possible that
down-regulation of ALS III protein expression in
pyrazosulfuron-ethyl-treated cells resulted in an
down-regulation of proteins involved in cysteine and me-
thionine metabolism (i.e., RPE_4204). In addition, the ex-
pressions of malate dehydrogenase (mdh) and proteins
important in cell division (RPE_2116) pathway were also
modulated (Fig. 6). ALS was also reported to play a distinct
role in sodium-ion homeostasis in plant cells, plant pattern-
ing and development [49] as well as isobutanol biosynthesis
[50], important for bacteria resistance to environmental
stress [51]. Consequently, we speculate that ALS III is a cru-
cial enzyme in metabolic pathway controlling R. palustris
PSB-S adaption to pyrazosulfuron-ethyl stress.

Proteins with unknown functions
Five down-regulated proteins were annotated as proteins
with unknown functions (protein spot 5006, 6107, 7104
and 7107) or hypothetical protein MT1820.1 (protein
spot 6621). Protein spot 5006 sheared partial sequence
homology with hypothetical protein blr5132 [52] which
was shown to have a conserved domain similar in struc-
ture to chorismate mutase important in synthesizing
essential amino acids, phenylalanine and tyrosine in
bacteria [53, 54]. Protein spot 6107 sheared a conserved
domain with enoyl-[acyl-carrier-protein] reductase of
Mycobacterium tuberculosis [55], a key enzyme in the
type II fatty acid synthesis system. Protein spot 7104 sheared
sequence homology with 3-oxoacid CoA-transferase subunit
A of Rhodopseudomonas palustris [36] known to be crucial
in energy generation [56]. Protein spot 7107 sheared
sequence homology with DNA-binding response regulator.
It was reported that suppression of this regulator abolished
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bacteria growth under phosphate limitation conditions [57].
Down-regulation of these four protein expressions in the
pyrazosulfuron-ethyl-treated PSB-S cells might result in in-
hibition of biosynthesis of essential amino acids and fatty
acid, and energy generation leading to a reduction of bio-
mass production in PSB-S cells (Fig. 1). The hypothetical
protein MT1820.1 (protein spot 6621) has no known
conserved domain. Its cellular localization and biological
function also remain obscure. Whether down-regulation of
this protein can affect PSB-S cell growth under the
pyrazosulfuron-ethyl stress requires further investigation.

Conclusion
Results presented in this paper showed pyrazosulfuron-ethyl
treatment caused significant changes in morphology and
photopigment biosynthesis in R. palustris PSB-S cells.
Changes in proteomic profile in the pyrazosulfuron-ethyl
stressed R. palustris PSB-S cells are also presented.
The up-regulated proteins are mainly involved in tran-
scription, stress response, or small molecule metabolism.
Up-regulation of protein expressions, including elongation
factor G, cell division FtsZ, and, ATP synthase, and super-
oxide dismutase, as well as down-regulation of protein
expressions, including ALS III and ABC transporters, and
other proteins with unkown functions may play roles in R.
palustris PSB-S survival and adaptation to pyrazosulfuron
ethyl stresses. Further functional studies are needed to
elucidate the functions of these proteins in bacteria
adaption to stresses. The proteins identified through these
studies should benefit the generations of transgenic crops
resistant to the toxicities of herbicides beloning to the
sulphonylurea family.

Additional file

Additional file 1: Figure S1. Comparison of results obtained through
protein expression analysis (blue bars) or qRT-PCR (red bars). The height
of the bars indicate the fold changes. Identification numbers of the
analyzed proteins are indicated. Figure S2. Gene ontology (Go) enrich-
ment of the identified up- or down-regulated proteins in R. palustris PSB-
S cells treated with 50 μg/ml pyrazosulfuron-ethyl. A protein was consid-
ered to be differentially expressed in the pyrazosulfuron-ethyl-treated R.
palustris PSB-S cells if t < 0.05. The GO enrichment analyses were per-
formed using Blast2GO. (A) Number of proteins belonging to various
groups in the biological process category. (B) Number of proteins belong-
ing to various groups in the molecular function category. (C) Number of
proteins belonging to various groups in the cellular localization category.
Table S1. Differentially expressed proteins during R.palustris PSB-S treated
with 50mg/L pyrazosulfuron. Table S2. Primers for qRT-PCR. (PDF 293 kb)
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