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Abstract
Linking root traits to plant functions can enable crop improvement for yield and

ecosystem functions. However, plant breeding efforts targeting belowground traits

are limited by appropriate phenotyping methods for large root systems. While

advances have been made allowing for imaging large in situ root systems, many of

these methods are inaccessible due to expensive technology requirements. The aim

of this work was to develop a plant phenotyping platform and analysis method suit-

able for assessing root traits of large, intact root systems. With the use of a purpose-

built imaging table and automated photo capture system, machine learning-based

image segmentation, and off-the-shelf trait analysis software, the developed method

yielded results of comparable accuracy to commercial root scanning platforms with-

out requiring access to prohibitively expensive equipment. This methodology enables

root studies to move beyond the size limitations of scanner-based methods, integrate

whole-system traits like root depth distribution, and save time on root image capture.

1 INTRODUCTION

Root system architecture, morphology, and chemistry are

suites of root traits—understood in this paper as measur-

able, genetically determined characteristics of plant roots—

that influence a wide range of plant and ecosystem func-

tions (Freschet, Roumet, et al., 2020). These include nutri-

ent uptake (Fletcher et al., 2020; Guo & York, 2019),

Abbreviations: DI, deionized; DSLR, digital single-lens reflex; GUI,

graphical user interface; LAURIS, LAURootImagingSystem; MBE, mean

bias error; nRMSE, normalized root mean square error; PVC, polyvinyl

chloride; R2, coefficient of determination; RAM, random access memory;

RANSAC, random sample and consensus algorithm; RMSE, root mean

square error; TIFF, Tag Image File Format.
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water uptake (Comas et al., 2013), nutrient cycling (Man

et al., 2020; Moore et al., 2020; Phillips et al., 2011),

and soil carbon storage (Poirier et al., 2018; Rossi et al.,

2020). Because breeding for specific root traits could lead

to improvements in crop efficiencies and ecosystem services

(McGrail et al., 2020; Tracy et al., 2020), there is a grow-

ing interest in understanding variation in root traits. Indeed,

per Web of Science (Thomson Reuters), publications related

to root phenotyping and selection for belowground traits

increased five-fold between 2000 and 2020. However, recov-

ering intact root systems from soils is a significant challenge,

and root-based phenotyping and breeding efforts remain

constrained by the limited phenotyping technologies and

methodologies available (Downie et al., 2015; McCormack
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et al., 2017; Paez-Garcia et al., 2015; Reynolds et al., 2021;

Topp et al., 2016).

One area needing improvement, and the focus of this arti-

cle, is the imaging and analysis of large, intact root systems.

One reason for this is that many phenotyping approaches rely

on imaging seedlings, but there is uncertainty about how well

root traits in young plants correspond to traits in more devel-

oped plants (Rich et al., 2020). In addition, some field-based

root measurement techniques for larger plants, such as “shov-

elomics” (Trachsel et al., 2011) and soil coring, measure only

portions of the root systems and use models to extrapolate

to the whole system (Paez-Garcia et al., 2015). These mod-

els can be improved using measurements of whole systems

taken at multiple developmental stages (McCormack et al.,

2017). Techniques have been developed to address the need

for both better data for models and more accurate in situ

large root imaging, including X-ray computed tomography,

magnetic resonance imaging, and positron emission tomog-

raphy (Atkinson et al., 2019; Messina et al., 2021). However,

these methods require expensive equipment that is relatively

inaccessible for most plant researchers (Topp et al., 2016).

Another potential, more accessible route for ex situ measure-

ment of large root systems proposed here is the use of a semi-

automated custom lightbox-based system designed for large,

intact root systems.

Schematics for root light boxes paired with imaging soft-

ware have been published as far back as 1980 (Voorhees et al.,

1980), and as recently as 2020 (Seethepalli et al., 2020). The

basic design has remained relatively stable over time, fea-

turing a camera, light source, and light diffuser (the com-

ponents of the light box), and often an acrylic or glass box

that is placed on the light box and filled with water to keep

the roots from matting (Clark et al., 2013; Lobet & Draye,

2013; Voorhees et al., 1980). Many of these camera and light

box systems follow the same basic principles as flatbed scan-

ners, taking high contrast, 2-D images of backlit roots. How-

ever, digital cameras often use different sensors for image

construction and can require corrections for lens distortions

or the capture of multiple images rather than a single scan.

Some systems incorporate additional features such as rotat-

ing stands for gel-grown plants for 3D reconstructions of

the roots (Clark et al., 2011; McGrail & McNear, 2021) or

clamps to hold roots upright in lieu of floating them in water

(Seethepalli et al., 2020).

A key constraint to the adoption of custom light boxes

in root phenotyping is lighting non-uniformity. The pro-

cess of distinguishing roots from the background, or image

segmentation, often relies on uniform lighting to differ-

entiate pixel intensities (Yu & Fan, 2017; Zhang et al.,

2013). Indeed, scanners are recommended for deconstruc-

tive root imaging due to the guaranteed uniformly lit images

(Freschet, Pagès, et al., 2020). While flatbed scanners are

ubiquitous in root studies, most available scanners offer a

Core Ideas
∙ Phenotyping of large intact root systems is needed

to accelerate crop improvement.

∙ Advancements in image segmentation have

removed the requirement of uniform backlighting.

∙ Image quality and resolution of our method is equal

to that of scanner-based methods.

∙ Accurate trait data can be extracted from images

taken with relatively inexpensive equipment.

23 × 28 cm or 30 × 40 cm field of view, and reported root

lengths reach up to 10,000 mm per scan (Adu et al., 2014;

Lobet & Draye, 2013; Mohamed et al., 2017). This means

that scanning a mature, 400,000 mm maize root system (Han

et al., 2020) could take 40 or more individual scans even on

the larger end of office scanners. Large-format flatbed scan-

ners, more often used for art preservation, can run upwards of

USD$10,000 and are still of limited size. Given the aforemen-

tioned interests in large root imaging, refining light box tech-

niques remains relevant and has become more feasible with

advances in image processing techniques.

Advances in deep learning and other machine learning

approaches have yielded promising results for image segmen-

tation in other research fields. Newer segmentation methods

use trainable machine-learning algorithms to classify objects

in images, rather than relying on basic thresholding, and

have begun to appear in open-source image analysis software.

For example, Trainable Weka Segmentation is a tool devel-

oped for the segmentation of microscopy images (Arganda-

Carreras et al., 2017). It relies on user input to train algorithms

to assign pixels to different classes and is readily adaptable for

root-background segmentation. RootPainter is another image

segmentation tool being developed with roots in mind that

similarly uses deep learning and user annotation to distinguish

roots from background, including backgrounds as heteroge-

neous as soil (Smith et al., 2020). While in its current form it

requires a higher level of technical experience to set up, Root-

Painter shows an encouraging direction for the future of root

image analysis.

The aim of this research was to develop a low-cost, large-

format 2-D root imaging methodology and provide an exam-

ple workflow for efficiently going from plant seed to root

trait analysis. Here, we describe how this methodology was

applied to study maize roots and demonstrate the accuracy of

this approach. Maize (Zea mays L.) was grown in large meso-

cosms to the V6 growth stage, at which point the roots were

washed free of growth media, staged on a custom-built light

box, and imaged using a digital single-lens reflex (DSLR)

camera mounted on a computer-controlled motorized rail. A
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combination of custom, licensed, and open-source computer

programs were then used to process the images. We validated

the accuracy of the methodology using model root systems

and assessed its throughput by using the platform to deter-

mine root traits of a panel of 12 maize hybrids grown to the

V6 growth stage.

2 MATERIALS AND METHODS

2.1 Experimental design

Twelve commercial maize hybrids spanning 80 yr of breed-

ing (years of release ranging from 1936 to 2014) were grown

in five replicate blocks between May and November 2020.

The hybrids were part of the Corteva Agriscience Era panel

(Duvick et al., 2004), which contains well-studied, commer-

cially successful material from the United States. The plants

were grown for s28 d postemergence. The blocks were planted

2 wk apart so that 60 experimental units could be accommo-

dated in 36 greenhouse pots. Greenhouse conditions were set

to approximate June growing conditions in Central Kentucky.

Supplemental lighting was set to a 14-h light, 10-h dark cycle.

Greenhouse exhaust fans were set to vent heat when the tem-

perature exceeded 29.4 ˚C.

2.2 Plant propagation

Plants were grown following methods adapted from the Penn

State Roots Lab (Penn State Plant Science Roots Lab, 2018).

Polyvinyl chloride pipes (PVC, 15 cm diameter, SCH40)

were cut to 150 cm length and lined with a heavy duty

10-mm plastic liner (Uline). The bottom ends of the pipes

were capped with rounded PVC end caps. A 2.5-cm diam-

eter hole was drilled in the bottom center of each end cap

and covered with mesh to prevent loss of growth media and

permit drainage and gas exchange. Twelve mesocosms were

arranged on a purpose-built wooden rack with 7.5 cm spacing

between the mesocosm edges and held in place with rubber

straps (Figure 1a).

Mesocosms were filled with a soil-less growth media

composed of 50% sand (Quikrete), 40% fine vermiculite

(Therm-o-Rock), and 10% perlite by volume. This growth

media was selected due to its low-cost, homogeneity, favor-

able drainage and water retention characteristics, and because

it was relatively easy to wash off the roots. For each meso-

cosm, 33 L of medium were mixed in a concrete mixer with

3.3 L of deionized (DI) water for approximately 2 min until

homogeneous. The mesocosms were then filled by hand and

periodically pounded against the ground or, when too heavy,

struck with a rubber mallet to settle the growth medium.

Mesocosms were then secured in the growth rack and watered

F I G U R E 1 Photographs of maize plants growing in the

mesocosms (a), root growth being tracked in the clear mesocosm (b),

roots on grates for initial cleaning (c), and a root system on the washing

table prior to rinsing (d)

to field capacity with 14 L of water, and then equilibrated with

an additional 3 L of water twice per day for 10 d. Each meso-

cosm then received two seeds, 2.54 cm apart at a depth of

2.54 cm, which were then thinned to one plant after emer-

gence. Following planting each mesocosm received 200 mL

of full-strength Hoagland Modified Basal Salt Mixture

(Phytotech Labs) adjusted to pH 6 with 1 M KOH. After emer-

gence, each mesocosm was watered with 200 mL of solu-

tion daily. Plants were grown to the V6 growth stage. Root

growth in the PVC cylinders was approximated using a clear

acrylic cylinder planted with one of the hybrids as a reference

as shown in Figure 1b. This allowed us to time sampling to

prevent plants in the mesocosms from becoming root bound.

Plants were prepared for imaging at the V6 growth stage

by removing the shoots 1 cm above the aerial nodal roots—at

that stage, all plants had only one aerial whorl. Each meso-

cosm containing the roots and growth medium was then trans-

ferred to a table where it was placed horizontally on top of

a series of elevated grates (Figure 1c). The endcap was then

removed, and the roots and growth media liberated from the

PVC pipe by holding one end of the plastic liner while another
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F I G U R E 2 The imaging table and the camera rail crossbeam (a), the imaging table illuminated with roots in the acrylic box (b), and an

example of a stitched root system image (c)

person pulled from the opposite end of the PVC pipe. A

surgical blade was then used to cut the plastic liner longitu-

dinally, after which it was pulled from underneath the growth

medium carefully to avoid root breakage. Any growth medium

not strongly attached to the roots was pressed through the

grates using light pressure or gentle vibration. The root sys-

tem was then transferred to an adjacent slightly inclined table

lined with black plastic and gently washed to remove tightly

adhered growth media using the shower setting of a garden

hose (Figure 1d). Once washed the intact root systems were

submerged in bins of cool DI water and kept refrigerated for

up to 3 d until imaged. This process may be adapted for the use

of other growth media but may require corresponding changes

to the root washing process.

2.3 Imaging platform

The centerpiece of the imaging platform was a 60 × 150

× 20 cm (W × L × H) clear acrylic box for staging the roots

built using 1-cm thick acrylic sheets (Figure 2a). A drain was

tapped into the lower side of the box to drain water after imag-

ing. The acrylic box was suspended over a light box built into

a table constructed out of aluminum T-slot structural fram-

ing (80/20 Inc.). The bottom and sides of the light box were

created using cut pieces of gloss white wall paneling (Dec-

orative Panels International) fit into the channel of the T-slot

structural framing. Any exposed aluminum framing inside the

light box was painted gloss white to increase light reflection

and minimize shadowing (Figure 2a). The light box was lit by

adhering two 7.31-m low profile dimmable LED tape lights

(1549 Lumens each, 3,000 K; Commercial Electric) to the

bottom panel of the light box in a sinusoidal pattern length-

wise (each light row ∼ 13 cm apart). A translucent plexiglass

panel was used for the top of the light box to provide a diffuse

even light, supported on the 80/20 framing under the acrylic

box, as shown in Figure 2b. The combination of the frame,

light box, and acrylic box is hereafter referred to as the imag-

ing table.

For automated image collection, a motorized 1.5 m rail

(Velmex BiSlide, Bloomfield, NY) was suspended over the

imaging table by mounting it to a crossbeam structure built

using 80/20 (Figure 2a). The rail support was independent of

the table to prevent movement of the roots during imaging
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F I G U R E 3 The platforms and programs used for each step of image acquisition and processing for the described method, listed sequentially

that might diminish image quality. A Canon EOS M50 DSLR

camera equipped with an EF 28–135 mm f/3.5-5.6 IS USM

lens (Canon USA) was attached to the rail carriage using a 3D

printed mount to which a quick release Oben QRA-R2 cam-

era mount (B&H Photo) was attached for easy mounting and

dismounting of the camera.

2.4 Image capture and processing

Prior to imaging, the root acrylic box was filled with enough

DI water to evenly cover it (∼ 5 mm deep). The roots were

then transferred from the buckets to the table and carefully

separated using plastic tweezers and spatulas, taking between

15 to 30 min per system, dependent upon size and the degree

of root tangling.

Image capture and processing followed the steps listed

in Figure 3. Images were taken using the camera attached

to the rail. The camera was controlled using LauRootImag-

ingSystem (LAURIS), which provides a graphical user inter-

face (GUI) for the EOS SDK software development kit

distributed by Canon. The software offers nearly complete

control of the camera over a USB 2.0 connection with a

mini-B adapter, with the exceptions of the camera power,

zone modes, autofocus, and lens stabilization. The camera

was set in the manual zoning mode with autofocus on the

lens enabled but stabilization disabled. Turning the camera

on and off was performed by hand. Connecting the camera

enabled a live feed of the camera’s view within LAURIS, as

well as manual adjustment of image capture settings and rail

movement.

Prior to imaging, all the operations traditionally required

of using a DSLR camera in manual mode such as setting the

shutter and aperture priority were performed. Focusing of the

lens was performed manually in software using the live video

with buttons in the GUI that move the lens in small or large

increments in either direction. The Canon 50D specifically

allows the user to zoom into the image sensor using live view

to make these adjustments. In the GUI, this was performed

by clicking on a location in the live view display and then

enabling or disabling zoom. The zoom lets the user see down

to the pixel level of the sensor, while making lens adjustments

along the way. Once the zoom was set by the user, the software

did not change the focus during imaging or disable any auto-

focus functions in the camera.

Sixty-four images were taken per root system by moving

the camera a fixed distance along the rail, stopping for a

picture, and repeating until the root system was fully cap-

tured. This process took approximately 3 min per image

set. Images were saved in the raw file format and were

then converted to greyscale Tag Image File Format (TIFF)

using the Adobe Photoshop image processor tool in Adobe

Bridge (Adobe Inc.) using the following default settings: the

profile was set to Adobe monochrome; the white balance

was as shot; the temperature was set to 5,950 K; and the

tint was set to +20. All other basic adjustments were left

at 0.

To correct for the barrel distortion that occurs with all cam-

era lenses and to combine all captured frames into a sin-

gle image, we implemented the CALTag calibration proce-

dure (Atcheson et al., 2010) using LAURIS. We used a CAL-

Tag grid consisting of 7.35 × 7.25 cm squares that were

printed to a size matching the dimensions of the imaging

table and then imaged as described previously. The CAL-

Tag procedure was based on the checkerboard calibration

commonly associated with OpenCV and MATLAB com-

puter vision libraries but also included a separate checker-

board, similar to a QR code, inside each square of the orig-

inal board that fills the central 50% area of the square. The

squares of these internal checkerboards were assigned a black

or white value according to a 16-bit binary code unique

to its location. By having this unique code, the checker-

board could be accurately detected even when portions of the

board were occluded from or outside the camera’s field of

view.

The procedure for detecting the CALTag pattern is docu-

mented in Atcheson et al. (2010), who have made the MAT-

LAB source code available for public use. The C++ imple-

mentation used in this study is also available on github by

the author, Daniel Lau (github.com/drhalftone). Briefly, the

process involves applying an adaptive thresholding opera-

tion that converts a photograph of the calibration target into
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a binary image with the edges of the squares found using

OpenCV’s edge detection filters and then fitting a quadrilat-

eral to the resulting contours. Squares that were determined

to be within the expected range in terms of area were then

further processed by looking for saddle points. A random sam-

ple and consensus algorithm (RANSAC) was then used to

identify the saddle points forming a 2-D grid. This grid fit-

ting was improved by incorporating a radial distortion lens

model. From the resulting grid, spatial coordinates for the

16-bit binary codes were calculated and the bits decoded.

Another RANSAC process was performed based on these

codes such that unique global XY coordinates were assigned

to the saddle points. This included interpolating and extrapo-

lating XY coordinates for occluded saddle points. Once each

saddle point had a unique XY coordinate, a mapping of cam-

era rows and columns to global XY coordinates was derived

such that each pixel in the captured image had a unique XY

location. As we were using a CALTag checkerboard that cov-

ered the entire surface of the imaging table, we could assign

a unique XY coordinate to each pixel of every photograph,

forming a stitched image.

The stitching of images was performed using two sets of

images. The first set of images consisted of 64 images of the

printed CALTag grid while the second set of images corre-

sponded to the 64 images of a root system. Since both sets

of images were taken in virtually the same location along the

rail, the XY coordinates of corresponding images are assumed

identical. As such, we assigned to each root image the cor-

responding XY coordinates from the CALTag images. The

stitched image was then formed by creating an image buffer

where each pixel of the buffer has a predefined XY coordinate

on the table. For each pixel in the buffer, we mapped its XY

coordinate to the XY coordinates in the series of root images.

There were typically multiple images that had a pixel with

the same XY coordinate, with a degree of overlap between

sequential images of approximately 95%. Our stitching pro-

cess chose the pixel from the images that was closest to the

center of a particular image’s field of view so that the selected

pixel corresponded to the camera position looking straight

down on the roots. Since the XY coordinates were defined by

the CALTag images, this process of searching root images for

pixels was performed by a look-up table process where the

look-up table or mapping was calculated when the CALTag

images were processed. Note that changing the soft limits of

the image collection or even the number of images forming a

stitched image required redoing the collection and processing

of the CALTag checkerboard.

Because of the high level of matting of the roots near the

crown (Figure 2c), the top 15 cm of the root systems were

processed separately to better capture the crown root traits.

After imaging the whole root system, the crowns were physi-

cally removed, deconstructed into individual nodal roots, and

imaged using a separate platform consisting of a stationary

camera over a smaller (46 × 61 cm) acrylic box for stag-

ing roots placed on top of a light box (Gagne Porta-Trace).

This allowed crown imaging and whole system imaging to

be worked on simultaneously. Stitched images of the whole

systems were cropped into six depth increments for analysis

and exported from Photoshop as 16-bit uncompressed TIFFs.

For the purposes of this study, the average values for the 15–

150 cm root depths are presented.

Following alignment, calibration, stitching, and cropping,

the images were segmented using the Trainable Weka Seg-

mentation plugin built into FIJI (Arganda-Carreras et al.,

2017; Schindelin et al., 2012). The plugin uses user-generated

training data to build a machine-learning algorithm for image

segmentation. The segmentation model was trained with two

classes: root and background. Samples were added to each

class until the model performed well across multiple test

images. Fifteen training examples were used for each class.

In addition to sample number, sample quality is important.

Selected samples covered the range of pixel values for both

classes, and particular attention was given to the transition

between root edge and background. Due to image size con-

straints of the plugin, cropped sections of images with variable

backlighting were used. The most accurate segmentation of

the background and roots was obtained with the default train-

ing features, which include Gaussian blur, Hessian matrix,

Sobel filter, differences of Gaussians, and membrane pro-

jections. The classifier used was the default FastRandom-

Forester classifier, and it was initialized with 200 trees and

two random features per node. Due to random access mem-

ory (RAM) constraints with large images (ours ranged from

4,800 × 1,225 to 4,800 × 2,450 pixels, depending on the

depth section), the built-in batch processing function per-

formed poorly. Instead, an ImageJ Beanshell script was used

that subdivides each image into a grid of tiles which are pro-

cessed individually to preserve RAM (“Scripting the Train-

able Weka Segmentation,” 2021). The script output stacks

of probability maps for each class as 32-bit TIFFs. Macros

were written and used to separate the root probability maps

from the stacks and threshold them in ImageJ using default

settings. Because of root analysis software constraints, the

images were converted back to 16-bit TIFFs following the

thresholding processing. Figure 4 shows an example of a

root image at each stage of preprocessing. Processed images

were checked to ensure that background sections were cor-

rectly thresholded following segmentation. Note that sim-

pler thresholding methods using only ImageJ were attempted

and proved inadequate. RootPainter was mentioned previ-

ously as another machine learning-based image segmenta-

tion tool, but we found that it requires a significant amount

of dedicated RAM as well as a dedicated server. Thus,

while it was built for root system segmentation, the hard-

ware requirements presented a constraint to its use for our

application.
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RINEHART ET AL. 7 of 14

F I G U R E 4 A cropped section of a root image at various stages of preprocessing, including the initial grayscale image (a), the probability map

generated by Weka Trainable Segmentation (b), the thresholded image generated in FIJI (c), and the final segmented image produced by RhizoVision

Explorer (d)

2.5 Root trait measurements

A test set of 10 thresholded images were individually loaded

into Rhizovision Explorer (Seethepalli & York, 2020) to

determine the settings that minimized alterations to the input

images and limited erroneous root detection. The “filter noisy

background components” option was used to remove resid-

ual perlite and vermiculite from the images. The settings were

saved and then applied to each block of images via the batch

processing feature. One block was excluded from analysis

due to imaging errors from an earlier iteration of the imag-

ing table. The mean root diameter, total root length, total root

volume, total root surface area, and length of six different root

diameter classes were collected for each image to assess the

extractability of the root morphological trait data.

2.6 Measurement validation

We used model root systems to evaluate the accuracy of

root trait measurements taken from images captured with

the imaging table as well as those captured with a scanner.

Seven artificial root models were constructed out of varying

lengths of nylon monofilament of three different diameters:

0.3, 0.7, and 1.2 mm. These diameters were chosen to reflect

the range of root diameters in maize roots (Costa et al., 2002,

2011). The lengths of each diameter for each model were mea-

sured using a ruler, and the diameters were confirmed with a

digital micrometer. Ground-truth surface area and volume of

the models were calculated under the assumption that the fil-

aments were perfect cylinders. Ground-truth values for each

model are given in Supplemental Table S1. The 0.3-, 0.7-,

and 1.2-mm filaments were colored with pink, tan, and brown

Sharpie permanent markers (Newell Brands), respectively, to

mimic the variable opacity of actual roots (Figure 5). The

traits assessed were total root length, average root diame-

ter, the length of each size class, total surface area, and total

volume.

We imaged the model root systems with the imaging table

and processed the images following the previously described

protocol. We then analyzed the images in batches with Rhi-

zoVision Explorer using the following settings: broken roots;

image thresholding level of 255; “filter noisy background

components” set to true; “maximum noisy component size”

set to 0.5 mm2; and “root pruning threshold” set to five

pixels.

To collect scanned images, we used an Epson Perfection

V700 Photo (Epson America, Los Alamitos, California) with

a transparency unit. The scan resolution was 300 dpi and

images were saved as both 16-bit and 8-bit grayscale TIFFs. A

scan resolution of 600 dpi was also evaluated but performed

the same as 300 dpi for the model root systems. We then

batch analyzed the images with RhizoVision Explorer using

the same settings as above apart from the image threshold-

ing level being set at 215, as the scans had not already been

thresholded.
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8 of 14 RINEHART ET AL.

F I G U R E 5 An example of a monofilament root model

photographed against a white cloth background. Pink filament has a

diameter of 0.3 mm, tan filament has a diameter of 0.7 mm, and the dark

brown filament has a diameter of 1.2 mm. Plastic chip is 1 cm × 1 cm

2.7 Statistics

Linear regression was used to obtain the coefficient of deter-

mination (R2) between the ground-truth measurements and

the estimated measurements using the two imaging platforms.

To assess error associated with the imaging platforms, the

root mean square error (RMSE) and mean bias error (MBE)

were calculated for each measured trait. RMSE is the standard

deviation of the residuals, while MBE is the average amount

by which the ground-truth values are greater than the esti-

mated values (i.e., positive values indicate underestimation

and negative values indicate overestimation). The normalized

RMSE (nRMSE) was also calculated by dividing the RMSE

for each trait by the mean for that trait, allowing for a com-

parison of accuracy across all traits. All statistical analyses

were performed in R version 1.4.1106 (R Core Team, 2021).

The packages “lemon” (Edwards et al., 2020), “ggplot2”

(Wickham, 2016), “ggpubr” (Kassambara, 2020), and “ggp-

misc” (Aphalo, 2021) were used for data visualization. The

package “Metrics” (Hammer & Frasco, 2018) was used to cal-

culate the model performance metrics.

F I G U R E 6 A cropped root image segmented in RhizoVision

Explorer without preprocessing (a) and following segmentation using

Weka Trainable Segmentation and thresholding with FIJI (b). The black

specks are residual perlite and vermiculite particles from the growth

media, which were later filtered out using functions within RhizoVision

Explorer

3 RESULTS

3.1 Root trait measurements

Image stitching took approximately 20 min per root system,

while image segmentation and analysis took approximately 13

min per root system. Out of the set of 330 maize root images,

no processed images exhibited the dark edge or diameter over-

estimation issues that arose when thresholding unprocessed

images (Figure 6a). While no images showed the background

incorrectly segmented as roots, sections of the finer roots near

branching points were sometimes classified as background, as

seen in Figure 6b. Using the known true size of the images and

the pixel dimensions, the images captured with the imaging

table were calculated to have a resolution of 207 dpi.

Our root phenotyping platform captured average diameter,

surface area, total volume, total length, and length of six diam-

eter classes for maize root systems spanning a wide range of

measured values (Figure 7).

3.2 Trait Measurement Validation

The analysis of scanned images was less accurate for 16-bit

scans than for 8-bit scans (Supplemental Table S2, Supple-

mental Figure S1), and as such the 8-bit scans were used

for comparison to the imaging table results. Estimated values
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RINEHART ET AL. 9 of 14

F I G U R E 7 Histograms showing the frequency of root traits values for root systems of the maize panel (n = 50). The counts are for the total

values for the 15–150 cm depths of each root system

were well correlated with ground-truth values for all traits and

both platforms, with R2 values ranging from 0.90 to 1.0, and

averaging 0.96 for both platforms (Figure 8). RMSE values

indicated that the table platform was more accurate than the

scanner platform for traits related to root diameter, including

average diameter, the length in each size class, surface area,

and volume. The scanner was more accurate for total length

estimates, though the imaging table was slightly more accu-

rate than the scanner for the smallest and largest root size class

lengths. Normalized root mean square error values were at

or under 20% for all seven measured traits for both platforms

(Table 1) and indicate that the scanner most accurately esti-

mated total length, while the imaging table most accurately

estimated average diameter. Mean bias error values were neg-

ative for all traits for both platforms except for the length of

the 0.0–0.5 mm size class for the scanner, indicating a general

overestimation of root trait measurements (Table 1).

4 DISCUSSION

The aim of this project was to develop a relatively low-

cost, large-format 2-D root imaging platform and image

analysis methodology and provide an example procedure

for efficiently going from plant seed to root trait analysis.

In total, the materials for the imaging table cost approxi-

mately $4,000, with a breakdown of $1,500 for the 80/20

and light box materials, $400 for the acrylic box for stag-

ing roots, $500 for the camera, and $1,000 for the automated

rail. Note that the rail was in used condition, and the con-

trollers were provided free of cost. The cost could be low-

ered with the use of less expensive framing materials, cam-

eras, and rails. By comparison, the largest scanner for that

cost is 30 × 40 cm, before factoring in the cost of an acrylic

box.
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T A B L E 1 Accuracy metrics for the analysis of the monofilament root models using the imaging table and scanner platforms

Traits Platform RMSE nRMSE (%)
Mean bias
error

Coefficient of
determination p-value

Average diameter (mm) Scanner 0.08 11.11 −0.08 0.90 .001

Table 0.03 4.25 −0.02 0.90 .001

Length 0.0–0.5 mm (mm) Scanner 33.50 16.53 25.74 0.95 <.001

Table 24.94 10.50 −9.32 0.96 <.001

Length 0.5–1.0 mm (mm) Scanner 17.52 7.31 −9.93 0.97 <.001

Table 23.33 9.76 −9.43 0.94 <.001

Length > 1.0 mm (mm) Scanner 23.85 12.82 −19.17 0.99 <.001

Table 13.19 7.37 −12.00 1.00 <.001

Total length (mm) Scanner 21.08 3.36 −3.37 0.98 <.001

Table 39.37 6.01 −30.74 0.97 <.001

Total surface Area (mm2) Scanner 175.20 11.62 −154.75 0.99 <.001

Table 136.93 9.36 −110.06 0.96 <.001

Total volume (mm3) Scanner 75.15 20.78 −68.44 0.98 <.001

Table 32.21 10.08 −26.41 0.97 <.001

Note. RMSE, root mean square error of mean; nRMSE, normalized root mean square error.

4.1 Advantages of the large root system
imaging platform

Using the imaging table, we were able to capture a wide dis-

tribution of maize root traits. Our imaging table produced

root measurements that were in good agreement with ground-

truth values, yielding slightly more accurate results overall

compared with scanned images. The imaging table enabled

us to measure total root lengths up to 200,000 mm across

the five depth increments of each root system, and as low as

50 mm in a single image. For comparison, total root lengths

reported in scanner-based studies typically range between 10

and 10,000 mm (Adu et al., 2014; Lobet & Draye, 2013).

Although in this study we focused on the 15–150 cm depths

captured on the imaging table, the same methodology could

be applied to the deconstructed 0–15 cm roots that were

imaged separately. In addition to the traits measured, this sys-

tem allows us to easily capture the depth distribution of root

length using the cumulative length at multiple depths (Fan

et al., 2016), which is of increasing interest for both deep soil

carbon and crop performance (Lynch, 2013; Lynch & Woj-

ciechowski, 2015; Nuccio, 2021). While depth distribution

can be captured using a smaller scanner, this system offers

greater flexibility and lower risk of error by not requiring

that roots be subdivided into several subsamples within pres-

elected depth ranges. It should be noted that this system and

2-D systems in general are not suitable for the collection of

crown root angle dependent traits such as maximum width

or convex hull volume. However, as noted in Rangarajan and

Lynch (2021), 2-D platforms do provide accurate information

on parameters such as number, length, and diameter of roots,

lateral root branching density, and others that provide accurate

estimates of overall root system morphology and architecture

and possible functional attributes.

Our system and process expand the ability of researchers

to study roots of older and larger plants by removing the

need to fully dissect the root system to fit the smaller dimen-

sions of commercially available scanners. While the root stag-

ing time is longer than for a small scanner, each system

only has to be prepared for imaging once rather than across

several subsamples. With this system we were able to cap-

ture up to 200,000 mm of length in one run, but in other

work on loose roots we found that the maximum length we

could stage within a scan on an Epson Perfection V700 Photo

(23 × 28 cm) was around 4,000 mm. Assuming a relatively

quick time of 5 min per scan (changing the water, staging the

roots, taking the scan), processing a 200,000 mm system could

take at minimum 4 h. With a maximum of around 30 min

for staging and imaging, the proposed method results in sub-

stantial time savings when working with large root systems.

This also reduces the time that roots need to be kept fresh,

preventing decomposition and loss of structural integrity, and

eliminating the need for alcohol or other preservatives that

could limit any desired chemical analysis on the tissues after

imaging.

4.2 Accuracy of the large root system
imaging platform as compared to a scanner
approach

Each step of root image processing can introduce error or

limit how comparable results will be across methods. While it
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RINEHART ET AL. 11 of 14

F I G U R E 8 Linear regression lines and coefficients of

determination for each trait measured for the 8-bit scans and imaging

table photographs of the model root systems. The black line is a 1:1

line. Points over the black line indicate overestimation; points under the

line indicate underestimation

cannot account for all methodological differences, comparing

the results using different imaging platforms to ground-truth

values does give some sense of both how accurate the results

are and how comparable they are to methods currently in use.

In this case, the estimates for the images of the root models

taken with the flatbed scanner and the imaging table were sim-

ilarly accurate, with the imaging table having an overall higher

and more consistent accuracy. This suggests that, with a well-

trained segmentation model, the imaging table method is a

viable option.

The relatively high inaccuracy for the scanned images

appears to stem from the overestimation of diameter. As vol-

ume and surface area calculations are both based on diam-

eter estimates, it follows that an overestimation of diameter

will lead to an overestimation of both of those traits. Sim-

ilarly, the amount of root length in each size class will be

incorrectly estimated, as some roots from the 0.0–0.5 and 0.5–

1.0 mm classes would be shifted to the 0.5–1.0 and >1.0 mm

classes, respectively. This helps explain why, while the

total length estimate for the scanned images is the most

accurate estimation across traits and platforms, the scanned

images had higher error for the smallest and largest size

classes.

That the diameter in the scanned images was less accu-

rately estimated than in the imaging table images and that

greater bit depth exacerbated this (Table S2, Figure S1) was

unexpected, as scanned images have previously been demon-

strated to give highly accurate diameter estimates (Seethepalli

et al., 2021). To build on the comparison between the imaging

table and flatbed scanners and assess whether this overestima-

tion is a consistent finding, testing a wider range of filament

diameters across multiple scanners at both 300 and 600 dpi

would help ensure that the differences seen here are not due

to hardware limitations, as the quality of the optics themselves

can make a significant difference in analysis (Freschet, Pagès,

et al., 2020). To the authors’ knowledge, no formal investi-

gation has been made into bit depth affecting diameter accu-

racy, and thus that finding also merits further testing. While

the results here suggest consistent overestimation of diame-

ter for scans within the range tested and the 207 dpi reso-

lution of the table images did not appear to limit the accu-

racy of trait analysis, root hairs were not well-captured in the

images of true roots. Thus, at the moment, high-resolution

scanner-based approaches likely remain more appropriate

for that application. The use of higher quality sensors and

lenses, as well as the use of a two-dimensional rail structure,

could increase resolution well beyond the limits of available

scanners but may also significantly increase the cost of the

system.

Using our image processing method, it was possible to

accurately segment the images as compared to the pixel inten-

sity method built into many root analysis programs. The seg-

mented maize root images and the results from the model

root system indicate that even the faint, thinnest roots (at

least as thin as 0.3 mm in diameter) were detectable and

reasonably well estimated using this approach. As the other

solution to poor segmentation of fine roots is to stain them

(Freschet, Pagès, et al., 2020), machine learning-based seg-

mentation may be preferable when also performing chemical

analyses of the root samples.
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4.3 Limitations of the large root system
imaging platform

The major limitations of the proposed method are that

it requires using several different software platforms and

that machine-learning based image segmentation is memory

intensive. Since the data were collected for this manuscript,

the second step of image analysis (Figure 3) has been incor-

porated into LAURIS, replacing the use of Adobe prod-

ucts. The updated version is available at https://github.com/

drhalftone/LAURootImagingSystem. Combining image cap-

turing, alignment, calibration, and stitching within a single

platform will reduce acquisition and processing time in future

experiments. There are also limitations with some of the other

specific programs used. The Weka segmentation plugin was

designed for differentiating cell types in microscopy images,

and, as such, it has a limited capacity to handle large image

file sizes, resulting in a slow training and segmentation pro-

cess. Given this limitation, cropping images of the complete

stitched root system will continue to be necessary regardless

of the aims of the project, until a purpose-built program is

developed. Planned improvements to LAURIS include con-

tinuing to streamline the method by combining the process-

ing steps listed in Figure 3 within a single, open-source pro-

gram, as well as the elimination of image stitching through

modifications to the camera controls. Through the integra-

tion of tools such as Intel oneAPI and OpenCV, the software

can be further optimized for processing images on low-power

computers.

4.4 Growth media considerations

Our central goal in phenotyping was to compare the poten-

tials of different lines under the same conditions. As such,

we used a mesocosm system that allowed the roots to grow

unconstrained in terms of vertical space and resources. The

combination of sand, perlite, and vermiculite that we adopted

from the Penn State greenhouse methods resulted in a real-

istic bulk density and adequate water and nutrient retention.

The mixture was low-cost, homogeneous, easy to acquire, rel-

atively light-weight, well-drained, and easy to remove from

roots. One challenge with this growth medium was that the

perlite and vermiculite could not be completely removed

due to the fragility of the roots and the tendency of the

roots to grow through these particles. This contamination was

addressed using the noise filtering function of RhizoVision

Explorer. Nevertheless, this overall process is certainly not

limited to the growth medium that we used. Other studies

have used gels, natural soils, or materials such as calcined clay

(Numajiri et al., 2021; Paez-Garcia et al., 2015), but each

comes with its own tradeoffs that must be weighed for any

given application. While a sandy soil could potentially be suit-

able for phenotyping work, finer textured soils would require

much more care and labor to leave the root systems intact

while washing. In addition, as one crucial aspect of phenotyp-

ing is maintaining consistent conditions for the plants grown,

the inherent heterogeneity of natural soils poses a signifi-

cant challenge for sourcing and repeatability when working

in greenhouses. While our approach is not directly translat-

able to field phenotyping results, it does give a sense of the

potentials of the different lines that can inform selections for

field trials.

5 CONCLUSIONS

Large root imaging and analysis has been limited by the cost

of suitable equipment, the size capacity of more widely avail-

able equipment, and the need for uniform lighting in root

images. To address this, we built a custom imaging table and

developed an image processing method suitable for large root

images with non-uniform lighting. Trait measurements using

this method have similar accuracy to those from the standard

scanner method, indicating that lighting is no longer a signifi-

cant barrier to 2-D root phenotyping. With the added benefits

of time savings and greater ease of analyzing traits by depth,

this work will open up more opportunities for large root anal-

ysis, while maintaining high accuracy and low cost.
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