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Abstract

Gene Ontology is used extensively in scientific knowledgebases and repositories to orga-

nize a wealth of biological information. However, interpreting annotations derived from dif-

ferential gene lists is often difficult without manually sorting into higher-order categories. To

address these issues, we present GOcats, a novel tool that organizes the Gene Ontology

(GO) into subgraphs representing user-defined concepts, while ensuring that all appropriate

relations are congruent with respect to scoping semantics. We tested GOcats performance

using subcellular location categories to mine annotations from GO-utilizing knowledgebases

and evaluated their accuracy against immunohistochemistry datasets in the Human Protein

Atlas (HPA). In comparison to term categorizations generated from UniProt’s controlled

vocabulary and from GO slims via OWLTools’ Map2Slim, GOcats outperformed these

methods in its ability to mimic human-categorized GO term sets. Unlike the other methods,

GOcats relies only on an input of basic keywords from the user (e.g. biologist), not a manu-

ally compiled or static set of top-level GO terms. Additionally, by identifying and properly

defining relations with respect to semantic scope, GOcats can utilize the traditionally prob-

lematic relation, has_part, without encountering erroneous term mapping. We applied

GOcats in the comparison of HPA-sourced knowledgebase annotations to experimentally-

derived annotations provided by HPA directly. During the comparison, GOcats improved

correspondence between the annotation sources by adjusting semantic granularity. GOcats

enables the creation of custom, GO slim-like filters to map fine-grained gene annotations

from gene annotation files to general subcellular compartments without needing to hand-

select a set of GO terms for categorization. Moreover, GOcats can customize the level of

semantic specificity for annotation categories. Furthermore, GOcats enables a safe and

more comprehensive semantic scoping utilization of go-core, allowing for a more complete

utilization of information available in GO. Together, these improvements can impact a vari-

ety of GO knowledgebase data mining use-cases as well as knowledgebase curation and

quality control.
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Introduction

Gene Ontology (GO)

The Gene Ontology (GO) [1] is the most common biology-focused controlled vocabulary

(CV) used to represent information and knowledge distilled from most biological and biomed-

ical research data generated today, from classic wet-bench experiments to high-throughput

analytical platforms, especially omics technologies. Each CV term in GO is assigned a unique

alphanumeric code and is used to annotate genes and gene products in many other databases,

including UniProt [2] and Ensembl [3]. GO is divided into three sub-ontologies: Cellular

Component, Molecular Function, and Biological Process. A graph represents each sub-ontol-

ogy, where individual GO terms are nodes connected by directional edges (i.e. relation). For

example, the term “lobed nucleus” (GO:0098537) is connected by a directional is_a relation

edge to the term “nucleus” (GO:0005634). In this graph context, the is_a relation defines the

term “nucleus” as a parent of the term “lobed nucleus”. There are eleven types of relations used

in the core version of GO; however, is_a is the most ubiquitous. The three GO sub-ontologies

are “is_a disjoint” meaning that there are no is_a relations connecting any node among the

three sub-ontologies.

There are also three versions of the GO database: go-basic which is filtered to only include

is_a and part_of relations; go or go-core contains additional relations, that may span sub-ontol-

ogies and which point both toward and away from the top of the ontology; and go-plus con-

tains cross-references to entries in external databases and ontologies.

Growth and evolution of biological controlled vocabularies

GO and other CVs like the Unified Medical Language System [4,5] saw an explosion in devel-

opment in the mid-1990s and early 2000s, coinciding with the increase in high-throughput

experimentation and “big data” projects like the Human Genome Project. Their intended pur-

pose is to standardize the functional descriptions of biological entities so that these functions

can be referenced via annotations across large databases unambiguously, consistently, and

with increased automation. However, ontology annotations are also utilized alongside auto-

mated pipelines that analyze protein-protein interaction networks and form predictions of

unknown protein function based on these networks [6,7], for gene annotation enrichment

analyses, and are now being leveraged for the creation of predictive disease models in the

scope of systems biochemistry [8].

Difficulty in representing biological concepts derived from omics-level

research

Differential abundance analyses for a range of omics-level technologies, especially transcrip-

tomics technologies can yield large lists of differential genes, gene-products, or gene variants.

Many different GO annotation terms may be associated with these differential gene lists, mak-

ing it difficult to interpret without manually sorting into appropriate descriptive categories [9].

It is similarly non-trivial to give a broad overview of a gene set or make queries for genes with

annotations for a specific biological concept. For example, a recent effort to create a protein-

protein interaction network analysis database resorted to manually building a hierarchical

localization tree from GO cellular compartment terms due to the “incongruity in the resolu-

tion of localization data” in various source databases and the fact that no published method

existed at that time for the automated organization of such terms [6]. If a subgraph of GO

could be programmatically extracted to represent a specific biological concept, a category-

PLOS ONE GOcats

PLOS ONE | https://doi.org/10.1371/journal.pone.0233311 June 11, 2020 2 / 29

Python Package Index (PyPI) at https://pypi.

python.org/pypi/GOcats. Documentation can be

found at http://gocats.readthedocs.io/en/latest/.

The exact version of GOcats used in this study,

along with all scripts used to generate results can

be found in the Figshare repository at https://doi.

org/10.6084/m9.figshare.7064516 and at https://

doi.org/10.6084/m9.figshare.7064549. The version

of GO used to generate these results is go-core

(go.obo) data-version: releases/2016-01-12. The

UniProt Controlled Vocabulary file can be found at

https://www.uniprot.org/docs/subcell.txt.

Associated GO terms are indicated in by the GO

identifier in each stanza. Map2slim is available on

GitHub (https://github.com/owlcollab/owltools/

wiki/Map2Slim) and requires OWL Tools, also

available via GitHub (https://github.com/owlcollab/

owltools/wiki/Install-OWLTools#building-from-

source). Subcellular location data was obtained

from version 15 of the Human Protein Atlas and

can be downloaded at http://v15.proteinatlas.org/

download/subcellular_location.csv.zip.
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defining general term could be easily associated with all its ontological child terms within the

subgraph.

Meanwhile, high-throughput transcriptomic and proteomic characterization efforts like

those carried out by the Human Protein Atlas (HPA) now provide sophisticated pipelines for

resolving expression profiles at organ, tissue, cellular and subcellular levels by integrating

quantitative transcriptomics with microarray-based immunohistochemistry [10]. Such efforts

create a huge amount of omics-level experimental data that is cross-validated and distilled into

systems-level annotations linking genes, proteins, biochemical pathways, and disease pheno-

types across our knowledgebases. However, annotations provided by such efforts may vary in

terms of granularity, annotation sets used, or ontologies used. Therefore, (semi-)automated

(i.e. at least partially automated) and unbiased methods for categorizing semantically-similar

and biologically-related annotations are needed for integrating information from heteroge-

neous sources—even if the annotation terms themselves are standardized—to facilitate effec-

tive downstream systems-level analyses and integrated network-based modeling.

Term categorization approaches

Issues of term organization and term filtering have led to the development of GO slims—man-

ually trimmed versions of the gene ontology containing only generalized terms [11], which

represent concepts within GO. Other software, like Categorizer [9], can organize the rest of

GO into representative categories using semantic similarity measurements between GO terms.

GO slims may be used in conjunction with mapping tools, such as OWLTools’ (https://github.

com/owlcollab/owltools) Map2Slim (M2S) or GOATools (https://zenodo.org/record/31628),

to map fine-grained annotations within Gene Annotation Files (GAFs) to the appropriate gen-

eralized term(s) within the GO slim or within a list of GO terms of interest. While web-based

tools such as QuickGO exist to help compile lists of GO terms [12], using M2S either relies

completely on the structure of existing GO slims or requires input or selection of individual

GO identifiers for added customization, and necessitates the use of other tools for mapping.

UniProt has also developed a manually-created mapping of GO to a hierarchy of biologically-

relevant concepts [13]. However, it is smaller and less maintained than GO slims, and is

intended for use only within UniProt’s native data structure.

Semantic similarity in the context of broad term categorization

In addition to utilizing the inherent hierarchical organization of GO to categorize terms, other

metrics may be used for categorization. For instance, semantic similarity can be combined

along with the GO structure to calculate a statistical value indicating whether a term should

belong to a predefined group or category of [9,14–17]. One rationale for this type of approach

is that the topological distance between two terms in the ontology graph is not necessarily pro-

portional to the semantic closeness in meaning between those terms, and semantic similarity

reconciles potential inconsistencies between semantic closeness and graph distance. Addition-

ally, some nodes have multiple parents, where one parent is more closely related to the child

than the others [9]. Semantic similarity can help determine which parent is semantically more

closely related to the term in question. While these issues are valid, we maintain that in the

context of aggregating fine-grained terms into general categories, these considerations are not

necessary. First, fluctuations in semantic distances between individual terms are not an issue

once terms are binned into categories: all binned terms will be reduced to a single step away

from the category-defining node. Second, the problem of choosing the most appropriate par-

ent term for a GO term only causes problems when selecting a representative node for a cate-

gory; however, since most paths eventually converge onto a common ancestor, any
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significantly diverging paths would have its meaning captured by rooting multiple categories

to a single term, cleanly sidestepping the issue.

Maintenance of ontologies

Despite maintenance and standard policies for adding terms, ontological organization is still

subject to human error and disagreement, necessitating quality assurance and revising, espe-

cially as ontologies evolve or merge. A recent review of current methods for biomedical ontol-

ogy mapping highlights the importance in developing semi-automatic methods [18,19] to aid

in ontology evolution efforts and reiterates the aforementioned concept of semantic corre-

spondence in terms of scoping between terms [20]. Methods incorporating such correspon-

dences have been published elsewhere, but these deal with issues of ontology evolution and

merging, and not with categorizing terms into user-defined subsets [21,22]. Ontology merging

also continues to be an active area of development for integrating functional, locational, and

phenotypic information. To aid in this, another recent review points out the importance of

integrating phenotypic information across various levels of organismal complexity, from the

cellular level to the organ system level [8]. Thus, organizing location-relevant ontology terms

into discrete categories is an important step toward this end.

GO Categorization Suite (GOcats)

For the reasons indicated above, we have developed a tool called the GO Categorization Suite

(GOcats), which serves to streamline the process of slicing the ontology into subgraphs repre-

senting specific biological concepts. Unlike previously developed tools, GOcats works with a

list of user-provided keywords and/or GO terms, along with the structure of GO and aug-

mented relation properties. Based on this input, GOcats automatically extracts a subgraph of

related GO terms, identifies a representative category-defining GO term for the subgraph, and

maps all subgraph child GO terms to this representative GO term. In essence, GOcats auto-

matically generates a concept-specific GOslim with only keywords and GO terms provided by

a user, typically a biologist. Furthermore, GOcats allows the user to choose between the strict

axiomatic interpretation or a looser semantic scoping interpretation of part-whole (mereologi-

cal) relation edges within GO. Specifically, we consider scoping relations to be comprised of

is_a, part_of, and has_part, and mereological relations to be comprised of part_of and has_-

part. In the next section, we evaluate GOcats ability to generate category-specific subgraphs

and to utilize these subgraphs to compare knowledgebase annotations to their experimental

source (i.e. the HPA). Due to the nature of the experimentally verified properties available

from the HPA, our analysis in this paper focuses on cellular locations, especially subcellular

locations. Also, this paper provides an in-depth description of GOcats’s methods and their

implementation. In a prior publication, we demonstrated GOcats’s ability to improve gene-

annotation enrichment analyses, involving all GO sub-ontologies [23].

Results

GOcats compactly organizes GO subcellular localization terms into user-

specified categories

As an initial proof-of-concept, we evaluated the automatic extraction and categorization of 25

subcellular locations, using GOcats’ “comprehensive” method of subgraph extension (See

Methods and the go-core graph, data-version: releases/2016-01-12). Starting with common bio-

logical subcellular concepts like “nucleus”, “cytoplasm”, and “mitochondrion”, we recursively

used terms not being categorized to identify additional subcellular concepts and associated
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Implementation overview

As illustrated in the UML diagram in Fig 8A, the GOcats package is implemented using several

modules that have clear dependencies starting from a command line interface (CLI) in gocats.

py which depend on most of the other modules including ontologyparser.py, godag.py, sub-

dag.py and tools.py. GOcats uses 10 classes implemented across ontologyparser.py, godag.py,

subdag.py, and dag.py to extract and internally represent the GO database. GoParser, which

inherits from the base OboParser class (Fig 8B), utilizes a visitor design pattern and regular

expressions to parse the flat GO database obo file and instantiate the objects necessary to

Fig 7. Flowchart of the GOcats’ subgraph creation method.

https://doi.org/10.1371/journal.pone.0233311.g007
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represent the GO DAG structure. These instantiated objects include (Fig 8C): 1) the GoGraph

container object for the parts of the graph, which inherits from a more generic OboGraph con-

taining functions for adding, removing, and modifying nodes and edges; 2) GoGraphNode

objects for representing each term parsed from the ontology, which inherits from Abstract-

Node; 3) AbstractEdge objects for representing each instance of a relation parsed from the

ontology; and 4) DirectionalRelationship objects, which inherit from the more generic

AbstractRelationship object for representing each type of directional relation encountered in

the ontology (for GO, all relations are directional, and this distinction is made only in anticipa-

tion for future extensions to handle other ontologies).

AbstractEdge objects and AbstractNode objects contain references to one another, which

simplifies the process of iterating through ancestor and descendant nodes and allows for func-

tions such as AbstractEdge.connect_nodes, which requires that the edge object update the

node object’s child_node_set and parent_node_set. In this context, AbstractNode is a true

abstract base class, while AbstractEdge started out as an abstract base class but eventually

Fig 8. UML diagrams describing the GOcats implementation. A) UML module dependency diagram. B) UML class diagram of GO database parsing classes. C)

UML class diagram of the GO graph representation.

https://doi.org/10.1371/journal.pone.0233311.g008
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became a concrete class during development. However, we see the possibility of AbstractEdge

becoming a base class in the future.

Ancestors and descendants of a node are implemented as sets, which are lazily created

through the use of a Python property decorator (i.e. Python’s preferred “getter” syntax). At the

first access of these sets through the ancestor or descendent property, the set is calculated with

a recursive algorithm, stored for future use, and returned for immediate access. Subsequent

accesses simply return the stored set. If the set of edges within a node change, the ancestor and

descendent node sets will be recalculated on their next access. This implementation prevents

pre-calculation of these sets when they are not used, while enabling their reuse within efficient

graph analysis methods.

AbstractEdge also contains a reference to a DirectionalRelationship object, which is critical

for graph traversal. This is because DirectionalRelationship contains the true directionality of

the mereological correspondence between the categorization relevant relations (is_a, part_of,

and has_part). In other words, it is within this class that we define in which direction the edge

should be traversed when categorizing terms. Currently these rules are hard-coded within

GoParser’s relationship_mapping dictionary.

The gocats.py module (Fig 8A) implements the command line interface and is responsible

for handling the command line arguments, using the provided keywords and specified argu-

ments like namespace filters (e.g. Cellular Component, Molecular Function, and Biological

Process) to instantiate a GoParser object, a GoGraph object and a SubGraph object for each set

of provided keywords. After creation of the GoGraph internal representation, each category

subgraph is created by first instantiating the SubGraph object and calling the from_filtered_-

graph function, which filters to those nodes from the GoGraph containing the keywords in

their names and definition. Note that the SubGraph object and GoGraph object both inherit

from OboGraph, and that the SubGraph object contains a reference to GoGraph object (super-

graph data member) of which it is a subgraph. This design was implemented to avoid acciden-

tal alterations of the GoGraph object when altering the contents of the subgraph, and to allow

for specialization of functions within SubGraph without needing to use unique names e.g.

add_node(). GoGraphNode objects within the subgraph are wrapped by SubGraphNode

objects, which are directly used by the SubGraph object, but retain all original properties such

as name, definition, and sets of edge object references, otherwise insidious changes could

occur to the GoGraph object when updating the SubGraph object. The SubGraph object also

contains a CategoryNode object, which wraps the category representative GoGraphNode

object(s) for the subgraph category.

Specific implementation details

User-provided keyword sets are used by GOcats to query GO terms’ name and definition fields

to create an initial seeding of the subgraph with terms that contain at least one keyword. This

seeding is a list of nodes from the whole go-core graph (supergraph) that pass the query. Node

synonyms were not used, due to there being four types of synonyms in GO: exact, narrow,

broad, and related. Also, many nodes within GO do not have synonyms, which may create an

unequal utilization of nodes if synonyms were queried. However, in the future, synonym utili-

zation for seeding purposes may be revisited.

FOR node in supergraph.nodes
IF keyword from keyword_list in node.name or node.definition
subgraph.seeding_list.append(node)

Using the graph structure of GO, edges between these seed nodes are faithfully recreated

except where edges link to a node that does not exist in the set of newly seeded GO terms.
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During this process, edges of appropriate scoping relations are used to create children and par-

ent node sets for each node.

FOR edge in supergraph.edges
IF edge.parent_node in subgraph.nodes AND edge.child_node

in subgraph.nodes AND /
edge.relation is TYPE: SCOPING
subgraph.edges.append(edge)

ELSE
PASS

FOR subnode in subgraph.nodes
subnode.child_node_set = /
{child_node for child_node in supergraph.id_index[sub-

node.id].child_node_set /
if child_node.id in subgraph.id_index}

subnode.parent_node_set = /
{parent_node for parent_node in supergraph.id_index[sub-

node.id].parent_node_set /
if parent_node.id in subgraph.id_index}

GOcats then selects a category representative node to represent the subgraph. To do this, a

list of candidate representative nodes is compiled from non-leaf nodes, i.e. root-nodes in the

subgraph which have at least one keyword in the term name. A single category representative

root-node is selected by recursively counting the number of children each candidate term has

(i.e. creating the node.descendents) and choosing the term with the most children.

FOR subnode in subgraph.nodes
IF subnode.child_node_set ! = None AND ANY keyword in sub-

node.name
candidate_list.append(subnode)

ELSE
PASS

representative_node = MAX(LEN(node.descendants) FOR node in
candidates)

Because it may be possible that highly-specific or uncommon features included in the GO

may not contain a keyword in its name or definition but still may be part of the subgraph in

question by the GO graph structure, GOcats re-traces the supergraph to find various node

paths that reach the representative node. We have implemented two methods for this subgraph

extension: i) comprehensive (greedy) extension, whereby all supergraph descendants of the

representative node are added to the subgraph and ii) conservative extension, whereby the

supergraph is checked for intermediate nodes between subgraph leaf nodes and the subgraph

representative node that may not have seeded in the initial step.

Comprehensive (Greedy) extension:
FOR node in supergraph.nodes
IF ANY (ancestor_node in node.ancestors) in subgraph
subgraph.nodes.append(ancestor_node)

UPDATE subgraph # appropriate edges added and parent/child
nodes assigned
Conservative extension:
FOR leaf_node in subgraph.leaf_nodes # nodes with no children
start_node = leaf_node
end_node = representative_node
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FOR node in super_graph.start_node.ancestors \ supergraph.
end_node.descendents

subgraph.nodes.append(node)
UPDATE subgraph # appropriate edges added and parent/child

nodes assigned
The subgraph is finally constrained to the descendants of the representative node in the

subgraph. This excludes unrelated terms that were seeded by the keyword search due to seren-

dipitous keyword matching.

Creating category mappings from UniProt’s subcellular location controlled

vocabulary

We created mappings from fine-grained to general locations in UniProt’s subcellular location

CV [2] for comparison to GOcats. To accomplish this, we parsed and recreated the graph

structure of UniProt’s subcellular locations CV file [13] in a manner similar to the parsing of

GO (Fig 2). Briefly, the flat-file representation of the CV file is parsed line-by-line and each

term is stored in a dictionary along with information about its graph neighbors as well as its

cross-referenced GO identifier. We assumed that terms without parent nodes in this graph are

category-defining root-nodes and created a dictionary where a root-node key links to a list of

all recursive children of that node in the graph. Only those terms with cross-referenced GO

identifiers were included in the final mapping. The category subgraphs created from UniProt

were compared to those with corresponding category root-nodes made by GOcats. An inclu-

sion index, I, was calculated by considering the two subgraphs’ members as sets and applying

the following equation:

I ¼
jSn \ Sg j
jSnj

ð1Þ

where Sn and Sg are the set of members within the non-GOcats-derived category and GOcats-

derived category, respectively. It is worth noting here that the size of the UniProt set was

always smaller than the GOcats set. This is due to the inherent size differences between Uni-

Prot’s CV and the Cellular Component sub-ontology.

Creating category mappings from Map2Slim

The Java implementation of OWLTools’ M2S does not include the ability to output a mapping

file between fine-grained GO terms and their GO slim mapping target from the GAF that is

mapped. To compare subgraph contents of GOcats categories to a comparable M2S “cate-

gory,” we created a special custom GAF where the gene ID column and GO term annotation

column of each line were each replaced by a different GO term for each GO term in Cellular

Component, data-version: releases/2016-01-12. We then allowed M2S to map this GAF with a

provided GO slim. The resulting mapped GAF was parsed to create a standalone mapping

between the terms from the GO slim and a set of the terms in their subgraphs.

Mapping gene annotations to user-defined categories

To allow users to easily map gene annotations from fine-grained annotations to specified cate-

gories, we added functionality for accepting GAFs as input, mapping annotations within the

GAF and outputting a mapped GAF into a user-specified results directory. The input-output

scheme used by GOcats and M2S are similar, with the exception that GOcats accepts the map-

ping dictionary created from category keywords, as described previously, instead of a GO slim.
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GAFs are parsed as a tab-separated-value file. When a row contains a GO annotation in the

mapping dictionary, the row is rewritten to replace the original fine-grained GO term with the

corresponding category-defining GO term. If the gene annotation is not in the mapping dic-

tionary, the row is not copied to the mapped GAF, and is added to a separate file containing a

list of unmapped genes for review. The mapped GAF and list of unmapped genes are then

saved to the user-specified results directory.

Visualizing and characterizing intersections of category subgraphs

To compare the contents of category subgraphs made by GOcats, UniProt CV, and M2S, we

took the set of subgraph terms for each category in each method, converted them into a Pandas

DataFrame [28] representation, and plotted the intersections using the UpSetR R package

[25]. Inclusion indices were also computed for M2S categories using Eq 1. Jaccard indices

were computed for every subgraph pair to evaluate the similarity between subgraphs of the

same concept, created by different methods.

Assigning generalized subcellular locations to genes from the knowledgebase

and comparing assignments to experimentally-determined locations

We first mapped two GAFs downloaded from the EMBL-EBI QuickGO resource [12] using

GOcats, the UniProt CV, and M2S. We filtered the gene annotations by dataset source and evi-

dence type, resulting in separate GAFs containing annotations from the following sources:

UniProt-Ensembl, and HPA. Both GAFs had the evidence type, inferred from Electronic

Annotation, filtered out because it is generally considered to be the least reliable evidence type

for gene annotation and in the interest of minimizing memory usage. We used this data to

assess the performance of the mapping methods in their ability to assign genes to subcellular

locations based on annotations from knowledgebases by comparing these assignments to

those made experimentally in HPA’s localization dataset (Fig 3A). Comparison results for each

gene were aggregated into 4 types: i) “complete agreement” for genes where all subcellular

locations derived from the knowledgebase and the HPA dataset matched, ii) “partial agree-

ment” for genes with at least one matching subcellular location, iii) “partial superset” for genes

where knowledgebase subcellular locations are a superset of the HPA dataset, iv) "no agree-

ment" for genes with no subcellular locations in common, and v) “no annotations” for genes

in the experimental dataset that were not found in the knowledgebase.

Only gene product localizations from the HPA dataset with a “supportive” confidence score

were used for this analysis (n = 4795). We created a GO slim by looking up the corresponding

GO term for each location in this dataset with the aid of QuickGO term basket and filtering

tools. The resulting GO slim served as input for the creation of mapped GAFs using M2S. To cre-

ate mapped GAFs using GOcats, we entered keywords related to each location in the HPA data-

set (Table 4). We matched the identifier in the “gene name” column of the experimental data

with the identifier in the “database object symbol” column in the GAF to compare gene annota-

tions. Our assessment of comparing the HPA raw data to mapped gene annotations from the

knowledgebase represents the ability to accurately query and mine genes and their annotations

from the knowledgebase into categories of biological significance. Our assessment of comparing

the methods’ mapping output to the HPA raw dataset represents the ability of these methods to

evaluate the representation of HPA’s latest experimental data as it exists in public repositories.

Running time tests

For comparing the runtimes of GOcats and M2S for categorizing HPA’s subcellular location

dataset, each method was run separately on the same machine with the following
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configuration: Intel 1 Core ™ i7-4930K CPU with 6 hyperthreaded cores clocked at 3.40GHzn

and 64 GB of RAM clocked at 1866 MHz. We used the Linux “time” command with no addi-

tional options and reported the real time from its output. The datasets and scripts used can be

found in our FigShare (See Availability of Data and Material). We used the dataset contained

in our ScriptsDirectory/KBData/11-02-2016/hpa-no_IEA.goa for these comparisons. For M2S

we executed a custom script that can be found within ScriptsDirectory/runscripts:

sh owlmultitest.sh
which ran the following command, found in the same subdirectory, 50 times:

time sh owltoolsspeedtest.sh
For GOcats, we executed a custom script that can be found within ScriptsDirectory/

runscripts:

sh gcmultitest.sh
which ran the following command, found in the same subdirectory, 50 times:

time sh GOcatsspeedtest.sh
Both tests were executed using the same version of the go-core used across all other analyses

performed in this work, which is data version: releases/2016-01-12.

Supporting information
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