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Abstract

Introduction:We tested if water exchange across the blood-brain barrier (BBB), esti-

mated with a noninvasive magnetic resonance imaging (MRI) technique, is associated

with cerebrospinal fluid (CSF) biomarkers of Alzheimer’s disease (AD) and neuropsy-

chological function.

Methods: Forty cognitively normal older adults (67–86 years old) were scanned with

diffusion-prepared, arterial spin labeling (DP-ASL), which estimates water exchange

rate across the BBB (kw). Participants also underwent CSF draw and neuropsycholog-

ical testing. Multiple linear regression models were run with kw as a predictor of CSF

concentrations and neuropsychological scores.

Results: In multiple brain regions, BBB kw was positively associated with CSF amyloid

beta (Aβ)42 concentration levels. BBB kw was only moderately associated with neu-

ropsychological performance.

Discussion:Our results suggest that lowwater exchange rate across the BBB is associ-

atedwith lowCSFAβ42concentration. These findings suggest that kw maybeapromis-

ing noninvasive indicator of BBB Aβ clearance functions, a possibility which should be
further tested in future research.

KEYWORDS

biomarker, blood brain barrier, cerebrospinal fluid, glymphatic, magnetic resonance imaging,
water exchange

1 BACKGROUND

Alzheimer’s disease (AD) is the most common form of dementia, cur-

rently affectingmore than6millionAmericans.1 AD is characterized by

progressive neuropathological changes that begin decades before the

manifestation of cognitive and clinical declines.2,3 Increasing evidence

suggests that sporadic AD is associatedwith reduced amyloid beta (Aβ)
clearance.4,5 The blood-brain barrier (BBB) is a key structure involved

in Aβ clearance (via glymphatic and/or cerebrovascular function). The

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2021 The Authors. Alzheimer’s & Dementia published byWiley Periodicals LLC on behalf of Alzheimer’s Association

BBBconsists of non-fenestrated vessels that tightly regulate themove-

ment of ions andmolecules between theblood and central nervous sys-

tem (CNS).6,7 The BBB serves to transport nutrients from the endothe-

lial lumen and to protect the CNS from pathogens, toxins, and inflam-

mation, among other functions.6,7

Of particular relevance to AD, the BBB is involved in the clearance

of interstitial solutes, including Aβ, from the brain.8,9 A key BBB clear-

ance pathway operates through a set of perivascular water channels

(aquaporin-4 [AQP4]) at astrocytic endfeet. However, AQP4 channels

Alzheimer’s Dement. 2021;1–10. wileyonlinelibrary.com/journal/alz 1
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are abnormally expressed in AD brains,10,11 which might potentially

limit the clearance of Aβ.11–13 For example, AQP4-deficient mice show

significantly decreased water exchange rate, reflecting a potential

delay in clearance of Aβ and other CNS solutes, compared to their

wild-type counterparts.14

Results from these post mortem human studies and animal mod-

els support a hypothesis that decreased water exchange rate across

the BBB may be associated with reduced Aβ clearance in living

humans. Testing this hypothesis requires a technique that can mea-

sure subtle alterations in water (and potentially solute) exchange

rate across the BBB. The most commonly used magnetic resonance

imaging (MRI) technique for assessment of BBB damage is dynamic

contrast-enhanced (DCE) MRI. DCE-MRI can track paracellular leak-

age of gadolinium contrast as it passes between blood and brain

(Ktrans), revealing important information about advanced tissue dis-

ruption. However, DCE-MRI may be less suited to assess more subtle

forms of BBB dysfunction associated with alterations in active trans-

port systems9 although there may be DCE applications capable of

assessing perfusion.15

Recently, a noninvasive diffusion prepared arterial spin labeling

(DP-ASL) MRI method has been validated for quantification of water

exchange across the BBB.16–18 The DP-ASL technique uses multiple

diffusion weightings to differentiate magnetically tagged water signal

from the capillary and brain parenchyma compartments based on a

≈100-fold diffusion coefficient difference. The rate of water exchange

(kw) between these compartments is derivedusing a two-compartment

model of theASL signalwith single-pass approximation (SPA).17 The kw

metric represents a ratio of capillary permeability surface area product

of water (PSw) by capillary volume (Vc).

A recent validation study demonstrated that reduced kw using this

technique corresponds with both mannitol-induced BBB breakdown

and histology in animal models.19 DP-ASL kw was also found to be cor-

related with DCE Ktrans in some brain regions.20 The moderate cor-

relations observed between DP-ASL kw and DCE Ktrans may reflect

overlapping yet different mechanisms assessed by these two metrics.

The DCE and DP-ASL techniques also involve trade-offs. For exam-

ple, DCEKtrans provides higher spatial resolution. In contrast, DP-ASL

likely provides amore sensitivemarker of early-stage BBB dysfunction

based on water exchange rate being ≈6000x faster than the exchange

rate of gadolinium across the BBB.20 DP-ASL also allows for compu-

tation of measures of cerebral perfusion such as cerebral blood flow

(CBF) and arterial transit time (ATT), as assessed in the present study.

Here we sought to determine whether water exchange rate across

the BBB (kw) is associated with cerebrospinal fluid (CSF) biomark-

ers of AD pathology (Aβ42, total tau [t-tau], hyperphosphorylated

tau [p-tau]) in cognitively normal older adults. We hypothesized

that kw would be associated with CSF Aβ given that Aβ aggre-

gates in interstitial fluid, and is thought to be cleared via BBB-

related glymphatic mechanisms. In particular, we predicted that low

kw would be associated with low levels of CSF Aβ, which reflect

high Aβ deposition in neuritic plaques.21,22 A second, exploratory aim

of the present study was to assess potential relationships between

kw and neuropsychological function. Specifically, we assessed if kw

was associated with performance on measures of episodic mem-

RESEARCH INCONTEXT

1. Systematic review: We reviewed the literature using tra-

ditional resources (e.g., PubMed). While Alzheimer’s dis-

ease (AD) has been linked with blood-brain barrier (BBB)

dysfunction, few studies have examined the relationship

between cerebrospinal fluid (CSF) amyloid beta (Aβ) con-
centration andwater exchange across the BBBusing neu-

roimaging.

2. Interpretation: Water exchange across the BBB is

thought to contribute to the clearance of Aβ. In this study,
water exchange rate across the BBB (kw) in multiple

brain regions (whole brain, frontal lobe, parietal lobe, and

precuneus) was associated with CSF Aβ42 concentration

levels. These findings suggest that the neuroimaging

metric of kw may be a noninvasive indicator of BBB Aβ
clearance functions.

3. Future directions: Future longitudinal studies will be

required todeterminewhether baseline kw values predict

Aβ42 accumulation over time. This research is important

to assess the utility of the kw neuroimaging metric as an

indicator of BBB clearance functions. Such a metric could

proveuseful innoninvasive, serial assessmentof response

to pharmacological therapies.

ory and executive function, cognitive domains of high relevance to

preclinical AD.

2 METHODS

2.1 Participants

Forty cognitively normal (CN) older adults were included in this

study. One participant was excluded from analyses due to the pres-

ence of an old stroke within the right motor cortex that was not

clinically evident by history at enrollment in the Alzheimer’s Dis-

ease Research Center (ADRC) cohort. Summary group demographic

characteristics of the 39 remaining participants (20 female, mean

age = 72.7) are shown in Table 1. All participants provided informed

consent under a protocol approved by the Institutional Review Board

of the University of Kentucky (UK). Participants were recruited

from an existing longitudinal cohort of CN older adults at UK’s

Sanders-Brown Center on Aging (SBCoA).23 Exclusionary criteria

for enrollment into the SBCoA cohort include major head injury;

major psychiatric illness or current substance abuse; medical illnesses

that are nonstable, impairing, or that have an effect on the CNS;

chronic infectious diseases; major stroke; encephalitis; meningitis; or

epilepsy.23

Additional exclusion criteria for the present MRI study were claus-

trophobia, pacemakers, and the presence of metal fragments or any
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TABLE 1 Mean group demographic values and CSF AD biomarker
values

N 39

Age (years) 72.7 [67-86]

Sex (F/M) 20/19

Education (years) 16.64 (2.26)

MMSE 28.90 (1.43)

Aβ42 (pg/mL) 294.85 (76.13)

t-tau 62.74 (26.82)

p-tau 23.23 (16.46)

Notes: The table lists the total number of participants, mean and range for

age, male/female distribution, and mean and standard deviation (SD) for

years of education,MMSE, Aβ42, t-tau, and p-tau (pg/mL).

Abbreviations: Aβ, amyloid beta; AD, Alzheimer’s disease; CSF, cere-

brospinal fluid; MMSE, Mini-Mental State Examination; p-tau, phosphory-

lated tau; t-tau, total tau.

metal implants that are incompatible with MRI. The majority of partic-

ipants at UK’s SBCoA agree to lumbar CSF draw. In the present MRI

study, CN participants were recruited from the SBCoA on the basis of

having available CSF data. A diagnosis of CNwas established based on

clinical consensus scores from theUniformData Set (UDS3) usedbyUS

ADRCs24 and a score of 26 or higher on the Mini-Mental State Exami-

nation (MMSE).

2.2 Imaging protocol

Participants were scanned with a Siemens 3T PRISMA scanner, using a

64-channel head-coil, at UK’s Magnetic Resonance Imaging and Spec-

troscopy Center. The following sequences were collected: a high res-

olution, multi-echo, T1-weighted anatomical image (MEMPR) and a

3D gradient-and-spin-echo (GRASE) diffusion-prepared pCASL (DP-

pCASL) sequence. The MEMPR sequence had four echoes (repetition

time [TR]=2530ms; first echo time [TE1]=1.69ms, echo time spacing

[ΔTE]= 1.86ms, flip angle [FA]= 7◦) and covered the entire brain (176

slices, field of view = 256 mm, parallel imaging [GRAPPA] factor = 2,

1mm isotropic voxels, scan duration= 5.53min).

TheDP-pCASL sequencewasperformedwith the followingparame-

ters: TR= 4 sec, TE= 36.5ms, FOV= 224mm,matrix size= 64×64, 12

slices (10% oversampling), resolution = 3.5×3.5×8 mm3, label/control

duration = 1500 ms, centric ordering, and optimized timing of back-

ground suppression for gray matter (GM) and white matter (WM).25

A two-stage approach was used to measure ATT and kw: fifteen rep-

etitions were acquired during the flow encoding arterial spin tagging

(FEAST) scan at post-labeling delay (PLD) = 900 ms and diffusion

weighting (b-value) of 0 and 14 s/mm2 with a total acquisition time

of 4 minutes for estimating ATT.16 The kw metric was calculated from

scans acquired at PLD= 1800 ms, when the labeled blood reaches the

microvascular compartment, with b = 0 and 50 s/mm2, respectively.

Twenty repetitions were acquired for each b-value of the kw scan, and

the total acquisition timewas 6minutes. CBFwas quantified from per-

fusion signals acquiredatPLD=1800mswithoutdiffusionpreparation

as described in detail elsewhere.18

2.3 DP-ASL Analyses: TGV Regularized SPA
Modeling for BBB Water Exchange Rate (kw)
Mapping

Control/label images were corrected for rigid head motion using

SPM12 (Wellcome Trust Centre for Neuroimaging, University College

London) and subtracted to obtain perfusion images. Temporal fluctu-

ations were minimized using principal component analysis.26 For DP-

pCASL, the tissue and capillary compartments of the ASL signal were

separated by a small diffusion gradient of 50 s/mm2. The kw map was

calculated by a total-generalized-variation (TGV)27 regularized SPA

model17 using the tissue (or capillary) fraction of the ASL signal at

the PLD of 1800 ms, incorporating ATT, T1 of arterial blood and brain

tissue as inputs for the algorithm.18 Arterial blood T1 was assumed

to be 1.66 s, which is commonly used for CBF quantification.28 Our

simulation indicated that variations in arterial blood T1 (1.5–2.1 s)

led to < 4% variations in kw. A voxel-wise tissue T1 map was fitted

from background suppressed control images acquired at 2 PLDs.26

The kw, ATT, and CBF maps, along with the M0 (T2 weighted struc-

tural image in the same space), were normalized to Montreal Neuro-

logical Institute (MNI) template space, and average values were mea-

sured in six regions of interests (ROIs) of relevance to AD: whole

brain, frontal lobe, temporal lobe, parietal lobe, precuneus, and medial

temporal lobe (MTL; amygdala, hippocampus, and parahippocampal

gyrus). These ROIs were selected from the Anatomical Labeling Tem-

plate in SPM, using participants’ T1-weighted images, as described

previously.29

2.4 Cerebrospinal fluid collection and analysis

CSF was drawn the morning after fasting since midnight according to

current ADRC best practices/National Institute on Aging guidelines.

CSF lumbar drawwas performedby a trained neurologist at the SBCoA

(G.A.J) and then banked by the UK-ADRC Neuropathology Core. CSF

was collectedusing a20-gaugeneedle, 15mLsterile polypropylene col-

lection tubes, andwas stored in single-use0.5mLaliquots inpolypropy-

lene storage tubes at –80◦C. CSF was analyzed using the Quanterix

Simoaplatform.Aβ1-42, p-tau181, and t-tauweremeasuredon theHD-1

instrument using theNeuro 3-plex A (Aβ40, Aβ42, t-tau) assay at 1:200
and the p-tau181 assay at 1:20 according to manufacturer’s instruc-

tions. CSF samples were quantified in units of picograms per milliliter

(pg/mL).

2.5 Neuropsychological measures

The majority of participants underwent the UDS3 neuropsychologi-

cal battery and several additional measures administered to UK-ADRC
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participants. Composite measures of cognition were constructed for

the AD-relevant domains of executive function and episodic memory.

The executive function (EF) compositemeasure included the TrailMak-

ing Test Part A (TMT-A), Trail Making Test Part B (TMT-B), and the

Digit Symbol test fromtheWechslerAdult IntelligenceScale-IV (WAIS-

DS). Scores on the TMT-A were regressed out of scores on the TMT-

B and WAIS-DS to exclude components of raw processing and motor

speed common to these tests.30 The resulting residualswere then com-

bined to form a composite EF score by subtracting the TMT-B resid-

uals (higher scores = worse performance) from the WAIS-DS residu-

als (higher scores = better performance) and dividing by 2. Therefore,

higher EF composite scores reflected better performance. The episodic

memory (MEM) composite included theCRAFTdelayed recall andBen-

ton Figure delayed recall. Total scores were divided by 2. Higher MEM

composite scores reflected better performance.

2.6 Statistical analyses

Statistical analyses were performed using SPSS 24 (IBM). A series

of multiple regression models were run to assess potential relation-

ships between DP-ASL metrics with CSF biomarkers of AD and neu-

ropsychological scores. Age and sex were included as covariates in all

regression models. For the first set of analyses, separate multiple lin-

ear regression models were first run with DP-ASL metrics (kw, CBF,

or ATT) as predictor variables of CSF biomarkers of AD (Aβ42, t-tau,
or p-tau). These initial regression models were statistically corrected

for the six ROIs tested (P = .05/6 ROIs; family-wise error rate [FWE],

P = .008). For the second set of analyses, separate multiple linear

regression models were run to determine whether kw in any of those

ROIs showing associationswithCSF biomarkers of ADpathology (from

the first set of regressionmodels) were also associated with neuropsy-

chological scores (EF or MEM composite scores). This second set of

multiple linear regression analyses were statistically corrected for the

8 comparisons run (4 ROIs x 2 cognitive domains; P = .05/8; FWE,

P= .006).

For all regression models, assumptions of normality and het-

eroscedasticity of variance were explored by generating P-P plots,

histograms, and scatterplots of residuals. Evaluation of these plots

showed that our reported regression models met assumptions of nor-

mality andhomoscedasticity.Multicollinearity betweenpredictorswas

explored using the variance inflation factor (VIF), with an upper limit

of 5 implemented as a threshold value.31 The VIF is reported for all

models, with none exceeding a value of 1.5. Scatterplots of standard-

ized residuals were created using participant z-score values. Potential

outliers in residual values were identified as being greater than three

standard deviations from their groupmean.33,33

3 RESULTS

The original data file is available as Supplementary information. Sum-

mary group demographic and AD fluid biomarker characteristics of the

TABLE 2 Mean group values for DP-ASLmetrics of kw, ATT, and
CBF

kw ATT CBF

Whole brain 98.27 (19.77) 1223.01 (101.65) 32.17 (9.02)

Frontal lobe 104.42 (22.18) 1232.48 (115.90) 31.74 (9.65)

Temporal lobe 94.76 (26.06) 1167.48 (116.63) 32.97 (9.94)

Parietal lobe 83.21 (28.34) 1353.37 (148.20) 31.24 (11.54)

Precuneus 85.96 (28.79) 1334.03 (159.04) 33.24 (10.89)

Medial

temporal

lobe

85.87 (27.32) 942.38 (223.70) 22.88 (8.76)

Notes: The table lists mean and standard deviation (SD) in each ROI for the

metrics of kw, ATT, and CBF.

Abbreviations: ATT, arterial transit time; CBF, cerebral blood flow; kw,

blood-brain barrier water exchange; ROI, region of interest.

F IGURE 1 Sample regions of interest (ROIs). Representations of
masks used to extract values from the frontal lobe (maroon), temporal
lobe (yellow), parietal lobe (orange), and precuneus (blue). ROIs are
presented on a T1-weighted image (first row) and on a representative
participant’s blood-brain barrier water exchange (kw) map in
normalized space (second row). Columns from left-to-right show
horizontal slices moving in the inferior-to-superior direction. The
same ROImasks were used for extraction of arterial transit time and
cerebral blood flow values

39 participants included in data analyses are shown in Table 1, with

summary groupDP-ASL values shown in Table 2.

3.1 Relationships between kw and fluid
biomarkers of AD pathology

Relationships betweenkw inROIs (Figure1) and fluid biomarkers ofAD

pathology were explored. Results (Table 3) indicated significant associ-

ations (FEW-correctedP= .008) betweenCSFAβ42 concentration and
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TABLE 3 Relationships between kw and fluid biomarkers of AD pathology

CSFAβ42 CSF t-tau CSF p-tau

kw Beta-value P-value Beta-value P-value Beta-value P-value

Whole brain 0.51 .002 0.09 .549 –0.24 .167

Frontal lobe 0.50 .002 0.01 .999 –0.18 .287

Parietal lobe 0.56 < .001 0.12 .423 –0.29 .082

Temporal lobe 0.42 .015 0.16 .321 –0.21 .244

Precuneus 0.46 .004 0.03 .822 –0.24 .150

Medial temporal lobe 0.21 .236 0.12 .464 –0.265 .132

Abbreviations: Aβ, amyloid beta; AD, Alzheimer’s disease; CSF, cerebrospinal fluid; kw, blood-brain barrier water exchange; p-tau, phosphorylated tau; t-tau,

total tau.

F IGURE 2 Relationships between blood-brain barrier water exchange (kw) values and cerebrospinal fluid (CSF) amyloid beta (Aβ)42
concentration. Scatter plots show kw values in the whole brain (A), frontal lobe (B), parietal lobe (C), precuneus (D), temporal lobe (E), andmedial
temporal lobe (F) plotted against CSF Aβ42 concentration. Plots show residual associations after controlling for age and sex

kw values in the whole brain (beta= 0.51, t= 3.4, P= .002; VIF= 1.04),

frontal lobe (beta = 0.50, t = 3.4, P = .002; VIF = 1.04), parietal lobe

(beta= 0.56, t= 3.9, P< .001; VIF= 1.03), and precuneus (beta= 0.46,

t = 3.1, P = .004; VIF = 1.02), after controlling for age and sex

(Figure 2A-D). The association between CSF Aβ42 concentration

and kw in the temporal lobe did not meet corrected significance

(beta = 0.42, t = 2.6, P = .015; VIF = 1.11; Figure 2E). There was

no relationship between CSF Aβ42 concentration and kw in the MTL

(beta = 0.21, t = 1.2, P = .236; VIF = 1.13; Figure 2F). There were no

significant associations between kw in any of the ROIs and CSF t-tau

concentration (P’s ≥.321) or between kw in any of the ROIs and CSF p-

tau concentration (P’s≥.082).

3.2 Relationships among ATT, CBF, and fluid
biomarkers of AD pathology

There were no significant associations (FWE corrected P = .008)

between ATT in any of the ROIs and Aβ42, p-tau, or t-tau, although the
relationshipbetweenATT in theMTLandp-tau concentration levelwas
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TABLE 4 Relationships between kw and neuropsychological
scores

Episodic memory Executive function

kw Beta-value P-value Beta-value P-value

Whole brain 0.19 .292 0.19 .342

Frontal lobe 0.385 .032 0.304 .114

Parietal lobe 0.18 .322 0.02 .925

Precuneus 0.09 .632 0.12 .528

Abbreviation: kw, blood-brain barrier water exchange.

significant at the uncorrected level (beta = –0.347, t = –2.1, P = .042;

VIF = 1.10). There were no other associations between ATT in other

regions and either p-tau or t-tau concentration levels (all P’s ≥.221).

There were no associations between CBF in any of the ROIs and either

Aβ42, p-tau, or t-tau (all P’s≥.121).

3.3 Relationships between kw and
neuropsychological performance

Seven participants were missing neuropsychological data, leaving a

total of 32 datasets for these analyses. To limit the number of com-

parisons, regressions were only run for the four ROIs showing asso-

ciations between kw and CSF Aβ42 in the above models (whole brain,

frontal lobe, parietal lobe, and precuneus). Results (Table 4) indicated

no significant associations (FW-corrected P= .006) between kw in any

of the four ROIs and cognitive performance. At an uncorrected signifi-

cance level, frontal lobe kw was associatedwithMEMcomposite scores

(beta = 0.385, t = 2.25, P = .032; VIF = 1.07; Figure 3A), but not with

EF composite scores (beta = 0.304, t = 1.6, P = .114; VIF = 1.07; Fig-

ure 3B). kw in the other ROIs was not associated with MEM composite

scores (all P’s≥.292) or EF scores (all P’s≥.342).

In summary, our results indicate that lowkw inmultiple brain regions

is associated with low CSF Aβ42 concentration. A schematic represen-

tation of the main pattern of kw-CSF Aβ42 results is illustrated in Fig-

ure 4. As can be seen in Figure 4, kw values tend to track positivelywith

CSF concentration scores while this pattern is less evident for CBF and

ATT values.

4 DISCUSSION

Our results provide evidence for an in vivo association between water

exchange rate across the BBB (kw) and CSF Aβ42 concentration. These
findings suggest that kw computed from a novel DP-pCASL sequence

may be a potential indicator of BBB-related clearance functions. Impli-

cationsof thekw metric for cognitive functioning inhealthyolder adults

remain less clear as kw was onlymoderately associatedwith neuropsy-

chological performance in our sample.

4.1 Associations of kw, CBF, and ATT with AD
fluid biomarkers

Results indicated that low kw in the whole brain, frontal lobe, parietal

lobe, and precuneus were each associated with low CSF A𝛽42 con-

centration (reflecting high cerebral Aβ). In contrast, kw was not asso-

ciated with either CSF tau or p-tau in any ROI. The specificity of the

link we observed between kw in cortical regions and Aβ (as opposed to
t-tau and/or p-tau) is in keeping with findings that Aβ binding is more

prominent in neocortex thanMTL.34,35 In addition, considering poten-

tial BBB-related clearance functions, Aβ aggregates extracellularly in

the parenchyma, while tau accumulation is primarily an intracellular

process unless the cell dies and releases its proteinaceous components

into the extracellular milieu.36 Thus, our findings that kw was more

closely associated with CSF A𝛽42 than tau appears consistent with

expected role of BBB clearance functions during the preclinical (cog-

nitively normal) stage.

Similarly, kw was the only DP-pCASL metric associated with CSF

Aβ42 concentration. Neither ATT nor CBF valueswere associatedwith
CSF Aβ42 concentration. kw values are a ratio of capillary permeability

surface area product of water (PSw) by capillary volume (Vc). Lower kw

values can result from relatively low PSw or relatively high Vc values.

The PSw is influenced by alterations in water channels. If water

F IGURE 3 Relations between blood-brain
barrier water exchange (kw) in the frontal lobe
and neuropsychological scores. Scatter plots
show kw values in the frontal lobe against
episodic memory composite scores (A) and
against executive function composite scores
(B), after controlling for age and sex.
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F IGURE 4 Schematic representation of findings. Maps of cerebral blood flow (CBF), arterial transit time (ATT), and blood-brain barrier water
exchange (kw) are presented from three representative participants showing the trend of increasing kw values being associated with increasing
cerebrospinal fluid (CSF) amyloid beta (Aβ)42 concentration (from left to right). Participants’ whole brain CBF, ATT, and kw values are presented
below their maps. Participants’ CSF Aβ42 concentration values are presented at the bottom of the figure, within the white box

channel function is impaired or compromised, PSw would be

decreased, and kw values would be reduced. Further, as an extra-

cellular protein, Aβ42 should be more closely linked with water

exchange rate across the BBB than with measures of ATT or CBF,

which are indices of cerebral perfusion. In keeping with this possibility,

our results indicated that the kw metric of water exchange across the

BBB, but not perfusion, was associated with CSF Aβ.

4.2 The potential basis of the kw–Aβ42
relationship

In late-onset sporadic AD, Aβ42 deposition appears more closely

associated with impairment of Aβ efflux (clearance) than influx.5,37

While direct exchange of water and CSF solutes such as Aβ may

be mediated through BBB breakdown at the neurovascular inter-

face, it might also occur through the recently described glial lym-

phatic (glymphatic) pathway.38,39 Whereas direct CNS–vascular per-

meability is mediated largely by inflammation, the glymphatic path-

way is dependent on the AQP4 water channel, which selectively con-

ducts water molecules across the BBB into the glymphatic pathways.

In animal models, decreased AQP4 expression has been linked with

reduced Aβ42 clearance from the brain38,40 and deletion of the AQP4

gene results in increased Aβ plaque.41

AQP4 water channels are typically localized to perivascular astro-

cytic endfeet that surround the cerebral vasculature38,39 but are

abnormally expressed in AD brains.10,11 This includes both reduced

localization of AQP4 to the cerebral vasculature42 and reduced AQP4

expression in the vicinity of AB plaques. Reduced AQP4 expression

may in turn contribute to reduced clearance and Aβ aggregation.13,43

Thus, low kw values fromDP-ASL could in part reflect decreased local-

ization or expression of AQP4 in individuals with higher cerebral Aβ
concentration.42

4.3 Associations of Kw and cognitive
performance

We further sought to assess the associations of low water exchange

rate across the BBB with cognitive performance. Results indicated

that kw was not associated with EF or MEM composite scores after

controlling for multiple comparisons. Further, at an uncorrected sta-

tistical level, only the relationship between kw in frontal cortex

and MEM was significant. The weak relationship between kw and
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neuropsychological function we observed could reflect limited sample

size/power. In addition, kw reductions in CN older adults may reflect

early-stage BBB dysfunction that is not yet clinically significant. Future

research should address kw–cognitive relationships with larger sam-

ple sizes of adults who range in cognitive diagnosis from CN through

impaired.

4.4 DP-pCASL as a method for quantifying water
exchange across the BBB

Various methods have been proposed for quantifying water exchange

rates including those using dynamic analysis of the first-pass sig-

nal of shutter-speed DCE-MRI,44 and with a novel multi-flip angle

multi-echo (MFAME) scanning protocol.45 Bothmethods require injec-

tion of contrast agents. As an alternative, ASL techniques use water

as an endogenous tracer. Global water extraction rate and PSw can

be measured with phase-contrast ASL (WEPCAST).46 Kinetic models

have been proposed to map the regional water exchange rate using

ASL sequences with signal preparation to separate intravascular and

extravascular compartments based on the T2 difference14,47,48 and

the diffusion coefficient difference.49,50 Considering that the pseudo-

diffusion coefficient of capillary water is ≈100-fold higher than that

of the tissue,50 our DP-pCASL method applies a small diffusion gradi-

ent so that two compartments of ASL signal can be reliably and effi-

ciently separated and a whole-brain kw map can be obtained within

10minutes.

4.5 Limitations

The kw values reported in GM ROIs are likely to include some aver-

aging of neighboring WM signal (i.e., partial volume effects) due to

the relatively coarse voxel dimensions used (3.5 × 3.5 × 8 mm3). In

addition, the specific direction of kw alterations (lower kw vs. higher

kw) in various neurological disorders requires further research. While

reduced BBB water exchange has been associated with aging and

dementia,9 upregulation of AQP4 (and potentially increased kw) has

been reported in vascular disorders such as diabetes.51 In our previ-

ous study, increasedkw wasassociatedwith increasedvascular risk fac-

tors in Latinx participants.18 The specific kw alterations and underlying

mechanisms related to AD and small vessel disease and other neuro-

logic disorders await clarification in future studies. Further, it should be

recognized that this is a cross-sectional study limited to a description

of associations. Whether disruption of the glymphatic system or the

direct cerebrovascular interface is responsible for the observed asso-

ciations remains unclear. Future work investigating kw in longitudinal

datasets is important for answering these critical questions and driv-

ing the field forward. Such work should consider inclusion of positron

emission tomography–amyloid imaging for spatial localization not pro-

vided by CSF data.

5 CONCLUSIONS

The present results demonstrate that a non-invasive measure of water

exchange rate across the BBB (kw) is associated with lumbar CSF Aβ42
concentration levels. Our results suggest that kw measured by a novel

3DGRASEDP-pCASL sequence shows promise as a non-invasive met-

ric of BBB-related clearance in CN older adults. These findings need to

be replicated in other cohorts, and in larger numbers of participants,

to further evaluate the sensitivity and specificity of this non-invasive,

potential marker of BBB-related clearance functions.
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