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Abstract
Cerium oxide nanoparticles, so-called nanoceria, are engineered nanomaterials prepared by many methods that result in products
with varying physicochemical properties and applications. Those used industrially are often calcined, an example is NM-212. Other
nanoceria have beneficial pharmaceutical properties and are often prepared by solvothermal synthesis. Solvothermally synthesized
nanoceria dissolve in acidic environments, accelerated by carboxylic acids. NM-212 dissolution has been reported to be minimal.
To gain insight into the role of high-temperature exposure on nanoceria dissolution, product susceptibility to carboxylic acid-accel-
erated dissolution, and its effect on biological and catalytic properties of nanoceria, the dissolution of NM-212, a solvothermally
synthesized nanoceria material, and a calcined form of the solvothermally synthesized nanoceria material (ca. 40, 4, and 40 nm di-
ameter, respectively) was investigated. Two dissolution methods were employed. Dissolution of NM-212 and the calcined
nanoceria was much slower than that of the non-calcined form. The decreased solubility was attributed to an increased amount of
surface Ce4+ species induced by the high temperature. Carboxylic acids doubled the very low dissolution rate of NM-212.
Nanoceria dissolution releases Ce3+ ions, which, with phosphate, form insoluble cerium phosphate in vivo. The addition of immobi-
lized phosphates did not accelerate nanoceria dissolution, suggesting that the Ce3+ ion release during nanoceria dissolution was
phosphate-independent. Smaller particles resulting from partial nanoceria dissolution led to less cellular protein carbonyl formation,
attributed to an increased amount of surface Ce3+ species. Surface reactivity was greater for the solvothermally synthesized
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nanoceria, which had more Ce3+ species at the surface. The results show that temperature treatment of nanoceria can produce sig-
nificant differences in solubility and surface cerium valence, which affect the biological and catalytic properties of nanoceria.

Beilstein J. Nanotechnol. 2021, 12, 525–540.

526

Introduction
The long-term fate of engineered nanomaterials (ENMs), which
could profoundly influence their biological effects, is not well
understood. After uptake into phagolysosomes, which have a
pH value of ca. 4.5, there is the potential for dissolution,
changing the physicochemical, and potentially the biological,
identity of ENMs.

Nanoceria are a family of metal oxide ENMs used industrially,
as catalysts in diesel fuel, abrasives in chemical mechanical
planarization, in integrated circuit manufacture, as structural
supports for catalysts for fuel synthesis applications, in solid
oxide fuel cells, and in rechargeable batteries [1,2]. Cerium
oxide was selected by the OECD Working Party on Manufac-
tured Nanomaterials as one of 13 representative manufactured
nanomaterials for safety testing to create an understanding of
the kind of information about intrinsic nanomaterial properties
that may be relevant for exposure and effects assessment [3]. A
nanoceria material, NM-212, produced by Umicore, has been
studied to address the OECD objective.

Pulmonary NM-212 exposure for up to 90 days in rats resulted
in pulmonary inflammation and genotoxicity with little evi-
dence of clearance [4-8]. The European Union funded a
comprehensive two-year whole-body combined chronic toxici-
ty/carcinogenicity inhalation study in female rats exposed to 0,
0.1, 0.3, 1, or 3 mg/m3 NM-212, six hours daily on five consec-
utive working days per week (EU FP7 project ‘NANoREG’,
Grant Agreement number 310584). Lung cerium burden after
three, twelve, and 24 months of exposure positively correlated
with exposure time and nanoceria concentration, with deposi-
tion fractions of 12%, 15%, 14%, and 8%, and predicted clear-
ance half-lives of 86, 114, 164, and 200 days [9]. These studies
showed that pulmonary exposure to NM-212 could lead to long-
term biological persistence and have adverse consequences and
raised the question whether its method of preparation and solu-
bility are contributing factors.

In contrast to the results with NM-212, other nanoceria have
been demonstrated to have therapeutic potential for multiple
conditions with an oxidative stress/inflammation component,
including cancer, radiation damage, bacterial infection, sepsis,
wounds, stroke-induced ischemia, retinal degeneration, and
neurodegenerative diseases [10]. Other reviews provide more
information on nanoceria synthesis methods and the resulting
physicochemical properties of the products as well as the bene-
ficial biological effects and human diseases that could poten-

tially be treated [11], and the physicochemical properties that
mediate the effects of nanoceria, its biochemical properties, bio-
synthesis, and its major biomedical applications, including bio-
sensors [12]. Additional applications are cited in the introduc-
tion of [13]. These beneficial results have been obtained with
nanoceria prepared by precipitation or solvothermal synthesis.

There are many reports of nanoceria synthesis, producing a
myriad of products with different physicochemical properties
tailored to their application. NM-212 was prepared as a
nanoceria representative of those used in industrial applications.
Nanoceria prepared for industrial applications are often exposed
to high temperature (calcined), which increases particle size and
produces crystalline particles with a predominance of surface
Ce4+ [14-18]. NM-212 has been reported to have a primary par-
ticle size of 20 to 40 nm and a predominance of surface Ce4+

(Supporting Information File 1, Table S1). In contrast,
nanoceria demonstrated to have therapeutic potential are typi-
cally prepared by procedures that do not include calcination, re-
sulting in primary particles ca. 5 nm in diameter and with a pre-
dominance of surface Ce3+ (Supporting Information File 1,
Table S1). Nanoceria are autocatalytically redox-active, cycling
between Ce3+ (anti-oxidative) and Ce4+ (pro-oxidative) species.
A higher temperature during nanoceria preparation is generally
associated with more nanoceria-induced pro-oxidative effects
[19] and would be expected to produce a nanoceria form with
more Ce4+ and less ability to autocatalytically cycle between
Ce4+ and Ce3+.

Early reports stated that nanoceria were insoluble or did not
demonstrate significant solubility (Supporting Information
File 1, Table S2). However, when studied for sufficient time it
has been shown that some nanoceria dissolve in acidic media,
accelerated by carboxylic acids, including a ca. 5 nm solvother-
mally synthesized nanoceria prepared for biological assessment.
Although there have been some investigations of NM-212 that
found very low solubility, none investigated concurrent
carboxylic acid exposure or addressed why the dissolution of
NM-212 is so low. The rate and extent of nanoceria solubility
can influence resultant effects, which are greater from the re-
leased cerium ions than from nanoceria [20-23]. Given that
nanoceria prepared for industrial applications, such as NM-212,
are typically calcined, it was hypothesized that the low solu-
bility of NM-212 is a product of high-temperature exposure.
NM-212 was prepared by precipitation [7,24], but the synthesis
process has not been reported and could not be discovered by
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the authors. The JRC Nanotechnology team support was unable
to provide synthesis procedure information (personal communi-
cation to R. Yokel, February 10, 2020). Given the diversity of
nanoceria products with different physicochemical properties,
which are influenced by their preparation procedures, this lack
of information hinders the interpretation of the influence of the
NM-212 preparation on its effects. This limitation also applies
to reports of effects following pulmonary exposure to other
commercially supplied nanoceria prepared by proprietary
methods [25-32].

The objective of the present studies was to determine the long-
term dissolution of NM-212 (as a representative nanoceria ma-
terial prepared for industrial applications) compared to a
solvothermally synthesized nanoceria material (demonstrated to
have pharmaceutical applications), the influence of carboxylic
acids and immobilized phosphate on their dissolution, the influ-
ence of nanoceria after partial dissolution on a selected biologi-
cal effect, and the surface reactivity. Based on reports of very
limited NM-212 dissolution and physicochemical differences
between nanoceria synthesized for industrial and biological ap-
plications, the former often including calcination and produc-
ing larger particles, it was hypothesized that the long-term
dissolution of NM-212 would be slower than that of a
solvothermally synthesized nanoceria material. Given that
cerium forms very stable complexes with phosphate but phos-
phate inhibits nanoceria dissolution, it was hypothesized that
phosphates not in direct contact with nanoceria would create a
sink for released cerium ions and increase the nanoceria disso-
lution rate. Assuming that NM-212 was calcined to a crys-
talline form with fewer oxygen vacancies and exhibits, there-
fore, a predominance of surface Ce+4, compared to a solvother-
mally synthesized nanoceria material with more oxygen vacan-
cies, which produce a preponderance of surface Ce+3, it was
hypothesized the NM-212 would have less catalytic activity.

Another nanoscale ceria, produced for OECD-suggested safety
testing, NM-211, was included in some of the present studies
for comparison to NM-212 and the solvothermally synthesized
nanoceria material. Its size and percentage of surface Ce+4 are
intermediate between NM-212 and the tested solvothermally
synthesized nanoceria material [33].

Nanoceria dissolution was determined using two methods, a
continuous flow system (CFS) and a dialysis system. The influ-
ence of immobilized phosphate on the nanoceria dissolution rate
was determined by addition of two phosphate-containing resins
to the dialysis system. The influence of nanoceria dissolution on
its biological identity was assessed as the protein carbonyl level
in response to partially dissolved nanoceria. The catalytic
potential was assessed using a reactivity assay.

Experimental
Materials
NM-211 and NM-212 were obtained from the European
Commission Joint Research Centre Institute for Health and
Consumer Protection repository of reference materials from the
OECD sponsorship program. The solvothermally synthesized
nanoceria material was prepared using a hydrothermal method
[34]. Briefly, 0.25 M cerium chloride heptahydrate and 0.25 M
citric acid monohydrate were added to 1.5 M ammonium
hydroxide, stirred, and autoclaved for 24 h at 50 °C then 24 h at
80 °C. The product was dialyzed against 110 mM pH 7.4 citric
acid for 120 h, replacing the dialysate every 24 h, then dialyzed
against DI water to remove citric acid and ionic cerium for an
additional 72 h, replacing the dialysate every 24 h. The product
was extensively characterized. It was a citrate-coated 4.2 nm
ceria [35]. Lanthanides (LN) resin (100 to 150 μm) was ob-
tained from Eichrom Technologies LLC, Lisle, IL, 60532.
Hydroxyapatite (Bio-Gel HTP, 10 to 90 μm) was obtained from
Bio-Rad. Cerium was obtained as an Aldrich ICP/DCP stan-
dard. RAW 264.7 (murine macrophage) cells were obtained
from ATCC. Human blood serum was acquired from Sigma
Aldrich (P2918-100 mL).

Physicochemical characterization of NM-212
The NM-212 sample was physicochemically characterized to
verify and expand on prior characterizations. Transmission elec-
tron microscopy (TEM) and high-angle annular dark-field
scanning transmission electron microscopy (HAADF-STEM)
were conducted of NM-212 dispersed in DI water, sonicated for
10 min in a bath, and captured on 300 mesh lacey carbon
copper grids dipped into the dispersion for approximately 5 s
and dried overnight at room temperature. Electron microscopy
was performed on a Thermo Scientific Talos F200X operated
at an accelerating voltage of 200 keV. Images were recorded
with a Ceta CCD camera. The mean and Feret diameters
and area, and their standard deviation, minimum, and
maximum, of one hundred particles were calculated using
ImageJ software. Energy-dispersive X-ray spectroscopy (EDS)
and electron energy loss spectroscopy (EELS) were conducted
using Thermo Scientific’s SuperX G2 and Gatans’ Enfinium
ER, respectively. Thermogravimetric analysis (TGA)
(PerkinElmer TGA7) was used to determine the organic weight
percent. This was repeated three times. TGA runs were com-
pleted under a nitrogen atmosphere to prevent the oxidation of
organic matter. The sample was heated from 20 to 125 °C at
10 °C/min, held at 125 °C for 30 min to release physiosorbed
water, and then heated to 900 °C at 10 °C/min. Fourier-
transform infrared spectroscopy (FTIR) (Nicolet 6700 FTIR
with a diamond ATR crystal) was used to detect organic func-
tional groups on the ENM surface. Thirty-two scans were com-
pleted.
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Nanoceria calcination
Two samples (6.5 and 6.7 mg) of solvothermally synthesized
nanoceria, described in Supporting Information File 1, Table
S1, were calcined by heating in porcelain crucibles in a muffle
furnace to 900 °C at a ramp rate of ca. 10 °C/min, then held for
3 h. The product was characterized by electron microscopy
performed on the Thermo Scientific Talos F200X described
above. The primary particle diameter was estimated from
100 particles.

Nanoceria dissolution
The continuous flow system has been described [36,37]. It
consists of phagolysosomal simulant fluid (Aleks Stefaniak’s
PSF medium at pH 4.5 [38]), the flow-through cell, a flow regu-
lating pump, and an autosampler. In the PSF reservoir, ultra-
high molecular weight polyethylene (UHMWPE) filters prevent
clogging of the ultrafiltration membrane in the flow cell. For the
standard conditions, 1 mg of ENM was placed on a
5,000 MWCO, 47 mm cellulose triacetate membrane (Stedim
Biotech GmbH, Göttingen, Germany, 14529-47-D) and inserted
into the flow-through cell (BOLA, Bohlender GmbH, Germany,
N1682-08). Over seven days, the ENM was exposed to a con-
tinuous 2 mL/h PSF flow at 37 °C. During this time, ten sam-
ples were drawn, and the eluate subsequently analyzed for its
elemental concentration as described in section “Cerium quan-
tification”.

The dialysis system has been described [39,40]. Nanoceria
(500 μg cerium as nanoceria in 1 mL) was loaded into Slide-A-
LyzerTM dialysis cassettes with 2 kD MWCO regenerated
cellulose membranes (66203) immersed in a 200 mL bath at
pH 4.5 made iso-osmotic with sodium nitrate. Cassette/beaker
systems were housed in a rotary shaking incubator at 37 °C
rotated at 60 rpm. Dissolution was determined from the
bath cerium concentration measured weekly for 2688 h
(16 weeks). Citric and lactic acids (110 mM in the baths),
previously shown to accelerate nanoceria dissolution [39,40],
were studied. All conditions were studied in duplicate. To
test the hypothesis that the slower dissolution of NM-212
was due to elevated temperature exposure during its
preparation, the dissolution of calcined samples of the
solvothermally synthesized nanoceria was compared to the non-
calcined form.

Nanoceria dissolution in the presence of
immobilized phosphates
Two immobilized phosphates were studied to assess their effect
on the dissolution of solvothermally synthesized nanoceria.
NM-212 was not studied as it did not appreciably dissolve. LN
resin, developed for extraction chromatography, containing
di(2-ethylhexyl) orthophosphoric acid as the metal complexing

group, and hydroxyapatite (HTP) were studied. Initial experi-
ments were conducted to verify their ability and capacity to
complex ionic cerium. LN resin (7.5, 40, or 75 mg) was added
to duplicate 15 mL tubes containing 10 mL pH 4.5 or pH 7 iso-
osmotic citrate and 500 μg ionic cerium. The tubes were gently
agitated at 37 °C and aliquots of 75 μL were withdrawn after 0,
0.5, 1, 2, 4, 6, and 24 h for cerium quantitation. The results
showed that 40 and 75 mg LN resin complexed more than 50%
of the cerium ions within 0.5 h at pH 4.5. This experiment was
repeated with 40 or 75 mg LN resin and sampling up to 3360 h.
This experiment was similarly conducted with 75 mg HTP at
pH 4.5 and pH 7 with samples collected up to 2016 h.

To test the hypothesis that phosphates not in direct contact with
nanoceria increase the nanoceria dissolution rate, LN resin and
HTP were added to the dialysis system bath (75 mg, LN at pH
4.5 and HTP at pH 7.4). The cassette contained 500 μg cerium
(as solvothermally synthesized nanoceria in 1 mL). In an initial
experiment, samples were withdrawn from duplicate cassettes
five times from 1344 to 4704 h. The cerium concentration in the
cassettes decreased much faster at pH 4.5 than at pH 7.4,
consistent with prior results [39,40]. The experiment was
repeated with additional duplicate systems containing no LN
resin at pH 4.5 and no HTP at pH 7.4. Cassette samples were
withdrawn weekly for 16 weeks (from 168 to 2688 h).

Cerium quantification
Samples were digested with 2:1 HNO3/H2O2 in Teflon vessels
in a CEM MARS Express microwave digestion system.
Terbium was added as an internal standard. Samples were
analyzed compared to standards. At the University of Kentucky,
cerium was quantified by inductively coupled plasma mass
spectrometry (ICP-MS; Agilent 7500cx or 7900, Agilent Tech-
nologies, Inc., Santa Clarita, CA) [41]. Spiked samples (cerium
average recovery was 106%) and blank samples (that were
below the detection limit) were included. At BASF, the eluate
was diluted 10- to 100-fold and quantified by ICP-MS (Perkin
Elmer Nexion 2000b, Perkin Elmer Inc., Waltham, USA) with a
limit of detection of 0.01 ppb. Measurements were conducted in
triplicate and averaged.

Determination of dissolution half-life and
dissolution rate
The dissolution half-life was calculated as described [37,42] as
a curve fitting of the cumulative dissolved mass, expressed as
an inverse relationship of decreasing solid retained (CeO2 mass)
as (Mion(T) − M0)/M0, where Mion is the amount of dissolved
nanoceria and M0 is the initial mass loading, and plotted as a
function of the time on a semi-log scale. The dissolution rate (k)
was determined from the slope of the line as shown below,
normalized to the surface area determined using the
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Brunauer–Emmett–Teller method, ABET, and converted to
percent per day of M0. Dissolution rate and half-life (t1/2, 50%
dissolved) are inversely related and can be expressed as given
for first-order modeling in ISO 19057:2017 [43,44]:

Biological identity of the as-prepared and
partially dissolved solvothermally
synthesized nanoceria
Solvothermally synthesized nanoceria was partially dissolved
by loading nanoceria (1.3 mL of 19,540 μg/mL cerium) into
Slide-A-LyzerTM cassettes immersed in 200 mL of pH 4.5 iso-
osmotic citric acid, and agitated as described above in section
“Nanoceria dissolution”. Samples withdrawn from a cassette
after 75, 102, and 152 days were dialyzed against water, as de-
scribed above in the synthesis of the solvothermally synthe-
sized nanoceria. The hydrodynamic diameter (Smoluchowski's
approximation) of the as-prepared- (as-loaded) and the partially
dissolved nanoceria was determined by dynamic light scat-
tering (DLS) using a Brookhaven 90Plus Particle Size
Analyzer. The zeta potential (0.5 mg/mL) from pH 0.5 to 13,
adjusted with nitric acid and sodium hydroxide, was deter-
mined using an Anton Paar Litesizer 500 Particle Analyzer. The
instrument was equipped with a 40 mW laser emitting at
658 nm. One hundred runs were completed in sequence with a
30 s equilibration time at 25 °C. Based on the bath cerium con-
centration after 75, 102, and 152 days the nanoceria was dis-
solved to 38%, 47%, and 93%, respectively. In an initial experi-
ment, RAW 264.7 cells were exposed for 24 h to 0, 1, 3, 10, 30,
or 100 μg/mL of the 75 day partially dissolved nanoceria. The
cells were washed twice with Dulbecco’s PBS, pelleted, and
stored at −74 °C. Cells were homogenized in the presence of
protease inhibitors (4 µg/mL leupeptin, 4 µg/mL pepstatin A,
and 5 µg/mL aprotinin). Protein was measured using the bicin-
choninic acid method. Protein carbonyls were determined as de-
scribed in [45]. Briefly, samples were derivatized with 10 mM
2,4-dinitrophenylhydrazine solution in 12% sodium dodecyl
sulfate for 20 min at room temperature, neutralized, and blotted
onto a nitrocellulose membrane for slot-blot analysis with an
anti-DNPH rabbit antibody and secondary anti-rabbit IgG alka-
line phosphatase antibody, using reagents from the OxyBlot
Protein Oxidation Detection Kit (Millipore). The initial experi-
ment was repeated with as-prepared and 75, 102, and 152 day
partially dissolved nanoceria.

Nanoceria reactivity
Oxidative stress, as mass-based biological oxidative damage
(mBOD), and surface-based biological oxidative damage
(sBOD), of NM-211, NM-212, and the solvothermally synthe-

sized nanoceria was determined using the ferric reduction
ability of serum assay (FRAS) as described in [46]. The materi-
als were tested in triplicate, at a concentration of 1 m2 ENM/mL
serum.

Results
Physicochemical characterization of NM-212
TEM, conducted at a higher resolution than previously reported,
showed NM-212 to be crystalline and cubic or triangular with
clearly defined edges (Figure 1). The solvothermally synthe-
sized nanoceria is also crystalline but hexagonal and smaller
(Figure 1b of [35]). The estimated diameter and variability of
NM-212 (Table 1) are consistent with prior reports (Supporting
Information File 1, Table S1) and the size is consistent with
nanoceria calcined at temperatures above 600 °C [15-17]. The
relative intensities of the M5 and M4 peaks are directly related
to the Ce3+ and Ce4+ concentrations, respectively [47,48].
EELS showed that the NM-212 particle edge and core exhibit
ca. 90% Ce4+ (Figure 2), consistent with nanoceria calcined at
T ≥ 400 °C [18]. In contrast, the surface of the solvothermally
synthesized nanoceria exhibits primarily Ce3+ (Figure 3b of
[35]). TGA showed an average weight loss from 20 to 400 °C
of ca. 1.3% for NM-212 (Figure 3), indicative of some organic
surface coating, as previously reported [7]. The TGA weight
loss for the solvothermally synthesized nanoceria was much
greater (ca. 15%) due to its citrate coating (Figure 8 of [35]).
FTIR, not previously reported for NM-212, showed small peaks
at ca. 1630, 1420, and 1320 cm−1, attributed to N–O, –COOH,
or hydroxy groups; probably COOH and the stretching mode of
O–H bonds; and either –CH or C–O–C, respectively [16,49,50]
(Figure 4). Due to the citrate coating on the solvothermally syn-
thesized nanoceria, the FTIR spectrum shows additional large
peaks at 1535 and 1365 cm−1 (Figure 10 of [35]). EDS showed
co-localization of not only cerium and oxygen for both NM-212
(Figure 1) and the solvothermally synthesized nanoceria (Figure
2 of [35]), but also carbon, as previously reported [7], and sodi-
um (Figure 1) were found.

Calcined nanoceria physicochemical
characterization
TEM showed the calcined nanoceria was crystalline with a pri-
mary particle diameter of 41 ± 11 nm (mean ± S.D.) and had
formed large aggregates (Figure 5). EELS showed a predomi-
nance of Ce4+ (Figure 6). HAADF-EDS confirmed the pres-
ence of cerium and oxygen and showed some nitrogen and sodi-
um but no carbon above the background.

Nanoceria dissolution
Under identical conditions of continuous flow testing at pH 4.5,
the solvothermally synthesized nanoceria dissolved significant-
ly faster than NM-212 or NM-211 (Figure 7), calculated from
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Figure 1: Transmission electron microscopy and high-angle annular dark-field scanning transmission electron microscopy images of NM-212 and its
chemical composition determined by energy-dispersive X-ray spectroscopy. (A, B) TEM images, (B) is a part of (A) at higher magnification.
(C) HAADF STEM image. (D–G) EDS-determined chemical composition.

Table 1: NM-212 diameter and area determined from TEM images.

estimated diameter (nm) Feret diameter (nm) area (nm2)

mean 22 29 484
S.D. 11 15 490
minimum 8 11 55
maximum 59 85 2775
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Figure 2: NM-212 cerium valence determined by electron energy loss spectroscopy. The left image was obtained at the edge, the right image at the
ENM core.

Figure 3: Thermogravimetric analysis of NM-212. Representative and
near average of three determinations.

Figure 4: Non-baseline corrected Fourier-transform infrared spectros-
copy of NM-212 with peaks indicated by dashed lines at 1630, 1420,
and 1320 cm−1.

Figure 5: Transmission electron microscopy image of calcined
solvothermally synthesized nanoceria.

ICP-MS determination of dissolved ions. The difference be-
tween NM-212 and the solvothermally synthesized nanoceria is
less dramatic if the results are expressed as a dissolution rate in
which the difference in specific surface area is factored out.
Assuming first-order kinetics, as successfully fit to other, more
soluble, ENMs [36], the half-lives of the solvothermally synthe-
sized nanoceria and of NM-212 are ca. 50 and ca. 2250 days,
respectively (Table 2).

The cerium concentration in the bath of the dialysis system that
contained solvothermally synthesized nanoceria in the cassette
increased over time, indicating nanoceria dissolution. Citric and
lactic acid increased the dissolution rate (Table 2), as previ-
ously reported [39,40]. The rate of NM-212 dissolution was



Beilstein J. Nanotechnol. 2021, 12, 525–540.

532

Table 2: Half-lives and dissolution rates of the tested nanoceria.

half-life [d] dissolution rate [atoms/(h·nm2)]

continuous flow system

solvothermally synthesized nanoceria PSF pH 4.5 46.8 0.014
NM-211 513 0.0036
NM-212 2263 0.0020

dialysis system

solvothermally synthesized nanoceria no carboxylic acid — 0.010
citric acid — 0.015
lactic acid — 0.014
absence of LN pH 4.5 — 0.018
presence of LN pH 4.5 — 0.017
absence of HTP pH 7.4 — 0.0090
presence of HTP pH 7.4 — 0.0078

NM-212 no carboxylic acid — 0.00066
citric acid — 0.0012
lactic acid — 0.0012

Figure 6: Electron energy loss spectroscopy of calcined solvother-
mally synthesized nanoceria.

much slower (Figure 8 and Table 2). High-temperature expo-
sure greatly decreased the dissolution of the solvothermally syn-
thesized nanoceria (Figure 9).

Cerium ion complexation and nanoceria
dissolution in the presence of immobilized
phosphates
The LN resin complexed more cerium ions from the solution,
and more rapidly, at pH 4.5 than at pH 7 (Figure 10). After ca.
2000 h at pH 4.5, some cerium started to be released from the
LN resin. HTP more efficiently complexed cerium ions at pH 7

Figure 7: Dissolution of NM-211 (circles), NM-212 (triangles), and the
solvothermally synthesized nanoceria (squares) determined in a single
experiment using the continuous flow system.

than at pH 4.5 (Figure 10). After ca. 500 h at pH 7, some cerium
started to be released from HTP. When LN resin or HTP was
added to the bath of the dialysis system containing cassettes
with nanoceria, the decline rate of the cerium concentration in
the cassette did not differ from systems not containing resins
(Figure 11 and Table 2). The nanoceria mean residence time
from time zero to the time of the last measured concentration
(MRTlast), calculated by Phoenix 8.1 WinNonLin, in the
absence and presence of the LN resin at pH 4.5 was 621 and
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Figure 8: Dissolution of NM-212 and the solvothermally synthesized
nanoceria, in the absence and presence of citric and lactic acids, de-
termined by the dialysis system. NM-212 in the absence and presence
of citric and lactic acids are indicated by open circles, squares, and tri-
angles, respectively. Solvothermally synthesized nanoceria in the
absence and presence of citric and lactic acids are indicated by solid
circles, squares, and triangles, respectively. Results are the mean of
two observations.

Figure 9: High-temperature exposure decreased the dissolution of
solvothermally synthesized nanoceria. Solid circles represent
solvothermally synthesized nanoceria (non-calcined) and squares the
calcined form. Results are the mean of two observations.

625 h, respectively, and in the absence and presence of HTP at
pH 7.4, it was 786 and 797 h, respectively.

Biological identity of the as-prepared and
partially dissolved solvothermally
synthesized nanoceria
The hydrodynamic diameter (as surface area) of the nanoceria
materials after 75, 102, and 152 days of dissolution was 18 to
34 nm, 18 to 27 nm, and more than 1000 nm, respectively, com-
pared to 6.5 to 13.2 nm for the as-prepared nanoceria. After
75 days of dissolution, the surface charge was −9 mV, com-
pared to the as-prepared nanoceria surface charge of −40 mV,
suggesting the loss of the citrate coating.

RAW 264.7 cell exposure to the as-prepared solvothermally
synthesized nanoceria showed a trend toward higher protein
carbonyl production compared to cells not exposed to
nanoceria. The initial experiment of cells exposed to nanoceria
that had been partially dissolved for 75 days showed a trend
toward lower protein carbonyl production than that of cells
exposed to the as-prepared nanoceria (results not shown). When
this experiment was repeated, the as-prepared nanoceria in-
creased the production of protein carbonyls. Nanoceria partially
dissolved after 75, 102, and 152 days increased the production
protein carbonyls to a lesser extent than as-prepared nanoceria
(Figure 12).

Nanoceria reactivity
The mBOD and sBOD values for NM-211, NM-212, and the
solvothermally synthesized nanoceria are reported in Table 3
with information used to interpret the differential solubility and
reactivity. The solvothermally synthesized nanoceria exhibited
the highest reactivity with little difference between NM-211 and
NM-212.

Discussion
Comparison of the physicochemical
properties
TEM images obtained for this study suggest that NM-212 is
crystalline and cubic or triangular with clearly defined edges
(Figure 1). The solvothermally synthesized nanoceria is also
crystalline but hexagonal. A previous determination of the pri-
mary particle size of NM-212 yielded an average of 20 to 40 nm
with a very wide size range (Supporting Information File 1,
Table S1). The size determination in this study showed an aver-
age diameter of 22 nm with a range of 11 to 59 nm. In contrast,
the solvothermally synthesized nanoceria had a primary parti-
cle diameter of 4 nm. A prior characterization of the surface ox-
idation state of NM-212 showed a great predominance of Ce4+

(Supporting Information File 1, Table S1) which was also found
in the present study at the edge and core of the particles
(Figure 2). In contrast, the solvothermally synthesized
nanoceria cerium surface valence was predominantly Ce3+

(Supporting Information File 1, Table S1), consistent with the
increase in Ce3+ as the size of nanoceria decreases [53]. The
calcined solvothermally synthesized nanoceria cerium had a
predominance of Ce4+ (Figure 6). NM-212 was reported to be
uncoated [24]. However, it was found that its surface had
organic contaminations, shown by thermogravimetric analysis
(<0.7 % of the material [7]). Further investigation with XPS,
which has an information depth between 3 and 10 nm, indicat-
ed 80% carbon atoms on the surface. Photoelectron energies
suggested the contamination could be an ester with a long alkyl
chain. The contamination was a very thin, homogeneous layer
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Figure 10: Dependency on the pH value of the complexation of cerium ions with LN resin and HPT. Results are the mean of two observations.

[7]. TGA conducted in the present study showed an average
weight loss of 1.3% (Figure 3) which can be attributed to a
small amount of surface contamination. The comparison with
the TGA-induced 5% weight loss of the solvothermally synthe-
sized nanoceria at 125 °C due to outgassing of water, including
surface hydroxy groups, suggests that NM-212 was calcined.
The solvothermally synthesized nanoceria also exhibited a
weight loss of ca. 10% due to its citrate coating. EDS revealed
some carbon and sodium on the particle surface of NM-212
(Figure 1). FTIR showed small peaks at 1630, 1420, and
1320 cm−1, attributed to N–O or –COOH, probably –COOH,
and either –CH or C–O–C, respectively, which would be
consistent with the presence of an ester and an alkyl chain

(Figure 4). In contrast, solvothermally synthesized nanoceria
was coated with, on average, a monolayer of citrate, intention-
ally applied to inhibit agglomeration [35]. It is assumed that the
citrate coating was dissolved as surface cerium ions were solu-
bilized. The reduction in absolute zeta potential of the partially
dissolved nanoceria supports this assumption.

The high fraction of Ce4+ in the calcined solvothermally synthe-
sized nanoceria is comparable to that of NM-212 and expected
after calcination [18]. The increased primary particle size is
consistent with reports that found a temperature-dependent
increase of nanoceria particle size, including 44 nm particles
when heated to 1000 °C [15-17]. The predominance of Ce3+ on



Beilstein J. Nanotechnol. 2021, 12, 525–540.

535

Figure 12: As-prepared and partially dissolved nanoceria altered cell protein carbonyl production. RAW 264.7 cell protein carbonyl production in
response to the as-prepared and partially dissolved nanoceria. X-axis numbers refer to the nanoceria concentration in μg/mL. Results are the mean of
two determinations from one experiment.

Figure 11: Addition of LN resin and HTP to the dialysis bath did not
affect nanoceria dissolution. Solid circles: with HTP at pH 7.4, open
circles: without HTP at pH 7.4, solid squares: with LN resin at pH 4.5,
open squares: without LN resin at pH 4.5. Results are the mean of two
observations.

the surface of the non-calcined solvothermally synthesized
nanoceria is consistent with its small size [54] and Figure 13.

Dissolution
Prior studies reported a solubility of less than 3% of NM-212 up
to 28 d (672 h) in multiple media (see Introduction). The
present results extend the dissolution time to 16 weeks (2688 h).
Also, they include the addition of carboxylic acids that have
been shown to accelerate nanoceria dissolution (Figure 8 and
Table 2) and a direct comparison of the solubility of NM-212 to
a commonly used solvothermally synthesized nanoceria by two

methods conducted by different research teams. After 16 weeks,
ca. 1.5% of the cerium in NM-212 was in the dialysis system
bath, compared to ca. 80% from the solvothermally synthesized
nanoceria. Several factors could contribute to the much more
rapid dissolution of the solvothermally synthesized nanoceria.
The size difference may contribute to the dissolution difference.
The solvothermally synthesized nanoceria is smaller than
NM-212 or the calcined solvothermally synthesized nanoceria
(4.2, 40, and 41 nm diameter, respectively). The dissolution
half-time of an ENM is inversely proportional to its surface area
[40]. Concerning comparable masses, as introduced into the
dissolution systems in this study, smaller ENMs would be ex-
pected to dissolve faster. But size alone does not account for the
differences, because the difference remains very significant in
surface-normalized dissolution rates. The specific surface area
was factored out in the calculation of the dissolution rates from
the half-lives, as is routine practice for the CFS results and
given in [43].

The maximum temperature that the nanoceria materials were
exposed to during preparation may contribute to the dissolution
rate difference. Industrially formed nanoceria is often calcined,
that is, exposed to temperatures of 400 °C and more. This is
appropriate for nanoceria used as a combustion catalyst, as the
calcined surface can become quite active when combustion tem-
peratures are reached. Nanoceria with surface hydroxy groups,
as expected for solvothermally synthesized nanoceria, are
chemically reactive at physiological temperatures. Increased
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Table 3: Production process, producer, physicochemical properties, and reactivity of NM-211, NM-212, and the solvothermally synthesized nanoceria.

name NM-211 NM-212 solvothermally synthesized
nanoceria

production process precipitated precipitated solvothermal
producer JRC (Antaria) JRC (Umicore) University of Kentucky
crystallinity cubic (cerianite) [7] cubic (cerianite) [7,24,51] hexagonal (cubic fluorite)

[35,52]
surface treatment none none citrate [35]
impurity (%) ICP-MS: Al 0.2%, 19 other

elements < 0.02% [24]
ICP-MS: Al 0.2%, 19 other
elements < 0.02% [24]

surface Ce3+ oxidation state
(XPS)

5.7% [24] 6.9% [24] predominantly Ce3+

[35,39,52]
primary size (D50) (nm) 15 [33] 40 [7,33] 4.2 [35,39,52]
specific surface area (m2/g) 66 [33] 27 [4,5,7,24,33,36,51] 197 (calculated from TEM)
dissolution rate in PSF
(atoms/(h·nm2))

0.00365 0.00202 0.0144 (monomodal)

FRAS sBOD reactivity (dose
1 m2/mL) (nmol TEU/m2 ENM)

14 ± 1 13 ± 1 38 ± 5 (@ 0.3 m2/mL)

FRAS mBOD reactivity (nmol
TEU/mg ENM)

0.9 ± 0.04 0.3 ± 0.02 7.5 ± 1.04

Figure 13: The percentage of surface cerium as Ce3+ as a function of
the nanoceria size. Data taken from [55] and [56].

temperature results in water loss as two surface hydroxy groups
condense, forming water and a Ce–O–Ce surface site. The
amount of surface hydroxy groups decreased as the tempera-
ture increased from 200 to 400 °C, with the persistence of some
hydroxy groups up to 600 °C [57]. Reports state that NM-212
was prepared by precipitation [7,24], however, the procedures
have not been reported to know if it was precipitated from a
liquid or gas phase. If NM-212 was exposed to a high tempera-
ture it would be expected to have less surface Ce3+ [58], which
is the case (Supporting Information File 1, Table S1), and show
slow dissolution, as was seen with NM-212 and the calcined
solvothermally synthesized nanoceria.

The cerium valence state difference on the nanoceria surface
may contribute to the dissolution rate difference. As the
nanoceria size decreases, the Ce3+/Ce4+ ratio increases
(Figure 13). The edge and core of NM-212 had about 90% Ce4+

whereas the 4 nm solvothermally synthesized ceria exhibited
predominantly Ce3+. Increased Ce3+ is accompanied by an
increase in oxygen vacancies that weaken the crystal lattice
[14]. According to the dissolution framework by Gray and
co-workers, Ce3+ can follow more dissolution pathways (in-
cluding oxidative dissolution) than Ce4+ [59]. The much greater
percentage of Ce3+ on the surface of solvothermally synthe-
sized nanoceria may have contributed to its more rapid dissolu-
tion. Although the dissolution rates of NM-211 and NM-212 are
similar ([60] and Figure 7), NM-211 dissolved faster. There is
significantly more Ce3+ on the surface of NM-211 than on that
of NM-212 [7]. Therefore, among these three nanoceria forms,
increased surface Ce3+ correlated with a more rapid dissolution.

Role of phosphate in the fate of cerium/
nanoceria
Precipitation and formation of cerium phosphate particles might
contribute to the slow clearance of nanoceria from the lung re-
ported in [4,9,51,61]. Cerium ions, introduced as such or re-
leased during nanoceria dissolution, in the presence of phos-
phate form cerium phosphate [48,52,62-64] as was reported
after introduction of cerium ions into the lung [65]. After
systemic administration of solvothermally synthesized
nanoceria, cerium phosphate particles were seen in rat liver and
spleen [48,63]. After inhaling 3 mg/m3 NM-212 for two years,
CeO+ and CePO4

+ were seen in rat femur [9]. These studies
demonstrate a certain extent of dissolution of both nanoceria
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forms in vivo. Ce3+ phosphate is quite insoluble. Ce4+ phos-
phate is even less soluble (log Ksp = 10−26 to 10−23 for Ce(III)
phosphate in 0.01 to 12 M H3PO4, 0.1 M NaH2PO4, or 0.1 M
HCl [66-68]; log Ksp = 10−115 for Ce(IV) phosphate in 0.01 to
12 M H3PO4 and 10−34 at pH 0.4 [66,69]). The present study
assessed the hypothesis that phosphate groups not in direct con-
tact with nanoceria would create a sink for released cerium ions
and increase the nanoceria dissolution rate. The results do not
support the hypothesis. However, while Ce forms a strong com-
plex with orthophosphate anions as indicated by the above Ksp
values, it is possible that the complexation constants for the
immobilized phosphate groups on the LN resin and HTP are
weaker than for Ce3+ and orthophosphate. The results are
consistent with a two-step nanoceria dissolution process. First,
the cerium ions leave the nanoceria surface, by dissociative
dissolution of Ce4+ and oxidative or dissociative dissolution of
Ce3+, consistent with the interpretation that nanoceria dissolu-
tion occurs at the solid–liquid interface [14]. Cerium ions may
then complex with phosphate. Nanoceria dissolution is pH-de-
pendent ([14,39,70] and Figure 11). Nanoceria dissolution
presumably results from an interaction between the hydrogen
ion and the nanoceria surface. A hypothesis is that hydrogen
“steals” oxygen from the Ce3+ of the surface Ce–O complex,
enabling Ce3+ release. This would be consistent with increased
dissolution as the pH value decreases, surface Ce3+ increases,
and size decreases (and surface Ce3+ increases). Also, there is
more available oxygen on the surface of nanoceria not exposed
to high temperature.

Biological identity of as-prepared and partially
dissolved nanoceria
Nanoceria has the potential to act as a pro- or antioxidant,
depending on its valence, and the oxidative stress level of the
system under study. Solvothermally synthesized nanoceria in-
creased protein carbonyls in rats and Caenorhabditis elegans
that were not induced by oxidative stress [71,72]. In models of
oxidative stress, nanoceria decreased elevated levels of protein
carbonyls in the lung and hippocampus of hypoxic rats [73,74],
in the kidney of diabetic mice [75], in murine embryo tissue in a
model of gestational diabetes [76], and in the right ventricle of
rats with monocrotaline-induced hypertension [77]. It protected
against protein carbonyl elevation induced by acrylamide in
HepG2 (human liver epithelial) cells [78] and cyclophos-
phamide in murine testicles [79].

Increased protein carbonyls in RAW 264.7 cells produced by
solvothermally synthesized nanoceria are consistent with the
ability of nanoceria to act as a pro-oxidant in systems where ox-
idative stress is at its normal (basal) level. The lower increase of
protein carbonyls following the exposure to partially dissolved
nanoceria may be due to the increased surface content of Ce3+

providing antioxidant potential. After dialysis in water, the
partially dissolved nanoceria rapidly precipitates from the
dispersion, presumably due to the loss of surface citrate and
reduced surface charge. The particles do not pass through a
0.2 micrometer MWCO filter, suggesting that they were quite
large, which may have affected cell uptake. The results illus-
trate an effect of nanoceria dissolution on its biological identity.

Nanoceria reactivity
Nanoceria reactivity increased as the content of Ce3+ on the sur-
face increased and the particle size decreased. The solvother-
mally synthesized nanoceria exhibited the highest mass-based
reactivity, followed by the intermediate sized NM-211 and the
largest tested nanoceria with the least amount of surface Ce3+,
NM-212. As discussed above for the nanoceria dissolution rate,
size contributes to the reactivity differences, but is not suffi-
cient to explain them. After normalizing the reactivity to sur-
face-based reactivity, the value for the solvothermally synthe-
sized nanoceria (38 ± 5 nmol TEU/m2) was significantly greater
than those for the other nanoceria materials (14 ± 1 and
13 ± 1 nmol TEU/m2). The difference can be attributed to the
chemical identity of the nanoceria surface, where surface Ce3+

mediates the redox cycle influencing the reactivity.

Conclusion
The dissolution study results, when related to the physicochemi-
cal properties of the tested nanoceria, indicate that the amount
of surface Ce3+ is the primary factor influencing solubility.
Higher nanoceria preparation temperature reduces the amount
of surface Ce3+, resulting in reduced solubility. The results
suggest that NM-212 was exposed to a high temperature, as is
common for nanoceria prepared for industrial applications. The
results also show the importance of a complete documentation
of the preparation procedures. This is an issue with commercial-
ly prepared nanoceria that have been used in many studies, for
which the preparation procedures are not available. As it is clear
that physicochemical properties of nanomaterials influence their
fate and behavior, and the preparation method influences their
physicochemical properties, documentation of the preparation,
including temperature, is needed to fully interpret the relation-
ship between physicochemical properties of nanoceria and their
fate and effects.

Supporting Information
Supporting Information File 1
Additional experimental data.
[https://www.beilstein-journals.org/bjnano/content/
supplementary/2190-4286-12-43-S1.pdf]
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