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ABSTRACT

Nanoceria (CeO
2
, cerium oxide nanoparticles) is proposed as a therapeutic for multiple disorders. In blood, nanoceria becomes 

protein-coated, changing its surface properties to yield a different presentation to cells. There is little information on the 
interaction of nanoceria with blood proteins. The current study is the first to report the proteomics identification of plasma 
and serum proteins adsorbed to nanoceria. The results identify a number of plasma and serum proteins interacting with 
nanoceria, proteins whose normal activities regulate numerous cell functions: antioxidant/detoxification, energy regulation, 
lipoproteins, signaling, complement, immune function, coagulation, iron homeostasis, proteolysis, inflammation, protein 
folding, protease inhibition, adhesion, protein/RNA degradation, and hormonal. The principal implications of this study are: 
1) The protein corona may positively or negatively affect nanoceria cellular uptake, subsequent organ bioprocessing, and effects; 
and 2) Nanoceria adsorption may alter protein structure and function, including pro- and inflammatory effects. Consequently, 
prior to their use as therapeutic agents, better understanding of the effects of nanoceria protein coating is warranted.
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INTRODUCTION

Nanoceria (aka: ceria (CeO
2
) nanoparticles) have extensive uses 

as an industrial abrasive in chemical mechanical polishing/
planarization, a catalyst in diesel fuel, and are being developed 
for use in fuel cells and batteries [1-5]. While there is little 
indication of nanoceria-induced adverse environmental effects at 
current exposure rates from use as a fuel catalyst [6], it is critical 
to understand its interaction with mammalian components. 
Nanoceria have anti-inflammatory and pro-/antioxidant activity 
[2,7-10]. Their antioxidant properties are based on its ability to 
reversibly bind oxygen and cycle between the Ce3+ (reduced) and 
Ce4+ (oxidized) forms at its surface [2,8,11]. Further, studies showed 
that nanoceria can protect cells against reactive oxygen species 
(ROS) such as superoxide radical anion and hydrogen peroxide, 
thereby  suggesting it might have SOD- and catalase-mimicking 

activity  [3,9,12,13]. In contrast, there are reports of nanoceria-
induced pro-oxidant effects including lipid peroxidation, elevation 
of cytokines, and GSH depletion [10,14-16].

Nanoceria has been suggested for potential use in nanomedicine 
for the treatment of many conditions, including ischemia; diabetic 
cardiomyopathy; gastric, ovarian, pancreatic, and breast cancer; 
macular degeneration; and Alzheimer disease, among other 
disorders [3,17]. For most therapeutic purposes, nanoceria will 
need to be administered via systemic or pulmonary routes due 
to its very limited oral bioavailability [10]. Once in the blood, 
nanoparticles become coated by proteins to form a protein corona, 
which changes their surface properties, and “what the cell sees” 
[18-20]. However, there is limited information on nanoceria 
interaction with blood proteins. It has been shown that nanoceria 
adsorbs proteins from serum [21,22], that net negatively charged 
albumin and fibrinogen and net positively charged lysozyme 
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bound proteins. Four replicates were conducted with each blood 
derivative.

SDS-PAGE analysis

The bound proteins were removed from the nanoceria by adding 
SDS-PAGE loading buffer to 20 μl of the suspended pellet and 
boiling the samples for 5 min at 100°C. The proteins were separated 
by 12% SDS-PAGE. The gels were fixed and stained overnight in 
SYPRO® ruby (Bio-Rad).

Cerium quantitation in SDS-PAGE gel

Selected regions of the SDS-PAGE gel were cut out for cerium 
quantitation. Samples were obtained from the tops and centers (at 
~80 kDa) of lanes 5 and 8 of below figure. Spike recovery of a 
sample from the middle of lane 5 showed 95% recovery. Samples 
were digested in a 2:1 mixture of trace metal grade HNO

3
 and 

concentrated H
2
O

2
. The resulting digestates were analyzed by 

inductively coupled plasma mass spectrometry (ICP-MS; Agilent 
7500cx, Santa Clara, CA) using external Ce standards and Tb as an 
internal standard. Duplicates, reagent blanks, and spike recovery 
samples were included in each analytical batch. These methods 
have been described in more detail in a previous publication [33].

Protein preparation for mass spectrometry

The DI-suspended plasma- (or serum-) coated nanoceria were 
centrifuged at 5000 x g for 1 min to pellet the particles, the 
supernatant decanted and the pellets dried by SpeedVac® and 
analyzed as particle samples. To each sample, 25 μl of 8 M urea/2 
mM dithiothreitol (DTT)/50 mM ammonium bicarbonate 
(NH

4
HCO

3
) were added and the samples incubated at 65°C for 

30 min (samples were agitated twice to keep the nanoparticles 
suspended). The samples were cooled to room temperature, 
followed by addition of 25 μl of 50 mM iodoacetic acid (IAA) and 
incubation in the dark for 15 min. The samples were then diluted 
with 170 μl 50 mM NH

4
HCO

3
 and incubated overnight at 37°C 

with 4 μl of trypsin (Promega, modified trypsin, frozen, about 0.5 
μg/μl). Following overnight protein digestion, 100 μl of 1% formic 
acid (FA) were added to the samples, which were then desalted with 
C18 spin columns (The Nest Group, P/N SUM SS18V). Briefly, 
for desalting, samples were loaded onto the columns, washed 3 

can adsorb onto nanoceria surfaces [23-29], and that nanoceria 
interacts with immunoglobulins [24,29]. However, these studies 
do not provide insight into the blood proteins that adsorb onto 
nanoceria surfaces in vivo. Proteins adsorbed by nanoparticles 
appear to be unique to each nanoparticle, creating a “fingerprint 
for nanoparticle identification” [22,30]. Different proteins in 
plasma/serum could influence the resultant biological properties 
of nanoceria. Reportedly, nanomaterials adsorb different proteins 
from plasma vs. serum [31] and nanoceria’s surface coating can 
affect its cell interaction [32]. Hence, it is critical to understand the 
interaction of nanoceria with blood proteins.

To our knowledge, this is the first in vitro study that used a 
proteomics approach to identify the proteins from serum and 
plasma that adsorbed to nanoceria. The results indicate that a 
number of proteins from plasma and serum interact with nanoceria. 
These proteins in their normal state are known to play important 
roles in regulating numerous cell functions, hence binding of ceria 
nanoparticles to proteins could affect their functions and thereby 
could have detrimental effect on normal cellular and physiological 
processes.

MATERIALS AND METHODS

All materials used were purchased from Sigma-Aldrich unless 
stated otherwise.

Nanoceria synthesis and characterization

Nanoceria synthesis and characterization were described [28]. 
Hydrodynamic diameter of the citrate-coated nanoceria before 
plasma or serum exposure was determined from one observation, 
and after plasma or serum exposure on two observations each. Zeta 
potential was determined at physiological pH (for the citrate-coated 
nanoceria and in rat plasma and serum) from four determinations.

Plasma and serum preparation

Animal work was approved by the University of Kentucky 
Institutional Animal Care and Use Committee. Five male Sprague-
Dawley rats, weighing 328 ± 21 g (mean ± SD), obtained from 
Harlan, Indianapolis, IN, were deeply anesthetized to obtain 
whole blood via cardiac puncture of the left ventricle with a 1 cc 
syringe. Blood was transferred to sterile 500 μl EDTA tubes and 
immediately centrifuged at 2500 rpm for 5 min to obtain plasma. 
Plasma was distributed into aliquots, frozen in liquid nitrogen, and 
stored at -80°C until subsequent analysis. For serum preparation, 
blood was delivered to sterile tubes containing no anticoagulants. 
Upon clotting, the tubes were centrifuged and the serum distributed 
into aliquots, frozen in liquid nitrogen, and stored at -80°C until 
further investigation.

Nanoceria incubation with plasma or serum

The protocol for nanoceria incubation with plasma or serum and 
identification of associated proteins is shown in Figure 1. Briefly, 
to 50 μl of 5 weight percent, citrate-coated nanoceria aqueous 
dispersion, 450 μl of plasma or serum were added. Samples were 
incubated at 37°C for 1 h with shaking at 500 rpm. Nanoceria 
was pelleted at 5000 × g for 5 min. The supernatant was collected 
and stored at -80°C as the unbound protein sample for SDS-PAGE 
analysis. The pellet was washed three times in 0.5 ml PBS to 
remove the unbound or loosely bound proteins then resuspended 
in 100 µl of distilled water as a sample for the analysis of nanoceria-

 
Figure 1: The experimental design for identification of the plasma and 
serum proteins bound to nanoceria.
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times with 100 μl 5% acetonitrile (ACN)/0.1% FA, and eluted 
twice with 100 mL 50% ACN/0.1% FA followed by concentration 
to about 5 to 10 mL by SpeedVac®. The samples were analyzed by 
MS/MS.

MS/MS-based protein identification

Several sample types were compared. Plasma or serum alone was 
compared to proteins from nanoceria that had been incubated with 
plasma or serum, as shown in Figure 1. The proteomics methods 
employed were described [34-36]. Briefly:

Image analysis: Band intensities from SYPRO® Ruby-stained 
1D-gel images of samples were compared, and protein bands 
showing greater staining intensities of proteins from nanoceria 
exposed to plasma or serum were selected for analyses.

In-gel trypsin digestion/peptide extraction: Protein bands from 
plasma or serum identified as significantly altered were excised from 
1D-gels and transferred to individual Eppendorf microcentrifuge 
tubes for trypsin digestion as described [37]. In brief, DTT and 
IAA were used to break and cap disulfide bonds and the gel plug 
was incubated overnight at 37°C with shaking in modified trypsin 
solution. Salts and contaminants were removed from the tryptic 
peptide solutions using C18 ZipTips®. Tryptic peptide solutions 
were reconstituted in 10 µL of a 5% ACN/0.1% FA solution and 
stored at -80°C until MS/MS analysis.

NanoLC-MS with data dependent scan: Tryptic peptide solutions 
were analyzed by a nanoAcquity (Waters, Milford, MA)-LTQ 
Orbitrap XL (Thermo Scientific, San Jose, CA) platform with a 
data dependent scan mode. An in-house packed capillary column 
(0.1 x 130 mm packed with 3.6 µm, 200 Å XB-C18) was used for 
separation using 0.1% FA and ACN/0.1% FA at 200 nl/min. 
The spectra obtained by MS were measured by the orbitrap at 
30,000 resolution and the MS/MS spectra of the six most intense 
parent ions in the MS scan were acquired by the orbitrap at 7,500 
resolution.

Data analysis and statistics

Nanoceria hydrodynamic sizes before and after plasma and serum 
exposure were compared by the Kolmogorov– Smirnov test. The 
Proteome Discoverer v1.4 version of the Swiss-Prot database by 
SEQUEST (Thermo Scientific) was used to interrogate the MS data 
files of each sample. At least two high-confidence peptide matches 
were used for protein identification where the false discovery rate 
was <1%. Proteins that were matched with the same peptides were 
reported as one protein group. Protein data reported from these 
analyses include: the Swiss-Prot accession number, the percentage 
of the protein sequence identified by matching peptides, the 
number of peptide sequences identified by the MS/MS analysis, 
the confidence score of the protein, the expected molecular weight, 
and predicted isoelectric point.

Protein  contents  determined  from  SDS-PAGE  gels  were  
compared  by  Student's  t-test.  Statistical  significance  was accepted 
at p<0.05.

RESULTS AND DISCUSSION

The nanoceria primary particle size averaged 12 (S.D. 2.9) nm, 
consistent with BET results of 71 m2/gm, which is equivalent 
to 11 nm. The particles were crystalline and polyhedral, with an 
isoelectric point of 3.0 [28]. The nanoceria hydrodynamic diameter 
before incubation with rat plasma or serum reveals considerable 

agglomeration of the as- prepared nanoceria in water, when 
compared to its primary particle size. Interaction with rat plasma 
or serum increased the nanoceria hydrodynamic size, perhaps due 
to protein adsorption (Figure 2). The hydrodynamic diameter 
distributions of the two serum replicates were not statistically 
different so the results were averaged. The two replicates of 
hydrodynamic diameters after plasma exposure had similar 
profiles. Although statistically different, we averaged the results. 
The nanoceria hydrodynamic diameter distributions after plasma 
or serum exposure were significantly different from each other 
and from the pre-exposure nanoceria distribution. The nanoceria 
citrate coating might be displaced by proteins [22] or remain on the 
surface and bind proteins [38]. Thermogravimetric analysis results 
show an

~3% weight loss of the as-prepared nanoceria attributed to water 
and other components and an additional ~1% loss after the 
nanoceria had been through the procedure in the absence of 
plasma or serum exposure (Figure 3). After incubation with rat 
plasma or serum, there was an additional ~6% weight loss over the 
temperature range of BSA weight loss [39] attributed to proteins 
coating the nanoceria. Nanoceria incubation with rat plasma or 

 

Figure 2: Nanoceria hydrodynamic diameter before and after rat plasma or 
serumexposure. Solid line is before procedure exposure, dotted line after 
plasma, and dashed line after serum exposure.
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Figure 3: Thermogravimetric analysis curves of the as-synthesized 
nanoceria (solid line), nanoceria that had been through the procedure 
(dash-dot-dash line), rat plasma-incubated nanoceria(dotted line), and rat 
serum-incubated nanoceria (dashed line).
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serum decreased the zeta potential (Table 1). The decrease in 
absolute zeta potential can be attributed to protein coating from 
plasma and serum.

There have been many studies utilizing systemic and pulmonary 
nanoceria administration, the latter resulting in <1% of the 
nanoceria entering systemic circulation [40-42]. However, little 
is known as to what happens to nanoceria after it enters the 
circulatory system. In the present study, nanoceria incubated with 
plasma or serum led to increased protein size, shown as proteins 
that do not migrate into gels in contrast to plasma or serum alone, 
suggesting some nanoceria plasma and serum protein interaction 
(Figure 4A). The zeta potential decrease after plasma or serum 
exposure also suggests nanoceria-protein interaction. Zeta potential 
decrease during serum protein incubation, although over a much 
longer time, was shown [22]. We hypothesize that some of the 
plasma/serum proteins bound to nanoceria play a role in nanoceria 
agglomeration. To identify which plasma or serum proteins were 
associated with nanoceria, we employed proteomics.

Samples from the SDS-PAGE gel showed 1002 and 5648 ng 
cerium/mg gel at the top of lanes 5 and 8 (Figure 4A), respectively, 
but only 0.4 and 0.5 ng/mg gel in the center of those lanes, 
respectively, indicating that the separated proteins were essentially 
cerium-free. We treated the pellet with SDS-sample buffer followed 
by centrifugation and loading of the supernatant onto the gel. 
Based on our observation of intense staining at the top of the gel, 
we speculate that the speed we used for centrifugation did not 
pellet down all the ceria; some small nanoceria-protein complexes 
formed that have strong binding. When the proteins dissociated 
from the plasma/serum-incubated nanoceria were analyzed by SDS-
PAGE, differences in protein profiles were observed, i.e., different 
bands and band intensities appear among proteins released from 
nanoceria that had been exposed to serum compared to plasma 
(Figure 4A arrows). Semi-quantitative densitometry analysis of total 
nanoceria-bound proteins showed that nanoceria incubated with 

serum samples had greater protein intensity than plasma-incubated 
nanoceria (Figure 4B). Since nanoceria incubation in plasma 
and serum was performed under identical conditions including 
addition of the same amount of proteins, differences in the 
protein profile observed on 1D-gel electrophoresis could be due 
to differences in the composition or amount of nanoceria-bound 
proteins. Serum is collected from blood after coagulation; therefore, 
some proteins involved in coagulation were removed that might 
lead to an enhanced ability of nanoceria to interact with other 
proteins. Table 2 shows proteins associated with nanoceria from 
either or both plasma and serum. Most of the proteins not eluted 
from serum-exposed nanoceria but eluted from plasma-exposed 
nanoceria are involved in blood coagulation. Interestingly, both 
plasma- and serum-incubated protein profiles showed a few strong 
bands as indicated by arrows in Figure 4A. This increased protein 
band intensity compared to the original plasma and serum samples 
suggests that nanoceria may preferentially and selectively bind 
these proteins, leading to their enrichment. Differential binding 
affinity of nanoceria for blood proteins has been shown. The 
binding affinity of fibrinogen with nanoceria was 40 pM whereas 
it was 37 nM with human serum albumin [25]. Nanoceria protein 
coating could affect its stability, distribution, and functional roles.

To identify the proteins bound to nanoceria we subjected the 
proteins that had been bound to nanoceria to mass

spectrometry-based proteomics. As can be seen from Table 2, 
most of the proteins that were identified from plasma- or serum-
exposed nanoceria are common to both, suggesting that nanoceria 
might have selective preference to bind these proteins. A total 
of 87 proteins in plasma or serum interacted with nanoceria. Of 
these, 27 were unique plasma proteins, one was a unique serum 
protein, and 59 proteins in both plasma and serum associated 
with nanoceria (Figure 5). Further studies need to be conducted to 
understand the mechanisms underlying nanoceria’s preference to 
bind certain proteins and the resultant effects on both the proteins 
and nanoceria.

Coupled MS/MS and database interrogation-identified proteins 
bound to nanoceria were grouped into the following functional 
categories: antioxidant/detoxification; energy regulation; cell 
signaling; lipoprotein; complement pathways; immunoglobulin/
immune function; blood coagulation; cellular iron homeostasis; 
proteolysis; inflammation, protein folding; protease inhibitors; 

Sample Zeta potential (mV)

Nanoceria -48

Rat plasma-exposed nanoceria -28

Rat serum-exposed nanoceria -20

Table 1: Nanoceria zeta potential before and after incubation with rat 
plasma and serum. Values are mean ± S.D.

Figure 4: The protein profile of plasma and serum proteins bound to nanoceria. (A). Lane 1: Molecular weight markers, Lane 2: Nanoceria alone, Lane 
3: Plasma, Lane 4: Unbound plasma proteins, Lane 5: Bound plasma proteins, Lane 6: Serum, Lane 7: Unbound serum proteins, Lane 8: Bound serum 
proteins. Arrows indicate bands with different proteins in plasma- vs. serum-incubated nanoceria samples.  (B) ImageQuant image analysis of SDS-PAGE 
lanes 8 vs. 5 showed a greater percentage of the serum proteins interact with nanoceria than the plasma proteins. The gel image is representative of 4 
independent experiments, for which the results are shown in B as mean ± S.D.
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carrier proteins; cell adhesion; protein/RNA degradation; and 
hormones (Table 2). Some comments about selected proteins 
within most of these categories follow:

Coagulation factor XII x -

Coagulation factor XIII A chain x -

Coagulation factor XIII, beta subunit x -

Fibrinogen beta chain x x

Isoform Gamma-A of Fibrinogen gamma chain x x

Heparin cofactor 2 x -

Carboxypeptidase B2 x -

Carboxypeptidase N catalytic chain x -

Plasminogen x x

Platelet factor 4 x -

Procollagen, type VI, alpha 3 x x

Vitamin K-dependent protein C x x

Vitamin K-dependent protein S x x

Protein Mmrn1 x -

Protein Serpinc1 x -

Protein Serpinf1 x x

Alpha-1-antiproteinase x x

CXC chemokine RTCK1 x x

8. Cellular iron homeostasis

Serotransferrin x x

Protein RGD1310507 x -

Protein RGD1564614 x -

9. Proteolysis

Protein Serpina4 x -

Plasma kallikrein x -

10. Protein folding

78 kDa glucose-regulated protein x x

11. Protease inhibitors (just inhibitors)

Alpha-1-macroglobulin x x

Glia-derived nexin x -

Isoform LMW of Kininogen-1 x -

Inter alpha-trypsin inhibitor, heavy chain 4 x x

Inter alpha-trypsin inhibitor, heavy chain 1 x x

Metalloproteinase inhibitor 3 x x

Serine protease inhibitor A3N x x

Protein AMBP x -

Serine protease inhibitor x -

Fetuin-B x -

12. Carrier/cargo proteins

Alpha-2-HS-glycoprotein x x

Albumin x x

Hemopexin x x

Vitamin D-binding protein x -

Transthyretin x x

Retinol binding protein 4 x x

13. Cell adhesion/extra cellular matrix/structural

Anastellin x x

Extracellular matrix protein 1 x -

Gelsolin x x

14. Bone morphogenetic protein

Secreted phosphoprotein 24 x -

15. Protein/RNA degradation

Cullin-associated NEDD8-dissociated protein 1 x x

16. Hormone

Functions Plasma Serum

1. Antioxidant/detoxification

Glutathione peroxidase 3 x x

2. Energy regulation

Creatine kinase M-type x x

Glyceraldehyde-3-phosphate dehydrogenase x x

Adenylate kinase isoenzyme 1 - x

3. Cell signaling

Phospholipase A1 x -

Phospholipase A2 x x

Insulin-like growth factor I x x

4. Lipoproteins

Apolipoprotein A-I x x

Apolipoprotein A-II x x

Apolipoprotein A-IV x x

Apolipoprotein B-100 x x

Apolipoprotein C-II x x

Apolipoprotein E x x

Apolipoprotein H x x

Apolipoprotein N x x

Apolipoprotein J (Clusterin) x -

5. Complement pathways

Complement C3 x x

Complement C4 x x

Complement component C6 x x

Complement component C8 x x

Complement component C9 x x

Complement component factor h-like 1 x x

C4b-binding protein alpha chain x x

C4b-binding protein beta chain x x

Clusterin x -

Protein C4-2 x x

Protein C8a x x

Protein Cfb x -

Protein Cfh x x

Protein F5 x x

Protein Serpinf1 x x

Mannose-binding protein A x x

6. Immunoglobulins/immune function

Ig gamma-2A chain C region x x

Ig gamma-2B chain C region x x

Ig gamma-2C chain C region x x

Ig kappa chain C region, A allele x x

Macrophage stimulating 1 x -

7. Blood coagulation

Coagulation factor II, isoform CRA_a x x

Coagulation factor VII x x

Coagulation factor X x x

Table 2: Proteins and their functional classification that were identified 
from rat plasma and/or serum bound to citrate-coated nanoceria.
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Antioxidant/detoxification: The antioxidant activity of GPx3 
depends upon its ability to convert lipid peroxides (or hydrogen 
peroxide) into the corresponding alcohol (or water), using 
glutathione as reducing equivalent. Since GPX plays a critical 
role as an antioxidant protein, its interaction with nanoceria 
conceivably could contribute to an altered cellular defense system.

Glucose metabolism regulation: GAPDH is not just an important 
enzyme of glycolytic pathway, which facilitates the enzymatic 
conversion of glyceraldehyde 3- phosphate to 1,3-biphosphoglycerate 
in glycolysis, but this enzyme also has other diverse functions [43-
45]. Owing to its multiple isoforms and cellular localizations, 
GAPDH interacts with various small molecules, proteins and 
membranes, which are involved in normal as well as pathologic 
cellular functions including but not limited to transcription 
activation, apoptosis, and endocytosis [44,46]. Consequently, we 
speculate that binding of GAPDH to nanoceria conceivably might 
favor the transport of these particles via endocytosis processes into 
different cellular locations and into multiple organs.

Cell signaling: Phospholipase A2 belongs to family of phospholipase 
(PL) enzymes that hydrolyze phospholipids into fatty acids and 
other lipophilic substances. PLA2 cleaves the sn-2 acyl chain of 
phospholipids releasing unsaturated fatty acids, one of which is 
arachidonic acid, a lipid secondary messenger involved in cellular 
signaling and in inflammatory responses. Moreover, arachidonic 
acid is a major source of the lipid peroxidation product, 4- 
hydroxynonenal (HNE), which covalently binds proteins to change 
their structure and decrease their function [47]. If the binding 
of PLA2 to nanoceria negatively impacts the function of this PL, 
membrane integrity may be compromised and cell death processes 
promoted. On the other hand, if binding of PLA2 to nanoceria 
stabilizes this PL, this conceivably could contribute to several 
inflammatory diseases, including coronary artery disease [48], and 
acute respiratory distress syndrome [49], with both possibilities 
causing cellular damage.

Lipoproteins: Apolipoproteins (Apo) regulate the transport 
and distribution of lipids (including cholesterol in some cases) 
through the lymphatic and circulatory systems, serve as a 
cofactors or catalysts for lipid metabolic reactions, and maintain 
structure of lipoprotein particles. Moreover, ApoA1 is involved 
in regulating levels of the pro-inflammatory cytokine, TNFa 
[50], while plasma levels of ApoJ (clusterin) are correlated to 
protein aggregation and neurodegeneration [51]. Owing to their 
multiple functions, Apo regulate cellular lipoprotein metabolism 

[52]. Binding of lipoproteins to nanoceria might promote their 
transport or absorption to other organs such as liver and may 
affect its distribution and accumulation in the cells of different 
organs. Indeed, we previously showed that when nanoceria are 
administered systemically, liver accumulation is observed that 
is highly persistent and damaging to this critical organ [53]. 
Unexpectedly, following 90 days after systemic administration of 
nanoceria, we demonstrated that nanoceria are bio-transformed 
by the liver into different shapes and production of antioxidant 
Ce3+ [54], at a time that coincides with return to baseline of the 
elevated oxidative stress in brain [15]. ApoE, which is essential for 
the normal catabolism of trigyceride-rich lipoprotein constituents, 
also meditates the transport and uptake of cholesterol and lipid 
by interacting with different cellular receptors, including the low 
density lipoprotein (LDL) receptor.

Complement pathways: Complement pathways (CP) are an 
integral part of the innate immune system or non-specific immune 
response and they complement the antibiotic activity of antibodies 
in biological systems by augmenting the opsonization of bacteria 
by antibodies. CP can also be activated early in infection in the 
absence of antibodies. The interaction between nanoceria and the 
proteomics-identified proteins of the complement system could 
result from a binding affinity of these proteins to nanoceria, and 
this binding conceivably might activate this cellular defense system 
even in the absence of pathogenic insults.

Immunoglobulin/immune function: Immunoglobulins (Ig) are 
large, Y-shaped glycoproteins produced by B-cells and used by the 
immune system to identify and neutralize foreign objects such as 
bacteria and viruses. Interaction of Ig with nanoceria conceivably 
could materially affect these functions in a negative manner, 
potentially posing a risk to individuals who were treated with 
nanoceria-based antioxidant therapeutics as has been proposed 
[55].

Blood coagulation: As noted above, plasma levels of this category 
of proteins bound to nanoceria were more numerous identified 
by proteomics than those in serum, since such proteins were used 
to initiate blood clotting. Such a demarcation of binding of blood 
clotting proteins to nanoceria between plasma and ceria gives 
confidence that the proteomics methods employed give biologically 
relevant results.

Iron homeostasis: Transferrin is a key protein for binding iron ions. 
Adventitious iron is dangerous to cells, since Fe2+ is a pro-oxidant, 
converting hydrogen peroxide to hydroxyl free radicals via Fenton 
chemistry, which can lead to cell death [56]. Hence, binding loose 
iron ions is critical for cell survival. However, transferrin in both 
plasma and serum bind to nanoceria, thereby likely diminishing its 
iron-binding function and potentially posing a danger if nanoceria 
were used therapeutically.

Proteolysis: Plasma kallikrein is a serine protease that cleaves 
kininogen to produce the pro-inflammatory peptide, bradykinin. 
Hence, it is conceivable that binding of plasma kallikrein (not 
detected in serum) to nanoceria is protective by decreasing 
inflammatory processes.

Protease inhibitors: Unregulated activation of matrix 
metalloproteinases is associated with many disease states [57]. 
Metalloproteinase inhibitors contribute to the regulation of 
these enzymes [58]. Therefore, binding of metalloproteinase 
inhibitor-3 to nanoceria conceivably could weaken regulation 
of metalloproteinases, leading to nicks in endothelial tissues 

Cystatin-related protein 1 x -

17. Unknown functions

Alpha-2-glycoprotein 1 x x

Putative lysozyme C-2 x -

Figure 5: Venn diagram showing distribution of proteomics-identified, 

plasma or serum proteins associated with nanoceria.
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and consequent development of thrombosis. In contrast to high 
molecular weight kininogen, low molecular weight kininogen does 
not protect kallikrein from inactivation by C1 inhibitor. Therefore, 
adsorption of low molecular weight kininogen to nanoceria may 
be protective by preventing development of bradykinin-mediated 
inflammatory  processes.  Fetuin-B,  an  inhibitor  of  ovastacin  
and  meprin-metalloproteinases,  is  suggested  to  be  a potential 
contributor in proteinaceous networks involved in immune 
defense, extracellular matrix assembly, cell signaling, among other 
functions. Consequently, fetuin-B association with nanoceria could 
inhibit its function with implications for fibrosis, inflammation, 
cancer, and certain neurodegenerative disorders [59].

Carrier/cargo proteins: Hemopexin is a heme scavenging 
protein, thereby contributing to inhibition of heme-induced free 
radical formation. This protective effect is related to hemopexin-
mediated induction of heme oxygenase-1 activity [60]. Vitamin 
D-binding protein complexes much of the vitamin D in plasma 
or serum. Decreases in vitamin D are associated with numerous 
clinical disorders, including Alzheimer disease [61]. Consequently, 
association of vitamin D- binding protein with nanoceria may 
make vitamin D less available for health.

CONCLUSION

To our knowledge, this is the first proteomics study to identify 
plasma and serum proteins that coat nanoceria. One potential 
outcome of nanoceria protein coating is to enhance nanoceria 
uptake by cells. Nanoceria protein binding has been shown to alter 
protein structure. This may affect nanoceria’s pro- and/or anti-
inflammatory properties. Here, consideration of various functional 
classes of proteins leads to the notion that, while many proteins 
adsorbed onto nanoceria would have negative consequences, 
some cellular effects would be more protective in nature by 
appropriate nanoceria binding. Hence, a better understanding of 
the interaction between nanoceria and plasma and serum proteins 
is essential. Protein binding might affect the function of nanoceria 
as well the functions of the proteins bound to them. As noted 
above, nanoceria has been proposed as a therapeutic agent, so it is 
our opinion that such uses are premature until critical evaluation 
of how nanoceria behave once in the body, especially in the blood 
and organs.
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