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ABSTRACT OF THESIS 

 

 
MISPRONUNCIATION DETECTION AND DIAGNOSIS IN MANDARIN 

ACCENTED ENGLISH SPEECH 
 
 

This work presents the development, implementation, and evaluation of a 
Mispronunciation Detection and Diagnosis (MDD) system, with application to 
pronunciation evaluation of Mandarin-accented English speech. A comprehensive 
detection and diagnosis of errors in the Electromagnetic Articulography corpus of 
Mandarin-Accented English (EMA-MAE) was performed by using the expert phonetic 
transcripts and an Automatic Speech Recognition (ASR) system. Articulatory features 
derived from the parallel kinematic data available in the EMA-MAE corpus were used to 
identify the most significant articulatory error patterns seen in L2 speakers during common 
mispronunciations. Using both acoustic and articulatory information, an ASR based 
Mispronunciation Detection and Diagnosis (MDD) system was built and evaluated across 
different feature combinations and Deep Neural Network (DNN) architectures. The MDD 
system captured mispronunciation errors with a detection accuracy of 82.4%, a diagnostic 
accuracy of 75.8% and a false rejection rate of 17.2%. The results demonstrate the 
advantage of using articulatory features in revealing the significant contributors of 
mispronunciation as well as improving the performance of MDD systems. 

 
KEYWORDS: Mispronunciation detection and diagnosis (MDD), Articulatory features, 

Automatic Speech Recognition, Deep Neural Network (DNN).  
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 INTRODUCTION 

1.1 Background and motivation 

The research work presented here focuses on detection and diagnosis of 

mispronunciation in speech by Mandarin speakers of English. The initial work focuses on 

identification of common mispronunciation errors and their associated articulatory 

patterns as compared to the correct pronunciations. A Mispronunciation Detection and 

Diagnosis (MDD) system based on Automatic Speech Recognition (ASR) was designed 

and implemented and then used to compare automatically identified mispronunciations by 

MDD with mispronunciations based on expert transcription. 

In the age of globalization, learning a second language can be useful to enhance 

understanding of other culture and exchange of trade and knowledge, and more than half 

the world’s population speak at least two languages. While there are 34 languages that 

have 45 million or more speakers, a few languages such as English, Mandarin Chinese, 

Hindi and Spanish have more than 500 million total speakers each (Ethnologue 2019). 

These languages attract a large number of second language (L2) learners, making them 

some of the most popular second language choices for learners around the world. It is 

estimated that 750 million people speak English as their second language, ranking it as the 

most popular second language in the world (Ethnologue 2019). In particular, among the 

estimated 416 million Chinese foreign-language learners, 94% (390 million) of them are 

learning English (Wei and Su 2012). These numbers clearly indicate the popularity of 

English as second language around the globe, with a large population of English as second 

language (ESL) learners in China alone. Due to this large demand, the market size of the 

English language training (ELT) in China is projected to grow from 41.5 billion U.S. 
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dollars in 2017 to 75 billion U.S. dollars in 2022 (Statista 2019). This data on speakers and 

L2 learners around the world provides motivation for academia and computer technology 

based companies to research and develop effective tools for language learning.  

Computer Assisted Language Learning (CALL) is the study of applications of the 

computer to language teaching and learning (Levy and Hubbard 2005). The history of 

CALL can be dated back to 1960s (ICT4LT), and a detailed overview of the history of 

CALL can be found in (Butler-Pascoe 2011). CALL is a broad field that encompasses a 

wide range of teaching-learning elements of language training, including vocabulary, 

grammar, phonetics and pronunciation. Whereas reading and writing skills in a language 

are acquired based on the understanding of language rules and vocabulary, speaking and 

listening require the physical skill of speech production as well as the ability and training 

to perceive speech. Pronunciation is considered as a key sub-skill of speaking. After a 

certain proficiency standard, the main factor that greatly hinders the communication 

process in L2 learners is pronunciation (Hinofotis and Bailey 1980). Some of the important 

linguistic factors affecting the learning of pronunciation are accent, stress, intonation, 

rhythm and mother tongue influence (Gilakjani and Ahmadi 2011). Moreover, various 

non-linguistic factors like age, personality, motivation and attitude of learner and 

instruction methodologies also have their effect on pronunciation learning (Gilakjani and 

Ahmadi 2011). Because of the many challenges associated with learning correct speech 

production in a new language, pronunciation errors are common in the speech of second 

language (L2) learners. Pronunciation being one of the important skills in learning a new 

language, for CALL to be effective, special focus has to be given in teaching learners the 

correct way of pronouncing words in L2. An important sub-field of CALL is Computer 
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Assisted Pronunciation Training (CAPT), which focuses on assisting learners with the 

pronunciation aspects of language. CAPT systems can offer realistic and contextualized 

spoken examples by means of videos and recordings that learners can use to mimic and 

learn word level pronunciations of the second language (L2) (Neri, Mich et al. 2008). In 

order to teach pronunciation to L2 learners, CAPT systems should be able to listen the 

learner’s speech, detect mispronunciations and provide corrective feedback. Therefore 

Mispronunciation Detection and Diagnosis (MDD) plays a vital role in CAPT. MDD in 

most CAPT systems is based on Automatic Speech Recognition (ASR) technologies. In 

the context of pronunciation training using MDD, speech is typically solicited from the 

users, and ASR systems can be used to compare against the known prompts for the speech 

under test to detect mispronunciations and diagnose them. A detailed literature review of 

ASR based MDD systems is presented in Section 2.6 of this thesis. 

Speech is a result of complex coordinated movement of articulators. Information 

about the movement of these articulators during mispronunciations can be essential in 

identifying the primary and secondary contributors for mispronunciations. A detailed 

literature review of the articulatory comparison between first language (L1) and second 

language (L2) pairs to diagnose the cause of mispronunciations in L2 speakers is presented 

in Section 2.4. These earlier works related to articulatory comparison between L1 and L2 

speakers have primarily studied specific types of errors and regions of the vocal tract. An 

extensive data-driven study for a L1/L2 combination that identifies the most common 

mispronunciation errors and their corresponding articulatory differences between L1/L2 

speaker groups across all the regions of vocal tract would greatly be beneficial. This study 

adds the research contribution in this area. This work compares the difference in 
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articulation patterns between English (L1) and Mandarin Chinese (L2) speakers of 

English, for the purpose of providing an understanding of mispronunciation behaviors of 

L2 learners. This study reveals insight into common substitution errors and the associated 

articulator movements that play a significant role in mispronunciation patterns. 

ASR based MDD for CAPT systems is usually trained solely on acoustic data. 

However, kinematic data during speech production, represented in the form of articulatory 

features, can be useful in building a better MDD system. Apart from correctly identifying 

the types of mispronunciation, an MDD system that incorporates articulatory features can 

provide meaningful articulatory feedback to the learner, instead of the conventional score 

based feedback.  Understanding the role of articulatory information in mispronunciation, 

in recent years various ways of incorporating articulatory information into MDD systems 

have been proposed. A literature review relating to use of articulatory information in 

design of MDD can be found in Section 2.6 of this document. The systems proposed so 

far have tried to include expert labeled articulatory state information for each phoneme in 

the transcript to train the MDD system. However, there is a lack of studies which use real 

articulatory features as obtained from kinematic recordings of speech and their usefulness 

in improving the performance of MDD systems. This study aims to fill this gap. This 

research utilizes the Electromagnetic Articulography Mandarin Accented English (EMA-

MAE) database (Ji, Berry et al. 2014) , which is the largest of its kind with around 45 

minutes of acoustic and kinematic data from 20 American and 20 Mandarin speakers of 

English. With the help of the articulatory information provided in the database, key 

articulatory contributors for mispronunciation were identified. Moreover, the articulatory 
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features derived from the EMA data were used to improve the performance of ASR based 

MDD system. 

1.2 Contributions and Significance 

The research work presented here is on the analysis of mispronunciation with an 

emphasis on the articulatory differences between the speech of Mandarin and American 

speakers of English.  The key contributions of this work are described as follows. 

With regard to comparing articulatory patterns associated with mispronunciation 

errors, a detailed study has been carried out to identify commonly occurring 

mispronunciation errors in Mandarin speakers of English and to identify the contributing 

articulatory error pattern for those errors. Speech recognition models are used to align and 

extract the articulatory feature frames for the mispronounced sound segments in L2 speech 

as well as that for corresponding correctly pronounced sound segments in L1 speech. 

Statistical comparison of these L1 and L2 speech segments in the articulatory feature space 

reveal the key articulators associated with the mispronunciation under study.  

With regard to contributions in the area of Mispronunciation Detection and 

Diagnosis, an MDD system based on state-of-the-art ASR methods has been implemented 

and evaluated. Several ASR architectures were evaluated, and in addition the MDD system 

designed uses Articulatory and Acoustic features available in the EMA-MAE database and 

analyzes the effectiveness of these features individually and in combination. 

Although in this study the L2 speakers were Mandarin speakers of English, the 

same approach could be used for any L1-L2 language speaker pairs. 
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1.3 Plan of thesis 

The chapters in this thesis are organized as follows: After this introductory chapter, 

Chapter two provides relevant background concepts related to speech processing, 

statistical as well as neural network based speech recognition systems, phonological 

differences between Mandarin and English Language, literature review on analysis of 

articulatory differences between L1 and L2 speech, ASR based MDD systems and a brief 

introduction to the EMA-MAE database. Chapter three presents the experiments and 

results related to identification and diagnostic analysis of L2 mispronunciation errors in 

the articulatory feature space. Chapter four presents the experiments related to 

implementing an ASR based MDD system. Finally, the fifth chapter contains a conclusion 

of the overall study and directions for future work. 
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 BACKGROUND AND RELATED WORKS 

2.1 Introduction 

This chapter provides a general overview of background concepts and literature 

review of the works related to this study. This includes an overview of speech production, 

phonetic units of speech and their categories, spectral analysis and different acoustic 

feature extraction methods, statistical as well as neural network based acoustic modeling 

along with some techniques proven to improve their performance. The specific tasks 

associated with this work are analysis of articulatory differences between L1 and L2 

speech and building automatic Mispronunciation Detection and Diagnosis (MDD) 

systems, and therefore literature review focused on these two topics is also provided.  

The second section provides an overview of speech production in humans and 

introduces phonetic classes in English based on articulatory phonology. It also presents 

the fundamentals of frame-based speech processing, different types of acoustic features 

and extraction techniques.  

The third section describes approaches to building an automatic speech recognition 

system. It provides the basic theory behind Hidden Markov Models, Gaussian Mixture 

Models and various Deep Neural Network (DNN) based architectures like Multi-Layer 

Perceptron (MLP), Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), and 

light GRU. The section also briefly discusses Speaker Adaptive Training (SAT), feature 

space Maximum Likelihood Linear Regression (fMLLR) techniques and different 

optimization algorithms used for training DNNs which have demonstrated to improve 

speech recognition performance.  
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The fourth section provides a literature review on articulatory differences between 

L1 and L2 speech for understanding causes of errors. 

The fifth section of this chapter provides an overview of phonological differences 

between Mandarin and English languages. Commonly occurring mispronunciation errors 

as reported in the literature for Mandarin speakers of English are also discussed.  

The sixth section provides a detailed literature review in the area of automatic 

Mispronunciation Detection and Diagnosis (MDD). It explores Goodness of Pronunciation 

based MDD systems, Extended Recognition networks (ERN) and various Deep learning 

based MDD systems.  

The final section of this chapter briefly describes the EMA-MAE database used for 

this research. 

2.2 Overview of speech processing and analysis 

Human speech is the acoustic result of organized motions of the respiratory and 

masticatory apparatus (Flanagan 2013). The history of speech technology can be traced 

back to as early as 1779 when a Russian Professor Christian Kratzenstein designed an 

apparatus to produce five long vowels (/a/, /e/, /i/, /o/, /u/) artificially. The apparatus 

consisted of acoustic resonators similar to the human vocal tract. In 1791, Wolfgang von 

Kempelen developed his “Acoustic-Mechanical Speech Machine”, capable of producing 

single as well as some sound combinations. Some notable milestones in the history of 

speech technologies are as follows 

• Invention of Telephone in 1876 by Alexander Graham Bell.  

• Development of vocoder (voice coder) by Dudley in Bell labs in 1939. 
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• Creation of the first automatic speech recognizer called “Audrey” by 

researchers at Bell labs in 1952.  

• In the 1960’s computers were introduced to lead the world towards the digital 

computing era.  

• In the 1980’s Hidden Markov were successfully used for speech recognition 

tasks. 

• 1990’s and 2000’s were the decades of high computing capability through 

hardware advancement and development of software tools. This brought ASR 

based products to mainstream market. 

With the advent of Deep Neural Networks and their application in speech 

technologies, this field is growing rapidly. Riding on the wave of progress in Automatic 

Speech Recognition (ASR), applications like Computer Aided Language Learning 

(CALL), Computer Aided Pronunciation Training (CAPT) and speech accent conversion 

are showing promising results. Advances in speech processing and instrumentation have 

enabled researchers to look closely into the articulatory patterns in speech pronunciation, 

identify the articulatory cause of mispronunciation and hence provide meaningful 

diagnostic feedback to language learners.  

The two main areas of speech research covered in this work are Articulatory 

comparisons between L1 and L2 speech for diagnostic analysis of mispronunciation seen 

in L2 speakers and design of ASR based Mispronunciation Detection and Diagnosis 

(MDD) systems. 
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2.2.1 Speech production 

The organs involved in human vocal system are shown in Figure 1. The diagram 

represents a mid-sagittal view through the vocal tract of an adult. The vocal tract can be 

represented as an acoustical system of tubes with non-uniform cross-sectional area. 

Movement of the articulators; namely, the jaw, the lips, tongue and velum deforms the 

cross-sectional area of the vocal tract (Flanagan 2013). The velum is responsible for 

adjusting the acoustic coupling between the nasal and vocal tracts. For speech production, 

air is drawn into the lungs by lowering the diaphragm and enlarging the chest cavity and 

then expelled by contracting the rib cage and increasing the lung pressure (Flanagan 2013). 

As the forced air is expelled out of lungs, it passes through the trachea and then into the 

larynx. The Larynx, also called the voice box, houses two lips of ligament and muscle also 

called the vocal cords, and a slit between the cords called the glottis (Flanagan 2013). The 

shape of the vocal tract and the movement of the articulators filter the excitation signal, 

producing different types of sounds. Depending on the vibratory status of the excitation 

signals, human produce two types of sounds, voiced and unvoiced. Voiced sounds of 

speech are the result of vibratory action of vocal cords. In contrast, unvoiced sounds of 

speech do not involve vibration of vocal cords but are due to turbulent flow of air created 

at a restriction in the vocal tract. 
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Figure 1 Systematic diagram of human vocal mechanism (Flanagan 2013) 
 
2.2.2 Classification of sounds 

Sounds are represented by linguistic symbols called phonemes. Phonemes are the 

fundamental linguistic units which differentiate meaning in a language. Two commonly 

used standard phonetic representations include IPA (International Phonetic Alphabet) and 

ARPABET (by Advanced Research Projects Agency). A list of the IPA and ARPABET 

phonetic representation is presented in Table 2-1. 

In English, sounds are identified primarily by the resonance of the vocal tract, 

which is separate from the glottal excitation frequency (Flanagan 2013). Based on airflow 

restrictions in the vocal tract, sounds are broadly categorized into Vowels and Consonants. 
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The production of vowels does not involve major airflow restriction, whereas consonants 

are produced with airflow restriction(s) in the vocal tract. 

Table 2-1 IPA and ARPABET phoneme representation adapted from (Rice April 1976) 
IPA ARPABET Example Translation
b B be B IY
d D dee D IY
e EY ate EY T
f F fee F IY
g G green G R IY N
h HH he HH IY
i IY eat  IY T
j Y yield Y IY L D
k K key K IY
l L lee  L IY

m M me M IY
n N knee N IY
oʊ OW oat  OW T
p P pee P IY
r R read  R IY D
s S sea S IY
t T tea  T IY
u UW two T UW
v V vee V IY
w W we W IY
z Z zee Z IY
æ AE at AE T
ð DH thee DH IY
ŋ NG ping P IH NG
ɑ AA odd     AA D
ɔ AO ought AO T
ə AX comma  K AA M AX
ɚ AXR letter L EH T AXR
ɛ EH Ed EH D
ɝ ER hurt HH ER T
ɪ IH it  IH T
ʃ SH she SH IY
ʊ UH hood HH UH D
ʌ AH hut HH AH T
ʒ ZH zee ZH IY
ʤ JH gee JH IY
ʧ CH cheese CH IY Z
θ TH theta TH EY T AH
aɪ AY hide HH AY D
aʊ AW cow K AW  
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2.2.2.1 Vowels 

The filtering effect of the vocal tract creates resonances in the frequency spectrum 

called formants. Formants are numbered in order of increasing frequency with F1, F2, and 

F3 being the most prominent. F1 is related to the opened/closed position of the tongue and 

F2 is related to the front/back position of the tongue. Based on the values of F1 and F2, 

vowels can be characterized using a vowel space representation as illustrated in Figure 2 

for the 14 English vowels used in this work.   

 

Figure 2 Vowel diagram for English vowels, with the horizontal axis representing front 
and back position of the tongue, related to F1 and the vertical axis representing open and 

closed position of the tongue, related to F2. 
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2.2.2.2 Consonants 

Based on the place of articulation, consonants can be categorized as bilabial, labio-

dental, dental, alveolar, palatal, velar and glottal. Similarly, based on the manner of 

articulation, consonants can be categorized as stop, fricative, affricate, nasal, liquid and 

glides. Figure 3 tabulates these categories for English consonants. 

 

Figure 3 Consonant chart for classification of consonants based on Place (columns) and 
Manner (rows) of articulation 
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2.2.3 Speech processing 

Speech production can be represented by a source filter model, as shown in Figure 

4. In this model, the signal excitation is represented by pseudo-periodic air flow though 

vocal folds which is filtered by the resonances of vocal tract to produce the speech signal. 

Since both the excitation source and vocal tract are time-varying in nature, speech is a non-

stationary signal. Mathematically, it is modeled as the excitation signal (e[n]) convolved 

with the time-varying filter representing the vocal tract (h[n]) producing the speech signal 

(s[n]). The excitation signal can be modeled as a train of pulses for voiced speech and as 

white noise for unvoiced speech. Because of its non-stationarity characteristics, the 

spectral properties of speech are time varying and hence, short time processing using a 

sliding window called a frame is used as an analysis tool. Typical frame sizes range from 

10-30ms, and speech within the frame is modeled as being stationary (Deller, Proakis et 

al. 2000).  Choosing the frame size is a tradeoff between temporal and spectral resolution. 

Longer frames increase the spectral resolution but lose the stationarity of the speech signal. 

In contrast, narrower frames produce better temporal resolution but lower spectral 

resolution. Feature vectors extracted from each of these frames are used as input for 

building speech recognition or other speech processing systems. The most common feature 

representations for speech include Linear Predictive Coding (LPC), Cepstrum analysis, 

filter-banks and perceptual filter banks.  
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2.2.3.1 Cepstral Analysis 

Cepstral analysis is a general type of Homomorphic Signal Processing, well suited 

to speech because it allows for separation of excitation and vocal tract filter characteristics 

and generates a set of largely uncorrelated features representing vocal tract characteristics. 

The real cepstrum of a signal s[n] is the inverse Fourier Transform of the logarithm of the 

Fourier Transform Magnitude of the signal Cepstral analysis. This type of analysis 

separates excitation and vocal tract characteristics and also allows for the introduction on 

nonlinear frequency scaling to create more perceptually appropriate features. The Mel 

scale is a nonlinear frequency scale which represents the logarithmic sensitivity of the 

human auditory system (Huang, Acero et al. 2001). Mel Frequency Cepstral Coefficients 

(MFCCs) are cepstral coefficients warped on the Mel frequency scale. To compute 

MFCCs, the magnitude spectrum of each frame is computed and frequency warped on the 

Mel frequency scale then transformed to the cepstral domain using a Discrete Cosine 

transform to yield Mel frequency cepstral coefficients. Details of MFCC feature vector 

extraction for a frame is illustrated in Figure 5.  

  

Figure 4 Source filter model for speech production 

Time-varying 
Filter 

Voiced 
(Pulses) 

Unvoiced 
(Noise) 

Speech 

e[n]   *  h[n]         =    s[n] 
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In order to obtain information about trajectories of MFCCs over time, the time 

derivatives of MFCCs called deltas (also called velocity) and delta-deltas (also called 

acceleration) can be computed and  used along with the static MFCC features yielding 

better speech recognition performance (Yang, Soong et al. 2007). These dynamic MFCC 

features in the form of time derivatives are calculated using a linear regression. 

  

Delta-Delta 
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Figure 5 Block diagram of MFCCs feature extraction (Johnson 2018)   
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2.3 Automatic speech recognition systems 

In 1952, K. H. Davis, R. Biddulph and S. Balashek at Bell labs developed the first 

Automatic speech recognition system capable of recognizing spoken digits by a single 

speaker (Davis, Biddulph et al. 1952). In the 1980’s, statistical methods like Hidden 

Markov Model (HMM) (Ferguson 1980, Levinson, Rabiner et al. 1983) began to be used 

for speech recognition systems. As a doubly stochastic process, the HMM framework was 

able to model the intrinsic temporal variations in speech as well as the spectral structure 

of spoken acoustics (Juang and Rabiner 2005). This framework was the foundation for 

ASR for over two decades.  In the late 2000’s, deep neural networks (DNNs) began to 

outpace HMMs for speech recognition accuracy. Even though Neural networks’ 

theoretical history can be traced back to the 1950’s, they could not be practically used 

(McCulloch and Pitts 1943) due to lack of computational resources as well as ineffective 

training methods for multiple layer networks. In the last decade, development of different 

software tools and deep neural network (DNN) variants well suited for sequential 

modeling task have opened a new direction of ASR technologies.  DNN-HMM based 

frameworks and more recently end to end speech recognition systems are now realized 

purely based on DNNs.  

The next section provides an introduction to acoustic modeling based on the GMM-

HMM framework and some techniques that can improve speech recognition performance.  

The section also provides a brief overview of different DNN architectures used in this 

work to design ASR models used as the core engine in the Mispronunciation Detection 

and Diagnosis (MDD) system.  
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2.3.1 Acoustic Modeling 

Features extracted from speech utterances are used to build the acoustic models for 

automatic speech recognition systems. Statistical models like Gaussian Mixture Models 

(GMMs) were previously the standard for acoustic modeling. In recent years, deep neural 

networks (DNNs) based acoustic modeling is increasingly becoming effective and 

popular. 

2.3.1.1 Gaussian Mixture Model (GMM) 

Gaussian Mixture Models model the statistical properties of speech signals in the 

form of a mixture of multiple Gaussians. With sufficient number of mixtures, GMM can 

model any probability distribution as a linear combination of multiple Gaussian 

distributions. Given the set of model parameters (λ) for a specific speech unit, probability 

of the n-dimensional feature vector (x) is modeled by a GMM with M n-variate Gaussian 

distributions as follows. 

 ( ) 1
| ( ),M

i ii
p x w p xλ

=
= ∑    (1) 

where pi(x) is the ith multivariate Gaussian distribution with means µi and covariance Ʃi   

weighted by factor wi such that 
1

1M
ii

w
=

=∑  . M is the number of Gaussian Mixtures. Values 

for these parameters are obtained by an iterative training algorithm called Expectation 

Maximization (EM) (Dempster, Laird et al. 1977) 
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2.3.1.2 Hidden Markov Model (HMM) 

Hidden Markov Models have been the most widely used method for temporal 

sequencing in speech recognition. HMMs model the acoustic events in speech as the 

sequence of states such that the overall likelihood of the speech generated by the model is 

maximized. The probability distribution of states of HMM can be represented either by 

GMMs or DNNs. A conceptual diagram of HMM is presented below.  

 

An HMM is represented by the set of the following parameters: initial state 

distribution π (the probability of one of the states being the first state of the sequence), the 

output probability matrix, B = bj(ok), where bj(ok) is the probability that the state si emits 

the observable symbol ok, and the state transition probability matrix A containing the state 

transition probabilities , the likelihood of the transition from the current state (si) to the 

next state (sj). The set of parameters includes the output probabilities for each state (B), 

a ij

Figure 6 Conceptual diagram of HMM (Johnson 2018)   
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the transition probabilities (A) and initial state probabilities (π) are collectively called 

model parameters and can be denoted by λ = (A,B, π) 

 

Fundamental problems and solutions of HMM 

1) The Evaluation problem – Given a model λ, and an observation sequence O = (o1, o2 

…..oT) compute p(O | λ), the probability of observation given model. The efficient 

solution to this problem is a dynamic programming algorithm forward-backward 

algorithm (Baum, Petrie et al. 1970).  

2) The Alignment problem – Given a model λ and an observation sequence O, compute 

the state sequence Q = (q1, q2 ………..qT) such that argmaxS {p(Q|O, λ), the sequence 

which best matches with the observation sequence. This best sequence is obtained by 

a dynamic programming method called the Viterbi Algorithm (Forney 1973).  

3) The Training problem – Given a group of observation sequences. Find an estimate of 

λ such that λML = argmaxλ {p(O | λ )}. The solution to this problem is obtained using 

Baum Welch Algorithm (Baum, Petrie et al. 1970).  

An excellent tutorial on HMMs and their application in speech recognition can be read in  

(Rabiner 1989).  

2.3.1.3 Linear Discriminant Analysis-Maximum Likelihood Linear Transform 
(LDA-MLLT) 

Linear Discriminant Analysis (LDA) (Fisher 1936) can be used to project features 

into a feature space with of lower dimension. Maximum Likelihood Linear Transform 

(MLLT) (Gales 1999) is a model based transform which clusters full covariance matrices 

over many distributions. This transform decomposes the covariance matrix for each 

component into two elements: a non-singular linear transformation matrix WT shared over 
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a set of components, and the diagonal matrix Λj, yielding the inverse covariance matrix in 

the form as in (Psutka 2007) 

 1

1
,

n
T k T

j j j k k
k

W W w wλ−

=

Σ ≈ Λ = ∑   (2) 

where Λj is a diagonal matrix(diag(λj)) and wk
T is the kth  row of the transformation matrix 

WT. Analytically, the model parameters for this transform can be estimated using the 

maximum likelihood approach, however, in practice Expectation Maximization (EM) is 

used. 

2.3.2  Source Variability in Acoustic Modeling 

Sources of variability in speech include speaker related factors like gender, age and 

accent and environmental factors like noise, microphones and channel characteristics. This 

variability if not well represented in training data used in building acoustic models will 

cause poor recognition performance on test dataset. The mismatch between training and 

recognition can be reduced, either by adapting the model to better fit the features from 

different sources or by transforming features to better fit the model. Several techniques to 

reduce the effect of source variability are briefly discussed below. 

2.3.2.1 Cepstral Mean and Variance Normalization (CMVN) 

In order to remove the effect of source or channel variability in speech or speaker 

recognition task, cepstral mean and variance normalization (CMVN) can be applied 

(Viikki and Laurila 1998). In this method, once the cepstrum is calculated form the speech, 

the average of the cepstrum coefficients is subtracted from each coefficient. The mean 
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subtracted cepstrum coefficients are divided by the variance to obtain cepstral mean and 

variance normalized features. 

2.3.2.2 Maximum Likelihood Linear Regression (MLLR) 

Maximum Likelihood Linear Regression (MLLR) (Gales 1998) is a model-space 

speaker adaptation technique which adapts the parameters of Gaussians with the objective 

of maximizing the likelihood of the adaptation data for a particular speaker. Linear Model-

space transformations can be unconstrained or constrained. In an unconstrained 

transformation, mean and variance transforms are independent of one another, whereas for 

a constrained transformation, the transform used for mean is used to transform the 

variance. The standard MLLR uses unconstrained transformation approach. The general 

form of a MLLR transform for the mean and variance is given as 

 ˆ A b Wµ µ ξ= + =   (3) 

where ξ is the extended mean vector, [1  µT] T, and W is the extended transform, [bT  AT]T 

. The variance transformation with the transformation matrix H is obtained using 

 ˆ TH HΣ = Σ   (4) 

The optimization of unconstrained MLLR is carried out in two steps. First the 

transformation of the mean is obtained given the current variance and its transform matrix. 

Second, the transformation of the variance is obtained given the current mean and its 

transform.  

2.3.2.3 Feature space Maximum Likelihood Linear Regression (fMLLR) 

fMLLR is a feature space transform where the features are transformed to better fit 

the model. It is a constrained MLLR (CMLLR) defined by 
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 ( ) ( ) ( )ˆ t s tx W ξ=   (5) 

where ξ(t) is the extended feature vector, [x(t)
  1] T

  at time t, and  W(s) = [A(s) b(s)]  is the  

transformation matrix which contains the square matrix A(s) and the bias vector b(s). For 

the computation of fMLLR transform the sufficient statistics are stored including 
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where M is the total number of Gaussian mixtures, c(sm) is the soft count of Gaussian m 

from the current speaker s; µi 
(m)

 and σi
2(m)

 are the mean and the variance respectively for 

ith dimension of mixture m respectively. For the frames x aligned to Gaussian m for speaker 

s, the quantities Ɛ(ξ)(sm)   and Ɛ(ξξ T)(sm) (where Ɛ  denote average) can be computed as in 

(Povey and Saon 2006) as follows 
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2.3.2.4 Speaker Adaptive Training (SAT)  

Speaker Adaptive training (Anastasakos, McDonough et al. 1996) is an adaptation 

technique which alternates between the feature and the model space to adapt the speaker 
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independent model and reduce inter-speaker variation. The training procedure for SAT 

training can be described as follows: 

1. Estimate the speaker independent(SI) model and initialize the transformation as an 

identity matrix; 

2. For each speaker in the training set, compute fMLLR transforms given the current 

SI model and transform the features using the fMLLR transforms; 

3. Using the speaker adapted fMLLR features, estimate a new model set using two 

iterations of Expectation Maximization algorithm; 

4. If not converged, goto step 2. 

During recognition, the speaker independent model is used to produce the first best 

output. This output is used as transcription to be used to estimate fMLLR transforms for 

the test speakers. The transformed features obtained by using the fMLLR transforms are 

used to run a second pass of recognition using the speaker adaptive model. 

2.3.3 Artificial Neural Network (ANN) 

GMM-HMM systems have been the state of the art for speech recognition for over 

two decades. Despite their strength and success, GMMs have their own limitations. The 

major one is that they are not efficient in modeling data that lie on or near a non-linear 

manifold in the data space (Hinton, Deng et al. 2012) . Artificial Neural Networks (ANN) 

trained with back-propagation algorithm (Rumelhart, Hinton et al. 1985) have proven to 

better model the non-linear surface of the data-space. Advancement in machine learning 

algorithms and hardware computational capability over the last two decades have enabled 

development of efficient training of artificial neural networks with multiple layers and a 

large number of nodes. Such networks are called Deep Neural Networks (DNNs). DNNs 
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in Automatic Speech Recognition (ASR) are characterized by many layers of non-linear 

hidden units. The last output layer of DNNs have the number of nodes equal to the number 

of context dependent phone states  which are represented as the  triphone states in the 

conventional HMM systems. Results on different datasets of different size have shown 

that DNNs can perform better than GMMs at acoustic modeling task for speech 

recognition. Different classes of DNNs successfully used in ASR systems are explained 

below. 

2.3.3.1 Multilayer Perceptron (MLP) 

A multilayer perceptron (MLP) network is a type of feedforward ANN (Rosenblatt 

1961) consisting of an input layer, at least one hidden layer and an output layer. The nodes 

in the hidden and output layers of an MLP use a nonlinear activation function. This 

characteristics of MLPs enables them to learn non-linearity in the data-space. An MLP is 

typically trained using the back-propagation algorithm in a supervised learning 

framework. An MLP is a fully connected network where the nodes in the current layer are 

connected to all the nodes in the following layer with some weight wij. These weights are 

updated with the goal of minimizing the error computed in the output layer, which is based 

on difference between the actual and predicted value by the perceptron.  
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As can be seen in Figure 7 some of the nodes of the MLP are not connected with 

each other. These missing connections indicate that the weight across them obtained after 

training was zero.  

2.3.3.2 Recurrent Neural Network (RNN) 

Recurrent Neural Networks (RNNs) are a class of Neural Networks which capture 

the dynamic behavior of sequential data. Cells, the fundamental units of RNN, are 

connected in time by a set of shared weights.  

 

Figure 8 Unidirectional RNN unfolded in time (Afshine Amidi) 
 

Hidden layer 

Input 
Output 

Figure 7 A simple Multilayer perceptron network with one hidden layer 
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For unidirectional RNN, the current time step output (y<t>) depends on the current 

time step input (x<t>) and the previous time step activation (a<t-1>), whereas for a 

bidirectional RNN, that depends on the current time step input (x<t>) and both the previous 

time step activation (a<t-1>) and the next time step activation (a<t+1>).  The activation a<t> 

and the output y<t> for time step t in unidirectional RNN are computed as follows 

 ( )1
1

t t t
aa ax aa g W a W x b−= + +   (10) 

 ( )2
t t

ya yy g W a b= +   (11) 

where Wax,Waa ,Wya , ba , by  are the shared weights and biases between the RNN cells; g1 

and g2 are the  non-linear activation functions. The most commonly used activation 

functions in RNNs are: sigmoid, tanh and RELU (Rectified Linear Unit). 

The loss function for RNN is computed as the summation of loss across the time 

steps for the given input sequence. It is defined as 

 ( ) ( )
1

ˆ ˆ, ,
yT

t t

t
L y y L y y

=

= ∑   (12) 

Once the loss is computed, backpropagation through time (BPT) is performed by 

partial differentiation of loss L with respect to the shared weights in the matrix W. BPT 

can be defined as  

 
( ) ( )
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2.3.3.3 Long Short Term Memory (LSTM) 

The fundamental mechanism of an RNN network is to pass the information present 

in previous time step(s) to the current time step so that the long term dependencies between 

the features are captured. However, as the gap between the current time step and the time 

step where the relevant information is present grows, RNNs are not able to effectively 

capture such dependencies. To address this, a special type of RNN called a Long Short 

Term Memory (LSTM) network was proposed by Hochreiter and Schmidhuber in 

(Hochreiter and Schmidhuber 1997). The fundamental element of an LSTM network is a 

cell. Each LSTM cell is implemented with a set of gates: Update gate (Гu), Relevance gate 

(Гr), Forget gate (Гf), and Output gate (Гo). Figure 9  followed by the corresponding set of 

equations illustrate a standard LSTM cell architecture. 

 

Figure 9 The LSTM cell (Afshine Amidi) 
 

 ( )1tanh ,t t t
c r cc W a x b− = Γ ∗ +    (14) 

 1t t t
u fc c c −= Γ ∗ + Γ ∗   (15) 

 t t
oa c= Γ ∗   (16) 
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2.3.3.4 Gated Recurrent Unit (GRU) 

A Gated Recurrent Unit (GRU) (Cho, Van Merriënboer et al. 2014) is a variant of  

LSTM. Unlike the standard LSTM, GRU eliminates the need of a separate forget gate and 

the Output gate. It reduces the computational complexity and hence reduces the training 

time for each epoch.  

 

Figure 10 The GRU cell (Afshine Amidi)  
 

 ( )1tanh ,t t t
c r cc W a x b− = Γ ∗ +    (17) 

 1(1 )t t t
u uc c c −= Γ ∗ + − Γ ∗   (18) 

 t ta c=   (19) 

2.3.3.5 Light Gated Recurrent unit (liGRU) 

  For speech signals, the average activations produced by the update and reset gates 

in the standard GRU are shown to have strong temporal correlation (Ravanelli, Brakel et 

al. 2018). In other words, there is redundancy of information in activations produced by 

the update and reset gate. Therefore in (Ravanelli, Brakel et al. 2018) a variant of the 
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standard GRU  where the reset gate is removed was proposed. This change reflected as 

modification of equation 17 as shown in the equation below 

 ( )1tanh ,t t t
c cc W a x b− = +    (20) 

This modification has proven to produce the best speech recognition results for the 

commonly experimented speech corpus like TIMIT, DIRHA, CHiME and LibriSpeech. 

Moreover, as reported in  (Ravanelli, Brakel et al. 2018), the per-epoch training time was 

improved by 30% as compared to the standard GRU . 

2.3.4 Optimization for Training Deep Neural Networks 

Optimization in the simplest mathematical sense is a method of finding value of 

the argument for which the given objective function (f(x)) is maximized or minimized. 

Deep neural networks use an optimization algorithm to find weight and bias values of the 

network for which the loss function is minimized, which is the core goal of neural network 

training. The point where the overall loss function (f(x)) is minimum is called the global 

minimum. In practical training of deep neural networks, especially for features with 

multiple dimension, the global minimum is hard to achieve. The goal of optimization 

therefore is to reduce the loss function as well as the true error rate of the model being 

trained.   

2.3.4.1 Gradient descent 

Gradient descent, originally proposed by Cauchy in 1847, is the first order 

optimization algorithm used in DNN training.  It iteratively updates the model parameters 

based on the gradient of the loss for the current model parameters are updated and the term 

𝛥𝛥𝛳𝛳𝐿𝐿(𝛳𝛳𝑘𝑘) is the gradient (gk) of the loss function for the model parameters 𝛳𝛳𝑘𝑘  . As 
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𝛳𝛳𝑘𝑘  converges to a local minimum, the gradient approaches zero. The learning rate can be 

fixed or can be iteratively updated as follows 

 ( )( )0 0k
kα Γ=∈ − ∈ −∈Γ   (21) 

where 𝛼𝛼𝑘𝑘 is the learning rate for kth epoch. This causes the learning rate to decrease from 

the initial learning rate (ϵ0) to the final learning rate (ϵГ). 

Various advanced optimization algorithms with their own strength and weaknesses 

have been developed as a modification to Gradient descent. Some of the most commonly 

used optimization algorithms used for Training Deep Neural Networks are Stochastic 

Gradient Descent (Bottou 2010), AdaGrad (Duchi, Hazan et al. 2011), RMSprop (Hinton, 

Srivastava et al. 2012) , and Adam (Kingma and Ba 2014) 

2.4 Articulatory comparison of L1 and L2 speech: Literature Review 

According to speech learning models of L2 pronunciation, the phonetic system 

responsible for production and perception of phonetic units reconfigures itself while 

learning new sounds, through both addition of new phonetic categories and modification 

of  phoneme paradigms from the L1 language (Flege 1995). The difference in phonology 

between the native language systems of L1 and L2 speakers has been proposed as a 

primary cause of negative language transfer effects (Meng, Zee et al. 2007). Since the 

actions of articulators are the phonological basis of pronunciation (Browman and 

Goldstein 1992),  these negative language transfer effects can further be studied and 

mitigated by looking at the articulators from a speech production perspective during L2 

pronunciation errors.  
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Many pronunciation errors made by second language learners are caused by 

incorrect articulatory patterns. In order to provide meaningful feedback to the learners, it 

is important to have a clear understanding of the kinds of pronunciation errors that are 

most common for a specific L1/L2 language combination and of what production or 

articulatory errors are associated with those pronunciation errors. 

There have been several studies on articulatory phonology which have focused on 

modeling the primary articulators for different categories of sound (Stone and Lundberg 

1996) (Sanguineti, Laboissiere et al. 1997) (Wang, Green et al. 2013). The understanding 

of the role of articulators in speech production can also be used to study the key vocal tract 

regions attributed to commonly occurring mispronunciations among L2 learners.  

To investigate language-specific articulatory settings, an experiment was 

conducted using X-ray data of 5 English and 5 French speakers in (Gick, Wilson et al. 

2004). The study revealed significant difference across languages in the positions of 

articulators during speech pauses at five locations in the vocal tract.  

Using ultrasound imaging, the study in (Wilson 2013) looked into the anticipatory 

articulatory patterns during pauses in speech. Comparison of Inter-speech posture (ISP) 

articulators between Canadian English and Quebecois French monolinguals was 

performed. The significantly different ISP components across two groups of speakers 

were: upper and lower lip protrusion, tongue tip height and lip corner position. 

The study in (Nissen, Dromey et al. 2007) compared tongue movement patterns 

for Spanish and Korean bilingual speakers when speaking L1 versus L2 (English). 

Investigation of Intraspeaker difference in Speed, duration and tongue strokes length 
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revealed that the speakers had slower but longer tongue movement durations for L2 as 

compared to L1. 

For non-native speakers the most common pronunciation errors are often between 

sounds which have similar but not identical articulatory positions.  While native speakers 

can perceive and produce the contrast between such sounds, non-native speakers struggle 

to differentiate. A study using Articulography was done (Wieling, Veenstra et al. 2015) on 

native and non-native (Dutch) speakers of English focusing on the anterior-posterior 

position of the tongue-tip during production of two pairs of sounds /s/-/ʃ/ and /t/-/θ/. In 

(Wieling, Veenstra et al. 2017) the authors compared articulatory trajectories between 

three groups of speakers – native English, German and Dutch, speaking English. Both 

studies revealed lower contrast in speech production among L2 speakers for such sound 

pairs compared to L1 speakers. 

Difference in articulatory settings for two Dutch dialects was quantified in 

(Wieling, Tomaschek et al. 2016, Wieling and Tiede 2017). A comparison of tongue 

movement data recorded using EMA for 34 speakers during pauses in speech revealed 

significantly more frontal positions for the Ubbergen dialect speakers as compared to Ter 

Apel dialect speakers. Curves fitted to the data points for tongue trajectories for two groups 

of speakers revealed clear distinction between the dialects. Articulatory characteristics of 

frontal lingual consonants among Catalan dialects using electropalatography were studied 

in (Recasens 2010). The study revealed differences in location of constriction in anterior 

region of tongue among Catalan dialects. 

In a related work, EMA articulatory data was compared between a Mandarin 

speaker of English and a native speaker of English in (Li and Wang 2012). For the English 
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phonemes not present in Mandarin phonemic inventory, pairwise Mahalanobis distance 

between the displacements of the articulators on tongue (3 points) and lips (3 points) was 

calculated between the two speakers. The dissimilarity information visualized from 

Hierarchical clustering analysis (HCA) and multi-dimensional scaling (MDS) clearly 

show significant difference in articulation between the Mandarin sounds and their English 

equivalents.  

2.5 Phonological difference between Mandarin and English 

Mispronunciation in second language learners is caused by a complex set of factors 

related to the differences between the L1 and L2 languages, the age at which second 

language acquisition began, and many issues related to individual, social, and cultural 

identity. One key aspect is transfer of phonological aspects from the native language (L1) 

to the second language (L2) (Edwards and Zampini 2008) .Various causes of interlanguage 

transfer proposed by (Weinreich 1953) as summarized in (Edwards and Zampini 2008) are 

discussed below.  

1. Sound substitution: When the learner substitutes the closest L1 equivalent 

sound in the L2. 

2. Phonological process: When the learner uses an allophonic variant 

(Allophone is one of the phonetically distinct contextual variants of a 

phoneme) in L1 that does not occur in the same environment in the L2. 

3. Underdifferentiation: When two sounds are just allophones in the L1 but 

are separate phonemes in L2. 
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4. Overdifferentiation: When two sounds are separate phonemes in L1 but are 

just allophones in L2. 

5. Reinterpretation of distinctions: When the learner reinterprets the 

distinctions in the L2 as a different form of distinction for them. 

6. Phonotactic interference: When the learner applies the syllable structure in 

the L1 to that in L2. 

7. Prosodic interference: Pronunciation error due to difference in prosodic 

features (for example, intonation) of language.  

When second language learners speak, mispronunciation can present differently 

for the L2 phonemes not present in their native language and for the L2 phonemes which 

have similar but not identical equivalents in their native language. Fundamental 

differences between the native language and the second language can be studied to identify 

most likely pronunciation errors. In this work, the focus is on Mandarin speakers of 

English as a second language, therefore the phonological differences between Mandarin 

and English, and in particular the interlanguage transfer from Mandarin to English, are of 

central importance. 

There have been many studies comparing Mandarin and English phonetics. A 

detailed contrastive study of English and Mandarin Chinese phonetics can be read in 

(Catford, Palmer et al. 1974). In the section below a summary of the key phonological 

differences between Mandarin Chinese and English based on the analysis in (Catford, 

Palmer et al. 1974) are discussed. 
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2.5.1 Consonants 

 

Figure 11 Consonant Phonemes of Mandarin Chinese. Circled phonemes are not shared 
with English , the apostrophe ꞌ is used to indicate aspiration (Catford, Palmer et al. 1974) 

 

 

Figure 12 Consonant Phonemes of English. Circled phonemes are not shared with 
Mandarin (Catford, Palmer et al. 1974) 

 

From observation of Figure 11 and Figure 12 we can notice several key differences. 

For Mandarin, all the stops, affricates and fricatives are voiceless. Unlike in English where 

the stops, affricates and fricatives are distinguished by voicing, for Mandarin the 

distinguishing manner of articulation is aspiration. The stops [b, d, g] of English are absent 

for Mandarin. The voiced stops of English [p, t, k] have both aspirated and unaspirated 
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versions but only voiceless versions of them are present in Mandarin. The thirteen 

consonant sounds present in English but not in Mandarin are [b, d, g, ʧ, ʤ, ɵ, ʃ, h, v, ð, z, 

ʒ and r]. The voiceless affricate sound ʧ found in English has a set of six similar affricates 

both with and without aspiration. English /r/ caries lip-rounding, whereas Mandarin /r/ is 

rounded only when immediately preceding a rounded vowel or semivowel (Catford, 

Palmer et al. 1974). Mandarin /x/ is similar to English /h/ except that the Mandarin sound 

is pronounced with some friction. Based on the consonants charts for English and 

Mandarin phonetics, it can be expected that the Mandarin learners of English might have 

difficulties in voicing and aspiration related pronunciation. Moreover, there are no final 

consonants except /n/ and /ŋ/ at the end of the syllables in Mandarin so the learners most 

likely omit the final consonants or add an extra vowel after the final consonants (Catford, 

Palmer et al. 1974). There are also no consonant clusters within a single syllable in 

Mandarin, therefore learners seem to have difficulty in pronouncing words containing 

consonant clusters.  

Lastly, English is a stress language. Stress for English consonants decreases from 

initial position of the word to the final position (Catford, Palmer et al. 1974). In Mandarin 

however, there is lack of variation of stress based on position of consonants. This makes 

it difficult for Mandarin speakers to put right amount of stress in right position. Therefore, 

based on these phonological differences discussed above, difficulties in pronunciation of 

consonants for Mandarin learners of English can be broadly grouped into five categories: 

aspiration, voicing, final consonants, consonants cluster and positional variation of stress. 
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2.5.2 Vowels 

 

Figure 13 The eleven vowels in English in vowel quadrilateral along with two circled 
vowels only present in Mandarin (Catford, Palmer et al. 1974) 

 

Figure 13 presents the English and Chinese vowel system for eleven vowels. The 

vowel quadrilateral here contains the eleven vowels in English [i, ɪ, e, ɛ, æ, ɑ, ə, ɔ, o, ʊ, u] 

whereas the inverted triangle within the quadrilateral represents the smaller vowel space 

for Mandarin phonetics containing six vowels [i, ə, ɑ, u, ü and ɚ]. The mandarin vowel /ü/ 

is pronounced with the same tongue position as /i/ but with the lips rounded and /ɚ/ is 

pronounced with the same tongue position as /ə/ but with the tongue tip raised behind the 

gum ridge (Catford, Palmer et al. 1974).Based on the length of pronunciation, in English, 

vowels can be classified into two groups: long vowels (also called tense) and short vowels 

(also called lax). However, all six vowels in Mandarin are lax. Therefore it is expected that 

Mandarin learners of English will have difficulty in distinguishing between lax and tense 

vowels of English. The glide sounds in English [j, y, w] for Mandarin speakers can be 

considered as consonantal allophones of high vowels [i, u, ü]. Therefore, these high vowels 

often get preceded by glides as [/ji/, / yu/, /w ü/] or themselves become glide if they are 

followed by or preceded by another vowel in the same syllable (Catford, Palmer et al. 
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1974)  In summary, special difficulties regarding vowel sounds for the Mandarin learners 

of English can be attributed to three sources, small (triangular) vowel space, lack of tense-

lax distinction and glides. 

2.5.3 Commonly occurring Mispronunciation errors for Mandarin speakers of 
English 

Mispronunciation errors for Mandarin speakers of English are primarily based on 

the difficulties due to phonological differences between Mandarin and English as 

discussed in Section 2.5. Mispronunciation can take one of the three general forms: 

substitution, deletion and insertion. Commonly occurring mispronunciation errors for 

Mandarin speakers of English (L2) as reported in (Eslan , Catford, Palmer et al. 1974, 

Deterding 2006, Zhang and Yin 2009, Deterding 2010, Huang and Pickering 2014) are 

summarized as follows: 

1. Voiced stops substituted by voiceless stops 

/b/ → /p/; for example, [bill] is pronounced as [pill]. 

/d/ → /t/; for example, [do] is pronounced as [to]. 

/g/ → /k/; for example, [get] is pronounced as [ket]. 

2. Voiced fricatives substituted by voiceless fricatives 

/z/ → /s/; for example, [zip] is pronounced as [sip]. 

/v/ → /f/; for example, [vicious] pronounced as [ficious]. 

3. Voiced affricate /ʤ/ pronounced as an unaspirated voiceless affricate /ts/; for 

example, [/ʤ/ive] (jive) is pronounced as [/ts/ive]. 

4. Difficulties with /ɵ/ and /ð/; /ɵ/ is often mispronounced as /s/, /ʃ/, /t/ or /ts/./ð/ can 

either be mispronounced as the same set or the voiced counter-parts of the same as 

/z/, /ʒ/, /d/ or /ʤ/. 
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5. Confusing /l/ for /n/; for example, night might be pronounced as light. 

6. Confusion between the final consonants /n/ and /ŋ/; for example, sun might be 

pronounced as sung. 

7. Substitution of /r/ with /l/ or sometimes with /w/; for example, [rice] might be 

pronounced as [lice]. 

8. Final consonants either omitted or pronounced with additional vowel in the end; for 

example, lab (læb) might be pronounced as [læ] or [læbə]. 

9. Difficulty with consonant clusters; For example, the cluster /zd/ in used might be 

pronounced as [yuz]. 

10. Vowel reduction and the schwa sound; the schwa sound denoted by /ə/ in English 

is a reduced unstressed vowel located at mid central location in vowel quadrilateral. 

L2 speakers find it difficult to use the idea of vowel reduction using the schwa 

sound. 

11. Confusion between /ɑ/  and /ɛ, æ/;as seen in Figure 13, the range of tongue 

movement space for /ɑ/ in Mandarin vowel system can reach upto the location 

where / ɛ, æ/ are located in English vowel system, so it is expected for L2 speakers 

to have problems in distinguishing  between /ɑ, ɛ, æ/. 

12. Confusion between /e/, /ɛ/, and /æ/; because of the proximity of the vowels /e/, / ɛ/, 

and /æ/, all in the frontal part of the vowel space, there is often confusion between 

these vowels for L2 speakers. 

13. Confusion between /i/ and /ɪ/; as mentioned before, all the Mandarin vowels are lax 

vowels, therefore it is difficult for L2 speakers to distinguish between /i/ (a tense 

vowel) and /ɪ/ (a lax vowel). 
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14. The rounded tense mid vowel /o/ may get substituted by rounded lax lower vowel 

/ɔ/. 

15. The rounded lax lower vowel /ɔ/ may get substituted by an unrounded low vowel 

/ɑ/. 

16. Confusion between the non-lower round vowels, /o, ʊ and u/ can happen for L2 

speakers. 

The earlier related works as described in Section 2.4 have primarily studied 

specific types of error and regions of the vocal tract. There is no extensive data-driven 

study for a L1/L2 combination that identifies the most common mispronunciation errors 

and their corresponding articulatory differences between L1/L2 speaker groups across all 

the regions of vocal tract. This study aims to fill this gap. In the first objective of this 

research, comparison of the difference in articulation patterns between native (L1) and 

non-native (Mandarin) (L2) speakers of English, for the purpose of providing an 

understanding of mispronunciation behaviors of L2 learners was performed. This study 

reveals insight into common substitution errors and the associated articulator movements 

that play a significant role in mispronunciation pattern. 

2.6 ASR based Mispronunciation Detection and Diagnosis (MDD) systems: A 

literature Review 

 Automatic Speech Recognition (ASR) based Mispronunciation Detection and 

Diagnosis (MDD) systems are a central element of Computer Aided Pronunciation 

Training (CAPT). For over two decades, many systems using different features and speech 
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recognition models have been used for MDD. The research papers in this domain can be 

broadly organized into three groups.  

The first group is research that has mainly focused on the Goodness of 

pronunciation based MDD systems which classified a phoneme as correct or 

mispronounced based on the “quality” measured in terms of acoustic probability generated 

by the ASR system. As an important part of Goodness of Pronunciation based MDD 

systems, there has been significant work in the area of including pronunciation variations 

during acquisition of second language (L2) in the form of extended recognition networks 

(ERNs). In ERNs, a decoding graph of possible pronunciations is formed , and if the path 

that the decoded phoneme sequence takes matches that of the reference sequence, the word 

is said to be correctly pronounced, otherwise it is labeled as mispronounced. These ERNs 

can be designed based on context-sensitive phonological rules of both the L1 and L2 

language or can be purely data-driven.  

The second group is in the direction of exploring different neural network 

architectures. Multi-distribution neural networks, neural networks trained in a different 

fashion and different targets all have shown promising results especially for the detection 

aspect of MDD systems. The third line of research has been towards incorporation of 

articulatory features both for detection and diagnosis of mispronunciation, based on the 

idea that pronunciation is rooted in articulatory phonology. This section will now present 

a brief review of the papers related to or falling in any of the above-mentioned categories. 

Goodness of pronunciation (GOP) metrics quantify the quality of each phone of an 

utterance on the basis of acoustic likelihood. GOP is defined as log of the posterior 

probability P(p|O(p)) , which is the probability that the speaker pronounced phone p given 



44 
 

the corresponding acoustic segment O(p) normalized by the number of frames in the 

acoustic segment under consideration.  
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An HMM is used to determine the likelihood p(O(q) | q) of the acoustic segment 

O(q) corresponding to each phone q. Q denotes the set of all HMM phone models and NF(p) 

represent the number of frames in the acoustic segment O(p). Assuming equal prior 

likelihoods of all phones and with the sum in the denominator approximated by the max 

operator, the equation 22 becomes 
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The required likelihood and segment duration is obtained from Viterbi alignments. 

The numerator of equation 23 is computed by running HMM phone models in forced 

alignment model. During forced alignment, the sequence of phone models is fixed by the 

known transcription against which the acoustic feature frames are aligned. The 

denominator of the equation is determined by using an unconstrained phone loop (Witt 

and Young 2000). In (Witt and Young 2000), the authors have studied the automatic 

scoring method based on GOP for mispronunciation detection. The score computed is 

supplemented by the phone-dependent thresholds to identify the phone as mispronounced 

or not.  
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More recently, the GMM-HMM based GOP approach has been replaced by DNN-

HMM based GOP for MDD in (Hu, Qian et al. 2015). Moreover, Extended Recognition 

Networks (ERNs) were implemented in MDD systems for Chinese learners of English in 

(Harrison, Lo et al. 2009). The ERN incorporated not only the native English speaker’s 

correct pronunciations but also the common mispronunciations by the target L2 learners. 

ERNs were usually designed based on phonological rules. However, knowledge based 

phonological rules may not be sufficient or efficient in capturing all the variants of 

mispronunciations. Therefore automatic derivation of such phonological rules from L2 

speech was proposed in (Lo, Zhang et al. 2010). In (Lo, Zhang et al. 2010), a database with 

100 speakers was used to derive 2,320 context-dependent phonological rules to include all 

the types of mispronunciation in the training set. These basic rules were ranked based on 

the count of occurrence in descending order. Using the F1-score of the MDD system as 

the deciding metric, 216 phonological rules were selected to design the ERN. As compared 

to manually designed rules, these data-driven rules resulted in improved diagnostic 

accuracy of the system.  

The knowledge of negative language transfer effect during L2 acquisition can aid 

better diagnosis of mispronunciation errors. In (Lo, Harrison et al. 2008), fusion of ERNs 

incorporating knowledge of negative language transfer effect with purely scoring based 

approach was demonstrated. This method of decision fusion led to 30% reduction in 

number of decision errors.  

There are some limitations to the Extended Recognition Network based approach. 

It is not feasible to include all possible errors in the network. Therefore the errors not 

included in the ERNs are never recognized no matter how better the acoustic models are. 
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Moreover, the phonological rules derived from L2 speech and the acoustic models are 

trained independently hence contextual information is not preserved. To address these 

limitations, various ERN free approaches are being sought for.  

In (Li, Qian et al. 2016), the authors used multi-distribution deep neural networks 

for MDD. An Acoustic-graphemic-phonemic model (AGPM) in a multidistribution DNN 

framework was built for the MDD task. The input to the network was a concatenation of 

acoustic features, corresponding graphemes and canonical transcription represented in the 

form of binary encoding. This proposed AGPM model performed better in all the MDD 

metrics, as compared to DNN acoustic models in conjunction with ERN. Because the 

number of mispronounced phones is much less than the number of correctly pronounced 

phones, there is a high data imbalance problem. As a solution to this, a multi-task learning 

Acoustic-Phonemic model (MT-APM) was proposed in (Mao, Wu et al. 2018). The 

correctly pronounced and mispronounced phonemes were dealt separately in two different 

tasks but were trained and decoded jointly.  

Also as an alternative to ERN based MDD systems, a two-pass framework in 

discriminative training mode was proposed in (Qian, Meng et al. 2016). In the first pass, 

mispronunciation detection was done during which insertion, deletion and substitution was 

detected. In the free-phone recognition type second pass, mispronunciation diagnosis was 

carried out on the segments where the errors were detected during the first pass. 

A CNN-RNN-CTC based MDD system was proposed in (Leung, Liu et al. 2019). 

This approach avoids the need for phonemic or graphemic information as well as for forced 

alignment as required for previously discussed models. Due to the lack of phonemic and 

graphemic information embedded in input, the proposed model slightly underperformed 
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the APM, AGM and AGPM approaches; however, it still was better than the conventional 

ERN based MDD models. 

With a focus on providing corrective articulatory feedback, a decision tree based 

MDD framework has been proposed in (Li, Li et al. 2016). Knowledge guided and data-

driven decision trees were constructed to represent articulatory characteristics of correct 

pronunciations and mispronunciations. Speech attributes were extracted from attribute 

classifiers of the following categories: Place, Manner, Aspiration, Voicing and silence. 

Frame level attribute posteriors from the attribute classifiers were passed through a 

pronunciation attribute scoring module, like in Goodness of Pronunciation scoring. The 

frame level attribute scores were appended together and fed as input to the MDD decision 

tree constructed for each phone. The advantage of this approach was that by traversing the 

decision tree, meaningful diagnostic feedback can be provided to the learner in the case of 

mispronunciation. 

A novel approach of Hidden Articulator Markov models was explored for 

pronunciation evaluation and was reformulated in (Tepperman and Narayanan 2007) to 

incorporate articulatory representations in the input features for application to the detection 

of phone-level mispronunciation errors. Including multidimensional articulatory 

confidence scores to conventional phone-level confidence scores led to 3-4% absolute 

reduction of overall error rates as compared to the baseline using only phone-level acoustic 

features. Towards enhancing Arabic pronunciation, authors in (Abdou, Rashwan et al. 

2012) designed an HMM based classifier which classifies each phoneme into manner of 

articulation features. The articulation based confidence score in helped in reduction of false 

rejection rate by 25 % as compared to the acoustic model based confidence scoring.  
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An Articulatory Goodness of Pronunciation approach was explored in (Ryu and 

Chung 2017). For a given segment, trained acoustic as well as separate articulatory models 

were used to generate a GOP and 24 aGOP (articulatory GOPs) for the associated 

articulatory attributes as predictors for diagnosis modeling respectively. If the force 

aligned segment was recognized as one of the consonants; voicing, place and manner based 

diagnostic models were used to binary classify it as correct or incorrect. However, if the 

segment was vowel; Rounding, Height and Backness based diagnostic models were used. 

Articulatory feature based pronunciation modeling was also proposed in (Livescu, Jyothi 

et al. 2016). In the proposed model, based on vocal tract variables in Articulatory 

Phonology, articulatory feature set was derived. When compared with phone-based 

models, the proposed articulatory feature based models showed significant improvement 

in frame perplexity as well as lexical access accuracy. Use of speech articulatory attributes 

for MDD task has also been proposed in (Li, Siniscalchi et al. 2016). A bank of speech 

attribute classifiers were trained to get frame level posterior probabilities for the attribute 

under consideration. Authors in (Yuan, Zhao et al. 2012) used articulatory feature based 

tandem features to improve the performance of such low-resource acoustic models.

 Authors in (Mao, Wu et al. 2018) proposed three models: Articulatory-acoustic-

phonemic model (AAPM) which includes articulatory features obtained from a phoneme-

to-articulatory features map directly into input features, AAPM with feature representation 

(R-AAPM) which re-represents original input features and articulatory multi-task acoustic 

phonemic model  and (A-MT-APM) where phoneme recognizer and classifiers for 

articulatory feature classification were trained in multi-task manner. As compared to their 
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APM baseline, the A-MT-APM approach gained 5.6 % and 7.0 % improvement in F1-

measure and diagnostic accuracy respectively. 

In summary, the research in ASR based MDD systems has been moving from a 

pure HMM based Goodness of Pronunciation approach to a Deep Neural Networks based 

approach. Various types of features and ASR architectures for MDD task have been 

proposed. In recent years there has been increasing interest towards analyzing and 

incorporating articulatory features with different representations for Mispronunciation 

detection and diagnosis tasks.  In all of these work related to incorporating articulatory 

features, the articulatory features on which the models were trained on or sometimes 

trained for, are only the approximations of the vocal tract state. However, there has not 

been enough work in the area of including real kinematic data for MDD task. By using the 

kinematic as well as acoustic features available in Electromagnetic Articulography 

Mandarin Accented English (EMA-MAE) database (Ji, Berry et al. 2014), this work 

performs experiments with different DNN architectures and feature combinations to see 

the contribution of kinematic data in improving the MDD systems.  

2.7 EMA-MAE Database 

There have been several experimental techniques developed to study the 

articulatory movements with regards to sound production. One such technique is 

Electromagnetic Articulography (EMA) (Schönle, Gräbe et al. 1987). EMA is based on 

the principle of electromagnetic induction. A stationary magnetic field is created, and 

electromagnetic sensors moving within the field induce a current that can be used to track 

both position and orientation of the sensor. Sensors are placed on different articulatory 
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locations for a speaker. EMA therefore provides information about the position and 

movement patterns of articulators associated with production of sounds. This kinematic 

data obtained from EMA has been used in study of articulatory phonetics of a language. 

Information about the articulatory position can play significant role in analysis of 

mispronunciations in L2 speaker’s speech. 

This research utilizes Electromagnetic Articulography Mandarin Accented English 

(EMA-MAE) database (Ji, Berry et al. 2014). The EMA-MAE database consists of 

kinematic and acoustic data from 39 gender and dialect balanced speakers representing 20 

Midwestern standard American English L1 speakers and 19 Mandarin Accented English 

(MAE) L2 speakers (Ji, Berry et al. 2014). Mandarin speakers include half Northern 

(Beijing) region and half Southern (Shanghai) region accents. Content includes word-

pairs, sentences, and paragraphs totaling about 45 minutes per speaker.  Along with audio 

data recorded with sampling rate of 22.05 KHz, three dimensional EMA data was collected 

at a 400 Hz sampling rate using the NDI Wave system. The system uses small toroidal 

electromagnetic sensors within a static electromagnetic field. A reference sensor with 6 

Degree of Freedom (DOF) was mounted on the Nose Bridge of subjects to establish a base 

coordinate system. Other sensors with 5 DOF were attached to the articulators to collect 

orientation and position data.  These articulatory sensors were: lower lip (LL), upper lip 

(UL), the jaw (MI) lower front incisor), tongue tip (TT), and tongue body (TD) all placed 

in the midsagittal plane. In addition, there were two lateral sensors, one (LC) at the left 

corner of the mouth to help indicate lip rounding and one (LT) in the left central midpoint 

of the tongue body to help indicate lateral tongue curvature.  
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EMA-MAE data is head-movement-corrected by the system using a stationary 

reference sensor and then calibrated using bite-plate data to form an articulatory working 

space based on the midsagittal and maxillary occlusal planes of individual speakers. Palate 

trace data was collected and used to convert vertical sensor positions into vertical opening 

measures, and dental measurements were used to normalize horizontal distances across 

speakers. Details about the collection, calibration and correction of the database can be 

read in (Ji, Berry et al. 2014). 

 

Figure 14 Sensor Placement for collecting kinematic data in EMA-MAE corpus 
 

2.7.1 Articulatory Features 

Kinematic data was converted into ten static articulatory features representing the 

state of the vocal tract during pronunciation. Features and equations are listed in Table 2-2 

. The horizontal normalization constant kx represents the ratio between the incisors to back 

molar distance of that subject divided by the average of this distance across all subjects. 
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Units of all features except LC are in millimeters. LC is a proportion relative to the baseline 

lip corner lateral distance. 

Table 2-2 Equations for Articulatory features (Bozorg and Johnson 2018) 

 

Features Description Formula 

TDH Tongue Dorsum normalized 
horizontal position 

𝑇𝑇𝐷𝐷𝑥𝑥
𝑘𝑘𝑥𝑥

 

TDV Tongue Dorsum vertical 
height to hard palate palatey (TDX ,TDz) -TDy 

TLH Tongue lateral normalized 
horizontal position 

𝑇𝑇𝐿𝐿𝑥𝑥
𝑘𝑘𝑥𝑥

 

TLV Tongue lateral vertical 
height to hard palate palatey (TLX,TLz) - TLy 

TAH Tongue Apex normalized 
horizontal position 

𝑇𝑇𝑇𝑇𝑥𝑥
𝑘𝑘𝑥𝑥

 

TAV Tongue Apex vertical 
height to hard palate palatey(TTX,TTz)-TTy 

LPH 
Normalized horizontal lip 

protrusion 
𝑈𝑈𝐿𝐿𝑥𝑥 − � 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑈𝑈𝐿𝐿𝑥𝑥)𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 �

𝐾𝐾𝑥𝑥
 

LSV Normalized vertical lip 
separation 

(ULy – LLy ) – 0.1percentile(ULy – 
LLy)CaterpillarPassage 

LC 
Normalized Lateral Lip 

rounding (Lip corner 
sensor) 

𝐿𝐿𝐶𝐶𝑧𝑧
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝐿𝐿𝐶𝐶𝑧𝑧)𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

 

JWV Vertical middle incisor 
(jaw) MIy 
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 DIAGNOSTIC ANALYSIS OF L2 MISPRONUNCIATION ERRORS 

3.1 Overview 

This chapter outlines the experiments performed with the human annotated 

phonetic transcripts available in the EMA-MAE corpus. The common phonemic 

substitution errors occurring in L2 speech were identified by alignment of human 

annotated phonetic transcripts with the correct standard phonetic prompts. Alignment of 

acoustic and articulatory feature frames with human labeled transcript was then performed 

to extract and compare articulatory features from correct pronunciation examples by L1 

speakers with the matching incorrect pronunciations by L2 speakers. Statistical 

comparison of common phoneme substitution errors was done in order to reveal the nature 

of the associated articulatory errors among L2 speakers. The frames aligned to the correct 

and incorrect pronunciations were obtained by using speech recognition models for L1 and 

L2 speaker groups.  

3.2 Analysis of Human Annotated Transcripts 

The EMA-MAE corpus includes multiple individually annotated transcripts along 

with a consensus transcript for L2 speakers’ speech. For L1 speakers a single trained 

annotator labeled the audio with its phonetic transcript. The availability of phoneme level 

transcripts allows us to identify  mispronunciation errors within the dataset, which in turn 

enables evaluation of automatic Mispronunciation Detection and Diagnosis results 

obtained using an Automatic Speech Recognition (ASR) system. As a first step in this 

direction, commonly occurring mispronunciation errors from the corpus were identified. 
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Given the expert labeled phonetic transcript and known standard pronunciation for any 

word, a simple alignment of the transcript with the standard pronunciation can reveal the 

mispronunciation. For this task, human annotated transcripts were aligned with standard 

phonetic prompts, both available in the EMA-MAE database. This alignment provided 

information on mispronunciation errors. The Levenshtein minimum distance algorithm (I. 

1966) was used to perform alignment between the standard prompt and human annotated 

phonetic transcripts. 

Mispronunciation errors can be of three types: substitution, insertion and deletion. 

Substitution errors occur when an L2 learner substitutes an incorrect phoneme for the 

target phoneme during speech. This erroneous phoneme may come from the learner’s 

native language phoneme inventory, from the learner’s non-native language phoneme 

inventory, or from a combination or modification of those. Insertion errors occur when an 

L2 learner inserts an additional phoneme during speech. Deletion errors occur when an L2 

learner omits the target phoneme during speech.  For Mandarin speakers of English there 

are some well-established pronunciation errors as discussed in 2.5.3.  

3.2.1 Phoneme set for corpus 

Table 3-1 shows the phoneme set used in the EMA-MAE corpus. The table 

includes the IPA and ARPABET symbols for each phoneme in the set along with an 

illustrative example word and corresponding ARPABET phonetic transcript and the 

associated place and manner of articulation for consonants and location within the vowel 

quadrilateral for vowels.  
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Table 3-1 Phoneme set used in EMA-MAE corpus 
IPA ARPABET Example Translation Articulatory Label
b B be B IY Bilabial Stop
d D dee D IY Alvelolar Stop
e EY ate EY T Front mid
f F fee F IY Labiodental Friative
g G green G R IY N Velar stop
h HH he HH IY Glottal Fricative
i IY eat  IY T Front high
j Y yield Y IY L D Palatal glide
k K key K IY Velar Stop
l L lee  L IY Alvelolar liquid

m M me M IY Bilabial nasal
n N knee N IY Alveolar nasal
o OW oat  OW T Back mid
p P pee P IY Bilabial stop
r R read  R IY D Palatal liquid
s S sea S IY Alveolar Fricative
t T tea  T IY Alveolar Stop
u UW two T UW Back high
v V vee V IY Labiodental Fricative
w W we W IY Bilabial glide
z Z zee Z IY Alveolar Fricative
æ AE at AE T Front low
ð DH thee DH IY Dental Fricative
ŋ NG ping P IH NG Velar nasal
ɑ AA odd     AA D Mid low
ɔ AO ought AO T Back low
ə AX comma  K AA M AX Mid mid
ɚ AXR letter L EH T AXR Mid mid
ɛ EH Ed EH D Front mid
ɝ ER hurt HH ER T Mid mid
ɪ IH it  IH T Front high
ʃ SH she SH IY Palatal Fricative
ʊ UH hood HH UH D Back high
ʌ AH hut HH AH T Mid mid
ʒ Z zee Z IY Alveolar Fricative
ʤ JH gee JH IY Alveolar affricative
ʧ CH cheese CH IY Z Alveolar affricative
θ TH theta TH EY T AH Dental Fricative
aɪ AY hide HH AY D Mid low
aʊ AW cow K AW Mid low  
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3.2.2 Distribution of Phonemes across corpus 

 

Figure 15 Phoneme count in prompts in the EMA-MAE corpus 
 

 

   Figure 16 Phoneme count in annotated transcript for Mandarin speaker: 01MBF 
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Figure 17 Phoneme count in annotated transcript for L1 speaker: 40ENF 
 

Figure 15, Figure 16 and, Figure 17 provide information on the distribution of 

phonemes across the corpus. The phoneme distributions for individual L1 and L2 speakers 

show that there is a noticeable difference in the phoneme count in these two groups, 

indicating the likelihood of finding patterns of mispronunciation errors for the L2 speaker 

group. 

3.2.3 Results and Discussion 

This section discusses the results obtained from human labeled transcripts for L1 

and L2 speakers. The goal is to identify common errors and assess the underlying 

articulatory patterns associated with these errors for different speaker groups. 

3.2.3.1 Confusion Matrices: Prompt versus Human annotated Transcript 

Alignment of standard phonetic prompts with the corresponding human annotated 

consensus transcript was performed using the Levenshtein distance algorithm (I. 1966). 

Correct pronunciations as well as substitution errors were found by analyzing the 

alignment from this algorithm, focusing explicitly on correct pronunciations and stand-
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along substitution errors where the left and right context of the substitution were both 

correct pronunciations.  Insertions and deletions and multi-error sequences were not 

included. 

Results are presented in the form of confusion matrix, with rows representing 

phonemes that occur in prompts and columns representing the corresponding phoneme 

that occurred in the transcript. Separate confusion matrices are presented for vowels and 

for consonants, for readability since nearly all substitutions fall within these categories. 

Table 3-2 Vowel Confusion Matrix (Prompt vs. Expert Transcript) for L1 speaker group   
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Phoneme in expert transcript 
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Table 3-2 and Table 3-3 show the confusion matrices for vowels and for 

consonants, respectively, for the L1 speaker group.  It is interesting to note that there are 

some noticeable substitution errors, especially for vowels, even among native speakers. 

There seem to be some noticeable confusion between /S/ and /Z/ consonant sounds. For 

vowel sounds, confusion between the sounds [/AE/ and /EY/], [/IY/, /IH/, /AX/] was 

observed.  Other key noticeable vowel substitution errors were /AO/ substituted by /AA/, 

/AX/ substituted by /EY/, /UW/ substituted by /AX/ and /AX/ substituted by /AXR/. The 

sound /AX/ which is located in the mid central position of the vowel quadrilateral as 

presented in Figure 2, seems to have diverse set of errors in both the directions, i.e. /AX/ 

is substituted by different vowel sounds and for different vowel sounds across the vowel 

quadrilateral. The confusion between the sounds, /IY/ and /IH/, substitution of /AX/ by 

Phoneme in expert transcript 
Table 3-3 Consonant Confusion Matrix (Prompt vs. Expert Transcript) for L1 speaker 

group 

Phoneme in expert transcript 
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/AXR/ that lie within the same region of vowel quadrilateral can be considered less 

surprising. In overall summary, it is interesting to see these vowel substitution errors 

among the L1 speakers. This suggests lack of one standard pronunciation for vowel sounds 

within a given word for native speakers of English, even when limited to speakers of 

standard Midwestern American English.  

Table 3-4 Vowel Confusion Matrix (Prompt vs. Expert Transcript) for L2 speaker group   
 

 

 

 

Table 3-4 presents the confusion matrices for vowel sounds for the L2 speaker 

group. When compared with the confusion matrix for L1 speakers, it is not surprising that 

there are a significantly larger number of errors for L2 speakers and these errors are 

distributed across different types of phoneme substitutions.  An interesting observation is 

that vowel substitutions often happen in symmetric pairs rather than in isolation. This 

suggests that there was confusion between a pair of phonemes. From the confusion matrix 

for vowels it can be seen that there are two distinct groups of sounds that are confused with 

the sound within the group. A group of four vowels [/IY/, /IH/, /EY/, and /EH/] located in 

Phoneme in expert transcript 
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upper-left corner and a group of three vowels [/AA/, /AO/ and /OW/] located in the lower-

right region of the vowel quadrilateral are seen in Figure 18. With its location at the center 

of the vowel quadrilateral, the vowel sound /AX/ seems to have been substituted by the 

most diverse set of vowel sounds. The patterns of the most common substitution errors for 

vowels can also be visualized in the vowel quadrilateral presented as follows. 

 

 

 

In terms of occurrence count, common confusable vowel pairs include:  (/IY/, 

/IH/), (/AA/, /AO), (/EH/, /AE/), (/OW/ /AO/), (/AXR/, /AX/), and (/EH/, /IH/). The 

phonemes in confusable pairs (/IY/, /IH/) are both in the front-close category, (/AXR/, 

/AX/) are in the central-mid category. For the confusable pairs (/EH/, /AE/), (/IH/, /EH/), 

(/AA/, /AO/), (/OW/, /AO) it can be seen that the confusion happened between the 

phonemes that are in the adjacent region in the vowel diagram. Apart from the confusable 

Close 

Mid 

Open 

Front Central Back 

F2 

F1 

Figure 18 Vowel quadrilateral locations of common (40 occurrences or more) 
L2 vowel substitution errors 
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pairs, most of the isolated vowel substitution errors happen within or between the adjacent 

regions in the vowel quadrilateral. For example, this includes /UH/ substituted by /UW/, 

/AX/ substituted by /AH/, /AH/ substituted by /AA/, /AE/ substituted by /AA/, /AX/ 

substituted by /EH/, and /AXR/ substituted by /ER/. However there are some errors that 

happen between the regions that are relatively far in the vowel space. Examples of this 

include /ER/ substituted by /UH/, /AE/ substituted by /IH/, /AX/ substituted by /IY/, and 

/AX/ substituted by /IH/.  

Table 3-5 Consonant Confusion Matrix (Prompt vs. Expert Transcript) for L2 speaker 
group 
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Figure 19 Place and manner of articulation for common (15 occurrences or more) L2 
consonant substitution errors 

 

Table 3-5 presents the confusion matrix for the consonants for the L2 speaker 

group. With the columns representing phonemes present in the expert labeled phonetic 

transcript of the utterances and rows representing those in the standard prompt for the 

utterances, the table reveals the common substitution errors related to consonant sounds in 

L2 speakers. Based on Table 3-5 , Figure 19 provides insights on the consonant 

pronunciation errors and the place and manner of articulation of the target and erroneously 

substituted phoneme. From Table 3-5 and Figure 19 it can be seen that the common 

confusable consonant pairs include: (/M/, /N/), (/N/, /NG/), (/S/, /Z/), (/D/, /T/), (/DH/, /Z/), 

and (/R/, /L/). It is observed that the majority of substitution errors happen in consonants 

with either the same place of articulation or the same manner of articulation. This is 

illustrated by confusable pairs of nasals, (/M/, /N/) and (/N/, /NG/), fricatives (/S/, /Z/) and 

(/DH/, /Z/) stops (/D/, /T/), and liquids (/R/, /L/).  Substitutions that have both the same 

place and the same manner of articulation include: /B/ substituted by /P/ (both bilabial 

stops), /G/ by /K/ (both velar stops), and /V/ by /F/ (both labio-dental fricatives), /S/ by 
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/DH/ (both fricatives), /DH/ by /Z/ (both fricatives), /Z/ by /SH/ (both fricatives), /SH/ by 

/HH/ (both fricatives) and /L/ by /N/ (both Alveolar). There are also a few interesting 

substitution errors where the target phoneme is substituted by a phoneme which has both 

a different place and a different manner of articulation. This includes the palatal liquid /R/ 

substituted by a bilabial glide /W/, and the labio-dental fricative /V/ substituted by a 

bilabial glide /W/. 

From the confusion matrices for vowels and consonants, the most frequent 

substitution errors were noted and listed in Table 3-6 and Table 3-7. The information in 

these tables is essential in terms of identifying the region of interest in large possibilities 

of substitution errors. These errors are similar to the most common mispronunciation 

errors in Mandarin speakers of English as reported in the literature and discussed in Section 

2.5.3 of this document. Once the common mispronunciations are identified, diagnostic 

analysis of the errors in articulatory feature space is carried out as discussed in Section 3.3 

of this chapter. 

  



65 
 

Table 3-6 Common Vowel Substitution Errors for L2 speakers 
Prompt Transcript Correct 

Pronunci
ation  

Mispron
unciatio
n count

IY IH 2188 362
IH IY 3269 284
AO AA 1026 282
UH UW 356 151
AX IH 4031 127
AA AO 1303 124

AXR AX 544 120
AA OW 1303 93
AH AA 1187 92
EY EH 1266 92
AE EH 2145 92
EH AE 1970 91
AE AA 2145 78
IY EY 2188 77
AX IY 4031 56
EH IY 1970 56
OW UW 1145 56
D AX 2511 56

AO OW 1026 55
AXR ER 544 55
EH IH 1970 53
AX EH 4031 51
IH EY 3269 50

OW AO 1145 49
IH EH 3269 48
AX AXR 4031 47
AX AH 4031 43
ER UH 563 40
EH EY 1970 36
EY IY 1266 33
AO AH 1026 31
UW OW 1755 30
EY AE 1266 30
UW AH 1755 27

T AX 4828 25
OW AA 1145 24
AX OW 4031 22
AE IH 2145 21
AE AH 2145 20  



66 
 

Table 3-7 Common Consonant substitution errors for L2 speakers 
Prompt Transcript Correct 

Pronunci
ation 
count 

Mispron
unciatio
n count

DH D 1639 302
N NG 3648 236
Z S 1818 150

NG N 772 127
DH Z 1639 92
R W 3046 83
N M 3648 49
T D 4828 47
L R 2337 44
S Z 3297 40
L N 2337 37
D T 2511 37
Z SH 1818 34
R L 3046 31
M N 1689 31
V W 799 31
B P 1520 30
S DH 3297 29
G K 1149 25
V F 799 20
Z DH 1818 20

SH HH 473 15
L W 2337 13
T K 4828 11  

3.2.3.2 Words ending with consonants 

Mandarin speakers of English often have difficulty with words ending with 

consonants because the Mandarin language does not include ending consonants. Therefore 

a comparative experiment for the words ending with consonants was carried out for L1 

and L2 speakers, including both Shanghai and Beijing dialects. 
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Table 3-8 Averaged Error distribution for words ending with consonants 
Speaker Group  End-consonants Substitution Deletion Insertion

Shanghai dialect(L2) 1159 133( 11%) 140(12%) 2(0%)
Beijing dialect (L2) 1153 112(9%) 110(9%) 7(0%)

L1 1196 9(0%) 13(1%) 1(0%)  

As evident from the Table 3-8, the mispronunciation error for the words ending 

with consonants is around 20%. More than the error rate itself, it is interesting to see that 

the substitution and deletion are almost equally likely. This suggests that the Mandarin 

speakers can either substitute the end consonants with some erroneous phoneme or drop 

the end consonants. Moreover, the error rate and its distribution for words ending with 

consonants was found to be similar across the two dialects, Shanghai and Beijing. 

3.2.3.3 Error distribution across the two dialects 

Mispronunciation error analysis across L2 speakers (9 Shanghai dialect and 11 

Beijing dialect) was conducted to see the variability in mispronunciations among speakers 

and difference in mispronunciation rate between the dialects. Table 3-9 and Table 3-10 

show the error percentage for the common mispronunciation errors for each dialect groups. 

Error percentage as computed here was the percentage of mispronunciation errors per the 

total occurrence of the target prompt phoneme for the substitution error under 

consideration. The information of error percentage across the two Mandarin dialects for 

consonants and vowels is depicted in Figure 20 and Figure 21 respectively. In terms of 

error count and percentage, the most common consonant substitution errors (/DH/ 

substituted by /D/, /N/ by /NG/, /Z/ by /S/, /NG/ by /N/, and /DH/ by /Z/) reveal that the 

speakers with Shanghai dialect have a higher error rate as compared to that with Beijing 

dialect.  /N/ substituted by /NG/ has a 6% higher error rate for the Shanghai dialect group 

over the Beijing group. Similarly,  /DH/ substituted by /D/ and /DH/ substituted by /Z/ 
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were both 5% higher for the Shanghai dialect group, /NG/ substituted by /N/ was 5% 

higher, and /R/ substituted by /W/ and /L/ substituted by /N/ were 3% higher. This suggests 

that Shanghai dialect speakers are more prone to make certain types of consonant 

mispronunciations.  

For vowels, the two substitution errors for which there is significant error rate 

difference between the Mandarin dialects are, /AXR/ substituted by /AX/ (with 24% higher  

error rate for Shanghai dialect)  and /ER/ substituted by /UH/ (with 8% higher error rate 

for Shanghai dialect). /UH/ substituted by /UW/ error had a 6% higher error rate. Unlike 

for consonant sounds, there is no general trend of vowel mispronunciations seen across the 

dialects. 
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Table 3-9 Consonant substitution errors with count greater than 10 for Mandarin speakers 
with Beijing and Shanghai dialects 
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Table 3-10 Vowel substitution errors with count greater than 50 for Mandarin speakers 
with Beijing and Shanghai dialects 
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Figure 20 Consonant error percentage for Beijing and Shanghai dialect groups 
 

 

Figure 21 Vowel error percentage for Beijing and Shanghai dialect groups 
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3.3 Experimental Method for Diagnostic analysis of Mispronunciation Errors 

The goal of this study is to increase our understanding of the relationship between 

articulatory patterns and pronunciation errors.  In order to do this, we examine which 

articulatory features show the most significant differences between incorrect L2 

pronunciations and the corresponding correct L1 pronunciation. As discussed in Section 

3.2, the most frequently occurring mispronunciation errors for the EMAMAE corpus were 

identified by comparing the consensus human transcribed phoneme level transcripts with 

the English prompts. The focus is on substitution errors since they allow for a direct 

pronunciation comparison between L1 and L2 speakers. Only isolated phoneme 

substitution errors where left and right phonemes are correctly pronounced are considered. 

This allows for minimal context variability and a direct focus on the erroneous articulatory 

pattern of one specific error under consideration. Once the common mispronunciation 

errors are known, articulatory frames corresponding to the correctly pronounced target 

phoneme by L1 speakers and the frames where the target phoneme is incorrectly 

substituted by an erroneous phoneme by L2 speakers are extracted. Alignment of the 

frames of the utterance to its corresponding phonetic transcript was achieved by using 

speech recognition models in alignment mode. 

3.3.1 Speech recognition model in Alignment mode 

Separate GMM-HMM acoustic models were trained for L1 and L2 speakers using 

the speech recognition toolkit Kaldi (Povey, Ghoshal et al. 2011). Acoustic features 

consisted of 39 (MFCC-delta-delta) coefficients with cepstral mean normalization. As 

discussed in 2.3.2.1, in order to remove the effect of source or channel variability in speech 

recognition, cepstral mean and variance normalization (CMVN) was applied. After 
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training monophone models, LDA-MLLT (Linear Discriminant Analysis – Maximum 

Likelihood Linear Transform) based training was performed. LDA-MLLT, as discussed 

in Section 2.3.1.3, improves computational complexity and decreases storage requirements 

by reducing the dimension of the feature space and making the elements in the feature 

space mutually independent hence allowing the use of a diagonal covariance matrix. Tri-

phone acoustic model training used a total of 15000 Gaussian states tied to 2500 leaf states 

by using decision tree clustering. Moreover, Speaker Adaptive Training (SAT), as 

discussed in 2.3.2.4, was implemented to reduce the effect on acoustic models due to inter-

speaker variability in speech. Finally, fMLLR based estimation as discussed in 2.3.2.3  was 

used to generated alignments from the quasi-speaker-independent acoustic models. 

3.3.2 Feature frames extraction and statistical comparison 

The recognition system was operated in alignment mode using consensus 

transcripts for both L1 and L2 speakers. Based on the alignment, acoustic frames for the 

phonemes associated with all errors corresponding to each specific type of substitution 

made by L2 speakers were extracted, and acoustic frames taken from correctly pronounced 

target segments by L1 speakers were also extracted. Since the acoustic feature frames are 

synchronized with the articulatory feature frames, the articulatory feature frames 

corresponding to those acoustic frames were then obtained. In order to minimize co-

articulation effects, only the middle 50 percent of the articulatory feature frames were used 

for computing articulatory configurations, with the beginning and ending 25 percent 

dropped. The selected articulatory samples were averaged in time to yield a 10-

dimensional vector representing the articulatory position for every instance of error (eg. 

/B/ substituted by /P/ from an L2 speaker) and corresponding template (eg.  Correct 
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pronunciation of /B/ by an L1 speaker). Finally, each correctly pronounced and 

mispronounced segment of the utterance is represented by a 10-dimensional vector in 

articulatory feature space. Samples of these 10-dimensional vectors for the correctly 

pronounced segments from the L1 speaker group and for the mispronounced segments 

from the L2 speaker group are used for statistical comparison, hence revealing the features 

that are significantly different between L1 and L2 sample groups.  

Statistical comparison was accomplished by running a Welch -t test with critical 

value of significance p< 0.001. For the cases where there are multiple articulatory features 

having a p value below the 0.001 threshold, the most significant features were selected as 

the primary contributors, and all features within a pre-selected margin of the primary were 

considered as secondary contributors. The difference between the means of the L2 and L1 

features was then computed for those cases, as a physical indicator of the direction and 

extent of the articulatory difference. 

3.4 Results and Discussion 

This section presents the results of diagnostic analysis of the common 

mispronunciation errors in Mandarin speakers of English in the articulatory space. The 

values in Table 3-11 and Table 3-12 are the difference in millimeters between the 

representative mean vector for the mispronounced instances by L2 speaker group (L2mean) 

and for correctly pronounced instances by L1 speaker group (L1mean). Only the values for 

which there is statistical difference between the L2 and L1 speaker group are noted. 

Among these values, the highlighted values represent the most statistically significant 

dimensions.  
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As described in 2.7 the reference origin for the 3-D articulatory space is at the 

lower mid-incisor, with the positive x-axis representing anterior, positive y-axis 

representing superior, and the positive z-axis representing right lateral directions. This 

means that positive values of (L2mean-L1mean) for features TDH, TLH, TAH, and LPH 

represent changes in the anterior direction, and positive values for TDV, TLV, and TAV 

represent increased height of the respective tongue regions. A positive value for LSV, and 

JWV represent increased vertical lip separation and decreased jaw opening respectively. A 

negative value for LC represents a lateral widening of the lip corner position.  

Based on the signs of the values in Table 3-11 and Table 3-12, Figure 22 shows 

consonant errors organized by place and manner of articulation, and Figure 23 shows 

vowel errors organized within the vowel space. Substitutions are shown by arrows, with 

the target sound at the arrow source and the substituted sound at the arrow end. Each 

diagram includes notations as to the primary articulatory differences associated with these 

errors, with direction symbols →, ←, ↑ and ↓ representing forward, backward, upward and 

downward movement of the articulators relative to the L1 speakers. For the purpose of 

these visualizations, only the most significant of the articulatory differences associated 

with substitution errors are included, based on the obtained p value. These error diagnosis 

diagrams provide an easier visualization of articulatory error movements correlated to the 

specific types of mispronunciations in L2 speaker group. 
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Table 3-11 (L2mean-L1mean) for L2 errors in consonants. Highlighted cells represent most 
statistically significant errors. 
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Table 3-12  (L2mean-L1mean) for L2 errors in vowels. Highlighted cells represent most 
statistically significant errors. 
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Figure 22 Diagnostic articulatory errors for consonant substitution errors occurring more 
than 15 times 
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The data in Table 3-11 and Table 3-12 show that there are a relatively small number 

of extremely common errors. For consonants this includes substituting DH with either D 

or Z, confusion between N and NG, and substituting Z with S. For vowels, this includes 

confusion between IH and IY, between AO and AA, substituting AXR with AX, 

substituting AX with IH, and substituting UH with UW. 

From the numeric data, it can be seen that L2 speakers tend to have errors within a 

small group of articulatory features, often in the same direction.  This includes too large 

height at tongue lateral (TLV↑), too far posterior position of tongue lateral (TLH←), errors 

in position of the tongue apex (TAH and TAV, all directions), too small of a vertical lip 

separation (LSV↓), and too small of a jaw opening (JWV↑). These erroneous articulatory 

patterns irrespective of the error type, suggest that L2 speakers have some generic 

erroneous articulatory movements that get translated to all types of mispronunciations. 

Figure 23 Diagnostic articulatory errors for vowel substitution errors occurring more 
than 40 times 
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This is an interesting observation and useful in the sense that it can be used towards 

providing some generalized feedback for improving pronunciations of Mandarin speakers 

of English. 

The most significant finding from looking at the tables and associated diagnostic 

diagrams may be the lack of symmetry in terms of the articulatory differences.  There are 

several pairs of consonants and vowels which are commonly substituted for each other 

(Consonants: T and D, S and Z, M and N, N and NG, L and R; Vowels: IY and IH, IH and 

EH, EH and AE, AO and AA, AX and AXR, OW and AO). It might be expected that 

articulatory differences in one direction would pair with an articulatory difference in the 

opposite direction for the opposite error, but this is not the case.  In some cases completely 

different articulators are involved, and in some cases the same articulators show 

differences, but the differences are in the same direction in each case which is quite 

interesting. This suggests that the articulators with the most significant differences in 

positioning between L1 and L2 are not necessarily the only factors causing the associated 

pronunciation error. 

3.5 Conclusion 

This study has presented a detailed analysis of common substitution errors for 

Mandarin speakers of English, including a statistical comparison of articulatory features 

for these errors with respect to native speakers of English. The diagnostic errors as well as 

the associated difference in the mean articulatory configuration give information about the 

primary and secondary contributors and their extent for each specific mispronunciation 

type. It is found that there are specific articulatory differences, including increased tongue 
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lateral height, too far posterior position of tongue lateral, multiple tongue apex positioning 

errors, and reduced lip separation and jaw opening, that are seen across many types of 

mispronunciation for Mandarin L2 speakers. Diagnostic error charts indicate that the 

articulatory errors depend on each specific substitution error and are not consistent within 

consonant place or manner of articulation or within regions of the vowel space.  
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  AUTOMATIC MISPRONUNCIATION DETECTION AND 
DIAGNOSIS (MDD) SYSTEMS 

4.1 Overview 

This chapter outlines a series of  experiments performed with Automatic Speech 

Recognition (ASR) based Mispronunciation Detection and Diagnosis (MDD) systems, 

across multiple system configurations and using acoustic and articulatory features.  Input 

features for these MDD systems included acoustic, articulatory and concatenated acoustic 

and articulatory features. System architectures included GMM-HMM, DNN, and RNN 

based ASR engines for the MDD system. To evaluate the ability of the ASR systems to 

detect and diagnose pronunciation errors, the recognized sequence of phonemes generated 

by the ASR models were aligned with human labeled phonetic transcripts as well as with 

the original phoneme level prompts and used to determine MDD accuracy of the ASR 

system relative to the consensus human transcripts. The goal of this experiment was to 

assess the ability of speech recognition systems to detect and diagnose the common 

pronunciation errors seen in non-native speakers (L2) of English. 

4.2  Experimental Method 

4.2.1 Phoneme set 

The EMA-MAE corpus uses 39 phonemes in its phonetic transcripts and prompts, 

including 24 consonants and 15 vowels. Due to insufficient counts for building acoustic 

models for the phonemes TH and ZH, the phoneme pairs TH/DH and ZH/Z were combined 

into DH and Z, respectively. This led to a reduced set of 37 phonemes, with 22 consonants 

and 15 vowels. The same set was used in the lexicon for building phoneme recognizer 
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models in Kaldi.  Both IPA and ARPABET transcripts are available in the dataset, but for 

these experiments the alignment of the phonemic sequences was performed using IPA 

symbols because IPA’s use of single-character representations made it easier to generate 

a parallel alignment between prompts, human labeled transcripts and recognized phoneme 

sequences.  

An additional evaluation based on phonetic subgroups was also performed. To 

implement this, the 37 phonemes were grouped by place and manner of articulation for 

consonants and by region of the vowel space for vowels, into 24 phoneme groups as 

described in Table 4-1. In this evaluation, the original phonemes in the prompts, 

transcripts, and ASR generated phonetic transcript were replaced by a designated 

representative phoneme from the phonemes in that group. This converted aligned file with 

24 unique phonemes was then used to calculate the same MDD metrics used for the 

original 37 phoneme set. 
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Table 4-1 37 Phonemes grouped into 24 articulatory groups based on place and manner 
of articulation for consonants and location in vowel space for vowels 

ARPABET Articulatory Label
B,P Bilabial Stop
D,T Alvelolar Stop
G,K Velar Stop
V,F Labiodental Friative
DH Dental Fricative
Z,S Alveolar Fricative
SH Palatal Fricative
HH Glottal Fricative

CH,JH Alveolar Affricative
M Bilabial Nasal
N Alveolar Nasal

NG Velar Nasal
L Alveolar Liquid
R Palatal liquid
W Bilabial Glide
Y Palatal Glide

IY,IH Front High
EY,EH Front Mid

AE Front Low
AY,AA Mid Low

AO Back Low
OW Back Mid

AX,AXR,ER,AH Mid Mid
UH,UW Back High  

 

4.2.2 Train/Validation/Test split 

For the purpose of training, validation and testing of ASR models, the EMA-MAE 

corpus was split into a Training set, Validation set and Test set in a 70:10:20 proportion. 

Out of 40 speakers in the overall corpus, data from 28 speakers (20 L1 speakers and 8 L2 

speakers) were used for training, data from 4 L2 speakers was used for validation and data 

from 8 L2 speakers was used for testing.  The models were trained on training data set, 

validated on validation dataset and finally tested on test dataset. The speaker groups chosen 
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within the splits were gender and dialect balanced. The details of the list of speakers split 

into these three set is presented as follows. 

Training: 03MBM, 05ENF, 06ENM, 07ENF, 09ENF, 12MSF, 13MBF, 15ENM, 

16ENM, 17ENF, 18ENF, 19ENM, 20MBF, 21ENF, 23MBM, 24MSF, 26MSM, 28ENF, 

30MSM, 30MSM, 32ENM, 33ENM, 34ENM, 35ENM, 36ENF, 37ENF, 38ENM, 

39ENM, 40ENF = 20 L1 speakers(10 Male: ENM and 10 Female: ENF) + 8 L2 speakers 

(2 Male Beijing dialect : MBM ,  2 Female Beijing dialect : MBF, 2 Male Shanghai dialect 

: MSM, 2 Female Shanghai dialect : MSF) 

Validation: 08MBM, 14MSF, 22MBF, 25MSM = 4 L2 speakers (1 Male Beijing 

dialect, 1 Female Beijing dialect, 1 Male Shanghai dialect, 1 Female Shanghai dialect) 

Test: 01MBF, 02MBF, 04MSF, 10MSM, 11MBF, 27MSM, 29MBM, 31MBM (2 

Male Beijing dialect, 3 Female Beijing dialect, 2 Male Shanghai dialect, 1 Female 

Shanghai dialect) 

4.2.3 Input Features 

To evaluate the performance of the ASR based MDD systems for different feature 

types, three different features were used for training and testing the ASR models: acoustic, 

articulatory and combined. Acoustic features were extracted at a frame rate of 10ms. The 

articulatory features were computed from the original kinematic data sampled at 400 Hz 

(2.5 ms) but then down-sampled by factor of 4 to a matching acoustic frame rate of 10ms.  

Therefore, the acoustic and articulatory features were frame-synchronized. Acoustic 

features consisted of 39 (MFCC; delta; delta-delta) coefficients. The frame-synchronized 

articulatory features included a 10-dimensional articulatory feature vector obtained from 

converting the raw articulatory sensor data to 10 articulatory features, as described in the 
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equations in Table 2-2. Along with 10 static articulatory features, their delta and delta-

delta coefficients were obtained to get a 30-dimensional articulatory feature vector. The 

combined feature vector is the concatenation of acoustic and articulatory feature vector 

together to form a 69-dimensional feature vector. 

4.2.4 GMM-HMM models 

The open source Kaldi speech recognition toolkit (Povey, Ghoshal et al. 2011) was 

used to build baseline GMM-HMM based ASR models for implementing MDD.  Separate 

models were built for each of the input feature types. Mean and variance normalization 

was carried out on the features to reduce differences in feature representation between 

speakers and to reduce the influence of background noise. After training monophone 

models, LDA-MLLT (Linear Discriminant Analysis – Maximum Likelihood Linear 

Transform and Speaker Adaptive Training (SAT) was performed. Triphone models were 

then created and trained with a total of 15000 Gaussian states tied to 2500 leaves states by 

using Decision tree based clustering technique. A Universal Background Model (UBM) 

was trained by using the Gaussians from the trained tri-phone HMM/GMM. The UBM 

model used a total of 400 final Gaussian states. The trained UBM model was then used to 

train Subspace Gaussian mixture model (SGMM) (Povey, Burget et al. 2011). In SGMM, 

all phonetic states share a common Gaussian mixture model but the means and the mixture 

weights differ in a subspace of the overall parameter space. SGMM here was implemented 

using 9000 Gaussian states tied to 7000 leave states.  

To assess the performance of the ASR models for different feature combinations 

without a word based language model, a bigram phonetic language model trained only 

from the phonetic transcripts in the training set was used. Therefore the lexicon used only 
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contained phonemes. This bigram phone level language model was used for all 

experiments. 

Phoneme to frame alignments for training, validation and test data were also 

generated from the trained Triphone model discussed in Section 4.2.4. Additionally, the 

feature space Maximum Likelihood Linear Regression (fMLLR) transform was applied to 

the features in the corpus. These alignments and features were used to train and test the 

DNN based models using the open-source toolkit Pytorch-Kaldi.  

4.2.5 DNN based models 

Pytorch-kaldi (Ravanelli, Parcollet et al. 2019) provides a very convenient 

framework to train ASR models using different DNN architectures. DNN training is 

accomplished using the alignments and decoding graph obtained from Kaldi, allowing 

users to experiment with different DNN networks to generate context dependent phone 

state posterior probabilities. Baseline configuration files provided in the Pytorch-kaldi 

repository for the common speech database like TIMIT, Librispeech and DIRHA were 

used as reference to experiment and choose appropriate configuration files for EMA-MAE 

database. Four different network types: Multi-layered Perception (MLP), Long short-term 

Memory (LSTM), Gated Recurrent Unit (GRU) and Light Gated Recurrent Unit (liGRU) 

were used to evaluate their individual performance for different input features. Among 

these different architectures, the light GRU based model trained on fMLLR transformed 

combined features produced the best results. The details of the configuration of this 

architecture is presented in Appendix 0 of this document.  
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Figure 24 Pytorch-kaldi generated image of Architecture of the best model: light GRU 
with fmllr as input features 

 

Figure 24 shows the layout of the light GRU based architecture with fMLLR 

transformed input features. The light GRU here was bidirectional with five layers 

containing 550 cells each. The activation function for all the layers in the light GRU unit 

was Relu. The architecture applies monophone regularization (Bell, Swietojanski et al. 

2016). To implement this, a multi-task learning strategy was adopted by means of two 

softmax classifiers: the first one to estimate context-dependent states, while the second one 

to predict monophone targets.  

As depicted in Figure 24 the output from the last layer of light GRU (out_dnn1) 

was fed to two different MLP layers: MLP_layers and MLP_layers2. Both of these single 

layered networks used softmax as the activation function. MLP_layers has the number of 

nodes set to the number of context dependent pdf-ids in the GMM-HMM based graph 

trained in Kaldi. This can be achieved by setting the variable “dnn_lay” of the MLP_layers 

architecture to the option “N_out_lab_cd” available in the configuration file for Pytorch-

Kaldi. The number of nodes in MLP_layers was set to be equal to the number of 

monophone target phone states (i.e 166)  by setting the  variable ” dnn_lay” of the  

MLP_layers2 architecture to the option “N_out_lab_mono”. “lab_mono” and “lab_cd” as 
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shown in Figure 24 are the locations that store alignments and labels used for computing 

losses for monophone and context dependent phone state targets respectively. The loss 

function used here was Negative log-likelihood (NLL). Finally, the loss for context 

dependent targets and the loss for monophone targets multiplied by a multiplication factor 

(1.0) are summed together to get the final loss for the overall architecture. The section in 

the configuration file for the model, illustrating the aforementioned computations is 

presented as follows. 

[model] 

model_proto = proto/model.proto 

model = out_dnn1= compute (liGRU_layers, fmllr) 

 out_dnn2= compute (MLP_layers, out_dnn1) 

 out_dnn3= compute (MLP_layers2, out_dnn1) 

 loss_mono= cost_nll (out_dnn3, lab_mono) 

 loss_mono_w=mult_constant (loss_mono, 1.0) 

 loss_cd=cost_nll (out_dnn2, lab_cd) 

 loss_final =sum (loss_cd, loss_mono_w) 

 err_final =cost_err (out_dnn2, lab_cd) 

4.2.6 MDD metrics calculation 

For each utterance in the test dataset, alignment of the phonetic transcripts of the 

prompts against manually labeled consensus phonetic transcripts and ASR generated 

phonetic transcripts was performed using the Levenshtein minimum edit distance 

algorithm (I. 1966) . True Acceptance of correct pronunciation (TA), False Acceptance as 

correct pronunciation (FA), True Rejection as mispronunciation (TR), False Rejection as 
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mispronunciation (FR), Correct Diagnosis of mispronunciation (CD) and Diagnosis Error 

of mispronunciation (DE), as defined in more detail in Table 4-2 were counted based on 

the following rules:  

If phoneme in [(prompt = = ground truth and (ASR = = prompt)]: 

 1TA TA= +   

If phoneme in [(prompt = = ground truth) and (ASR ≠ prompt)]: 

 1FR FR= +   

If phoneme in [(prompt ≠ ground truth) and (ASR = = prompt)]: 

 1FA FA= +   

If phoneme in [(prompt ≠ ground truth) and (ASR ≠ prompt)]: 

 1TR TR= +   

If phoneme in [(prompt ≠ ground truth) and (ASR ≠ prompt) and (ASR = = ground 

truth)]: 

1CD CD= +   

If phoneme [(prompt ≠ ground truth) and (ASR ≠ prompt) and (ASR ≠ ground 

truth)]: 

1DE DE= +   
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Table 4-2 Definitions in the hierarchical evaluation used for MDD metrics calculation  
(Li, Qian et al. 2016) 

 ASR Output 

Correct 

Pronunciation 

Mispronunciation 

Expert 
transcription 

Correct 

Pronunciation 

TA FR 

Mispronunciation FA TR (CD/DE) 

 

Once the count for TA, FA, FR, TR, CD and DE is obtained, the MDD metrics 

used for evaluation of performance of different ASR models are calculated as below: 

 TRprecision
TR FR

=
+

  (24) 

 TRrecall
TR FA

=
+

  (25) 

 2* *
measure

precision recallF
precision recall

=
+

  (26) 

 ( ) TA TRDetectionAccuracy DetAcc
TA FR FA TR

+
=

+ + +
  (27) 

 ( ) CDDiagnosticAccuracy DiagAcc
CD DE

=
+

  (28) 

 FRFalserejectionRate
TA FR

=
+

  (29) 
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For MDD systems, Detection accuracy is a measure of whether the system 

correctly identified when there was a mispronunciation. Diagnostic Accuracy is the 

measure of the ability of the MDD system to correctly identify the type of 

mispronunciation error. Precision is the ratio of correctly detected mispronunciation errors 

to the total predicted mispronunciation errors. Higher precision would mean among the 

system predicted mispronunciation errors, there is a high probability that those errors are 

actual errors. Recall here is the ratio of correctly detected mispronunciation errors to the 

total actual mispronunciation errors. A high recall would mean that the system performed 

well in capturing most of the errors that are actually present. F score is the weighted 

average of precision and recall. This score takes into account both the precision and recall 

of the system. The False Rejection Rate (FRR) is the measure of how often the system 

falsely classified a phoneme as mispronounced among the total correctly pronounced ones. 

4.3 Results and Discussion 

This section discusses the results for the various experiments related to design of 

ASR based MDD system. 

4.3.1 GMM-HMM based ASR 

Table 4-3 ASR Phoneme Error Rate (PER) for the models built in Kaldi: triphone GMM-
HMM with LDA +MLLT followed by SAT (tri3) and subspace GMM (SGMM) 

Features tri3 sgmm
Acoustic 33.1 30.41

Articulatory 56.49 54.71
Combined 29.13 26.5  

The PER of the ASR model will clearly have a direct correlation with its MDD 

related performance metrics. The lower the PER the better the system is in terms of 
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correctly detecting and diagnosing the mispronunciation errors. It is evident from the 

performance of both tri3 and SGMM (Povey, Burget et al. 2011) models that the combined 

features, which incorporate the acoustic as well as articulatory features, produced better 

PER. It is also worth noting that the system utilizing only articulatory features does not 

perform as well as that using acoustic or combined features, which is typical of articulatory 

features. Moreover, it can also be  noticed that the subspace GMM (SGMM) model, whose 

training starts with a pre-trained  universal background model (UBM) (Povey, Chu et al. 

2008) outperforms the triphone GMM-HMM model with LDA +MLLT followed by SAT. 
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4.3.2 Phoneme recognition Performance of the best DNN based model 

Figure 25 Details of PER for each speaker in test database for the best model using 
combined Features 

 

Figure 25 presents the details of PER performance for each speaker present in the 

test dataset. The results presented are produced by the light GRU based model trained with 

combined features. The speaker ‘02MBF’ has the least PER of 10.9%, where the speaker 

‘29MBM’ has the highest PER of 24.9%. Averaged PER performance of female and male 

speaker groups is 13.8% and 21.2% respectively. 
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Figure 26  Performance details for the liGRU based model using Combined Features 
 

Figure 26 presents the breakdown of the recognition performance of the light GRU 

based model with PER of 17.5%. The substitution error, being the biggest contributor of 

error, had the most significant contribution of 9.6% error rate for the overall test corpus. 

4.3.3 MDD performance results 

This section presents the MDD performance results for different combinations of 

features, DNN based architectures and optimizers. Table 4-4 presents MDD performance 

metrics evaluated on ASR generated phonetic transcript containing all 37 phonemes. Table 

4-5 presents MDD performance metrics evaluated on ASR generated phonetic transcript 

containing 24 representative phonemes based on groups as presented in Table 4-1. 
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Table 4-4 MDD performance metrics for different ASR models (Evaluation on transcript 
sets containing all 37 phonemes) 

Feature Type Architecture, Optimizer PER DetAcc DiagAcc F_measurePrecision Recall FRR
Articulatory_fmllr MLP, sgd 56.3 47.3 53.3 35.6 22.3 87.7 60.7

Articulatory liGRU,rmsprop 49.7 53.3 55.2 37.7 24.2 85.6 53.2
Articulatory_fmllr liGRU,rmsprop 41.8 60.5 58.3 41.3 27.4 83.6 44.0
Articulatory_fmllr LSTM,rmsprop 40.9 61.1 58.0 41.3 27.6 82.8 43.2
Articulatory_fmllr LSTM,Adam 37.1 65.0 57.9 43.0 29.4 79.9 38.0
Articulatory_fmllr liGRU,Adam 34.8 66.6 59.0 44.4 30.7 79.8 36.0

Acoustic_fmllr MLP, sgd 32 68.9 69.5 48.8 33.7 88.2 35.0
Acoustic liGRU,rmsprop 22.4 77.5 71.8 55.0 41.5 81.8 23.3

Acoustic_fmllr LSTM,Adam 20.6 79.2 71.4 56.8 43.7 80.9 21.1
Acoustic_fmllr liGRU,rmsprop 20.6 79.3 72.4 57.0 43.7 81.9 21.2
Acoustic_fmllr LSTM,rmsprop 20.5 79.4 72.3 57.3 44.0 82.1 21.1
Acoustic_fmllr liGRU,Adam 18.1 81.5 73.2 59.3 47.1 80.3 18.2

Combined_fmllr MLP, sgd 29.8 71.3 70.5 50.4 35.4 87.4 31.9
Combined liGRU,rmsprop 21.4 79.0 72.4 56.6 43.4 81.3 21.5

Combined_fmllr LSTM,rmsprop 19.6 80.4 74.1 58.2 45.4 81.0 19.7
Combined_fmllr liGRU,rmsprop 19.5 80.7 74.1 58.5 45.8 81.0 19.4
Combined_fmllr liGRU, Adam 17.5 82.4 75.8 60.5 48.6 80.3 17.2  

Table 4-4 presents the detailed performance results for different architectures and 

feature combinations. The first information to notice from the table is that the PER and 

MDD related performance metrics like Detection Accuracy (DetAcc), Diagnostic 

Accuracy (DiagAcc), F measure, Precision and False rejection rate (FRR) are all improved 

by inclusion of articulatory features with acoustic features. As for GMM-HMM models, 

the performance of DNN models trained and tested with articulatory features alone was 

poorer. The best performing models had PER of 34.8%, 18.1% and 17.5%, Detection 

Accuracy of 66.6%, 81.5% and 82.4%, Diagnostic Accuracy of 59.0%, 73.2% and 75.8%, 

and False Rejection Rate of 36.0%, 18.2% and 17.2%, for Articulatory, Acoustic and 

Combined input features respectively. This shows a 2.6% relative increment of Diagnostic 

Accuracy between the models using only Acoustic features to that of using Combined 

features. Similarly, relative increments of 0.9%, 1.5% and 1.2% were seen in Detection 

Accuracy, Precision and F_measure for the models using combined features over acoustic 
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features only. A relative decrement of 1.0% in False Rejection Rate (FRR) was seen while 

using combined features over acoustic features alone. However, one interesting 

observation was that the model with the highest PER in each feature type category, the 

MLP based model, produced the highest Recall rate for each of the feature types. With the 

best recall rates of 87.7%, 88.2% and 87.4% for Articulatory, Acoustic and Combined 

feature type respectively, the MLP based model trained on fmllr transformed Acoustic 

features produced the highest recall of 88.2%. It is also interesting to see that the worst 

performing model in terms of PER and other MDD related metrics with Articulatory 

features alone has the second best performance in terms of Recall rate. However, this 

comes with the cost of the highest False Rejection Rate of 60.7%. The model with best 

PER, DetAcc, DiagAcc and FRR for each of the feature types was the light GRU  based 

architecture trained with Adam optimizer on fmllr transformed input features. The best 

relative PER improvements of 7%, 2.5%, and 2% for Articulatory, Acoustic and Combined 

features respectively was seen for the light GRU based architecture trained with Adam 

Optimizer as compared to the same architecture trained with Rmsprop optimizer. These 

results verify the noticeable difference in performance of models trained with different 

optimizers. Another distinct observation that can be drawn from Table 4-4 is that the fmllr 

based feature transformation significantly helped in improving PER and other MDD 

related metrics. Considering the light GRU based architecture trained with Rmsprop 

optimizer as the standard one, while using fmllr transformation, there is relative 

improvement in PER, DetAcc, DiagAcc, and FRR  as follows : 7.9%, 7.2%, 3.1%, and 

9.2% respectively for Articulatory features; 1.8%, 1.8%, 0.6%, and 2.1% respectively for 

Acoustic features and 1.9%, 1.7%, 1.7%, and 2.1% respectively for Combined features. 
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The key take away from the results presented in Table 4-4 are that the inclusion of 

articulatory features with acoustic features improves the MDD performance of the system. 

In addition, fMLLR feature transformation helps, and the light GRU trained with Adam 

optimizer produced the best overall results. 

Table 4-5 MDD performance metrics for different ASR models (Evaluation on transcript 
sets containing grouped 24 phonemes) 

Feature Type Architecture, OptimizerDetAccDiagAcc F_measure Precision Recall FRR
Articulatory_fmllr MLP, sgd 50.7 59.3 33.7 20.8 87.7 55.4

Articulatory liGRU,rmsprop 56.4 60.7 35.9 22.7 86.1 48.5
Articulatory_fmllr liGRU,rmsprop 63.7 63.7 40.0 26.1 84.9 39.9
Articulatory_fmllr LSTM,rmsprop 63.9 63.9 39.8 26.1 83.6 39.3
Articulatory_fmllr LSTM,Adam 67.4 63.0 41.5 27.8 81.2 34.8
Articulatory_fmllr liGRU,Adam 68.8 63.8 42.6 29.0 80.8 33.2

Acoustic_fmllr MLP, sgd 71.9 74.7 47.7 32.6 88.5 30.9
Acoustic liGRU,rmsprop 79.7 76.0 54.1 40.1 83.1 20.9

Acoustic_fmllr LSTM,Adam 81.1 75.6 55.7 42.1 82.0 19.1
Acoustic_fmllr liGRU,rmsprop 81.3 76.9 56.1 42.3 83.2 19.1
Acoustic_fmllr LSTM,rmsprop 81.4 76.7 56.4 42.6 83.3 18.9
Acoustic_fmllr liGRU,Adam 83.2 77.3 58.2 45.4 81.3 16.5

Combined_fmllr MLP, sgd 74.8 76.0 50.0 34.9 87.9 27.4
Combined liGRU,rmsprop 81.0 77.6 55.7 42.0 82.4 19.2

Combined_fmllr LSTM,rmsprop 82.3 78.6 57.2 44.0 81.9 17.6
Combined_fmllr liGRU,rmsprop 82.6 78.5 57.7 44.4 82.1 17.3
Combined_fmllr liGRU, Adam 83.8 79.7 59.1 46.6 80.9 15.7  

Table 4-5 shows the MDD metrics for the recognized phoneme sequence passed 

through a 24-phonetic group converter. It should be noted that the models presented in 

Table 4-5 are still the same as the ones in Table 4-4  and were trained for the overall set of 

original phonemes. The results presented here are simply to see how accurate the models 

were in terms of detecting and diagnosing the mispronunciation across the phonemic 

groups as presented in Table 4-1. The best performing light GRU based architecture with 

fMLLR transformed combined features had a Detection accuracy of 83.8%, Diagnostic 

accuracy of 79.7%, F-measure of 59.1% and FRR of 15.7%. This was a relative 

improvement of 0.6%, 2.4%, 0.9% and 0.8% in DetAcc, DiagAcc, F measure and FRR 
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respectively by using combined features over the Acoustic features only. The performance 

improvement trend remains similar as that was seen for the MDD metrics for the overall 

set of phonemes as described in Table 4-1. 

However, the central finding here is that that the MDD results for the grouped set 

of phonemes is not significantly higher than that for the whole phoneme set. This indicates 

that mispronunciation errors as detected by the MDD system are not necessarily confined 

within phonetic groups based on place and manner of articulation or broad vowel category, 

but extend to substantially different phoneme targets. 

4.3.4 Mispronunciations identified by the best performing model 

This section explores the mispronunciation errors as detected by the best 

performing ASR model. Information obtained from these results is useful in understanding 

the types of errors that are over predicted or under-predicted by the MDD system. The 

confusion matrix creation and hence identification of key mispronunciation errors is done 

over the test corpus used in the experiment. 
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Table 4-6 Vowel Confusion matrix between the transcript for standard prompt and expert 
transcript for utterances in test corpus 

 

 

 

 

Table 4-7 List of isolated substitution errors (vowels) with counts >= 25 obtained by 
aligning prompt with human labeled transcript for the test corpus 
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Table 4-8 Consonant Confusion matrix between the transcript for standard prompt and 
expert transcript for utterances in test corpus 

 

 

 

Table 4-9 List of isolated substitution errors (consonants) with counts >= 10 obtained by 
aligning prompt with human labeled transcript for the test corpus 
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Phoneme in ASR generated transcript 
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Table 4-6 and Table 4-8 are the confusion matrices for vowel and consonant sounds 

in the test corpus. It is seen that there are certain sounds with noticeable confusion in 

pronunciation. For vowels, there seems to be confusion between the sounds [/IY/, /IH/, 

/EY/, /EH/, /AE], [/AX/, /AXR/], [/UH/, /UW/], and [/AA/, /AO/, /OW/, /AH/]. For 

consonants, following sounds are often confused: [/NG/, /N/, /M/], [/B/, /P/], [/R/, /W/], 

[/T/, /D/], and [/DH/, /S/, /Z/]. Table 4-7 extracted from Table 4-6 and Table 4-9 extracted 

from Table 4-8 list the common substitution errors found in the test dataset. These errors 

serve as a reference to see how well the MDD system built is able to do in detecting and 

diagnosing them. 

Table 4-10 Vowel Confusion matrix between the expert transcript and ASR generated 
transcript 
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Phoneme in ASR generated transcript 
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Table 4-11 Consonant Confusion matrix between the expert transcript and ASR 
generated transcript 

 

 

 

Table 4-10 and Table 4-11 present the confusion matrix between the expert labeled 

transcripts versus the ASR generated phonetic sequences for utterances in test dataset. 

These tables reflect the performance of phoneme recognition built for MDD system. The 

diagonal numbers are the counts for correctly recognized phonemes while the non-

diagonal counts are the misrecognized counts by the ASR. From Table 4-7 and Table 4-9 

we can see the common substitution errors for vowels and consonants respectively 

obtained solely by transcription analysis. One interesting observation from Table 4-10 and 

Table 4-11 is that the phonemes that were misrecognized by the ASR system built for 

MDD often were among the list of errors noted in Table 4-7 and Table 4-9. For example, 

/DH/ was misrecognized as /D/ (25 times) and as /Z/ (16 times), /Z/ as /S/ (63 times), /NG/ 

as /N/ (44 times), /L/ as /R/ (45 times), /T/ as /D/ (37 times) and /S/ as /Z/ (72 times).  
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Phoneme in ASR generated transcript 

Ph
on
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Similarly, /IY/ was misrecognized as /IH/ (79 times), /IH/ as /IY/ (120 times), /AO/ as 

/AA/ (53 times), /AA/ as /AO/ (68 times), and /EY/ as /EH/ (14 times). 

 

Table 4-12 Vowel Confusion matrix between the standard prompt and ASR generated 
transcript 
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Phoneme in ASR generated transcript 
Ph

on
em

e 
in

 P
ro

m
pt

 

Table 4-13 Consonant Confusion matrix between the standard prompt and ASR 
generated transcript 

 

 

 

Table 4-12 and Table 4-13 show the confusion matrices for vowels and consonants 

respectively, obtained by aligning the standard phonetic prompt with the ASR generated 

phonetic sequence. These confusion matrices give insights on the ability of MDD system 

to diagnose the actual mispronunciation errors when the results are compared with the 

counts obtained from the confusion matrices obtained by aligning the standard phonetic 

prompt with the human labeled transcript. The alignment of the prompt with the human 

labeled transcript reveals the actual mispronunciation errors assuming human annotators 

were capable of correctly detecting and diagnosing the mispronunciation errors in L2 

speech. Whereas Table 4-12 and Table 4-13 reveal the information about mispronunciation 

errors as represented by misrecognized phonemes with non-zero counts in non-diagonal 

location in these matrices. In a real world scenario, where there is no availability of human 
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labeled phonetic transcript, the count of phoneme in the standard prompt (row) 

misrecognized as the phoneme in ASR generated transcript (column) indicate the error 

count for target phoneme substituted by the erroneous phoneme, thus revealing the count 

of  mispronunciation errors in the L2 speech under testing. Table 4-14 presents the error 

counts obtained by human annotation and the counts generated by the proposed MDD 

system. 

Table 4-14 Common isolated substitution error counts obtained by aligning the prompts 
with expert labeled transcripts (Manual error count) and by aligning the prompts with 

ASR generated transcript (MDD error count) 
Target Substituted Manual count MDD count

DH S 113 95
N NG 102 87

DH Z 96 34
Z S 79 65

DH D 63 29
R W 59 8

NG N 49 41
L N 42 21
V W 32 15
R L 30 28
L R 23 36
D T 21 58
N M 21 26
S DH 20 22
B P 17 39
IY IH 152 77
IH IY 146 98
AA AO 75 54
UH UW 70 35
AA OW 56 48

AXR AX 55 24
AE EH 53 18
AE AA 50 44
EY EH 50 32
IY EY 46 41
AH AA 44 69
AO AA 44 31

AXR ER 40 24
AX AXR 37 11
EH AE 36 25  

The data in Table 4-14 show that there are some pairs of consonants and vowels 

which are commonly substituted for each other (Consonants: fricatives S and DH, nasals 

N and NG and liquids L and R; Vowels: AE and EH, IY and IH, AA and AO, AX and 
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AXR). The substitution of the voiced stops D and B by their unvoiced versions T and P 

was seen. For vowels, it can be seen that most of the substitution happens between the 

sounds that are closer in the vowel quadrilateral, whose extreme four corners represent 

extreme points of articulation. It can also be observed from Table 4-14 that the MDD 

system often under predicted the error counts. It can thus be said that the system might 

miss capturing a fraction of mispronunciations. 

A high False Rejection Rate (FRR) system would have a higher number of cases 

where the system would incorrectly reject the correctly pronounced segments by labeling 

them as mispronounced. This would act as a demotivating factor for learners in CAPT. 

Therefore, it is desired for a MDD system to have a low FRR. The best performing system 

as reported in Table 4-4 has false rejection rate of 17.2% and recall of 80.3%. The system 

is a high recall but low precision system. It can be further observed from Table 4-14 that 

most of the times the MDD system under predicted the error counts. For example the error 

/IY/ substituted by /IH/ was found to have a manual count of 152 but only 77 instances of 

those errors were correctly detected by the system.  This along with the observation from 

Table 4-14 it can be said that the system might miss capturing a fraction of 

mispronunciations. Therefore even with the system with lower precision score, if the FRR, 

Detection Accuracy and Diagnostic accuracy are reasonable, the system can be useful as 

a MDD system in CAPT. 

4.4 Conclusion  

 This study has presented details of the implemented Automatic Mispronunciation 

and Detection system. Multiple different architectures and features were implemented in 
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constructing the MDD system, and hyper parameters were tuned to find the best 

performing parameter values. The MDD metrics computed for different combination of 

features and architectures reveal that incorporating articulatory features with acoustic 

features improves almost all of the MDD metrics of the system. Using fMLLR transformed 

input features and the appropriate optimizer (Adam in this case) both significantly help 

improving PER and hence the MDD performance, and the best performing model was the 

light GRU based architecture using a monophone regularization technique and a multi-

task learning approach.  

Using phonetic prompts coupled with expertly labeled phonetic transcripts 

considered as ground truth, the MDD system generated transcript was aligned against these 

references to analyze the performance of the proposed MDD system. The implemented 

MDD system captures mispronunciation errors with a Detection Accuracy of 82.4%, a 

Diagnostic Accuracy of 75.8% and a False Rejection Rate of 17.2%.  
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 CONCLUSION AND FUTURE WORK 

5.1 Overview 

This research has focused on identification of commonly occurring 

mispronunciation errors in Mandarin speakers of English and their articulatory error 

patterns. Expert labeled transcripts were sufficient to identify the common 

mispronunciation errors in L2 speech. An automatic speech recognition (ASR) based 

Mispronunciation detection and diagnosis (MDD) system was built using acoustic and 

articulatory features available in EMA-MAE database. Statistical comparison between 

speech produced by native speakers of English (L1) and Mandarin speakers of English 

(L2) in articulatory feature space revealed the most significant differences in positioning 

of articulators between L1 and L2 causing the associated pronunciation error. 

5.2 Conclusion 

The main contribution of this work is the application of speech recognition models 

to perform detection and diagnostic analysis of mispronunciation errors in Mandarin 

speakers of English. The advantage of availability of kinematic data as well as the expert 

labeled phonetic transcript in EMA-MAE database was well utilized in identifying and 

diagnosing the commonly occurring mispronunciation errors in Mandarin speakers of 

English. While building an automatic MDD system, different neural network architectures 

and feature combinations were experimented. 

In the study using the expert labeled transcripts aligned against the prompts, the 

common mispronunciation errors were identified. These errors provide the region of 
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interest in a large set of phonetic substitutions that might happen in L2 speech. The 

common errors identified in this study match the errors reported in literature studying 

mispronunciation errors in Mandarin speakers of English. Most of the reported errors can 

be easily detected in the form of substitution error, where the target phoneme is substituted 

by an erroneous phoneme. With reference to the target phoneme, the erroneous phoneme 

is more likely to fall either in same place and/or manner of articulation for consonants and 

closer in the vowel diagram. Study of mispronunciation errors across the two dialects of 

Mandarin speakers: Beijing and Shanghai reveal that the averaged count of consonant 

errors for Shanghai dialect is higher than that of the speakers with Beijing dialect. Since 

the Mandarin language does not include word ending consonants, errors at the end of 

words are of particular interest. The most common error type reported in the literature for 

words ending with a consonant is a substitution error. However, this study revealed that 

the error can be either a substitution or a deletion error with almost equal likelihood. This 

means that the Mandarin speakers tend to either drop the final consonants or substitute by 

some erroneous sound. 

 For the commonly occurring substitution errors identified from expert transcripts 

for L2 speech, a statistical comparison between the L1 speech (template) versus the L2 

speech in articulatory feature space can reveal the erroneous articulatory pattern. There 

were some articulatory movements common across all the sounds produced by L2 

speakers. This includes too large height at tongue lateral, too far posterior position of 

tongue lateral, errors in position of the tongue apex in all directions, too small of a vertical 

lip separation, and too small of a jaw opening. The most significant conclusion that can be 

drawn from the study regarding articulatory error diagnosis for mispronunciations is the 
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lack of symmetry between the pair of sounds which substituted for each other. It might be 

expected that articulatory error pattern in one direction of substitution would be 

complementary to the pattern for the substitution in opposite direction, but this was not the 

case. In some cases completely different articulators were involved, and in some cases the 

same articulators with error pattern in same direction was seen. This suggests that the most 

significant articulatory error patterns are not necessarily the only factors causing the 

associated pronunciation error. 

In the study building ASR based MDD systems, different neural network 

architectures and feature combinations were implemented. Articulatory features combined 

with acoustic features improved the ASR performance which in turn improved all of the 

MDD related metrics. fMLLR transformed features had better performance in all of the 

ASR architectures tested. The best performing network architecture was based on a light 

GRU model trained in multi-task learning fashion with monophone regularization. The 

system had the ability of detecting mispronunciation errors in speech (Detection Accuracy) 

of 82.4% and the ability to correctly identify the type of substitution error for the 

mispronunciations detected (Diagnostic Accuracy) of 75.8%. With reference to the actual 

substitution errors as noted in expert labeled transcript, the MDD system mostly under-

predicted the substitution errors. However, there are also certain errors, for example, /AH/ 

substituted by /AA/, /AX/ substituted by /IH/, /L/ substituted by /R/, and /D/ substituted 

by /T/ which are over-predicted by the system.  
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5.3 Future work 

One potential experiments in terms of extending the work related to diagnostic 

analysis of mispronunciation in articulatory feature space could be to include the 

perspective of left and right context in the mispronounced sound for L2 speech. This way 

the articulatory error pattern for a specific mispronunciation for a given context can be 

analyzed. Through this approach, there will be too many combination of context dependent 

mispronunciation errors. Therefore, the context sounds can be grouped into some 

categories based on their manner of articulation. This way articulatory error patterns for 

L2 speakers can be studied while also keeping into consideration the co-articulation effect 

due to left and right context of the mispronounced sound segment. 

From the observation of results of ASR based MDD systems for different feature 

combination and architectures, it can be noticed that the relative improvement of Detection 

and Diagnostic Accuracy for the best performing model using only acoustic features and 

the combined features is only 0.9% and 2.6% respectively. This suggests room for 

improvement. Future work in this regard includes identifying more meaningful 

representations of articulatory feature or better ways to incorporate those features into the 

ASR based MDD systems to optimally utilize the valuable information carried by the 

articulatory features.  
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APPENDICES 

APPENDIX 1. BOX PLOTS FOR CORRECT AND MISPRONOUNCED ERRORS IN 
ARTICULATORY FEATURE SPACE 

This section presents the box plots obtained between samples from two groups: 

Articulatory feature vectors for the correctly pronounced sound by native speakers of 

English (L1) versus that for the corresponding mispronunciation by Mandarin speakers of 

English (L2). As discussed in 3.3, these vectors are obtained by averaging the 10-

dimensional articulatory feature frames across the time. Thus loosely speaking, they 

represent a snapshot of the articulatory state during the production of the sound of interest. 

Box plots between these averaged vectors for L1 and L2 sample group for a known type 

of mispronunciation error can reveal the information that which articulatory state is 

significantly different between the L1 and L2 speaker groups as visualized in the box plots 

presented as follows. Even though there are numerous mispronunciation errors detected, 

the box plots for consonant errors with count greater than 80 and that for vowels with count 

greater than 100 are only listed shown here. 
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Figure 27 Box plots in horizontal and lateral articulatory feature space for correctly 
pronounced /DH/ by L1 speakers versus /DH/ substituted by /D/ by L2 speakers 

 

 

Figure 28 Box plots in vertical articulatory feature space for correctly pronounced /DH/ 
by L1 speakers versus /DH/ substituted by /D/ by L2 speakers 
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Figure 29 Box plots in horizontal and lateral articulatory feature space for correctly 
pronounced /N/ by L1 speakers versus /N/ substituted by /NG/ by L2 speakers 

 

 

Figure 30 Box plots in vertical articulatory feature space for correctly pronounced /N/ by 
L1 speakers versus /N/ substituted by /NG/ by L2 speakers 
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Figure 31 Box plots in horizontal and lateral articulatory feature space for correctly 
pronounced /Z/ by L1 speakers versus /Z/ substituted by /S/ by L2 speakers 

 

 

Figure 32 Box plots in vertical articulatory feature space for correctly pronounced /Z/ by 
L1 speakers versus /Z/ substituted by /S/ by L2 speakers 
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Figure 33 Box plots in horizontal and lateral articulatory feature space for correctly 
pronounced /NG/ by L1 speakers versus /NG/ substituted by /N/ by L2 speakers 

 

 

Figure 34 Box plots in vertical articulatory feature space for correctly pronounced /NG/ 
by L1 speakers versus /NG/ substituted by /N/ by L2 speakers 
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Figure 35 Box plots in horizontal and lateral articulatory feature space for correctly 
pronounced /DH/ by L1 speakers versus /DH/ substituted by /Z/ by L2 speakers 

 

 

Figure 36 Box plots in vertical articulatory feature space for correctly pronounced /DH/ 
by L1 speakers versus /DH/ substituted by /Z/ by L2 speakers 
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Figure 37 Box plots in horizontal and lateral articulatory feature space for correctly 

pronounced /R/ by L1 speakers versus /R/ substituted by /W/ by L2 speakers 
 
 

 
Figure 38 Box plots in vertical articulatory feature space for correctly pronounced /R/ by 

L1 speakers versus /R/ substituted by /W/ by L2 speakers 
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Figure 39 Box plots in horizontal and lateral articulatory feature space for correctly 

pronounced /IY/ by L1 speakers versus /IY/ substituted by /IH/ by L2 speakers 
 
 
 

 
Figure 40 Box plots in vertical articulatory feature space for correctly pronounced /IY/ by 

L1 speakers versus /IY/ substituted by /IH/ by L2 speakers 
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Figure 41 Box plots in horizontal and lateral articulatory feature space for correctly 

pronounced /IH/ by L1 speakers versus /IH/ substituted by /IY/ by L2 speakers 
 
 

 
Figure 42 Box plots in vertical articulatory feature space for correctly pronounced /IH/ by 

L1 speakers versus /IH/ substituted by /IY/ by L2 speakers 
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Figure 43 Box plots in horizontal and lateral articulatory feature space for correctly 
pronounced /AO/ by L1 speakers versus /AO/ substituted by /AA/ by L2 speakers 

 
 
 

 
Figure 44 Box plots in vertical articulatory feature space for correctly pronounced /AO/ 

by L1 speakers versus /AO/ substituted by /AA/ by L2 speakers 
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Figure 45 Box plots in horizontal and lateral articulatory feature space for correctly 
pronounced /UH/ by L1 speakers versus /UH/ substituted by /UW/ by L2 speakers 

 
 
 

 
Figure 46 Box plots in vertical articulatory feature space for correctly pronounced /UH/ 

by L1 speakers versus /UH/ substituted by /UW/ by L2 speakers 
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Figure 47 Box plots in horizontal and lateral articulatory feature space for correctly 
pronounced /AX/ by L1 speakers versus /AX/ substituted by /IH/ by L2 speakers 

 
 
 

 
Figure 48 Box plots in vertical articulatory feature space for correctly pronounced /AX/ 

by L1 speakers versus /AX/ substituted by /IH/ by L2 speakers 
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Figure 49 Box plots in horizontal and lateral articulatory feature space for correctly 
pronounced /AA/ by L1 speakers versus /AA/ substituted by /AO/ by L2 speakers 

 
 
 

 
Figure 50 Box plots in vertical articulatory feature space for correctly pronounced /AA/ 

by L1 speakers versus /AA/ substituted by /AO/ by L2 speakers 
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Figure 51 Box plots in horizontal and lateral articulatory feature space for correctly 

pronounced /AXR/ by L1 speakers versus /AXR/ substituted by /AX/ by L2 speakers 
 
 
 

 
Figure 52 Box plots in vertical articulatory feature space for correctly pronounced /AXR/ 

by L1 speakers versus /AXR/ substituted by /AX/ by L2 speakers 
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APPENDIX 2. ERROR DISTRIBUTION ACROSS THE MANDARIN SPEAKERS  

Table 5-1 Vowel substitution errors for Mandarin speakers with Beijing dialect 
 Prompt Transcript Error 08MBM29MBM13MBF03MBM31MBM02MBF 20MBF 11MBF 22MBF 01MBF23MBMBeijing

IY IH 362 22 18 14 16 11 14 19 17 19 17 22 189

IH IY 284 5 7 14 5 29 9 16 22 24 30 14 175

AO AA 282 11 8 15 13 11 17 15 10 15 10 16 141

UH UW 151 11 3 5 8 19 7 8 12 4 3 9 89

AX IH 127 9 4 6 9 5 2 10 1 6 5 13 70

AA AO 124 1 6 7 4 9 2 6 14 2 5 13 69

AXR AX 120 0 2 0 2 2 0 0 14 0 0 0 20

AA OW 93 1 6 3 4 7 4 8 6 2 15 4 60

AH AA 92 2 4 9 1 7 6 11 3 9 6 9 67

EY EH 92 0 4 1 3 8 0 4 2 5 14 2 43

AE EH 92 5 4 5 1 4 1 1 3 1 15 4 44

EH AE 91 3 0 10 2 4 7 5 11 14 1 2 59

AE AA 78 4 11 8 6 10 4 1 5 0 3 5 57

IY EY 77 1 14 2 5 8 7 2 3 4 8 0 54

AX IY 56 0 0 2 4 1 1 3 3 0 1 14 29

EH IY 56 0 1 2 2 7 1 3 4 2 6 3 31

OW UW 56 3 2 2 2 3 1 3 7 1 3 3 30

D AX 56 0 5 5 1 1 0 4 1 0 0 2 19

AO OW 55 2 3 0 1 3 4 3 2 3 6 6 33

AXR ER 55 3 3 3 2 3 3 3 2 3 3 3 31

EH IH 53 1 5 2 3 1 1 2 1 2 2 4 24

AX EH 51 1 2 2 2 5 1 0 1 4 4 3 25

IH EY 50 0 3 2 6 6 2 0 2 2 6 0 29

OW AO 49 2 3 3 4 4 2 2 2 0 2 2 26

IH EH 48 0 4 2 2 6 1 1 2 2 3 5 28

AX AXR 47 0 1 6 0 2 0 0 3 0 27 3 42

AX AH 43 2 2 2 2 4 2 3 3 2 2 2 26

ER UH 40 0 1 0 0 4 0 1 0 0 1 0 7

EH EY 36 0 2 2 0 1 0 1 1 0 3 0 10

EY IY 33 2 3 0 2 2 0 0 11 3 0 4 27

AO AH 31 6 4 2 2 2 1 0 2 0 2 0 21

UW OW 30 0 3 3 3 3 0 0 2 1 2 2 19

EY AE 30 1 0 1 2 1 0 2 2 2 2 1 14

UW AH 27 1 2 2 0 1 1 0 1 0 3 1 12

T AX 25 5 1 2 1 1 4 0 0 0 0 1 15

OW AA 24 0 2 1 1 0 1 1 0 0 1 1 8

AX OW 22 0 1 0 2 1 1 0 1 2 2 2 12

AE IH 21 1 2 1 0 0 5 0 7 1 0 1 18

AE AH 20 1 1 5 0 1 2 4 0 0 1 2 17

AE EY 19 0 1 2 0 0 1 0 1 0 2 1 8
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Table 5-2 Vowel substitution errors for Mandarin speakers with Shanghai dialect 
Prompt Transcript Error 10MSM 24MSF 14MSF 04MSF 25MSM 27MSM 12MSF 30MSM 26MSM Shanghai

IY IH 362 17 16 26 23 16 17 24 18 16 173

IH IY 284 11 8 19 7 11 12 16 11 14 109

AO AA 282 11 23 10 18 22 12 12 20 13 141

UH UW 151 12 3 6 5 7 8 4 12 5 62

AX IH 127 6 1 9 7 5 6 4 9 10 57

AA AO 124 4 4 9 5 3 17 8 4 1 55

AXR AX 120 28 2 23 3 18 5 10 1 10 100

AA OW 93 1 0 8 6 2 6 3 3 4 33

AH AA 92 6 3 3 3 2 1 3 4 0 25

EY EH 92 10 1 15 5 4 2 1 7 4 49

AE EH 92 10 1 4 9 8 9 2 1 4 48

EH AE 91 3 9 1 7 0 2 4 2 4 32

AE AA 78 1 0 5 0 0 12 0 2 1 21

IY EY 77 0 6 4 0 3 4 3 3 0 23

AX IY 56 1 1 9 4 1 5 0 3 3 27

EH IY 56 5 0 3 3 2 3 1 6 2 25

OW UW 56 4 1 5 3 2 4 0 2 5 26

D AX 56 0 15 13 1 1 3 0 2 2 37

AO OW 55 2 0 5 2 4 4 0 4 1 22

AXR ER 55 3 3 3 2 3 2 2 3 3 24

EH IH 53 6 1 7 4 4 2 0 2 3 29

AX EH 51 6 2 1 1 5 5 2 1 3 26

IH EY 50 2 3 1 2 7 2 0 3 1 21

OW AO 49 3 1 4 7 0 2 0 5 1 23

IH EH 48 3 3 3 2 2 3 2 1 1 20

AX AXR 47 0 0 0 0 1 2 2 0 0 5

AX AH 43 2 2 2 2 2 1 2 2 2 17

ER UH 40 7 1 14 1 2 3 2 0 3 33

EH EY 36 6 1 4 6 3 2 0 1 3 26

EY IY 33 4 0 0 1 0 0 0 0 1 6

AO AH 31 2 0 0 0 1 3 1 0 3 10

UW OW 30 2 3 1 2 0 1 0 1 1 11

EY AE 30 3 0 2 1 2 0 0 1 7 16

UW AH 27 3 0 4 2 1 4 0 1 0 15

T AX 25 6 0 2 0 0 0 0 2 0 10

OW AA 24 1 2 2 1 1 3 0 3 3 16

AX OW 22 1 0 1 1 3 1 2 1 0 10

AE IH 21 1 0 0 1 0 0 0 1 0 3

AE AH 20 1 0 0 0 1 0 1 0 0 3

AE EY 19 3 0 1 0 2 1 1 2 1 11  
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Table 5-3 Consonant substitution errors for Mandarin speakers with Beijing dialect 
PromptTranscript Error 08MBM 29MBM 13MBF 03MBM 31MBM 02MBF 20MBF 11MBF 01MBF 23MBM Beijing

DH D 302 53 2 9 18 0 3 1 42 5 4 137
N NG 236 7 4 15 0 12 2 4 4 4 10 71
Z S 150 3 3 4 2 15 8 8 7 8 10 71

NG N 127 1 11 8 12 2 1 5 3 4 4 56
DH Z 92 1 2 0 2 8 0 1 0 8 2 24
R W 83 0 1 1 1 3 3 4 1 0 0 18
N M 49 4 0 3 0 0 3 1 2 4 0 18
T D 47 5 2 3 5 0 2 1 1 1 5 25
L R 44 0 2 0 0 0 1 0 1 3 2 11
S Z 40 3 2 4 1 1 2 0 2 0 2 19
L N 37 0 0 0 0 0 0 0 0 0 1 1
D T 37 3 2 0 1 0 2 5 1 2 1 24
Z SH 34 1 1 1 1 3 2 3 1 1 0 14
R L 31 0 1 0 0 0 0 1 0 0 0 5
M N 31 0 2 0 1 2 0 0 0 5 2 12
V W 31 1 4 0 6 1 0 0 3 1 1 20
B P 30 1 4 1 0 1 2 1 1 4 3 18
S DH 29 0 2 0 2 0 0 3 0 0 7 14
G K 25 2 1 1 2 1 1 1 2 0 2 14
V F 20 0 0 0 0 0 0 7 1 0 2 10
Z DH 20 0 6 0 2 0 0 0 0 0 4 15

SH HH 15 0 1 0 0 4 0 0 0 0 0 9
L W 13 0 0 1 1 0 0 1 0 0 0 4  
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Table 5-4 Consonant substitution errors for Mandarin speakers with Shanghai dialects 
Prompt Transcript Error 10MSM 24MSF 14MSF 04MSF 25MSM 27MSM 12MSF 30MSM 26MSM Shanghai

DH D 302 2 70 2 0 37 26 5 14 9 165
N NG 236 21 7 31 8 17 38 15 20 8 165
Z S 150 4 6 12 6 15 18 5 9 4 79

NG N 127 4 8 8 17 4 3 5 10 12 71
DH Z 92 2 0 36 5 3 16 5 0 1 68
R W 83 36 1 16 0 4 0 1 1 6 65
N M 49 6 4 3 4 2 1 4 6 1 31
T D 47 1 3 0 2 2 1 1 4 8 22
L R 44 0 1 7 3 7 10 1 3 1 33
S Z 40 2 3 0 3 2 2 1 4 4 21
L N 37 33 0 1 1 0 1 0 0 0 36
D T 37 5 1 2 1 2 1 0 0 1 13
Z SH 34 2 3 3 3 3 1 1 2 2 20
R L 31 6 0 8 1 0 4 1 4 2 26
M N 31 3 2 2 0 3 1 2 5 1 19
V W 31 3 0 1 0 3 1 0 3 0 11
B P 30 1 1 1 2 1 1 0 0 5 12
S DH 29 1 0 0 9 2 0 1 2 0 15
G K 25 1 1 0 2 2 1 1 1 2 11
V F 20 1 1 0 0 0 5 0 0 3 10
Z DH 20 0 1 2 0 1 0 0 1 0 5

SH HH 15 1 0 2 0 2 1 0 0 0 6
L W 13 3 1 2 0 0 0 0 1 2 9  
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APPENDIX 3. CONFIGURATION FILE FOR THE BEST PERFORMING MODEL WITH 
COMBINED FEATURES 

[cfg_proto] 

cfg_proto = proto/global.proto 

cfg_proto_chunk = proto/global_chunk.proto 

 

[exp] 

cmd =  

run_nn_script = run_nn 

out_folder = /storage/subash/pytorch-exps/Combined/liGRU_fmllr/exps/0.1_0.0004 

seed = 1234 

use_cuda = True 

multi_gpu = True 

save_gpumem = False 

n_epochs_tr = 25 

production = False 

 

[dataset1] 

data_name = EMAMAE_tr 

fea = fea_name=mfcc 

 fea_lst=/home/subash/kaldi/egs/Combined/data/train/feats.scp 

 fea_opts=apply-cmvn --
utt2spk=ark:/home/subash/kaldi/egs/Combined/data/train/utt2spk  
ark:/home/subash/kaldi/egs/Combined/data/train/data/cmvn_train.ark ark:- ark:- | 

 cw_left=0 

 cw_right=0 

  

 fea_name=fbank 

 fea_lst=/home/subash/kaldi/egs/Combined/data/train2/feats.scp 
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 fea_opts=apply-cmvn --
utt2spk=ark:/home/subash/kaldi/egs/Combined/data/train2/utt2spk  
ark:/home/subash/kaldi/egs/Combined/data/train2/data/cmvn_train2.ark ark:- ark:- | 

 cw_left=0 

 cw_right=0 

  

 fea_name=fmllr 

 fea_lst=/home/subash/kaldi/egs/Combined/data-fmllr/train/feats.scp 

 fea_opts=apply-cmvn --utt2spk=ark:/home/subash/kaldi/egs/Combined/data-
fmllr/train/utt2spk  ark:/home/subash/kaldi/egs/Combined/data-
fmllr/train/data/cmvn_speaker.ark ark:- ark:- | 

 cw_left=0 

 cw_right=0 

lab = lab_name=lab_cd 

 lab_folder=/home/subash/kaldi/egs/Combined/exp/tri3_ali 

 lab_opts=ali-to-pdf 

 lab_count_file=auto 

 lab_data_folder=/home/subash/kaldi/egs/Combined/data/train/ 

 lab_graph=/home/subash/kaldi/egs/Combined/exp/tri3/graph 

  

 lab_name=lab_mono 

 lab_folder=/home/subash/kaldi/egs/Combined/exp/tri3_ali 

 lab_opts=ali-to-phones --per-frame=true 

 lab_count_file=none 

 lab_data_folder=/home/subash/kaldi/egs/Combined/data/train/ 

 lab_graph=/home/subash/kaldi/egs/Combined/exp/tri3/graph 

n_chunks = 15 

 

[dataset2] 

data_name = EMAMAE_dev 

fea = fea_name=mfcc 
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 fea_lst=/home/subash/kaldi/egs/Combined/data/dev/feats.scp 

 fea_opts=apply-cmvn --
utt2spk=ark:/home/subash/kaldi/egs/Combined/data/dev/utt2spk  
ark:/home/subash/kaldi/egs/Combined/data/dev/data/cmvn_dev.ark ark:- ark:- | 

 cw_left=0 

 cw_right=0 

  

 fea_name=fbank 

 fea_lst=/home/subash/kaldi/egs/Combined/data/dev2/feats.scp 

 fea_opts=apply-cmvn --
utt2spk=ark:/home/subash/kaldi/egs/Combined/data/dev2/utt2spk  
ark:/home/subash/kaldi/egs/Combined/data/dev2/data/cmvn_dev2.ark ark:- ark:- | 

 cw_left=0 

 cw_right=0 

  

 fea_name=fmllr 

 fea_lst=/home/subash/kaldi/egs/Combined/data-fmllr/dev/feats.scp 

 fea_opts=apply-cmvn --utt2spk=ark:/home/subash/kaldi/egs/Combined/data-
fmllr/dev/utt2spk  ark:/home/subash/kaldi/egs/Combined/data-
fmllr/dev/data/cmvn_speaker.ark ark:- ark:- | 

 cw_left=0 

 cw_right=0 

lab = lab_name=lab_cd 

 lab_folder=/home/subash/kaldi/egs/Combined/exp/tri3_ali_dev 

 lab_opts=ali-to-pdf 

 lab_count_file=auto 

 lab_data_folder=/home/subash/kaldi/egs/Combined/data/dev/ 

 lab_graph=/home/subash/kaldi/egs/Combined/exp/tri3/graph 

  

 lab_name=lab_mono 

 lab_folder=/home/subash/kaldi/egs/Combined/exp/tri3_ali_dev 

 lab_opts=ali-to-phones --per-frame=true 
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 lab_count_file=none 

 lab_data_folder=/home/subash/kaldi/egs/Combined/data/dev/ 

 lab_graph=/home/subash/kaldi/egs/Combined/exp/tri3/graph 

n_chunks = 5 

 

[dataset3] 

data_name = EMAMAE_test 

fea = fea_name=mfcc 

 fea_lst=/home/subash/kaldi/egs/Combined/data/test/feats.scp 

 fea_opts=apply-cmvn --
utt2spk=ark:/home/subash/kaldi/egs/Combined/data/test/utt2spk  
ark:/home/subash/kaldi/egs/Combined/data/test/data/cmvn_test.ark ark:- ark:- | 

 cw_left=0 

 cw_right=0 

  

 fea_name=fbank 

 fea_lst=/home/subash/kaldi/egs/Combined/data/test2/feats.scp 

 fea_opts=apply-cmvn --
utt2spk=ark:/home/subash/kaldi/egs/Combined/data/test2/utt2spk  
ark:/home/subash/kaldi/egs/Combined/data/test2/data/cmvn_test2.ark ark:- ark:- | 

 cw_left=0 

 cw_right=0 

  

 fea_name=fmllr 

 fea_lst=/home/subash/kaldi/egs/Combined/data-fmllr/test/feats.scp 

 fea_opts=apply-cmvn --utt2spk=ark:/home/subash/kaldi/egs/Combined/data-
fmllr/test/utt2spk  ark:/home/subash/kaldi/egs/Combined/data-
fmllr/test/data/cmvn_speaker.ark ark:- ark:- | 

 cw_left=0 

 cw_right=0 

lab = lab_name=lab_cd 

 lab_folder=/home/subash/kaldi/egs/Combined/exp/tri3_ali_test 
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 lab_opts=ali-to-pdf 

 lab_count_file=auto 

 lab_data_folder=/home/subash/kaldi/egs/Combined/data/test/ 

 lab_graph=/home/subash/kaldi/egs/Combined/exp/tri3/graph 

  

 lab_name=lab_mono 

 lab_folder=/home/subash/kaldi/egs/Combined/exp/tri3_ali_test 

 lab_opts=ali-to-phones --per-frame=true 

 lab_count_file=none 

 lab_data_folder=/home/subash/kaldi/egs/Combined/data/test/ 

 lab_graph=/home/subash/kaldi/egs/Combined/exp/tri3/graph 

n_chunks = 5 

 

[data_use] 

train_with = EMAMAE_tr 

valid_with = EMAMAE_dev 

forward_with = EMAMAE_test 

 

[batches] 

batch_size_train = 8 

max_seq_length_train = 1000 

increase_seq_length_train = True 

start_seq_len_train = 100 

multply_factor_seq_len_train = 2 

batch_size_valid = 8 

max_seq_length_valid = 1000 

 

[architecture1] 

arch_name = liGRU_layers 

arch_proto = proto/liGRU.proto 
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arch_library = neural_networks 

arch_class = liGRU 

arch_pretrain_file = none 

arch_freeze = False 

arch_seq_model = True 

ligru_lay = 550,550,550,550,550 

ligru_drop = 0.1,0.1,0.1,0.1,0.1 

ligru_use_laynorm_inp = False 

ligru_use_batchnorm_inp = False 

ligru_use_laynorm = False,False,False,False,False 

ligru_use_batchnorm = True,True,True,True,True 

ligru_bidir = True 

ligru_act = relu,relu,relu,relu,relu 

ligru_orthinit = True 

arch_lr = 0.0004 

arch_halving_factor = 0.5 

arch_improvement_threshold = 0.001 

arch_opt = adam 

opt_momentum = 0.0 

opt_alpha = 0.95 

opt_eps = 1e-8 

opt_centered = False 

opt_weight_decay = 0.0 

opt_betas = 0.9,0.999 

opt_amsgrad = False 

 

[architecture2] 

arch_name = MLP_layers 

arch_proto = proto/MLP.proto 

arch_library = neural_networks 
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arch_class = MLP 

arch_pretrain_file = none 

arch_freeze = False 

arch_seq_model = False 

dnn_lay = 2064 

dnn_drop = 0.0 

dnn_use_laynorm_inp = False 

dnn_use_batchnorm_inp = False 

dnn_use_batchnorm = False 

dnn_use_laynorm = False 

dnn_act = softmax 

arch_lr = 0.0004 

arch_halving_factor = 0.5 

arch_improvement_threshold = 0.001 

arch_opt = adam 

opt_momentum = 0.0 

opt_alpha = 0.95 

opt_eps = 1e-8 

opt_centered = False 

opt_weight_decay = 0.0 

opt_betas = 0.9,0.999 

opt_amsgrad = False 

 

[architecture3] 

arch_name = MLP_layers2 

arch_proto = proto/MLP.proto 

arch_library = neural_networks 

arch_class = MLP 

arch_pretrain_file = none 

arch_freeze = False 
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arch_seq_model = False 

dnn_lay = 166 

dnn_drop = 0.0 

dnn_use_laynorm_inp = False 

dnn_use_batchnorm_inp = False 

dnn_use_batchnorm = False 

dnn_use_laynorm = False 

dnn_act = softmax 

arch_lr = 0.0004 

arch_halving_factor = 0.5 

arch_improvement_threshold = 0.001 

arch_opt = adam 

opt_momentum = 0.0 

opt_alpha = 0.95 

opt_eps = 1e-8 

opt_centered = False 

opt_weight_decay = 0.0 

opt_betas = 0.9,0.999 

opt_amsgrad = False 

 

[model] 

model_proto = proto/model.proto 

model = out_dnn1=compute(liGRU_layers,fmllr) 

 out_dnn2=compute(MLP_layers,out_dnn1) 

 out_dnn3=compute(MLP_layers2,out_dnn1) 

 loss_mono=cost_nll(out_dnn3,lab_mono) 

 loss_mono_w=mult_constant(loss_mono,1.0) 

 loss_cd=cost_nll(out_dnn2,lab_cd) 

 loss_final=sum(loss_cd,loss_mono_w) 

 err_final=cost_err(out_dnn2,lab_cd) 
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[forward] 

forward_out = out_dnn2 

normalize_posteriors = True 

normalize_with_counts_from = /storage/subash/Pytorch-
exps/Combined/liGRU_fmllr/exps/0.1_0.0004/exp_files/forward_out_dnn2_lab_cd.count 

save_out_file = False 

require_decoding = True 

 

[decoding] 

decoding_script_folder = kaldi_decoding_scripts/ 

decoding_script = decode_dnn.sh 

decoding_proto = proto/decoding.proto 

min_active = 200 

max_active = 7000 

max_mem = 50000000 

beam = 13.0 

latbeam = 8.0 

acwt = 0.2 

max_arcs = -1 

skip_scoring = false 

scoring_script = local/score_wsj.sh 

scoring_opts = "--min-lmwt 1 --max-lmwt 10" 

norm_vars = False 
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