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ABSTRACT OF DISSERTATION

Detecting and Recovering From Player Preference Shifts In A Player Modeled
Experience Management Environment

An important challenge in game design is understanding and maintaining player en-
gagement. This is particularly crucial in both entertainment and educational games,
where the player’s commitment to the game directly impacts their experience and
learning outcomes. However, quantifying engagement proves challenging due to the
diverse interests of players. This dilemma is addressed through adaptive game de-
sign techniques where the game world is personalized to suit player preferences. In
computer games, this personalization is facilitated through Experience Management
and Player Modeling, where an intelligent agent gathers information on the player,
including their preferences and actions, and takes actions to modify the game world
to better suit the player.

This approach to adapting games to players currently hinges on the assump-
tion that player preferences remain relatively stable over time, allowing the intelli-
gent agent to refine its player model accordingly. However, this assumption becomes
problematic when player preferences undergo significant shifts during gameplay. It is
difficult to model every aspect of a player’s preferences and thus predict such shifts,
but these shifts can be handled without being directly anticipated. In this disserta-
tion, I create a system that allows for the detection and recovery of shifts in player
preferences. This technique makes use of a two step process where the experience
manager either watches the player for behavior that is anomalous compared to their
previous behavior, or attempts to recover the player’s preferences and form a new
player model once it detects that the player’s current preferences are no longer sim-
ilar to their past model. This process makes use of a new type of game object that
I call distractions which help with testing the player’s preferences without relying
on the existing environment as it may be limited by previous experience manager
interventions.

My research contains three parts, the detection of player preference shifts, the
recovery of the player model, and the verification of the system on human data. I use
an artificial testing environment that mimics aspects of human behavior to evaluate
these systems in an automated fashion and a human evaluation of the artificial testing
environment to validate the claims made with the automated tests.
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Chapter 1 Introduction

Games as a medium forms an important part of our cultural identity, with video
games being one of the most recent additions. In 2024 it is estimated that 3.32
billion people actively play video games, from simple word puzzle games that help
pass the time to realistic training simulations and everything in between. They form
a massive industry that serves to entertain people, let them socialize comfortably
across distances, and train and educate.

An important topic in games research, for both entertainment and training, is
the idea of engagement. Engagement is a multifaceted concept that is related to a
number of other concepts such as immersion, flow, fun, presence, and enjoyment [41].
It is the means by which the player wants to continue playing a game on some level,
and serves as a means for the game’s authors to keep players playing. A player can be
completely engaged in a game enough to be in a flow state[11], but more often than
not will still have awareness of their surroundings and needs of their surroundings[9].
This arguably extends past a gameplay session; a player can be engaged in a game,
still playing a game without actively playing it, and can resume playing it with no
interruption to their engagement with it. Staying engaged with a game helps players
continue playing, increasing their entertainment and maximizing their enjoyment.
In serious context such as educational games this serves as a means to help people
learn faster[39], increase knowledge acquisition, and content understanding[10]. It
is, then, unfortunate that engagement is so difficult to codify in games, itself being
just the simple measure of how interesting the game is to a player. As of now, a
large portion of games created are designed to cater to only engage specific interests
that players may have, which may exclude a large number of possible players. A
specific player will generally have multiple interests with each likely to deviate from
the average, thus it is often considered difficult to make a game that is well suited
for all players. There have been game developers that try to combat this by creating
games that contain a large variety of interests that they cater to, with open-world
games like Minecraft (2011) and Witcher 3 (2015) becoming very popular recently,
giving unparalleled freedom and variety to players. While these do present a solution
to the problem, ultimately the underlying issue of loss of engagement is just pushed
further down and this approach creates a new set problems. This underlying problem
is that players are asked to be the discriminator between the content that they want
and the content that they do not want, all without necessarily having a clear picture
of how to access and pursue that content. This can be tedious for the player as
they have have to simultaneously learn how to play the game, decide which parts are
interesting to them before actually experiencing the game, and find a way to access
that content, all of which can impact their engagement with the game.

This problem is not unique to video games and has appeared in many other sub-
mediums, including tabletop role-playing-games (TTRPGs) which have a smaller
amount of active players at only 50 million playing the most popular TTRPG, Dun-
geons & Dragons, as of 2020. TTRPGs themselves have an interesting solution to
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this engagement issue: While the game world may have a large spread of content for
players to interact with much like open-world video games, they do not exclusively
require that the player makes all the decisions to which kinds of content they want
to engage in. Put plainly, the player’s engagement on a session level is also being
managed by a third party.

Games such as Dungeons & Dragons not only have several players playing the
game, but have another member called the Game Master (GM) who controls the
rest of the game environment outside of the player’s characters. This is typically
a single person and their task is to act as the rules underlying the world, though
a more important goal is to work together with the players to craft an interesting
narrative for all of them to enjoy. The GM has the ability to observe the players
as they interact with the world, along with the responsibility of describing how the
world reacts to those actions, making changes to suit the player’s actions and their
preferences for where the game goes. Thus, the GM can make decisions that adapt
the world to the player, sometimes even going outside existing pre-planned content
to better accommodate the wants and needs of the player and helping them stay
engaged in the game for longer. This continues to bleed over between sessions too,
players that are more interested in the game are more likely to play better, devoting
more of their time preparing and planning for upcoming sessions.

This ability to adapt a game to a player can be done with computer games,
games which are called adaptive games. Game personalization like this can be done
through Experience Management, the process of optimizing a player’s experience in
an interactive environment by changing that environment while the experience is
underway [35]. This generally invokes an Experience Manager (ExpM), an automated
system that guides players through a more interesting and tailored experience than
that which could normally be achieved. Much like a GM, the ExpM sits alongside
the player and the game environment to observe the player and their actions, and,
using the information gained by these observations, is able to take its own actions to
change the environment. This has been used in educational games, where it is of the
utmost importance to ensure that the learning process is well-suited for each student.
One example of this is Crystal Island [38], which uses narrative adaptation to adapt
the game to the students and give customized guidance and feedback based on their
personal educational needs. In commercial games, you can find examples such as
dynamic difficulty adjustment as seen in Resident Evil 4’s (Capcom, 2005) hidden
Difficulty Scale system which modifies the difficulty based on how well the player is
performing and the Left 4 Dead AI Director (Valve, 2008) which use dynamic enemy
placement to control player experience in reaction to their actions.

ExpMs need information about the player to be able to change the environment
according to their needs, much like how a GM cannot do a good job of running a
TTRPG without interacting and understanding the players. A good GM will nat-
urally have a mental model of the their players, understanding their motivations,
strengths, and weaknesses and making use of them to create tense, fun, and exciting
gameplay moments. With an ExpM, some of this information comes from making
assumptions about the player, such as in a rule-based system like dynamic difficulty
adjustment or by aggregating previous player data to create a model of how an av-
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erage player acts. This is akin to a GM making assumptions about how a player
would play based on broad experience, players who want to play as a thief may want
to be sneaky, or that new players may struggle to role-play. These assumptions can
help inform some of the actions of an ExpM but often are not enough to personalize
the game to specific players, limiting their ability. Instead, a more immediate and
personal source of information comes from taking direct observations of the player’s
action, allowing the ExpM to directly react to what the player is doing in the game
[26]. These direct observations can be used to form a player model (PM), a persis-
tent model of the player that can be queried at a later point that enables the ExpM
to decide what would be best for the player to do next, bypassing the need for the
player to sift through the options themselves. This model can be quite simplistic
while arguably still being considered player-modeled experience management. Even
dynamic difficulty adjustment has a sort of persistent model (has the player died
often recently) and uses that to then decide how to set the difficulty level (if so, lower
the difficulty). It can also be significantly more advanced and model the player’s
preferences for various actions that exist in the game world and automatically select
events that the PM predicts that the player would enjoy [33, 47]. In more modern
times these have even used machine learning to model a player’s specific preferences
and for horror games even their fears[12]. ExpMs can work well in theory; however,
as they stand, there are some limitations in how player models are used in modern
experience management systems that make them difficult to apply to some game
environments.

Currently, player models in experience-managed games make an assumption that
the player’s preferences do not change much and that any further observations will
help refine the PM to better reflect the player’s preferences. This assumption is
generally considered necessary as without it there is little information that the ExpM
can trust and this is reflective of how people act as they do tend to have some
consistency. That being said, the strong assumption that people will never change
their preferences, or at least not in the playtime of a game, is too limiting and has
been shown to be false [48]. Given this, we run into a problem: if an ExpM is making
changes to the world to limit what the player has access to and the player suddenly
shifts their preferences, then the player may be in a situation where they do not have
access to the sorts of things they prefer. In attempting to solve the problem of too
much choice the ExpM necessarily biases the environment to the player’s preferences
seen in the PM, closing off certain paths and removing actions and objects from the
world. When a player starts to prefer to do an action that currently does not exist
the environment, there is no good way for the ExpM to notice this, it cannot observe
the player interacting with what they want when those types of interactions have
been removed. This in turn limits how quickly the ExpM can update the PM which
slows its response and can lead to the player becoming no longer being engaged with
game.

I expect that some players may only slightly change their preferences or do so very
slowly as a sort of refinement as they come to understand the game better. These
are likely the majority of cases, and due to their prevalence, they are already handled
with experience management systems. Instead, I focus on preference shifts that are

3



Figure 1.1: The ExpM observes the player’s interaction with the environment to
inform and incrementally refine the player model. Using this information, it makes
changes to the game by adding or removing objects, locking or unlocking paths, or
moving things around.

more sudden and may lead to completely different styles of play. While it may seem
like an incredulous claim, consider a player who has opted for a very combat-suited
style of play. As they continue to fight and engage well with the game in this aspect,
they may be slowly growing tired of this play style without noticeably changing their
actions in game. What was once considered interesting and fresh may be now tired
and samey as they grow accustomed and familiar with the gameplay. They may
not want to completely disengage with the game instead wishing for some variety,
perhaps wanting to focus on crafting and building a base. This in effect looks like
a sudden shift in preferences when in actuality the ExpM and PM are not able to
model the player with that level of specificity. In a traditional ExpM that makes
the static preference assumption, the ExpM may have removed the player’s preferred
interaction for the sake of personalizing the game to the player. Fundamentally this
is a limitation in the modeling process, ExpMs and PMs do not currently have the
capabilities of modeling a human in the same way a human DM can, and even so are
largely limited in how they observe the player, generally only having access to the
player’s actions. With a more sophisticated modeling process where the intent of the
player can be read and understood this may not be an issue and but this is currently
not done.

To be able to handle a preference shift situation with the current methods of
experience management they would need to be able to detect that a preference shift
has occurred and correct for it by quickly recovering the player’s preferences. To
this end I have devised the following three research tasks to tackle these questions in
experience managed games:

• RT1: Recognize when a player’s preferences have shifted and that the current
environment may no longer be well suited.

• RT2: Recover a model of the player’s preferences after a player preference shift
has been detected.

• RT3: Verify that these methods work in gameplay data from human subjects.

4



1.1 RT1: Preference Shift Detection

My first limitation is the assumption that player preferences are static. In removing
this assumption, I need to handle the possible scenarios that are presented, namely
detecting that a player’s preferences no longer match the player model. If the environ-
ment is equally balanced to any possible play style, this would not present a problem
as the player would seek out their preferred experience themselves, but in an experi-
ence managed game this may not be possible. If the environment is biased towards a
player’s previous preferences, then the player cannot interact in their preferred way.
Furthermore, since the player can only interact with the current environment, obser-
vations that an ExpM takes will show that the player is still interacting with things
in the environment and thus may not be well suited for recovering the player’s pref-
erences and adjusting the PM. This feedback loop where the bias of the environment
interferes with the accuracy of the ExpM’s observations requires a different system
to take over.

My solution is to silently and continually test the player. As the player continues
to take actions they form a stream of data, one which can be monitored for novel
patterns. When the player takes actions they are likely to take ones that are con-
sistent with their already established player model. In the rare case that they shift
their preferences, the player is likely to take start taking actions that are no longer
consistent. This could be in the form of trying out the other sorts of actions that
are available in the environment to see if they are interesting or simply taking less
meaningful actions such as wandering around aimlessly. In my research I find that
by just watching for this difference in how the player behaves, it is possible to gain
some metric of how engaged the player is in the game.

These observations are not completely accurate though, there are unknown factors
that may lead to fluctuations in the data, complicating the matter. This variability
can be a problem when identifying preference shifts as small deviations in the obser-
vations may be misconstrued and act as false positives. For this I take inspiration
from novelty detection [32, 23, 31] which attempts to distinguish random fluctuations
present in noisy data from true parameter shifts 2.1. I formulate the PM as a dis-
tribution over possible actions and by using novelty detection find when a departure
has been made from the previously known distribution to a new one, irrespective of
what the new distribution has become. In addition I create a different method which
is inspired by the pattern that a preference shift may take.

These methods are tested with artificial agents that are meant to mimic certain
aspects of how humans behave, and are deployed in a text-based game environment
written in Inform7. I find that they work with mixed success with my own method
working the best overall. All of these methods, mine included, are capable of recog-
nizing when a shift has occurred but all but my own tend to struggle when there is
no shift.
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Figure 1.2: After adding my system, if the ExpM detects that the player’s preferences
have shifted it will switch to the Player Model Recovery state. In this state it can test
the player via ExpM distraction actions and quickly update the player model. Once
the player model is recovered it will switch back to the Player Model Shift Detection
state, where it will continue to watch for preference shifts.

1.2 RT2: Player Model Recovery

Given that a player shift is detected I still need to find what the player’s new set
of preferences are to recover the PM. While this detection is useful, there is still
the issue of environmental bias as preference shift detection makes no modifications
to the environment, opting only to watch the player’s behavior. Removing some of
the elements from the environment may help balance the environment, but these
elements may have significance for the narrative and this does not help if any aspects
are completely missing, thus is not viable. Instead I opt for the alternative, adding
new elements to the environment in the form of distractions.

Distractions are a new type of game object, which serve to test the player on their
preferences. These distractions will be introduced into the environment with the
purpose of trying to distract the player from their current task to gain information
about their preferences and to help balance the environmental bias towards certain
actions. Players whose preferences are adequately provided for will ideally not be
drawn to interact with a distraction, but players with preferences that do not match
the environment should seek them out as they match their preferred means to interact
with the game. Being in complete control of the ExpM I do need to be careful about
how to design these distractions as they have the potential to cause harm to both
the player experience and the author’s intent for the game. Thus I place restrictions
on their design: distractions need to be largely irrelevant to important parts of the
game like quests as to not tread on any authorial goals and distractions need to be
used minimally as to not overwhelm the player with a sudden deluge of options to
interact with. While there are other limitations in designing distractions for use with
human subjects that will be discussed later, these are the most important and what
influences the design of the player model recovery system.

Since player model recovery is a different task, we need to switch the internal
state of the ExpM to be focused on solely recovering the PM, as shown in Figure
1.2. This PM recovery state will no longer try to detect that the player’s preferences
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have shifted nor attempt to change the environment to suit the current PM, opting
to instead throw out its previous notions on the player. In this state we need to be
able to reduce the bias that is present in the environment and to allow the ExpM
to take action. This is done through a series of ExpM actions that dynamically add
and remove distractions from the environment as the ExpM deems necessary. By
observing how the player interacts with the environment after the ExpM has added
distractions, the player model can be recovered.

To do this quickly and with minimal interruptions I have found that I can repre-
sent this problem as a Multi-Armed Bandit (MAB). Multi-Armed Bandits (MABs)
are a class of sequential decision-making problems where an agent is tasked with max-
imizing the amount of reward from iteratively taking one of k actions (often called
arms) [44]. Algorithms for solving these problems are well researched and have been
found to be good at balancing between gaining information (exploring) and making
use of this gained information (exploiting). Since a player will shift to an unknown
set of preferences, it is necessary to explore to gather this data, but I also want to
minimize the impact on the player and thus recover the PM as quickly as is possible.

By modeling this system as a MAB and testing with artificial agents in a text
based game environment much like RT1, I find that there is some limited success in
their ability to find the preferences of the player and recover the player model. To
combat this I loosen the restrictions due to MABs by using Combinatorial Multi-
Armed Bandits (CMABs), a combinatorial extension on MABs, which allows for
significantly better performance when using the same agents and environment. With
these systems developed and shown to work with artificial agents, the only thing left
is to test them with human subjects.

1.3 RT3: Human Study Verification

My third research task is to verify the validity of both Preference Shift Detection and
Player Model Recovery with human data. It is difficult to develop these methods with
human data as they often require continuous testing, thus they were developed with
artificial agents that mimic various aspects of human-like behavior. These artificial
agents are significantly simpler in their behaviors than humans generally are, and
thus begs the question as to whether they are valid representations of humans for
these tasks. To verify this, I collected data of human subjects as they interacted
with a modified version of the environment and related systems that were created
for the previous automated agent tests. As previously stated human subjects are
significantly more complex than the automated agents thus simplifications that were
appropriate to the automated agents needed to be expanded on and changes were
needed to the size, the setting, and the content of the environment as well as the
distractions themselves.

Since I am measuring metrics that are related to how engaged a player is in their
play, I have had to modify the environment such that it may actually hold their
interest, or at least allow them to feign interest. Thus the environment is expanded
out to roughly four times the size, the actions available to the player are changed to
ones more fitting to a game (as opposed to being inspired by the default set of actions
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in Inform7), and these actions are grounded with quests for the player to accomplish.
Likewise the requirements on distractions are shifted, instead of focusing exclusively
on minimizing the effects on players while still serving as useful tools, distractions
additionally need to be well suited to the actions that they are representing and
recognizable to the player as belonging to that action. This additional requirement
allows distractions to accurately communicate the intentions of the player to the
ExpM.

I wish to test the validity of both Player Model Recovery and Preference Shift
Detection, but only Player Model Recovery needs the ExpM to take active interven-
tion in the game. Preference Shift detection itself is silent to the player and thus
can be used on traces of the game instead of requiring to be done online. Thus I
have opted to run a single human study, one that includes the active intervention of
the ExpM from Player Model Recovery, and then reuse relevant parts of the data to
create synthetic data for Preference Shift Detection.

I find that both Player Model Recovery and Preference Shift Detection work with
the data gathered from this human study, and that the behaviors that the agents
were designed to exhibit are somewhat present within the participants sampled. With
Preference Shift Detection I find that the methods work considerably better, being
able to detect a true shift 100% of the time with only a 5% false positive rate, but
this verification had to make use of synthesized data, making it difficult to make
hard conclusions with. Player Model Recovery also works well and seems to indicate
that a player model can be recovered in less MAB rounds and less game turns than
previously thought.

Copyright© Anton V. Vinogradov, 2024.
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Chapter 2 Literature Review

2.1 General lit review

2.1.1 Experience Management

The broad goal of experience management is to do more than just entertain (as with a
drama manager); it is also to coerce the game so that the player’s experience conforms
to a set of provided properties [35]. This essentially extends the purpose of interactive
experiences in the first place, which is to balance the goals of the author in crafting
the experience while simultaneously keeping the player’s sense of agency. With an
ExpM the major change is that this balance is managed actively while the player is
playing, allowing it to have a finer degree of control over the player’s experiences.

The ExpM achieves this balance by having its own set of actions that it can take,
going through the game alongside the player. These actions can be locking or un-
locking paths for the player, adding or removing objects and NPCs, or modifying
what information the player has access to and leading them to the author’s narrative
goals. Early examples of works that became known to be experience management
also included changing underlying rules of the game, such as the process of dynamic
difficulty adjustment [18]. While holding academic interest [17, 20, 45, 19], experience
management (sometimes referred to as AI directors) have had trouble breaking into
commercial games. These processes are not cheap to integrate often requiring differ-
ent methods and paradigms to develop the games that include them, but have seen
some success[53, 22]. Popular commercial examples that use some form of experience
management include Valve’s Left4Dead 1 and 2 [49, 50] which changes the locations
and intensity of enemy spawns to follow an author defined intensity level to maximize
drama, and Capcom’s Resident Evil 4 which silently adjusts the difficulty of enemies
and ammunition drops based on the player’s performance [5] among others [36].

A notable early academic work is Façade [26], where story content was structured
into beats. These beats are typically small, changing out every minute or so, and
are representative of the smallest unit of dramatic action. These beats are partially
ordered, through the use of pre- and post-conditions, and thus allow the player to
influence where the story goes through their actions. Their ExpM, called a beat
manager, chooses which beats based on several factors including which preconditions
have been met (by player actions or past beats), the narratives planned tension, and
internal (sometimes conditional) priorities. This allows for a balance between author
goals and player agency but does so without forming an explicit model of the player.

Similarly to Façade, other early works in experience management (often under
the more narrow term drama management) did not make use of a player model.
This includes planning-based drama management [34, 6] which allow players to take
actions that break the narrative. The game is not interrupted or broken as the DM
can repair these breaks by introducing new narrative elements to fill the gaps. Search
based drama management could leverage a model of the player and use it to search
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the space of DM actions and likely player actions to deliver a better story [25, 28, 29].
These methods did not try to model the player as they played but instead reacted to
the player as they played.

My approach works within the space of player modeling focused experience man-
agement as having an accurate and useful model of the player can allow for more
personalized ExpM actions [42, 43, 51]. A player model can model any aspect of the
player, be it of the player’s preferences [47] (fighter, power gamer, method actor, etc.)
or the player character [13] (a player’s heroism, self-interest, cowardice, etc.). These
have more recently been expanded into multiplayer environments [16, 52]. In each of
these works, player preferences are assumed to be static. In my works, I explore the
methods which would allow for an ExpM to recalculate a player model in response
to shifts in player preferences.

2.2 RT1 - Player Model Shift Detection

To detect shifts in player preferences I split the ExpM observations into two different
distinct parts: observations that are likely to be before a shift, and unclassified obser-
vations. This aligns well with the idea of novelty detection, or the task of recognizing
and differentiating between data that is similar to what has been seen in the past
and data that differs [32]. This is similar to outlier detection, where data needs to
be classified as an outlier or not, but novelty detection requires that past data is free
from outliers. Both outlier and novelty detection present themselves as one-class clas-
sification problems [27], where normal data (i.e. data similar to that used in training)
is distinguished from the outlier data. This is different than a two-class classification
problem as it does not make the assumption that there are two distinct classes of
data, instead it only identifies a single normal class which must be distinguished from
all other possibilities.

Novelty detection also takes a step further by distinguishing the data over time.
Whereas outlier detection can be applied to a static dataset, novelty detection is
focused on separating the data into previously known normal data and new unknown
data. This distinction means that novelty detection often has a significant imbalance
in training examples, with only normal data being well represented. This is useful
when training machine learning models to identify whether or not a given input is
likely to be well handled by the model, as a model is more likely to give a correct
output when its input is similar to the data used to train it. This also makes it well
suited for my task of finding player preference shifts, as my data has a time component
and thus I only have access to known normal data and no known abnormal data.

I make use of three different novelty and outlier detection methods: Elliptic En-
velope [37], Local Outlier Factor [4], and One Class SVMs [40]. One Class SVMs
function by finding an optimal separating hyperplane between the classes by taking
into account the boundary points. To better separate the data a kernel function
is applied, for my tests with automated agents I use a degree 4 polynomial kernel
though for my human subjects experiments find that a sigmoid kernel is more opti-
mal. Local Outlier Factor method on the other hand calculates to what degree each
point in the space is an outlier. Each point is considered local as it takes into account
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Figure 2.1: Novelty detection is tasked with finding abnormal new observations given
a set of normal training observations. Pictured here is the decision boundary of a
One-class SVM with non-linear kernel.

its surrounding neighborhood as opposed to the data as a whole. Elliptic Envelope
works by defining an elliptic boundary separating outliers from normal data and is
designed for Gaussian distributed data. Both Local Outlier Factor and Elliptic Enve-
lope methods are generally used for outlier detection, but since my data already has
a distinction between known normal and unknown data, I treat them all as novelty
detection methods.

2.3 RT2 - Player Model Recovery

2.3.1 Dynamic Player Modeling

There have been works recently that have acknowledged the need for dynamic player
models like in Valls-Vargas et al.’s work on Exploring Player Trace Segmentation for
Dynamic Play Style Prediction [48] and an extension by Khoshkangini et al. [21].
These works explore the problem of play-style shifts by predicting the play style from
previously collected gameplay traces. This work focuses on recovering the play style
but does so in traces, where they cannot make changes to the game as the player plays.
This does not allow them to directly test the player only observe what their actions
are. They found that trying to predict play style information on a too fine (minute-
by-minute) level does not provide enough information to give accurate results. My
work differs in that it can directly introduce new elements into the environment to
test the player, which should allow me to use a much finer level. Since my method is
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incorporated into an experience managed environment, I also need to deal with the
left-over biasing of the environment from past ExpM actions.

I have also found that MABs have been used in player modeling before with
the focus of adapting games to their players [15, 16], but these are concerned with
finding player models from scratch, rather than correcting one in live gameplay. As
such, while many of their goals are the same, such as finding a player model quickly,
they have more freedom in how to modify the environment and can make more
assumptions. Due to the issues my system is attempting to solve I cannot make these
assumptions about a player’s play style and must actively intervene to discover them.

2.3.2 Multi-Armed Bandit Overview

Multi-armed bandits (MABs) are single state Markov Decision Processes where agents
choose to take one of several actions (called arms) [24, 44]. Each action has a reward
distribution and the task of solving comes in the form of finding an optimal policy
that maximizes the total reward while minimizing losses. This policy needs to be
able to balance between exploring each of the arms while gaining information on
their underlying reward distribution and exploiting this information to maximize the
reward from all the arms.

They take their name and inspiration from slot machines in a casino, which are
informally referred to as one-armed bandits. The problem can be framed using this
analogy as follows. Assume the existence of a slot machine with many arms that a
player could pull. Each arm has a different payout probability, but the user does
not know which arm will likely result in the largest payout. As such, the person
needs to find a strategy (policy) to maximize their own return on playing time while
minimizing their own losses from the cost associated with pulling an arm. Rewards
are often assumed to be drawn from fixed (yet independent) distributions [44]. I make
the same assumptions in this work, with the added assumption that the environment
is fully observable. In other words, the user receives an accurate observation of the
reward they receive after pulling an arm.

More formally defined, MAB problems consists of a set of m arms, each associated
with a random variable Xi,t for 1 ≤ i ≤ m and t ≥ 1, which denotes the outcome for
arm i at round t. The set of random variables {Xi,t|t ≥ 1} associated with arm i are
i.i.d. with some unknown expected mean value µi. The vector µ = {µ1, µ2, . . . , µm}
represents the expected mean of all arms. In each round t, a single arm it is chosen
to be played, and its outcome Xit,t is observed. At the end of a round the reward is
revealed and associated with the arm. The goal is to maximize the total reward over
a sequence of rounds by selecting arms in such a way that the cumulative expected
reward is maximized.

The difficulty associated with the multi-armed bandit problem is in balancing the
act of gathering information about the payout associated with each arm (exploration)
and maximizing reward given the current known information (exploitation). In Chap-
ter 4, I make use of three different algorithms for my MAB policy learning: ϵ-greedy,
UCB1-Tuned, and Thompson sampling. The simplest is ϵ-greedy, which at each turn
will either randomly choose an arm to pull with a probability ϵ or will select the arm
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with the highest expected payout given current information with a probability 1− ϵ.
Random actions serve as a way to gather information about the arms while greedy
actions take advantage of this information. There are many variants on ϵ-greedy, like
ϵ-decreasing in which the ϵ value decreases over time according to a decay function.
Many of these were tested but found to perform worse in preliminary tests and were
not included.

UCB1 is a technique for learning MAB policies that involves estimating the upper
confidence bound on rewards for each arm and selecting the one that maximizes this
value. We use a variant of UCB1 called UCB1-Tuned which uses a more finely tuned
upper confidence bound for the variance of an arm for a Bernoulli random variable
[2], which has the effect of selecting high-variance options more often. This method
performs substantially better than UCB1 in all of our tests, so we have opted to only
include this tuned variant. UCB1-Tuned (like UCB1) requires that one of each arm is
played before more intelligently selecting the arm with the highest upper confidence
bound.

argmax

(
Qa +

√
ln t

ta
min(1/4, Va(ta))

)
(2.1)
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t

t∑
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)
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√
2 lnT
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UCB1-Tuned calculates the upper confidence interval for every arm using equa-
tions 2.1, 2.2 where Qa is the sample mean for arm a, ta is the number of times arm
a is given, Ra,t is the reward of arm a at time t, R̄a,t is the average reward, and T is
the total number of rounds that have occurred. The 1/4 constant is an upper bound
on the variance of a Bernoulli random variable, where Va is the calculated variance.

argmax (B (αa + 1, βa + 1)) (2.3)

Thompson sampling is the first bandit algorithm in literature first appearing in
1933 [46]. It builds a probability model of the expected rewards, which it then samples
an arm pull from. It draws samples from a beta distribution of the number of successes
and failures for each arm, choosing the sample with the maximum probability, as seen
in equation 2.3, where α and β represent the number of successes and failures for arm
a. Initially, both α and β are set to 1 to establish a uniform prior distribution.
Thompson and UCB1 both are able to naturally shift from primarily exploration
early on to being more exploitation as they gain more information.

2.3.3 Combinatorial Multi Armed Bandit Overview

Combinatorial Multi-Armed Bandits (CMABs) are an extension on MABs [8], and
here I will define them in a manner mirroring the MAB overview in the previous
subsection. Similarly to MABs, a CMAB contains a set of m base arms that are
played over some number of rounds. Each arm is associated with a random variable
Xi,t for 1 ≤ i ≤ m and t ≥ 1 which denotes the outcome for arm i at round t. The
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set of random variables {Xi,t|t ≥ 1} associated with base arm i are i.i.d. with some
unknown expected mean value µi. µ = {µ1, µ2, ..., µi} is the expected mean of all
arms. Instead of playing a single arm, as one would do with a MAB, a super arm S
is played from the set of all super arms S. I consider S to be the subsets of the set
of all arms m of size k, for k ∈ {2, 3}. At the end of the round, the reward Rt(S) is
revealed for the super arm and is given to the contributing arm i ∈ S. The reward
is observed per arm played and only a single arm is rewarded, a type of feedback
belonging to semi-bandits [1]. Tt(i) is the number of times arm i has been played up
to round t.

To learn an optimal policy, I make use of the CUCB algorithm [8], which ex-
tends the UCB algorithm described previously. This algorithm first takes an initial
m rounds of playing a super arm that contains one of each of the arms. For my
implementation of the algorithm, I choose to always play a super arm that contains
the least played arms thus far, ensuring that each arm is played k times during this

phase. Afterwards, I calculate the adjusted means using the formula R̄a +
√

3 lnT
2ta

,

where R̄a is the sample mean of arm a, ta is the number of times arm a has been
played, and T is the total number of rounds. The super arm with the highest adjusted
mean is then selected.

Copyright© Anton V. Vinogradov, 2024.
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Chapter 3 Preference Shift Detection

3.1 Introduction

I cannot continuously try to recover the player’s preferences without first detecting
that they have shifted, as this process would be too disruptive to the player and
may affect the intended experience enough to significantly depart from the author’s
intention. Thus, to start, I have to detect that a player’s preference has shifted, and
I should do so in a way that is invisible to the player. Since the ExpM is not able
to see into the mind of the player it must make do with the information that it does
have, namely observing what actions the player takes.

To do this, I treat the player’s actions as streaming data, assuming that actions
taken in the past correspond to some previous set of preferences. Actions done more
recently then can be tested against these and the differences between them can be
used to detect whether a preference shift has occurred. This is generally known as
novelty detection, which, given some sequential data, is capable of distinguishing
incoming observations as either inliers, observations similar to data seen before, or
outliers, observations that have not been seen [32]. Novelty detection is itself a
subset of anomaly detection, and some of the methods used to distinguish between
non-temporally oriented inliers and outliers can be used for novelty detection. For
this chapter, I make use of three existing methods for detecting novel and outlier
data: Elliptic Envelope [37], Local Outlier Factor[4], and One Class SVM [40].

The three novelty detection methods are designed to detect if incoming data is
similar to the previous data, but with my text based gameplay data it may be too
noisy and trigger false positives. There is normally only a small chance to detect a
false positive, but since these methods apply on every turn with the data stream this
effect is compounded. To combat this I have created a method that is more resistant
to this effect based on how preference shifts are likely to present themselves in player
actions and test it against the existing methods. My method makes use of more of
the data to compare against the initial baseline and only take into account the action
types that are likely to belong to the preference shift. I evaluate these methods by
examining two key factors: the accuracy of detecting whether a shift has or has not
happened and how soon a shift is detected. I find that the custom method is more
effective in detecting shifts and significantly more effective at avoiding false positives.
It is also quicker to detect shifts compared to existing novelty and outlier detection
methods.

3.2 Methods

In this section I will discuss the various parts of the player shift detection system.
This will include information about the environment in how I define my player model,
and the preference shift detection methods that I use.
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Figure 3.1: A screenshot of the interface for a text based adventure game. User input
follows a >>, and the text description of the outcome of that action follows. The
location of the player is shown in the header at the top.

3.2.1 Environment and Player Model

I make use of a custom environment that will be reused for other sections. This
environment is built with Inform7 [14], a language designed to create text-based
interactive fiction games for the Z-code or Glulx virtual machines. While not an
entirely accurate description, it can be thought of as a text-based game engine. Inform
is well suited for this project as it interfaces well with artificial agents. Games written
using Inform are played in rounds, called turns, that alternate between user input
and the outcome of that input. This is demonstrated in Figure 3.1 which shows the
player going north, with the room change description being printed afterwards, then
talking to a guard about the gate. Since the action space is discrete it is possible to
easily enumerate all actions that can be taken in the environment if desired. Games
made using Inform are also typically played with natural language commands, using
simple sentences or fragments such as “pick up shovel,” making them suitable for
humans, even those who are not well versed in traditional video games.

In this environment, I use ten areas called rooms (Figure 3.2), which are used
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Figure 3.2: A map showing the layout of room for the environment for the artificial
agents.

to represent a standard fantasy medieval town, though to simulate the effects of the
ExpM biasing the environment, I only make use of seven of these. In other words, this
environment assumes that the current player is unlikely to want to visit three of the
available ten rooms in the game. These seven rooms can be traversed using only the
commands for the cardinal directions: north, south, east, and west. Other directions
are possible within Inform, including inter-cardinal directions such as north-east, as
well as up, down, and even going inside or outside nested rooms. While possible,
we do not use these more complex directions for navigation in order to simplify the
number of actions considered by the artificial agents used to test the methods.

Within these rooms are a number of objects; for example, the North Gate room
contains a guard and a locked path to a different room, among other things. A full
list of these objects and their locations can be found in Figure 3.3. These objects all
have a property called the action type, which represents what I think is the primary
means of interacting with that object. The action type for the guard is talk, and in
the quest, I expect the player to ask the guard for information in their search for the
missing cat. Likewise, the action type for the locked path is touch as to go through
it, the player is required to interact with it by touch. There are five of these action
types: look, talk, touch, read, and eat. These action types are inspired by the actions
built into Inform7 and are found in many other games.
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Figure 3.3: A list of objects (referred to as things in Inform7 parlance) that exist in
the environment and their action types, organized by room.
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Figure 3.4: The verb coin from Monkey Island 3: Curse of Monkey Island, which
contains a simplified set of verbs for touching, looking, and talking, reduced from 12
and 9 verbs for the first and second game in the series, respectively.

Since I am focused on detecting shifts in an experience managed environment, I
simulate the effects that the ExpM might have on the environment. These effects
come in the form of biasing the environment so that only certain actions are possible.
In my medieval town, I consider the talk action to be the primary action type, as the
quest is centered around doing actions of this type. I also include the look and touch
action types in the environment, but these are not the focus of the quest and thus are
less present. The read and eat action types are largely missing from the environment
and are largely limited to three rooms locked off from the player that are not included
in the environment, though there is a single book to read in the back alley. The look,
talk, and touch action types together are considered Environmental action types since
they appear in the environment, while read and eat are considered Missing action
types since they are missing from the environment. These categorizations of actions
as Environmental or Missing is important for how I group together preference shift
scenarios later.

These five action types are also the basis for my player model, which measures the
probability that the player will perform a particular action type. This is a common
way of representing the player model that is found elsewhere in the literature [47, 43],
and thus, I have chosen to adopt it. I expect that even when a player prefers only
a single type of action, they will not be able to complete a quest without doing at
least some others, simply because quests are often designed in this way. Thus, when
using this type of player model, the probability of doing any specific action type is
never set to zero. Since I am focused on detecting a player preference shift, I do not
calculate a player model for my agents and instead assume that the system would
have an accurate measure of the player model beforehand.

3.2.2 Shift Detection

To utilize shift detection methods, I interpret a player’s actions as streaming data.
This means that the data is treated as continuous and observed at somewhat regular
intervals. By treating the data like this, I can use these methods to identify shifts
in player action observations in real time while a player is playing. The observations
that the ExpM makes are based on the action type that the player took during the
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last turn, represented as a one-hot vector. However, I apply a 10-turn rolling average
to these vectors to make the data more suitable for the methods I test. In addition to
the five action types I have described previously, a sixth action type is included: the
move action type. This action type is not present in the model and objects cannot
have it as a primary means of interaction with the entire environment. Moving around
the environment is a necessary action to play the game and while a player can prefer
to explore, it is not one of the preferences that the ExpM can use to optimize the
player’s experience in this text based game. For my shift detection methods, I hold
on to a sliding window of data rather than considering a single observation at a time,
and my operations will be applied to this buffer. In other words, my shift detection
methods will apply to a set of previous actions rather than to the most recent action.

Since I represent my observations as streaming data, I have taken inspiration from
novelty detection for this task. Novelty detection is a type of anomaly detection that
attempts to classify whether incoming data is an outlier. In this context, these outliers
are called novel data. It is well suited for streaming data as it makes a distinction
between data used to train the classifier, which it assumes to be uncontaminated,
and incoming data, which may be contaminated with outliers. This assumption is
necessary for novelty detection, but I also consider it safe as the ExpM already makes
it. Since the ExpM makes changes to the environment that bias it towards a player
model, it already makes the assumption that its previously held player model was
correct. Any observations generated to create the player model must already be
uncontaminated, and thus, I can assume that before a preference shift has happened,
the player should be taking actions in accordance with their player model. This
assumption is broken when a preference shift happens, but the purpose of the shift
detection process is to detect a shift in the preferences before the observations of the
preference shift are used as training data for the classifiers.

I explore the use of three existing classifiers for shift detection: Elliptic Envelope
[37], Local Outlier Factor [4], and One Class SVMs [40]. Elliptic envelope makes the
assumption that the data is normally distributed, then attempts to learn an ellipse
an ellipse as a boundary between inliers and outliers. Local Outlier Factor detects
anomalies by computing the local density deviation of a given data point respective
of its neighbors. A point is then considered an outlier when it had substantially lower
density than its neighboring points. One Class SVMs learn a optimal hyperplane to
separate the data much like SVMs, but with only a single class tries to separate the
known data from the origin instead of two distinct classes. Points that like below
this hyperplane and are closer to the origin are considered novel. Elliptic Envelope
and Local Outlier Factor are considered outlier detection methods and thus do not
necessarily require that the training data is uncontaminated, while a One Class SVM
is considered a novelty detection method and therefore does.

I use a gap between the training and testing data to ensure that the training data
is uncontaminated by keeping it further from the testing data. Each of these methods
was given a 50-turn window to use as training data, followed by a 50-turn gap and,
finally, a variable-size testing window ranging from 1 to 20 turns. The training and
gap windows were chosen to be 50 turns each to be sufficiently larger as to account
for the agents interacting in multiple rooms, while the test window was chosen to be
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Figure 3.5: An illustration of how the data is formatted and organized before it is
processed and utilized by the shift detection methods.

smaller as the larger test window size is the longer it would take to fill it and thus
delay any shift detection by that amount of turns. For the testing window, I also
introduced a threshold parameter that governs what percentage of the turns in the
testing window need to be considered outliers before I consider a shift to be detected.
This is necessary to account for any potential noise in the data, which may lead to
an anomalous detection of a shift without a preference shift ever happening.

In preliminary tests, I found that novelty detection techniques were sensitive to
the data and thus encountered challenges associated with excessive false positives or
false negatives. The existing methods have the advantage of being well suited for the
general task of detecting novel data, but my task is focused on finding a specific type
of shift in the data produced by a player shifting their preferences. I reasoned that
I could take inspiration from how this shift might look and create my own method
with the game environment in mind. I expect that a shift in player preference likely
consists of a sharp difference in their actions over some period of time and then
staying consistent in those new actions. This expectation comes from the nature
of a preference shift, if a player suddenly becomes disinterested in what they were
previously doing they are likely to stop doing that action. A player that no longer
wants to socialize with NPCs would be unlikely to talk to more NPCs on their way
to their preferred action. Likewise the sharp difference is expected regardless of if
the player finds what they prefer. If they do not, the player will likely continue to
search, and this would be likely observed as taking a wider variety of actions, but
consistently over the next turns. If they do, the player will engage with that action
and likely consistently switch to it.

Thus, my method takes 50 turns as the baseline window (P1) and compares that to
another 50-turn comparison window (P2) to see if the player’s actions differ, ignoring
the move action type. These window sizes were chosen to match the test and gap
windows for the novelty detection techniques. This creates a mask where 0 represents
no increase, and 1 represents an increase for a given action type. I amend this mask
by setting the highest known preferred action type (according to the player model)
to be 0, regardless of its previous value. I do this to ensure that the method does not
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detect that the player has shifted their preference to an action type that they already
prefer. This mask is then multiplied by the averaged frequency of action types in the
test window (P3) to get a shift score for each action type, which is then compared to
the threshold (equation 3.1). If the shift score for any action type is greater than the
threshold, I consider a shift to be detected.

ShiftScore =
(∑

P1 >
∑

P2

)
∗ P3 (3.1)

I fine-tuned the test window size and threshold parameters for each of these meth-
ods and any other available parameters for the existing methods. To score the fine-
tuned parameters, I calculated the f1 score for a single trial and picked the parameters
that resulted in the highest score. I found that my method works best with a test
window of 10 and a threshold of 40%. For the Elliptic Envelope method, I tuned the
test window to 10, the threshold to 90%, and the support fraction to 0.6. For the
Local Outlier Factor method, I tuned the test window to 10, the threshold to 20%,
and the number of neighbors to 30. For One-Class SVMs, I tuned the test window to
13 and the threshold to 90%. I also found that the degree 4 polynomial kernel works
best.

3.3 Experiments

In my experiments, I use 3 artificial agents and test 45 scenarios, which I group into
10 categories to examine their differences. The 45 scenarios are: 20 fast preference
shifts from primarily one action type to another, 20 slow shifts matching the fast
ones, and 5 no shift scenarios with one for each action type. I measure two different
criteria: the percentage of the time that a shift was correctly detected (Table 3.1) and
the turn count when a shift is detected (Table 3.2). The first criteria help me find
the method that detects a shift the quickest, while the second allows me to measure
its accuracy. Note that for detection, I report both detecting a shift when a shift has
occurred (true positive rate) and detecting no shift when no shift has occurred (true
negative rate) together.

3.3.1 Agents

For my experiments here and in Chapter 4, I will be making use of artificial agents
in place of human subjects. These artificial agents provide much more flexibility and
rapid iteration and allow for these methods to be designed quickly. I make use of
three agents that all work on a similar basis, having a set of internal preferences that
dictate the probability that they take certain types of actions. Where they differ
is how they utilize their internal preference distribution. Some first select a type of
action before trying to find a matching object with that type, and others decide first
if they wish to interact with objects in the room before using the distribution to select
which object is available. In some rooms, there will be no objects to interact with,
and the agent will default to moving to a different room, though the details of how
are specific to each agent.
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I use three agents: the goal-focused agent, the exploration-focused agent, and
the novelty-focused agent. I chose to use three different agents because I believe it is
unlikely that a single agent can accurately model the complexities of human behavior,
and with three, I can represent a wider range of player behaviors. Two of these
agents, the Goal and Exploration-focused agents, come from the Bartle Taxonomy of
player types [3], which details 4 different player type quadrants: Explorers, Achievers,
Socializers, and Killers. Of these four player types, I only try to model Explorers and
Achievers (corresponding to Exploration and Goal focused agents, respectively) as
these types are focused on how the player interacts with the world on the players-
world axis. Since I am using a single player environment, I cannot model the Killers
and Socializers, so they are left unrepresented. The third artificial agent is a departure
from this taxonomy and is instead based on findings in the literature that state that
novelty is a key component in user engagement [30]. These three agents allow me
to better model a wider variety of how players act in a game but do not cover all
possible players and may have overlap between them.

Goal Focused Agent: I will first talk about the Goal focused agent, the achiever,
whose algorithm is detailed in Algorithm 1. This agent first selects an action type that
it wishes to interact with (line 2), sampling from its internal preference distribution,
then attempts to interact with an object with that action type. If an object with that
action type is not present within the current room, the agent defaults to its fallback
behavior shown in Algorithm 2. This fallback behavior attempts to act either by
taking an action towards the goal or by moving to a neighboring room, each with
equal probability. When it chooses to take action toward the goal, it references an
ordered set of steps required to complete the quest. As it continues to complete the
quest, these steps are removed, though each step often requires the agent to be in a
specific room first. If the agent is not in the correct room it will first find a valid path
to that room and take a single move action towards. This list of steps to complete
the quest and paths to the correct room is maintained by Inform7 and is represented
on line 4 as taking from a list, though Inform7 only refers returns the next step.

The effect of this behavior is that when the agent is in a room with objects that
it prefers, it will tend to stay there, with only a rare chance of choosing an action
that is not present in the room. On the other hand, if the agent is not in a room with
objects it prefers, or if there are no objects that it prefers in the environment, it will
tend to wander toward the next step in the quest, where it will tend to have access
to objects of environmental action types. In these cases, the agent is also likely to
take the environmental type actions that the quest is centered around, even when it
does not prefer to do that action.

This agent is considered goal focused because it has a higher likelihood of taking
actions that contribute towards the goal, especially when it does not have access to
the types of actions that it prefers. I expect that players that are exhibiting this kind
of behavior would normally also attempt to complete the goal when they have access
to their preferred types of actions, but this is not distinguishable with the agents thus
I have chosen not model it for simplicity. A goal focused player would also likely fall
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Algorithm 1 Select Action for Goal Focused Agent

1: procedure goal.SelectAction(preference)
2: action type← random choice with weights(preference)
3: objects← environment.get objects of type(action type)
4: if len(objects) > 0 then
5: object← random choice(objects)
6: return (action type, object)
7: else
8: return goal or move()
9: end if
10: end procedure

back to completing goals even if they are not preferable, if only to move to the next
goal which may be more to their liking. It is this behavior that I believe is represented
in this agent.

Algorithm 2 Goal or Move

1: procedure goal or move
2: random number ← random(0, 1)
3: if random number > 0.5 then
4: next goal← environment.next quest goal.pop()
5: return next goal
6: else
7: return random choice(environment.room.exits)
8: end if
9: end procedure

Exploration Focused Agent: Next, I will examine the Exploration focused agent,
whose algorithm can be seen in Algorithm 3. This agent does not use the quest steps,
instead starting with a 10% chance of wandering to an adjacent room (line 3). The
other 90% of the time, it will first survey what objects it has access to in the current
room (line 5). From these objects, it will always choose to interact with the object
with the action type that it has the highest preference for, randomly choosing an
object if there are multiple for a given action type. For example, if a room only has
objects for talking and eating, and the agent has a preference of 50% for talking and
10% for eating, the agent will always choose to talk, though may talk to different
NPCs if there are multiple. The environment has been designed so that initially each
room has an object to interact with, but due to the actions of the agent this can
change as they play, thus if there are no objects in the room it will opt to go to an
adjacent room.

This behavior has the effect of this agent wandering randomly, with no regard to
the quest or its goal. When the agent finds a room with objects in it, it will tend
to interact with those objects, even if it does not prefer those objects. If the room
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has objects that it does prefer, it will lead to its actions tending to heavily favor
its top preference as it will always interact with its most preferred available action
type, never interacting with ones that it does not prefer. Even when it does find
a room with objects that it prefers, it will still have the same likelihood of moving
to a different room, though, causing it to be unlikely to stay in the same room for
long. This agent is considered exploration focused because it always has an inherent
chance to move away from its current room in a random direction. While human
players are unlikely to move completely randomly, with the smaller size of this test
environment the likelihood that this agent full explores the map is quite high, where
as other agents will only do so after the goal is complete.

Algorithm 3 Select Action for Exploration Focused Agent

1: procedure exploration.SelectAction(preference)
2: if random(0, 1) < 0.1 then
3: return random choice(environment.room.exits)
4: end if
5: action types← environment.get available action types()
6: if len(action types) = 0 then
7: return random choice(environment.room.exits)
8: end if
9: for each action type a in preference do
10: if a /∈ action types then
11: preference[a]← −∞
12: end if
13: end for
14: best action← argmax(preference)
15: objects← environment.get objects of type(best action)
16: object← random choice(objects)
17: return (best action, object)
18: end procedure

Novelty Focused Agent: The final type of agent is the Novelty focused agent,
the pseudo-code for which can be seen in Algorithm 4. This agent is more complex
than its peers in that it remembers which objects it has interacted with and uses that
information to alter its likelihood of interacting with them again. First, to ensure it
does occasionally move, it has a 10% chance of wandering to an adjacent room, much
like the Exploration agent (line 3). Afterward, it calculates a novelty score for each
object in the room based on how often and how recently it has interacted with it in
the past 50 turns, which can be seen in Algorithm 3.3.1. This is calculated for the
object o as NoveltyScore(o) =

∑49
i=0(

1
i+1
∗ interactedi,o), a weighted sum for the past

50 turns where the turn i is only added as when the object was interacted on that
turn. I use 1

i+1
to ensure that turns that happened longer ago have less influence.

The minimum valued novelty score (which corresponds to the most novel object)
for each action type is then averaged with the agent’s preference for that action
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type 1
novelty score+1

+ preference to form a novelty score for that action type as an
action novelty. These are then used as the new probabilities for each action type
after normalizing to sum to 1, with a best action type being chosen from the resulting
distribution. The object that is acted upon (the best object) is chosen by finding the
minimum scoring object with the best action type. The resulting object and action
type are used to construct the final command. If it is in a room with no objects, it
will opt to act like a goal-focused agent and randomly select between moving to an
adjacent room or taking a step toward the goal.

The behavior of this agent is difficult to describe at a glance, but the effect is that
the agent seeks to interact with objects with which it has not interacted much before.
This means that it may override its own preferences to interact with objects it does
not prefer but has seldom interacted with. It also inherits some behavior from the
other agents, with the chance to wander before it takes novelty into account like the
Exploration focused agent, and potentially taking steps towards completing the goal
if it finds itself in a room with no objects like the Goal focused agent. These effects
are small, and the agent is unlikely to find itself in an empty room, but do serve
to make it less likely to fall into familiar patterns. This agent is considered novelty
focused as it attempts to mimic the behavior of seeking out new objects to explore
how they function. Objects that are well explored by a player are likely to left alone
until they can be used in a new context, which I attempt to model by discounting the
novelty score based on how many turns ago that object was interacted with, before
falling out of the 50 turn window.

3.3.2 Scenarios

To better test my methods I have made use of several different kinds of preference
switch scenarios. Like the agents, these will also be used for Player Model Recovery
in Chapter 4 though with some modification. Each of these starts with 100 turns
of the game with the agent exhibiting a certain preference before the shift (pre-
preference) and 100 turns of the agent exhibiting a different preference after the
shift (post-preference). This allows me to make 50 observations by sliding the train,
gap, and test windows by one turn until the train window starts to overlap with the
post-preference. The pre and post-preferences each selected a single action type and
weighted it at 11/15, while the other action types were set to 1/15. These values
were selected so as not to set any action type to 0, ensuring that agents will tend to
have a chance to choose action types that they do not most prefer, though rarely.

As an example consider the fast shift talk to touch scenario with the goal focused
agent. In the pre-preference this agent would first randomly select an action type that
it wishes to interact with, which would most likely land on talk. If it is in the Town
Square then may have 3 actions for talk and 1 for look, and it would randomly choose
one from the 3 available talk actions, all of which would be a dialogue option from
the Hero NPC who is in that room. After the 100 turns of preferring talk actions the
agent is in the post-preference or touch and it may find itself in this room again. In
this case it is still likely to randomly select the action types that it wishes to interact
with, but this time landing on touch. Since there are a lack of things to touch the
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Algorithm 4 Select Action for Novelty Focused Agent

1: procedure novelty.SelectAction(objects, preference)
2: if random(0, 1) < 0.1 then
3: return random choice(environment.room.exits)
4: end if
5: Initialize novelty scores← {}
6: for each object o in objects do
7: novelty scores[o]← NoveltyScore(o)
8: end for
9: Initialize min novelty ← {look :∞, talk :∞, . . . , eat :∞}
10: for each object o in room objects do
11: action type← o.action type
12: if novelty scores[o] < min novelty[action type] then
13: min novelty[action type]← novelty scores[o]
14: end if
15: end for
16: Initialize action novelty ← {}
17: for each action type a do
18: novelty score← min novelty[a] + 1
19: action novelty[a]← novelty score−1

20: action novelty[a]← action novelty[a]+preference[a]
2

21: end for
22: best action← argmax(action novelty)
23: best object← min novelty object(best action, novelty scores, objects)
24: if best object is not found then
25: return goal or move()
26: else
27: return (best action, best object)
28: end if
29: end procedure

agent will take a step closer to the goal, which if it is at the beginning of the quest
would correspond to going east to the Housing District to talk to the Old Lady about
rescuing her cat.

I tested three different rates at which a preference switch happened: an instant
switch where the pre-preference switches to the post-preference at turn 100, a slow
shift where the preference is linearly interpolated between the pre-preference and post-
preference over the course of 20 turns centered on turn 100, and no shift where the
preference is not changed. I chose to test both fast and slow shifts to better represent
the variability of how a person may play the game. The slow shift talk to touch
scenario would be represented in the previous example as smoothly transitioning
from 11/15 preference for talk actions to 11/15 preference for touch actions. The
other 3 action type preferences would not change as they are both 1/15 before and
after. The no shift case was included to measure how likely my system is to detect
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Algorithm 5 Calculate Novelty Score for an Object

1: procedure NoveltyScore(object)
2: Initialize score← 0
3: for each turn i from 0 to 49 do
4: if object was interacted with at turn i then
5: score← score+ 1

i+1

6: end if
7: end for
8: return score
9: end procedure

a shift when there is none; thus, it represents the true negative rate. In the example
this would be represented as no change in the preference, with the preference staying
at 11/15 for talk for a no shift talk scenario The fast and slow shifts have 20 different
scenarios, and the no shift only has 5, for a total of 45 different scenarios.

These scenarios were then categorized into four groups: Environment to Envi-
ronment, Missing to Environment, Environment to Missing, and Missing to Missing.
These correspond to how I group the action types into either Environment or Miss-
ing, where look, talk, and touch are considered Environment action types as they are
present in the environment, and read and eat are considered Missing action types
since they are missing from the environment. Some of these scenarios are unlikely
to occur when a human plays a game, for example switching from Missing to Envi-
ronment, but these are included anyway to get a complete picture of how my system
behaves in all circumstances. These are considered unlikely as a player that starts
with a preference for a missing action type would most likely be already detected by
such a system in the past. This totals four grouped fast shifts, four grouped slow
shifts, and two grouped no shifts (only Environment to Environment and Missing to
Missing apply to no shift) for ten total groups.

3.4 Results and Discussion

For my experiments, I ran 100 trials for each scenario, agent, and shift speed combi-
nation. These were then run through each method to generate the two metrics: if a
shift was detected and what turn that shift was detected on. The average number of
turns to detect a shift is reported in Table 3.2, with the best in each category high-
lighted. Likewise, the average likelihood that a shift is detected is shown in Table
3.1, along with the F1-score to compare the overall performance of each method.

3.4.1 Scenario Differences

While I have included an exhaustive set of preference shifts, as stated earlier, I do not
expect that all of these are equally likely to occur in actual gameplay. In particular,
are the Missing to- and the Missing No Shift scenarios, which represent a state where
the environment is already ill-suited for the player’s preferences, which I consider to
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be unlikely to find a player in. Despite this, I have included them to evaluate how the
system can handle these rare circumstances, and I have found that, in some cases, it
can.

Due to how I have set up the environment, the differences between the two missing
action types are largely indistinguishable by the shift detection methods, and this is
reflected in the similarity of results in Missing No Shift and Missing to Missing
scenario groups. These two groups largely mirror each other, with the accuracy of
detecting a shift in Missing to Missing being the inverse of detecting no shift in
Missing No Shift. It is unlikely that these can be truly distinguished without getting
more information from the player, but since this is unlikely, this is not a big concern.

For the Missing to Environment scenario group, I found that each method per-
forms similarly to the Environment to Environment group. The observations made
when the player prefers a missing action type are often more random, and when used
as training data this more uniform distribution of actions taken is easy to distinguish
for the novelty and outlier methods. In my method, this would show up as a change
in the frequency that a specific action is taken between the baseline and comparison
windows, as the action type for the post-preference is available in the environment.
This contrasts to the Environment to Missing group, where my method would not see
such a rise as there are no actions with the type that the player prefers in their post-
preference. While this is a weakness of my method, I still find that it outperforms
the others.

I found little difference between the fast and slow groups, with the slow shift
being only marginally more difficult to detect. The gap compensates for the shift
speed, and it seems that having a gap larger than the time it takes for a preference
to shift removes the effect of a slower shift. Since the gap does not seem to have a
significant effect on the performance, it may be more useful to eliminate the sliding
training window in favor of using some set of the past data that is known to adhere
to the current player model. The sliding training window requires constant retraining
of all the methods except my own, which may be prohibitively expensive to run in
real time, depending on the nature of the game that this system is implemented in.
My method does not have this same drawback, but it may benefit from a smaller
comparison window, which would decrease the number of turns needed to detect a
shift.

3.4.2 Agent and Method Differences

I found that different agents pose different challenges to different methods. For the
-to Environment groups, the Goal focused agent is the the most predictable for each
method leading to better performance for those methods, but this reverses in the -to
Missing groups. The Goal focused agent’s behavior causes it to tend to complete the
goal when it does not have its preferred action type. Since the quest’s goal requires
a specific type of environmental action, a shift in preference will likely cause this
agent to change its behavior, which is noticeable to the novelty and outlier detection
methods. Since my method works differently and only looks at the frequency of
actions of each type, the frequency of environmental action types may not change

29



significantly enough to trigger a detection. This suggests that a combination of my
method and existing novelty detection methods may be necessary to cover all types
of players.

The Exploration and Novelty focused agents are less likely to follow the quest,
with the Exploration focused agent only doing so accidentally and the Novelty focused
agent only doing so purposefully when it does not have any objects to interact with.
The likelihood that the agent follows the quest seems to be the main contributing
factor to how effective each method is detecting shifts in each agent rather than their
complexity. Detecting whether the player is engaging with the environment because
they are interested in that environment instead of just finishing the quest solely for
the sake of completion may be useful to improve the ability to detect a preference
shift.

I have included two versions of my method for comparison: one with a test window
of one turn and another of ten turns. While other methods require a larger test
window as they only categorize each observation in the test data as an outlier or not,
my method outputs a score that I can compare against the threshold. I found that
attempting to increase the window past 10 significantly decreased the F1-score in my
method, but decreasing the window did not have such an impact. This allows my
method to have an average detection time that is 6 turns sooner than other methods,
but also leads to a slight performance hit.

My method outperforms others primarily because it is significantly better at not
detecting a shift when no shift has occurred. This can be seen with the Environment
No Shift group, where my method can correctly identify that no shift has occurred
up to 90% of the time for the Goal focused agent, though the results for the other
two agents are significantly worse. Compared to the Local Outlier Factor method,
which scores a maximum of 47% only in the novelty-focused agent, my method scores
only slightly worse at 46%, but all of these have very high variability. Overall, all
methods are rather poor and unreliable when it comes to ignoring a shift, but my
method shows promise, and this can be further improved with future work.

3.5 Conclusion

Experience managed games allow for the player to have a more personalized experi-
ence with the game, but can fall short when modeling the player. If a player model
cannot account for how a player’s preferences will shift as they play a game, the
ExpM will not be able to make accurate observations of the player due to the bias
in the environment. In this chapter, I show that detecting a shift is possible with a
fairly high degree of accuracy and that a lack of shift can be ignored. I developed
a means to detect such a shift and show that it is better than existing novelty de-
tection methods for my data. For future work, this system could be expanded to
include a second stage to confirm a shift exists, as recovering the player’s preferences
too often may be disruptive to the player. This would act as a hybrid of preference
shift detection and player model recovery, combining elements from both. As such, a
system that can confirm that a shift has happened with less disruption will allow for

30



a significantly better playing experience while still being able to adapt to unexpected
shifts in the player’s preferences.
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Table 3.1: The mean and standard deviations of the likelihood that a shift is correctly
detected. Bolded are the best performing for each category.

Agent EE LOF SVM Mine (1) Mine (10)
Fast

Environment to Environment Action Types
Exploration 0.84±0.36 0.91±0.29 0.93±0.25 0.94±0.23 0.94±0.25

Goal 1.00±0.00 1.00±0.00 1.00±0.04 1.00±0.00 1.00±0.00
Novelty 0.98±0.13 0.95±0.21 0.97±0.16 1.00±0.06 1.00±0.06

Missing to Environment Action Types
Exploration 0.89±0.31 0.89±0.32 0.83±0.37 0.99±0.09 0.99±0.09

Goal 1.00±0.04 1.00±0.00 1.00±0.06 1.00±0.00 1.00±0.00
Novelty 0.97±0.17 0.89±0.32 0.91±0.29 1.00±0.00 1.00±0.00

Environment to Missing Action Types
Exploration 0.79±0.41 0.84±0.37 0.97±0.18 0.90±0.30 0.87±0.33

Goal 0.99±0.11 0.99±0.08 0.96±0.19 0.42±0.49 0.36±0.48
Novelty 0.96±0.19 0.85±0.36 0.99±0.10 0.79±0.41 0.75±0.43

Missing to Missing Action Types
Exploration 0.84±0.36 0.77±0.43 0.92±0.27 1.00±0.00 1.00±0.00

Goal 0.65±0.48 0.67±0.47 0.81±0.40 0.61±0.49 0.53±0.50
Novelty 0.80±0.40 0.58±0.49 0.86±0.34 0.95±0.22 0.94±0.23

Slow
Environment to Environment Action Types

Exploration 0.84±0.36 0.91±0.28 0.91±0.29 0.93±0.25 0.93±0.26
Goal 1.00±0.04 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

Novelty 0.98±0.15 0.91±0.28 0.95±0.21 0.99±0.09 0.99±0.09
Missing to Environment Action Types

Exploration 0.86±0.34 0.87±0.33 0.77±0.42 0.99±0.08 0.99±0.10
Goal 1.00±0.06 1.00±0.00 0.99±0.08 1.00±0.00 1.00±0.00

Novelty 0.98±0.13 0.88±0.32 0.88±0.32 1.00±0.04 1.00±0.00
Environment to Missing Action Types

Exploration 0.77±0.42 0.83±0.37 0.96±0.20 0.86±0.34 0.87±0.34
Goal 0.98±0.15 0.99±0.10 0.94±0.24 0.43±0.50 0.39±0.49

Novelty 0.96±0.19 0.83±0.37 0.98±0.12 0.81±0.40 0.77±0.42
Missing to Missing Action Types

Exploration 0.83±0.37 0.80±0.40 0.91±0.29 0.99±0.07 0.99±0.07
Goal 0.68±0.47 0.67±0.47 0.73±0.45 0.60±0.49 0.54±0.50

Novelty 0.76±0.43 0.58±0.49 0.84±0.37 0.94±0.23 0.94±0.25
No Shift

Environment No Shift
Exploration 0.28±0.45 0.14±0.34 0.08±0.27 0.43±0.50 0.45±0.50

Goal 0.31±0.46 0.34±0.47 0.24±0.43 0.90±0.30 0.91±0.28
Novelty 0.21±0.41 0.47±0.50 0.21±0.41 0.37±0.48 0.46±0.50

Missing No Shift
Exploration 0.19±0.39 0.19±0.39 0.06±0.24 0.02±0.12 0.01±0.07

Goal 0.38±0.49 0.31±0.46 0.21±0.41 0.43±0.50 0.47±0.50
Novelty 0.19±0.39 0.42±0.49 0.18±0.38 0.05±0.22 0.06±0.25

F1-Score
– 0.69 0.69 0.67 0.71 0.72

Copyright© Anton V. Vinogradov, 2024.
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Table 3.2: The mean and standard deviations of the turn the shift was detected on.
Note that the only cases where a shift was detected are included. Bolded are the best
performing for each category (lowest value for Shift, and highest for No Shift).

Agent EE LOF SVM Mine (1) Mine (10)
Fast

Environment to Environment Action Types
Exploration 129.4±11.1 125.2±09.5 127.9±09.3 116.8±09.3 126.3±09.8

Goal 120.4±01.9 120.3±02.0 123.2±01.8 112.3±03.7 121.0±03.3
Novelty 124.0±07.0 125.3±09.0 126.3±07.5 115.7±07.1 124.6±07.2

Missing to Environment Action Types
Exploration 129.2±11.1 127.8±11.4 131.5±11.4 115.1±07.1 124.6±07.6

Goal 121.3±04.1 120.5±03.0 123.9±04.5 112.1±03.6 121.1±03.6
Novelty 124.6±08.0 125.1±09.3 128.6±10.2 113.3±04.8 122.2±05.0

Environment to Missing Action Types
Exploration 130.2±11.2 126.2±10.2 126.2±07.4 118.3±10.3 127.3±10.3

Goal 122.7±06.3 121.8±05.5 125.9±06.7 123.5±12.4 133.4±12.6
Novelty 125.8±08.9 126.5±09.8 126.0±07.1 121.3±11.1 130.4±11.4

Missing to Missing Action Types
Exploration 129.6±10.7 128.3±11.1 128.6±09.3 114.9±06.6 123.8±06.4

Goal 133.5±11.7 129.8±12.1 134.0±12.1 122.3±11.7 131.3±11.3
Novelty 131.3±11.4 130.3±11.8 131.0±10.6 116.7±08.4 125.5±09.6

Slow
Environment to Environment Action Types

Exploration 127.4±10.2 125.4±09.9 127.4±08.6 116.8±09.2 125.8±09.4
Goal 120.6±02.5 120.5±02.4 123.2±01.9 113.1±04.2 121.6±03.9

Novelty 124.7±07.8 126.4±10.1 126.3±07.2 116.0±07.7 125.0±08.3
Missing to Environment Action Types

Exploration 128.0±10.9 126.8±10.5 131.0±11.1 114.7±06.9 124.0±07.3
Goal 121.8±04.6 120.5±02.6 123.7±03.3 112.9±03.8 121.4±03.5

Novelty 125.4±08.3 126.9±10.1 128.3±09.3 113.6±04.8 122.4±05.0
Environment to Missing Action Types

Exploration 131.2±11.7 126.4±10.4 126.6±07.7 121.3±10.4 129.2±10.9
Goal 122.8±06.0 122.1±05.6 126.3±07.2 125.6±11.6 134.7±12.2

Novelty 126.0±08.9 128.0±11.1 125.6±06.1 121.5±11.0 130.0±11.3
Missing to Missing Action Types

Exploration 130.0±10.9 129.5±11.6 129.0±09.5 115.0±07.2 123.8±06.6
Goal 133.9±12.0 132.6±12.3 135.1±12.8 121.5±11.4 131.3±12.5

Novelty 132.7±12.2 132.6±12.4 131.0±11.0 116.2±08.2 125.7±09.0
No Shift

Environment No Shift
Exploration 131.1±11.5 129.4±12.0 131.5±11.3 122.3±12.3 131.7±12.3

Goal 134.3±11.7 131.2±11.5 134.2±11.8 127.2±13.2 137.2±14.1
Novelty 131.6±11.9 131.3±12.8 132.0±10.8 124.6±12.4 133.4±12.4

Missing No Shift
Exploration 130.8±12.0 129.1±11.9 127.9±08.3 115.0±07.5 124.5±08.1

Goal 132.8±11.0 129.6±12.3 132.7±11.0 121.3±11.3 131.0±11.6
Novelty 131.5±12.1 131.5±12.4 131.4±11.3 117.3±09.4 125.7±09.1
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Chapter 4 Player Model Recovery

4.1 Introduction

Once a player preference shift has occurred and is detected, we still need to update the
player model to reflect the preference shift. Detecting a preference shift does not help
with understanding which way the player’s preference has shifted, and the underlying
environmental bias is still not addressed. Even if a shift is detected, we cannot recover
the player model by simply observing what actions the player is performing in the
game. Since the ExpM has altered the world’s possible actions, the player is still
selecting actions from a biased set. Thus, it is difficult to determine the player’s new
preferences without access to unbiased observations. To tackle this, I introduce a new
type of game object called a distraction, a special game object that the ExpM can
use to subtly query the player to recover the player model.

Distractions are meant to enable the ExpM to gather unbiased observations of
player behavior. As such, it is necessary that distractions can be placed in any
location and be associated with any action type. This means that distractions are
very flexible in how they can be inserted into the game world. At the same time, the
ExpM must limit how distractions are used because overuse could be problematic.
First, distractions should not be relevant to any quests that exist in the world. This
is to prevent users from interfering with quest progress by taking distraction actions.
Second, distraction actions should be used sparingly. Given that distraction actions
are very flexible, it is possible to simply overload the environment with distractions.
This allows the user to take essentially any action type, making it easy for the ExpM
to determine the player’s new preferences. The issue with this is that the sudden
influx of available actions may overwhelm the user and, in the worst case, result
in the user disengaging from the experience due to being presented with too many
choices. As such, distractions need to be delivered to the player more carefully and
in smaller amounts in an attempt to maximize the amount of information the ExpM
gathers with each distraction presented.

To do this, I reformulate the problem of the ExpM recovering the player model as
a Multi-Armed Bandit (MAB) to take advantage of the existing pool of techniques to
quickly find the player’s current preferences. The problem discussed above is similar
to the classic problem of exploration versus exploitation. If an agent explores an
environment, they will gather valuable information about said environment. This,
however, likely comes at the cost of not taking the best action at any given time
since exploration is typically random. This is similar to providing the player with
a large amount of distractions. The ExpM is, essentially, overexploring the space
to determine the player’s preferences. MAB’s ability to balance exploration and
exploitation allows me to quickly discover the player’s current preferences without
causing too many unwanted distractions. Distractions serve an important role here
as they enable this process, acting as the arms of the MAB.

In this chapter, I create and test a system based on MABs that introduces new
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objects in the game world as distractions to gather information from the player and
quickly detect a shift in the player’s preferences. To evaluate this system, I reuse the
custom text-based interactive fiction environment and the artificial agents that were
created in Chapter 3. I also use a similar set of preference switch scenarios that are
modified to better fit this method.

I find promising results in modeling the system as a MAB, but the experiments
show weaknesses in the process stemming from restrictions in MABs. So, in addition
to the MAB adaptation, I also extended this adaptation to Combinatorial Multi-
Armed Bandits (CMAB), making modifications to how the system is represented.
These are likewise evaluated in the text-based environment with the same agents
and show considerable improvements over MAB methods. The rest of this chapter is
separated into the first section, which details the methods, experiments, and results
of the MAB adaptation, and the second section, which discusses the changes made
for CMABs and their experiments and results.

4.2 Multi-Armed Bandit Based Recovery

For my experiments with MABs, I make use of the same environment and player
model as in Chapter 3. The environment contains 7 rooms that an artificial agent
inhabits, and there is a single quest that can be completed, though only one agent is
focused and likely to complete it. As before, that environment is meant to simulate
the previous involvement of an ExpM and thus has actions that are very prevalent
(talk type actions), those that are still present (look and touch type actions), and
those are missing (read and eat). Action types that are missing are still capable
of being used in the environment through distractions injected, but they are not
present within the environment initially due to the ExpM’s simulated biasing of the
environment.

The rest of this section will describe how I adapt the ExpM to MAB and give the
details on the experiments and their results.

4.2.1 Multi-Armed Bandit Adaptation

In an experience managed system, the experience manager changes the game world
using ExpM actions based on expected player behavior as defined by a player model.
If a player’s preferences change during gameplay without updating the player model,
the player model is considered outdated. Any ExpM actions made based on this
now outdated player model will not necessarily have the desired effect. In these
situations, the player model should be recovered; however, the ExpM cannot use
past observations to perform this recovery process as these player observations were
gathered in a biased setting caused by the ExpM.

To recover the player model, I propose an additional set of ExpM actions that
focus on offering the player a new set of tasks, which I call distraction actions. These
distraction actions add and remove a new type of game object to the environment, a
distraction. Distractions are a type of game object that the player can interact with.
They are similar to regular game objects but differ from other objects in that their
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purpose is not to contribute to the game. Instead, they serve to test the player’s
interest in the various types of actions so that the ExpM can gain information on the
player’s preference without relying solely on what is available in the environment.

As stated before, every object in my environment has a primary means of inter-
action called the action type, and this includes distractions. These action types form
the basis of the player model and how I represent the player’s preferences. Thus,
having distractions for each action type allows the ExpM to test the player’s prefer-
ence independently of the environment. In this system a regular ExpM action would
consist of the ExpM noticing that the player model has a high affinity to a specific
action type or types and then customizing future content to include objects with that
action type. On the other hand, a distraction action consists of simply adding or
removing a distraction corresponding to an action type to the environment.

To model this process as a MAB problem, I use these distraction actions as arm
pulls, with one arm for each action type available in the environment. At the start
of each turn, the ExpM can pull an arm, taking a distraction action to add a specific
type of distraction to the room that the player is currently in. Afterwards, the player
is allowed to act, and the outcome is whether the player interacts with the distraction
or not. This determines the reward, or payout, associated with that arm for a given
pull. For my system, I consider the player interacting with a distraction to give a
reward of 1 to the arm associated with the action type of that distraction. If the
player does not interact with the distraction, then no reward is given for that turn,
even if the player interacts with a game object of the same type. The mean reward
is then calculated as the total number of times a player interacts with a distraction
of a given action type over the number of times that action type has been given.

While the experience manager provides distractions, the player constantly makes
choices about which object they want to interact with. The ExpM observes these
actions to form an action history, which contains a turn-by-turn record of what ob-
jects the player interacted with (if any), if these objects are distractions, and what
the action type of the object is. Previous observations of the player may be biased
since the player’s actions are limited by what is available in the environment, and
the environment has been influenced by the ExpM’s past actions. Since I want the
observations to be as unbiased as possible, I only consider a truncated version of the
action history, only including the actions that happened after the ExpM is sure that
the player’s preferences have shifted. For my experiments, this shift point is simu-
lated and known to the ExpM instead of being detected. The ExpM then calculates
a dynamic player model by finding the frequencies of each action type within the
truncated history.

By formulating player model recovery as a MAB problem, this allows me to uti-
lize algorithms designed to efficiently learn the expected payout of each arm (here,
essentially the probability that the player interacts with this distraction). Formally,
each algorithm does this by minimizing the total regret over an execution episode,
where regret is defined as the difference between the maximum total payout that
could be achieved by pulling the best arm each turn and the payout that the agent
actually received. This ensures that the ExpM will be offering as few distractions
as is necessary to gather the information it needs to be able to effectively provide
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distractions that the player is likely to take.

4.2.2 Distractions

Distractions themselves come with some restrictions on how they should be designed,
which may make them difficult to develop. I have stated before that distractions need
to not contribute towards the game, only serving as a means for the player model
recovery system to take unbiased observations of the player’s actions. To put this
more formally I expect that distractions:

• will need to be largely irrelevant to important parts of the game like quests so
as not to interrupt any authorial goals

• will need to be carefully designed to not entice an engaged player while dis-
tracting unengaged players

• should represent a type of action or style of play in the game (it’s action-type)

The first item is inherited from one of the purposes of experience management: to
balance the sense of player agency and needs of authorial goals. Given the nature of
distractions as something that could be potentially distracting I suspect that they are
likely to interfere with authorial goals, either due to being mistaken as quest objects
(which may lead the player to carry them looking for a use) or just by shifting the
player’s focus away from what the author wishes for them to be engaged in for too
long. To combat this all the distractions are designed to resolve themselves in a single
round, and then be removed from play. This is safe to do with the agents as they do
not mind objects disappearing unexpectedly, but I will revisit this later for human
subjects. I also ensure that distractions are only used when they are needed for this
system.

The second item is largely meant as a safety measure in the case of a false positive
for a shift detection. Part of this is accomplished by limiting the amount of distrac-
tions used, for which the MAB methods is a single distraction per round. Players
that are engaged in their current task are likely to continue engaging if there are
minimal distractions, but if the environment is full of them the likelihood that the
player will notice at least one is increased. Since the MAB methods get a reward
when the player interacts with distractions it will then give more distractions of that
type, which may throw an engaged player off their previous task. By limiting the
amount of distractions I can make this possibility less likely to happen and preserve
authorial intent and not disturb engaged players.

The third item is meant to ensure the distractions use as a measurement tool. To
be able to give the MAB a reward for an action type, the distraction must match
the action type that is being rewarded. For artificial agents this is simple as it only
requires that the distraction is internally labeled as a distraction with a specific type,
but for a human subject this may be more of a challenge. For the agents distractions
are generated programmatically with a script as the agents do not look or judge the
method of interaction, the name, nor the outcome of the distractions.
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Figure 4.1: Mean JS Distance between Player Model and Agent Preferences vs. Turn
for Exploration Focused Agent

4.2.3 Experiments

With these experiments I intend to show that using MABs I can quickly recover a
player model, which in conjunction with Chapter 3 have a complete proof of concept
system that can detect a preference shift and recover the new preferences in the
form of a player model. I will demonstrate this by measuring the rate at which the
calculated player model converges to a new value and how close it can get to the true
player preferences. To do this I use the same 3 agents as in Chapter 3: the Exploration
Focused Agent, the Novelty Focused Agent, and the Goal Focused Agent. Each of
these agents has an underlying preference distribution that describes the likelihood
to engage with certain types of actions which is dictated by the scenario. While
the agents remain unchanged, the preference shift scenarios are slightly different to
better suit player model recovery. I still consider all possible preference shifts from
preferring primarily a single action type to shifting to a different action type, but
I no longer consider the no-shift category. Likewise, since the methods explicitly
ignore any data before the preference shift has occurred, the speed of the shift is not
considered, reducing the total number of preference shift scenarios to 20. These 20
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Figure 4.2: Mean JS Distance between Player Model and Agent Preferences vs. Turn
for Goal Focused Agent

scenarios are also categorized into 4 group scenarios: Environment to Environment,
Missing to Environment, Environment to Missing, and Missing to Missing.

For the sake of consistency, each of these preference shifts is structured the same,
consisting of 100 turns of a pre-generated history that is shared between agents for
a given scenario. This history exists to reduce the computation time needed to
run these experiments, as the addition of ExpM intervention would otherwise take
a prohibitively large amount of time. The 100-turn history consists of 90 turns of
the pre-preference followed by 10 turns of the post-preference. These 10 turns are
introduced to simulate the time it takes to detect a preference shift. It is unlikely that
a preference shift can be detected this quickly or consistently, but as stated earlier,
the methods that I use ignore data before the preference shift, so I consider it valid
to use. This pre-generated history is created using the Goal focused agent.

After these 100 turns of history the ExpM is activated and is allowed to take
actions. These are not full ExpMs, only implementing the necessary parts to recover
the player model, and will be referred to as managers to distinguish this. I include
three managers as baselines: the One-of-Each manager, which provides one of each
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Figure 4.3: Mean JS Distance between Player Model and Agent Preferences vs. Turn
for Novelty Focused Agent

of the distraction objects each turn; the Random manager, which provides a random
distraction each turn; and the Provide-Missing manager, which provides a distraction
that is least represented in the current area. I expect the One-of-Each manager to
perform the best as it breaks from my requirement of minimizing the number of
distractions given. Thus, it serves as an upper bound on the performance of how
fast a manager can expect to reconstruct a player model. The MAB managers each
implement a different MAB algorithm, of which I use 3: ϵ-greedy (ϵ = 0.2), UCB1-
Tuned, and Thompson. The details of these algorithms are present in the background
section for MABs in 2.3.2. These were chosen after testing several different algorithms
including ϵ-decreasing, various ϵ values for ϵ-greedy, and UCB1. Of these, I found
that UCB1 performed significantly worse than other baselines, ϵ-decreasing performed
similarly to the others but was slightly worse and that the optimal value for ϵ-greedy
is 0.2. As stated in Section 2.3.2, UCB1 generally underperforms compared to UCB1-
Tuned due to the tuned variant selecting selecting high-variance options more often.

I measure the agent’s preferences against the calculated player model by treating
each as a probability distribution over action-types and use Jensen–Shannon (JS)
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Agent Random Provide-Missing ϵ-Greedy UCB1-Tuned Thompson One-Of-Each
Environment to Environment Action-Types

Exploration 0.354±0.249 0.292±0.205 0.269±0.339 0.295±0.282 0.211±0.250 0.019±0.013
Goal 0.097±0.073 0.064±0.055 0.087±0.024 0.092±0.025 0.088±0.025 0.019±0.013

Novelty 0.255±0.162 0.232±0.136 0.163±0.118 0.171±0.126 0.169±0.108 0.181±0.055
Missing to Environment Action-Types

Exploration 0.327±0.250 0.270±0.194 0.234±0.323 0.291±0.260 0.229±0.267 0.018±0.013
Goal 0.102±0.088 0.062±0.051 0.093±0.026 0.094±0.024 0.091±0.025 0.016±0.011

Novelty 0.238±0.161 0.212±0.123 0.162±0.125 0.156±0.105 0.171±0.126 0.163±0.050
Environment to Missing Action-Types

Exploration 0.747±0.118 0.562±0.111 0.273±0.433 0.362±0.275 0.266±0.340 0.023±0.014
Goal 0.585±0.190 0.347±0.135 0.079±0.040 0.073±0.024 0.081±0.030 0.019±0.013

Novelty 0.735±0.138 0.551±0.109 0.303±0.331 0.257±0.231 0.254±0.187 0.197±0.054
Missing to Missing Action-Types

Exploration 0.747±0.107 0.568±0.119 0.260±0.378 0.350±0.287 0.268±0.367 0.022±0.015
Goal 0.570±0.200 0.363±0.146 0.083±0.039 0.079±0.023 0.075±0.029 0.018±0.012

Novelty 0.737±0.133 0.548±0.108 0.251±0.245 0.258±0.214 0.299±0.281 0.199±0.055

Table 4.1: Mean and Std. of the JS distance between player model and agent pref-
erences on the final turn for all tests. Bolded entries represent the best performing
manager (excluding One-Of-Each) and italicized entries are statistically significant
and better than Random with p < 0.001 according to a Student’s T-Test.

distance to measure the distance between the two. JS distance is used because it is
symmetric and is guaranteed to have a finite value. For the purpose of this calculation,
the manager starts at turn 90 of the pre-generated history as this is the point at
which the agent switches to the post-preference, though the manager does not take
distraction actions until turn 100. For each run I first average the models over each
trial and use that averaged model to compare against the agent’s preferences. I run
50 trials for each test of agent, manager, and scenario.

4.2.4 Results and Discussion

For each test I have created a graph that measures the JS distance between the player
agent’s internal preferences and the measured player model in Figures 4.1, 4.2, and
4.3 for the Exploration Focused, the Novelty Focused, and the Goal Focused Agents
respectively. Each graph starts at turn 90 when the preferences are switched and
ends on turn 199 for a total of 110 turns. While the actions taken between turns
90 and 100 are all the same, I include them to show the effect of switching between
the different groups of preferences. I will discuss these figures by first addressing the
performance of the baselines, then the MAB-based managers, and finally, some of the
effects of different agents and scenarios.

Scenario Differences In the -to Environment scenario groups, I find that since
the environment already provides the agent with objects that match its preferences,
there is not much information that can be gained. This is especially true when going
from Missing Actions to Environment Actions where this trend is followed by a quick
increase in the distance between the player model and the agent’s preferences seen in
Figures 4.1 and 4.3. This is especially prevalent in the Novelty Focused Agent, as it
prefers objects that it deems novel. Since the manager has not taken any distraction
actions before turning 100, the sudden addition of distractions means that it will
likely start to interact with them instead of solely in accordance with its preferences.
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These two scenario groups represent a situation that does not need ExpM intervention
as the current environment is still well suited for the player despite their preference
shift.

The scenarios going -to Missing represent the cases that are more appropriate for
intervention via ExpM distraction actions. In these cases, the environment is not well
suited for the types of actions the agent prefers, and thus without intervention the
user’s calculated player model will continue to drift further from their preferences. I
do not consider the existence of the former scenario group to be an issue as going to an
environment action type would not trigger the need for the ExpM to take distraction
actions. Going forward I will be focusing on these the -to Missing scenario groups
unless noted otherwise.

Manager and Agent Differences The best performing manager is the One-Of-
Each manager. This manager serves as a lower baseline, with the unfair advantage
of being able to provide multiple distractions simultaneously. Multiple distractions
prevent the agents from moving, as they will never fall back to their default behavior,
with the exception of the Exploration-Focused Agent, which still has a small chance
to move. This manager serves as the lower bound on JS distance and outperforms
ever other manager in nearly every case.

The random manager is the other baseline, and it serves as a pure exploration
option. I find that for the -to Missing scenario groups, all of the managers are statisti-
cally better than this manager, as shown in Table 4.1. This shows that attempting to
only explore and gather information does not lead to better results and that a balance
must be made to be able to quickly recalculate the player model. For the Novelty
and Exploration Agents giving the player agent completely random distractions just
serves to distract them without gaining any information. The Novelty Agent will
focus on the distractions since they are new, while the Exploration Agent may choose
to wander instead of interacting, lowering its chance that it would interact with the
distraction.

The provide-missing manager works differently than the other baselines as it is
informed, but also differently than the MAB managers in that it does not try to gain
information from the player. It serves to test the importance of only compensating for
bias in the environment as it tries to provide a distraction for the least represented
action type. While it performs statistically better than random, even sometimes
in the -to Environment scenario groups, it does significantly worse than the MAB
managers. This suggests that environmental bias is a factor and that observing the
environment should play a part in how a manager chooses a distraction. This will be
addressed in the next section detailing the transition to combinatorial bandits.

While the MAB managers perform very similarly, there are some slight differences
between them. UCB1-Tuned often has a slight lead but this does not persist, and
Thompson is slower to achieve the same performance as the rest but sometimes beats
out UCB1-Tuned. The most consistent is ϵ-greedy, but this does not result in the
lowest score at the end.

In some rare specific cases I found that the MAB managers are actually capable
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of performing better than One-Of-Each. This can be seen with the Novelty Focused
Agent in the -to Environment scenario groups on most MAB managers in Table 4.1.
The MAB managers have an average reward value for each arm, which often corre-
sponds to the agent’s preferences, but in rare cases, the average reward is higher for
the preferred action type than the agent’s preferences. While exploiting its knowl-
edge, the manager (especially ϵ-greedy) only pulls the arm with the maximum average
reward, which causes the calculated player model to overshoot the player’s preferences
if not correctly tuned. This overshooting effect is also why we see the performance
of the MAB managers in the Goal Focused Agent (Figure 4.2) start to get worse
around turn 140. Here, the distance lowers quickly because the average reward dis-
tribution has already overshot the player preference distribution, and continuing to
give distractions to the player actually gives them too many.

While the performance is promising, there are limitations to this approach. Only
being able to play a single arm does help with reducing the number of distractions
used per turn, but it also only allows the algorithm to observe whether the player
prefers the distraction over the environment, requiring more turns to deduce the best
distraction. The MAB methods also do not take into the environment, only rewarding
the MAB for environmental actions when the player interacts with a environmental
distraction. These limitations both require more distractions to be played at a time,
which can be constructed by considering each pair of distractions as an arm, but the
CMAB framework provides a better solution.

4.3 Combinatorial Bandit Based Recovery

As stated, while the results from the MAB experiments are promising, there is a
limitation inherited from adapting the system as an MAB: Only a single distraction
can be used per turn. While it is my goal to minimize the number of distractions used,
using too few may be too restricting in the amount of information that can be gained
per turn. To combat this I have extended the MAB framework to a combinatorial
MAB framework and have leveraged of the CUCB algorithm [7] to recover the player’s
preferences.

4.3.1 CMAB Adaptation

CMABs are an extension of MABs which adapts the problem to a combinatorial
framework. This allows for the use of multiple arms, but more notably allows for
the algorithm to gain more information with more arms played, making observations
not only on if the player prefers the distraction over the environment, but also which
of the distractions are preferred. Similarly to MAB adaptation, for CMABs I still
make use of the same set of ExpM actions to add distractions to the environment,
though this time allowing for more than a single distraction to be added. Multiple
distractions are played with each being a single arm, the collection of multiple of these
arms played in a round forms a super arm, which is played. Based on how the agent
interacts, a reward is given, with a reward of 1 given to the arm that is interacted
with in that round. This means that the individual arms within the super arm are
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not rewarded together; only a single arm within the super arm gets a reward. If the
agent has not interacted with any distractions in that turn then no reward is given
to any arms that round.

In the previous section, I discussed how there is some limited success in solely re-
ducing the bias of the environment in the form of the Provide-Missing manager, and
this was used as inspiration for an additional improvement: replace-with-environment-
action. With this improvement active, a super arm containing a distraction with an
action type already present within the current area will have the distraction replaced
with the matching environment action. Instead of adding a distraction of that over-
lapping type, the algorithm considers any action taken of that overlapping type in
that round to count towards that distraction. This reduces the number of distractions
added early on to around 1.7 per round in the first 10 turns, though as the algorithm
gains more information, it starts to rarely need to take an environment action, and
thus, this decreases to an average of 1.95 after the first 10 turns.

To illustrate this through an example, consider an agent that prefers to interact
with talk actions, which are the most prevalent action types in the environment.
Without replace-with-environment-action if the agent is given a distraction for talk
and read, the agent may still not interact with the talk distraction, instead opting to
interact with a talk action that is already present in the room. With the replace-with-
environment-action option set the talk distraction is never added to the room, instead
all talk actions in the room for that round will be considered as talk distractions. If
the agent then interacts with a talk action, the CMAB algorithm will count this as a
reward towards talk distractions, and no reward for read distraction.

4.3.2 Experiments and Results

This second round of experiments mirrors the first in that they use the same agents
and the same preference shifts. The preference shifts in the scenarios are the same,
but the new managers are run with a newly generated history for each scenario. The
main difference is the introduction of three new managers, which I compare against
the previous best, ϵ-greedy (ϵ = 0.2), and the optimal possible baseline, One-of-
Each manager. The three new managers are dedicated to testing variants on CUCB:
one where a super arm consists of 2 distractions (k = 2), another with a super
arm of 3 distractions (k = 3), and the last where a super arm only has 2 or fewer
distractions using my replace-with-environment-action strategy (k = 2, rwea). All of
these ExpMs calculate the player model the same way, by measuring the frequency of
types of actions that the player takes starting when the ExpM thinks that the player
has shifted their preference.

For each combination of the 5 ExpMs, 3 agents, and the preference switch scenar-
ios, I ran 100 trials, up from the 50 for the MAB experiments, and measured the JS
distance, comparing the agent’s internal preference to the ExpMs calculated player
model. I present and discuss only the results from the previously identified most
realistic scenario Environment to Missing (Figure 4.4, but include a full set of results
for completeness at the end of the chapter in Figures 4.5, 4.6, and 4.7 . I also report
the JS distance on the final turn in Table 4.2 to match the MAB results, and the
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Figure 4.4: Mean JS Distance between Player Model and Agent Preferences vs. Turn
in the Environment to Missing Scenario

turn that a minimum JS distance was found in Table 4.3 as the new results require
more context to explain their performance.

Manager Differences While the best performing manager still is the One-Of-Each
manager, I do find that the differences between it and the CUCB based managers are
much closer than before, and giving only two distractions at a time already provides
significant benefits over the previous best, ϵ-greedy (ϵ = 0.2). This is expected
as giving more distractions allows the manager to gain more information, taking
advantage of not just if the player agent interacts with a distraction but also which
of the distractions it chooses to interact with.

For CUCB, both k = 3 and k = 2 when replacing a distraction with an environ-
ment action are capable of getting surprisingly close to One-Of-Each in all agents.
Replacing a distraction with an environment action was developed to reduce the
number of distractions shown each turn. This reduced the number of distractions
from 2 to an average of 1.93, though this value is around 1.3 for the first couple of
turns. Later, the manager has enough information about actions in the environment
that it does not need to play them as often, so replacement only occurs rarely. I
expected that this would negatively affect this strategy’s ability to recover the new
preferences, but I found that it actually increased its ability. Without replacement,
when the agent interacts with the environment, no reward is given for any of the
actions in the environment. In replacing a distraction with an environment action, I
allow any object that the agent interacts with to count as a reward for the CMAB
algorithm. This allows it to watch for more actions than before and naturally fill
in action types that are underrepresented due to the environment’s biasing. This
indicates that replacing an arm with an existing environment action may be a good
strategy for MAB-based managers, but without an alternative distraction to test
alongside, it may unintentionally cause issues with more goal-focused players.

Agent Differences I find that the difference between agents largely mirrors the
MAB experiments, including the previously seen effect where the distance between the
agent’s internal preference distribution and the measured preference distribution hits
a minimum value and then starts to increase. This is attributed to the MAB gaining
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enough information on the preferences that it started to give the highest valued
action type almost exclusively, though was often only seen in the other scenarios.
In these tests, we see that this effect is also present, even in the Environment to
Missing scenario in the Exploration-focused agent for everything but the ϵ-greedy
manager. This suggests that for this agent, the strategies that exhibit this effect are
capable of identifying the new preference within 20 turns of the ExpM activating, and
this is likewise because one of the distractions given is almost always the preferred
distraction. Other agents do not exhibit this effect, which I take to mean that they are
significantly more difficult to recover the player’s preferences for. For both the Goal
and Novelty focused agents this is likely because they will default to environment
actions when they are not given an action that they wish to interact with, thus
skewing the data in favor of environment action types.

This overshooting effect does skew the data, no longer making Table 4.2 an ac-
curate representation of the overall performance of the managers. For the Goal and
Novelty focused agents, I find that both ϵ-greedy and the CUCB managers continue
to trend downwards, never reaching their maximum, but for the Exploration agent,
the CUCB managers recover the preference too quickly and then overshoot, causing
the distance on the final turn to be lower than for ϵ-greedy. To remedy this I have
also included average turn on which the minimal distance value was found for each.
Making use of the average turn a minimal distance was found in Table 4.3 we can see
that for the Environment to Missing section the Exploration focused agent measures
the best, beating out ϵ-greedy. This table likewise does not paint the full picture,
though, as it shows that ϵ-greedy seems to outperform the Goal focused agent, but
this is due to the other managers trending downwards till the final turn, never hitting
a minimum.

Overall the need to analyze these results on which turn they reached a minimum
value indicates that the CUCB methods far outperform the non-combinatorial meth-
ods earlier. The previous methods additionally were far from the optimal baseline of
the One-Of-Each manager while the CUCB based ones start to overlap with it. The
replace-with-environment-action option, which itself is only possible with the CMAB
approach, solves one of the previous issues with the MAB approaches in that it can
make use of how the agent interacts with the environment and considerably improves
performance, occasionally past what the CUCB can do with 3 distractions played per
round.

4.4 Conclusion

In the previous chapter, I have shown a method to detect the presence of a preference
shift, but finding a preference shift is only part of the process. In this chapter, I
have created a method to recover the player model after a detected preference shift.
This method uses active intervention by the experience manager and a new type of
game object called a distraction. This method has been shown to work with artificial
agents taking the place of human players. This method is based on MABs and allows
the ExpM to use distractions to both gain information on the player’s preferences
and use that information to allow the player to interact in their preferred way. This
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method was then further refined to use Combinatorial MABs, which increased its
performance. This allowed for a modification to reduce the number of distractions
used while increasing performance.
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Figure 4.5: Mean JS Distance between Player Model and Agent Preferences vs. Turn
for Exploration Focused Agent

Copyright© Anton V. Vinogradov, 2024.
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Figure 4.6: Mean JS Distance between Player Model and Agent Preferences vs. Turn
for Goal Focused Agent

Agent ϵ-Greedy , ϵ=0.2 CUCBM CUCBM-rwea CUCBM-k,3 One-Of-Each
Environment to Environment Action-Types

Exploration Focused 0.169±0.045 0.192±0.033 0.175±0.072 0.213±0.016 0.223±0.010
Goal Focused 0.136±0.025 0.102±0.029 0.068±0.025 0.085±0.027 0.062±0.022

Novelty Focused 0.189±0.037 0.177±0.035 0.208±0.034 0.173±0.033 0.190±0.029
Missing to Environment Action-Types

Exploration Focused 0.161±0.038 0.183±0.029 0.170±0.073 0.201±0.014 0.211±0.009
Goal Focused 0.134±0.025 0.103±0.030 0.069±0.025 0.084±0.027 0.065±0.023

Novelty Focused 0.198±0.039 0.182±0.036 0.212±0.034 0.179±0.035 0.195±0.030
Environment to Missing Action-Types

Exploration Focused 0.104±0.039 0.135±0.025 0.174±0.038 0.176±0.018 0.205±0.018
Goal Focused 0.119±0.029 0.089±0.028 0.070±0.025 0.076±0.027 0.067±0.023

Novelty Focused 0.259±0.076 0.240±0.047 0.200±0.037 0.206±0.037 0.209±0.036
Missing to Missing Action-Types

Exploration Focused 0.099±0.030 0.131±0.020 0.178±0.048 0.174±0.014 0.205±0.013
Goal Focused 0.120±0.032 0.092±0.031 0.069±0.024 0.076±0.026 0.066±0.023

Novelty Focused 0.263±0.074 0.247±0.048 0.209±0.033 0.213±0.037 0.218±0.033

Table 4.2: Mean and Std. of the JS distance between player model and agent pref-
erences on the final turn for all CMAB tests. Bolded entries represent the best
performing manager (excluding One-Of-Each) and italicized entries are statistically
significant and better than ϵ-greedy with p < 0.001 according to a Student’s T-Test.
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Figure 4.7: Mean JS Distance between Player Model and Agent Preferences vs. Turn
for Novelty Focused Agent

Agent ϵ-Greedy , ϵ=0.2 CUCBM CUCBM-rwea CUCBM-k,3 One-Of-Each
Environment to Environment Action-Types

Exploration Focused 115.45±6.79 112.84±3.08 120.98±9.44 108.51±1.27 106.82±0.39
Goal Focused 117.52±7.83 129.78±10.26 149.47±12.99 138.23±11.25 148.90±11.03

Novelty Focused 107.64±7.83 110.80±9.44 104.91±5.99 112.02±9.30 104.24±4.70
Missing to Environment Action-Types

Exploration Focused 124.43±9.33 120.56±4.48 130.81±11.16 114.06±2.83 112.58±0.48
Goal Focused 131.62±9.02 150.17±9.95 171.21±9.82 158.90±12.00 172.54±10.56

Novelty Focused 117.50±8.69 122.88±10.10 113.27±8.48 125.05±10.86 118.87±9.29
Environment to Missing Action-Types

Exploration Focused 164.66±6.85 141.76±2.81 128.62±4.52 125.44±1.02 116.08±0.57
Goal Focused 156.63±8.83 162.83±7.92 165.66±7.80 164.17±7.89 167.42±7.93

Novelty Focused 148.89±10.96 153.68±9.89 155.99±8.89 153.67±10.55 148.35±11.21
Missing to Missing Action-Types

Exploration Focused 178.81±14.96 149.60±5.02 133.21±7.12 130.49±1.88 119.04±1.07
Goal Focused 168.15±15.50 178.43±15.63 179.84±14.81 174.53±16.97 182.43±13.48

Novelty Focused 171.25±20.31 174.34±18.47 171.26±16.16 171.73±18.14 164.10±20.70

Table 4.3: Mean and Std. of the average turn a minimum JS distance was measured
between player model and agent preferences for all CMAB tests. Bolded entries
represent the best performing manager (excluding One-Of-Each) and italicized entries
are statistically significant and better than ϵ-greedy with p < 0.001 according to a
Student’s T-Test.
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Chapter 5 Human Study Verification

5.1 Introduction

In the previous chapters, I have demonstrated that an ExpM can automatically detect
preference shifts and recover the player model afterward, but thus far, this has only
been tested on automated agents. These agents are designed to mimic several aspects
of human-like behavior but do not represent the full breadth of complexity that
humans are capable of. For this reason, I have opted to use a human subject study
to ensure their validity in humans as well.

Unfortunately, this process is not simple as the methods developed thus far have
been prototyped with the artificial agents in mind, often with no regard to the parts of
human behavior that are explicitly not modeled by the agents. Artificial agents do not
require a cohesive environment, do not need quests that follow a logical progression,
and are able to prefer any set of actions that they are instructed to prefer. Humans,
on the other hand, are less likely to seriously engage with the environment when it
contains arbitrary unexplained elements, need to have enough information to reason
out the next step in a quest, and may have trouble preferring not to read in a text-
based game. Thus, these elements need to be reworked to be compatible with human
subjects.

In addition to the rework of the environment, I also have limited resources which
restricts the design of the experiment. Since I am interested in validating the results
of the artificial agents experiments, I have opted to perform a single experiment on
human subjects to test the Player Model Recovery (PMR) process. Unlike Preference
Shift Detection (PSD), PMR requires active intervention by an ExpM, so the initial
experiment will be used to validate PMR, and a portion of the data that the ExpM
does not act upon will be amalgamated and resampled to create synthetic human-like
data to validate PSD.

Furthermore, the PMR verification study works around the limitation of resources
and participant availability, taking on a somewhat limited scope. Instead of designing
an entire game and waiting for the player to exhibit a preference shift—a likely rare
occurrence—I have instructed participants to take on a given preference and shift to
a new preference after a certain number of turns. This allows me to gather more
data from a larger group of participants while having an accurate understanding of
where a preference shift is allowing for the ExpM to be able to handle it without
confounding factors.

The rest of the chapter will lay out these parts. First, I will discuss the necessary
changes to the environment and the distractions to make them compatible with hu-
man players. Then I will outline the experimental setup for PMR study on human
subjects, and will include a part on how I reuse a portion of the data to test PSD.
Finally, I will report on the results and discuss the conclusions that can be drawn
from the data and the participants, along with the limitations of the study.
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5.2 Human Player Modifications

Since the managers and method are built around text based interactive fiction games,
I have opted to continue using Inform7 as the basis of the human study experiments.
This allows for easy expansion and prototyping and is suitable for playing even by
people with little experience with video games. In this section, I will go over the
modifications made to the test environment to make it human-playable.

5.2.1 Environment

Early tests showed that the environment used with the agents was too small to be
used for human players, which may lead a player to grow bored and disengaged and
make it difficult to validate the performance of the methods. The agent’s version of
the environment only contains 7 usable rooms, 3 of which are locked off to simulate
environmental biasing by the ExpM, and a single task that can be done in a handful
of turns if the player focuses on it. To expand this to be human-compatible, I have
instead decided to start with a different set of rooms. For the human study version,
the map (Figure 5.1) now contains an increased 36 rooms arranged in a 6 by 6 grid.
These 36 rooms are organized into 4 regions each containing 9 rooms: The forest
region (NW), caves region (NE), village region (SW), and castle region (SE). The
player starts near the center of the map, in the northeastern part of the village region
with Merchant Hargrove, a quest giver NPC.

Alongside these 36 new rooms I have opted to change the action types. The
previous set of action types was heavily inspired by the built-in set of verbs that
are possible in Inform7 and other adventure games (Figure 3.4). While these were
suitable for artificial agents, it would be difficult to claim that a human would prefer
to interact with an object by either looking at it, speaking to it, or touching it, as
these are often necessary to do in tandem to complete any given task or are very
context-sensitive, like reading and eating. Instead, the new action types represent
more abstract ideas and methods of playing a game and are designed to match the
types of playstyles that can be found in modern games like The Elder Scrolls V:
Skyrim. The new action types are: Diplomacy, Crafting, Combat, Stealth, and Magic.

These action types are also distributed differently than before, as I have access
to fewer gameplay traces. Artificial agents can be made to run through the envi-
ronment any number of times, with the combined number of trials, scenarios, and
agents reaching into the thousands for previous experiments. For human players, I
can only ask them to participate in the experiment once, which limits which action
types take the focus in the experiment, and thus only diplomacy and combat are
considered environmental action types, with the other three considered missing, only
being present within distractions.

In addition, the quests available to the player have been expanded. These are
designed to take multiple steps each and exceed the approximate number of turns
it takes for the player to shift to their second preference. The first quest involves a
merchant in the starting room asking the player to retrieve a gem from the caves.
By continuing to talk to the merchant, the player is informed where to go, which
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Figure 5.1: The expanded map for the human environment. The participant starts
in the Village Outskirts (VO) and is tasked with retrieving a gem from the Secret
Mining Shaft (SM) in the upper right, finding a way to bypass a group of miners
blocking the path.

takes them past the second NPC quest giver on their way to the caves region. If the
player tries to go there early, some miners block the path, but talking to them after
accepting the quest unlocks the path to the rest of the caves, allowing the player to
explore, retrieve the gem, and bring it back to the merchant. The second quest is
similar in length and exists in case some players finish the first quest too quickly. The
second NPC quest giver, Eldrin Leafwhisper, is in the beginning of the forest region
and asks the player to settle a dispute between two factions of Forest Fae: the Sylvan
Sylphs and the Verdant Sprites. The two factions are located in separate rooms,
and the player can ask for directions from Eldrin to help navigate. The player can
choose to follow up by talking to to the leader of either (or both) of the factions and
is tasked with uncovering some information about a sacred idol in a nearby room.
The minimum amount of turns needed to complete both quests is 40 turns, twice
the amount of turns before they are asked to switch their preference, but with extra
dialog to explore the player is likely to only complete one of the quests.

5.2.2 Distractions

Since I have a new set of action types, I create a new set of distractions to match. For
each type, I created at least 20 distractions, a sample of which can be seen in Table
5.1. Some action types have more distractions, with crafting having 40 because it
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was the action type the participants were tasked with preferring after the preference
shift. These are more likely to be used as the manager learns that the player prefers
crafting and I wanted to ensure that the player is unlikely to see a repeat.

In preliminary experiments, I found that the previous requirements I outlined for
distractions were not suitable for human players and led to players often learning to
ignore them or never noticing them in the first place. I attempted to keep distrac-
tions as unimportant as possible and have them resolve themselves in a single turn.
This attempt to not interfere with regular gameplay as much as possible led to the
game being designed to end in a soft failure outcome, not punishing the player for
interacting with a distraction but never rewarding the player either. For example, a
combat object might be a piece of equipment that the player can take, but for a dis-
traction, the object would be old, and attempting to pick it up would have the player
character either reject it for being useless or disintegrating when they try to pick it
up. Constant negative outcomes for the player were discouraging, so to rectify this,
I rewrote the distractions so that most include a soft success, rewarding the player
with some resource like experience points or crafting materials, though due to the
short length of the experiment, these values are never tracked which can be seen in
Table 5.1 with “+1 iron” and “+1 cloth” for crafting. To not make the distractions
too enticing, some distractions still end in a soft failure, like attacking a “strange
goblin” as seen in Table 5.1, which ends up being just some branches.

Distraction type Distraction Action Resolution

Combat
Attack Strange Goblin

As you approach the figure it turns out to be several branches vaguely
in the shape of a goblin.

Attack Deer You quickly take down the deer. +10xp, +3 rations.

Crafting
Take Meteoric Iron You have acquired +1 iron.
Take cotton cloth You have acquired +1 cloth.

Diplomacy
Help Hungry Beggar

You give some food to the beggar, who eats it gratefully and blesses
you for your kindness. +1xp.

Help Trapped Frog
You carefully free the frog from the crevice, and it hops away with a
thankful croak. +2xp.

Magic
Pray at idol statue

Your heart is warmed by the god’s blessing and you are filled with
peace and courage. +2mp.

Touch mystical vine The vine’s light pulses stronger, and you feel a rush of vitality. +1hp.

Stealth
Steal coin purse

You decide to take the whole thing +10gp, though you discard the coin
purse itself after you extract the contents.

Pickpocket snoozing man
The man reeks of alcohol and is absolutely conked out, but unfortunately
you do not find anything of use on him.

Table 5.1: An example of distractions used in the human study. Distractions are
designed to resolve themselves after a single interaction and to sometimes give the
player a small reward. These rewards are bolded in the resolution and were displayed
as bolded for the player though their values are not tracked for this experiment.

I also found early on that human players can have difficulty distinguishing between
types of distractions. For example, some early distractions for stealth included items
that the player could pick up or NPCs that the player could steal from, which led
to a wide variety of different looking actions that all were considered stealth. For
something like a smoke bomb, it is not readily apparent to a player who prefers
stealth that this is related to stealth and was occasionally mistaken for a combat
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item. The solution I found was to restrict how the player would interact with each of
the distractions, modifying it so that the only way to interact with combat actions
was to attack, for crafting to take crafting materials, diplomacy to help animals and
humans, and stealth to steal and pickpocket. Along with these, the player is hinted as
to how to best interact with the distraction within its description when it is not clear,
which was helpful for magic distractions as they had more methods of interaction.

These preliminary tests have led me to update the requirements for distractions.
Now distractions need to be:

1. largely irrelevant to important parts of the game like quests so as not to inter-
rupt any authorial goals

2. carefully designed to not entice an engaged player while distracting unengaged
players

3. represent a type of action or style of play in the game (the distractions action
type)

4. readable: clearly recognizable by the player as belonging to their given action
type

Another problem with the use of distraction for the artificial agents was that I
was able to add distractions each turn and remove them before the start of the next
turn. For human players this could be jarring if they were alerted to the addition of
new objects to the room, or the distractions would be ignored if they were not and
the distractions were added silently. To avoid this, I have opted to add distractions
on a more natural border when the player moves between rooms. The player would
already need to read the room description to understand what is in the room when
they move, allowing them a chance to be informed about any distractions added
during that time.

This change requires that I modify the CMAB adaptation. Now, a round is
counted as a variable number of turns delimited by the player’s moving to a different
room. This also increases the possibility that the player can interact with multiple
distractions or with the same distraction multiple times. To prevent the possibility
that the player can interact with the same distraction more than once, distractions
are resolved within a single turn, removing them from play afterwards. However, the
ability for the player to interact with multiple distractions is kept intact. Instead,
the reward for the super arm is modified to give a reward of 1 for every distraction
that was interacted with in that round.

5.3 Experimental Setup

Since the experiment’s goal is to verify that the same trends visible in the automated
agents reflect the behavior found in human players, it largely focuses on the specific
point where those trends are visible. Instead of waiting for a preference shift to happen
naturally, I task participants to mimic a single Environment to Missing preference
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shift, with the CUCB (k=2) manager intervening after the shift. This study was
reviewed and approved by the University of Kentucky’s Institutional Review Board
(IRB). I recruited 30 anonymous human participants over the course of 2 days on
Prolific to take part in this study, only restricting the location to English speakers in
the United States. Of these 30 participants, one had to be removed. This participant
was able to finish the task, but the majority of actions they attempted to take caused
errors as they did not use the syntax necessary for Inform7 games. This left only 22
valid actions, all but one of which was just moving around the map. The entire task,
beginning with reading the instructions and ending with completing the exit survey,
was designed to take 15 minutes, but the actual median time was 17.5 minutes. The
shortest amount of time taken was 9 minutes and 59 seconds, and the longest was 40
minutes.

5.3.1 Task

The participant is first given a set of instructions to read (Figure 5.2) before they
move on to the gameplay portion of the task. In these instructions, the participant
is told to start with a preference for diplomacy type actions, with an explanation of
what kinds of interactions are considered diplomacy. Afterwards, they are instructed
to switch to prefer crafting type actions, though here they are not told when the
switch will occur. I found that not introducing the participants to which action they
should switch to would lead to some confusion on how to interact as if they had
that preference, likely due to not having enough time to consider what that sort
of interaction would entail. Afterward, the participant is told in more detail how
to interact with the game in general, and a button leads them to the game. The
participants are never informed about distractions or the existence of the manager,
but they are informed that the purpose of the study is to “evaluate the quality of
artificial intelligence systems that learn a set of preferences from a player’s actions.”

When the participant continues to the game, they are presented with the interface
seen in Figure 5.3. A panel on the left provides a short summary of the instructions,
which was included after some preliminary feedback. This summary and the header
at the top inform the participant which action type they should currently prefer.
When the participant is asked to switch their preference, an alert box appears that
must be dismissed before continuing. The task itself consists of the participant playing
through the game for 75 in-game turns. On turn 20, the participant is asked to switch
their preference, and the manager activates five turns later, on turn 25. Since the
CMAB rounds are now delimited by room changes, these 50 turns do not correspond
to rounds, with a median of 17 rounds for all the valid participants. After turn 75, the
screen switches to the exit survey, where the participants are asked their age group
and gender and to rate their experience with video games and interactive fiction
separately.
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Figure 5.2: The instructions given to the participants before they start the task.
Included is a cover letter required by the IRB on the left side, the instructions for the
task on the top right, and a more detailed explanation on how to play such a game
on the lower right.
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Figure 5.3: The interface for the game which includes an instruction summary to the
left, and a header at the top reminding the participant which action their current
preference should be.

5.3.2 Processing

During the task, the CMAB manager that I used was the CUCB (k=2) manager
since it performed well in the automated tests previously. I did not use a larger super
arm due to the worry that it may give the player too many distractions, especially
without the ability to use the replace-with-environment-action improvement, which
was left out due to technical constraints. To be able to host the experiment on the web
and allow easy remote access, I had to switch from using the TextWorld1 library to
communicate with game in python to the Quixe2 interpreter to communicate with the
game in JavaScript and then communicate back to python with Pyodide3 to interface
with the manager. This limited what parts of the internal game state I could access,
which no longer allowed me to automatically classify all actions for their respective
types. This was worked around for distractions, as the manager could infer their type

1https://www.microsoft.com/en-us/research/project/textworld/
2https://eblong.com/zarf/glulx/quixe/
3https://pyodide.org/en/stable/
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Figure 5.4: A screenshot of the exit survey that is given to the participant. All fields
are optional.
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by knowing which distractions it had added.
This lack of access to some of the internal state information also meant that the

actions needed to be classified afterward to calculate the recovered player model. In-
stead of manually going through each of the 2000+ actions, these were classified based
on keyword matching, generally based on the verb used, and iteratively continuing
to add keywords until every command was classified. I classified these into several
categories, one for each of the five action types and additionally move for movement
actions, and none for all the rest. The five action type categories mostly used the
verbs related to the proper way of interacting with the distraction, but I also added
extra keywords when the intent was clear (e.g. the invalid verbs “repair” and “craft”
which are clearly an attempt to craft). The largest of these categories is none and
accounts for all invalid verbs due to spelling mistakes, commands without verbs, and
valid verbs like “look” and “examine” which simply do not correspond to an action
type. For the player model calculation, I only used the 5 action type categories.

5.3.3 Shift Detection

The data collected from the human study was intended for Player Model Recovery,
but there are portions of the data that can be used to validate the shift detection
methods. The 20 turns before the participant is asked to shift their preference can
be for the baseline of the shift detection methods, and the 5 turns afterward can be
used to test the methods. There are not enough turns in either category, though, to
fill the 50 turn windows, of which I use three: one for training, another for the gap,
and the last for testing. Thus I have opted to instead to resample these to form 200
turn amalgamated human-like gameplay traces.

To do this, I combined all the turns taken by participants during the pre-preference
shift into a single group and conducted the same post-preference shift. From these
groups, I then uniformly randomly draw 100 turns, with replacement, to form a pre-
preference section and likewise for the post-preference section. This is done 20 times
to create 20 synthetic traces with 200 turns rather than 30 human traces with only
25 viable turns. I also include a modification to create no-shift traces by sampling
from the pre-preference shift for both sections, adding an extra 20 traces. These
human-like traces are then passed on to the preference shift detection methods as
normal.

These traces were tested with the same methods as in Chapter 3: Elliptic Envelope
[37], Local Outlier Factor [4], One Class SVMs [40], along with my own from Chapter
3. Each of these methods had free parameters that were fine-tuned by calculating
the f1-score across all trials and choosing the parameters that resulted in the highest
score. I found that my method works best with a threshold of 10% and a test window
of 16. For Elliptic Envelope, I tuned the test window to 20, the threshold to 90%,
and the support fraction to 0.6. For Local Outlier Factor, I tuned the test window
to 20, and the threshold to 70%, and the number of neighbors to 26. For One Class
SVMs, I tuned the test window to 16, and threshold to 95%, and also found that the
sigmoid kernel with a kernel coefficient of auto (γ = 1

n·σ2 ) works best.
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5.4 Results and Discussion

The human study results for the PMR experiment can be seen in Figure 5.6. These
results are graphed differently than the artificial agent’s results, as I wanted to better
demonstrate how this system may be used to decide on a recovered player model.
Since it is not possible to extract a human’s internal preferences with complete accu-
racy, I have instead compared the measured player model against 5 different primary
preferences. These take the form of the agent’s preferences, following the same pat-
tern of assigning 11/15 to primary preference action types and 1/15 to the other 4
action types. Additionally, since the system is sensitive to which turn the player
model measurement starts, I have opted to show it from 3 different starting points:
the beginning of the experiment, the preference shift turn, and the distraction start
turn.

The results of the PSD study can be seen in Table 5.2. This table shows the results
in a format similar to Chapter 3’s Tables 3.1 and 3.2, though are combined into a
single table. I report the turn when a shift is detected and the standard deviation for
each method when a shift is detected. I bold the best-performing turns, the earliest
turn when there are shifts, and the latest turn when there is no shift. I also report the
accuracy and standard deviation for each method split on shift and no shift, along
with an F1-Score, also bolded to show best performing. The rest of this section will
discuss these results, starting with an analysis of the exit survey.

5.4.1 Survey

The survey results, summarized in Figure 5.5, show that all the participants had
some experience with video games, though 5 participants had no experience with
text games. The participants overall had much less experience with text games,
but women were more likely to have experience in them than men. Surprisingly,
more female participants rated themselves as experienced in video games than male
participants, while the male participants tended to rate themselves as moderately
experienced. In general, there were more female participants than males, with only
a single participant identifying as non-binary. The age range was heavily skewed
towards the 25-34 range, but over a third of the participants were older than 35.

While not shown in the survey results figure, I found that gender identity and video
game experience had little to no effect on how easy the study was for the participant.
While I do not have definitive evidence for this claim, by analyzing the individual
traces of participants, I found that around half of the participants struggled with
the game regardless of gender and game experience, with only those who rated more
experience with text games having less trouble. This is most likely due to some of
these participants already being familiar with the fairly restrictive grammar that the
game requires for proper play. However, this advantage only lasted the first couple
of turns, after which there were few mistakes due to the grammar.
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Figure 5.5: Various views of the survey results
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Figure 5.6: Mean JS Distance between Player Model and 5 Primary Preference Mod-
els. A vertical dotted line marks where the player is asked to shift their preferences.

5.4.2 Player Model Recovery

The results indicate that human subjects behave similarly to the artificial agents. The
shift from diplomacy to crafting is considered an Environment to Missing preference
scenario as diplomacy is the focus of the two quests that are present in the game
and crafting is missing, which means I can compare these results to the previous
chapter’s Environment to Missing Figure 4.4. This scenario was specifically chosen
for the human study to match what I had previously identified as the most likely
scenario to be applicable to this system and allow for this comparison.

I expect that as soon as distractions are available (turn 25), I should see a sharp
drop in the distance between the measured player model and a primarily Crafting
model, while the distance to other models steadily rises starting from when the prefer-
ence shift occurred (turn 20). This trend exists when measuring from the beginning,
but there is an additional small immediate drop. This is due to some players at-
tempting to take crafting actions immediately, even though the environment does
not allow for it. I also expect the measured distance trend to eventually flatten out,
as observed in all three plots.

The results are still a bit misleading in their comparison as they are graphed
against the turn count, which in the artificial agents is synonymous with the CMAB
round but not so in the human study. This means that when combining the measure-
ments between different participants, the boundary of the rounds is not well defined.
Given that each participant played a total of 75 turns and that there is a variable
amount of rounds, the only way to collate these results would be on turn but this does
mean that a more proper comparison would be to compare the human results to the
first 20 or so turns for automated agents. When put into this perspective, the human
results seem to be considerably better, especially when the measurement starts from
the preference shift turn. The Vs. Crafting measurement flattens out around turn 40,
only 15 turns after the manager activates, compared to the agents, who take many
more turns and even more rounds to show similar results. Since CUCB requires a
5 round start up portion to play a super arm for each of the 5 possible arms, this
flattening is likely due to the participant trying to take crafting actions before they
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Figure 5.7: The number of participants that did an action type X% of the time,
before and after the preference shift.

are possible.
The behavior of participants attempting to do actions that are not possible is due

to how I have opted to manually classify what type of action a human commands.
Instead of directly examining the type of action as reported by Inform, as I can for
my automated tests, I classify actions based on the keyword that was used in the
command. This allows me to classify actions that are not actually possible in the
game, so it still counts as a crafting action when a participant attempts to “craft”
something. This was done because I found in preliminary tests that many participants
struggled to navigate the interface early on in the experiment but still wanted to
capture the intent of the commands entered instead of throwing them out. It is
unlikely that this sort of action intention interpretation is possible in non-text based
games, but it is well suited to Inform7. Instead, for games that have more limited
means of interacting with the game, other methods of observation may be possible,
like measuring the time between actions or if any meaningful progress is made towards
a goal.

This form of measuring the player’s model is also sensitive to when the system
starts measuring, as can be seen in the difference between the graphs in Figure 5.6.
Starting before the preference shift happens makes it quite difficult to distinguish
when a model can be considered recovered, as the actions taken before the shift pollute
the measurement. In the From Beginning graph, this shows as the Vs. Crafting line
only falling below the Vs. Diplomacy line around turn 55, already 30 turns after the
manager has activated. Compared to the From Preference Shift graph, the difference
is immediately noticeable, while starting even later, From Distractions Start seems not
to affect this pattern. This suggests that to be able to accurately decide what the new
player model should be, contaminated data is especially harmful, and measurement
should err on the side of starting later.

There is some evidence that some participants act in manners similar to the
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artificial agents. Informed by Figure 5.7, most participants that show some similarity
to the agents are likely to be classified close to exploration or goal oriented, though
one participant seemed similar to the novelty focused agent. Participants who acted
in an exploration focused manner preferred to move around the map rather than
interact with the environment. The number of participants performing move actions
is high, and this is expected as it is required not only to progress in the quests but
also to find new distractions. Thus, I only consider those who moved more than
50As per the figure, 8 participants chose a move action more than 50% of the time
before the preference switch, though only 4 did so afterwards. This value is lower
after the switch, likely due to the introduction of distractions. A distraction offers
the player something to interact with, even in rooms that only serve as passageways
to objectives and have no objects. A few of these participants sometimes found their
way to some of the far corners of the map, such as the castle, where there are few
objects to interact with outside of any generated distractions and a couple combat
items in the castle armory.

I would categorize participants as similar to the goal oriented agent when they
continue to try to complete the quests, thereby performing diplomacy actions, even
after being asked to switch their preferences. A total of 9 participants continued to
do a noticeable amount of diplomacy actions after the preference switch, but only
doing that action type 10% of the time, or greater than 5 times in the 55 turns after
the preference switch. These participants may not have been enticed enough with
the crafting distractions, choosing instead to interact with available environment
actions, or may have been more attracted to the diplomacy distractions. One of
these participants was identified as even ignoring nearly all distractions, opting to
instead continue completing the quests. Some of the diplomacy distractions were
about helping animals and there were cases of participants helping them suggesting
that perhaps these distractions are too enticing.

Of all the participants, only one could be considered very novelty-focused. This
participant reported in the survey that they were very experienced with video games
and moderately experienced with text games. In their trace, they interacted with
many of the distractions that they encountered. I suspect that this is due to the
distractions having unique outcomes and all giving some reward when interacted
with. There are 129 different distractions, making it impossible to see them all, and
the novelty of their interactions and outcomes likely contributed to this participant’s
preference to interact with them. This does mean that this kind of participant is more
difficult for the system and the recovery of their player model may be less accurate
or take more time, but this is also true of the Novelty focused agent.

5.4.3 Preference Shift Detection

The results of the preference shift detection indicate that the method works even on
human like data. In fact it looks like the synthetic human-like data works considerably
better with all methods, with the highest scoring overall F1-score in Table 3.1 of 0.72
being beat out by a 0.98 score in Table 5.2, with both belonging to my method.
The tests using in Chapter 3 are done on all possible scenarios, while here I am
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focused on environment to missing, so this comparison is not completely accurate.
Regardless, comparing the individual performance of the environment to missing and
the environmental no shift categories shows that on synthetic human-like data these
methods perform much better.

Part of this is likely due to the way that these methods work, establishing a base-
line in the pre-preference and deciding whether the post-preference data is different.
Since I had to increase the size of pre and post-preference turns from 25 and 5 to 100
and 100 respectively, they are no longer strictly ordered temporally with only the pre
and post-preference sections being in order. Thus the novelty detection methods are
comparing the entirety of the pre-preference turns (upsampled to 50 to fit the entire
pre-preference window) to the entirety of the post-preference turns (upsampled to
up to 20 turns) since the order of turns is ignored when synthesizing the human-like
data. Since these methods works as a sliding window this means that there is little
difference when the method slides forward a turn, with the sliding just giving that
method another to detect the shift. This increase in the number of chances to detect
without significantly changing the underlying data gives them a higher chance to
detect a shift.

For my method works a bit differently as it does make use of the gap window.
Instead of completely ignoring it like the novelty detection methods it uses it as a
comparison to the first 50 turn window, creating a mask that lets it ignore action
types that did not increase in the comparison window. Since the comparison window
will contain more of the post-preference actions it will show that the types of actions
present in the post-preference have increased, and likewise see that those actions are
steady in the test window leading it to detect a shift. In more standard human data
this is not necessarily a pattern that we expect to continue for longer periods of time
and as such this may mean that my method has an unfair advantage compared to
the rest.

Despite these potential flaws in the synthetic data, I also see better performance
in the no shift category as well, meaning that these have a better true negative
rate. This further suggests the difference between the pre and post-preference turns
is significant in the shift category even though the post-preference draws from 29
different participants over 5 turns. When drawing from the same 20 pre-preference
turns for the no shift for both the pre and post-preference sections then the actions
taken do not have enough variability to be registered as a shift in most cases. This is
promising since it indicates that there is enough difference in human behavior before
and after a preference shift, and this difference seems common enough between human
participants that it is able to be found even when the data from multiple participants
is combined together.

A notable difference between the artificial agents and the synthetic human-like
traces are that the amount of turns needed to find a preference shift is higher in the
human-like traces compared to the agents for the Environment to Missing scenario
group. With the artificial agents the maximum average turn to find a preference shift
did not exceed 133.4, though for many methods it was lower. With the human-like
traces the minimum average turn was 129.6, with the EE method taking an average
of 139.8 turns. I suspect this is largely due to the optimization of the parameters,

66



EE LOF SVM Mine
Shift Turn 139.8±12.9 132.2±04.4 129.6±08.5 133.4±06.0

No Shift Turn 156.0±00.0 139.7±10.7 142.2±12.5 168.0±00.0
Shift Accuracy 0.95±0.22 1.00±0.00 1.00±0.00 1.00±0.00

No Shift Accuracy 0.90±0.31 0.85±0.37 0.75±0.44 0.95±0.22
F1-Score 0.93 0.93 0.89 0.98

Table 5.2: The average turn that a shift is detected on when it is detected, and the
accuracy with which it is detected. Bolded are the best performing for each category.

specifically the size of the test window. Previously I have identified that with a
minimally sized test window of 1 my method could decrease the amount of time it
took detect a shift at a slightly detriment to its accuracy. For the current optimized
parameters it seems the inverse holds, since the test window size is higher the amount
of turns needed is also higher.

One of my previous conclusions was that the size of the gap window may be
decreased or that the sliding training window may be replaced with a trusted non-
sliding set of turns to compare against. While it may still be advantageous to change
the nature of the training window, in the current formulation a larger gap window
may actually serve an advantage because of the increased amount of turns needed
to detect a preference shift. With a smaller window there would be less chances to
test for a preference shift before some observations start contaminating the training
window, which may suggest tuning the size of the gap window may be necessary to
fully optimize the performance.

The fact that these optimized parameters are so different with the synthetic data
compared to those optimized for the artificial agents is itself an indication that the
underlying data that is gathered may be very different. Part of this could be due to
using human-like data but additionally the environment for the human study has only
passing resemblance to that which was used by the agents. It may be that for different
player bases or different games may be dissimilar enough to require re-optimization.
I further suspect that small changes to game balance or feature improvements may
require that these parameters be re-optimized on a sample of the player base, which
may be costly for a developer.

Overall this does suggest that these methods work, but I can only draw limited
conclusions on their efficacy given the limitations of the synthesized data. This data
was reused from the PMR experiment so serves as a good addition, but it is comprised
from fairly small set of turns, with only 5 turns per participant for the post-preference
section. To be able to properly conclude that the PSD methods work on humans
another experiment would have to be run with an additional human study.

5.5 Conclusion

In this chapter I have shown how I have adapted my environment to be compatible
with human players, and the discoveries that were made in that process. I have
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added the additional requirement on distractions that they must be readable, or being
recognizable as belonging to a specific preference to be useful to the ExpM to recover
the player model. Afterwards I have also deployed this environment in the form of a
human study to collect data to validate its efficacy. Previously this was only shown
on artificial agents but with this human study it has also been shown to work with
humans.

Additionally I have reused part of the data to create synthesized human-like traces,
which allowed me to further show that the preference shift detection also works with
humans. Since this is synthesized human-like data, I cannot claim for certain that
this will continue to be the case with true human traces, but the system has been
shown to be successful with both artificial agents and this data. For future work
human gameplay traces can be used to further validate these conclusions.

Copyright© Anton V. Vinogradov, 2024.
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Chapter 6 Conclusion

Traditionally video games have asked for the player to adapt to the game, but this
need not be the case. Experience managed games can adapt themselves to the player,
allowing for a better sense of player agency and lead to more personalized experiences,
while still maintaining authorial intent. This adaptation is driven by its knowledge
of the player and their preferences, but it has been shown that players may shift their
preferences over time [48]. This shift in preferences can show up as a sudden shift
in behavior but conventional experience management systems work under the faulty
assumption that the player’s preferences stay relatively static. The consequences
of this assumption are that experience management systems that model the player
cannot adapt when the player shifts their preferences, which could lead the player
to become less engaged with the game. To solve this issue I have devised 3 research
tasks:

• RT1: Recognize when a player’s preferences have shifted and that the current
environment may no longer be well suited.

• RT2: Recover a model of the player’s preferences after a player preference shift
has been detected.

• RT3: Verify that these methods work in human subjects.

I will go over how these were completed and what conclusions I can draw from
each below.

6.1 RT1: Preference Shift Detection

To tackle RT1 I have created a system that is capable of detecting player preference
shifts, and tested 3 existing methods and 2 variations of my own on data gathered
from artificial agents. The existing techniques are based on novelty detection and
are a good fit as I can model observations of the player’s action as streaming data.
This allows for some of the data to be considered clean, using it as a baseline to com-
pare against incoming action observations and classifying them as novel (indicating
a preference shift) or not. In addition I have created my own method which takes
inspiration from how a preference shift should look. I find that my method works the
best but that its advantages are slight.

As a purely information gathering technique this system is safe to use as it does
not make any changes to the environment, instead opting to make observations on
the player’s behavior and using that as a proxy for their internal, and thus normally
unmeasurable, preferences. When tested only on artificial agents I found that there
was some success in its ability to detect preference shifts, but the methods were farm
from perfect in all scenarios.

69



Some scenarios are likely rare to be found in games and are largely possible to
test due to the use of artificial agents. One group of scenarios that are particularly
difficult for this system are when switching from an action type that is missing from
the environment to another missing action type. These scenarios are indistinguishable
from each other due to the lack of preferred actions and are functionally the same
as scenarios where no preference shift occurs. Another of these, the missing no shift
scenario group, if found in a game would likely require that the following process
of player model recovery occur regardless as it is likely that the player is already
unengaged.

When compared to more common scenarios there was no one method that could
be considered best, though some had advantages over others. This suggested that
an ensemble of these methods would be ideal, but later human subjects experiments
may suggest that this is not necessary. Overall these methods are reasonably capable
of detecting when a shift occurs and can do so quickly enough to be considered a
success.

6.2 RT2: Player Model Recovery

For RT2 I have developed another system, this time taking advantage of Multi-Armed
Bandits (MABs) to balance between finding information on the player and making
use of that information. This system takes active intervention in the form of adding
and removing new game objects called distractions to the environment, no longer just
observing the player silently and allowing it to find what the player’s new preferences
are. In the first half of the chapter I show that with normal MABs the manager
can quickly recover the player model, though the restriction of only adding a single
distraction per round is very limiting. This formulation of the system still performs
considerably better than the comparison baseline and even performs better than the
manager that solely acts to remove bias from the environment.

In the second half I introduce Combinatorial Multi-Armed Bandits (CMABs)
into the system, making slight modifications on the MAB adaptation to do so. These
perform significantly better, even approaching the performance of my unrealistic the-
oretical best baseline, the One-Of-Each manager which removes the restriction on
how many distractions can be added per round. Furthermore I find that a small
modification, called replace-with-environment-action, allows for not only fewer than
an average of 2 distractions per round, but also increases the performance of the 2
distraction variant to that of the 3 distraction variant. Overall this method are in-
credibly capable of recovering a players preferences, but so far had only been tested
in artificial agents.

6.3 RT3: Human Study Verification

RT3 consisted of a human study which was used to verify the conclusions in the pre-
vious two research tasks. To be able to validate these conclusions the previous test
environment needed to be retooled to be accessible for human participants, which
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required extensive modification and the formulation of extra requirements on dis-
tractions to make them suitable with human use. The human study was centered
around testing the player model recovery system from RT2 and tasked the human
participants to simulate a preference shift from an environmental action type to a
missing action type. This data was then analyzed and I found that indeed player
model recovery does work with human data. In addition there was evidence that the
human subjects, without being prompted, took on behaviors that were similar to the
artificial agents.

In addition part of the human data was reused and combined to create synthesized
human-like gameplay traces that could be used with the preference shift detection
methods. I found that some of the previous conclusions on preference shift detection
were called into question due to the methods working significantly better than on the
artificial agents. After optimizing the parameters for each of the 3 novelty detection
methods and my own method I found that preference shifts could be detected on this
data with a 100% true positive rate, and a 95% true negative rate, which showed
a massive improvement from the artificial agents. Despite these excellent results
the synthesized data is not a true representation of how humans would act in this
situation and thus only serves to show that the method is promising.

6.4 Summary

In this work I have developed new methods that allow for the recovery from and ac-
commodation for player preference shifts in a player modeled experience management
environment. Each step in this two step process has been shown to work with artificial
agents and later with human subjects and human-like player traces. In future work
this system can be integrated together and deployed with an existing player modeled
experience manager to show its validity. Additionally there are improvements that
can be made to preference shift detection as it is further tested with human generated
data.

Copyright© Anton V. Vinogradov, 2024.
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[52] J. Zhu and S. Ontañón. Experience management in multi-player games. In 2019
IEEE Conference on Games (CoG), pages 1–6. IEEE, 2019.

[53] M. Zohaib. Dynamic difficulty adjustment (dda) in computer games: A review.
Advances in Human-Computer Interaction, 2018(1):5681652, 2018.

75



Vita

Anton V. Vinogradov

Place of Birth:

• St. Petersburg, Russia

Education:

• University of Kentucky, Lexington, KY
M.A. in Computer Science, Dec. 2022

• University of Kentucky, Lexington, KY
B.S. in Computer Science, Dec. 2016

Professional Positions:

• Graduate Teaching Assistant, University of Kentucky Fall 2019

• Graduate Research Assistant, University of Kentucky Spring 2020 - Spring 2024

Publications & Preprints:

• Vinogradov, Anton, and Brent Harrison. “Using multi-armed bandits to dy-
namically update player models in an experience managed environment.” Pro-
ceedings of the AAAI Conference on Artificial Intelligence and Interactive Dig-
ital Entertainment. Vol. 18. No. 1. 2022.

• Vinogradov, Anton, and Brent Harrison. “Using multi-armed bandits to dy-
namically update player models in an experience managed environment.” Pro-
ceedings of the AAAI Conference on Artificial Intelligence and Interactive Dig-
ital Entertainment. Vol. 18. No. 1. 2022.

• Vinogradov, Anton, Andrew Miles Byrd, and Brent Harrison. “Mistake Cap-
tioning: A Machine Learning Approach For Detecting Mistakes and Generating
Instructive Feedback.” Proceedings of the International Conference on Recent
Advances in Natural Language Processing (RANLP 2021). 2021.

76


	Detecting and Recovering From Player Preference Shifts In A Player Modeled Experience Management Environment
	Recommended Citation

	Title Page
	Abstract
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 RT1: Preference Shift Detection
	1.2 RT2: Player Model Recovery
	1.3 RT3: Human Study Verification

	2 Literature Review
	2.1 General lit review
	2.1.1 Experience Management

	2.2 RT1 - Player Model Shift Detection
	2.3 RT2 - Player Model Recovery
	2.3.1 Dynamic Player Modeling
	2.3.2 Multi-Armed Bandit Overview
	2.3.3 Combinatorial Multi Armed Bandit Overview


	3 Preference Shift Detection
	3.1 Introduction
	3.2 Methods
	3.2.1 Environment and Player Model
	3.2.2 Shift Detection

	3.3 Experiments
	3.3.1 Agents
	3.3.2 Scenarios

	3.4 Results and Discussion
	3.4.1 Scenario Differences
	3.4.2 Agent and Method Differences

	3.5 Conclusion

	4 Player Model Recovery
	4.1 Introduction
	4.2 Multi-Armed Bandit Based Recovery
	4.2.1 Multi-Armed Bandit Adaptation
	4.2.2 Distractions
	4.2.3 Experiments
	4.2.4 Results and Discussion

	4.3 Combinatorial Bandit Based Recovery
	4.3.1 CMAB Adaptation
	4.3.2 Experiments and Results

	4.4 Conclusion

	5 Human Study Verification
	5.1 Introduction
	5.2 Human Player Modifications
	5.2.1 Environment
	5.2.2 Distractions

	5.3 Experimental Setup
	5.3.1 Task
	5.3.2 Processing
	5.3.3 Shift Detection

	5.4 Results and Discussion
	5.4.1 Survey
	5.4.2 Player Model Recovery
	5.4.3 Preference Shift Detection

	5.5 Conclusion

	6 Conclusion
	6.1 RT1: Preference Shift Detection
	6.2 RT2: Player Model Recovery
	6.3 RT3: Human Study Verification
	6.4 Summary

	Bibliography
	Vita

