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ABSTRACT OF DISSERTATION

OPTIMUM DESIGN OF AXIAL FLUX PM MACHINES BASED ON

ELECTROMAGNETIC 3D FEA

Axial flux permanent magnet (AFPM) machines have recently attracted signifi-

cant attention due to several reasons, such as their specific form factor, potentially

higher torque density and lower losses, feasibility of increasing the number of poles,

and facilitating innovative machine structures for emerging applications. One such

machine design, which has promising, high efficiency particularly at higher speeds,

is of the coreless AFPM type and has been studied in the dissertation together with

more conventional AFPM topologies that employ a ferromagnetic core.

A challenge in designing coreless AFPM machines is estimating the eddy current

losses. This work proposes a new hybrid analytical and numerical finite element (FE)

based method for calculating ac eddy current losses in windings and demonstrates

its applicability for axial flux electric machines. The method takes into account 3D

field effects in order to achieve accurate results and yet greatly reduce computational

efforts. It is also shown that hybrid methods based on 2D FE models, which require

semi-empirical correction factors, may over-estimate the eddy current losses. The

new 3D FE-based method is advantageous as it employs minimum simplifications

and considers the end turns in the eddy current path, the magnetic flux density

variation along the effective length of coils, and the field fringing and leakage, which

ultimately increases the accuracy of simulations.

After exemplifying the practice and benefits of employing a combined design of

experiments and response surface methodology for the comparative design of coreless

and conventional AFPM machines with cores, an innovative approach is proposed for

integrated design, prototyping, and testing efforts. It is shown that extensive sensi-

tivity analysis can be utilized to systematically study the manufacturing tolerances

and identify whether the causes for out of specification performance are detectable.

The electromagnetic flux path in AFPM machines is substantially 3D and cannot

be satisfactorily analyzed through simplified 2D simulations, requiring laborious 3D



models for performance prediction. The use of computationally expensive 3D models

becomes even more challenging for optimal design studies, in which case, thousands

of candidate design evaluations are required, making the conventional approaches im-

practical. In this dissertation a new two-level surrogate assisted differential evolution

multi-objective optimization algorithm (SAMODE) is developed in order to optimally

and accurately design the electric machine with a minimum number of expensive 3D

design evaluations.

The developed surrogate assisted optimization algorithm is used to comparatively

and systematically design several AFPM machines. The studies include exploring the

effects of pole count on the machine performance and cost limits, and the systematic

comparison of optimally designed single-sided and double-sided AFPM machines. For

the case studies, the new optimization algorithm reduced the required number of FEA

design evaluations from thousands to less than two hundred.

The new methods, developed and presented in the dissertation, maybe directly

applicable or extended to a wide class of electrical machines and in particular to

those of the PM-excited synchronous type. The benefits of the new eddy current loss

calculation and of the optimization method are mostly relevant and significant for

electrical machines with a rather complicated magnetic flux path, such is the case

of axial flux and of transvers flux topologies, which are a main subject of current

research in the field worldwide.

KEYWORDS: Axial flux permanent magnet, electric machines, eddy current losses,

optimization, 3D finite element analysis, kriging meta-model.
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Chapter 1

Introduction

1.1 Background

Electric machines are increasingly employed in industrial and household appli-

cations, such that approximately half of the electrical energy worldwide is being

consumed by electric machines. Moreover, new technological trends, such as electric

vehicles and wind turbines, specify new requirements that open up an advanced realm

for electric machine designers to explore and improve upon. Among the recent ad-

vancements and requirements are: the use of permanent magnets (PM) in synchronous

machines for field excitation or assisting the excitation which requires special care to

avoid demagnetization and thermal issues related to magnets, speed range extension

without employing larger inverter ratings, optimally designing the machine that is

cost and performance competitive, taking multi-physics specifications of the electric

machine into account in design optimization process such as electromagnetic, me-

chanical and thermal properties, designing motors that can operate efficiently for an

entire driving cycle, and reducing the noise and cost.

Increasing the environmental concerns and considering the abundant application

1



of electric machines have raised the importance of designing efficient machines. From

customer and manufacturer point of view minimum cost is also among the most im-

portant design considerations. The designer needs to take these two counteracting

factors, i.e., efficiency and cost, into account in addition to the performance require-

ments that ensure an applicable design. Moreover, deigning an electric machine is

inherently a complicated task with many interacting factors and variables. These

make a multi-objective optimization approach an absolute necessity for the successful

design of electric machines.

Among the many varieties of electric machines, this dissertation is focused on the

axial flux permanent magnet (AFPM) synchronous types which are acclaimed for

their high efficiency, torque density, and compact structure. Such machines are also

referred to as disc- or pancake-shape machines due to the flat shape of rotor and

stator. Common radial flux machines include cylindrical and concentric rotor and

stator. As shown in Fig. 1.1, in the case of AFPM machines windings are placed

such that their active part is oriented along the radial direction. The field excitation

magnets are placed on the rotor such that the air-gap flux flows in the axial direction.

This is contrary to the more common radial flux PM machine structures where the

rotational movement is obtained by magnetizing the PMs in the radial direction and

placing the conductors along the axial direction. Manufactured PM machines are

exemplified in Fig. 1.2.

The magnetic flux for an AFPM machine in the air-gap flows in the axial di-

rection, while in the rotor and stator core the magnetic flux is in both axial and

circumferential directions. The flux leakage occurs in three dimensions. Also, the
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(a) (b)

(c) (d)

Figure 1.1: Schematic general radial and axial flux PM machines: (a) exploded view
and (b) assembled view of a model radial flux machine, (c) exploded view and (d)
assembled view of a model axial flux machine.

tooth width variation in the radial direction makes the stator core in the inner diam-

eter prone to saturation. Two-dimensional or quasi-3D models cannot capture the

effects of end coils and overhang. These are some of the reasons necessitating the use
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(a)

(b)

(c)

Figure 1.2: Example manufactured PM machines: (a) typical steps for manufacturing,
exemplified for a radial flux line-fed PM motor [1], (b) exploded view of a general-
purpose radial flux induction motor [1], and (c) and example 1 hp axial flux PM
machine [2].
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of computationally expensive 3D models for AFPM machines.

Generally, thousands of design evaluations are required to identify the optimum

designs. Therefore, the use of time-consuming 3D finite element analysis (FEA) mod-

els with conventional algorithms is simply unaffordable. One of the main contributions

of this dissertation is proposing a new two-level surrogate assisted differential evo-

lution multi-objective optimization. This algorithm reduces the required number of

FEA design evaluations from thousands to less than two hundred making employment

of accurate 3D FEA feasible.

This dissertation systematically addresses the 3D effects related to the perfor-

mance assessment of axial flux machines that are previously ignored or oversimplified.

Other examples of the challenges addressed, in addition to the proposed optimiza-

tion method, are calculating winding eddy current loss that is inherently difficult to

estimate, and winding factor calculation of coreless AFPM machines with minimum

simplifying assumptions.

1.2 Literature Review

The earliest electric machines were developed in the form of axial flux [3]. The first

working prototype of an axial flux machine recorded was M. Faraday’s disc (1831)

which was also reported in Nikola Tesla’s Patents [3, 4]. Until recently, high-volume

manufacturing methods and balancing of the stator and rotor magnetic attraction

forces, which are major challenges for AFPM, limited their development, such that

the radial flux is a dominant topology in practical implementations. The invention

of stronger rare-earth magnets in the mid 20th century, in addition to the attractive
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(a)

(b)

(c)

Figure 5.36: The electromagnetic efficiency maps calculated by 3D FEA for the two
representative designs with similar mass and loss: (a) single sided design, (b) the
YASA design, and (c) the difference between efficiency maps of the two designs (the
efficiency of the YASA machine subtracted from the single sided).
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Outcomes of the Systematic Study of the Effects of Pole Count on Optimally De-

signed AFPM Machines:

The absolute performance limits that can be achieved by fractional horse power

AFPM machines with surface magnets within a given envelope are explored. This

necessitates the study of a large number of designs spanning a wide design space, and

having different slot-pole combinations, and the problem is further complicated due

to the three-dimensional nature of the machine geometry. In this regard, the new

two-level surrogate assisted multi-objective optimization algorithm is utilized. In

addition, a systematic method for selecting the optimum designs for multi-objective

optimization problems is proposed.

Approximately horizontal and vertical lines obtained on the extremes of the Pareto

front indicate that within the geometrical limitations further improvement in effi-

ciency and cost is not probable. The results confirmed that the designs with the best

trade-off between the two objectives of loss and mass split the core and copper losses

nearly equally.

The combined Pareto front with pole counts ranging from 10 to 40 illustrates

that the highest efficiency is obtained for designs employing 20 poles. An ultra high

efficiency axial flux SPM design with 20 poles rated for 0.75 hp is prototyped, demon-

strating a measured efficiency of 94.3%.

Furthermore, the effect of the pole count on the optimum design variables is ex-

amined to find a relative trend. For instance, it is observed that thinner PMs with a

larger pole arc to pole pitch ratio are generally more beneficial for lower pole counts.
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Within the studied frame size and ratings, a bigger air-gap, a thinner yoke, and a

larger slot width result in more efficient, albeit more expensive, designs. Learning

such trends can serve as a basis for developing generalized design rules and as a ref-

erence for the preliminary stages of the optimum design process, ultimately making

the optimization results more accurate as well as computationally affordable.

Outcomes of the Systematic Optimization and Comparison of Single-sided and Double-

sided AFPM Machines:

This section systematically compared two axial flux permanent magnet (AFPM)

machines designed for a university student racing car application: a double–rotor

single–stator yokeless and segmented armature (YASA) structure, and a single–stator

single–rotor configuration. Both machines were optimized for minimum loss and

active weight using 3D finite element analysis and the highest performing candidate

designs are compared in more detail. The studies indicate that the benefits offered

by the YASA configuration over the single–stator single–rotor machine are achieved

only for specific designs that are heavier. For the design space with lower mass, albeit

with increased losses, the Pareto front designs overlap which shows the performance

of the two machines is very close to each other.

For identical heat transfer capabilities, reflected in the same temperature rises for

the stators and rotors, respectively, the very high efficiency YASA designs are lighter

than their single sided counterparts of comparable torque and loss performance. On

the other hand, single sided machines may be preferable for applications in which

lower mass is of the essence, at the inevitable expense of increased electromagnetic
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losses.

Within the entire design space considered, the optimally designed YASA machines

require heavier copper windings and rotor cores, and lower stator core mass, as com-

pared with the single–stator single–rotor machines. The YASA machines also require

increasingly more magnet mass within the design space region with higher loss and

lower mass. Lower core loss and higher copper loss are noted for the YASA optimal

designs over the entire design space. The winding eddy current losses are comparable

for the two machine configurations, while the YASA machines have higher magnet

eddy current losses.

The preferred axial flux PM motor topology may depend on the torque and speed

driving cycle requirements. The efficiency maps of two representative designs with

comparable loss and mass show that, at the operating points with higher torque and

lower speed, the single sided machine exhibits a higher efficiency, while for higher

speed and lower torque, the YASA design is more efficient.
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Chapter 6

Conclusions

In this chapter, the conclusions and contributions resulted from this disserta-

tion are summarized. Future research is recommended in order to facilitate further

progress on the same topics as the ones included in this work.

6.1 Summary and Conclusions

In chapter 2, a new hybrid analytical-FEA method for calculating ac eddy current

losses in electrical machine windings has been proposed. It is shown that the previ-

ously existing analytical and hybrid methods significantly overestimate these losses

while the numerical methods are either also overestimating (detailed 2D FEA) or

unpractical due to the lengthy calculations time (detailed 3D FEA). The proposed

approach brings a major improvement upon more conventional FEA based hybrid

methods by considering the variation of the flux density in a 3D dimension, using

only a general 3D FEA where the windings are modeled as a crude one-turn coil.

This achieves a trade-off between speed and precision, making it suitable for differ-

ent stages of the design process of an electrical machine. The developed analytical
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equation has minimum simplifying assumptions and is taking other complicating as-

pects of winding eddy current loss calculation into account, such as the potential

variations in the eddy current path and the eddy current at the end turns. Should

the time consuming detailed 3D FEA with meticulous wire-by-wire model be used,

recommendations for effective reduction in the mesh size, and consequently compu-

tational time, is proposed. In the same chapter, an approach for the measurement

of ac winding loss is proposed and conducted for an open slot AFPM machine. The

measurements are in close agreement with the results from 3D FEA. Other matters

discussed include the selection of the number of turns and the comparison of circular

and square conductors.

Chapter 3 appropriates DOE and RSM principles in two different machine design

related perspectives. The first one is a more typical method to achieve optimum

design with evaluating only a certain and minimum number of specified designs. The

second study is innovativly using outcomes of RSM studies and extensive sensitivity

analysis to trace down manufacturing tolerances and out of specification properties

of fabricated machines.

In the first study of chapter 3, a coreless and a conventional AFPM machine

are comparatively and optimally designed for the same application in a solar car.

It is observed that for the space constraints under study and for a given cooling

system, the torque generation by both machine types is limited, and this torque

limit for conventional machine is at a higher value. Therefore, the coreless machines

may be more suitable for use in a two-wheel drive version, at the cost of slightly

reduced efficiency, and larger overall mass as compared with single wheel drives.
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Conventional AFPM topology could be used more efficiently with one driving wheel.

Weight advantages obtained by the coreless design my assist in mass distribution,

which is particularly important for in-wheel application.

The second study in chapter 3 is devoted to a new systematic method aimed

at quantifying the effect of tolerances on PM synchronous machine performance and

identifying possible non-compliant dimensional variables and material characteristics.

The method is greatly using DOE, RSM, and sensitivity analysis. While the method

itself is generally applicable in scope, it is also shown that, as the electromagnetic

loading greatly affects the sensitivity of the test outputs to tolerances, the careful

consideration of the individual machine topology is required as part of the studies,

limiting the simple generalization of quantitative conclusions.

One of the main contributions of this dissertation is included in chapter 4, which

proposes a two-level surrogate-assisted DE based optimization for use with 3D FEA.

This method employs kriging surrogate models in combination with FEA, reducing

the number of overall finite element design evaluations. Two example machine design

problems are shown, one conventional and the other coreless AFPM machines. The

exmaple machines are optimally designed with conventional DE and proposed algo-

rithm. The results are very similar Pareto fronts, which attest to the effectiveness

of the proposed approach. It is also observed that the algorithm outperforms con-

ventional methods as it is computationally less expensive and requires substantially

fewer design evaluations. The constructed kriging model can also be used for post

processing purposes. This is an additional benefit of the surrogate-assisted algorithm
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which is not present in conventional approaches. This chapter also dives into propos-

ing and comparing methods of defining the search space. One of these new methods

progressively narrows down the variable limits, enhancing the exploitation. The other

approach relies on novel applications of the DOE methodology and biases the search

space definition based on a reference design and sensitivity analysis. This is espe-

cially useful when it is known beforehand which of the objectives is more important.

Ultimately resulting in a smaller design space, reducing the number of evaluations,

thereby greatly improving the speed of the optimization.

After proposing the two-level surrogate-assisted optimization method in the previ-

ous chapter, extensive and elaborated electric machine design optimization problems

are included in chapter 5 to showcase the full advantages of the new method.

The absolute performance limits that can be achieved by fractional horse power

AFPM machines with surface magnets within a given envelope are explored. This

necessitates the study of a large number of designs spanning over a wide search space,

and having different slot-pole combinations. The problem is further complicated due

to the three-dimensional nature of the AFPM machine geometry. Approximately

horizontal and vertical lines obtained on the extremes of the Pareto front indicate

that within the geometrical limitations further improvement in efficiency and cost is

not probable. The results confirmed that the designs with the best trade-off between

the two objectives of loss and mass split the core and copper losses nearly equally.

The combined Pareto front with pole counts ranging from 10 to 40 illustrates that the

highest efficiency is obtained for designs employing 20 poles. An ultra high efficiency

axial flux SPM design with 20 poles rated for 0.75 hp is prototyped, demonstrating
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a measured ultra-high efficiency of 94.3%. It is observed that thinner PMs with a

larger pole arc to pole pitch ratio are generally more beneficial for lower pole counts.

Within the studied frame size and ratings, a bigger air-gap, a thinner yoke, and a

larger slot width result in more efficient, albeit more expensive, designs. Learning

such trends can serve as a basis for developing generalized design rules and as a

reference for the preliminary stages of the optimum design process. In addition, a

systematic method for selecting the optimum designs of a multi-objective optimization

problem is proposed. With respect to this, a factor is introduced that quantifies the

trade-off between counteracting objectives, ultimately making the post-processing of

a multi-objective optimization problem more systematic.

Another benchmark study compares two optimally designed axial flux permanent

magnet (AFPM) machines: a YASA and a single sided configuration. The differ-

ence in properties of these two machines is highly three-dimensional. For instance,

increased stator teeth flux density in inner diameter is more tolerable for the YASA

machine as it has generally lower core losses. Therefore, a fair comparison not only

needs to be conducted for optimal designs, but also the optimization needs to em-

ploy 3D models. This is achieved through the proposed algorithm. The comparison

indicates that the benefits offered by the YASA configuration over the single-sided

machine are achieved only for specific designs that are heavier. For the design space

with lower mass, albeit with increased losses, the Pareto front designs overlap which

shows the performance of the two machines is very close to each other. Within the

entire design space considered, the optimally designed YASA machines require heav-

ier copper windings and rotor cores, and lower stator core mass, as compared with
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the single-sided AFPM machines. The YASA machines also require increasingly more

magnet mass within the design space region with higher loss and lower mass. Lower

core loss and higher copper loss are noted for the YASA optimal designs over the entire

design space. Efficiency maps comparison attests that at the operating points with

higher torque and lower speed, the single sided machine exhibits a higher efficiency,

while for higher speed and lower torque, the YASA design is more efficient.

6.2 Original Contributions

The main contributions of this dissertation can best be summarized as follows:

1. A comparison between various existing methods for estimating winding eddy

current losses is conducted. It is shown that faster approximate methods over-

estimate the losses. Several recommendations for reducing the computational

effort of the most accurate and the most expensive eddy current loss evaluation

approach, i.e. 3D FEA with a detailed wire-by-wire model, are proposed. The

study includes two case study machines known for their high winding ac losses:

a PM machine with open slots and a coreless design. (chapter 2)

2. A hybrid analytical/numerical method for estimation of winding eddy current

losses taking 3D effects into account is proposed. The target outcome is to

obtain a method applicable in the optimization process which has a balance

between accuracy and computational time. Such a method is developed and

presented with multiple example studies. (chapter 2)
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3. Utilization of DOE and RSM methodologies for systematic electric machine de-

sign purposes is elaborated. Then, the information provided by DOE, RSM, and

sensitivity analysis is innovatory used to narrow down the out of specification

causes and manufacturing tolerances. (chapter 3)

4. Developments on AFPM coreless machine design for traction application are

presented. These studies include comparison of pros and cons of using a core-

less AFPM design versus a conventional AFPM machine for in-wheel traction

application, recommendations for the best practices of employing a coreless

machine, a proposed method to overcome the challenges of a small inductance

and limited constant power speed range, and a proposed method for accurate

winding factor calculation of coreless machines. (chapter 3)

5. A Two-level surrogate assisted optimization algorithm is introduced that re-

quires one order of magnitude less number of design evaluations through FEA.

This enables application of time consuming 3D FEA models in optimization

algorithm and hence established a well-grounded design method for machine

topologies that otherwise were not confidently designed at their highest poten-

tial performance. (chapter 4)

6. Three methods for assigning the limits of the optimization variables are pro-

posed and investigated. These include: assigning the broadest possible ranges,

starting with very wide ranges and later iteratively redefine and narrow them

down as the optimization progresses, and assigning the range biased by a ref-

erence design and sensitivity analysis. The Broad search space results into
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more options on the Pareto front while the Biased search space results in faster

optimization. (chapter 4)

7. Systematically exploring the limits of efficiency and cost of a fractional hp

AFPM machine by exploring a very large search space. Asymptotic horizontal

and vertical lines obtained on two ends of the Pareto front represent that further

improvement within the constraints of the design problem is not possible. The

best compromise design achieves at a pole count with the best balance between

loss components. In the same study, the best practices of assigning design vari-

ables for machines with different number of poles is introduced. Through the

application of the proposed design method, an ultra-high efficiency fractional

hp AFPM machine is prototyped and tested. (chapter 5)

8. The guidelines for selecting the best single-stator AFPM machine topology with

one or two rotor discs is established. The study is comprehensive and systematic

and includes only the optimized machines. The design spaces where single rotor

AFPM or double rotor YASA machine outperforms the other are identified. In

the same study, an approach for selecting a design among the Pareto front

designs is proposed by introducing a factor to quantify the improvement and

deterioration of objectives relative to each other. With this method the designer

can specify how much deterioration in one objective can be afforded in return

for improvement in the other. If all optimization objectives are equally desired,

the knee point of the Pareto front can be mathematically calculated. (chapter

5)
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6.3 Recommendations for Future Work

Based on the results of this dissertation and earlier research conducted by others,

possible further research may include the following:

1. The outcomes of a systematic optimization process, such as the ones included

in chapter 5, are not limited to the optimized design. Additionally, it provides

information that can be utilized as guidelines for best practices in designing

the machine. Such insights can help with a very good initial design and further

increase the speed of optimization. As a next step of this work, similar guidelines

can be obtained for less mature machine topologies, for example vernier type

or MAGNUS, claw pole, switched reluctance, transverse flux, spherical, PCB

stators, and PM machines combining radial and axial air-gap structure, etc.

Most of these machine structures are high 3D and hence can benefit from the

proposed optimization algorithm.

2. Electric machines working based on flux modulation principles, referred to as

MAGNUS or vernier type, have been studied relatively more in their radial form

than axial. A systematic comparison of the Pareto front designs for radial and

axial MAGNUS machines with different envelope dimensions can be performed

to highlight their strengths and weaknesses against each other. Such compar-

isons for usual radial and axial flux PM machines conducted in the past, have

successfully enlightened the path ahead and therefore can prove beneficial for

the MAGNUS type counterpart.
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3. Coreless AFPM machines with printed circuit board (PCB) stators are promis-

ing alternatives with very compact and light structure. These machines have

very thin conductor cross sections that increases the mesh size. With the use of

the proposed optimization algorithm, coreless AFPM machines can be designed

optimally and to their highest potential.

4. The machines with PCB stators can have high winding ac losses if not designed

properly or the loss estimation method is not accurate. Through the windig

loss calculation method proposed in this dissertation, such loss components can

be studied to improve upon the performance of PCB stators. Another step, in

the same line, can be to optimally design the copper trace of PCB for minimum

loss or incorporate flexible PCBs and try innovative uncommon layouts.

5. The proposed machine design optimization algorithm may be even more im-

proved upon via several techniques:

� The initial sample pool construction is already randomized to enable appli-

cation for design problems with many variables. However, this can be done

with systematic approaches such as design of experiments (DOE), which

is also discussed. It is predicted that DOE would require a large sample

pool size when the design problem has many variables. The practically of

using DOE for the best number of variables can be tested.

� As the proposed method facilitates study of large design problems, multi-

physics optimization can be performed which includes simultaneous elec-

tromagnetic, thermal, and mechanical performance estimation.
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� The algorithm can become more hybrid by calculating some components of

fitness functions using analytical methods, some with 2D FEA, some with

3D FEA, and the rest with kriging surrogate model. The suitable approach

can be decided based on the level of non-linearity of the component.

� An accurate surrogate model can replace any further FEA calculation,

either for optimization or other purposes. Different surrogate models and

the ways the improve their estimation can lead into an approach that

replaces and eliminates the need for FEA calculations.

� Some other potential studies and extensions of the optimization algorithm

include examination of a constrained optimization problem as opposed to

an unconstrained one where the same constraints are defined as fitness

functions to be minimized or maximized, also adding noise to variables to

identify the robust designs and penalty the rest.
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