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ABSTRACT OF THESIS

IMPLEMENTATION OF DIGITAL TWINS FOR SMALL WATER SYSTEMS

The main objective of this thesis is to develop a working digital twin for a small
water system in central Kentucky which will serve as a general format for other similar
systems in the region wishing to implement digital twins for operator support. While the
benefit of having a calibrated hydraulic and water quality model is widely understood,
small distribution systems tend to not have the same financial and economic means to
properly support these tools. Creation of a digital twin using this methodology provides a
means for operators to predict pressure, flows, chlorine residuals, and total trihalomethane
(TTHM) concentrations within their system with little to no cost and maintenance.

The application is developed using the MATLAB app development toolkit and is
then linked with the EPANET hydraulic and water quality engine via the EPANET-
MATLAB toolkit. The application provides simple user inputs such as initial tank levels,
pump scheduling, demand scenarios, and mapping capabilities for results.

Reliability of the digital twin output is rooted in the extended period simulation
(EPS) calibration steps which ensure the variation of demands both spatially and
temporally accurately reflect conditions seen in the system. Both the Box-Complex (multi
pressure zone systems) and the bisection method (two zone systems) were used in the
processing of tank telemetry and meter data to create representative demand factors.

The creation of a useful digital twin is highly reliant on both the programming
capability of the developer and familiarity with the many nuances of hydraulic and water
quality calibration which are necessary foundations upon which accurate predictions of key
parameters are accomplished. While outputs given in the MATLAB interface are simple,
accurate, and robust against failure, there is much to be desired by way of interactive
mapping. Python offers a broader range of available libraries capable of supporting
mapping which will make inputting parameters and viewing results much simpler for
operators. Additionally, the tools provided in this digital twin use historical data for
hydraulic calibration (demand factors) and testing which are useful based solely on
operator understanding of which demand scenarios in the past will most accurately reflect
what they will see in the present. Extension of these historical patterns into forecasted
demands using machine learning or time series analysis will greatly improve the usefulness
of the model and overall operator experience.

KEYWORDS: [Water Distribution System, Network Analysis, Digital Twins, Hydraulic
Calibration, Demand Prediction, EPANET-MATLAB toolkit]
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CHAPTER 1. INTRODUCTION

1.1 Background

Technology in the water industry has continuously shaped the way that operators
interact with their systems and how they provide clean, safe drinking water to the
communities that they support. As early as 700 B.C. in northern Iraq and Greece, sloping
channels called qanats were being carved into the hillsides to provide irrigation for ancient
farmers (Sedlak, 2014). A few hundred years later, Romans began mastering the art of
creating aqueducts which could bring up to 1.13 million cubic meters of water per day to
the empire at its peak (De Feo et al., 2013). Similar advancements in distribution practice
were made by the Mayans in modern day southern Mexico with the introduction of the first
pressurized piping systems around 250 AD (French and Duffy 2010). These advancements,
as well as many others not mentioned in this paper, contributed to the modern drinking

water systems we see today.

The first of these “modern” utilities appeared in the U.S. in the year 1652 when
Boston employed its water works for fire-fighting and domestic use (Ormsbee, 2006).
Since then, new challenges have arisen due to the complexity of water distribution systems
as pressurized underground piping proliferated. Because of the inherent difficulties in
understanding the nature of flows and pressures in piping networks, the 20" century saw a
boom in research literature focused on the topic of “water distribution network analysis.”

(Ormsbee, 2006).

Hardy Cross, a structural engineer at the University of Illinois at Urbana-Champaign
was the first to create a numerical methodology for solving networks of pipes. Using the

Hazen-Williams equation for losses and an iterated adjustment factor for solving the

1



continuity equation around loops, solutions could be found that were satisfactory in most
cases but were however time consuming. Further, the methodology was limited to systems
with only a few loops and without other system components (pumps, regulating valves,
etc.). The dawn of the computer age and improved methods for solving the conservation of
mass and energy equations allowed for methods that far surpassed the original Hardy-Cross

method such as the simultaneous node, loop, pipe, and gradient methods (Ormsbee, 2006).

By the new millennium, several software packages such as KYPIPE (KYPIPE LLC,
2022) and EPANET (Rossman et al., 2020) became commercially available and gave
operators a leg up in understanding the physical characteristics of their utilities. By
calibrating for parameters such as pipe roughness, chlorine concentration, tank elevations,
and pump operations; models gave a picture of the current state of the system (steady state
analysis) as well as a confident understanding of what the system might look like in the

near future (extended period simulation).

1.2 Research Motivation

There are many advantages afforded to water distribution operators who frequently
consult water models for guiding their day-to-day decision making. Common uses of these
models include predicting flows, pressure, velocity, and head loss but there are other
advantages as well. Forecasting demands and hazardous chemicals like DBP’s
(disinfectant by products), simulating emergency scenarios, and planning for capital
improvement projects are a few other applications of importance to engineers and operators

alike (Huang, 2019).



While the advantages of consistent use and upkeep of a model are many, it is essential
for operators to trust and understand the results of a hydraulic analysis (Huang, 2019). It
follows then that calibration of a model is of the utmost importance for any analysis to be
considered trustworthy. As Savic notes “regardless of the methodology used and
parameters calibrated another general conclusion can be drawn, such as that a large amount
of ‘good’ observation data is needed for estimating calibration parameters with sufficient
confidence.” (Savic et al., 2009). To double down on this notion, water quality calibration
depends not only on good data but also on the accuracy of the hydraulic model as well
(Savic et al., 2009). These issues pose a sizeable challenge to operators, especially in
smaller distribution systems who are unlikely to have the resources necessary to maintain

models like this.

Because it is incredibly difficult for small systems to maintain a high-quality
working model of their system, optimizing the triple bottom line (social, environmental,
and economic considerations) is nearly impossible. As technology continues to advance
however, new horizons are being discovered that allow utilities to address the issues

associated with current modeling practices.

1.3 Research Hypothesis

In recent years, many water utilities have begun to incorporate the use of “Digital
Twins” into their daily operations. The concept of digital twins first developed by Michael
Grieves (referred to at the time as the “mirrored spaces” model) is a method through which
the physical characteristics of a system are closely “mirrored” through a digital

representation of a physical asset (Grieves and Vickers, 2016). In other words, digital twins



are developed to use continuous or near continuous data streams that allow for models to
automatically calibrate and represent the system they were built for. Digital twins are
defined by the context in which they are used and how they are applied across numerous
industries. James Cooper, Global Director of Water Optimization at Arcadis notes that
digital twins can be “a software application, a way of working, or a process” and states that
“twins can also vary in complexity and maturity” (Cooper, 2021). These levels of
complexity are referred to as states and vary from digital twin ready (modeled system) to

live data integration and analysis.

Larger utilities like Las Vegas (Cooper, 2021) and Houston (Tripathi et al., 2021)
have been leveraging the digital twin concept for almost two decades now with incredible
success. After having worked through the several states of Digital twin operation (from
Digital twin ready to using live data feeds) the Las Vegas Valley Water District (LVVWD)
saw significant improvements in controlling DBP formation, substantial savings in energy
consumption, and even had better response to emergency shutdowns (Cooper et al, 2022).
The question remains of how to integrate these benefits into a smaller system while still
considering the limited resources and the triple bottom line. As a result, the basic
hypothesis of this thesis is that many of the operational benefits afforded by digital twin
technologies can be extended to smaller systems, although it is recognized that some basic
amount of system data will be needed as well as some level of cooperation by the partner
utility. Part of this research will seek to identify what minimum baseline of information is

needed.



1.4 Goals and Objectives

The purpose of this paper is to explore the development of a digital twin for smaller
systems with limited data. The research integrates several existing software packages such
as KYPIPE, EPANET, and MATLAB in an environment that is easy to use and capable of
performing many of the previously described functionality of a traditional digital twin.
Ultimately, this work will serve as a guideline for implementing a low cost, low
maintenance tool for accurately predicting tank levels, pressures, chlorine residuals, and
disinfectant by-product (DBP) formation for small systems. Additionally, this work seeks
to investigate possible pitfalls in creating accurate and reliable digital twin solutions for
small utilities. These goals are met through the successful pursuit of the following

objectives:

1. The first objective of this work is to review other relevant scientific literature
as it relates to distribution system analysis and digital twins.

2. The next objective is to investigate potential methodologies for use in
developing digital twins for real world application. This will include utility
feedback, specific modelling tools, and the appropriate modelling template.

3. The third objective for this work is to research means of developing realistic
demand scenarios for use in evaluating alternative operational policies for the
modelled system. This process will involve assessing the viability and potential
limitations associated with available telemetry data and how to translate this
data into reliable historical water demand time series. It is anticipated that some

type of automated methodology or software will be needed. In this case,



alternative algorithms will be explored and the best among these will be chosen
and applied.

Following the development of reliable demand forecasts, a digital twin will be
developed which will allow for an operator to select from among these forecasts
a representative demand pattern. The system will then be tested using these
patterns for the purpose of optimizing daily operations and planning for the
selected utility.

The final objective of this work is to determine the next steps the utilities of
interest can take to advance their digital twin efforts. In addition to this
objective, the research team seeks to come up with a generalized step by step
process where other similar utilities may take advantage of their available data
and develop their own digital twins at minimal cost and maintenance to their

systems.

1.5 Utility of Interest

Initially, this research began looking at the possibility of developing a digital twin

model for the Whitesburg Water Utility in Letcher County, Kentucky. Unfortunately,

another system had to be considered because of continuing problems gaining access to

critical data about the system because of a severe regional flood that occurred in the area,

which forced a change in utility priorities. Instead of having time to focus on partnering

with UK to develop a digital twin for their water system, they operators were more focused

on flood recovery activities and just keeping the water utility open in support of the rest of

the community. Initial work prior to the flood also identified significant data

inconsistencies with the provided network topology and historical telemetry data which
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raised questions about the feasibility of developing a baseline water distribution model for
the system. This led to the first general observation about the feasibility of developing a
digital twin for a small water utility. There obviously needs to be a minimum level of data
and access before such a process can be undertaken, and in the case of Whitesburg, this
proved to be infeasible. Thus, digital twins may not be universally feasible for all small

water systems.

As a result of problems with the Whitesburg system, the focus of the research
changed to an alternative system, namely the Lebanon Water Works (LWW) system in
central Kentucky. The Lebanon Water Works (LWW) has a serviceable population of less
than 21,000 people. This “small” system represents a well-run, progressive utility which
has sufficient quantities of reliable data as well as having the fiscal and operational
capabilities of integrating a digital twin model. The nature of this system is conducive to
the testing and development of a framework through which digital twins may be applied to

other small utilities, particularly utilities in the eastern Kentucky region.

1.6  Organization of Thesis

This thesis is divided into the following chapters:

Chapter 1. Introduction: this chapter details the importance of digital twin

technology as a support and decision tool for operators.

Chapter 2. Literature Review: this chapter reviews the types of models
available for modeling flows and pressures in water distribution systems, including

both the Darcy-Weisbach and Hazen-Williams equations as well as broader network



algorithms for water distribution modeling. This chapter also reviews the steps

necessary to calibrate such models using actual field data.

Chapter 3. Digital Twin Development: this chapter examines the needs within
the Lebanon Water Works (LWW) system which drove the development of the
digital twin model. Additionally, a general framework for the development of the

digital twin is proposed.

Chapter 4. System Demand Forecast Scenarios. This chapter explains the
development of potential algorithms for use in developing demand forecast scenarios
for use in application in the proposed digital twin. Two separate algorithms were
investigated, a Bisection method for application to two tank systems, and the Box

Complex method for multiple tank applications.

Chapter 5. Digital Twin Application: this chapter details the application of the
digital twin model within the Lebanon Water Works (LWW) using the general
methodology built in chapter 3 and relevant equations described in chapter 4. Outputs
from the hydraulic calibration process as well as app development are displayed in

this chapter.

Chapter 6. Discussion of Results and Conclusion: this chapter discusses the

summary of research with its conclusions.
Chapter 7. Recommendations for Future Research.

Appendix A, this section contains computed demand factors for Lebanon, Kentucky for

the period between June 20" 2023 through July 37 2023



Appendix B, this section contains the code used to create the digital twin as well as relevant

functions for hydraulic and water quality modelling.

Appendix C, this section contains a user manual for the digital twin application.

Appendix D, this section contains example code on the development of the Box-Complex

method for a four-zone system



CHAPTER 2. LITERATURE REVIEW

Many decision-making processes for water distribution networks (WDN) are
fundamentally rooted in having a working hydraulic model. Maintaining proper tank
levels, optimizing pump scheduling, and ensuring proper fire protection are just a few of
the applications within WDN’s that rely on having an accurate, working model. Once a
hydraulic model is properly implemented, the model may be extended to incorporate water
quality features which assist in predicting chlorine residual and disinfection by-product
(DBP) formation. Models can be extended even further by employing “Digital Twin”
concepts as another tool in the operating and management process. Using digital twins
allow operators and engineers to move from static to a more dynamic understanding of the

current state of the WDN.

This section explores hydraulic models and digital twins in detail and provides a

general understanding of the modelling processes used throughout this thesis.

2.1 Hydraulic Modeling

At its core, network analysis methods were developed in order to address the
complexities of reliably delivering water in the growing number of municipal utilities that
were springing up throughout the 20" century. Solutions to these networks, however,
remains to this day a very non-trivial process. Every algorithm used to predict flows and
pressures in WDN’s are based on 1) the conservation of mass and 2) the conservation of

energy equations (i.e., equations 2-1, and 2-2).

2jqj— D=0 (2-1)
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Where Y. q;; is the sum of flows at all junctions j connected to junction i (flow into

a node is taken as positive) and D; is the demand at junction i. The conservation of energy

equation for each pipe segment is given by:
hi — hj = hy;;(qi;) (Rossman et al, 2020) (2-2)

Where h; is the head at junction i, h; is the head at junction j, and hy;;(q;;) is the

head loss in the pipe that connects nodes i and j as a function of flow. Figure 2-1 shows a

schematic for the relevant parameters as they appear for a several connected pipes.

di1 diz2

Figure 2-1: Conservation of Mass and Energy Example

While the conservation of mass equation is linear in terms of q and thus can be
solved explicitly, much of the complexity of network analysis is due to the nonlinear nature
of the energy equation (which can be seen in the equations of the following subsections)
and the implicit calculation of its solution that is required. The approximate headloss
discharge relationship itself may be evaluated using either the 1) The Darcy-Weisbach, or

the 2) Hazen-Williams equations (2-3 and 2-5).
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2.1.1 Darcy-Weisbach Equation

The Darcy-Weisbach equation, formulated as a result of the compiled works of

Weisbach and later Prony and Darcy (Ormsbee and Walski, 2016) is:

__ fLv?
L™ 24D

(2-3)

Where h; is the head loss term, D is the internal diameter of the pipe (ft. or m.), g

is the gravitational constant (32.17 S::% or 9.81 %}, V is the fluid velocity (ft/sec), and f
is the friction factor. Essential to the proper calculation of the head loss in a pipe using the
Darcy-Weisbach equation is finding the friction factor which can be expressed as a function

of the pipe diameter, roughness, and Reynolds number (which is a function of the pipe

diameter, velocity, and fluid viscosity).

As originally formulated, the friction factor was obtained using a graph (typically
referred to as the Moody Diagram — see Figure 2-2) which integrated previous experimental
results of several researchers into a graph relating the friction factor to the Reynolds
number and the ratio of the physical pipe roughness and the pipe diameter. Because of the
lack of a closed form equation to represent the relationships displayed by the graph,
computational applications of the Darcy Weisbach equation were initially limited, although
several authors developed graphical solutions for small networks, (Ormsbee and Walski,

2016).
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Figure 2-2: Moody Diagram (Ormsbee and Walski, 2016)

Eventually, the Colebrook-White equation was developed as an approximation to
the friction factor in the Moody diagram but still required an iterative process to solve.
Swamee and Jain resolved this issue by approximating the Colebrook-White equation
which provided a tool for explicitly evaluating f, resulting in computerized solutions of

head loss (2-4).

0.25
f —

 [roB(s55 e

> (Ormsbee and Walski, 2016) (2-4)

Where ¢ is the pipe roughness (ft/ft or m/m), D is the pipe diameter (ft or m), and

Re is the Reynolds number (dimensionless).
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2.1.2 Hazen-Williams Equation

The Hazen-Williams equation is the less theoretically correct alternative to the

Darcy-Weisbach equation and is given by:

C1.852D4-.87

hy = (2-5)

3
Where L is the length of pipe, Q is the flow rate (;LC), C is the Hazen-Williams C

factor, and D is the internal diameter of the pipe (ft).

Where the Darcy-Weisbach equation applies to most flow regimes, roughness’s,
and fluids, the Hazen-Williams equation is only applicable to water under specific
conditions. These conditions however are rarely violated under normal conditions in
distribution systems and do not make the Hazen-Williams ineffective in the analysis of
WDN’s (Ormsbee and Walski, 2016). While computer models are quite capable of
handling the explicit formulation of the Darcy-Weisbach equation, it is still much more
common for modelers and engineers to employ the use of the Hazen-Williams equation
due to its extensive use in the water industry and the common use of the Hazen-Williams
C factor to characterize pipe roughness. The use of the Hazen-Williams equation is further
supported by its ability to provide estimates of flowrate and diameter directly. In this
research we will use the Hazen-Williams equation due to its familiarity with the system

operators.

14



2.1.3 Network Algorithms

The network algorithms used in solving large systems of hydraulic equations come
in many distinct forms and have been continuously developed and improved over the last
70 years. Each method seeks a robust formulation of the conservation of mass and
conservation of energy equations that leads to the most efficient computerized solutions to
modelled pipe networks. This section examines two of the more popular methods,
specifically, the Newton-Raphson Method (NRM) for Pipes (NR-P), and the Global
Gradient Algorithm (GGA) which are the main engines used in KYPIPE and EPANET
respectively. For the sake of clarity, examples of these algorithms will exclude pumps,
check valves, pressure reducing valve’s (PRV), and other similar components. The
application of each method to a typical water distribution network is illustrated using the

example system shown in Figure 2-3.

(5]

- Tank
®

Junction

Pipe

Figure 2-3: Example Pipe Network
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Newton-Raphson Method for Pipes

In order to solve the nonlinear conservation of energy equations, they must first be
approximated using a truncated Taylor series which can then be solved iteratively using
the Newton-Raphson method. Technically, the Newton-Raphson method is a multi-
dimensional version of the classical Newton’s method for determining the root of a single
nonlinear equation. Newton’s method is illustrated in Figure 2-4.

1. Guess a starting point, X;
2. Find the tangent of the function (take derivative), and
evaluate at guessed value

3. Find where that tangent line crosses the x-axis by using
known information:

fx)
f'lx) = :
L
4. Rearrange equation to explicitly solve for the improved
value of x
N {0
1= X -
v )

5. Continue process until root is found

Xi+2 7/ Xi+1 X;

Figure 2-4: Generalized Newton-Raphson Method (Bhave and Gupta, 2013)

The Newton-Raphson method was first used to solve the conservation of mass and
energy equations (expressed in terms of nodal heads) by Martin and Peters in 1963 and has
subsequently been used in many other solution algorithms since. This section looks

specifically at the NRM for pipes which constitutes the engine used in KYPIPE.
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The pipe flows algorithm here is uniquely distinct from the previous NRM for
nodes (Martin and Peters, 1963) and NRM for loops (Epp and Fowler, 1970) in that it is
solving explicitly for the updated flow value as opposed to the change in nodal heads or
flows associated with a loop or flow path. It is noted in (Wood and Rayes, 1981) that the

total number of equations needed to solve the NRM for pipes is:

j+ 1+ f—1=#of pipes = # of equations to solve (2-6)

Where j = the number of junction nodes, 1 = the number of distinct loops, f = the
number of fixed grade nodes (i.e., reservoirs or tanks where the hydraulic grade is known

or specified), and p = the total number of pipes.

Applying this identity to the example system in Figure 2-3 reveals a total of six
pipes, or six unknown pipe flows. As a result, six equations will be required. This will
involve j (or 4) conservation of mass equations and 1+f-1 (or 2) conservation of energy
equations. For the example system, the four conservation of mass equations can be

expressed as:

Q1= Q2= Q=0 2-7)
Q;— Qs—0Q3=0 (2-8)
Qs — Q33— 0Q4=0 (2-9)

Qs— D=0 (2-10)

Where Q; is the unknown flow in pipe i and dg is the demand at node 6 (i.e., 500
gpm). For the example system, one conservation of energy equation can be written for the

only pipe loop (i.e., involving pipes 2, 3, and 4) and another energy equation can be written

17



connecting the two fixed grade nodes (i.e., involving 1, 2, and 5), Mathematically, these

two equations can be expressed as:
FGNS - FGN1 - - h’Ll - h’L2 - h’L5 (2'11)
by — hpz— hyp =0 (2-12)

Where FGNs and FGN; represent the water levels in each fixed grade node, and

h;; represents the head loss in pipe i.

Since equations 2-11 and 2-12 are nonlinear in terms of Q (i.e., equation 2-5), they
must first be linearized before they can be solved. This can be accomplished using

Newton’s method, where:

H(Q:)
Qir1 = Qi ~ 3ieo5 (2-13)

By approximating each H(Q;) in equations (2-11) and (2-12) using equation (2-

13), each energy equation can we expressed as:
[H'(Q){Qi+1} = {=H(Q) + H'(Q)(QD} + 4E] (2-14)

Where H, H’, and Q, are all vectors and AE is a scalar (in this case the difference
in elevation between the two tanks). Now that the energy equations have been linearized,
they may be combined with the conservation of mass equations to yield six equations in
terms of six unknowns: (Q1;4...Q6i;1) as shown in equations 2-15a and 2-15b (broken

into two equations for visibility).
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_HLoop(Qi) + GLoop (QL)QL
__Hpath(Qi) + Gpath(Qi)Qi + AE-

Where G (Q;); is the gradient of the headloss term for a specific pipe (i.e., G, (Q;) =
H; (Q;)), and where the matrix coefficients are all scalar quantities while the last two terms
in the right-hand side vector are vector quantities e.g., Hy50p(Q;) = H4(Q4) — H13(Q3) —
H;,(Q). The algorithm is initiated with initial guesses for each Q; (which is typically done
assuming an initial velocity of 5 fps in each pipe). These Q’s are then used to solve for the
various G; and H; coefficients which are then loaded into the matrix and the right-hand
side vector. Once populated, the system of equations is then solved for each Q;,;. Once
determined, these are used to update each Q;, where Q; = Q;;1, and the process is then

repeated until the Q’s all converge to a stable solution.

Global Gradient Algorithm

The gradient method originally developed by Todini and Pilati (1987) solves the
NRM directly for flows and heads simultaneously within the EPANET software. For
networks with known pipe resistances, in this case they are assumed to be known, we may

formulate the energy equations as follows (Bhave and Gupta, 2013):

(Hi+ AH) — (Hj+ AH)) = RyQ + nRy|Qx|"AQ, (2-16)
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Where H; is the known or assumed head at node i, H; is the known or assumed head
at node j, AH is the change in head for each respective node, R, is the resistance constant
in the pipe x (specific to which loss equation and units being used) which connects nodes

iand j, Q, is flow in a pipe x, and AQ, is the change in flow in pipe x between iterations.

The Taylor series expansion and subsequent derivation of the NRM results in the
right-hand side of equation 2-16. The left-hand side of the equation represents the updated
heads at nodes i and j given the solution to the NRM on the RHS. By simplifying, (H; +
AH;) and (H; + AH;) in equation 2-16 may be replaced by H(; 41y and Hj ). By moving
nR,|Q,|" 1AQ, to the LHS and subtracting nR,QF from both sides, the equation now

becomes:
H(i+1) - H(j+1) - (nRlexln_l)Qx+1 = (1 - n)RxQJTcl (2'17)

Where Q, 44 is the updated flow in the pipe. What this allows for is the unknowns
(updated heads and flows) to be expressed on the LHS and the knowns to be expressed on
the RHS of the equation. In the case where a FGN (known head) is a starting or terminal

node, move H;4q) or H(j,q) over to the RHS respectively. The total number of equations

needed to solve the system is given as:
J + P = # of equations (2-18)

Where j is the number of junctions and p is the number of pipes (see equation 2-6
for help identifying the number of pipes). Using figure 2-3, there are 4 junctions and 6
pipes making the system of equations to solve equal to 10. The continuity equations remain
the same as in the NRM for pipes whereas the energy equations reflect the GGA

methodology. Please note that when formulating the following equations, H(; 1) represents
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the source node, Hj4q) represents the terminal node. These terms are multiplied by 1 if

flow proceeds from i to j and -1 if it is from j to i.

Hjz + Gp1(Q1)Q1+1) = Hrgna + (n — DHL1(Q1) (2-19)
—Hjp + Hjz + Gy2(Q2) Q241 = (n — 1HL5(Q2) (2-20)
—Hjz + Hjs + Gp3(Q3)Q3qi41y = (n— 1)H.5(Q3) (2-21)
—Hjs + Hjg + Gpa(Qu)Qag+) = (n— DHL,(Q4) (2-22)
—Hjz + Gps(Qs)Qs(i+1) = —Hpgnz + (n — 1 H;5(Q5) (2-23)
—Hjs + Hjs + Gpe(Q6)Qs(i+1) = (n — 1 H16(Q6) (2-24)

Where H; represents the head at a specified junction, Hggy is the head at a fixed
grade node (separate labeling for j and FGN unnecessary and used only for clarity), G, (Qp)
is the gradient in the pipe with respect to the pipes flow (nR[Q,|"™1), Q1) is the updated
flow term, and HL(Qp) is the headloss in the pipe with respect to the pipes flow. The

following is the matrix representation of the above equations:
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Important to note from this section is the understanding that this methodology
allows for the explicit solution of heads and flows at each iteration which vastly increases
its speed relative to other algorithms. This thesis will continue to develop the framework
of hydraulic modeling assuming that the equations being solved follow the EPANET GGA

because of its use in the digital twin model (more on digital twins in section 2.3).

Extended Period Simulation

The process through which hydraulic models are expanded from static (steady state)
simulations to their more dynamic, temporally varying counterparts is called extended
period simulation (EPS). EPS can be captured through modeling the change in all the tank

volumes over time which may be seen in equation 2-26 (Rossman et. al., 2020).
— = Qsnet (2-26)

avs . . . . .
Where d—: is the change in tank volume over time and Qg ¢ 1s the net flow into or

out of the tank. Continuing with the methodology developed by Rossman in the EPANET
2.2 manual (Rossman et. al., 2020), a second equation is then needed that relates the head

at the surface level of the tank to the volume of the tank (equation 2-27).
Hy = Eg+Y (V) (2-27)

Where H; is the tank’s elevation head, E; is the tank’s bottom elevation and Y (V;)
is the relative tank water level as a function of volume. Solving the network using the GGA
algorithm results in the flows into or out of the tanks (Qsne¢) Which can then be used to

solve 2-28 and 2-29. By solving equations 2-28 and 2-29 the time step may be accurately
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advanced and hydraulic conditions known within the system.

Vs(t + At) = Vs(t) + Qs,net(t)At (2-28)
Hy(t+ At) = Eg+Y(V,(t + AD)) (2-29)

This is the generalized process behind extended period simulations. It should be
noted that any changes such as pumps turning off and on, tanks completely empty or full,

or other similar scenarios will also trigger this process.

2.1.4 Hydraulic Calibration

Another complexity of hydraulic modeling involves the process of ensuring that the
model outputs accurately reflect conditions seen in the field such as pressures, flows, and
tank levels. This process is referred to as hydraulic calibration and it is typically broken
down into 1) pipe roughness calibration using (steady state) and 2) demand calibration
using (extended period simulation). These two parameters typically have the highest
degree of uncertainty and because of this, they are the most in need of high-quality field
observations and data. Calibration for pipe roughness and demands are carried out by
adjusting the Hazen-Williams C factor and demand factors respectively to obtain a useful

model (Ormsbee and Lingireddy, 1997).

Model calibration is accomplished using seven basic steps outlined by Ormsbee
and Lingireddy (1997), 1) identify the intended use of the model, 2) determine initial
estimates of model parameters, 3) collect calibration data, 4) evaluate the model results, 5)
perform the macro-level calibration, 6) perform the sensitivity analysis, and 7) perform the

micro-level calibration. For the purpose of understanding the calibration process, only step
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7 (micro-level calibration) will be highlighted in the following subsections which focuses

on pipe roughness and demand calibration.

Pipe Roughness Calibration

It is an industry standard to provide pipe roughness factors for pipes supplied by
manufacturers and can be found online in a plethora of handbooks. The Hazen-Williams
C-factors are typically populated into uncalibrated hydraulic models using such typical
values and some programs like KYPIPE will automatically assign default C-factors
depending on what type of material is specified. However, such values might not be totally
accurate since C-factors can decrease over time as a function of water age and water
quality. For example, a 60-year-old cast iron transmission main may have a significantly

reduced C-factor due to the formation of tuberculation.

Because C-factors may also be used in a model to compensate for several other
factors such as fitting losses and system skeletonization, field testing is critical even for
relatively newer pipes (Ormsbee and Lingireddy, 1997). The procedure for conducting
these field tests are as follows (figure 2-5): 1) select a straight-line section of pipe
containing a minimum of 3 fire hydrants, 2) isolate the pipe by closing the downstream
valve, 3) attach pressure gauges to the first two hydrants (called residual hydrants), 4)
measure the elevation differences between the first two hydrants and their respective
pressures, and then flow and record the flow rate at the 3™ hydrant. Finally, calculate the

head loss in the pipe using equation 2-30.

P,— P
=24 (2, - 2y) (2-30)
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Where h; is the headloss in the pipe (ft), 32.2 if the gravitational constant (Si%), P;

is the pressure measured at the hydrants (convert from psi to psf), and Z; is the elevation
of the hydrants (ft). Once this is completed, the Hazen-Williams C-factor can be

determined by rearranging equation 2-5 and solving for C.

Figure 2-5: Example Setup for a C-Factor Test

In almost every case, it is economically infeasible to perform this test on all pipes
in a WDN. Because of this, C-factor tests are usually taken at locations that are generally
representative of the system at hand. If a neighborhood, for example, is known to have
been constructed at a certain time, it is likely that all the pipes in that area are the same and
will be subject to the same C-factor values. These tests should be conducted regularly so

that hydraulic model performance can be maintained or improve over time.

Demand Factor Calibration

Calibration of demand factors is an inherently complicated process since they are
subject to variation both spatially and temporally. Models are always populated with “base
demands” which in most cases are chosen as the average demand seen at that point in the
system over a selected period. Errors at this step (steady state) may be found given a peak
flow scenario where the HGL is drastically affected by losses encountered by pipes,

fittings, PRV’s, etc. (Walski, 2017). After calibrating pipe roughness, If the HGL is still
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well above or below what has been measured in the field and that error is somewhat evenly
distributed across a pressure zone, it can be safely assumed that the base demands need

adjusting.

When considering temporal differences in data, it is important to note that
differences between any two days will likely be significant (Walski, 2017). Using the
region surrounding the University of Kentucky campus, for example, demands may be
altered by home football games, seasonal breaks, fires, etc. Because of this, operators and
engineers must exercise extreme caution when evaluating the intended use of their models
and what data has been used to calibrate the “demand factors”. In most situations,
variations in demand may be accounted for by scaling up and or down these factors,
depending on a water treatment plant’s daily production. However, in the case of fires, this

would not be enough due to the concentrated nature of such a demand (Walski, 2017).

In conclusion, there are numerous factors and methods used to calibrate hydraulic
models which in many cases can overwhelm the operator or engineer attempting to use a
hydraulic model to guide operational decisions. There are hundreds of papers dedicated to
this subject alone, many of which are outside the scope of this paper. When describing their
7-step calibration procedure, Ormsbee and Lingireddy (1997) make note that “one of the
most difficult steps in the process has been the final adjustment of pipe roughness values
and nodal demands”. Because of this, later sections of this paper focus heavily upon the
process of demand factor calibration due to its inherent difficulty and the challenges it

poses to operators and engineers alike.
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2.2 Digital Twins

Digital twins are a concept that first originated with a presentation given by Dr.
Michael Grieves in a 2002 presentation at the University of Michigan centered around the
creation of a “Product Lifecycle Management Center.” The name was not explicitly that of
“digital twins”, but it had all of the relevant elements: “real space, virtual space, the link
for data flow from real space to virtual space, the link for information flow from virtual

space to real space and virtual subspaces” (Grieves and Vickers, 2016).

At its core, this concept is rooted in the successful integration of high-quality data
transmitted in real time, to a working model that is capable of producing outputs that may
be seen in the field. Consider that hydraulic models are calibrated and used based on
historical sources of information whereas digital twins are based on current or near current
data streams. The paradigm shift here is equivalent to having a picture of something as it
was in the past (and assuming how it might look and function in the future), or having the

real thing being effectively “mirrored” as it is right now.

The water industry in the past has been slow to adopt digital solutions such as this
but several case studies in places such as Las Vegas have demonstrated the significant
return on investment that many utilities are looking for. In addition, COVID 19 prompted
an accelerated integration of these digital solutions which ultimately thrust the industry

into this relatively newfound territory (Cooper, 2021).

Digital twins foundationally may seem simple enough to understand given the
definition by Grieves, however its application in the water industry is consistently met with
confusion due to lack of consensus on a uniform definition. Some considered digital twins

as simply a hydraulic model, others feel the necessity of live data feeds, still others think
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of it as a supervisory control and data acquisition system (SCADA) (Cooper, 2021).
Questions also surrounded whether application of digital twins change with respect to

utility size, cost, and overall purpose.

The need for consensus on the topic in the water industry prompted the formation
of the “Digital Twins Committee” (DTC) in AWWA. What resulted from this is the formal
definition of digital twins (within the water industry) as: “A digital, dynamic system of
real-world entities and their behaviors using models with static and dynamic data that
enable insights and interactions to drive actionable and optimized outcomes” (Sasa, T., et

al. 2022).

The definition, while targeted and well formulated, still leaves room for several
different “levels” of digital twins which vary from utility to utility. The AWWA-DTC
defines these as levels zero through three. Level zero, also referred to as “digital twin
ready” are any systems that have gone through the process of collecting historical data of
their systems or even a hydraulic model that can be doing much more than they are
currently doing (Cooper et al., 2022). Many utilities, especially those with fewer resources

find themselves at this stage.

Level one digital twins are called “informational twins” and use the virtual
representations (typically hydraulic models) built during level zero and incorporate
historical data to improve the performance of the model (Cooper et al., 2022). For example,
historical information may come from sources such as SCADA or GIS that will allow for

more accurate prediction of day-to-day operations and planning.
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Level two digital twins are defined as “Operational Twins” and are different from
level one twins in that they incorporate live data streams. This version of a digital twin
most closely fits the definition originally proposed by Grieves and Vickers (2016) and
therefore is the most traditional when considering other industry standards. If created
properly, these twins give significant advantages to their respective utilities. For example,
Houston Water Planning, which serves over 5 million residents, has created a functional
digital twin and has met great success in the process. By integrating SCADA and GIS
information in real time, they have been able to identify valves which had been assumed
open but were closed due to line breaks that occurred several years ago. This correction in
the model vastly improved hydraulic modeling for the system and overall management

decision making (Tripathi, et al., 2021).

The most advanced form of a digital twin is defined as “Connective Twins” and are
the end goal for all utilities operating under this framework. Connective twins in simple
terms are a digital twin that communicates with other digital twins. For example, there may
be a digital twin that has real time information on electrical rates, usage, and forecast
demands that integrates with a hydraulic digital twin performing similar functions. By
having the two twins communicate, electrical usage at the water utility may be optimized

to reduce cost and overall energy consumption.

While these definitions are useful, it is important to understand that a utility
typically will find itself somewhere in between these levels and digital twin transformation

may be viewed on a spectrum of readiness, implementation, and use.
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CHAPTER 3. DIGITAL TWIN DEVELOPMENT

In section 2.2, it was noted that digital twin applications may look different between
any two utilities depending on their specific system needs and current levels of data
management and integration. Using Lebanon Water Works (LWW) as a case study
representing small water systems; hydraulic and water quality data were collected, and a
digital twin was built for this WDN. This section details the processes undertaken to
understand the specific needs of this utility, data collection methods, and challenges unique
to this system that may cause the success or failure of producing a useful digital twin for

distribution operators.

3.1 Lebanon Water Works

Lebanon Water Works (LWW), located in Marion County, Kentucky, provides
drinking water to the city of Lebanon with a directly serviceable population of 6,412 and
an indirectly serviced population of 14,006 (WRIS, 2023). Water is mostly drawn from the
Rolling Fork River and occasionally from Marion County Lake as a reserve. The system
currently maintains 3 tanks. In the northern portion of the system, there is an elevated tank
that has a capacity of 250,000 gallons. The other two tanks, which are identical in geometry
and are located adjacent to one another, are in the central part of the system and have a
combined storage of 188,000 gallons. There is a booster pump located near the western
side of the system that pumps to the Springfield Road tank in the north. The water treatment
plant in the very southern end of the system delivers approximately 2.6 MGD and has a

design capacity of 5.2 MGD. LWW sells most of its water (approximately 62% of last
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year’s annual volume) through 10 key points throughout the WDN. All of these attributes

are detailed in figure 3-1.
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Figure 3-1: Hydraulic Model of Lebanon Water Works
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3.1.1 Understanding System Needs and Relevant Data

The original model for this research was provided by Jim Thompson of Kentucky
Engineering Group located in Versailles, Kentucky. The model elevations, pump curves,
tank elevations, and overall system topology were validated through coordinated efforts
between Mr. Thompson, LWW staff, and the author. Master meter data for all 10 selling
points were provided by the utility for dates from 6/19/2023 through 7/20/2023 at a data
resolution of 1 hour. Data for tank levels, pump intake and discharge pressure, water
treatment plant (WTP) flow rate, and free chlorine residual were provided from 6/1/2023
through 7/24/2023 with a data resolution of 2 minutes. Master meter, tank, and pump

information were all provided by LWW.

Given the quantity and quality of available data, discussions around building a
digital twin for LWW were very different than those of communities in rural Eastern
Kentucky. LWW identified the following as the key outcomes they were seeking to obtain
through the development and use of a digital twin: 1) capability for evaluating the
placement of a new tank and a new 16 transmission main, 2) prediction of pressures at
key junctions, 3) prediction of water age in tanks, and 4) prediction of tank levels over a
24 hour period, 5) prediction of free chlorine residual at key junctions, and 6) prediction of
DBP indicators such as HAAS. The utility also expressed a desire to be able to access such
information through an easy-to-understand graphical user interface (GUI) that is accessible
to distribution operators who are assumed to have little to no knowledge of hydraulic

modeling.

33



3.2 Modeling Methodology and Tools Used

The main tool used in processing the hydraulic data for this application is EPANET.
EPANET is an open source hydraulic and water quality engine developed by the United
States Environmental Protection Agency (U.S. EPA) which is capable of producing results
for both steady state and extended period simulations at incredible speeds (section 2.1.3).
By taking the original model developed by Jim Thompson and the Kentucky Engineering
Group in KYPIPE, the data was first exported from KYPIPE as a “.inp” file and stored for

processing.

The GUI development platform selected for this application is MATLAB which
offers extremely simple dashboard development and user elements. Through the EPANET-
MATLAB toolkit (Eliades et al., 2016), the MATLAB GUI elements can directly interact

with the EPANET engine and display useful results to the operator.

For this thesis, elements available for user input were limited to, 1) operational
information associated with the WTP and booster pump operations, 2) initial tank levels,
3) free chlorine concentration at the WTP, 4) bulk and wall decay coefficients (preset), 5)

basic demand patterns, and 6) total time and time step of simulation.

Outputs in this application do not meet all the expected outcomes put forth by
LWW due to the time limitations of this work. Outputs developed as a part of this research
include: 1) prediction of pressure at key junctions, 2) prediction of free chlorine at key
junctions, 3) prediction of DBP formation at key junctions, 4) tank water age, and 5) tank
levels over a 24-hour period. Other outputs include a simple graphical display which will
give the user the ability to quickly and simply visualize all of these parameters which can

then be used to drive actionable decisions.
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CHAPTER 4. HYDRAULIC CALIBRATION OF DIGITAL TWIN (LEBANON)

Hydraulic calibration is the foundation upon which useful information may be
extracted from water distribution models. This process, highlighted in section 2.1.4, can
prove to be extremely difficult depending on the quality and quantity of available data.
LWW was selected to pilot this study due to the progressive nature of the utility and its
ability to provide high quality system information that most nearly mimics the live data

streams that are characteristic of digital twins.

Assumptions made relative to the hydraulic calibration process for the digital twin
are as follows: 1) pipe roughness’ given in original model are sufficiently calibrated, 2)
pump curves are sufficiently calibrated, 3) nodal base demands are sufficiently calibrated,
4) nodal elevations are correct, 5) overall system topology is correct within reason (no
outstanding errors), 6) sensor data at tanks and pumps are accurate, and 7) all information

given is reflective of standard conditions within the system.

The purpose of this thesis is to present ways in which a digital twin can be
developed efficiently as a decision support tool for operators. While other calibration steps
are critical to the development of a useful model, the parameter that drives much of the
error and variation of results for extended period simulations are the spatial and temporal

distribution of demand factors.

Typically, modelers approach this step in the calibration process by ensuring that
their modeled tank level changes in their respective models are tracking with observed
telemetry data. While this provides a “snapshot” of how the utility might operate on a

typical day, this information is susceptible to significant error in the actual hydraulics (tank
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levels, demands, flow rates, etc.) seen in the system. Demand variation from one day to the
next may be as high as 20% or more and raises the concern of calibrating a model from a

single days’ worth of information (Walski et al., 2012).

While the benefits of having a calibrated model are known, the cost for most small
utilities is prohibitive due to the time it takes to calibrate and validate extended period
simulations which is a highly iterative and time intensive process. In addition, most
operators of these systems do not have engineering backgrounds and typically lack great
understanding of how and when models are calibrated to meet their needs. In this study,
the primary focus was on determining the correct temporal variations of nodal demands for
actual observed days. Since individual customer demands were not readily available,
several surrogate measures (i.e., pump discharges, master meters, and water tank levels)
were used to calibrate the associated temporal demand distributions. The final calibration
process was then performed by coupling the associated EPANET model with a traditional
nonlinear optimization algorithm. To facilitate this process, the system was first broken

down into two different demand management areas.

4.1 Demand Management Areas (Pressure Zones)

The calibration of demands for a water distribution system can be facilitated by
either taking advantage existing zone separations (i.e., using pressure zones) or by creating
artificial water demand zones through the installation and closing of isolations valves
which are then connected by water meters. Pressure zones are delineated by closing a series
of valves that isolate one region of a distribution system from another. By creating these

zones, portions of a WDN that exist at higher elevations can benefit from increased
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pressures from booster pump stations and storage tanks while protecting assets at lower
elevations which would likely be damaged from these excessive pressures. To demonstrate
the concept of pressure zones, a valve is closed in the example system in figure 4-1 that
causes two independent zones to be created. When opening that same valve in figure 4-2,
assets in the south are subject to excessive pressure from the booster pump whereas service

in the northern portion of the system will likely be inadequate due to low pressures.
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Figure 4-1: Pressure Zone Delineation within an Example Network
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Figure 4-2: Example Network with Open Valve and Unintended Pressures

The ultimate number of pressure zones to be modeled can impact the best choice of
an optimization algorithm. In general, a simple bisection method was found sufficient for
two zone systems, while the Box-Complex Method (Box, 1965) was found sufficient for

multi-zone systems with more than 2 pressure zones.
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4.1.1 Bisection Algorithm (Two Zone System)

In some cases, especially with smaller systems, a WDN may be conveniently
divided into two distinct pressure zones or demand management zones. To find the
optimized demand factors for these zones, an objective function must first be defined. The
objective function is simply the function whose value is minimized by the chosen

algorithm. In the case of the Lebanon system, the following objective function was used:

f(DFth) = (Tm,zl,t - Tr,z1,t) (4-1)

Where f(DF, ;) is the function to be minimized where DF, ; represents the demand
factor for zone z and time t, T, ,; is the modeled tank level in zone 1, T;. .4 is the observed
tank level in zone 1 and whose values are a function of the demand in zone 1. These values

of the decision variables (i.e., the DF, ;) are further constrained to not violate conservation

of mass across the system for a given total demand associated with time t (i.e., TD;).

Qplant,ti + Qtank,ti - Qsold,ti = TD; (4-2)

Where t is the time step, Qpan; is the flow from the plant, Q¢qni is the flow from

the tanks (where flow out of tanks is taken as positive), Q.14 1s the flow out of the system
at its boundary (water sold to other utilities, these are given from master meter data), and
TD, is the total demand. Total demand may be expanded to include the two zones within

the system as they are typically modeled in hydraulic software:

TD = (DF, * (EBD,)) + (DF, * (XBD,)) (4-3)
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DF,; is the demand factor for zone 1, ¥BD; is the sum of the nodal base demands in
zone 1, DF, is the demand factor for zone 2, and £BD, is the sum of the base demands for

zone 2. By combining equation 4-2 and 4-3, the system constraint becomes:

(DFl,ti * (ZBDl)) + (DFZ,ti * (ZBDZ)) = Qplant,ti + Qtank,ti - Qsold,ti (4'4)

Because plant flow rate and the flow rate of water sold to neighboring utilities are
known parameters (metered data) whose exact values may be input to the model as fixed
boundary conditions, the objective function simply becomes a problem of minimizing the
difference between the model tank levels and the real (known) tank levels given these

constraints.

Since the analysis and optimization of demand factors is not necessarily a
straightforward process (see section 2.1) this task would take an experienced engineer
many iterations with a hydraulic model to achieve values that match field conditions. This

process however is easily automated using the bisection method.

The bisection method is a simple, but very powerful algorithm that allows for the
“bracketing” of a solution to non-linear objective functions. Consider figure 4-3, a non-
linear representation of the difference between real and model tank levels within a single

zone as a function of that zone’s respective demand factors.
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f[Dle.c) = (Tmzl.c_ Tr.zl.c]

Demand Factor Zone 1

Figure 4-3: Example of Objective Function In Equation 4-1

The bisection method is performed by applying the following steps to the objective

function in figure 4-3:

1) Select two possible solutions (a high demand factor and a low one) that satisfy the

problem constraint (i.e., equation 4-4) and then evaluate the objective function.

2) Observe the results from equation 4-1, the goal being to minimize the difference

between model and real tank levels.

3) The small demand factor will yield a positive result for the objective function and the

high demand factor will be negative.

4) The solution is somewhere in the middle (also known as a bracketed solution), by testing

a 3rd point that lies directly between the first two, we begin to “squeeze” the solution.
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5) if the 3™ point is positive, remove the old demand factor that resulted in a positive
objective function. If negative, remove the old demand factor and repeat this process until

a solution is found.
6) Plug the optimized value of DF; into equation 4-4 and solve for DF,

By utilizing step 6 at every iteration, the bisection method needs only to be applied
to a single demand factor, in this case DF;. As the objective function in equation 4-1 is
minimized, the mass balance in equation 4-4 also yields a minimized difference in real and
model tank levels for zone 2. Figure(s) 4-4 and 4-5 give a graphical representation of the
bisection method while figure 4-6 shows a flow chart representing the general process of

the Bisection method.
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Demand Factor Zone 1

Figure 4-4: Example of Initializing the Bisection Method
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Figure 4-5: Example of Improved Solution Using the Bisection Method
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Figure 4-6: General Structure of Bisection Method
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4.1.2 Box-Complex Algorithm (Multi Zonal System)

When solving for systems with more than two demand management areas,
algorithms which can handle a solution space in multiple dimensions become necessary.

Equation 4-4 for multi zonal systems becomes:

z:(DFn,ti * (EBDy)) = Qplant,ti + Qtank,ti - Qsold,ti (4-5)

Where n is the number of zones (dimensions) that will be used within the Box-
Complex algorithm. Because solving for one factor does not guarantee an improved
solution for other factors given systems with more than two pressure zones, equation 4-1

becomes:

f(Dle,t...Dan,t) = z:(Tm,zn,t - Tr,zn,t)2 (4-6)

Where £(Ty sne — Trzne)? is the sum of the squared difference between real and
model tank levels for all tanks within a given system and DF,;, DF,,. describes all

associated demand factors for a system with multiple pressure zones.

The Box-Complex method is the constrained form of the Simplex algorithm first
introduced by Spendley, Hext and Himsworth (Ormsbee, 1979). A simplex 1s a geometrical
figure consisting of N dimensions, N+1 vertices, and all their connecting sides (Press et al,
2007). Constraints for this algorithm are formulated as either explicit or implicit. Explicit
constraints provide explicit bounds on the values that the decision variable can assume.
Implicit constraints consist of other equations expressed in terms of the decision variables
whose values are also constrained to be either equal to a value (i.e., 0), or greater than or

less than a non-zero value. The Box-Complex method is especially suited for nonlinear
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optimization problems involving both explicit and implicit inequality constraints. In some

cases, implicit equality constraints can be enforced by a separate simulation model which

is then linked with the Box-Complex optimization algorithm.

The following generalized steps for the Box-Complex method were referenced

from Dr. Lindell Ormsbee’s original master’s degree thesis “Optimization of Hydraulic

Networks Using the Box-Complex Optimization Technique and the Linear Method of

Hydraulic Analysis” (1979) and have been slightly changed for this unique application.

1)

2)

3)

Generate k > n + 1 points, where n is the number of function variables. Each point
contains the necessary number of demand factors depending on the number of
pressure zones in the WDN. All of the points are randomly generated with a
standard randomizer within programs such as MATLAB and are bounded by
equation 4-5. These points are also bounded by an explicit constraint which requires
all demand factors to be greater than 0 (homeowners will not discharge into the
distribution system).

Each point is then evaluated given the objective function from equation 4-6. The
point with the highest value is deemed “worst” and will be used to then generate a
new point in the opposite direction using following steps.

Reflect the worst point through the centroid of the remaining points:
P*=(1+ a)P— aPh (4-7)

Where P* is the new point, a is an expansion coefficient, P is the centroid of the
remaining points (all points excluding the current worst point), and Ph is the worst

point.
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4) Once P* is generated it is first checked to ensure it satisfies the explicit constraint
(i.e., P*>0). Ifnot, it is contracted halfway back toward the center using equation
4-8 until a feasible point is found. If P* yields an objective function value less than
Ph , then we keep this value and discard Ph. If the new point is worse than Ph,
(i.e., has a larger value of the objective function than Ph), then the new point is

again contracted back towards the centroid using:
P* = wPh+ (1 — w)P (4-8)

Where P** is the new point generated and w is the contraction coefficient. This
process is continued until a new point is generated which yields an objective
function value less than the current Ph. Once this point is found, it then replaces Ph
in the complex, and the process is repeated. Assuming the solution space is convex

relative to the objective function, the algorithm should converge to a solution.

For this formulation of the Box-Complex algorithm, it is recommended that the
expansion coefficient remain relatively small (anywhere between 1-2 depending on
application). By using an expansion factor greater than 1 the simplex is allowed to “search”
different regions of the solution space. While values greater than 2 are also acceptable, they
may lead to slower convergence within this specific application. Contraction coefficients
may be anywhere from 0-1 where 0 will result in the centroid and 1 will result in the old
worst point respectively. Additionally, not all demand factors (dimensions in a complex)

for the WDN are used. In order to satisfy conservation of mass, (n-1) factors are
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manipulated within the complex (where n is the total number of pressure zones), after

which the nt" factor is generated by solving equation 4-9:

Q /- TS ) = Qsotde; ~ Tuey (DFy, ¢*(EBDy))
DFn' " — plant, t; x=1 tank x,t soldt; x=1 x, t X (4_9)

ZBDy,

Where Qpiant, ¢, 18 the flow into the system from the WTP, Zig{ Tanks(ank xt)
is the sum of all the flows from every tank in the system at a specific time step (where

leaving the tanks are considered positive), Qsoiq; IS the water being sold, and

(n-1)

v=1 (DFy ¢ * (YBD,)) are the demands in every zone with the exception of the nt" zone.

An example of the expansion and contraction process is demonstrated in figures 4-
7 and 4-8 below (yellow circle is the solution). Given the dimensionality of the solution
space in these figures, the implied number of demand factors and therefore their respective
pressure zones are three. The Box-Complex method first determines the demand factor for
the first two zones (DF; and DF,) while the demand factor for zone 3 (DF3) is solved using
equation 4-9 and is dependent upon DF; and DF,. This same approach can be extended to
problems involving additional demand factors (i.e., > 3). The general structure of the
algorithm is provided in Figure 4-9. Example code for optimizing a single hour for a four-

zone system is given in Appendix D

It should be noted that the Box-Complex method does not guarantee the global
maximum or minimum. However, if the algorithm is repeatedly run with a different set of
initial demand factors and it continues to converge to the same solution, that would suggest

that a global optimum has been achieved.
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Figure 4-7: Example Expansion Using the Box-Complex Method

Demand Factor Zone 1

Figure 4-8: Example Contraction Using the Box-Complex Method
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Figure 4-9: General Algorithm for Box-Complex Method
4.2  Hydraulic Calibration of LWW Digital Twin
The hydraulic model underlying the digital twin was originally provided by the
Kentucky Engineering Group while consulting for the LWW system. This model, given as
a “.p2k” KYPIPE file, was converted into an EPANET “.inp” format and checked to ensure

no information was lost in the export process.

The nodal elevations and C-factors for the pipes given from this model are assumed
satisfactory for the desired outcomes and have not been altered from the original file. Other
topographical information in the model was confirmed using information provided by the
LWW system. In particular, the Springfield Tank, which has a non-cylindrical geometry,
required updating so that it accurately reflected discharge rates as a function of changing
elevation. Similarly, the two pumps within the model, the water treatment plant (WTP) and
booster pump stations have been confirmed as accurately populated within the model (per

meeting with Kentucky Engineering Group) and have not been altered in any way.
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Calibration of the model therefore encompasses the accurate creation of demand
factors which comprise the extended period simulation (EPS). The first step taken towards
accomplishing this was to delineate the pressure zones within the system itself. Figure 4-
10 identifies the valves that were closed in the actual system (as well as in the model) which
allowed for the isolation of “Zone 1” and “Zone 2”. Zone 1, which is associated with
Cavalry Tanks and the water treatment plant, is in the southern portion of the system. Zone
2, which is associated with the Springfield Tank and booster pump, is in the northern

portion of the system.

I:l Reservoir

® Tank
N Closed Valve
B Pump

() Pressure Zone

Z-1

Figure 4-10: LWW North and South Pressure Zone Delineation
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After splitting the system into two clearly defined zones, the total base demand for
each zone (XBD in equation 4.4) is found by summing the base demands of junctions within

zones 1 and 2 respectively:
XBD; = 254.99 gpm
YXBD, = 116.35 gpm

These values are unique to the closed valve locations which, if changed, will require
redistribution of the base demands to zone 1 and 2 respectively. Having found these values,

equation 4.4 becomes:

(DFy; * (254.99 gpm)) + (DF, ¢, * (116.35)) = Qpianet; T Qrankt; — @sotat

Now that the relevant model parameters on the left-hand side of the equation have

been found, we move to the right-hand side dealing with real model data given from LWW.

The parameters on the right-hand side including plant flow rate, and tank discharge
(which are a function of tank geometry and level over time) were given for the time period
of June 1%, 2023, through July 24, 2023, with data points given every two minutes. The
last parameter, the sum of the master meter demands, were given for the time period of
June 19% 2023, through July 20, 2023, with information on these demands given every
hour. With the master meter demands constraining the period for which we can create the
proper demand factors, a two-week period was chosen starting on June 20" and running

through July 3.
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The next step in this process is to understand how we can appropriately use this
data to find demand factors for the system. Throughout the entirety of this project, there
were a plethora of data errors that were encountered and cleaned which took place before
the implementation of the algorithm. While a more comprehensive exploration of pitfalls
arising from flawed data can be found in Walski et. al (2012), this discussion specifically

addresses the issues of “data latching” and managing “noise”.

Data latching occurs when the reporting interval for the SCADA system is much
more frequent than the data being sent to it from the transmitter itself. In the case where
signal is lost from the tank, the SCADA system will continue to report the same data point
until the signal is found again. In observing the raw data set from LWW, there are several
instances where the value of the tank levels does not appear to change for several minutes
at a time. This is highly unlikely to reflect reality and it is concluded to be a result of data

latching.

Tank sensors are also susceptible to noise, which is defined as the “random
variations of sensor output unrelated to the variation in sensor input” (Masi, 2020). In the
case of telemetry data, electronic sensors may only be expected to be accurate to within
one-tenth of a foot (Walski et al., 2012). Because tank discharge is calculated as a function
of the change in tank level between two time periods, noise may wreak havoc in cases

where the period is sufficiently small (figure 4-11).
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Figure 4-11: Example of Noise in Tank Data (Walski et al., 2012)

In the first formulation of the bisection method for this digital twin, time intervals
of 2-minutes were used for the tanks while pump data was disaggregated from their original
I-hour frequency into 10-minute frequencies. Errors that propagated were negative
demands which were necessary to satisfy equation 4.4 but were obviously not
representative of reality and occurred in approximately 21% of the 720 computed demand
factors. By choosing a time interval of 1 hour, equation 4.4 resulted in demand values that
were almost never in error (outside of significant periods of data latching) and accounted
for only 2% of the 672 computed demand factors. This is consistent with expected error in

tank flow rates using a 1-hour interval given the error in tank level (figure 4-12).
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Figure 4-12: Flow Error Using Separate Time Intervals (Walski et al., 2012)

The function created in MATLAB to calculate these demand factors is called

“demandButtonTestPushed” (Appendix B) and follows these general steps:

1) Initialize the hydraulic simulation with starting tank levels, water treatment
plant flow rates, booster pump on/ off times, and master meter demands.

2) Create an array where the first row contains demand factor values for zone 1
which are very low (.001) and produce demand factors for zone 2 in row two
by plugging DF; into equation 4.4 and solving for DF,.

3) Create a second array making the demand factor for zone 2 very small (.001)

and produce demand factors for zone 1 that are constrained by equation 4.4
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4)

5)

6)

7)

(with this array also having the factors for zone 1 and 2 occupying rows 1 and
2 respectively).

By doing this, we have two arrays that contain or “sandwich” the solution
(being that each zone contains factors which are as high and as low as they may
be when constrained by equation 4.4).

A third array is generated by taking the first rows of the first two arrays,
summing them, and then dividing them by two. Once this is done, its
complimentary demand factor in zone 2 is calculated again by using equation
4.4.

This third point is the one which will be tested and updated by the bisection
algorithm. After running the simulation, if the error value is negative, the tank
level in the model is too low and the demand factor needs to become smaller.
This is accomplished by removing the 1% array which contained the high
demand factor for zone 1 and keeping the other two arrays. A new third array
is created, and the process continues until sufficient convergence (which is
arbitrarily defined as when the model tank level for zone 1 is within .005 feet
of the real tank level.)

In the cases where tank levels cannot converge on their real-world values, an
error adjustment is made. This adjustment takes the total flow needed to either
be discharged or added to the tanks on the pervious iteration and adds that
volume to the total demand (right hand side of equation 4.4) onto the current
iteration. This will cause the current iteration to produce demand factors that

are not technically representative of reality, however, it will realign the tank
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levels to where they are supposed to be at a given time step and will allow for

the following demand factors to be calculated properly.

An example of this process using data from June 20™ for a single hour is calculated

as follows:

The starting tank levels are 1009.40° and 966.07’ for Springfield Road and Calvary
Tanks respectively. There is no flow coming from the water treatment plant at midnight on
the 20™ of June, the booster pump is not on in that first hour, and the total master meter
demand over this period is found to be 489.01 gpm. After 1 hour the tank levels are
1007.37’ and 965.30° which results in a discharge from both tanks of 345.15 gpm and

352.69 gpm. Equation 4.4 therefore becomes:
(DF; * (254.99)) + (DF, * (116.35)) = 0+ 697.84 — 489.02

To create the first array (in this case it will just be the single demand factor for the
first hour) the value of DF; is set to .001 and DF, is calculated as 1.79. The same is done
for array 2 by setting DF, to .001 and solving for DF; which is calculated as 0.82. Array 3
is calculated as the average of row 1 of both arrays and is found to be 0.41. Row 2 of array

3 is again constrained by equation 4.4 and found to be 0.89.

p L _ [0:001 DFy¢; DFyp
T 2= 1179 DF,; DFyy
p ,_ [082 DFy DFy
TTAY 2= 10.001 DF,;, DFy 4
p o _ [041 DFp DFyg,
TAY > = 10.89 DF,,, DFZM]
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Testing the 3™ array yields an error of -0.06” for the cavalry tank. Because this is
negative, array 2 is deleted and a new third point is created between the remaining two

arrays.

Ty 2=1179 bRy, DFm]
p ,_ [041 DFip DFyey
TaY 2= 1089 DF,;, DFyn)
A 3_ -0.21 DFl,tZ DFl,tTl-
"TAYS= 1133 DF,;; DFyn)

The error value with the new 3™ array is now .05 for the Cavalry Tank. This process
is continued until the tank in zone 1 is within the .005’ tolerance. Because this equation is
perfectly constrained by equation 4.4, the demand factor in zone 2 will result in tank levels

at or near the tolerance specified for zone 1.

While convergence in this case and most of the other cases is not an issue, for the
sake of demonstration let’s assume that the levels in both tanks are still higher than they
are supposed to be at this time step using the optimized demand factors. If the total volume
of flow in the model that needs to be drained to meet the real-world tank levels is 5000
gallons, that value will be added to the right-hand side of equation 4.4 on the next iteration.
The demand factors in the next iteration will then compensate for the error from the
previous iteration by being slightly higher than they would’ve been had the error not been
there. With the tank levels back to where they should be at the end of hour 2, the demand

factors for hour 3 may now be comfortably calculated.
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This approach was used to generate a series of daily demand patterns (using a 1-
hour time step) for each day between Jun 20" and July 3™, 2022 (see Appendix A). These
patterns thus provide the operators with a library of actual system demand patterns for
individual days of the week including weekends (i.e., Saturday and Sunday). This leaves
the operator with the option of providing an estimate of the projected total demand for the
next day along with one of the available demand patterns which will then be scaled up or
down to match the projected demand, and thus provide a projected hourly demand pattern

for the next day.
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CHAPTER 5. DIGITAL TWIN APPLICATION

Combining the system needs and general methodology in Chapter 3 with the
calibration steps noted in Chapter 4, this chapter details the specific steps taken to develop
a digital twin model for the Lebanon Water Works (LWW) system. In addition, details are
provided on the process of creating the graphical user interface as well as validating model

outputs.

5.1 Creation of the Graphical User Interface (GUI)

MATLAB version R2022A (MathWorks, 2022) was selected as the development
platform for creating a GUI for the Lebanon digital twin. MATLAB was chosen for this
task because of the existing link between the EPANET engine through the EPANET-
MATLAB toolkit in addition to the “App Developer” toolkit existing within the MATLAB
framework. The app developer toolkit (MathWorks, 2022) allows for simple drag and drop
interactive elements where functions may be coded which tie EPANET functionality to the

button itself.

The first step in this process is the development of the home page, where operators
first engage with the digital twin (figure 5-1). Here we can see all the elements with which

users can interact and where information can be placed to initialize their EPS simulation.
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L

Leave Scale 0 If You Do Mot Want to Scale Demand Pattern

Figure 5-1: Home Screen for the Digital Twin



In the top left corner, users encounter the “Sim Times and Water Quality” section.
Here the length of the simulation, its time and water quality steps (which control the
precision of the results), the bulk and wall decay rates, and chlorine concentration in (mg/1)
are specified (figure 5-2). The hydraulic and water quality time steps are given as options
to the operator in the event that refinement in report results is deemed appropriate. The
bulk and wall decay rates for this system are given as preset values from research done at
the University of Kentucky (Gautam and Ormsbee, 2023). While operators are discouraged
from changing this value, they are given this as an option because these values allow for
the refinement of observed chlorine concentration values in the distribution system to
match what is seen in the model. Because chlorine residuals are highly impacted by
seasonality, giving this as an option to operators allows for the relatively simple calibration

of outputs to match inevitable changes in residuals over time.

SIM TIMES AND WATER QUALITY

General (EPS + Water Quality) Water Quality
Hydraulic Time Step 1 Bulk -0.08
Water Quality Time Step 1 Wall -0.009
Total Time 24 Chlorine (mg#) 171

Figure 5-2: Time and Water Quality Screen
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Just below the Sim Times and Water Quality menu is the “Tanks” section which
allows the operator to input initial tank levels as well as “control statements” for pumps
associated with the tanks (figure 5-3). Control statements are statements within EPANET
that dictate conditions under which pumps turn on and off. In this case the conditions are
made relative to the tanks and are enabled in pressing the “use” switch under each
respective tank in the Lebanon system. For example, by specifying “use” for the
Springfield Road Tank, putting the number 14 in the “On When Below” text box, and the
number 19 in the “Off When Below” box, a control statement is sent to EPANET that turns
the booster pump on when the Springfield Road Tank is below 14’ and off when the tank

1s above 19°.

TANKS
Springfield Road Tank Calvary Tanks
Initial Tank level 199 Initial Tank level 50
Bl Use W Use
Springfield Road Pump WTP
On When Below 14 On When Below 45
Off When Above 19 Off When Above 59

Figure 5-3: Time and Water Quality Screen

Pump operations may also be specified by time. Immediately to the right of the
“Sim Times and Water Quality” and “Tanks” menus is the “Pumps” menu. Here users are
given the option to specify (in military time) when the water treatment plant and booster
pumps turn on and off (figure 5-4). The program has been created such that if either of the

pump conditions in the tanks section are specified as “use”, all the inputs in the pumps
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section will be ignored. The reason for this is to avoid confusion around the complex
switching on and off of pumps that occur when several conditions are sent to EPANET.
Because the goal of the digital twin is to promote simplicity, access to the background
EPANET output file is not given. However, because of this, if several different types of
conditional statements are given, it might be difficult to determine how EPANET has

interpreted them and troubleshoot any noticeable errors.

‘ PUMPS (Use If Not Specified In Tanks Section)

|
WTP Springfield Road Pump
ON AT TIME OFF AT TIME ON AT TIME OFF AT TIME
onartme [ | oorFartme [ | onartwe [ | orFarTme [ |
onartme [ ] orFarTme [ ] onarTme [ | oeFartme [ |
owartme [ Jooratee [ ] onarTe [ ] orFarTMe [ ]
SPECIFY USING MILITARY TIME

Ex. 0:00 or 20:00

Figure 5-4: Time and Water Quality Screen

At the bottom of the page is the final component relative to the available options
for extended period simulation within the digital twin model, i.e., “Demand Patterns”. The
intention for this data menu is to allow operators the ability to incorporate pre-processed
demand factors (appendix A) from data derived directly from the LWW system which were
created using the demand calibration methods discussed in section 4.2. The demand factors
for the two zones represent data from June 20" through July 3™, 2023 and allow the
operator to pick any days between them or the average weekday or weekend for that time
period. If the operator deems it appropriate, they may also scale the demand patterns up
and down through a simple scaling factor text box like what is found in the pumps section
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(figure 5-5). To provide the operator clarity on what the factors for each zone look like, a
graph is also provided which will reflect any changes made in the demand options (figure

5-6).

Demand Settings

Zone 1 Pattern [ June 23 v |  Zone2Paftern [Average Weekend v |

Scale Zong 1 Pattern By:

Scale Zone 2 Pattern By:

Leave Scale 0 If You Do Mot Want to Scale Demand Pattern

Figure 5-5: Demand Setting Section

Figure 5-6: Example Graph Given for Demand Pattern In Zone
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Once the operator has specified all initial inputs, MATLAB stores this information
within the function associated with the “Run EPS!” button and then sends this data to the
“ExtendedPeriodV2” function in MATLAB (see “RUNEPSButtonPushed” and
ExtendedPeriodV2 functions in appendix B). The ExtendedPeriodV2 function uses options
in the EPANET-MATLAB toolkit to signal for an EPS to be run and returns output values

that may be used for visualization in the application.

The outputs may be visualized in the “new results” tab (figure 5-7) where the
operator may view several parameters at select junctions, pumps, and tanks throughout the
system. In the “Tanks” section, the user may select the drop down and specify whether they
want to graph water age or the tank levels as a function of time. Depending on what input
is specified in either of the graphs, the output table in that section will reflect the tabulated

results of the selected parameter (figures 5-8 and 5-9).
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Figure 5-7: Results Page from EPS




Show Predicted: [Tanl-c Level (fi.)

v

[ Update Graph and Table ]

o Springfield Road Tank
19
E 18
E
17
S
E 16
15
14 L L '] '] ]
0 h 10 15 20 25
Time (Hours)
Figure 5-8: Example of Tank Level Output
Time{hours) Springfield Tank Calvary Tanks
0 19.9000 59.0000 =
1.0000 16.7173 62.8047

Figure 5-9: Tabulated Results Given Selection of Tank Level
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In the “Pumps and Master Meters (Important Junctions)” section, the user can
choose parameters from the drop-down menu relative to either the Springfield Road
(booster) pump, the water treatment plant pump, or master meters. The pumps allow for
the selection of plotting either the hydraulic grade line (HGL) in feet or the flow rate (gpm)
while the last graph takes two inputs, the parameter sought after and the specific junction
with which we are interested. The parameters available in the last graph include plotting
pressure (psi), demand (gpm), chlorine (mg/l), and total trihalomethane (TTHM) (mg/1).
Like the Tanks section, once the graphs are updated, the table will reflect the parameters

chosen detailing the data shown in the graphs.

Chlorine (magfl) L Route 208 By-Pass ¥ Update Graph and Table

Figure 5-10: Example Junction Output

Update Graph and Table Flow Rate (gpm) Update Graph and Table

Figure 5-11: Example Pump Output
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Time Springfield Road Pump | Water Treatment Plant Pump | Route 208 By-Pass | Before Calvary Meter | Calvary Meter ]
976.8995 2.1979e+03 0 0 0
980.6006 2.1857e+03 9.4913e-07 0.1641 1.4280
9540333 2.1743e+03 3.55097e-09 1.6945 1.7079
983.7931 2.1751e+03 5.1820e-05 1.8971 1.7089

W R | S

Figure 5-12: Example of Output Table Given Inputs for Each of the Graphs

To make the data accessible for the operator, the menu allows the user to only select
a small portion of the total system junctions (all of which are master meters except for two
which were arbitrarily selected to represent the northern and southern portions of the
system). One of the parameters available for selection for the “Master Meter (Important
Junctions)” graph is TTHM concentrations. This calculation is based upon a simple linear
relationship from which chlorine demand is related to TTHM based on data specific to the

LWW system (Gautam and Ormsbee, 2023). This relationship is modeled as follows:

, mg . mg . mg
Chlorinepemand (T> = Chlorinep;gnt (T) - Chlorme]unm-on(T)

m
TTHM (Tg) = 0.0508 (Chlorinepymand)

As a result, the EPANET model is used to calculate the chlorine demand at the
selected junction nodes from which the TTHM concentration is then determined and

displayed.

The “Map Specifications” tab is the last element of the application and allows for
visualization of outputs as they vary both spatially and temporally. Once the user presses

the “Generate Generic Map” button, the “GenerateGenericMapButtonPushed” function is
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run in MATLAB which then generates a window detailing the pipe diameters of the LWW

system (figures 5-13 and 5-14).

Once the generic map has been created, the user may proceed to the right half of
the tab where pressure, flow, and chlorine specifications may be made; each of these having
a check box for extended period simulation and a corresponding slider for selecting the
period of interest (figure 5-15). The user has the choice to plot the pressures and flows or
chlorine residual by simply pressing the “Generate Nodal Pressure and Pipe Flows Map”

or “Generate Nodal Chlorine Residuals Map” buttons.

Map Specifications

1) First press the "Generate Generic Map” button, this will print a map with tank and pump names as well as pipe diameters

2) Once figure window is opened, place on screen where most conveinent

3) Run simulation (found on "Sim Controls” page)

4-6) Specify Nodal and pipe conditions (flows and pressures) as well as display colors and weights, chlorine residual, and DEP predictions

=NQOTE: Generic Map Results in the following: 2 = Green ; 4" = Cyan ; 6" = Red ; 8" = Yellow ; 10" = Magenta ; 12" = Blue ; 16" = Black ; 20" = White (Pipe
Sizes)

Generate Generic Map Generate Nodal Pressure and Fipe Flows Map
Generate Nodal Chlorine Residuals Map

Figure 5-13: Buttons for Graphing Results
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Figure 5-14: Generated Interactive Map of LWW Showing Pipe Diameters
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Figure 5-15: Tools for Map Visualization

If the user is unsure of where a specific pipe or junction is located within the system,

the “Pipe and Junction Discovery” field may be populated. The user may enter specific

pipe or junction names within the text fields and specify what color and size they want that

element to appear as in the map window. In addition, the user may also select the “Turn

On All Pipe Names” or the “Turn On All Junction Names” check boxes and they will also

appear in the map window (figures 5-16 and 5-17). This functionality is all controlled by

the “RunDiscoveryButtonPushed” function and may be found in Appendix B. Note: The
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names, structure, and logic of each of the functions tied to the buttons are found in appendix

B with the appended term “ButtonPushed” at the end.

Pipe and Junction Discovery

Junction Name ‘ WoodlawnMeter ‘

Junction Color [black v |
Junction Weight | 25|
[]Tum On All Pipe Names [ MDY ]

[ Turn on All Junction Names

Fipe Name ‘
Pipe Color [black v |
Pipe Line Waight | 10]

This section allows operators to emphasize specific junctions and pipes on the map. THIS WILL NOT SHOW UP ON MAFP UNLESS JUNCTION AND FIPE
MAMES MATCH EXACTLY. See Results page after running steady state or EPS sims to idnetify names.

Figure 5-16: Discovery Tool for Map Visualization
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CHAPTER 6. DISCUSSION OF RESULTS AND CONCLUSION

The main objective of this research was to investigate the feasibility of being able
to create “digital twin” model for water distribution operators in small systems who lack
the resources and time needed to purchase or create such applications themselves. In
striving to meets these objectives, there were several lessons learned and relevant outcomes

relating to the process.

The process of implementation proved to be significant in highlighting the most
appropriate framework and methodologies for use in the development of digital twin
applications for small utilities. This proved to be an iterative process and involving the
testing of several interface configurations, optimization algorithms, and data collection

strategies in order to determine the most feasible and effective strategy.

6.1 Interface Selection and the Underlying Hydraulic Model

It is the authors experience that a significant amount of time may be spent not only
on the development and incorporation of traditional digital twin functionality, but also on
troubleshooting the underlying hydraulic model data and working within the constraints of

certain programming environments.

With regard to selecting proper programming environments, it is valuable to first
take the suggestions and objectives of the respective water utility and map those concepts
to available functionalities within each language. For example, when creating the digital
twin for the Whitesburg Water System, a link between EPANET, Excel, and MATLAB
was used and tested for suitability. The reason for connecting these three software packages
was due to the assumed familiarity and comfortability operators may have with the Excel
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interface while also exploiting the computational power of MATLAB for efficient

hydraulic computation times.

While the EPANET-MATLAB-Excel platform proved to be capable of achieving the
objectives of this work, other methods were found to be faster and offer user interface
options more conducive to simple operator interaction. The interface detailed in this work
is proof of that process; by using the EPANET-MATLAB toolkit in combination with the
app developer toolkit available within MATLAB, the deliverables outlined in Chapter 1

were further optimized.

It is estimated however that a significant amount of time might have been saved
throughout this work if a more robust investigation into other available programming
languages had been continued prior to the eventual selection and development of the
MATLAB environment. MATLAB was selected because of the authors familiarity with
the language and the existence of an open-source toolkit capable of connecting the
EPANET hydraulic engine to the MATLAB programming language. This was done
because of time constraints which ultimately prevented a more robust investigation. In the
end, it was concluded that Python offers a better platform that MATLAB for achieving this
objective and future development work should consider using it versus MATLAB,

especially when considering the development of digital twins for smaller systems.

In addition to proper software selection, the process of digital twin development
would have been made more efficient if ample work was spent initially on validating
system topologies within the system under question. This is a lesson that was carried on to
the creation of the digital twin for Lebanon and is due in large part to the experiences

working in the Whitesburg system. While working in Whitesburg, several months were
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spent on attempting to calibrate their hydraulic model using a single days’ worth of
telemetry data. After repeatedly testing and retesting many algorithms for demand
calibration and failing to get the model to agree with real world conditions, it was assumed

that there was something wrong with the approach being taken.

Upon revisiting the original demand allocation algorithm developed for
Whitesburg (which was based on the Box Complex Method), it was found that there
seemed to be no issue at all with the algorithms themselves but was more likely due to
underlying errors in the system topology and inherent noise in their telemetry data.
Because of the impacts of the regional flood, there was never an opportunity to meet with
the operators to resolve these issues. As a result, we pivoted to work with the Lebanon
system, which has a much more reliable baseline hydraulic model and more much more
reliable telemetry data. Therefore, the developed demand allocation model was able to
produce reliable demand scenarios, after minor adjusted were made to noise issues in some
of the tank telemetry data. This allowed for seamless integration of the bisection method
into the digital twin framework and highlighted the fact that a critical first step in this
process is ensuring that 1) the physical elements of our system (pipes, tanks, pumps, etc)
are modeled to the best understanding of the utility and 2) telemetry data is equally as

reflective of the conditions seen in the system.

This conclusion was subsequently validated by assuming the demands and the tank
telemetry data in the Whitesburg model were actually known and then seeing if the Box-
Complex model could recover them from the data assuming that the underlying model
topology was correct. Thus, by explicitly specifying the system demands in the model,

running EPANET to then produce the “actual” tank telemetry data, topological and

77



telemetry errors are controlled for. The Box-Complex method was then used to see if it

could replicate these artificial demands which it was able to do effortlessly.

6.2 Data in the Hydraulic Calibration Process

In contrast to the previous section, while having too little system information is
certainly an obstacle in creating a useful hydraulic model (and therefore a digital twin), too
much information also creates a unique set of problems. For a digital twin to produce useful
outputs from which an operator can make decisions, incoming data must be “cleaned” in a

way that captures the true physical characteristics of the WDN in real time.

It was initially tempting to look at the available telemetry and meter data from the
Lebanon Water Works (LWW) system, given that it was very abundant, and assume that
this data would also be highly accurate. A cursory glance of the data set does in fact confirm
this assumption; however, it ignores reality in that no matter how sophisticated the
practices and equipment may be, errors attributed to the capture of real-world data seem to

be unavoidable.

The “quirks™ associated with the LWW system telemetry and meter data are a
function of many factors which are made manifest in the data latching and noise
characteristics described in section 4.2. Cleaning the data in order that they do not impact
the resulting outputs, requires a strong understanding of 1) when the data might be in error
2) why the data is flawed so that future instances might be predicted (human, equipment,
etc.), and 3) how to systematically remove these instances when running the demand

calibration algorithms.
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In the case of the LWW system, a simple change in the time used in analyzing the
telemetry data resulted in demand factor errors only occurring 2% (improved from 21%)
of the time. Further investigation into other error sources may improve this value, however
that is likely unnecessary and will not significantly impact the resulting demand factors
because of the procedure adapted in this research, namely, carrying the small residual

demand error into the next time step.

It is in the authors experience that real world data in this context is as unique as any
two individuals. From monitoring equipment to the entire SCADA system and all the way
to how information is reported, data is characteristic of the system from which it was
gathered. Because system data inherently has its own patterns and tendencies that cause it
to vary from reality, a basic knowledge of each system is fundamental for creating the

programs and algorithms that will help operators plan and manage their respective utilities.

6.3  Algorithms and the Hydraulic Calibration Process

The main complication in choosing and subsequently implementing the appropriate
algorithm (in the context of demand calibration) was one of speed and robustness of a given
solution. For example, the Box Complex and bisection methods were chosen due to their
simplicity and because they both were able to calculate demand factors quickly and without

error relative to the algorithms themselves.

Because the bisection method is most suited for accurately calculating two demand
factors (section 2.1.4), the LWW system is a unique use case for this algorithm.
Additionally, even though the Box Complex Method is extendable to systems of any size,

increasing dimensionality may increase computational burden and impact the accuracy of
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a given solution. This is due to the way the algorithm searches a solution space which can
become localized. By increasing dimensionality, the solution space is inherently being
increased and the chances that the algorithm will be able to capture an optimal solution can
be somewhat reduced. Nonetheless, the algorithm is simple to program, generally robust,

and should be considered for future applications to multi-tank systems.

Thus, as long as the physical characteristics of the system are properly reflected in
the algorithm and the data is sufficiently cleaned, the resulting demand factors are expected
to capture the real demands of the WDN in question. Given this foundation, the LWW
digital twin for example, may employ its digital twin as it currently stands to evaluate real

time telemetry and meter data for the creation of predictive demand factors.

6.4 QGeneral Conclusions

The final version of the digital twin for Lebanon, Kentucky does meet most of the
intended objectives of this thesis. While the MATLAB GUI display may be further
improved (e.g., using Python), the amount of time spent on hydraulic calibration allows for
the useful prediction of pressure, demand, and chlorine concentration. The inputs and
outputs are intentionally simple to leave the operators little room for confusion which are

likely barriers to other software programs such as EPANET or KYPIPE.

Perhaps the most important finding of the research was that the success of digital
twins for small systems is especially depending upon the availability of the utility staff to
answer questions, access to reliable physical and operational data, and the existence of (or

the ability to create) a calibrated hydraulic model of the network. Fortunately, all three
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were available for the Lebanon system, and hence the measured success, while none of the

three were initially available for the Whitesburg system.

The research was also able to show that realistic demand scenarios can be derived
from historic tank telemetry data along with a calibrated network model by employing
either a bisection or Box Complex algorithm. Both algorithms are thus available for

applications to other systems.

Unfortunately, time and logistical constraints involving the partner utility (i.e.,
Lebanon) prevented a full testing of the Lebanon digital twin by the utility staff and
operators. Consequently, completion of the second part of objective 4 (see section 1.4) will

have to await subsequent future research.

A final benefit of this research is that the methodologies employed (as well as the
demand calibration algorithms) are easily reproducible for other systems and may be
extended to incorporate other features. By following the summary steps in table 6-1, it
would not be unreasonable to expect the creation of a digital twin for a new relatively small
system to take no more than a few weeks (given the readiness of the system for the

incorporation of a digital twin).
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Table 6-1: Summary of Digital Twin Creation Process
1) Create EPANET file (.inp) of system.

2) Perform macro level calibration (Ormsbee and Lingireddy, 1997).

3) Delineate pressure zones.

4) Adjust the “ExtendedPeriodV2” function within the MATLAD code to

reflect new file (junction names, number of patterns, etc.)

5) Adjust the "RunEPSButtonPushed” function to reflect new file (new tanks,

pumps, etc.)

6) Create a unique Box Complex or bisection method solver for the system
using the example code in the appendices, I and then implement the

resulting demand scenarios within the application.

In conclusion, adopting digital twin models for small systems does require
significant knowledge of a particular system in combination with strong hydraulic
modeling skills, accurate data (both topologic and telemetry) a willingness to work closely
with utilities, a demand calibration algorithm, and the ability to translate all that
information into programmable language. However, through the foundation created within
this thesis, extension of the template employed in creating the Lebanon digital twin should
prove to be a simple and cost-effective alternative to other custom digital twin applications

currently available to distribution operators.
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7. RECOMMENDATIONS

7.1  Engineering Significance

In most cases, smaller utilities in Appalachia lack the resources to create and
maintain even a simple hydraulic model. While many utilities around the country are
experiencing the effects of the current digital revolution, small systems in this region may
come to rely on open-source applications like the digital twin presented in this research in
order to stay competitive in the rapidly changing climate of water distribution system

management.

Given that much of the national attention at the moment is focused on revamping
deteriorating infrastructure throughout the country, developing tools like this for small
utilities may prove to be a significant step in maximizing the benefits of many new assets
that are expected to be implemented throughout the United States. Small utilities in
Appalachia are likely to benefit from continued research into digital twin solutions due to
the low number of operators available to manage such systems and to meet the needs of

their communities.

Additionally, this work provides an initial investigation into some of the common
pitfalls of employing digital twin solutions for water distribution systems. Lessons learned
throughout this process can facilitate the potential expedient employment of digital twins
for small water systems while also ensuring that the process of creating the application

result in an accurate and robust application for distribution operators.
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7.2 Limitations of Approach

While creating the platform through which data is effectively expressed is a
relatively straight forward process and depends only on the needs of a utility; cleaning and

incorporating that data may pose a challenge.

The frequency of data, noise, and where that data is being stored are just a few
factors that complicate the effective use of such system information. It takes a large amount
of time to begin to understand the unique characteristics of each system including the
performance and reliability of individual sensors. This may impact the speed of

implementation for these types of tools.

7.3 Need for Future Research

While the current foundation laid within this report provides a strong base upon
which other digital twins may be developed, improvements may need to be made to
improve the rapidity in which the application is implemented for each individual system
under this framework. As the capabilities of artificial intelligence and machine learning
continue to grow at unprecedented rates, it is not unreasonable to envision these types of
technologies having a significant role in developing digital twins and smoothing out the

data noise problem as well as the implementation process.

For example, large language modelling (LLM) (i.e., similar to what is found in
ChatGPT) may be incorporated and trained on a wide range of relevant information from
operator experiences around the country. One can imagine an application that functions in
the same way that J.LA.R.V.1.S. does in Marvels’ Iron Man series. Through continuous

training and integration of both text based and quantitative data, a LLM could be trained
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to quickly produce its own hydraulic models which could then be used by an operator. For
example, if a future weather forecast included such information such as “there is rain in the
forecast and the parade will take place on main street around 3pm” a LLM like this could
produce demand scenarios that would have occurred in the past under different scenarios.

Simply put, this would be a model of models, the ultimate support tool for operators.

Further research on the simple automation of demand forecasting might also help
support the implementation of digital twin models such as this one. While historical data
will undoubtably aid in prediction of daily operations, investigating work done with time
series modelling as well as several machine learning algorithms could be useful in

implementing a more reliable forecasting strategy for this digital twin.

7.4 Recommendations

The continued improvement of this digital twin for the LWW system will rely upon
further integration and cleaning of data to ensure its accuracy and precision. Additionally,
this is not yet a fully evolved digital twin. Live data stream integration and predictive
modelling should be included in future versions of this digital twin to approach the quality
of other services that are currently available on the market but are typically out of reach for

smaller utilities.

It is also recommended that future applications consider the use of Python
programming instead of MATLAB. Python is a high-level programming language like
MATLAB and has a minimal learning curve. Python also offers a larger library of resources

for development of features like interactive mapping relative to MATLAB.
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Once this digital twin format has been translated into Python, functionality should
be created for simple element additions via the aforementioned interactive mapping
features. Explicit demand forecasting should also be included in addition to the historical
demand information currently populating the model. Packages within Python support
simple integration of forecasting tools and would be of great use for creating demand

scenarios more reflective of real system information.

While the current model GUI has been developed to accommodate water quality
parameters such as chlorine and TTHM prediction, the associated functional models to
drive these predictions have not yet been calibrated and linked with the EPANET and GUI
interface. Once the final water quality models have been calibrated, this linkage should be

completed.

Lastly, the model should continue to be tested and integrated within the LWW daily
operations to validate the usefulness of the digital twin application. It is likely that in
utilizing the digital twin, operators will offer valuable feedback which will greatly improve
the usefulness of the model. It is therefore a final recommendation that the model be

occasionally updated to reflect the changing needs of the utility it is supporting.
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APPENDICES

APPENDIX A. Demand Factors From Bisection Algorithm

Table A 1: Uncleaned Demand Factors for Zone 1 of LWW

[ 20-lun] 210un] 22-0un] 23-Jun] 24-un] 25un[ 26-Jun] 27-Jun] 28Jun[ 29-lun[ 30dun]  1u Zu 3-Ju
1 0295 0355 0423 0403 o0001] o0614] 0634 0687 0256 0678 0220) 2029] o0133) 0435
2 0492 0298 0577 0291 o001 0001 o0001] 0082 0405 0984| 0297 1432] o001 0474
3 0151 0282 0037 0136 0107 -8197] o0001] o0001] o0042] o0480] 0204 1308 o001 0249
4 0.001) 0430 0001 0155 o0001] -0845s| o001 oo001| o001] 0087 o001 1288 o001 0o0m1
5 0001 o000l 0001 0429 o0001] -0198) o001f o001 oo001] 0316 o001 1062] o001 ooOM
6 0075 0001 0001 0136 0001 -0512) o001 o001 oo001] o556 o001 1060|0001  ooOm
7 1184 1571 1741 1685 0987 -0460) o0001] -7725| oo001] 0883 o00s9) 1145] o001 o0o0M
B 2334 2246] 1223 2118 1724 17095) 0450 0377 o0482] 0378] 0789 1957 -14972] 1442
E] 2495 2685) 0580 2962 2629) 1780) 0.38) 16981 1016] 1301] ©0663] 2345| 16743 2875
10 2714 2958) 0540 3615 2736 2387 08907| 20935 o700] 2857| 0502) 2284) 06200 3243
11 3514 3285 0819) 2953 2798 2150) 1493 2970 1583| 1501 0796 2430 1002] 3209
12 3.204| 2545 0750 5433 2312 1960) 1419 2068 1500] o0955| ©0332] 2081 2632] 4715
13 3.397| 2712[ 1878 3194 2914) 1764 1417| 2067| 1369] 1097| 0459 2807| 2430) 3629
14 2701 3174] 0759 2854) 2662 1559 2147| 2039) 1969 1693| 0324] 2439] 2440) 388
15 2654 2987 1317 1133 1008 1220) 1376) 1662 3.398] 13s4| 0316 1974 2004 2832
16 2820 2677] 2984] 1277 1183] 1391 1520 1377] 2975| 1482| 0644| 2535| 2004] 2877
17 3.125| 2630) 2762 1591 1037| 1407] 1297| 1923 2894 1382 2538 2461 2209) 3454
18 2751 2583) 2896 1544) 0636 1278 1797| 1587| 1567| 1955 2750| 2435| 2243) 1868
19 2884 2723 0484] 1545 1041 1156 2652 1487 1793| 1697| 2471 1706| 1626 2623
20 2506 1667) 1676 1852 1129 1061 2621) 1484 2065| 10es| 2713] 24s3| 1311 2499
2 1683 2949 w0001 1745 1994 o0001] 1897 1253 3.221] oom1| 2772] 2008| 1206 2282
22 2869 1977| 0738 1775| 1076/ 0126 1631] 1566 2911] 1138] 2079) o00D1| 0783 1963
23 1063 03298 1479 1375 0531 0909 0949 1036 0623 1378] 1741 -7637| 0782 1572
24 0211 0585 0281 0388 0344 0712 o562 0295 -7350 0312] 0982 -0120] o508 1012
Table A 2: Uncleaned Demand Factors for Zone 2 of LWW
[ 20-un] 21-un] 22-un 23-jun] 24-un] 25-un| 26-Jun] 27-lun] 28-jun[ 29-Jun] 30-un]  1-u 2-Ju 3-Ju
1 1140| 1321) 1190 1570 o0458) 0412) 0463 o589 1220) 1485 1138 o0419) 0226 o083
2 0691 0838 0495 0994 0816 -0732] 0053 o0773| o0249) o0145] 0652 0001 -0267] 0240
3 0150 0902) 1169) 0756 0388) -17.967| 0323) o0626] 0001 o001 0004 0001 -0198 000l
4 0233 0218] 0476) 1470 0729 0001 0218 o0452] -0128] 0315 -00s8 0404 0740 0039
5 0828 0438 0793 0477 0162 0001 0915 o0669] 0747 o889 0161 0457 -0549] 0490
6 1325 1331] 1506 0178 o040l 0001 o562 -0377| 0409 0833 1026 0593 -0377] 0714
7 0977| 1781 1734 1336] 16298) 0001 2131 -16933| 1401 o879 1431] o582 1428 0933
8 0434 1379) 0751 1181 0785 2350] 1440) ooo01] 1445] 1376 o970 0001 0001 1544
g 0672| 1058] 0666 1311 0284 0598 2913) 4802| 0838 1951 0761 0001 1766 0449
10 1743 0797 1674 o783 o001 0001 2554 o09s2| 10s0] 1025 1244 o001 0314 0057
11 0001 o001 1814) 0347 0772 0038 1281 0429 o0721] 0471 1082 0655 0794 1430
12 0995 0525 0694 0001 1111 o703 1217 1511 1286 0758 0381 0795 0046/ 1583
13 0736| 1443] o0203) oom o692 0062 1926 o0s89%0| o536 1401 o644 0001 0001 109
14 0343 0465 2350 o001 0746 0001 0721 o0878] 1688] 0946 o001 0001 0001 0312
15 1592| o0408] 0963) 0166 0072 0618 0924 o0343] 1299) o200 1011] 0490 0912 0150
16 1310 1087 o0212] 1004 0371 o704] 0477 2064| 0966 0674 1325 1283 o0752] o001
17 0222 0588 0122) 0499 0113 0370 0948 o0645| o0718] 1697) 0422 0043 0001 0016
18 0350 o0001] 0001 0167 0730 0001 185 0763] 0675 o0404) 0001 0001 0001 1044
19 0001 0218 2508 0139) 1560 0710) 1445) o0534] o0816] o0532) o450 0819 0700 0410
20 0.319] 2050) 1551 0137 1296] 1490] o0488) o0568| 2020) 1140] 1201 0717 0698 0132
21 1129| 0731 6989 1496 1061 4627 0725 1760 1156 4583 0197) 0018 0325 0471
2 0.392) 0440 1617 1101 0200 2640) o0371] 1051| o0722] 2403 o08sa] 1762] 1612] 1097
3 0912| 1664) 0001 0783 0698 1650 0878 0821 38424) 0188 1326) -16739] 0837 o001
24 0530 1325] 0685 0893 0785 1575 1274] 0710 -16442) 0748 2185 1005) 1124] 2365
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Table A 3: Cleaned Demand Factors for Zone 1 of LWW

[ 20un] 21-Jun] 22-un] 23Jun] 24Jun[ 25Jun] 26-Jun] 27-Jun] 28-Jun] 2%-lun 30-Jun]  1u 2-Ju 3-Jul]

1 0295 0255 0423 o0403] o001 0614 0634 0687 0356 0678 0220 2029 0133 n.435|
2 0492 0298 0577 0291 o001 0001 0001 o0082] 0405 o004 0297 1432 o001 0474
3 0151 0282 0037 0136 0107 0001 o0001] o0001] 0042 0480 0204 1308 0001 0249
4 0001 0430 0001 0156 o001 o001 o0001) oo01] o001 0087 0001 1288 0001 0001
5 0001 o001 0001 0429 o001 o001 o0001] oo01] o001 0316 0001 1062 0001 0001
6 0075 0001 0001 0136 o000l o001 o0001] o0o001] 0001 0556 0001 1060 0001 0001
7 1184 1571 1781 1685| 0987 o001 o0001] o0o001] 0001 0883 0069 1149) o001 o001
g 2334| 2246 1223 2113| 1724) 0801 o04s0] 0377 0482 0378 0783 1957 0001 1442
9 2495 2685 0580 2962 2629) 1780 038 1656 1016 1301 0663 2345 0311 2875
10 2714| 2959| 0540 3615| 2736 2387 0907| 2935 0700 2857 0502) 2284) 0620 3.243
11 3514| 3285 0819 2953 2298 2150] 1493| 2979) 1583 1501 0796 2430) 1002 3209
12 3.294| 2545) 0750 3073] 2312 19s0 1415] 2068) 1500 0955 0332] 2081 2632 4715
13 3.397| 2712 1878 3194| 2914 17e4| 1417| 2067| 1369 1097 o0459] 2807 2430 3629
14 2701 3174 0759 2854 2662) 1558 2147| 2039 1968 1693 0324] 2438 2440 3.8
15 2654 2087 1317 1133 1008 1220 1376 1662 3398 1364 0316 1974 2004 2832
16 2820 2677 2984 1237 1183 1391 1520| 1377| 2975 1482] 0644 2535 2094 2877
17 3.125| 2630 2762 1591 1037 1407 1397| 1973| 32894 1382 2538 2461 2279) 3454
18 2751 2583 2896 1544| 0636 1278) 1797| 1587| 1567 1955 2750 2435 2243 1888
19 2884 2723 0484 1585| 1041 1156 2652| 1487| 1793 1697 2471 1706) 1626 2623
20 2506| 1667 1676 1852| 1138 1061 2621 1484| 2065 1066 2713] 2463 1311 2499
2 1683 2049 o001 1785 1994 0001 1897 1253] 3221] o001 2772] 2008 1206 2283
2 2868 1977 0738 1775| 1075) 0126 1.631| 1566 2911] 1138 2079 0001 0783 1963
3 1063 0298 1429 1775| 0531 0909 o0949) 1036| 0623 1278) 1741 oo01| o782 2572
24 0211 0586 0281 0388 0344 0712 0562] 0295 o000l 0312 0982] o000l 0508 1012

Table A 4: Cleaned Demand Factors for Zone 2 of LWW

[ 200un] 21-0un] 22-un] 23Jun] 280un[ 25dun] 26-Jun] 27-un] 28-Jun] 29-lun[ 30-lun]  1u 2-Ju 3-Jul]

hﬁ I
1 1149 13721 1190 1570 0459 0412 0463] o0589| 1229) 1485 1138] o0419] 027 0839
2 0691 0838 0495 0994 0815 0001 0053] 0773] 0249 0145) 0652] 0001 0001 0240
3 0150 0902 1169 0756 o0388) o001 0329 0626 0001 o001 0001 0001 0001 0001
4 0233 0218 0476 1470 o0275] 0001 0218 0452 o001 0315 o001 o0s04) o001 0039
5 0828 0438 0793 0427 0162 0001 0915 o0668) 0747 0889 0161 0457 o001 0420
6 1325 1331 1506 0178 0401 0001 o0562] o0001] 0409 o0833) 1026] 0593 0001 0714
7 0977 1741 1734 1336 1629 o001 2131 oo001] 1491 o0879) 1431 0582) 1428 0933
B 0434 1379 0751 1181 0785 2250 1440 o0001| 1445 1376) 0970] o000l 0001 1544
] 0672 1058 0666 1311] 0284 0598 2912] 0477 0838 1951 0761 0001 1766 0449
10 1743 0797 1674 o0783| o0001] 0001 2554] o0952] 1050 1025) 1244] oo01| 0314 0057
11 0001 0001 1814 0347 0772 0038 1381 o049 0721 0471 1082] 0655 0794 1420
12 0995 0525 0694 o0001] 1111 o0703) 1217| 1511 1286 0758 0.381] 0795 0046 1583
13 0.736) 1443 0203 o0001| 0692 0062 1926| 0890 0556 1491 0.6%4] 0001 0001 10%
14 0343 0465 2350 o0001] 0745 0001 o0721) 0878 1688 0946 0001 o001 0001 0312
15 1592] 0408 0963 0166 0072 0618 0924 0343 1299 o200 1011] 0490 0912 0.150
16 1310 1087 0217 1094] 0371 o0704] 0477 2068) 0966 0674 1325 1282 0752 o001
17 0222 0544 0123) 0499 0113 0320 0948 0646 0718 1642) 0422] 0043 o001 0016
18 0350/ 0001 0001 0167 0730 0001 1856 0763| 0675 0404 0001 o001 0001 1044
19 0001 0218 2508 0139 1560( 0710 1446| 0534| 0816 0532 0460] 0819 0700 0410
20 0319 2050 1551 0132 1295 1490 0488 o0568] 2020 1140 1301) o0717] 0698 0132
2 1129] 0731 1584 1496 1061] 2065) 0725 1760] 1156 4583) 0197| 0018 0325 0471
22 0392 0449) 1617 1191| 0290 2640 0371 1051 0722 2403 o8aa| 1762 1612 1097
3 o912 1664 0001 o0783| 0698 1650 0878 0821] 0362 0188 1326/ 0001 0837 0001
24 0.530) 1325 0685 0893 0785 1575 1274 0710/ 0001 0748 2185 1005 1124) 2265
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Figure A 1: Uncleaned Demand Factors for Zone 1 of LWW (6/20/2023)
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Figure A 2: Uncleaned Demand Factors for Zone 2 of LWW (6/20/2023)
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Figure A 3: Uncleaned Demand Factors for Zone 1 of LWW (6/21/2023)
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Figure A 4: Uncleaned Demand Factors for Zone 2 of LWW (6/21/2023)
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Figure A 5: Uncleaned Demand Factors for Zone 1 of LWW (6/22/2023)
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Figure A 6: Uncleaned Demand Factors for Zone 2 of LWW (6/22/2023)
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Figure A 7: Uncleaned Demand Factors for Zone 1 of LWW (6/23/2023)
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Figure A 8: Uncleaned Demand Factors for Zone 2 of LWW (6/23/2023)
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Figure A 9: Uncleaned Demand Factors for Zone 1 of LWW (6/24/2023)
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Figure A 10: Uncleaned Demand Factors for Zone 2 of LWW (6/24/2023)
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Figure A 11: Uncleaned Demand Factors for Zone 1 of LWW (6/25/2023)
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Figure A 12: Uncleaned Demand Factors for Zone 2 of LWW (6/25/2023)
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Figure A 13: Uncleaned Demand Factors for Zone 1 of LWW (6/26/2023)
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Figure A 14: Uncleaned Demand Factors for Zone 2 of LWW (6/26/2023)
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Figure A 15: Uncleaned Demand Factors for Zone 1 of LWW (6/27/2023)
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Figure A 16: Uncleaned Demand Factors for Zone 2 of LWW (6/27/2023)
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Figure A 17: Uncleaned Demand Factors for Zone 1 of LWW (6/28/2023)
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Figure A 18: Uncleaned Demand Factors for Zone 2 of LWW (6/28/2023)
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Figure A 19: Uncleaned Demand Factors for Zone 1 of LWW (6/29/2023)
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Figure A 20: Uncleaned Demand Factors for Zone 2 of LWW (6/29/2023)
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Figure A 21: Uncleaned Demand Factors for Zone 1 of LWW (6/30/2023)
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Figure A 22: Uncleaned Demand Factors for Zone 2 of LWW (6/30/2023)
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Figure A 23: Uncleaned Demand Factors for Zone 1 of LWW (7/1/2023)
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Figure A 24: Uncleaned Demand Factors for Zone 2 of LWW (7/1/2023)
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Figure A 25: Uncleaned Demand Factors for Zone 1 of LWW (7/2/2023)
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Figure A 26: Uncleaned Demand Factors for Zone 2 of LWW (7/2/2023)
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Figure A 27: Uncleaned Demand Factors for Zone 1 of LWW (7/3/2023)
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Figure A 28: Uncleaned Demand Factors for Zone 2 of LWW (7/3/2023)
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Figure A 29: Cleaned Demand Factors for Zone 1 of LWW (6/20/2023)
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Figure A 30: Cleaned Demand Factors for Zone 2 of LWW (6/20/2023)
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Figure A 31: Cleaned Demand Factors for Zone 1 of LWW (6/21/2023)
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Figure A 32: Cleaned Demand Factors for Zone 2 of LWW (6/21/2023)
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Figure A 33: Cleaned Demand Factors for Zone 1 of LWW (6/22/2023)
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Figure A 34: Cleaned Demand Factors for Zone 2 of LWW (6/22/2023)
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Figure A 35: Cleaned Demand Factors for Zone 1 of LWW (6/23/2023)
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Figure A 36: Cleaned Demand Factors for Zone 2 of LWW (6/23/2023)
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Figure A 37: Cleaned Demand Factors for Zone 1 of LWW (6/24/2023)
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Figure A 38: Cleaned Demand Factors for Zone 2 of LWW (6/24/2023)

Demand Factors Zone 2
1.8
[ )
1.6 °
1.4

1.2

Demand Factor

107



Figure A 39: Cleaned Demand Factors for Zone 1 of LWW (6/25/2023)

Demand Factors Zone 1

2.5

1.5

Demand Factor

0.5

Hour

Figure A 40: Cleaned Demand Factors for Zone 2 of LWW (6/25/2023)
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Figure A 41: Cleaned Demand Factors for Zone 1 of LWW (6/26/2023)
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Figure A 43: Cleaned Demand Factors for Zone 1 of LWW (6/27/2023)
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Figure A 44: Cleaned Demand Factors for Zone 2 of LWW (6/27/2023)
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Figure A 45: Cleaned Demand Factors for Zone 1 of LWW (6/28/2023)
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Figure A 46: Cleaned Demand Factors for Zone 2 of LWW (6/28/2023)
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Figure A 47: Cleaned Demand Factors for Zone 1 of LWW (6/29/2023)
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Figure A 48: Cleaned Demand Factors for Zone 2 of LWW (6/29/2023)
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Figure A 49: Cleaned Demand Factors for Zone 1 of LWW (6/30/2023)
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Figure A 50: Cleaned Demand Factors for Zone 2 of LWW (6/30/2023)

Demand Factors Zone 2

2.5

1.5

Demand Factor

0.5

Hour

113

30

30



Figure A 51: Cleaned Demand Factors for Zone 1 of LWW (7/1/2023)
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Figure A 52: Cleaned Demand Factors for Zone 2 of LWW (7/1/2023)
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Figure A 53: Cleaned Demand Factors for Zone 1 of LWW (7/2/2023)

Demand Factors Zone 1

2.5

1.5

Demand Factor

0.5

Hour

Figure A 54: Cleaned Demand Factors for Zone 2 of LWW (7/2/2023)
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Figure A 55: Cleaned Demand Factors for Zone 1 of LWW (7/3/2023)
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Figure A 56: Cleaned Demand Factors for Zone 2 of LWW (7/3/2023)
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APPENDIX B. Code For Hydraulic Simulation And Demand Factor Calibration

%Final extended period simulation code (for result output in the app)

function [PressureComp, FlowComp, QualityComp, TankLevels, TankwaterAge, PumpHGL,
PumpFlowRate, JunctionPressure, JunctionDemand, JunctionChlorine, JunctionTTHM, Time, d]
= ExtendedPeriodv2(varargin)

%The first argument into the function will be whether or not the input
%file is the current system in Lebanon or the new projected system with
%the replaced tank and new 16" line
whatFile = varargin{l};

if whatFile ==

d = epanet('LebanonCurrent_July2023Testable.inp', 'LoadFile');
elseif whatFile ==

d = epanet('LebanonNew_July2023.1inp', 'LoadFile');
end

NodeNames = d.getNodeNameID;

Targets = ["ByPass",'"BeforeCalvarymeter", "cCalvaryMeter", "woodlawnmeter",
"DanvilleHighwayMmeter","SpringfieldrRoadmeter","StRoseMeter", "StMaryMeter",
"CampbellsvillemMeter", "598", "808"];

[~,wWwhereNames] = ismember(Targets, NodeNames);

%set the initial tank Tevels
tankInfo = d.getNodeTankData;
tankMinLevel(1,1:2) = tankInfo.Minimum_water_Level;

%this is important because EPANET interprets tank Tlevel as the values

%between minimum and maximum. Therefore we need the relative tank level (user input) and
the minimum

%tank Tevel and then add them together to place and the initial Tlevel

%input.

tankLevelSpecs = varargin{2};

tankInitialLevel = varargin{2} +tankMinLevel;

if tankInitialLevel > tankMinLevel
%Do nothing

elseif tankInitialLevel < tankMinLevel
%Give the user an error if the initial level is too Tow
ErrorMessage = sprintf('one of the tank input values is lower than the

mimimum tank level.\n Please retry with different initial inputs.');

msgbox(ErrorMessage, 'Input Error', 'error');

end

d.setNodeTankInitialLevel(tankInitialLevel);

%Set the initial Pump Controls - Note, these need to be cleaned up and
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%formatted correctly in order to be implemented into the analysis, this is
%done on the front end in the application itself

PumpControls = varargin{3};

%Remove all of the original controls
d.deleteControls;

%add the new controls
d.addControls(PumpControls);

%Hydraulically speaking we have the initial tank Tevels and now the pump
%conditions as well. other than adding in the specified demands we are good
%to go onto our chlorine analysis

%Chlorine residual from the plant
Chlorine = varargin{4};

%relic from using two files, leave for now
if whatFile ==

%Set the chTorine concentration coming from the treatment plant
d.setNodeInitialqQuality (986, Chlorine);
d.setNodeSourceqQuality (986, Chlorine);

%Set the reaction coefficients
Bulk = varargin{5};
wall = varargin{6};

d.setLinkBulkReactionCoeff((0*d.getLinkBulkReactionCoeff) + Bulk);
d.setLinkwalTReactionCoeff((0*d.getLinkwallReactionCoeff)+wall);

%Set the time specifications
Time4 varargin{7};
Time5 = varargin{8};
Time6 = varargin{9};

.setTimePatternStep(Time4 * 3600)
.setTimeReportingStep(Time4 * 3600)
.setTimeHydraulicStep(Time4 * 3600);
.setTimeQualityStep(Time5 *3600);
.setTimeSimulationburation(Time6 * 3600);

o O O QO Qo

%Set the demand patterns
DemandFactors = varargin{10};
Dz1 = DemandFactors(:,1)"';
Dz2 = DemandFactors(:,2)"';

%pattern for first high pressure zone (WTP)
d.setPattern(3, Dz1(1,:));
%pattern for Springfield Road Pressure zone
d.setPattern(4, Dz2(1l, :));
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%we need to run this twice in order to get water age as well as the
%chlorine info, they are seperate analysis in EPANET

for i = 1:2

%on the second iteration change the quality analysis to chlorine
if i ==
d.setQualityType('chem', 'CHLORINE')
end
%relatively simple to run the analysis, here is the code for that.
%0pen, initialize (never understood why we needed that step), run and
%store outputs, close the analysis (temporary file no longer accepting
%values from future inputs (allows to be re-initialized I believe).
d.openHydraulicAnalysis;
d.initializeHydraulicAnalysis;
%Run and close analysis
Series = d.getComputedTimeSeries;
d.closeHydraulicAnalysis
if i ==
TankwaterAge = Series.NodeQuality(:,988:989);
end
if i ==
QualityComp = Series.NodeQuality
ChlorineResidual = Series.NodeQuality(:,WhereNames);
end
end

%Time comes in seconds, change to hours for output
Time = (Series.Time) ./ 3600;

%First compute tank heads (comes as HGL, I want relative tank levels

%though)

TankHeads = Series.Head;

Elevations = d.getNodeElevations;

CalvaryTankLevel = TankHeads(:,988) - (tankminLevel(1l,1) + Elevations(1,988));
springfieldRoadTankLevel = TankHeads(:,989) - (tankMinLevel(1,2) + Elevations(1,989));

TankLevels = [CalvaryTankLevel, SpringfieldrRoadTankLevel];
%Grab the relevant chlorine values

JunctionChlorine = ChlorineResidual;

%Grab the relevant pressure values

Pressurecomp = Series.Pressure;

JunctionPressure = PressureComp(:,whereNames);

%Lets get some pump information

%Springfield Road Pump Flow and head

%Convert the flows to GPM from CFS by multiplying by 448.83

FlowComp = (Series.Flow);
PumpFlowRate = FlowComp(:,1060:1061);
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%Get the pump HGL

Heads = Series.Head;

PumpHeadIn = Heads(:,[986,983]);
PumpHeadout = Heads(:,[864,979]);

PumpHGL = horzcat(PumpHeadIn, PumpHeadoOut);

%Get the releveant junction demands

Demands = Series.Demand;
JunctionbDemand = Demands(:, WhereNames);

%TTHM, HAAS5, and DBP formation in Lebanon, Kentucky
%model1ing using chlorine demand (the difference between the chlorine
%concentration at a junction and the chlorine demand leaving the plant) The

%equation used may be found in Yogesh's thesis paper

JunctionChlorinebemand = Chlorine - JunctionChlorine;
JunctionTTHM = 0.0508 .* JunctionChlorineDemand;

%updating due to several file changes. Easiest way to do this would be to
%copy the above code, take new file (new tank and 1ine) and update to
%account for these changes.

%{

elseif whatFile ==

tankInfo = d.getNodeTankData;

tankMminLevel = [0,0,0];

tankMinLevel(1,1:2) = tankInfo.Minimum_water_Level;
tankMinLevel(1,3) = tankMinLevel(1,1);
tankLevelSpecs = varargin{2};

tankInitialLevel = tankLevelSpecs +tankMinLevel;
pawnl = tankInitialLevel;

tankInitialLevel(1,2) = pawnl(l,3);
tankInitialLevel(1,3) = pawnl(l,2);

d.setNodeTankInitialLevel(tankInitialLevel(1,2:3));

NodeNames = d.getNodeNameID;
Targets = ["244","229", "618", "962", "1365","1432","3-135", "3-136", "1-137", "1-166"];
[~,WhereNames] = ismember(Targets, NodeNames);

d.setNodeInitialqQuality(993, cChlorine);
d.setNodeSourceQuality(993, Chlorine);

%Set the reaction coefficients
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Bulk
wall

varargin{5};
varargin{6};

d.setLinkBulkReactionCoeff((0*d.getLinkBulkReactionCoeff) + Bulk);
d.setLinkwallReactionCoeff((0*d.getLinkwallReactionCoeff)+wall);

%Now set some time limitations

%Set the time specifications

Time4 = varargin{7};

Time5 = varargin{8};

Time6 = varargin{9};
d.setTimePatternStep(Time4 * 3600)
d.setTimeReportingStep(Time4 * 3600)
d.setTimeHydraulicStep(Time4 * 3600);
d.setTimeQualityStep(Time5 *3600) ;
d.setTimeSimulationbDuration(Time6 * 3600);

%% Run the extended Period Simulation Given the Above Info

%we need to run this twice in order to get water age as well as the
%chlorine info, they are seperate analysis in EPANET

for i = 1:2

%on the second iteration change the quality analysis to chlorine
if i ==2
d.setQualityType('chem', 'Chlorine")
end
d.openHydraulicAnalysis;
d.initializeHydraulicAnalysis;
%Run and close analysis
Series = d.getComputedTimeSeries;
d.closeHydraulicAnalysis
if i ==
TankwaterAge = Series.NodeQuality(:,995:996);
end
if i ==
ChlorineResidual = Series.NodeQuality(:,wWhereNames);
end
end

Time = (Series.Time) ./ 3600;
%First compute tank heads

TankHeads = Series.Head;

Elevations = d.getNodeElevations;

CalvaryTankLevel = TankHeads(:,995) - (tankMminLevel(1l,1) + Elevations(1,995));
SpringfieldRoadTankLevel = TankHeads(:,996) - (tankMinLevel(1,2) + Elevations(1,996));

TankLevels = [CalvaryTankLevel, SpringfieldRoadTankLevel];
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%Grab the relevant chlorine values
JunctionChlorine = ChlorineResidual;

%Grab the relevant pressure values
JunctionPressure = Series.Pressure;
JunctionPressure = JunctionPressure(:,whereNames);
%Lets get some pump information

%Springfield Road Pump Flow and head

%Convert the flows to GPM from CFS by multiplying by 448.83
Flows = 448.83.*(Series.Flow);

PumpFTowRate = Flows(:,1066:1067);

%Get the pump HGL

Heads = Series.Head;

PumpHeadIn = Heads(:,[988,982]);

PumpHeadout = Heads(:,[981,989]);

PumpHGL = horzcat(PumpHeadIn, PumpHeadoOut);

%Get the releveant junction demands

Demands = Series.Demand;
JunctionDemand = Demands(:, WhereNames);

%TTHM, HAA5, and DBP formation in Lebanon, Kentucky

%model1ing using chlorine demand (the difference between the chlorine
%concentration at a junction and the chlorine demand leaving the plant) The
%equation used may be found in Yogesh's thesis paper

JunctionChlorinebemand = Chlorine - JunctionChlorine;
JunctionTTHM = 0.0508 .* JunctionChlorineDemand;
%}

end

% Code that executes after component creation
function startupFcn(app)
Start_Toolkit;

end

function PTotButtonPushed(app, event)

%Tells me which column to Took in for the data we are seeking

[~, InColumn] = ismember(app.EnterlunctionPressureeditField.value,
app.UITable_2.ColumnName) ;

%Plots the relevant data for pressure
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x1 app.UITable_2.pata(:,1);
yl = app.UITable_2.Data(:,InColumn);
plot(app.UIAxes,x1,yl)

%Tells me which column to look in for the data we are seeking

[~, InColumn2] = ismember(app.EnterJunctionChlorineEditField.value,
app.UITable_3.CoTlumnName) ;

%Plots the relevant data for chlorine residual

X2 = app.UITable_3.Data(:,1);

y2 = app.UITable_3.Data(:,InColumn2);

plot(app.UIAxes_2,x2,y2)

%Tells me which column to look in for the data we are seeking

[~, InColumn3] = ismember(app.EnterTankHeadEditField.value,
app.UITable_4.ColumnName) ;

%Plots the relevant data for tank levels

x3 = app.UITable_4.Data(:,1);

y3 = app.UITable_4.Data(:,InColumn3);

plot(app.UIAxes_3,x3,y3)

end

% Button pushed function: GenerateGenericMapButton
function GenerateGenericMapButtonPushed(app, event)

%open EPANET and load Lebanon file
d = epanet('LebanonCurrent_July2023Testable.inp', 'loadfile');

NodeName = d.getNodeNamelD;

%create figure template and change the name to match the system

fig = figure('Name', 'Lebanon water works - Layout of Lebanon Kentucky water
Distribution System');

%plot the graph

[EdgesandNodes,fig] = d.plotDiGraph;

assignin("base","fig", fig);

%send this variable to the matlab workspace so it can be used

%later for mapping

assignin('base', 'EdgesandNodes', EdgesandNodes);

%give the figure a name

%Change the weight of the lines so we can see them a little

%better

fig.Linewidth = 2;

%Highlight the tanks and the pumps in the system and label them
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TankIndex = [988,989];

TankIndex = [988,989];
highlight(fig, TankIndex, "marker", "s", "Markersize", 10, "NodecColor", "red");
PumpIndex = [864, 983];
highlight(fig, PumpIndex, "Mmarker", "<", "Markersize", 10, "NodecColor", "red");

text(fig.Xxpata(983), fig.ybpata(983), NodeName(983), 'HorizontalAlignment', 'right',
'VerticalAlignment', 'top', 'Fontweight', 'bold', 'Color', 'magenta');

%This is for pump 8

text(fig.Xpata(864), fig.yData(864), "Pump 8", 'HorizontalAlignment', 'left',

'VerticalAlignment', 'top', 'Fontweight', 'bold', 'cColor', 'magenta');
text(fig.Xpata(TankIndex), fig.yData(TankIndex), NodeName(TankIndex),
'"HorizontalAlignment', 'right', 'verticalAlignment', 'top',

'Fontweight', 'bold', 'Color', "'magenta');

%place all of the sizes of the pipes into the image as well
Diameter = d.getLinkDiameter;

%I don't think this is being used but won't delete for now until sure
%LinkNames = d.getLinkNameID;

%I am only doing the following two lines because edgesandnodes 1is storing
%two columns worth of data as 1 column in a table and I want them seperated
%for access

EdgesandNodes= EdgesandNodes.Edges(:,1);

Edges = splitvars(EdgesandNodes, 1);

Edges = table2array(Edges);

%because the plotdi graph is kind of a pain in the butt is gives the proper
%nodal connections (the right start and end nodes) but it doesn't give them
%as indexed values with the pipes, they are just sorted in ascending order
%in the firs column as apposed to associating them with their respective
%pipes. The following corrects that

ConnectDiameter = d.getLinkNodesIndex;

%Connect is indexed with the pipes but not proper order of start and end
%nodes, edges is the opposite. Therefore we can just sort them in ascending
%order in the columns, compare where sortConnect and sortEdges are
%(ordering the Edges variable to be properly indexed with pipes) and use
%those values to change the highlight for the diGrpah

sortConnect = sort(ConnectDiameter, 2, 'ascend');
sortEdges = sort(Edges, 2, 'ascend');

[~,index] = ismember(sortConnect, sortEdges, 'rows');
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%assign in the matlab workspace for other map processing purposes. Here
%this is for indexing Link names so we can label them on the map.

assignin('base', 'index',index);

EdgesNew = Edges(index,:);

%assign in the matlab workspace for other map processing purposes. Here
%this is for Tabeling pipes.

assignin('base', 'EdgesNew',EdgesNew) ;

%Highlight for different sizes

twoInch = find(Diameter ==2);
fourInch = find(Diameter ==4);
sixInch = find(Diameter ==6);
eightInch = find(Diameter ==8);
tenInch = find(Diameter ==10);
twelveInch = find(Diameter ==12);
sixteenInch = find(Diameter ==16);
twentyInch = find(Diameter ==20);

two = EdgesNew(twoInch(1,:),:);

four = EdgesNew(fourInch(l,:),:);

six = EdgesNew(sixInch(l,:),:);

eight = EdgesNew(eightInch(l,:),:);

ten = EdgesNew(tenInch(1,:),:);

twelve = EdgesNew(twelveInch(l,:),:);
sixteen = EdgesNew(sixteenInch(l,:),:);
twenty = EdgesNew(twentyInch(l,:),:);
fig.Linewidth = 2;

%change the colors of the pipes to be properly matched

highlight(fig, two(:,1), two(:,2), "EdgeColor", "green");

highlight(fig, four(:,1), four(:,2), "EdgeColor", "cyan");

highlight(fig, six(:,1), six(:,2), "EdgeColor", "red");

highlight(fig, eight(:,1), eight(:,2), "EdgeColor", "yellow");

highlight(fig, ten(:,1), ten(:,2), "EdgeColor", "magenta");

highlight(fig, twelve(:,1), twelve(:,2), "EdgeColor", "blue");

highlight(fig, sixteen(:,1), sixteen(:,2), "EdgeColor", "black™);
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highlight(fig, twenty(:,1), twenty(:,2), "EdgecColor", "white");

end

% Button pushed function:
% GenerateNodalPressureandPipeFlowsMapButton
function GenerateNodalPressureandPipeFlowsMapButtonPushed(app, event)

%first we need to pull in some of the results from functions
%that were already ran

%pull the workspace variables in for processing in the map

PressureComp = evalin('base', 'PressureComp');
FlowComp = evalin('base', 'FlowComp');
EdgesandNodes = evalin('base', 'EdgesandNodes');
fig = evalin('base', 'fig');

d = evalin('base', 'd');

%first define the threshoTds

Thresholdl = app.HighPressurepsikEditField.value;
Threshold2 app.MediumPressurepsiEditField.value;
Threshold3 = app.LowPressurepsiEditField.value;

%now define how we want these beauties to be colored

junctioncColorl string(app.ColorlDropbown.value);
junctioncColor2 string(app.Color2Dropbown.value);
junctioncColor3 = string(app.Color3bropbown.value);
junctionColor4 = string(app.Color4Dropbown.value);

%was EPS selected?

if app.EPSCheckBox.value ==

%EPS was not selected so we are running our colors as "steady
%state
pressures = PressureComp(l,:);

HPressure = find(pressures > Thresholdl)';

MPressure = find(pressures <= Thresholdl & pressures > Threshold2)';
LPressure = find(pressures <= Threshold2 & pressures > Threshold3)';
ITlegalpPressure = find(pressures <= Threshold3)';

highlight(fig, HPressure, "Marker", "o", "Markersize", 5, "NodeColor",
junctioncColorl);

highlight(fig, MPressure, "Marker", "o", "Markersize", 5, "NodeColor",
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junctioncColor2);

highlight(fig, LPressure, "Marker", "o", "Markersize", 5, "NodeColor",
junctioncColor3);

highlight(fig, I1legalPressure, "Marker", "o", "Markersize", 5, "NodeColor",
junctionColor4);

elseif app.EPSCheckBox.value ==
%EPS was selected
Time = (app.EPSHourSlider.value)+1;
Time = round(Time);

pressures = PressureComp(Time,:);

HPressure = find(pressures > Thresholdl)';
MPressure = find(pressures <= Thresholdl & pressures > Threshold2)';
LPressure = find(pressures <= Threshold2 & pressures > Threshold3)';
IllegalpPressure = find(pressures <= Threshold3)';
highlight(fig, HPressure, "Marker", "o", "Markersize", 5, "NodeColor",
junctioncColorl);

highlight(fig, MPressure, "Marker", "o", "Markersize", 5, "NodeColor",
junctioncColor2);

highlight(fig, LPressure, "Marker", "o", "Markersize", 5, "NodeColor",
junctioncColor3);

highlight(fig, I1legalPressure, "Marker", "o", "Markersize", 5, "NodeColor",
junctioncColor4);

end
PipeColor5 = string(app.Color5DropbDown.VvaTue);
PipeColor6 = string(app.Color6bropbown.value);
PipeColor7 = string(app.Color7Dropbown.value);

EdgesandNodes= EdgesandNodes.Edges(:,1);
Edges = splitvars(EdgesandNodes, 1);
Edges = table2array(Edges);

%because the plotdi graph is kind of a pain in the butt is gives the proper
%nodal connections (the right start and end nodes) but it doesn't give them
%as indexed values with the pipes, they are just sorted in ascending order
%in the firs column as apposed to associating them with their respective
%pipes. The following corrects that

ConnectDiameter = d.getLinkNodesIndex;
%Connect is indexed with the pipes but not proper order of start and end

%nodes, edges is the opposite. Therefore we can just sort them in ascending
%order in the columns, compare where sortConnect and sortEdges are
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%(ordering the Edges variable to be properly indexed with pipes) and use
%those values to change the highlight for the diGrpah

sortConnect = sort(ConnectDiameter, 2, 'ascend');
sortEdges = sort(Edges, 2, 'ascend');

[~,index] = ismember(sortConnect, sortEdges, 'rows');
EdgesNew = Edges(index,:);

%for map processing purposes, pass this value into the base workspace
assignin('base', 'index',index);

%Highlight for different flow regimes

Threshold4 = app.HighFlowcfsEditField_2.value;
Threshold5 = app.LowFlowcfseditField_2.value;

if app.EPSCheckBox_2.value ==0

FlowComp = abs(FlowComp ./ 448.8);

HFTow = find(FlowComp(1l,:) > Threshold4);

MFlow = find(FlowComp(1l,:) <= Threshold4 & FlowComp(l,:) > Threshold5);
LFlow = find(FlowComp(l,:) <= Threshold5);

try

LowFlow = EdgesNew(LFlow(1l,:),:);
MediumFlow = EdgesNew(MFlow(1l,:),:);
HighFlow = EdgesNew(HFlow(1,:),:);
catch

end

%change the colors of the pipes to be properly matched

try
highlight(fig, LowFlow(:,1), LowFlow(:,2), "EdgeColor", PipeColor7);
highlight(fig, MediumFlow(:,1), MediumFlow(:,2), "EdgeColor", PipeColor6);
highlight(fig, HighFlow(:,1), HighFlow(:,2), "EdgecColor", PipeColor5);

catch
end

end
if app.EPSCheckBox_2.value ==

Time2 (app.EPSHourslider_2.value)+1;
Time2 = round(Time2);

%Need to convert flow to CFS

FlowComp = abs(FlowComp ./ 448.8);

HFlow = find(FlowComp(Time2,:) > Threshold4);

MFlow = find(FlowComp(Time2,:) <= Threshold4 & FlowComp(Time2,:) > Threshold5);
LFTow = find(FlowComp(Time2,:) <= Threshold5);

try
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LowFTow = EdgesNew(LFlow(1,:),:);
MediumFlow = EdgesNew(MFlow(1l,:),:);
HighFlow = EdgesNew(HFlow(1,:),:);
catch

end

%change the colors of the pipes to be properly matched

try
highlight(fig, LowFlow(:,1), LowFlow(:,2), "EdgeColor", PipecColor7);
highlight(fig, MediumFlow(:,1), MediumFlow(:,2), "EdgeColor", PipeColor6);
highlight(fig, HighFlow(:,1), HighFlow(:,2), "EdgecColor", PipeColor5);

catch
end

end

end

% Button pushed function: GenerateNodalChlorineResidualsMapButton
function GenerateNodalChlorineResidualsMapButtonPushed(app, event)

%Pull in the relevant chlorine data and figure
QualityComp = evalin('base', 'QualityComp');
fig = evalin('base', 'fig');
%define thresholds from the main map page
Threshold7 = app.HighConcentrationmglEditField.value;
Threshold8 = app.LowConcentrationmglEditField.value;
%define some of the colors we will be using
junctionColor7 = string(app.Color8bropbown.value);
junctionColor8 = string(app.cColor9propbown.value);
junctionColor9 = string(app.ColorlODropbDown.Vvalue);

if app.EPSCheckBox_3.value ==

%EPS was not selected so we are running our colors as "steady
%state
quality = Qualitycomp(l,:);
HResidual = find(quality > Threshold7)' ;
MResidual find(quality <= Threshold7 & quality > Threshold8)';
LResidual = find(quality <= Threshold8)';

try
highlight(fig, HResidual, "marker", "o", "Markersize", 5, "NodeColor",
junctioncColor?);

highlight(fig, MResidual, "marker", "o", "Markersize", 5, "NodeColor",
junctioncColor8);

highlight(fig, LResidual, "marker", "o", "Markersize", 5, "NodeColor",
junctioncColor9);
catch
end
elseif app.EPSCheckBox_3.value ==
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try

%EPS was selected

Time3 = (app.EPSHourSlider_3.value)+1;
Time3 = round(Time3);

quality = QualityComp(Time3,:);

HResidual = find(quality > Threshold7)';
MResidual = find(quality <= Threshold7 & quality > Threshold8)';
LResidual = find(quality <= Threshold8)';

highlight(fig, HResidual, "marker", "o", "Markersize", 5, "NodeColor",
junctioncColor?);

highlight(fig, MResidual, "marker", "o", "Markersize", 5, "NodeColor",
junctioncColor8);

highlight(fig, LResidual, "marker", "o", "Markersize", 5, "NodeColor",
junctioncColor9);

catch
end

end

end

% Button pushed function: RunDiscoveryButton
function RunDiscoveryButtonPushed(app, event)

%bring in the figure from matlab 'base' workspace

fig = evalin('base', 'fig');
index = evalin('base', 'index');
d = evalin('base', 'd");

EdgesNew = evalin('base', 'EdgesNew')

NodeName = d.getNodeNamelD;
LinkName = d.getLinkNameID;
LinkNew = LinkName;

JunctionName = string(app.JunctionNameEditField.value);
PipeName = string(app.PipeNameEditField.value);

JunctionIndex = find(strcmp(NodeName, JunctionName))

%lets get the junctions all squared away

if isempty(app.JunctionNameEditField.value) ==
%means that there is no text
fig.NodeLabel = [];

elseif isempty(app.JunctionNameEditField.value) ==
%means that someone put in some text. This will error if
%the text is not exactly right. I will not fix that at the
%moment
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%we also need the weight and color wanted for the junction
%index

highlight(fig, JunctionIndex, "Marker", "o", "Markersize",
app.JunctionweighteditField.value, "NodeColor", string(app.JunctionColorDropbDown.vValue));
end

%Now lets figure out the pipe Tabeling

%first index it
PipeIndex = find(strcmp(LinkName, PipeName))

%now use the reordered edges to find what you are Tooking for
whatEdge = EdgesNew(PipeIndex,:);
%now run the what if statement

if isempty(app.PipeNameEditField.value) ==

%means that there is no text

fig.EdgeLabel = [];
elseif isempty(app.PipeNameEditField.value) ==

%means that someone put in some text. This will error if

%the text is not exactly right. I will not fix that at the

%moment

highlight(fig, whatedge(:,1), whatEdge(:,2), "EdgecColor",

string(app.PipeColorbropbDown.value), "Linewidth", app.PipeLineweightEditField.value);

end

%Now reorder the LinkName to match the indexing necessary for
%proper pipe labeling

LinkNew(1,index) = LinkName;

%Turn on all of the junction names if that option is selected,
%turn on all pipe names if that option is selected

if app.TurnonAllpPipeNamesCheckBox.value ==1
fig.EdgeLabel = LinkNew;

elseif app.TurnonAllPipeNamesCheckBox.value ==
fig.EdgeLabel = [];

end

if app.TurnonAllJunctionNamesCheckBox.value ==
fig.NodeLabel = NodeName;
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elseif app.TurnonAlllunctionNamesCheckBox.value ==
fig.NodeLabel = [];
end

end

% callback function

function GetCurrentFilePipeDescriptionButtonPushed(app, event)
d = evalin('base', 'd');
LinkInfo = d.getLinksInfo;
LinkName d.getLinkNameID;

%if the table is empty fill these puppies in

if isempty(app.UiTable2.Data) ==

app.UITable2.pata(:,2) = LinkInfo.LinkLength;
app.UITable2.pata(:,3) = LinkInfo.LinkDiameter;
app.UITable2.pata(:,4) = LinkInfo.LinkRoughnessCoeff;
app.UITable2.pata(:,7) = LinkInfo.NodesConnectingLinksIndex(:,1);
app.UITable2.Dpata(:,8) = LinkInfo.NodesConnectingLinksIndex(:,2);
app.UITable2.Data = num2cell(app.UITable2.Data);

app.UITable2.Dpata(:,1) = LinkName;

else
%its already populated and you just need to replace the roughness
%coefficients
pawn = num2cell(LinkInfo.LinkRoughnessCoeff);
app.UITable2.Data(:,4) = Pawn;

end

end

% FUNCTION NOT IN CURRENT APP VERSION
function ShowCurrentPumpCurvesButtonPushed(app, event)
%%A11 of this is found in the KYPIPE "BASIC Computer Program for the
%%Analysis of Pressure and Flow in Pipe Distribution Systems Including
%%Extended Period Simulations"™ By Don Wood and is the same formulation for
%%the pump curves in EPANET

%This is the pump calibration function and will be used to help visualize,
%and optimize the use of their pumps

d = evalin('base', 'd");
Pump = d.getCurvevalue;

%Pull in some of the operating point data relevant for plotting Tater
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%Get Pressure Data (Index)

app.UITable_2.ColumnName

wherePump6pPO = find(strcmp('O-Pump-6', app.UITable_2.ColumnName));
wherePump7pP0 = find(strcmp('O-Pump-7', app.UITable_2.ColumnName));
wherePump8pP0 = find(strcmp('0-Pump-8', app.UITable_2.ColumnName));

wherePump6PI = find(strcmp('I-Pump-6', app.UITable_2.ColumnName));
wherePump7pPI = find(strcmp('I-Pump-7', app.UITable_2.ColumnName));
wherePump8PI = find(strcmp('I-Pump-8', app.UITable_2.ColumnName));
%Get Flow Data (Index)

wherePump6F = find(strcmp('~@Pump-6', app.UITable_5.ColumnName));
wherePump7F = find(strcmp('~@Pump-7"', app.UITable_5.ColumnName));
wherePump8F = find(strcmp('~@Pump-8', app.UITable_5.ColumnName));

%Now we can gather that data

%This is for the Heads of the pumps at the Inlet and outlet (convert to head from
%psi)

Pump6HeadO = app.UITable_2.Data(:,wherePump6P0) .*2.30725;
Pump7Head0 = app.UITable_2.Data(:,wWherePump7P0) .*2.30725;
Pump8HeadO = app.UITable_2.Data(:,WherePump8P0) .*2.30725;

Pump6HeadI = app.UITable_2.Data(:,WherePump6PI) .*2.30725;
Pump7HeadI = app.UITable_2.Data(:,WherePump7PI) .*2.30725;
Pump8HeadI = app.UITable_2.Data(:,WherePump8PI) .*2.30725;

%Because we are not solving the system head curve explcitly we need to
%actually solve for the amount of head that the pump is adding to the
%system to determine its operating point.

Pump6HeadAdded = Pump6HeadO - Pump6HeadI;
Pump7HeadAdded = Pump7HeadO - Pump7HeadI;
Pump8HeadAdded = Pump8HeadO - Pump8HeadI;

%This is for the flows (convert back to GPM from CFS)

Pump6FTow = (app.UITable_5.Data(:,WherePump6F)) .* (1/.00222802);
Pump7FTow (app.UITable_5.Dpata(:,wherePump7F)) .* (1/.00222802);
Pump8FTow = (app.UITable_5.Data(:,WherePump8F)) .* (1/.00222802);

%This is to show whehter or not we are using the slider. we add a plus 1
%because the row that we search in for hour 1 values 1is actually in row 2
%(this is because there is an hour 0 reported value.

if app.OperatingPointSlider_5.value > 0
Time3 = (app.OperatingPointSlider_5.value)+1l; %Pump 8
Time3 = round(Time3);
else
Time3 = 1;
end
if app.OperatingPointSlider_3.value >0
Time4 = (app.OperatingPointSlider_3.value)+1l; %Pump 6
Time4 = round(Time4);
else
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Time4 = 1;
end
if app.OoperatingPointSlider_4.value >0
Time5 = (app.OperatingPointSlider_4.value)+1l; %Pump 7
Time5 = round(Time5);
else
Time5 = 1;
end

%%This is for the Lake Pump
PumpCurvel = cell2mat(Pump(1,1));

%plot the first portion of the line
n = (log( (PumpCurvel(l,2) - PumpCurvel(3,2)) / (PumpCurvel(l,2) -PumpCurvel(2,2)) ))
/(log(PumpCurvel(3,1) / PumpCurvel(2,1)));

@}
1l

(PumpCurvel(l,2) - PumpCurvel(2,2)) / (PumpCurvel(2,1)An);

Q = Tinspace(0,PumpCurvel(3,1), 150);

EP = PumpCurvel(1,2) - (C * (Q.An));

%plot the last extension of the Tine (the straight line portion coming
%after Q3.

S = (-n) * C * (PumpCurvel(3,1)A(n));
A = PumpCurvel(3,2) - (S * PumpCurvel(3,1));
EP2 = 50;

%end when the plotted curve ends up running into the x-axis
add = (PumpCurvel(3,1) * .10);
Q2 = PumpCurvel(3,1);

%This tells me when (maybe inefficiently) the flows will result in 0 head
while EP2 > 0

Q2 = Q2 + add;
EP2 = A + (S .* Q2);
end

%I can then linearly interpolate these flows to give me a line between the
%last known flow and the flow we predict will result in 0 head and then
%plot them.

QA11 = horzcat(Q, Q2(1,2:end));
EPA11 = horzcat(EP, EP2(1,2:end));

plot(app.UIAxes2_7, QAll, EPATT);

hold(app.UIAxes2_7, 'on');

scatter(app.UIAxes2_7, Pump6Flow(Time4, 1), Pump6HeadAdded(Time4,1), 'filled');
hold(app.UIAxes2_7, 'off');

%%This is for the River Pump
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PumpCurvel = cell2mat(Pump(1,2));

%plot the first portion of the Tine
n = (log( (PumpCurvel(l,2) - PumpCurvel(3,2)) / (PumpCurvel(l,2) -PumpCurvel(2,2)) ))
/(log(PumpCurvel(3,1) / PumpCurvel(2,1)));

(@}
[}

(PumpCurvel(l,2) - PumpCurvel(2,2)) / (PumpCurvel(2,1)An);

Q Tinspace(0,PumpCurvel(3,1), 150);

EP = PumpCurvel(1,2) - (C * (Q.An));

%plot the last extension of the Tine (the straight line portion coming
%after Q3.

(V2]
1l

(-n) * C * (PumpCurvel(3,1)A(n-1));
A = PumpCurvel(3,2) - (S * PumpCurvel(3,1));

EP2 = 50;
%end when the plotted curve ends up running into the x-axis
add = (PumpCurvel(3,1) * .10);

Q2 = PumpCurvel(3,1);

%This tells me when (maybe inefficiently) the flows will result in 0 head
while EP2 > 0

Q2 = Q2 + add;
EP2 = A + (S .* Q2);
end

%I can then linearly interpolate these flows to give me a line between the
%last known flow and the flow we predict will result in 0 head and then
%plot them.

QA11 = horzcat(Q, Q2(1,2:end));
EPA11 = horzcat(EP, EP2(1,2:end));

plot(app.UIAxes2_4, QAll, EPATT);

hold(app.UIAxes2_4, 'on');

scatter(app.UIAxes2_4, Pump8Flow(Time3, 1), Pump8HeadAdded(Time3,1), 'filled');
hold(app.UIAxes2_4, 'off');

%%This is for the North Tank Pump

PumpCurvel = cell2mat(Pump(1,3));

%plot the first portion of the line

n = (log( (PumpCurvel(l,2) - PumpCurvel(3,2)) / (PumpCurvel(l,2) -PumpCurvel(2,2)) ))
/(Tog(PumpCurvel(3,1) / PumpCurvel(2,1)));

C = (PumpCurvel(l,2) - PumpCurvel(2,2)) / (PumpCurvel(2,1)An);

Tinspace(0,PumpCurvel(3,1), 150);

o
1
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EP = PumpCurvel(l,2) - (C * (Q.An));

%plot the last extension of the Tine (the straight line portion coming
%after Q3.

S = (-n) * C* (PumpCurvel(3,1)A(n-1));
A = PumpCurvel(3,2) - (S * PumpCurvel(3,1));
EP2 = 50;

%end when the plotted curve ends up running into the x-axis
add = (PumpCurvel(3,1) * .10);
Q2 = PumpCurvel(3,1);

%This tells me when (maybe inefficiently) the flows will result in 0 head
while EP2 > 0

Q2 = Q2 + add;
EP2 = A + (S .* Q2);
end

%I can then linearly interpolate these flows to give me a line between the
%last known flow and the flow we predict will result in 0 head and then
%plot them.

QAl1 = horzcat(Q, Q2(1,2:end));
EPA11 = horzcat(EP, EP2(1,2:end));

plot(app.UIAxes2_6, QAll, EPATT);

hold(app.UIAxes2_6, 'on');

scatter(app.UIAxes2_6, Pump7Flow(Time5, 1), Pump7HeadAdded(Time5,1), 'filled');
hold(app.UIAxes2_6, 'off');

end

% FUNCTION NOT IN CURRENT APP VERSION
function PlaceFieldbatainGraphButtonPushed(app, event)

Fieldbata = evalin('base', 'fieldbatal');

HeadData = app.EnterFieldDataHeadFeetEditField.value;
FlowData = app.EnterFieldDataFlowGPMEditField.value;
NewData = horzcat(HeadData, FlowData);

Fieldbata = vertcat(FieldData, NewData);
fieldDatal = FieldData;

assignin('base', 'fieldpatal', fieldbatal)
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hold(app.UIAxes2_4, 'on');
S1 = scatter(app.UIAxes2_4, fieldpatal(:,2), fieldpatal(:,1), 'magenta');
assignin('base','s1l', s1)
hold(app.UIAxes2_4, 'off');

end

% FUNCTION NOT IN CURRENT APP VERSION
function PlaceFieldDatainGraphButton_2Pushed(app, event)
FieldData = evalin('base', 'fieldbata2');

HeadData = app.EnterFieldDataHeadFeetEditField_2.value;
Flowbata = app.EnterFieldDataFlowGPMEditField_2.value;
NewData = horzcat(HeadData, FlowData);

Fieldpata = vertcat(FieldData, NewData);
fieldbata2 = FieldData;

assignin('base', 'fieldpata2', fieldData2)

hold(app.UIAxes2_7, 'on');
S2 = scatter(app.UIAxes2_7, fieldbata2(:,2), fieldpata2(:,1), 'magenta');
assignin('base','s2', S2)
hold(app.UIAxes2_7, 'off');
end

% FUNCTION NOT IN CURRENT APP VERSION
function PlaceFieldbatainGraphButton_3Pushed(app, event)
Fieldbata = evalin('base', 'fieldData3');

HeadData = app.EnterFieldDataHeadFeetEditField_3.value;
FlowData = app.EnterFieldDataFlowGPMEditField_3.value;
NewData = horzcat(HeadData, FlowData);

Fieldbata = vertcat(FieldData, NewbData);
fieldData3 = FieldData;

assignin('base', 'fieldpata3', fieldData3)

hold(app.UIAxes2_6, 'on');
S3 = scatter(app.UIAxes2_6, fieldbata3(:,2), fieldpata3(:,1), 'magenta');
assignin('base','s3", S3)
hold(app.UIAxes2_6, 'off');
end

% FUNCTION NOT IN CURRENT APP VERSION
function RemoveFieldDatafromGraphButtonPushed(app, event)

delete(findobj(app.UIAxes2_4, 'type', 'scatter'))

fieldpatal = [];
assignin('base', 'fieldpatal', fieldbatal);

end
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% FUNCTION NOT IN CURRENT APP VERSION
function RemoveFieldDatafromGraphButton_2Pushed(app, event)

delete(findobj(app.UIAxes2_7, 'type', 'scatter'))
fieldpata2 = [];
assignin('base', 'fieldbData2', fieldbata2);

end

% Callback function
function RemoveFieldDatafromGraphButton_3Pushed(app, event)

delete(findobj(app.UIAxes2_6, 'type', 'scatter'))
fieldpata3 = [];
assignin('base', 'fieldpata3', fieldbata3);

end

% FUNCTION NOT IN CURRENT APP VERSION
function ChangeRoughnessforAllpPipesButtonPushed(app, event)
NewRoughnessvalues = num2cell(app.CFactoreditField_3.value);

app.UITable2.Dpata(:,4) = NewRoughnessvalues;
end

% FUNCTION NOT IN CURRENT APP VERSION

function cChangeRoughnessforpipesofSameDiameterButtonPushed(app, event)
SizeOfPipeSpecified = app.SizeofPipeEditField.value;
NewRoughness = num2cell(app.CFactoreEditField.value);

DataFromTable = cell2mat(app.UITable2.Data(:,3));

whatRows = find(DataFromTable == SizeofPipeSpecified);
app.UITable2.Dbata(whatRows,4) = NewRoughness;
end

% FUNCTION NOT IN CURRENT APP VERSION
function Button_3Pushed(app, event)
%Read in the EPANET file
d = evalin('base', 'd');

%Find where the names of the rows match
NameEnteredByUser = string(app.ReferencePipeNameEditField.value);

whatRows = find(strcmp(app.UITable2.Data(:,1), NameEnteredByUser));
%Now that we know what row contains the value of the reference

%pipe we can go ahead and find out what the starting node is of
%that pipe

whatNode = app.UITable2.Data(whatRows, 7);
whatNode = round(cell2mat(whatNode));

%Now we can go and grab the relevant coordinates for the node
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NodeCoordinates = d.getNodeCoordinates;

NodeXCoordinates NodeCoordinates{l,1};
NodeYCoordinates = NodeCoordinates{l,2};

XCoordsMyNode = NodexCoordinates(1l,whatNode);
YCoordsMyNode = NodeYCoordinates(1l,wWhatNode);

%Now we need to find any pipes that are within the specified
%radius of the node (here we are Tloosely defining radius, this
%is actually generating a box)

terminalvalue = app.RadiusfteditField.value;

XCoordLeft = XCoordsMyNode - terminalvalue;
XCoordRight = XCoordsMyNode + terminalvalue;

YCoordUp = YCoordsMyNode + terminalvalue;
YCoordsDown = YCoordsMyNode - terminalvalue;

%Now we can find all of the starting nodes where the
%coordinates match the specified conditions

whatStartNodes = find(NodeXxCoordinates < XCoordRight & NodexCoordinates >
XCoordLeft & NodeyCoordinates > YCoordsDown & NodeYCoordinates < YCoordup);

%wWe know now which starting nodes qualify for change of
%roghness value, we just need to do so
StartNodes = round(cell2mat(app.UITable2.Data(:,7)));

%Find the places where StartNodes is contained within
%whatStartNodes, Index by finding where the
%wherePipeFromStartNode variable is not equal to O

[~,wherePipeFromStartNode] = ismember(StartNodes, whatStartNodes);

IndicestoUpdate = find(wWherepPipeFromstartNode ~=0);
NewRoughness = num2cell(app.CFactoreEditField_2.value);
app.UITable2.Dbata(IndicestoUpdate,4) = NewRoughness;

end

% FUNCTION NOT IN CURRENT APP VERSION
function Button_4Pushed(app, event)
%Find where the names of the rows match
NameEnteredByUser = string(app.PipeNameEditField_2.value);
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whatRows = find(strcmp(app.UiTable2.pata(:,1), NameEnteredByUser));
NewRoughness = num2cell(app.CFactoreditField_4.value);
app.UITable2.Dpata(whatRows,4) = NewRoughness;

end

% FUNCTION NOT IN CURRENT APP VERSION
function RunEPSwithTrialRoughnessvaluesButtonPushed(app, event)

%First we have to identify where some of the changes came from,
%we do this by comparing the origional roughness values with
%the new values placed into the table

d = evalin('base', 'd');

LinkInfo = d.getLinksInfo;

%Get the roughness values from the origional file
LinkRoughorig = LinkInfo.LinkRoughnessCoeff';

UserInput = cell2mat(app.UITable2.Data(:,4));

%find where the values are equal to each other (where there
%have been no changes)

Index = (LinkRoughOrig == UserInput);

%Now that we have this we can actually find the index of where
%the changes have happened

IndexedChangeInRough = find(Index == 0);

%We have this and now we can look for the roughness values of
%the change

changedRough = UserInput(IndexedChangeInRough,1l);
%Package these together as a neat input

NewRoughness = horzcat(IndexedChangeInRough, ChangedRough);

tic;

%find the row that you are wanting to concatenate and create a
%cell array. Join them and remove redundant spaces. Once this
%is done for all 12 rows we combine them into a another
%completed cell array with the combined strings. Side note, the
%deblank function removes the trailing whitespace produced and
%the regexprep function searcehs for any whitespace that is
%over 1 space long and replaces it with whitespace that is in
%fact 1 space long

rowl = {app.Dropbown.Value,
app.DropbDown_3.vValue,app.Dropbown_4.value,app.DropDown_5.value,app.Dropbown_6.value,app.D
ropbown_7.value,app.DropbDown_8.value,app.EditField.value, app.Dropbown_86.value};

Newrl = strjoin(Crowl, " ");
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%This expresion takes the joined string "Newrl" and finds

where

%the joined string has 1 or more spaces ( ' +') and replaces it

%with a single space. deblank removes any trailing space.

Newerl = deblank(regexprep(Newrl, ' +', ' '));

row2 = {app.Dropbown_9.value,

app.Dropbown_10.Vvalue,app.DropDown_11.value,app.Dropbown_12.value,app.
pp.DropbDown_14.value,app.Dropbown_15.value,app.EditField_2.value, app.

Newr2 = strjoin(Crow2, " ");

Newer2 = deblank(regexprep(Newr2, +', "))

row3 = {app.Dropbown_16.value,

app.Dropbown_17.value,app.DropDown_18.vValue,app.Dropbown_19.value,app.
pp.DropbDown_21.value,app.Dropbown_22.vValue,app.EditField_3.value, app.

Newr3 = strjoin(Crow3, " ");
Newer3 = deblank(regexprep(Newr3, ' +', '

"))

row4 = {app.Dropbown_23.value,

app.Dropbown_24.value,app.DropDown_25.vValue,app.Dropbown_26.vValue,app.
pp.DropbDown_28.Value,app.Dropbown_29.vValue,app.EditField_4.value, app.

Newr4 = strjoin(Crow4, " ");
Newerd4 = deblank(regexprep(Newr4, ' +', '

"))

row5 = {app.Dropbown_30.value,

app.Dropbown_31.value,app.DropDown_32.vValue,app.Dropbown_33.value,app.
pp.DropbDown_35.vValue,app.Dropbown_36.Value,app.EditField_5.value, app.

Newr5 = strjoin(row5, " ");
Newer5 = deblank(regexprep(Newr5, ' +', '

"))

rowb = {app.Dropbown_37.value,

app.Dropbown_38.Value,app.DropDown_39.value,app.Dropbown_40.value,app.
pp.DropbDown_42.vValue,app.Dropbown_43.vValue,app.EditField_6.value, app.

Newr6 = strjoin(Crow6, " ");
Newer6 = deblank(regexprep(Newr6, ' +', '

")

row7 = {app.Dropbown_44.value,

app.Dropbown_45.value,app.DropDown_46.vValue,app.Dropbown_47.value,app.
pp.DropbDown_49.value,app.Dropbown_50.vValue,app.EditField_7.value, app.

Newr7 = strjoin(Crow7, " ");
Newer7 = deblank(regexprep(Newr7, ' +', '

")

row8 = {app.Dropbown_51.value,

app.Dropbown_52.value,app.Dropbown_53.value,app.Dropbown_54.value,app.
pp.DropbDown_56.value,app.Dropbown_57.value,app.EditField_8.value, app.

Newr8 = strjoin(row8, " ");
Newer8 = deblank(regexprep(Newr8, ' +', '

")

row9 = {app.Dropbown_58.value,

app.Dropbown_59.value,app.Dropbown_60.value,app.Dropbown_61.value,app.
pp.DropbDown_63.value,app.Dropbown_64.value,app.EditField_9.value, app.

Newr9 = strjoin(Crow9, " ");
Newer9 = deblank(regexprep(Newr9, ' +', '

"))
rowl0 = {app.DropbDown_65.value,
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app.Dropbown_66.Value,app.DropbDown_67.vValue,app.Dropbown_68.value,app.DropbDown_69.value,a
pp.Dropbown_70.vValue,app.Dropbown_71.value,app.EditField_10.value,
app.Dropbown_95.value};

Newrl0 = strjoin(CrowlO, " ");

Newerl0 = deblank(regexprep(NewrlO, ' +', ' '));

rowll = {app.Dropbown_72.value,
app.Dropbown_73.value,app.DropDown_74.vValue,app.Dropbown_75.value,app.DropDown_76.Value,a
pp.DropbDown_77.vValue,app.Dropbown_78.vValue,app.EditField_11.value,
app.Dropbown_96.vValue};
Newrll = strjoin(Crowll, " ");
Newerll = deblank(regexprep(Newrll, " +', ' '));

rowl2 = {app.Dropbown_79.value,
app.Dropbown_80.Value,app.DropDown_81.vValue,app.Dropbown_82.value,app.DropbDown_83.vValue,a
pp.DropbDown_84.value,app.Dropbown_85.vValue,app.EditField_12.value,
app.Dropbown_97.value};
Newrl2 = strjoin(rowl2, " ");
Newerl2 = deblank(regexprep(Newrl2, " +', ' '));

%Finally, bring them altogether

NextArray = {Newerl;Newer2; Newer3; Newer4;Newer5; Newer6; Newer7;NewersS§;
Newer9; NewerlO;Newerll; Newerl2};

%uses cell function to apply the isempty function to every row in the cell
%array. Once it identifies the rows that are empty in Next Array it deletes
%them. Found on Mathworks open forums. Essentially, all of the inputs we
%are specifying here will be sent to the extended period function as a cell
%value and then inside of the Extended period function we will convert to
%the proper format so that the epanet-matlab toolkit can process correctly.
%If this is not done we will be thrown errors.
NextArray(cellfun('isempty',NextArray)) = cellstr('NULL");

% now that we have the control statements, we need to add the other
% factors that go into the simulation

%InitialTankLevels
outl3 = app.T_l.value;
outl4 = app.T_2.value;

TankLevels = {outl3; outl4d};

%Times

outl5 = app.TotalTimeEditField.value; %Total Time

outle = app.HydraulicTimeStepEditField.value; %Hydraulic Time Step

outl? = app.wWaterQualityTimeStepEditField.value; %water Quality Time Step

Timel = {outl5};

Time2 = {outl6};

Time3 = {outl7};

%Decay Rates

outl8 = app.BulkEditField.value;
outl9 = app.walleditField.value;
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Decay = {outl8; outl9};

%Chlorine value
out20 = app.ChlorinemglEditField.value;
Chlorine = {out20};

%Ccomnbine all of them
Quality2 = vertcat(NextArray, TankLevels, Timel,Time2, Time3, Decay, Chlorine);

[d, QualityComp,PressureComp, FlowComp,pressure, quality, flow,Headfinal, PressureName,
QualityName, FlowName, Message] = ExtendedPeriod_Lebanon(Quality2, NewRoughness);

%so that the mapping can use these variables later
assignin('base', 'PressureComp', PressurecComp);
assignin('base', 'FlowComp', FlowComp);
assignin('base', 'QualityComp', QualityComp);

%This code can probably be made simpler (with for loops for example with
%the row information. I did not think this was necessary because the system
%is rather small and am only writing a few control statements. Will have to
%check the data Timitations of for looping, I didn't like how it wrote and
%rewrote the matrix for every iteration, that seemed slow. Maybe my method
%is slow too here.

app.UITable_2.ColumnName = horzcat('Time (Hours)',PressureName);
app.UITable_2.Data = pressure;

app.UITable_3.ColumnName = horzcat('Time (Hours)',QualityName);
app.UITable_3.Data = quality;

app.UITable_4.ColumnName = {'Time (Hours)',6 'T-1', 'T-2'};
app.UITable_4.Data = Headfinal;

app.UITable_5.ColumnName = horzcat('Time (Hours)', FlowName);
app.UITable_5.Data = flow;

app.TextArea_5.value = Message;

stop = toc;
app.EditField_13.value = stop;

%This is all of the stuff I want assigned into the base workspace for
%several other functions. This will be overwritten if I run this function
%again which is good! If they want a different sim to be ran then I would
%want a Tot of this stuff to change

%assign the epanet file into the workspace to be used for other functions
%in this application
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assignin("base", "d", d);

%This is for pump calibration

fieldpatal = [];
fieldpata2 = [];
fieldpata3 = [];

assignin('base', 'fieldbatal', fieldbatal);
assignin('base', 'fieldbata2', fieldbata2);
assignin('base', 'fieldbpata3', fieldbata3);

end

% FUNCTION NOT IN CURRENT APP VERSION

function SaveRoughnessChangesButtonPushed(app, event)

filename = ('lebanon_May23.1inp');
d.saveInputFile(filename)
end

% FUNCTION NOT IN CURRENT APP VERSION

function RUNTRIALSIMWITHFIELDDATAButtonPushed(app, event)

%%First we need to bring in the field data as welTl as the matTab fiTe

d = evalin('base', 'd');

Fieldbatal = evalin('base', 'fieldDpatal');
FieldData2 = evalin('base', 'fieldDpata2');
FieldData3 evalin('base', 'fieldbata3');

if Fieldpatal == [];
Fieldbatal = [0,0];

end

if Fieldpata2 == [];
Fieldbatal = [0,0];

end

if Fieldpata3 == [];
Fieldbatal = [0,0];

end

%Sort the data

Fieldbatal = sortrows(Fieldbatal,l, "descend');
FieldData2 = sortrows(Fieldbata2,1, 'descend');
Fieldbata3 = sortrows(Fieldbata3,1, 'descend');

%Preallocate some curves to save on some processing speed.

%populated and thrown into the extended period simulation

Curvel zeros(3,2);

zeros(3,2);

Curve2
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Curve3 = zeros(3,2);

%how many data points do we have total?

HowManyPointsl = 1 + size(find(Fieldpatal(2:end,1) ~= 0),1);
HowManyPoints2 = 1 + size(find(Fieldpata2(2:end,1) ~= 0),1);
HowManyPoints3 = 1 + size(find(Fieldpata3(2:end,1) ~= 0),1);

%now place some Togic in here to tell the button to change the curves if
%there is more than 3 points of field data, if there are not, do nothing.

%Also, I made a mistake, some of these are based on the head being in the
%first column and some are based on it being in the second column. This is
%kind of a caveman fix but we are just going to have to deal with it for
J%now

pawnl FieldDbatal;
pawn?2 FieldData2;
pawn3 = FieldData3;

Fieldbatal(:,1) = pawnl(:,2);
Fieldbatal(:,2) = pawnl(:,1);

Fieldpata2(:,1) = pawn2(:,2);
Fieldbata2(:,2) = pawn2(:,1);

Fieldbata3(:,1) = pawn3(:,2);
Fieldbata3(:,2) = pawn3(:,1);

%also we need to remove any trailing 0's (from GPT)

% Find rows containing all zeros

rowsToRemove = all(Fieldbatal(4:end,:) == 0, 2);

% Remove the zero rows at the end

Fieldpatal = FieldDatal(l:end - sum(rowsToRemove), :);

% Find rows containing all zeros

rowsToRemove = all(FieldData2(4:end,:) == 0, 2);

% Remove the zero rows at the end

Fieldpata2 = FieldData2(l:end - sum(rowsToRemove), :);

% Find rows containing all zeros
rowsToRemove = all(FieldData3(4:end,:) == 0, 2);

% Remove the zero rows at the end
Fieldbata3 = FieldbData3(l:end - sum(rowsToRemove), :);

if HowManyPointsl >= 3

%now we can create many fitted Tines in the data using Dr. Woods equation
%for pump curves and average all of these values then find the point that
%best fits that Tine and use it in setting the new pump curve

HowManyLinesl = HowManyPointsl - 2;
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Q = Tinspace(0,Fieldbatal(HowManyPointsl,1), 150);

i=1;

EP = [1;

while i <= HowManyLinesl

n = (log( (Fieldbpatal(l,2) - Fieldbatal(HowManyPointsl,2)) / (Fieldpatal(l,2) -
FieldDatal((i+1),2)) )) /(log(Fieldbpatal(HowManyPointsl,1) / Fieldbpatal((i+1),1)));

C = (Fieldpatal(l,2) - Fieldpatal((i+1),2)) / (Fieldpatal((i+1),1)An);

EPNew = Fieldbatal(l,2) - (C * (Q.An));
EP = vertcat(EP, EPNew);

i = 1i+1;
end

%Now we get the average curve from the above run and turn it into a column
%vector

Average = mean(EP, 1)';
j =1;
closestPoint =[];

while j <= HowManyLinesl

% Calculate distance between points and curve
distances = sqrt(sum((Average(j,1) - FieldbDatal((j+1),1)).A2, 2));

closestPoint = vertcat(closestPoint, distances)
j=j+1;

end

%which point is the keeper
[minClosestPoint, minCPIndex] = min(closestPoint);

%Now we can go ahead and fill some one of the curves
Curvel = [Fieldpatal(1l,1), Fieldbatal(l,2); Fieldbatal((minCPIndex+1),1),
Fieldbatal((minCPIndex+1),2); Fieldbatal((HowManyPointsl),1),
Fieldbatal((HowManyPointsl),2) 1;

elseif HowManyPointsl < 3

%do nothing
end

%do the same thing for the lake pump

if HowManyPoints2 >= 3
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%now we can create many fitted Tines in the data using Dr. woods equation
%for pump curves and average all of these values then find the point that
%best fits that Tine and use it in setting the new pump curve

HowManyLines2 = HowManyPoints2 - 2;

Q = Tinspace(0,FieldData2 (HowManyPoints2,1), 150);

i=1;

EP = [1;

while i <= HowManyLinesl

n = (log( (Fieldbata2(2,2) - Fieldbata2(HowManyPoints2,2)) / (Fieldpata2(1,2) -
FieldbData2((i+1),2)) )) /(log(Fieldbpata2(HowManyPoints2,1) / Fieldbata2((i+1),1)));

C = (Fieldpata2(1,2) - Fieldpata2((i+1),2)) / (Fieldpata2((i+1),1)An);

EPNew = FieldData2(1,2) - (C * (Q.An));
EP = vertcat(EP, EPNew);

i = i+1;
end

Average = mean(EP, 1)';

i =1

closestpPoint =[];

while j <= HowManyLines2

distances = sqrt(sum((Average(j,1) - FieldData2((j+1),1)).A2, 2));
closestPoint = vertcat(closestPoint, distances)

j=j+1;

end

[minClosestPoint, minCPIndex] = min(closestPoint);

Curve?2 = [Fieldbata2(1,1), Fieldpata2(1l,2); Fieldbpatal((minCPIndex+1),1),
Fieldbata2 ((minCPIndex+1),2); Fieldbata2((HowManyPoints2),1),
Fieldbata2 ((HowManyPoints2),2) 1;

elseif HowManyPoints2 < 3

end

%now we can do the same for the north tank pump
if HowManyPoints3 >= 3
%now we can create many fitted Tines in the data using Dr. Woods equation

%for pump curves and average all of these values then find the point that
%best fits that Tine and use it in setting the new pump curve
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HowManyLines3 = HowManyPoints3 - 2;

Q = Tinspace(0,Fieldbata3 (HowManyPoints3,1), 150);

i=1;

EP = [1;

while i <= HowManyLines3

n = (log( (Fieldpata3(2,2) - Fieldbata3(HowManyPoints3,2)) / (Fieldpata3(1,2) -
FieldbData3((i+1),2)) )) /(log(Fieldbpata3(HowManyPoints3,1) / Fieldbpata3((i+1),1)));

C = (Fieldpata3(1,2) - Fieldpata3((i+1),2)) / (Fieldpata3((i+1),1)An);

EPNew = Fieldbata3(1,2) - (C * (Q.An));
EP = vertcat(EP, EPNew);

i = 1i+1;
end

Average = mean(EP, 1)';
j =1;
closestpPoint =[];
while j <= HowManyLines3
distances = sqrt(sum((Average(j,1) - FieldbData3((j+1),1)).A2, 2));
closestPoint = vertcat(closestPoint, distances)
j=j+1;
end
[minClosestPoint, minCPIndex] = min(closestPoint);
Curve3 = [Fieldpata3(1,1), Fieldpata3(1l,2); Fieldbpata3((minCPIndex+1),1),
Fieldbata3((minCPIndex+1),2); Fieldbata3((HowManyPoints3),1),
Fieldbata3((HowManyPoints3),2) 1;
elseif HowManyPoints3 < 3
end

%Now we need to run an extended period simulation with these points

AllcCurves = horzcat(Curvel, Curve2, Curve3);

tic;

%find the row that you are wanting to concatenate and create a
%cell array. Join them and remove redundant spaces. Once this
%is done for all 12 rows we combine them into a another
%completed cell array with the combined strings. Side note, the
%deblank function removes the trailing whitespace produced and
%the regexprep function searcehs for any whitespace that is
%over 1 space long and replaces it with whitespace that is in
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%fact 1 space long

rowl = {app.Dropbown.Value,

app.Dropbown_3.Value,app.DropDown_4.vValue,app.Dropbown_5.Vvalue,app.DropbDown_6.vValue,app.D
ropbown_7.Value,app.DropbDown_8.Value,app.EditField.value, app.DropDown_86.vValue};

Newrl = strjoinCrowl, " ");

%This expresion takes the joined string "Newrl" and finds

%the joined string has 1 or more spaces ( '

%with a single space. deblank removes any trailing space.
D

Newerl = deblank(regexprep(Newrl, +',

row2 = {app.Dropbown_9.value,

app.Dropbown_10.Value,app.DropDown_11.value,app.Dropbown_12.value,app.
pp.DropbDown_14.value,app.Dropbown_15.value,app.EditField_2.value, app.

Newr2 = strjoin(Crow2, " ");
Newer2 = deblank(regexprep(Newr2, ' +', '

"))

row3 = {app.Dropbown_16.value,

app.Dropbown_17.value,app.DropDown_18.value,app.Dropbown_19.value,app.
pp.DropbDown_21.vValue,app.Dropbown_22.Value,app.EditField_3.value, app.

Newr3 = strjoin(Crow3, " ");
Newer3 = deblank(regexprep(Newr3, ' +', '

"))

row4 = {app.Dropbown_23.value,

app.Dropbown_24.value,app.DropDown_25.vValue,app.Dropbown_26.vValue,app.
pp.DropbDown_28.vValue,app.Dropbown_29.value,app.EditField_4.value, app.

Newr4 = strjoin(Crow4, " ");
Newerd4 = deblank(regexprep(Newr4, ' +', '

"))

row5 = {app.Dropbown_30.value,

app.Dropbown_31.value,app.DropDown_32.vValue,app.Dropbown_33.value,app.
pp.DropbDown_35.value,app.Dropbown_36.Value,app.EditField_5.value, app.

Newr5 = strjoin(row5, " ");
Newer5 = deblank(regexprep(Newr5, ' +', '

")

rowb = {app.Dropbown_37.value,

app.Dropbown_38.Value,app.DropDown_39.value,app.Dropbown_40.value,app.
pp.DropbDown_42.vValue,app.Dropbown_43.vValue,app.EditField_6.value, app.

Newr6 = strjoin(Crow6, " ");
Newer6 = deblank(regexprep(Newr6, ' +', '

")

row7 = {app.Dropbown_44.value,

app.Dropbown_45.value,app.Dropbown_46.value,app.Dropbown_47.value,app.
pp.DropbDown_49.value,app.Dropbown_50.value,app.EditField_7.value, app.

Newr7 = strjoin(row7, " ");
Newer7 = deblank(regexprep(Newr7, ' +', '

")

row8 = {app.Dropbown_51.value,

app.Dropbown_52.value,app.Dropbown_53.value,app.Dropbown_54.value,app.
pp.Dropbown_56.value,app.Dropbown_57.value,app.EditField_8.value, app.

Newr8 = strjoin(row8, " ");
Newer8 = deblank(regexprep(Newr8, ' +', '

"))
row9 = {app.Dropbown_58.value,
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+') and replaces it

DropDown_13.
DropDown_87.

DropDown_20.
DropDown_88.

DropDown_27.
DropDown_89.

DropDown_34.
DropbDown_90.

DropDown_41.
DropDown_91.

DropDown_48.
.value};

DropDown_92

DropDown_55.
DropDown_93.

value,a
value};

value,a
value};

value,a
value};

value,a
value};

value,a
value};

value,a

value,a
value};



app.Dropbown_59.value,app.DropbDown_60.vValue,app.Dropbown_61.value,app.Dropbown_62.vValue,a
pp.DropbDown_63.Value,app.Dropbown_64.value,app.EditField_9.value, app.Dropbown_94.value};
Newr9 = strjoin(Crow9, " ");
Newer9 = deblank(regexprep(Newr9, ' +', ' "));

rowl0 = {app.Dropbown_65.value,
app.Dropbown_66.Value,app.DropDown_67.vValue,app.Dropbown_68.Vvalue,app.DropbDown_69.value,a
pp.Dropbown_70.vValue,app.Dropbown_71.value,app.EditField_10.value,
app.Dropbown_95.value};
Newrl0 = strjoin(CrowlO, " ");
NewerlO0 = deblank(regexprep(NewrlO, ' +', ' '));

rowll = {app.Dropbown_72.value,
app.Dropbown_73.value,app.DropDown_74.vValue,app.Dropbown_75.value,app.DropbDown_76.Value,a
pp.DropbDown_77.vValue,app.Dropbown_78.vValue,app.EditField_11.value,
app.Dropbown_96.vValue};
Newrll = strjoin(rowll, " ");
Newerll = deblank(regexprep(Newrll, " +', ' '));

rowl2 = {app.Dropbown_79.value,
app.Dropbown_80.Value,app.DropDown_81.vValue,app.Dropbown_82.value,app.DropbDown_83.value,a
pp.DropDown_84.value,app.Dropbown_85.vValue,app.EditField_12.value,
app.Dropbown_97.value};
Newrl2 = strjoin(rowl2, " ");
Newerl2 = deblank(regexprep(Newrl2, " +', ' '));

%Finally, bring them altogether

NextArray = {Newerl;Newer2; Newer3; Newer4;Newer5; Newer6; Newer7;NewersS§;
Newer9; NewerlO;Newerll; Newerl2};

%uses cell function to apply the isempty function to every row in the cell
%array. once it identifies the rows that are empty in Next Array it deletes
%them. Found on Mathworks open forums. Essentially, all of the inputs we
%are specifying here will be sent to the extended period function as a cell
%value and then inside of the Extended period function we will convert to
%the proper format so that the epanet-matlab toolkit can process correctly.
%If this is not done we will be thrown errors.
NextArray(cellfun('isempty',NextArray)) = cellstr('NULL");

% now that we have the control statements, we need to add the other
% factors that go into the simulation

%InitialTankLevels
outl3 = app.T_1l.value;
outl4 = app.T_2.value;

TankLevels = {outl3; outl4d};

%Times

outl5 = app.TotalTimeEditField.value; %Total Time

outle = app.HydraulicTimeStepEditField.value; %Hydraulic Time Step

outl? app.waterQualityTimeStepEditField.value; %water Quality Time Step
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Timel {outl5};

Time2 {outl6};

Time3 = {outl7};

%Decay Rates

outl8 = app.BulkeEditField.value;
outl9 = app.walleditField.value;

Decay {outl8; outl9};

%Chlorine value
out20 = app.ChlorinemglEditField.value;
Chlorine = {out20};

%Comnbine all of them
Quality2 = vertcat(NextArray, TankLevels, Timel,Time2, Time3, Decay, Chlorine);

[d, QualityComp,PressureComp, FlowComp,pressure, quality, flow,Headfinal, PressureName,
QualityName, FlowName, Message] = ExtendedPeriod_Lebanon(Quality2, AllCurves);

%so that the mapping can use these variables later

assignin('base', 'PressureComp', Pressurecomp);

assignin('base', 'FlowComp', FlowComp) ;

assignin('base', 'QualityComp', QualityComp);

%This code can probably be made simpler (with for loops for example with
%the row information. I did not think this was necessary because the system
%is rather small and am only writing a few control statements. Will have to
%check the data Timitations of for looping, I didn't like how it wrote and
%rewrote the matrix for every iteration, that seemed slow. Maybe my method

%is slow too here.

app.UITable_2.ColumnName = horzcat('Time (Hours)',PressureName);
app.UITable_2.Data = pressure;

app.UITable_3.ColumnName = horzcat('Time (Hours)',QualityName);
app.UITable_3.Data = quality;

app.UITable_4.ColumnName = {'Time (Hours)',6 'T-1', 'T-2'};
app.UITable_4.Data = Headfinal;

app.UITable_5.ColumnName = horzcat('Time (Hours)', FlowName);
app.UITable_5.Data = flow;

app.TextArea_5.value = Message;

stop = toc;
app.EditField_13.value = stop;

%This is all of the stuff I want assigned into the base workspace for

151



%several other functions. This will be overwritten if I run this function
%again which is good! If they want a different sim to be ran then I would

%want a lTot of this stuff to change

%assign the epanet file into the workspace to be used for other functions

%in this application

assignin("base", "d", d);

end
% FUNCTION NOT IN CURRENT APP VERSION

function ReadPumpFieldDataFromexcelFileRecommendedButtonPushed(app, event)

%Read the data in from excel file
rawTable = readtable('Curves.xlIsx');
curvel = rawTable{:,1:2};

Curve2 rawTable{:,3:4};

Curve3 rawTable{:,5:6};

%Turn any NaN's to O

curvel(isnan(Curvel))=0;
curve2(isnan(Curve2))=0;
curve3(isnan(cCurve3))=0;

%For the River Pump

fieldpatal = Curvel;

hold(app.UIAxes2_4, 'on');

S1 = scatter(app.UIAxes2_4, fieldbatal(:,2), fieldbatal(:,1),
hold(app.UIAxes2_4, 'off');

assignin('base', 'fieldpatal', fieldbatal);

%For the Lake Pump

fieldbata2 = Curve2;

hold(app.UIAxes2_7, 'on');

S2 = scatter(app.UIAxes2_7, fieldbata2(:,2), fieldbata2(:,1),
hold(app.UIAxes2_7, 'off');

assignin('base', 'fieldpata2', fieldbata2);

%For the North Tank Pump
fieldbata3 = Curve3;
hold(app.UIAxes2_6, 'on');
S3 = scatter(app.UIAxes2_6, fieldbata3(:,2), fieldbata3(:,1),
hold(app.UIAxes2_6, 'off');
assignin('base', 'fieldpata3', fieldbata3);
end

% callback function

function STORENEWPUMPCURVESButtonPushed(app, event)
filename = ('lebanon_May23.inp');
d.saveInputFile(filename)

end

% Button pushed function: RUNEPSButton
function RUNEPSButtonPushed(app, event)
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%CTear axes on the resuTts page (necessary if there is data still
%in them from a previous simulation)

THIS IS THE MAIN SCRIPT FOR THE EPS RUNNING THE APPLICATION

cla(app.UIAxes_4)
cla(app.UIAxes_5)

cla(app.UIAxes_7)
cla(app.UIAxes_8)
cla(app.UIAxes_9)

%Pull in the demand factors so that they can be used in the
%simulation

Dz1 = evalin('base', 'Dz1');

Dz2 = evalin('base', 'Dz2');

DemandFactors = [Dz1l, Dz2];

%%Get the initial tank levels

SpringfieldTank = app.InitialTankleveleditField_9.value;
CalvaryTanks = app.InitialTanklevelEditField_10.value;

InitialTankLevels = [CalvaryTanks, SpringfieldTank];

if strcmp(app.SpringfieTdRoadPumpSwitch.vaTue, "Use™) ==1 &&
strcmp(app.WTPSwitch.value, 'Use') ==1
% Set the WTP to respond to tank levels. Note that this
% needs to be written in a specific format for EPANET
% to use. Hence the variable "Rowl" etc.

%Turn on when

valuel = (app.onwhenBelowEditField_2.value) + 27;
Rowl = 'LINK ~@Pump-8 OPEN IF NODE T-12 BELOW Vg

combinedstringl = sprintf('%s%d', Rowl, Vvaluel);

%Turn off when

value2 = (app.offwhenAboveEditField_2.value) + 27;
Row2 = 'LINK ~@Pump-8 CLOSED IF NODE T-12 ABOVE Vg
combinedstring2 = sprintf('%s%d', Row2, Value2);

% Do the same for the Springfield Road pump

%Turn on when

value3 = (app.onwhenBelowEditField.value) + 104.5;
Row3 = 'LINK ~@Pump-7 OPEN IF NODE T-13 BELOW ';
combinedstring3 = sprintf('%s%d', Row3, Vvalue3);

%Turn off when

value4 = (app.offwhenAboveEditField.value) + 104.5;

Row4 = 'LINK ~@Pump-7 CLOSED IF NODE T-13 ABOVE ';

combinedstring4 = sprintf('%s%d', Row4, Vvalue4d);
end
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if strcmp(app.SpringfieldrRoadPumpswitch.value, 'Use') ==0 &&
strcmp(app.WTPSwitch.value, 'Use') ==0
%If neither settings were specified as "Use" call
%"NULL" and delete later when pushed into the extended
%period simulation

combinedStringl = 'NULL';

combinedString2 = 'NULL';
combinedString3 = 'NULL';
combinedString4 = 'NULL';

end

if strcmp(app.SpringfieldrRoadPumpSwitch.value, 'Use') ==1 &&
strcmp(app.WTPSwitch.value, 'Use') ~= 1

%If Springfield Road is used and WTP is not, do the
%following:

%Do not use WTP pumps (relative to tank

%levels)
combinedStringl = 'NULL';
combinedString2 = 'NULL';

%Turn on when

value3 = (app.onwhenBelowEditField.value) + 104.5;
Row3 = 'LINK ~@Pump-7 OPEN IF NODE T-13 BELOW ';
combinedstring3 = sprintf('%s%d', Row3, Vvalue3);

%Turn off when

value4 = (app.offwhenAboveEditField.value) + 104.5;

Row4 = 'LINK ~@Pump-7 CLOSED IF NODE T-13 ABOVE ';

combinedstring4 = sprintf('%s%d', Row4, Vvalue4);
end

if strcmp(app.SpringfieldrRoadPumpSwitch.value, 'Use') ~=1 &&
strcmp(app.WTPSwitch.value, 'Use') == 1

%If WTP 1is used and Springfield Road is not, do the
%following:

%Do not use Springfield Road pump (relative to tank
%levels)

combinedString3 = 'NULL';

combinedstring4 'NULL';

%Turn on when

valuel = (app.onwhenBelowEditField_2.value) + 27;
Rowl = 'LINK ~@Pump-8 OPEN IF NODE T-12 BELOW ';
combinedstringl = sprintf('%s%d', Rowl, Vvaluel);

%Turn off when
value2 = (app.offwhenAboveEditField_2.value) + 27;
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Row2 = 'LINK ~@Pump-8 CLOSED IF NODE T-12 ABOVE ';
combinedstring2 = sprintf('%s%d', Row2, Vvalue2);
end

%Initialize the string used for the control statements here because that
%makes inputting them into EPANET (via EPANET-MATLAB Toolkit) much easier.
%At least in my experience.

SpringfieldPumpStringOPEN = 'LINK ~@Pump-7 OPEN AT TIME ';
SpringfieldPumpStringCLOSED = 'LINK ~@Pump-7 CLOSED AT TIME ';
WTPPUmpStringOPEN = 'LINK ~@Pump-8 OPEN AT TIME ';
WTPPUmpStringCLOSED = 'LINK ~@Pump-8 CLOSED AT TIME ';

%Now read in all of the values

%springfield Road on times

springl = app.ONATTIMEEditField.value;
spring2 = app.ONATTIMEEditField_5.value;
spring3 = app.ONATTIMEEditField_4.value;
spring4 = app.ONATTIMEEditField_3.value;
spring5 = app.ONATTIMEEditField_6.value;
spring6 = app.ONATTIMEEditField_7.value;
spring7 = app.ONATTIMEEditField_8.value;
spring8 = app.ONATTIMEEditField_9.value;

%springfield Road off times

spring9 = app.OFFATTIMEEditField.value;
springl0 = app.OFFATTIMEEditField_2.value;
springll = app.OFFATTIMEEditField_3.value;
springl2 = app.OFFATTIMEEditField_4.value;
springl3 = app.OFFATTIMEEditField_5.value;
springl4 = app.OFFATTIMEEditField_6.value;
springl5 = app.OFFATTIMEEditField_7.value;
springl6é = app.OFFATTIMEEditField_8.value;

%WTP on times

WTP1 = app.ONATTIMEEditField_10.value;
WTP2 = app.ONATTIMEEditField_13.value;
WTP3 = app.ONATTIMEEditField_12.value;
WTP4 = app.ONATTIMEEditField_11.value;
WTP5 = app.ONATTIMEEditField_14.value;
WTP6 = app.ONATTIMEEditField_15.value;
WTP7 = app.ONATTIMEEditField_16.value;
WTP8 = app.ONATTIMEEditField_17.value;

%WTP off times

WTP9 = app.OFFATTIMEEditField_9.value;
WTP10 = app.OFFATTIMEEditField_12.value;
WTP11l = app.OFFATTIMEEditField_11.value;
WTP12 = app.OFFATTIMEEditField_10.value;
WTP13 = app.OFFATTIMEEditField_13.value;
WTP14 = app.OFFATTIMEEditField_14.value;
WTP15 = app.OFFATTIMEEditField_15.value;
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WTP16 = app.OFFATTIMEEditField_16.

%create the springfield pump open

%in EPANET

value;

control statements as they

are recognized

combinedstring5 = sprintf('%s%s', SpringfieldPumpStringOPEN, springl);
combinedstring6 = sprintf('%s%s', SpringfieldPumpStringOPEN, spring2);
combinedstring7 = sprintf('%s%s', SpringfieldPumpStringOPEN, spring3);
combinedstring8 = sprintf('%s%s', SpringfieldPumpStringOPEN, spring4);

combinedString9 =

sprintf('%s%s',

SpringfieldPumpStringOPEN, spring5);

combinedstringl0 = sprintf('%s%s', SpringfieldPumpStringOPEN, spring6);
combinedstringll = sprintf('%s%s', SpringfieldPumpStringOPEN, spring7);
combinedstringl2 = sprintf('%s%s', SpringfieldPumpStringOPEN, spring8);

%create the springfield pump closed control statements as they are recognized

%in EPANET

combinedstringl3 = sprintf('%s¥%s', SpringfieldPumpStringCLOSED, spring9);
combinedstringl4 = sprintf('%s¥%s', SpringfieldPumpStringCLOSED, springl0);
combinedstringl5 = sprintf('%s¥%s', SpringfieldPumpStringCLOSED, springll);
combinedstringl6 = sprintf('%s¥%s', SpringfieldPumpStringCLOSED, springl2);
combinedstringl? = sprintf('%s¥%s', SpringfieldPumpStringCLOSED, springl3);
combinedstringl8 = sprintf('%s¥%s', SpringfieldPumpStringCLOSED, springl4);
combinedstringl9 = sprintf('%s¥%s', SpringfieldPumpStringCLOSED, springl5);
combinedstring20 = sprintf('%s¥%s', SpringfieldPumpStringCLOSED, springl6);

%create the WTP pump open control statements as they are recognized

%in EPANET

combinedstring2l = sprintf('%s%s', WTPPumpStringOPEN, WTPL);
combinedstring22 = sprintf('%s%s', WTPPumpStringOPEN, WTP2);
combinedstring23 = sprintf('%s%s', WTPPumpStringOPEN, WTP3);
combinedstring24 = sprintf('%s%s', WTPPumpStringOPEN, WTP4);
combinedstring25 = sprintf('%s%s', WTPPumpStringOPEN, WTP5);
combinedString26 = sprintf('%s%s', WTPPumpStringOPEN, WTP6) ;
combinedsString27 = sprintf('%s%s', WTPPumpStringOPEN, WTP7);
combinedstring28 = sprintf('%s%s', WTPPumpStringOPEN, WTP8);

%create the WTP pump closed control statements as they are recognized

%in EPANET

combinedstring29 = sprintf('%s%s', WTPPumpStringCLOSED, WTP9);
combinedstring30 = sprintf('%s%s', WTPPumpStringCLOSED, WTP10);
combinedstring3l = sprintf('%s%s', WTPPumpStringCLOSED, WTP11l);
combinedstring32 = sprintf('%s%s', WTPPumpStringCLOSED, WTP12);
combinedstring33 = sprintf('%s%s', WTPPumpStringCLOSED, WTP13);
combinedstring34 = sprintf('%s%s', WTPPumpStringCLOSED, WTP14);
combinedstring35 = sprintf('%s%s', WTPPumpStringCLOSED, WTP15);
combinedstring36 = sprintf('%s%s', WTPPumpStringCLOSED, WTP16);

%Combine all control statements under one variable

AllsimpTleControls = {combinedStringl;
combinedsString2;combinedstring3;combinedString4;combinedString5;combinedStringl3;combined
String6;combinedstringl4;combinedString7;combinedsStringl5;combinedString8;combinedStringl
6;combinedstring9;combinedStringl7;combinedsStringl0;combinedstringl8;combinedstringll;com
binedstringl9;combinedstringl2;combinedString20;combinedString2l;combinedString29;
combinedstring22; combinedsString30;combinedstring23; combinedString31;combinedString24;
combinedstring32;combinedString25; combinedstring33;combinedString26;
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combinedString34;combinedString27; combinedString35;combinedString28; combinedString36};

% If either of the "USE" buttons are specified, just use the first four

% control statements

if strcmp(app.SpringfieldrRoadPumpswitch.value, 'Use') ==1 ||
strcmp(app.WTPSwitch.value, 'Use') ==1

AllsimpleControls = {combinedStringl;
combinedstring2;combinedString3;combinedString4};
end

%If a cell is populated with just the string, that means no user input
%was specified. Here this is tagged and deleted. This is done for all
%four possible statments.

Logicl = strcmp(SpringfieldPumpStringoPEN, AllSimpleControls);
whereLogicl = find(Logicl ==1);

AllsimpleControls(whereLogicl, :) = [];

Logic2 = strcmp(SpringfieldPumpStringCLOSED, AllSimpleControls);
whereLogic2 = find(Logic2 ==1);
AllsimpleControls(whereLogic2, :) = [];

Logic3 = strcmp(WTPPumpStringOPEN, AllSimpleControls);
whereLogic3 = find(Logic3 ==1);
AllsimpleControls(whereLogic3, :) =[];

Logic4 = strcmp(WTPPumpStringCLOSED, AllSimpleControls);
whereLogic4 = find(Logic4 ==1);
AllsimpleControls(wWhereLogic4,:) =[];

%NULL is also deleted

Logic5 = strcmp('NULL', AllSimpleControls);
whereLogic5 = find(Logic5 ==1);
AllsimpleControls(whereLogic5, :) = [];

[PressureComp, FlowComp, QualityComp, TankHeads, TankwaterAge, PumpHGL, PumpFlowRate,
JunctionPressure, JunctionDemand, JunctionChlorine, JunctionTTHM, Time, d] =
ExtendedPeriodv2(0,InitialTankLevels,
AllsimpTleControls,app.ChlorinemglEditField_2.value,app.BulkEditField_2.value,
app.walleEditField_2.value, app.HydraulicTimeStepEditField_2.value,
app.wWaterQualityTimeStepEditField_2.value, app.TotalTimeEditField_2.value,
DemandFactors) ;

%Tank names accidentally reversed relative to elements to be filled in the
%application!

Pawnl = TankHeads;

TankHeads(:,1) = Pawnl(:,2);

TankHeads(:,2) = Pawnl(:,1);
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app.UITable4.pata = horzcat(Time, TankHeads);

%set the column name for the table
app.UITable4.cColumnName = ["TimeChours)","springfield Tank","calvary Tanks"];

User can specify which parameter they are looking for

%This is for the Springfield Road Pump

if strcmp(app.ShowDropDown.value, 'HGL (ft.)') ==1
Pumplinfo = PumpHGL(:,3);

else
Pumplinfo

end

%for the WTP Pump

if strcmp(app.ShowDropDown_2.value, 'HGL (ft.)') ==1
Pump2Info = PumpHGL(:,4);

else
Pump2Info

end

PumpFlowRate(:,1);

PumpFlowRate(:,2);

%for the junctions themselves

if strcmp(app.ShowPredicteddropbown_8.value, 'Pressure (psi)') ==1
JunctionInfo = JunctionPressure;

elseif strcmp(app.ShowPredictedbropbown_8.value, 'Demand (gpm)') ==1
JunctionInfo = JunctionDemand;

elseif strcmp(app.ShowPredictedDropbDown_8.value, 'Chlorine (mg/1)') ==1
JunctionInfo = JunctionChlorine;

else
JunctionInfo = JunctionTTHM;

end

%This has been packaged nicely now into the tables. The tables are the
%elements referenced for the graphs to be populated

app.UITable4_2.Dpata = horzcat(Time, Pumplinfo, Pump2Info, JunctionInfo);

%Place results in workspace so that the graphs may be used

assignin('base', 'TankHeads', TankHeads);
assignin('base', 'TankwaterAge', TankwaterAge);
assignin('base', 'PumpHGL', PumpHGL);

assignin('base', 'PumpFlowRate', PumpFlowRate);
assignin('base', 'JunctionPressure', JunctionPressure);
assignin('base', 'JunctionDemand', JunctionDemand) ;
assignin('base', 'JunctioncChlorine', JunctionChlorine);
assignin('base', 'JunctionTTHM', JunctionTTHM);
assignin('base', 'Time', Time);

%set the column name for the table that all of the graphs base themselves
%off of

app.UITable4_2.ColumnName = {'Time'; 'Springfield Road Pump'; 'water Treatment Plant
Pump'; 'Route 208 By-Pass';'Before Calvary Meter';'Calvary Meter';'woodlawn
Meter';'Danville Meter';'Springfield Road Meter'; 'Saint Rose Meter'; 'Saint Mary Meter';
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'Campbellsville Meter';'Mercer Ave';'Indiana Creek Road'};

%For mapping later
%so that the mapping can use these variables Tlater

assignin('base', 'PressureComp', PressurecComp);
assignin('base', 'FlowComp', FlowComp);
assignin('base', 'QualityComp', QualityComp);
assignin('base', 'd', d);

%Use a message box to tell the user that the simulation has been run and
%that they may proceed to other evaluations

msgbox ("EPS Successfully Ran, User May Proceed to Functionality On Next Page",
"Success");

end

% Button pushed function: UpdateGraphandTableButton
function UpdateGraphandTableButtonPushed(app, event)
%Call in the tank values from the workspace

TankHeads = evalin('base', 'TankHeads');
Pawnl = TankHeads;

TankHeads(:,1) = Pawnl(:,2);
TankHeads(:,2) = Pawnl(:,1);

TankwaterAge = evalin('base', 'TankwaterAge');
Time = evalin('base', 'Time');
if strcmp(app.ShowPredictedDropbown.value, 'Tank Level (ft.)') ==1
%set all of the information for the Sprngfield Road Tank
app.UIAxes_4.YLabel.String = 'Tank Level (ft.)';
plot(app.UIAxes_4, Time,TankHeads(:,2))
app.UITable4.pata(:,2) = TankHeads(:,2);
else
%set all of the information for the Sprngfield Road Tank
app.UIAxes_4.YLabel.String = 'water Age (Hours)';
plot(app.UIAxes_4, Time,TankwaterAge(:,2))
app.UITable4.pata(:,2) = TankwaterAge(:,2);
end
end
% Button pushed function: UpdateGraphandTableButton_2
function UpdateGraphandTableButton_2Pushed(app, event)

%Call in the tank values from the workspace

TankHeads = evalin('base', 'TankHeads');
Pawnl = TankHeads;
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Pawnl(:,2);
Pawnl(:,1);

TankHeads(:,1)
TankHeads(:,2)

TankwaterAge = evalin('base', 'TankwaterAge');
Time = evalin('base', 'Time');

%set all the information for the calvary Tanks and the New tanks
if strcmp(app.ShowPredicteddropbown_4.value, 'Tank Level (ft.)') ==1

%This means that we are using the old tanks here
app.UIAxes_5.YLabel.string = 'Tank Level (ft.)';

plot(app.UIAxes_5, Time,TankHeads(:,1))

app.UITable4.pata(:,3) = TankHeads(:,1);

else

%Set all the information for the Calvary Tanks
app.UIAxes_5.YLabel.String = 'water Age (Hours)';
plot(app.UIAxes_5, Time,TankwaterAge(:,1))
app.UITable4.pata(:,3) = TankwaterAge(:,1);
end
end
% callback function

% Button pushed function: UpdateGraphandTableButton_4
function UpdateGraphandTableButton_4Pushed(app, event)

PumpFlowRate = evalin('base', 'PumpFlowRate');
PumpHGL = evalin('base', 'PumpHGL');
Time = evalin('base', 'Time');

%Now we need to update the springfield road information

if strcmp(app.ShowbDropbDown.value, 'HGL (ft.)"')
app.UITable4_2.Dpata(:,2) = PumpHGL(:,3);

app.UIAxes_7.YLabel.String = 'HGL in ft.';
plot(app.UIAxes_7, Time, PumpHGL(:,3))
hold(app.UIAxes_7, 'on')
plot(app.UIAxes_7, Time, PumpHGL(:,1))
hold(app.UIAxes_7, 'off')

else
app.UIAxes_7.YLabel.String = 'Flow Rate (gpm)';
app.UITable4_2.pata(:,2) = PumpFlowRate(:,1);
plot(app.UIAxes_7, Time, PumpFlowRate(:,1))
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end

end

% Button pushed function: UpdateGraphandTableButton_5
function UpdateGraphandTableButton_5Pushed(app, event)

PumpFlowRate = evalin('base', 'PumpFlowRate');
PumpHGL = evalin('base', 'PumpHGL');
Time = evalin('base', 'Time');

%Now we need to update the springfield road information

if strcmp(app.ShowDropbown_2.value, 'HGL (ft.)"')
app.UITable4_2.Dpata(:,3) = PumpHGL(:,4);

app.UIAxes_8.YLabel.String = 'HGL in ft.';
plot(app.UIAxes_8, Time, PumpHGL(:,4))
hold(app.UIAxes_8, 'on')
plot(app.UIAxes_8, Time, PumpHGL(:,2))
hold(app.UIAxes_8, 'off')

else
app.UIAxes_8.YLabel.String = 'Flow Rate (gpm)';
app.UITable4_2.pata(:,3) = PumpFlowRate(:,2);
plot(app.UIAxes_8, Time, PumpFlowRate(:,2))

end
end

% Button pushed function: UpdateGraphandTableButton_6
function UpdateGraphandTableButton_6Pushed(app, event)

%Read in all of the processed data from the simulation

JunctionPressure = evalin('base', 'JunctionPressure');
JunctionDemand = evalin('base', 'JunctionDemand');
JunctionChlorine = evalin('base', 'JunctionChlorine');
JunctionTTHM = evalin('base', 'JunctionTTHM');

Time = evalin('base', 'Time');

%first we must figure out what junction and parameter we are looking at

Junction = app.AtJunctionDropDown.Value;
Parameter = app.ShowPredictedDropDown_8.value;

%first we will update the table that represents the data
if strcmp(Parameter, 'Pressure (psi)')

app.UITabled4_2.pata(:,4:14) = JunctionPressure;
elseif strcmp(Parameter, 'Demand (gpm)')
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app.UITable4_2.pata(:,4:14) = JunctionDemand;
elseif strcmp(Parameter, 'Chlorine (mg/1)')

app.UITable4_2.pata(:,4:14) = JunctioncChlorine;
else

app.UITable4_2.pata(:,4:14) = JunctionTTHM;
end

%Now we can access this data to update the UIAxes (index the
%names to access the correct column)

NameOfJunctions = ["Route 208 By-Pass",”Before Calvary Meter”, "Calvary
Meter","woodlawn Meter","Danville Meter","Springfield Road Meter", "Saint Rose Meter",
"Saint Mary Meter", "Campbellsville Meter","Mercer Ave","Indiana Creek Road"];

[~, whereIsNameofiunc] = ismember(Junction, NameOfJunctions);

DataForSpecificiunction = app.UITable4_2.Data(:, (WhereIsNameofiunc+3));

app.UIAxes_9.YLabel.String = sprintf('%s', Parameter);

plot(app.UIAxes_9, Time, DataForSpecificiunction);

end

% FUNCTION USED FOR DEMAND CALIBRATION PROCESS

%Lines made here to draw readers attention

function DemandButtonTestPushed(app, event)

%%Gather the initial tank Tevels
SpringfieldTank = app.InitialTankleveleditField_9.value;
CalvaryTanks = app.InitialTanklevelEditField_10.value;

NewTank = app.InitialTanklevelEditField_11.value;

InitialTankLevels = [CalvaryTanks, SpringfieldTank,NewTank];

%properly

%Look at the pump operations specific to the tanks
%for springfield road, cavalry tanks, and new tank respectively

%Not really sure why & is working instead of what I thought it
%should be which is ||. weird

if strcmp(app.SpringfieldRoadPumpsSwitch.value, 'Use') ==0 &&
strcmp(app.SpringfieldrRoadPumpswitch.value, 'Use') ==1
elseif strcmp(app.SpringfieldRoadPumpSwitch.value, 'Use') ==0
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combinedStringl "NULL';
combinedString?2 "NULL"';
elseif strcmp(app.SpringfieldrRoadPumpswitch.value, 'Use') ==1
valuel = (app.onwhenBelowEditField.value) + 104.5;
Rowl = 'LINK ~@Pump-7 OPEN IF NODE T-13 BELOW ';
combinedstringl = sprintf('%s%d', Rowl, valuel);

value2 = (app.offwhenAboveEditField.value) + 104.5;

Row2 = 'LINK ~@Pump-7 CLOSED IF NODE T-13 ABOVE ';

combinedstring2 = sprintf('%s%d', Row2, Vvalue2);
end

%These are the conditions specifed for Cavalry Tank

if strcmp(app.wWTPPumpSwitch_4.value, 'Use') ==1 &&
strcmp(app.WTPPumpSwitch_4.value, 'Use') ==0

elseif strcmp(app.wWTPPumpSwitch_4.value, 'Use') ==0
combinedString3 = 'NULL';
combinedString4 = 'NULL';
elseif strcmp(app.wWTPPumpSwitch_4.value, 'Use') ==
valuel = (app.onwhenBelowEditField_2.value) +27;
Rowl = 'LINK ~@Pump-7 OPEN IF NODE T-12 BELOW ';
combinedstring3 = sprintf('%s%d', Rowl, Vvaluel);

value2 = (app.offwhenAboveEditField_2.value) +27;
Row2 = 'Link ~@Pump-7 CLOSED IF NODE T-12 ABOVE ';
combinedstring4 = sprintf('%s%d', Row2, value2);

end

%These are the conditions specifed for New Tank

if strcmp(app.SpringfieldRoadPumpSwitch_3.value, 'Use') ==1 &&
strcmp(app.SpringfieldrRoadPumpSwitch_3.value, 'Use') ==0

elseif strcmp(app.SpringfieldRoadPumpsSwitch_3.value, 'Use') ==0
combinedString5 = 'NULL';
combinedString6 = 'NULL';
elseif strcmp(app.SpringfieldRoadPumpSwitch_3.value, 'Use') ==
valuel = (app.onwhenBelowEditField_3.value)+104.5;
Rowl = 'LINK ~@Pump-7 OPEN IF NODE T-12 BELOW ';
combinedstring5 = sprintf('%s%d', Rowl, valuel);

value2 = (app.offwhenAboveEditField_3.value) +104.5;
Row2 = 'Link ~@Pump-7 CLOSED IF NODE T-12 ABOVE ';

combinedString6 = sprintf('%s%d', Row2, value2);

end
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%now that we have the above groupings of pump protocols, we
%can go to the time specified settings

%This is for the springfield road pump

SpringfieldPumpStringOPEN = 'LINK ~@Pump-7 OPEN AT TIME ';
SpringfieldPumpStringCLOSED = 'LINK ~@Pump-7 CLOSED AT TIME ';

WTPPumpStringOPE

N

= 'LINK ~@Pump-8 OPEN AT TIME ';

WTPPUmMpStringCLOSED = 'LINK ~@Pump-8 CLOSED AT TIME ';

%Now read in all of the values

springl = app.ONATTIMEEditField.value;
spring2 = app.ONATTIMEEditField_3.value;
spring3 = app.ONATTIMEEditField_4.value;
spring4 = app.ONATTIMEEditField_5.value;
spring5 = app.OFFATTIMEEditField.value;
spring6 = app.OFFATTIMEEditField_2.value;
spring7 = app.OFFATTIMEEditField_3.value;
spring8 = app.OFFATTIMEEditField_4.value;
spring9 = app.ONATTIMEEditField_6.value;
springl0 = app.OFFATTIMEEditField_5.value;
springll = app.ONATTIMEEditField_7.value;
springl2 = app.OFFATTIMEEditField_6.value;

combinedstring7
combinedstring8
combinedstring9
combinedstringl0

combinedstringll
combinedStringl2
combinedStringl3
combinedstringl4

combinedStringl5
combinedstringl6

combinedstringl7
combinedstringl8

Al1SimpleControl

S

sprintf('%s%s', SpringfieldPumpStringOPEN, springl);
sprintf('%s%s', SpringfieldPumpStringOPEN, spring2);
sprintf('%s%s', SpringfieldPumpStringOPEN, spring3);
sprintf('%s%s', SpringfieldPumpStringOPEN, spring4);

sprintf('%s%s', SpringfieldPumpStringCLOSED, spring5);
sprintf('%s%s"', SpringfieldPumpStringCLOSED, spring6);
sprintf('%s%s', SpringfieldPumpStringCLOSED, spring7);
sprintf('%s%s', SpringfieldPumpStringCLOSED, spring8);

sprintf('%s%s', SpringfieldPumpStringOPEN, spring9);
sprintf('%s%s', SpringfieldPumpStringOPEN, springll);

sprintf('%s%s', SpringfieldPumpStringCLOSED, springl0);
sprintf('%s%s', SpringfieldPumpStringCLOSED, springl2);

= {combinedStringl;

combinedsString2;combinedstring3;combinedString4;combinedString5;combinedString6;combineds
tring7;combinedStringll;combinedStringl0;combinedStringl2;combinedString9;combinedstringl
3;combinedstring8;combinedstringl4;combinedStringl5;combinedStringl?;combinedStringl6;com

binedstringl8};
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%% The beTow describes how I pTaced a junction in EPANET instead of a pump so I can
control the outflow exactly. This 1is actually done when trying to generate system pump
curves as well.

%This is also the unique new way we will be placing the WTP pump data into
%the simulation. wWe are doing this because we want to force the inflow to
%be a certain value (because when we are looking at historical data we know
%the inflow into the system.

WTPPumpData = [app.CurrentFlowgpmeEditField.value,
app.HourlgpmeditField.value,app.Hour2gpmeditField.value,app.Hour3gpmeditField.value,app.H
ourdgpmeditField.value,app.Hour5gpmeditField.value,app.Hour6gpmeditField.value,app.Hour7g
pmeditField.value,app.Hour8gpmeditField.value,app.Hour9gpmeditField.value,app.HourlOgpmed
itField.value,app.HourllgpmeditField.value,app.Hourl2gpmeditField.value,app.Hourl3gpmedit
Field.value,app.Hourl4gpmeditField_2.value,app.Hourl5gpmeditField_2.value,app.Hourlé6gpmed
itField_2.value,app.Hourl7gpmeditField_2.value,app.Hourl8gpmeditField_2.value,app.Hourl9g
pmeditField_2.value,app.Hour20gpmeditField_2.value,app.Hour2lgpmeditField_2.value,app.Hou
r22gpmeditField_2.value,app.Hour23gpmeditField_2.value];

%Because there are only 24 entries (and we are working at a time scale of

%around 10 minute reporting period) we need to make the inputs for an hour

%over 5 entries

PumpPattern = ones(1,144);

try

RealTotalDemand = evalin('base', 'TotalDemand')';
RealTotalDemand = RealTotalbemand(1l,2:25);
RealTankLevels = evalin('base', 'TankLevels');
RealTankFlow = evalin('base', 'TankFlow');
Flowbata = evalin('base', 'FlowData');

%read in the flow meter data

BeforeCavMeter = evalin('base', 'BeforecCav™meter')';

CavMeter = evalin('base', 'CavMeter')';

woodlawnMeter = evalin('base', 'woodlawnmeter')';

DanvilleMeter = evalin('base', 'DanvilleMeter')';
SpringfieldRoadMeter = evalin('base', 'SpringfieldRoadmeter')"';
SaintRoseMeter = evalin('base', 'SaintRoseMeter')';
SaintMaryMeter = evalin('base', 'SaintMarymeter')';

CampMeter = evalin('base', 'CampMeter')';

ByPassMeter = evalin('base', 'ByPassMeter')';

TotalMeterDemand = evalin('base', 'TotalMeterDemand')';

%The goal below was to clear the data from the workspace after it has been
%used because I wanted to give the user the option to specify pump
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%operations (the try function above will use data from the excel and not
%from user input if it sees any data still in the workspace). However, this
%hasn't worked the way I intended anyways and I will probably just remove
%because this function will 1likely not be available to the user and it
%solely going to be used for the purpose of generating demand factors that
%will be stored for the sake of user usage.

PumpPattern = FlowData(2:25,1)"';

clear Totalbemand
clear TankLevels
clear TankFlow
catch
%If there is an error that means we have not populated the workspace
%with a pump pattern. Use the user inputted pump pattern instead

PumpPattern(l,1:6) = PumpPattern(l,1:6) .* wWTPPumpData(l,l);
PumpPattern(l,7:12) = PumpPattern(l,7:12) .* wTPPumpData(l,2);
PumpPattern(l,13:18) = PumpPattern(1l,13:18) .* wTPPumpData(l,3);
PumpPattern(l,19:24) = PumpPattern(1l,19:24) .* wTPPumpData(l,4);
PumpPattern(l,25:30) = PumpPattern(1l,25:30) .* wTPPumpData(l,5);
PumpPattern(l,31:36) = PumpPattern(l,31:36) .* wWTPPumpData(l,6);
PumpPattern(l,37:42) = PumpPattern(l,37:42) .* wTPPumpData(l,7);
PumpPattern(l,43:48) = PumpPattern(1,43:48) .* wTPPumpData(l,8);
PumpPattern(1,49:54) = PumpPattern(1,49:54) .* wTPPumpData(l,9);
PumpPattern(l,55:60) = PumpPattern(l,55:60) .* wTPPumpData(l,10);
PumpPattern(l,61:66) = PumpPattern(l,61:66) .* wWTPPumpData(l,11);
PumpPattern(1,67:72) = PumpPattern(1l,67:72) .* wWTPPumpData(l,12);
PumpPattern(l,73:78) = PumpPattern(1l,73:78) .* wWTPPumpData(l,13);
PumpPattern(1,79:84) = PumpPattern(1l,79:84) .* wTPPumpData(l,14);
PumpPattern(1,85:90) = PumpPattern(1,85:90) .* wTPPumpData(l,15);
PumpPattern(1,91:96) = PumpPattern(1,91:96) .* wTPPumpData(l,16);
PumpPattern(l1,97:102) = PumpPattern(1,97:102) .* wWTPPumpData(l,17);
PumpPattern(1,103:108) = PumpPattern(1l,103:108) .* wTPPumpData(l,18);
PumpPattern(1,109:114) = PumpPattern(1,109:114) .* wTPPumpData(l,19);
PumpPattern(l,115:120) = PumpPattern(1l,115:120) .* wTPPumpData(l,20);
PumpPattern(1,121:126) = PumpPattern(1l,121:126) .* WTPPumpData(l,21);
PumpPattern(l,127:132) = PumpPattern(1l,127:132) .* wTPPumpData(l,22);
PumpPattern(l,133:138) = PumpPattern(1l,133:138) .* wTPPumpData(l,23);
PumpPattern(l,139:144) = PumpPattern(1l,139:144) .* wTPPumpData(l,24);

end
Logicl = strcmp(SpringfieldPumpStringoPEN, AllSimpleControls);

whereLogicl = find(Logicl ==1);
AllsimplecControls(whereLogicl, :) = [];

Logic2 = strcmp(SpringfieldPumpStringCLOSED, AllSimpleControls);
whereLogic2 = find(Logic2 ==1);
AllsimplecControls(whereLogic2, :) = [];
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Logic5 = strcmp('NULL', AllSimpleControls);
whereLogic5 = find(Logic5 ==1);
Allsimplecontrols(whereLogic5, :) = [];

%Get outputs from the simulation

%test some initial demand points these are all constrained by the demand
%equation built out by getting the total base demands for the different
%pressure zones. This will change if the zones or individual base demands
%themsevies are altered. ExtendedPeriodDemandCalibrator

%These are named in reference to zone 1. Demand pattern high is a high
%demand pattern for zone 1 and a lTow one for zone 2. Demand pattern low is
%a low demand pattern for zone 1 and a high one for zone 2. 254.6 is the
%base demand in zone 1 and 116.3467 is the base demand in zone 2

demandPatternLow = ones(1l, 24).*.001;

demandPatternLowComp = ((RealTotalDemand)- (demandPatternLow * 254.9906)) ./ 116.3467;

demandPatternHighComp = ones(1l, 24).%.001;
demandPatternHigh = ((RealTotalDemand) - (demandPatternHighComp * 116.3467)) ./ 254.9906;

demandPatternLow = vertcat(demandPatternLow, demandPatternLowComp) ;
demandPatternHigh = vertcat(demandPatternHigh, demandPatternHighComp) ;

demandPatternsNew = (demandPatternHigh(l,:) + demandPatternLow(l,:)) ./ 2;
demandPatternsNewComp = ((RealTotalDemand)- (demandPatternsNew * 254.9906)) ./ 116.3467;
demandPatternsNew = vertcat(demandPatternsNew, demandPatternsNewComp) ;

%what File are we using
whatFile = app.RunwithNewTankCheckBox.Vvalue;

if whatFile == 0
d = epanet('LebanonCurrent_July2023.1inp', 'LoadFile');
elseif whatFile ==
d = epanet('LebanonNew_July2023.1inp', 'LoadFile');
end
assignin('base', 'd', d);

%initialize some of the variables for the bi-section method

[TankLevelsNew] = ExtendedPeriodDemandCalibrator(InitialTankLevels,
Al1SimplecControls,3600,86400, PumpPattern, demandPatternsNew, BeforeCavMeter(1l,2:25),
CavMeter(1,2:25), woodlawnMeter(1l,2:25), DanvilleMeter(l,2:25),
SpringfieldrRoadmeter(1,2:25), SaintRoseMeter(l,2:25), SaintMarymeter(l,2:25),
CampMeter(1,2:25), ByPassMeter(1l,2:25));
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I =1;
CavalryCount = 0;
SpringCount = 1;
TanklError = 1;

%24 hours in a day
while I < 24

%Now here with the bi-section method. I've had to re-do this a bunch of
%times. Yes this is simple but word to the wise, make sure you look
%critically at your data before you try to work with garbage (GIGO
%principle abused here before)

%lets check the error
%Cav Tank
TanklError
%Cav Tank
Tank2Error = RealTankLevels(I+1l, 1) - TankLevelsNew(I+1,1);

RealTankLevels(I+1, 2) - TankLevelsNew(I+1,2);

%if the tank level is close to relity, advance to the next step
if abs(TanklError) <.005
I =I+1

%make some adjustments to the objective function to account for

%the difference between the model tank Tevels and the real ones

RealTotalbemand(1,I) = (2*((TankLevelsNew((I),2) - RealTankLevels((I+1),2)) *
(3.1415/4) * (48A2) * (7.48 / 60))) +
(sprinfieldrRoadTankFunction(TankLevelsNew(I,1),RealTankLevels((I+1),1))) +
Flowbata(I+1l,1) - TotalMeterDemand(l,I+1) ;

demandPatternLow(2,I) = ((RealTotalbemand(1l,I))- (demandPatternLow(1l,I) *
254.9906)) ./ 116.3467;

demandPatternHigh(1,I) = ((RealTotalbemand(1l,I)) -
(demandPatternHighComp(1,I) * 116.3467)) ./ 254.9906;

demandPatternsNew(1l,I) = (demandPatternHigh(1l,I) + demandPatternLow(1l,I)) ./
2;

elseif abs(TanklError) >=.005
if abs(demandpPatternHigh(l,I) - demandPatternsNew(l, I)) <= .0001

I=I+1

%make some adjustments to the objective function to account for

%the difference between the model tank Tevels and the real ones

RealTotalDemand(1,I) = (2*((TankLevelsNew((I),2) - RealTankLevels((I+1),2)) *
(3.1415/4) * (48A2) * (7.48 / 60))) +
(sprinfieldroadTankFunction(TankLevelsNew(I,1),RealTankLevels((I+1),1))) +
Flowbata(I+1l,1) - TotalMeterDemand(l,I+1) ;

demandPatternLow(2,I) = ((RealTotalbemand(1l,I))- (demandPatternLow(l,I) *
254.9906)) ./ 116.3467;

demandPatternHigh(1,I) = ((RealTotalbemand(1l,I)) -
(demandPatternHighComp(1,I) * 116.3467)) ./ 254.9906;

demandPatternsNew(1l,I) = (demandPatternHigh(1l,I) + demandPatternLow(1l,I)) ./
2;
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elseif abs(demandpPatternLow(1l,I) - demandPatternsNew(1l,I)) <= .0001

I=1I+1

%make some adjustments to the objective function to account for

%the difference between the model tank levels and the real ones

RealTotalbemand(1,I) = (2*((TankLevelsNew((I),2) - RealTankLevels((I+1),2)) *
(3.1415/4) * (48A2) * (7.48 / 60))) +
(sprinfieldrRoadTankFunction(TankLevelsNew(I,1),RealTankLevels((I+1),1))) +
Flowbata(I+1l,1) - TotalMeterDemand(l,I+1) ;

demandPatternLow(2,I) = ((RealTotalbemand(1l,I))- (demandPatternLow(1l,I) *
254.9906)) ./ 116.3467;

demandPatternHigh(1,I) = ((RealTotalbemand(1,I)) -
(demandPatternHighComp(1,I) * 116.3467)) ./ 254.9906;

demandPatternsNew(1l,I) = (demandPatternHigh(l,I) + demandPatternLow(1l,I)) ./
25

%or if we are still improving, enter the script below
elseif demandpPatternHigh(l,I) ~= demandPatternsNew(l, I) || demandpPatternLow(l,I)
~= demandPatternsNew(1,I)
%If the error is greater than 1 for the cav tank that means the demand is
%too low and needs to come up
if TanklError >0
demandPatternHigh(l,I) = demandPatternsNew(l,I);
demandPatternsNew(1l,I) = (demandPatternHigh(l,I) +
demandPatternLow(1,I)) ./ 2;
demandPatternsNewComp = ((RealTotalDemand) - (demandPatternsNew(l,:)
* 254.9906)) ./ 116.3467;
demandPatternsNew(2,I) = demandPatternsNewComp(l, I);
end
%If the error is less than 1 for the Cav tank, that means that the demand
%is too high in the model and needs to come down
if TanklError <O
demandPatternLow(1l,I) = demandPatternsNew(1l,I);
demandPatternsNew(1l,I) = (demandPatternHigh(l,I) +
demandPatternLow(1,I)) ./ 2;
demandPatternsNewComp = ((RealTotalDemand) - (demandPatternsNew(l,:)
* 254.9906)) ./ 116.3467;
demandPatternsNew(2,I) = demandPatternsNewComp(l, I);

end

[TankLevelsNew] = ExtendedPeriodbDemandCalibrator(InitialTankLevels,
Al1SimplecControls,3600,86400, PumpPattern, demandPatternsNew, BeforeCavMeter(l,2:25),
CavMeter(1,2:25), woodlawnMeter(1l,2:25), DanvilleMeter(1l,2:25),
SpringfieldrRoadmeter(1,2:25), SaintRoseMeter(l,2:25), SaintMaryMeter(l,2:25),
CampMeter(1,2:25), Meter(1,2:25));

end
end
if 1 > 23
pinchme = 1;
end
end
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end

% callback function

function FillusingExcelDataButtonPushed(app, event)
T = readtable('RealTankDataTest.x1sx"');
Totalbemand = T{:,20};
Flowbata = T{:,8};
TankLevels = T{:,21:22};
TankFlow = T{:,5:6};

%Flow Information at the Meters (periphery of the system)
Before_cavalry = T{:,9};
calvary_Meter = T{:,10};
woodLawn_Meter = T{:,11};
DanvilleHighway_Meter = T{:,12};
Springfieldroad_Meter = T{:,13};
SaintRose_Meter = T{:,14};
SaintMary_Meter = T{:,15};
Campbellsville_Meter = T{:,16};
ByPass_Meter = T{:,17};
TotalMeterbemand = T{:, 19};

assignin('base', 'Flowbata', FlowData);
assignin('base', 'Totalbemand', Totalbemand);
assignin('base', 'TankLevels', TankLevels);
assignin('base', 'TankFlow', TankFlow);

%Assign the meter data into the base workspace in MATLAB for
%use in the demand creation function

assignin('base', 'BeforeCavMmeter', Before_Cavalry);
assignin('base', 'CavMeter', Calvary_Meter);

assignin('base’', '"woodlawnMeter', woodLawn_Meter);
assignin('base', 'DanvillemMeter', DanvilleHighway_Meter);
assignin('base', 'springfieldRoadmeter', SpringfieldRoad_Meter);
assignin('base', 'saintRoseMeter', SaintRose_Meter);
assignin('base', 'saintMaryMeter', SaintMary_Meter);
assignin('base’', 'CampMeter', Campbellsville_Meter);
assignin('base', 'ByPassMeter', ByPass_Meter);

assignin('base', 'TotalMeterbDemand', TotalMeterDemand);

end
% Value changed function: ZzonelPatternDropDown
function zonelPatternbDropDownvalueChanged(app, event)

value = app.zZonelPatternDropDown.Value;

% Read in the demand patterns from excel file
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tDemand = readtable('DemandFactors.x1sx"');

%Turn that data (which is in cell format) into a num variable

demandszonel = horzcat(tbemand{:,1:14}, tbDemand{:,29:30});

%index dates and find which values to extract
dateNames = ["June 20", "June 21","June 22","June 23","June 24","June

25","3June 26","June 27","3June 28","June 29","3June 30","July 1","July 2","3uly 3","Average

weekday", "Average Weekend"];

end

[~, wherebpate] = ismember(value, dateNames);

%Now the user can specify which demand pattern he/ she wants to
%use and it will populate within the simulation
Dz1 = demandszonel(:,whereDate);

%0perators allowed to scale
if app.ScalezonelPatternByEditField.value ~=0

Dz1 = DzZ1 *app.ScalezonelPatternByEditField.value
end

%Take the demand factor and assign in workspace so that it can
%be used in the EPS simulation
assignin('base', 'Dzl1', Dzl);

Time = [1:24];
%Take this and populate the graph next to the user input
plot(app.UIAxes_10, Time,Dz1)

% Value changed function: zone2PatternDropDown
function zone2PatternbDropDownvalueChanged(app, event)

value = app.zZone2PatternDropDown.Value;

% Read in the demand patterns from excel file

tDemand = readtable('DemandFactors.xIsx"');

%Turn that data (which is in cell format) into a num variable

demandszone2 = horzcat(tbemand{:,15:28}, tDemand{:,31:32});

%index dates and find which values to extract
dateNames = ["June 20", "June 21","June 22","June 23","June 24","June

25","June 26","June 27","June 28","June 29","June 30","July 1","July 2","July 3","Average

weekday", "Average Weekend"];

[~, wherebDate] = ismember(value, dateNames);

%Now the user can specify which demand pattern he/ she wants to
%use and it will populate within the simulation
DZ2 = demandszone2(:,whereDate);

%0perators allowed to scale

if app.Scalezone2pPatternByEditField.value ~=0
Dz2 = Dz2 *app.Scalezone2PatternByEditField.value
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end

%Take the demand factor and assign in workspace so that it can
%be used in the EPS simulation
assignin('base', 'Dz2', Dz2);

Time = [1:24];
%Take this and populate the graph next to the user input
plot(app.UIAxes_11, Time,DZz2)

end

% Value changed function: ScalezonelPatternByEditField
function ScalezonelPatternByEditFieldvalueChanged(app, event)
value = app.ScalezonelPatternByEditField.value;

% Read in the demand patterns from excel file
tDemand = readtable('DemandFactors.xIsx"');

%Turn that data (which is in cell format) into a num variable
demandszonel = horzcat(tbemand{:,1:14}, tbemand{:,29:30});

%index dates and find which values to extract
dateNames = ["June 20", "June 21","June 22","June 23","June 24","June
25","June 26","June 27","June 28","June 29","June 30","July 1","July 2","July 3","Average

weekday", "Average Weekend"];
[~, whereDate] = ismember(app.zonelPatternDropDown.Value, dateNames);

%Now the user can specify which demand pattern he/ she wants to
%use and it will populate within the simulation
DzZ1 = demandszonel(:,whereDate);

%0perators allowed to scale
if value ~=0

Dz1 = Dz1 *app.ScalezonelPatternByEditField.value
end

%Take the demand factor and assign in workspace so that it can
%be used in the EPS simulation
assignin('base', 'Dz1', Dzl);

Time = [1:24];
%Take this and populate the graph next to the user input
plot(app.UIAxes_10, Time,Dz1)
end
% Value changed function: Scalezone2PatternByEditField
function Scalezone2PatternByEditFieldvaluechanged(app, event)

value = app.Scalezone2PatternByEditField.value;

% Read in the demand patterns from excel file
tDemand = readtable('DemandFactors.xIsx");
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%Turn that data (which is in cell format) into a num variable
demandszone2 = horzcat(tbemand{:,15:28}, tbemand{:,31:32});

%index dates and find which values to extract
dateNames = ["June 20", "June 21","June 22","June 23","June 24","June
25","June 26","June 27","June 28","June 29","June 30","July 1","July 2","July 3","Average

weekday", "Average Weekend"];
[~, whereDate] = ismember(app.zone2PatternDropDown.Value, dateNames);

%Now the user can specify which demand pattern he/ she wants to
%use and it will populate within the simulation
Dz2 = demandszone2(:,whereDate);

%0perators allowed to scale
if value ~=0

DzZ2 = DzZ2 *app.Scalezone2PatternByEditField.value;
end

%Take the demand factor and assign in workspace so that it can
%be used in the EPS simulation
assignin('base', 'Dz2', Dz2);

Time = [1:24];
%Take this and populate the graph next to the user input
plot(app.UIAxes_11, Time,DZz2)

end
end
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APPENDIX C. User’s Manual for Digital Twin (Lebanon)

1)

2)

3)

4)

Install MATLAB software (version R2022A used but other version within a few
years give or take will likely work).

(https://www.mathworks.com/help/install/ug/install-products-with-internet-

connection.html) Downloading and license registration is free at many Universities

and a purchased license is likely not necessary.

Install EPANET (Version 2.2)

https://www.epa.gov/water-research/epanet

Install the EPANET-MATLAB Toolkit (Eliades et al, 2016):

https://www.mathworks.com/matlabcentral/fileexchange/25100-

openwateranalytics-epanet-matlab-toolkit

Ensure that the toolkit is pointed in the correct directory.
Place the downloaded toolkit within your MATLAB folder and unzip it in that
location. Once this is accomplished, edit the “Start Toolkit.m” file to specify where

exactly the toolkit is located.
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£ PlotObjectiveFun a $/9/2023 1532 PM MATLAE Code
¥ Network ) PumpCurveCal o 7/3/2023 1:27PM MATLAB Code
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‘ ExtendableBoxCompl epanet.m | OperatorDashboard_Lebanon_FinalV2_exported.m Start_Toolkit.m
1% [function start toolkit() ES
2 %START_TOOLKIT Loads all the EPANET-MATLAB Toolkit folder paths in MATLAB. -—
3 %Run this function before calling “epanet.m’ and the Matlab modules.

4 %

5 % Syntax: start_toolkit

6 %

7 % Inputs:

8 % none

9 %

1@ % Qutputs:

11 % none

12 %

13 % Example:

14 % start_toolkit

15 %

16 % Other m-files required: none

17 % Subfunctions: none

18 % MAT-files required: none

19 %

20 - % See also: none

21

221 % Author : Demetrios G. Eliades, Marios Kyriakou

23 % Work address : KIOS Research Center, University of Cyprus

24 % email : eldemet@ucy.ac.cy

25 % Website : http://www.kios.ucy.ac.cy

26 | % Last revision : September 2016

27

28 Fom - BEGIN CODE ------------—-

29 addpath(genpath(C:\Users\apgi227\0OneDrive - University of Kentucky\Documents\MATLAB\epanet_matlab_toolkit'));

30 - |disp('EPANET-MATLAB Toolkit Paths Lea 03

31 R END OF CODE .
20

5) Take “OperatorDashboard Lebanon FinalV2 exported.m” and run the script by

hitting the play button in the upper middle ribbon.

PUBLISH
9 % = 3
(g u. fJ GT Profiler %J ‘:J S l/
Refactor 21 £ [2 [ Analyze | _Run B runend Advance | o | gep stop
v i~ Section P2} Run to End -
CODE ANALYZE SECTION RUN
viversity of Kentucky » Documents » MATLAB »
® oard_Lebanon_FinalV2_exported.m
E omplex.ml h gl fV1.m | dos.m | perlm epanet.m OperatorDashboard_Lebancn_FinalV2_exported.m Start_Toolkit.m |
" 1l classdef OperatorDashboard_Lebanon_Fin'a1V2_exported < ma'tlab.apps.AppBase a

2
3 % Properties that correspond to app components =
461 properties (Access = public) —
5 UIFigure matlab.ui.Figure )
6 TabGroup matlab.ui.container.TabGroup =
7 NewSimControlsPageTab matlab.ui.container.Tab
8 EditField_25 matlab.ui.control.EditField =

- 9 EditField_24 matlab.ui.control.EditField -

L 10 EditField_23 matlab.ui.control.EditField =
11 EditField_22 matlab.ui.control.EditField _-
12 TextArea_16 matlab.ui.control.TextArea =
13 WTPPanel matlab.ui.container.Panel =i
14 OFFATTIMEEditField_16 matlab.ui.control.EditField =
15 OFFATTIMEEditField_16Label matlab.ui.control.label =
16 OFFATTIMEEditField_15 matlab.ui.control.EditField
17 OFFATTIMEEditField_15Label matlab.l .control. Label
18 OFFATTIMEEditField_14 matlab.ui.control.EditField
19 OFFATTIMEEditField_14Label matlab.ui.control.Llabel
20 OFFATTIMEEditField_13 matlab.ui.control.EditField
21 OFFATTIMEEditField_13Label matlab.ui.control.label
22 OFFATTIMEEditField_12 matlab.ui.control.EditField
23 OFFATTIMEEditField_12Label matlab.ui.control.Label
24 OFFATTIMEEditField_11 matlab.ui.control.EditField
25 OFFATTIMEEditField_11lLabel matlab.ui.control.Llabel
26 OFFATTIMEEditField_1@ matlab.ui.control.EditField
27 OFFATTIMEEditField_1@Label matlab.ui.control.label
28 OFFATTIMEEditField_9 matlab.ui.control.EditField
29 OFFATTIMEEditField_9Label matlab.ui.control.label
3 ONATTIMEEditField_17 matlab.ui.control.EditField
31 AMATTTMFFAi+Eiald 171 ahal matlah i rantenl | shal =

] »
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6) The main interface should now be visible. The next steps will go through the
process of using inputs. Firstly, the user may the hydraulic and water quality time
steps to refine results but this is not necessary. Total time is preset at 24 hours for
the extended period sim (EPS) but this may be changed to longer or shorter time

steps.

PUMPS (Use If Not Specified In Tanks Section)

Wi Springfeld Road Pump.
onaTTME | ] oFFaTTME [000 onsTTME [ OFFATTIME 000

onarme [ | oFFsTTME [ oMATTIME | OFFATTME |

onar e | ] o arrme | ouatre | orraTTHE |

onarme [ ] orearTie | ouxrTve | | orrarmme |

onaTTE | | orrarmme | onaTTE | orFATTME

onaTTME | | orraTTiE | onarTME [ | orrarTive |

onTTE | ] orFaTTME [ onarTe | | osrarTvE [

ON AT TIME OFF AT T OFF AT THE

CNATT:
SPECIFY USING MLITARY TME
Ex 000602000

zon P o2
S 2w 1 Pam By

Scale Zone 2 Patter By:

Lwes Scaie 017 You Do Not Wan 1o Scaie Demand Patteen

7) Water quality parameters may also be specified but are not necessary. Bulk and
wall reaction rates should remain as they are unless an experienced user clearly
understands the complex chemistry of their system. Chlorine is the concentration

of chlorine at the WTP being pumped out into the system.
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PUMPS (Use If Not Specified In Tanks Secticn)
wre Spcngheld Rood Pump.

onatve [ ] orrarrme 000 onaTTME | | orearrve [000

onsrmme | ] oFFarTme [ ousrTmE | ] oreaTe [

onarTie | ] orearTve [ onarTiE [ ] orearTvee [

onar e | ] oFFaTTiE | onarTme | ] orrarTue |

onaTTIME | | oFFaTTivE | ONATTIVE [ | oFFaTTME |

onaTTME | | oFFarTme | ONATTME | | offarve |

oNATTIME [ | ofFarTme [ ONATTME | | ofFaTTve [

OFF AT TME

OMATTIM
‘SPECIFY USING MALITARY TIE

B R
o e

a1 o 2paten (o )

Seale Zona 1 Pattern By 0

e T m—

Leave Scake 01 You Do Mot Want o Scale Demand Fatlern

8) Initial tank levels are to be specified in the “tanks” section. It is important to know
what your MAX tank levels are because the way the software is currently set up,

an error may not be thrown if an initial input is over these values.

Also relevant to this section is the “Use” button. The use button allows the user to
specify when the pumps will turn on and off dependent on associated tank levels.

If “Use” is turned on, the program will ignore inputs in the “PUMPS” section.
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'PUMPS (Use If Not Specified In Tanks Section)
WIP Sprngheld Road Pump.
onaTTE | | orFarTmE [590 J— En

onaTTME | | orFaTTME | onaTTME [ ] oFFaTTvE |

onarTE | | orearme | onarTvE | ] orraree |

]
)
ouarmve | | orrartie [ ] s | | oerarriee [
]
]

onaTTHE [ | orearTive | onarTve | | orFarTme |

oNATTME | | oFFarTme | | ONATTIME | | orFarTve |

onsTTiE | | ofFaTTaE | ONATTIME | | orFarTe |

ONATTIME QFF AT T OFF AT TIME

ONAT T
'SPECIFY USING MILITARY TIME.

£x 000602000

‘Scale Z0n¢ 1 Pater By

- e—

Leave Scaie 01 You Do Not Want 10 Scale Demand Patiern

9) After specifying the tanks levels in the program, if the user has not used either of
the “use” switches for the pumps, the dashboard will use any times specified in the
“PUMPS” section as control switches for the pump. These times must be military
time (0:00, 20:00, etc.) and should lie within the specified total time for the

simulation.
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& MATLAE App - a *

General (EPS + Water Quality)

PUMPS (Use If Not Specified In Tanks Section)
WomscTmesie [ 1] WIP Spnghiold Road Pump
el — | T oomas o T s
Totad Time. 24 ONATTIME [ | oFFaTTME | onsTTME | | orFarTME |
; onarree [ | orrarTme | onarmwe [ | oerarue |
onaTTME [ ] orearTME onaTTME | ] orrarTve

onarTme | | orFarme | ] onaTTvE | | orFarTie | ]

onarmwe [ e S — ouarTve | R —

owwme [ ] orrariwe | ] onariwe [ ] orrmrime | ]
QFF AT TIM| OFF AT TIME

ONALT!
SPEGIFY USING MILITARY TIME

Ex 00052000

Zone 1 Pattem (Average Weskday v  Zone 2 Faliem (Fverage Weekdsy v
‘Scale Z0ne 1 Pater By

‘Scate Zone 2 Pattem By’ 0,

Leava Scale 0 1f You Do Not Wantto Scals Demand Pattarm

10) Now the user is encouraged to explore the demand section. The demands have been
pre-processed for their suitability within the LWW. There is an associated excel
file relative to this data that should have been downloaded with the other files sent
with this program. Please do not alter this file unless there is a clear understanding
of demand factors and how the program is bringing these factors in.

The range of factors is representative of the system between the June 20™ and July
37 2023. User may use any of these or an average of them as specified by “average
weekend” and “average weekday”. If other date ranges are required, please reach
out to the University of Kentucky with meter, tank, and pump information as well
as their relevant time stamps and they will be processed and sent back.

Factors will conveniently appear in the graphs as soon as they are selected and they
may be scaled up and down to increase flexibility within the factors.

Once this has all been specified, hit “Run EPS!” and see results on the next page.
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'PUMPS (Use If Not Specified In Tanks Section)

wie Springtield Road Pump

onarTmE | | orarmwe [o00 ] onarTmE | | orarmwe [s00
onaTTIME | orrarmie | onartme [ | orarTve [

]

onarmme | ] orrarme [ ] onarmie | ] oresrme |
]
]

ONATTIME [ | oFFaTTIME |

ONATTIME | | ofFatTME |

onaTTME | | orearTmE | onsTTME | ] cerarme |

CHATTIME OFFATTME | | O AT TIME OFFATTME |
onATTME [ | oFearTE ONATTIME [ | orFarmue |
ONATTIME OFEATTIME [ 1 ansre | | oFF ATTIME

‘SPECIFY USING MILTTARY TME.

EX 90005 2000

‘Scale Zonw 1 Paem By

Seais Zons 2 Patiern By

You Do Mot Want to

11)In the “Tanks section” on the New Results Page, the user may specify viewing
either the water age or the tank levels as a function of time which will be plotted in
the top two graphs. In the “Pumps and Master Meters (Important Junctions)”
section, the user can specify pump parameters for the first two graphs (HGL and
flow rate) and can look at several parameters for the junctions (pressure, demand,
chlorine residual, and TTHM concentrations). As soon as a parameter is picked,

select “Update Graph and Table” and the graphs and tables will reflect specified

parameters.
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4 MAILAE App - w o~

Mew Resulls Page.
Tanks

‘Show Preacted [ Tark Level (1) v | [ Uptate Grapn and Tabie | [ Tank Level ) *] [u ]

- Springfield Road Tank 5 Cavalry Tanks

19
g 25
Bl f
= =9

| T O

Before Calvary Meter | |
145 3530 a7z 17533

1493081 72285 71224
183535 145 6969 635735,

173180 145,151 671875

Note: Please Pay fon To Graph M i In The Top Left Corner Of Graphs

12) Mapping may also be accomplished in the “Map Specifications Page” within the

program. First, the user MUST select “Generate Generic Map”.

& MATLAB App - 8 x

1) Frst prass the “Genarate Ganers: Mag” button. his Wil prnt & Map Wi tank and pump names as wed as pipe dameters.

3) Run simulation (found on “Sim Conlrols” page)

“NOTE: Generic Map Resuls In e following: 2 = Green 4" = Cyan 6" = Red ; &= Yelow ; 10" = Magenta ; 1= Bus 16" = Black ; 20" = Whae (Pige
)

Above high pressure vaue wil plot as color 1
‘Aboe medium pressure value vl pll as color 2

OO
0 12 14 16 18 20 22 24]

G on e

[ Tum on Al Junction Names

0 emonase specifc unctions “THIS WILL NOT SHOW UP ON MAP UNLESS JUNCTION AND PFE
NAMES MATCH EXACTLY. Se6 Resuts page afte running steacy stats or EPS sims f0 idnaby names.

below low concentraton values wik pot 25 color 10

PLEASENOTE:

IF YOU WANT TO ANALYZE A DIFFERENT SMULATION YOU MUST BX0T
FUNCTION
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13) A MATLAB figure will be created, and it is suggested that it be placed on another
monitor if there are more than one available. The map will initially color all of the

pipes based on their nominal diameter.

le Edit View Inset Tools Desktop W
Ddds R|0E|RE

14) Within each of the categories, the user may specify tolerances on parameters and
plot them on the map. For example, I may set the high pressure to 80, medium
pressure to 60 and the low pressure to 20. This will then look to each of the colors
that I have specified and if the pressure at a node is above 80 it will plot as color 1,
in between 80 and 60 will plot as color 2, and so on. User may also check the EPS
box and move the slider to specify times to observe. If this is not checked a steady
state sim will be shown. This is the same methodology for all of the parameters in
this section, after changing the specifications, the user may “Generate Nodal

Pressure and Pipe Flow Map”, or “Generate Nodal Chlorine Residuals Map”.
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1) Fast press the "Generate Generic Mag” buston,

3)Run smuiaton (1ound 00 "Sim Controls” page)

SNOTE: Gaoeic Mep Rerus i e howen: 7 Oreen = Yo 6 ed 8= Yo 10"« agera 17 = O 16" Geck 2= Wk e
)

Above high flow vakue wil plot 35 Color 5
Above low flow vaius i piot 35 Color &
Delow low Sow values wil piot as colot 7

‘Above high concenlration vakue wil piot as color &
 Above low concan¥aton value v piot s coior &
‘elow low concentraton values wa plot a5 cokor 10

@ Figure

File €dt View Inset Tooks Desitop Window Help

EEC O]

“E0Qan

15) In addition, user may also view the names of the pipes and junctions in the “Pipe

and Junction Discovery” tab. By typing a name directly as it is viewed in the

program and specifying a weight, we can view certain pipes and junctions. This is

the most sensitive to user input error and careful attention to the case and spelling

of pipes and junctions will give satisfactory results.
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ution.

3) Ru simulason (found on “Sim Controls” page)

ENOTE: Gananc Mg e 1 ot 2 Orsen " Cn 6 = Rnd = Yok (7" Moute 17 = B 14" Back 20 Yote (P
)

‘Above Righ preszure vaos wi plot a3 cor |
‘Above medu pressure vaiue wil pot 83 Color 2
Above low preSite VIS W 001 88 Color 3
Boiow kow Srws518 VLS Wil 20! 35 Color 4

Ve vl piot a2 ol 8
23 coor 9
iues Wik piol 88 coior 10

PLEASE NOTE
15.YOU WANT TO ANALYZE A DIFFERENT SMULATION YOU MUST EXIT THE OLD FYOURE AND REQENERATE USNO THE “GENERATE OENERIC MAP

F,‘f ,v.., hriiitﬂl D*-I Window  Help
NSde Q08 RE

ump 8

16) If the name of a junction or pipe is unknown, the user may check either the “Turn
On All Pipe Names” or “Turn On All Junction Names” feature, select “Run
Discovery” again, and the names will appear and can be found by interactively
zooming in and out of the map. This can be turned off by deselecting the check

boxes and hitting the “Run Discovery” button.
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1) Fist press the “Generate Generic Map butlon, this wil print & Ma wilh tank and pump names as well &5 pos ciametars.

3] Run smulaton (found on "Sim Controls” page)

SENOTE: Oacaic Mag Reole b e vk 7 = v - Oren 6" Red =Yoo 1= Magwne 17" B 10 Bl 2= Whte P

Above hign pressure vahue wil plotas color |
Above medum pressure vaiue wilplot s color 2
Above low pressure vakes wil 9ot as color 3
Below low pressure vaiue wl oot 35 Cowe &

‘Above g flow vakus wil plo 25 color 5
Above low flow vakos wilplot 5 color
elows low flow vaues wil lot a5 color 7

THIS VILL NOT SHOW UP ON MAP UNLESS JUNGTION AND PIPE

‘concentration vate vl piot
Above low concentraton vakue vl pot 35 color 9
‘concentration values wl plot a5 color 10

EASIVICECEA)

= 1628

i sh 316
1317

L[ N/

1608 1617
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APPENDIX D. Example Box-Complex Method Code For Four Zone System

%Pull in relevant EPANET file

d = epanet('DecemberEditsWhitesburg.inp', 'LoadFile');
%Completely Random Demand Factors

demandFactors = [2,0.5,3;4,1,2;3,1.5,0.5;5,1.2,1];

%Because I am only testing one hour and epanet requires demand factors
for

%all 24 hours I will create 23 dummy factors

dummyPattern = ones(1,23);

%Now here are the three functions (tanks) that we need to optimize

RealTankl = 1484.90;
RealTank2 = 1411.49;
RealTank3 = 1469.02;

%Intialize the error matrix (four points in box complex and their
%respective error)
pointsInSimplex = [1,1,1,1];

%This starts the box-complex, here I specify that all of the points need
to

%have a very small error term before it is finished. Essentially,
converge

%on the solution. However this may run for a long time and lossening the
%tolerance will allow for quicker runs

while pointsInSimplex(1,1) >=.0000001 || pointsInSimplex(1,2) >=0.0000001
|| pointsInSimplex(1,3) <= 0.0000001 || pointsInSimplex(1,4) >=0.0000001

%evaluation of error for each of the four points in the simplex
for i = 1:4

%create the demand patterns to place in the simulation
patternl = demandFactors(i,1);
pattern2 = demandFactors(i,2);
pattern3 = demandFactors(i,3);

%The fourth demand factor is determined by the first three - this is
the

%total demand function. This is the mass balance in the system which

%may be found by taking the basedemand for each of the points that
are
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%specified by a certain demand pattern - multiplying those base

demands

%by that factor, and summing them altogether. This gives total

demand.

%To satisfy conservation of mass, the fourth demand factor is
%determined by the other three. 3,226, and 48 represent the summed

base

%demands for their respective zones. 391 represents the total demand
of

%that specific hour.

patternd4 = (391 - (3 * patternl) - (226*pattern2) - (48 *
pattern3))/18;

%Run an initial sim to initialize the box complex

.setPattern(1, horzcat(patternl, dummyPattern));
.setPattern(2, horzcat(pattern2, dummyPattern));
.setPattern(3, horzcat(pattern3, dummyPattern));
.setPattern(4, horzcat(pattern4, dummyPattern));

Q o a aQ

d.openHydraulicAnalysis;
d.initializeHydraulicAnalysis;
%Run and close analysis

Series = d.getComputedTimeSeries;
d.closeHydraulicAnalysis

ModelTankl = Series.Head(2,303);
ModelTank2 = Series.Head(2,308);
ModelTank3 = Series.Head(2,305);

Error = ((ModelTankl - RealTank1)”~2) + ((ModelTank2 - RealTank2)”2)

+((ModelTank3 - RealTank3)”"2);

pointsInSimplex(1,i) = Error;
end

if pointsInSimplex(1,1) <=.0000001 || pointsInSimplex(1,2) <=0.0000001 ||
pointsInSimplex(1,3) <= 0.0000001 || pointsInSimplex(1,3) <= 0.0000001

break

else

%find the worst point and create the centroid of the remaining points
[maxVal, whereMax] = max(pointsInSimplex);

logical = find(pointsInSimplex ~= maxVal);

ph = demandFactors(whereMax, :);
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centroid = (demandFactors(logical(1,1),:) +
demandFactors(logical(1,2),:) + demandFactors(logical(1,3),:))./3 ;
%expand the worst point over the centroid of the remaining points

newPoint = (2.5.*centroid) - (1.5 .*ph);

%Contract if the New Point is less than ©

while newPoint(1,1) < © || newPoint(1,2) < @ || newPoint(1,3) < ©
newPoint = (0.5.*newPoint) + (0.5 .* centroid);

end

%Now evaluate the new point to see if it is better than the old point

patternl = newPoint(1,1);
pattern2 = newPoint(1,2);
pattern3 = newPoint(1,3);

pattern4
pattern3))/18;

(391 - (3 * patternl) - (226*pattern2) - (48 *

.setPattern(1, horzcat(patternl, dummyPattern));
.setPattern(2, horzcat(pattern2, dummyPattern));
.setPattern(3, horzcat(pattern3, dummyPattern));
.setPattern(4, horzcat(pattern4, dummyPattern));

aQa o a Qa

d.openHydraulicAnalysis;
d.initializeHydraulicAnalysis;
%Run and close analysis

Series = d.getComputedTimeSeries;
d.closeHydraulicAnalysis

ModelTankl = Series.Head(2,303);
ModelTank2 = Series.Head(2,308);
ModelTank3 = Series.Head(2,305);

Error = ((ModelTankl - RealTank1)”~2) + ((ModelTank2 - RealTank2)72)

+((ModelTank3 - RealTank3)"2);

%if the new error is less than the old store the value

if Error <maxVal
demandFactors(whereMax, :) = [patternl,pattern2,pattern3];
pointsInSimplex(whereMax) = Error;

%if the error is worse than the new point, contract the worst point

%towards the centroid
else
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newPoint = (0.5 .* ph) + (0.5.*centroid);
%evaluate the new point

patternl = newPoint(1,1);

pattern2 = newPoint(1,2);

pattern3 = newPoint(1,3);

pattern4
pattern3))/18;

(391 - (3 * patternl) - (226*pattern2) - (48 *

.setPattern(1, horzcat(patternl, dummyPattern));
.setPattern(2, horzcat(pattern2, dummyPattern));
.setPattern(3, horzcat(pattern3, dummyPattern));
.setPattern(4, horzcat(pattern4, dummyPattern));

Q a a aQ

d.openHydraulicAnalysis;
d.initializeHydraulicAnalysis;
%Run and close analysis

Series = d.getComputedTimeSeries;
d.closeHydraulicAnalysis

ModelTankl = Series.Head(2,303);
ModelTank2 = Series.Head(2,308);
ModelTank3 = Series.Head(2,305);

Error = ((ModelTankl - RealTank1)”~2) + ((ModelTank2 -
RealTank2)72) +((ModelTank3 - RealTank3)”"2);

%store some of these new values
demandFactors(whereMax, :) = [patternl,pattern2, pattern3];
pointsInSimplex(whereMax) = Error;

end

end
end
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