
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Civil Engineering Civil Engineering

2023

Implementation of Digital Twins for Small Water Systems Implementation of Digital Twins for Small Water Systems

Aidan Gill
University of Kentucky, apgi227@uky.edu
Author ORCID Identifier:

https://orcid.org/0000-0002-4623-4502
Digital Object Identifier: https://doi.org/10.13023/etd.2023.489

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Gill, Aidan, "Implementation of Digital Twins for Small Water Systems" (2023). Theses and Dissertations--
Civil Engineering. 140.
https://uknowledge.uky.edu/ce_etds/140

This Master's Thesis is brought to you for free and open access by the Civil Engineering at UKnowledge. It has been
accepted for inclusion in Theses and Dissertations--Civil Engineering by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

https://uknowledge.uky.edu/
https://uknowledge.uky.edu/ce_etds
https://uknowledge.uky.edu/ce
https://orcid.org/0000-0002-4623-4502
https://uky.az1.qualtrics.com/jfe/form/SV_0lgcRp2YIfAbzvw
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Aidan Gill, Student

Dr. Lindell Ormsbee, Major Professor

Dr. Mei Chen, Director of Graduate Studies

IMPLEMENTATION OF DIGITAL TWINS FOR SMALL WATER SYSTEMS

__

THESIS

__

A thesis submitted in partial fulfillment of the

requirements for the degree of Master of Science in the

College of Engineering

at the University of Kentucky

By

Aidan Patrick Gill

Lexington, Kentucky

Director: Dr. Lindell E. Ormsbee, Professor of Civil Engineering

Lexington, Kentucky

2023

Copyright © Aidan Gill 2023

https://orcid.org/0000-0002-4623-4502

ABSTRACT OF THESIS

IMPLEMENTATION OF DIGITAL TWINS FOR SMALL WATER SYSTEMS

 The main objective of this thesis is to develop a working digital twin for a small

water system in central Kentucky which will serve as a general format for other similar

systems in the region wishing to implement digital twins for operator support. While the

benefit of having a calibrated hydraulic and water quality model is widely understood,

small distribution systems tend to not have the same financial and economic means to

properly support these tools. Creation of a digital twin using this methodology provides a

means for operators to predict pressure, flows, chlorine residuals, and total trihalomethane

(TTHM) concentrations within their system with little to no cost and maintenance.

 The application is developed using the MATLAB app development toolkit and is

then linked with the EPANET hydraulic and water quality engine via the EPANET-

MATLAB toolkit. The application provides simple user inputs such as initial tank levels,

pump scheduling, demand scenarios, and mapping capabilities for results.

 Reliability of the digital twin output is rooted in the extended period simulation

(EPS) calibration steps which ensure the variation of demands both spatially and

temporally accurately reflect conditions seen in the system. Both the Box-Complex (multi

pressure zone systems) and the bisection method (two zone systems) were used in the

processing of tank telemetry and meter data to create representative demand factors.

 The creation of a useful digital twin is highly reliant on both the programming

capability of the developer and familiarity with the many nuances of hydraulic and water

quality calibration which are necessary foundations upon which accurate predictions of key

parameters are accomplished. While outputs given in the MATLAB interface are simple,

accurate, and robust against failure, there is much to be desired by way of interactive

mapping. Python offers a broader range of available libraries capable of supporting

mapping which will make inputting parameters and viewing results much simpler for

operators. Additionally, the tools provided in this digital twin use historical data for

hydraulic calibration (demand factors) and testing which are useful based solely on

operator understanding of which demand scenarios in the past will most accurately reflect

what they will see in the present. Extension of these historical patterns into forecasted

demands using machine learning or time series analysis will greatly improve the usefulness

of the model and overall operator experience.

KEYWORDS: [Water Distribution System, Network Analysis, Digital Twins, Hydraulic

Calibration, Demand Prediction, EPANET-MATLAB toolkit]

Aidan Patrick Gill

12/08/2023

 Date

IMPLEMENTATION OF DIGITAL TWINS FOR SMALL WATER SYSTEMS

By

Aidan Patrick Gill

Dr. Lindell E. Ormsbee

Director of Thesis

Dr. Mei Chen

Director of Graduate Studies

12/08/2023

 Date

Dedicated to my Lord and Savior Jesus Christ, through whom all my worldly

accomplishments find their sole responsibility in.

A.M.D.G.

iii

ACKNOWLEDGMENTS

I would like to first acknowledge my advisor, Dr. Ormsbee. When I met Dr. O back

in Fall of 2021, I had no idea the profound impact he would have on my life. While studying

under one of the finest professors and foremost leaders in the water industry has been the

experience of a lifetime, I am deeply indebted to him as a mentor and role model. The life

he lives as a Christian man and leader of young people has been truly inspiring. I am

grateful to count myself among the students who will try their best to carry on a legacy that

in many ways is greater than the sum of all its parts.

I would also like to acknowledge my rugby coaches Sam, Vince, and most

especially Gary. I would never be at the University of Kentucky without him, and my

efforts in every endeavor here at school have been a small payment on the debt of gratitude

I owe. To the three of you, thank you for pushing me and for making my time at UKY so

endearing.

To the Gluten Free Council, you know exactly who you are. You are my brothers

for life and probably don’t want to read any more than a few more lines of this soppiness.

Stay friendly and clean.

 Lastly, and most importantly, I would like to acknowledge my family. My mom,

dad, and two brothers mean more to me than anything in this world. I know at the very

least if I have nothing else, I have them. Their support through this has brought me further

than they could ever imagine, and I love them all the more for it.

iv

TABLE OF CONTENTS

ACKNOWLEDGMENTS ... iii

LIST OF FIGURES ... vi

LIST OF TABLES .. vii

CHAPTER 1. INTRODUCTION ... 1

1.1 Background ... 1

1.2 Research Motivation ... 2

1.3 Research Hypothesis ... 3

1.5 Utility of Interest ... 6

1.6 Organization of Thesis .. 7

CHAPTER 2. LITERATURE REVIEW .. 10

2.1 Hydraulic Modeling .. 10

2.1.1 Darcy-Weisbach Equation .. 12

2.1.2 Hazen-Williams Equation ... 14

2.1.3 Network Algorithms ... 15

2.1.4 Hydraulic Calibration.. 24

Pipe Roughness Calibration .. 25

Demand Factor Calibration ... 26

2.2 Digital Twins .. 28

CHAPTER 3. DIGITAL TWIN DEVELOPMENT ... 31

3.1 Lebanon Water Works .. 31

3.1.1 Understanding System Needs and Relevant Data ... 33

3.2 Modeling Methodology and Tools Used .. 34

CHAPTER 4. HYDRAULIC CALIBRATION OF DIGITAL TWIN (LEBANON) 35

4.1 Demand Management Areas (Pressure Zones) ... 36

4.1.1 Bisection Algorithm (Two Zone System) ... 39

4.1.2 Box-Complex Algorithm (Multi Zonal System)... 44

4.2 Hydraulic Calibration of LWW Digital Twin ... 49

CHAPTER 5. DIGITAL TWIN APPLICATION .. 59

v

5.1 Creation of the Graphical User Interface (GUI) ... 59

CHAPTER 6. DISCUSSION OF RESULTS AND CONCLUSION 75

6.1 Interface Selection and the Underlying Hydraulic Model 75

6.2 Data in the Hydraulic Calibration Process .. 78

6.3 Algorithms and the Hydraulic Calibration Process .. 79

6.4 General Conclusions ... 80

7. RECOMMENDATIONS .. 83

7.1 Engineering Significance .. 83

7.2 Limitations of Approach ... 84

7.3 Need for Future Research ... 84

7.4 Recommendations ... 85

APPENDICES .. 87

APPENDIX A. Demand Factors From Bisection Algorithm 87

APPENDIX B. Code For Hydraulic Simulation And Demand Factor Calibration ... 117

APPENDIX C. User’s Manual for Digital Twin (Lebanon) 174

APPENDIX D. Example Box-Complex Method Code For Four Zone System 188

REFERENCES ... 192

VITA ... 196

vi

LIST OF FIGURES

Figure 2-1: Conservation of Mass and Energy Example .. 11

Figure 2-2: Moody Diagram (Ormsbee and Walski, 2016) .. 13

Figure 2-3: Example Pipe Network .. 15

Figure 2-4: Generalized Newton-Raphson Method (Bhave and Gupta, 2013) 16

Figure 2-5: Example Setup for a C-Factor Test .. 26

Figure 3-1: Hydraulic Model of Lebanon Water Works .. 32

Figure 4-1: Pressure Zone Delineation within an Example Network 37

Figure 4-2: Example Network with Open Valve and Unintended Pressures 38

Figure 4-3: Example of Objective Function In Equation 4-1 ... 41

Figure 4-4: Example of Initializing the Bisection Method ... 42

Figure 4-5: Example of Improved Solution Using the Bisection Method 43

Figure 4-6: General Structure of Bisection Method ... 43

Figure 4-7: Example Expansion Using the Box-Complex Method 48

Figure 4-8: Example Contraction Using the Box-Complex Method 48

Figure 4-9: General Algorithm for Box-Complex Method .. 49

Figure 4-10: LWW North and South Pressure Zone Delineation 50

Figure 4-11: Example of Noise in Tank Data (Walski et al., 2012) 53

Figure 4-12: Flow Error Using Separate Time Intervals (Walski et al., 2012) 54

Figure 5-1: Home Screen for the Digital Twin ... 60

Figure 5-2: Time and Water Quality Screen ... 61

Figure 5-3: Time and Water Quality Screen ... 62

Figure 5-4: Time and Water Quality Screen ... 63

Figure 5-5: Demand Setting Section ... 64

Figure 5-6: Example Graph Given for Demand Pattern In Zone 64

Figure 5-7: Results Page from EPS .. 66

Figure 5-8: Example of Tank Level Output .. 67

Figure 5-9: Tabulated Results Given Selection of Tank Level .. 67

Figure 5-10: Example Junction Output ... 68

Figure 5-11: Example Pump Output ... 68

Figure 5-12: Example of Output Table Given Inputs for Each of the Graphs 69

Figure 5-13: Buttons for Graphing Results ... 70

Figure 5-14: Generated Interactive Map of LWW Showing Pipe Diameters 71

Figure 5-15: Tools for Map Visualization .. 72

Figure 5-16: Discovery Tool for Map Visualization .. 73

Figure 5-17: Map Results Detailing Pressure, Flows, and “Discovery” Results 74

file:///C:/Users/apgi227/Downloads/GillThesisRevisionsV3_12042023%20DRO.docx%23_Toc152844220
file:///C:/Users/apgi227/Downloads/GillThesisRevisionsV3_12042023%20DRO.docx%23_Toc152844221
file:///C:/Users/apgi227/Downloads/GillThesisRevisionsV3_12042023%20DRO.docx%23_Toc152844222
file:///C:/Users/apgi227/Downloads/GillThesisRevisionsV3_12042023%20DRO.docx%23_Toc152844223
file:///C:/Users/apgi227/Downloads/GillThesisRevisionsV3_12042023%20DRO.docx%23_Toc152844224
file:///C:/Users/apgi227/Downloads/GillThesisRevisionsV3_12042023%20DRO.docx%23_Toc152844225
file:///C:/Users/apgi227/Downloads/GillThesisRevisionsV3_12042023%20DRO.docx%23_Toc152844226
file:///C:/Users/apgi227/Downloads/GillThesisRevisionsV3_12042023%20DRO.docx%23_Toc152844227
file:///C:/Users/apgi227/Downloads/GillThesisRevisionsV3_12042023%20DRO.docx%23_Toc152844228
file:///C:/Users/apgi227/Downloads/GillThesisRevisionsV3_12042023%20DRO.docx%23_Toc152844229
file:///C:/Users/apgi227/Downloads/GillThesisRevisionsV3_12042023%20DRO.docx%23_Toc152844230
file:///C:/Users/apgi227/Downloads/GillThesisRevisionsV3_12042023%20DRO.docx%23_Toc152844231
file:///C:/Users/apgi227/Downloads/GillThesisRevisionsV3_12042023%20DRO.docx%23_Toc152844232
file:///C:/Users/apgi227/Downloads/GillThesisRevisionsV3_12042023%20DRO.docx%23_Toc152844233
file:///C:/Users/apgi227/Downloads/GillThesisRevisionsV3_12042023%20DRO.docx%23_Toc152844234
file:///C:/Users/apgi227/Downloads/GillThesisRevisionsV3_12042023%20DRO.docx%23_Toc152844235
file:///C:/Users/apgi227/Downloads/GillThesisRevisionsV3_12042023%20DRO.docx%23_Toc152844236
file:///C:/Users/apgi227/Downloads/GillThesisRevisionsV3_12042023%20DRO.docx%23_Toc152844237
file:///C:/Users/apgi227/Downloads/GillThesisRevisionsV3_12042023%20DRO.docx%23_Toc152844238
file:///C:/Users/apgi227/Downloads/GillThesisRevisionsV3_12042023%20DRO.docx%23_Toc152844239
file:///C:/Users/apgi227/Downloads/GillThesisRevisionsV3_12042023%20DRO.docx%23_Toc152844240
file:///C:/Users/apgi227/Downloads/GillThesisRevisionsV3_12042023%20DRO.docx%23_Toc152844241
file:///C:/Users/apgi227/Downloads/GillThesisRevisionsV3_12042023%20DRO.docx%23_Toc152844242
file:///C:/Users/apgi227/Downloads/GillThesisRevisionsV3_12042023%20DRO.docx%23_Toc152844243
file:///C:/Users/apgi227/Downloads/GillThesisRevisionsV3_12042023%20DRO.docx%23_Toc152844244
file:///C:/Users/apgi227/Downloads/GillThesisRevisionsV3_12042023%20DRO.docx%23_Toc152844245
file:///C:/Users/apgi227/Downloads/GillThesisRevisionsV3_12042023%20DRO.docx%23_Toc152844246
file:///C:/Users/apgi227/Downloads/GillThesisRevisionsV3_12042023%20DRO.docx%23_Toc152844247
file:///C:/Users/apgi227/Downloads/GillThesisRevisionsV3_12042023%20DRO.docx%23_Toc152844248
file:///C:/Users/apgi227/Downloads/GillThesisRevisionsV3_12042023%20DRO.docx%23_Toc152844249
file:///C:/Users/apgi227/Downloads/GillThesisRevisionsV3_12042023%20DRO.docx%23_Toc152844250
file:///C:/Users/apgi227/Downloads/GillThesisRevisionsV3_12042023%20DRO.docx%23_Toc152844251
file:///C:/Users/apgi227/Downloads/GillThesisRevisionsV3_12042023%20DRO.docx%23_Toc152844252
file:///C:/Users/apgi227/Downloads/GillThesisRevisionsV3_12042023%20DRO.docx%23_Toc152844253
file:///C:/Users/apgi227/Downloads/GillThesisRevisionsV3_12042023%20DRO.docx%23_Toc152844254

vii

LIST OF TABLES

Table 6-1: Summary of Digital Twin Creation Process ... 82

1

CHAPTER 1. INTRODUCTION

1.1 Background

Technology in the water industry has continuously shaped the way that operators

interact with their systems and how they provide clean, safe drinking water to the

communities that they support. As early as 700 B.C. in northern Iraq and Greece, sloping

channels called qanats were being carved into the hillsides to provide irrigation for ancient

farmers (Sedlak, 2014). A few hundred years later, Romans began mastering the art of

creating aqueducts which could bring up to 1.13 million cubic meters of water per day to

the empire at its peak (De Feo et al., 2013). Similar advancements in distribution practice

were made by the Mayans in modern day southern Mexico with the introduction of the first

pressurized piping systems around 250 AD (French and Duffy 2010). These advancements,

as well as many others not mentioned in this paper, contributed to the modern drinking

water systems we see today.

The first of these “modern” utilities appeared in the U.S. in the year 1652 when

Boston employed its water works for fire-fighting and domestic use (Ormsbee, 2006).

Since then, new challenges have arisen due to the complexity of water distribution systems

as pressurized underground piping proliferated. Because of the inherent difficulties in

understanding the nature of flows and pressures in piping networks, the 20th century saw a

boom in research literature focused on the topic of “water distribution network analysis.”

(Ormsbee, 2006).

Hardy Cross, a structural engineer at the University of Illinois at Urbana-Champaign

was the first to create a numerical methodology for solving networks of pipes. Using the

Hazen-Williams equation for losses and an iterated adjustment factor for solving the

2

continuity equation around loops, solutions could be found that were satisfactory in most

cases but were however time consuming. Further, the methodology was limited to systems

with only a few loops and without other system components (pumps, regulating valves,

etc.). The dawn of the computer age and improved methods for solving the conservation of

mass and energy equations allowed for methods that far surpassed the original Hardy-Cross

method such as the simultaneous node, loop, pipe, and gradient methods (Ormsbee, 2006).

By the new millennium, several software packages such as KYPIPE (KYPIPE LLC,

2022) and EPANET (Rossman et al., 2020) became commercially available and gave

operators a leg up in understanding the physical characteristics of their utilities. By

calibrating for parameters such as pipe roughness, chlorine concentration, tank elevations,

and pump operations; models gave a picture of the current state of the system (steady state

analysis) as well as a confident understanding of what the system might look like in the

near future (extended period simulation).

1.2 Research Motivation

There are many advantages afforded to water distribution operators who frequently

consult water models for guiding their day-to-day decision making. Common uses of these

models include predicting flows, pressure, velocity, and head loss but there are other

advantages as well. Forecasting demands and hazardous chemicals like DBP’s

(disinfectant by products), simulating emergency scenarios, and planning for capital

improvement projects are a few other applications of importance to engineers and operators

alike (Huang, 2019).

3

While the advantages of consistent use and upkeep of a model are many, it is essential

for operators to trust and understand the results of a hydraulic analysis (Huang, 2019). It

follows then that calibration of a model is of the utmost importance for any analysis to be

considered trustworthy. As Savic notes “regardless of the methodology used and

parameters calibrated another general conclusion can be drawn, such as that a large amount

of ‘good’ observation data is needed for estimating calibration parameters with sufficient

confidence.” (Savic et al., 2009). To double down on this notion, water quality calibration

depends not only on good data but also on the accuracy of the hydraulic model as well

(Savic et al., 2009). These issues pose a sizeable challenge to operators, especially in

smaller distribution systems who are unlikely to have the resources necessary to maintain

models like this.

Because it is incredibly difficult for small systems to maintain a high-quality

working model of their system, optimizing the triple bottom line (social, environmental,

and economic considerations) is nearly impossible. As technology continues to advance

however, new horizons are being discovered that allow utilities to address the issues

associated with current modeling practices.

1.3 Research Hypothesis

In recent years, many water utilities have begun to incorporate the use of “Digital

Twins” into their daily operations. The concept of digital twins first developed by Michael

Grieves (referred to at the time as the “mirrored spaces” model) is a method through which

the physical characteristics of a system are closely “mirrored” through a digital

representation of a physical asset (Grieves and Vickers, 2016). In other words, digital twins

4

are developed to use continuous or near continuous data streams that allow for models to

automatically calibrate and represent the system they were built for. Digital twins are

defined by the context in which they are used and how they are applied across numerous

industries. James Cooper, Global Director of Water Optimization at Arcadis notes that

digital twins can be “a software application, a way of working, or a process” and states that

“twins can also vary in complexity and maturity” (Cooper, 2021). These levels of

complexity are referred to as states and vary from digital twin ready (modeled system) to

live data integration and analysis.

Larger utilities like Las Vegas (Cooper, 2021) and Houston (Tripathi et al., 2021)

have been leveraging the digital twin concept for almost two decades now with incredible

success. After having worked through the several states of Digital twin operation (from

Digital twin ready to using live data feeds) the Las Vegas Valley Water District (LVVWD)

saw significant improvements in controlling DBP formation, substantial savings in energy

consumption, and even had better response to emergency shutdowns (Cooper et al, 2022).

The question remains of how to integrate these benefits into a smaller system while still

considering the limited resources and the triple bottom line. As a result, the basic

hypothesis of this thesis is that many of the operational benefits afforded by digital twin

technologies can be extended to smaller systems, although it is recognized that some basic

amount of system data will be needed as well as some level of cooperation by the partner

utility. Part of this research will seek to identify what minimum baseline of information is

needed.

5

1.4 Goals and Objectives

The purpose of this paper is to explore the development of a digital twin for smaller

systems with limited data. The research integrates several existing software packages such

as KYPIPE, EPANET, and MATLAB in an environment that is easy to use and capable of

performing many of the previously described functionality of a traditional digital twin.

Ultimately, this work will serve as a guideline for implementing a low cost, low

maintenance tool for accurately predicting tank levels, pressures, chlorine residuals, and

disinfectant by-product (DBP) formation for small systems. Additionally, this work seeks

to investigate possible pitfalls in creating accurate and reliable digital twin solutions for

small utilities. These goals are met through the successful pursuit of the following

objectives:

1. The first objective of this work is to review other relevant scientific literature

as it relates to distribution system analysis and digital twins.

2. The next objective is to investigate potential methodologies for use in

developing digital twins for real world application. This will include utility

feedback, specific modelling tools, and the appropriate modelling template.

3. The third objective for this work is to research means of developing realistic

demand scenarios for use in evaluating alternative operational policies for the

modelled system. This process will involve assessing the viability and potential

limitations associated with available telemetry data and how to translate this

data into reliable historical water demand time series. It is anticipated that some

type of automated methodology or software will be needed. In this case,

6

alternative algorithms will be explored and the best among these will be chosen

and applied.

4. Following the development of reliable demand forecasts, a digital twin will be

developed which will allow for an operator to select from among these forecasts

a representative demand pattern. The system will then be tested using these

patterns for the purpose of optimizing daily operations and planning for the

selected utility.

5. The final objective of this work is to determine the next steps the utilities of

interest can take to advance their digital twin efforts. In addition to this

objective, the research team seeks to come up with a generalized step by step

process where other similar utilities may take advantage of their available data

and develop their own digital twins at minimal cost and maintenance to their

systems.

1.5 Utility of Interest

Initially, this research began looking at the possibility of developing a digital twin

model for the Whitesburg Water Utility in Letcher County, Kentucky. Unfortunately,

another system had to be considered because of continuing problems gaining access to

critical data about the system because of a severe regional flood that occurred in the area,

which forced a change in utility priorities. Instead of having time to focus on partnering

with UK to develop a digital twin for their water system, they operators were more focused

on flood recovery activities and just keeping the water utility open in support of the rest of

the community. Initial work prior to the flood also identified significant data

inconsistencies with the provided network topology and historical telemetry data which

7

raised questions about the feasibility of developing a baseline water distribution model for

the system. This led to the first general observation about the feasibility of developing a

digital twin for a small water utility. There obviously needs to be a minimum level of data

and access before such a process can be undertaken, and in the case of Whitesburg, this

proved to be infeasible. Thus, digital twins may not be universally feasible for all small

water systems.

As a result of problems with the Whitesburg system, the focus of the research

changed to an alternative system, namely the Lebanon Water Works (LWW) system in

central Kentucky. The Lebanon Water Works (LWW) has a serviceable population of less

than 21,000 people. This “small” system represents a well-run, progressive utility which

has sufficient quantities of reliable data as well as having the fiscal and operational

capabilities of integrating a digital twin model. The nature of this system is conducive to

the testing and development of a framework through which digital twins may be applied to

other small utilities, particularly utilities in the eastern Kentucky region.

1.6 Organization of Thesis

This thesis is divided into the following chapters:

Chapter 1. Introduction: this chapter details the importance of digital twin

technology as a support and decision tool for operators.

Chapter 2. Literature Review: this chapter reviews the types of models

available for modeling flows and pressures in water distribution systems, including

both the Darcy-Weisbach and Hazen-Williams equations as well as broader network

8

algorithms for water distribution modeling. This chapter also reviews the steps

necessary to calibrate such models using actual field data.

Chapter 3. Digital Twin Development: this chapter examines the needs within

the Lebanon Water Works (LWW) system which drove the development of the

digital twin model. Additionally, a general framework for the development of the

digital twin is proposed.

Chapter 4. System Demand Forecast Scenarios. This chapter explains the

development of potential algorithms for use in developing demand forecast scenarios

for use in application in the proposed digital twin. Two separate algorithms were

investigated, a Bisection method for application to two tank systems, and the Box

Complex method for multiple tank applications.

Chapter 5. Digital Twin Application: this chapter details the application of the

digital twin model within the Lebanon Water Works (LWW) using the general

methodology built in chapter 3 and relevant equations described in chapter 4. Outputs

from the hydraulic calibration process as well as app development are displayed in

this chapter.

Chapter 6. Discussion of Results and Conclusion: this chapter discusses the

summary of research with its conclusions.

Chapter 7. Recommendations for Future Research.

Appendix A, this section contains computed demand factors for Lebanon, Kentucky for

the period between June 20th 2023 through July 3rd 2023

9

Appendix B, this section contains the code used to create the digital twin as well as relevant

functions for hydraulic and water quality modelling.

Appendix C, this section contains a user manual for the digital twin application.

Appendix D, this section contains example code on the development of the Box-Complex

method for a four-zone system

10

CHAPTER 2. LITERATURE REVIEW

Many decision-making processes for water distribution networks (WDN) are

fundamentally rooted in having a working hydraulic model. Maintaining proper tank

levels, optimizing pump scheduling, and ensuring proper fire protection are just a few of

the applications within WDN’s that rely on having an accurate, working model. Once a

hydraulic model is properly implemented, the model may be extended to incorporate water

quality features which assist in predicting chlorine residual and disinfection by-product

(DBP) formation. Models can be extended even further by employing “Digital Twin”

concepts as another tool in the operating and management process. Using digital twins

allow operators and engineers to move from static to a more dynamic understanding of the

current state of the WDN.

This section explores hydraulic models and digital twins in detail and provides a

general understanding of the modelling processes used throughout this thesis.

2.1 Hydraulic Modeling

At its core, network analysis methods were developed in order to address the

complexities of reliably delivering water in the growing number of municipal utilities that

were springing up throughout the 20th century. Solutions to these networks, however,

remains to this day a very non-trivial process. Every algorithm used to predict flows and

pressures in WDN’s are based on 1) the conservation of mass and 2) the conservation of

energy equations (i.e., equations 2-1, and 2-2).

 ∑ 𝑞𝑖𝑗𝑗 − 𝐷𝑖 = 0 (2-1)

11

Where ∑ 𝑞𝑖𝑗𝑗 is the sum of flows at all junctions j connected to junction i (flow into

a node is taken as positive) and 𝐷𝑖 is the demand at junction i. The conservation of energy

equation for each pipe segment is given by:

 ℎ𝑖 − ℎ𝑗 = ℎ𝐿𝑖𝑗(𝑞𝑖𝑗) (𝑅𝑜𝑠𝑠𝑚𝑎𝑛 𝑒𝑡 𝑎𝑙, 2020) (2-2)

Where ℎ𝑖 is the head at junction i, ℎ𝑗 is the head at junction j, and ℎ𝐿𝑖𝑗(𝑞𝑖𝑗) is the

head loss in the pipe that connects nodes i and j as a function of flow. Figure 2-1 shows a

schematic for the relevant parameters as they appear for a several connected pipes.

While the conservation of mass equation is linear in terms of q and thus can be

solved explicitly, much of the complexity of network analysis is due to the nonlinear nature

of the energy equation (which can be seen in the equations of the following subsections)

and the implicit calculation of its solution that is required. The approximate headloss

discharge relationship itself may be evaluated using either the 1) The Darcy-Weisbach, or

the 2) Hazen-Williams equations (2-3 and 2-5).

Figure 2-1: Conservation of Mass and Energy Example

12

2.1.1 Darcy-Weisbach Equation

The Darcy-Weisbach equation, formulated as a result of the compiled works of

Weisbach and later Prony and Darcy (Ormsbee and Walski, 2016) is:

 ℎ𝐿 =
𝑓𝐿𝑉2

2𝑔𝐷
 (2-3)

Where ℎ𝐿 is the head loss term, D is the internal diameter of the pipe (ft. or m.), g

is the gravitational constant (32.17
𝑓𝑡

𝑠𝑒𝑐2
 or 9.81

𝑚

𝑠𝑒𝑐2
), V is the fluid velocity (ft/sec), and 𝑓

is the friction factor. Essential to the proper calculation of the head loss in a pipe using the

Darcy-Weisbach equation is finding the friction factor which can be expressed as a function

of the pipe diameter, roughness, and Reynolds number (which is a function of the pipe

diameter, velocity, and fluid viscosity).

As originally formulated, the friction factor was obtained using a graph (typically

referred to as the Moody Diagram – see Figure 2-2) which integrated previous experimental

results of several researchers into a graph relating the friction factor to the Reynolds

number and the ratio of the physical pipe roughness and the pipe diameter. Because of the

lack of a closed form equation to represent the relationships displayed by the graph,

computational applications of the Darcy Weisbach equation were initially limited, although

several authors developed graphical solutions for small networks, (Ormsbee and Walski,

2016).

13

Eventually, the Colebrook-White equation was developed as an approximation to

the friction factor in the Moody diagram but still required an iterative process to solve.

Swamee and Jain resolved this issue by approximating the Colebrook-White equation

which provided a tool for explicitly evaluating 𝑓, resulting in computerized solutions of

head loss (2-4).

 𝑓 =
0.25

[log(
𝜀

3.7𝐷
+

5.74

𝑅𝑒0.9)]
2 (Ormsbee and Walski, 2016) (2-4)

Where 𝜀 is the pipe roughness (ft/ft or m/m), D is the pipe diameter (ft or m), and

𝑅𝑒 is the Reynolds number (dimensionless).

Figure 2-2: Moody Diagram (Ormsbee and Walski, 2016)

14

2.1.2 Hazen-Williams Equation

The Hazen-Williams equation is the less theoretically correct alternative to the

Darcy-Weisbach equation and is given by:

 ℎ𝐿 =
4.72 𝐿𝑄1.852

𝐶1.852𝐷4.87 (2-5)

Where L is the length of pipe, Q is the flow rate (
𝑓𝑡3

𝑠𝑒𝑐
), C is the Hazen-Williams C

factor, and D is the internal diameter of the pipe (ft).

 Where the Darcy-Weisbach equation applies to most flow regimes, roughness’s,

and fluids, the Hazen-Williams equation is only applicable to water under specific

conditions. These conditions however are rarely violated under normal conditions in

distribution systems and do not make the Hazen-Williams ineffective in the analysis of

WDN’s (Ormsbee and Walski, 2016). While computer models are quite capable of

handling the explicit formulation of the Darcy-Weisbach equation, it is still much more

common for modelers and engineers to employ the use of the Hazen-Williams equation

due to its extensive use in the water industry and the common use of the Hazen-Williams

C factor to characterize pipe roughness. The use of the Hazen-Williams equation is further

supported by its ability to provide estimates of flowrate and diameter directly. In this

research we will use the Hazen-Williams equation due to its familiarity with the system

operators.

15

2.1.3 Network Algorithms

The network algorithms used in solving large systems of hydraulic equations come

in many distinct forms and have been continuously developed and improved over the last

70 years. Each method seeks a robust formulation of the conservation of mass and

conservation of energy equations that leads to the most efficient computerized solutions to

modelled pipe networks. This section examines two of the more popular methods,

specifically, the Newton-Raphson Method (NRM) for Pipes (NR-P), and the Global

Gradient Algorithm (GGA) which are the main engines used in KYPIPE and EPANET

respectively. For the sake of clarity, examples of these algorithms will exclude pumps,

check valves, pressure reducing valve’s (PRV), and other similar components. The

application of each method to a typical water distribution network is illustrated using the

example system shown in Figure 2-3.

Figure 2-3: Example Pipe Network

16

Newton-Raphson Method for Pipes

In order to solve the nonlinear conservation of energy equations, they must first be

approximated using a truncated Taylor series which can then be solved iteratively using

the Newton-Raphson method. Technically, the Newton-Raphson method is a multi-

dimensional version of the classical Newton’s method for determining the root of a single

nonlinear equation. Newton’s method is illustrated in Figure 2-4.

The Newton-Raphson method was first used to solve the conservation of mass and

energy equations (expressed in terms of nodal heads) by Martin and Peters in 1963 and has

subsequently been used in many other solution algorithms since. This section looks

specifically at the NRM for pipes which constitutes the engine used in KYPIPE.

Figure 2-4: Generalized Newton-Raphson Method (Bhave and Gupta, 2013)

17

The pipe flows algorithm here is uniquely distinct from the previous NRM for

nodes (Martin and Peters, 1963) and NRM for loops (Epp and Fowler, 1970) in that it is

solving explicitly for the updated flow value as opposed to the change in nodal heads or

flows associated with a loop or flow path. It is noted in (Wood and Rayes, 1981) that the

total number of equations needed to solve the NRM for pipes is:

 𝑗 + 𝑙 + 𝑓 − 1 = # 𝑜𝑓 𝑝𝑖𝑝𝑒𝑠 = # 𝑜𝑓 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑠𝑜𝑙𝑣𝑒 (2-6)

Where j = the number of junction nodes, l = the number of distinct loops, f = the

number of fixed grade nodes (i.e., reservoirs or tanks where the hydraulic grade is known

or specified), and p = the total number of pipes.

Applying this identity to the example system in Figure 2-3 reveals a total of six

pipes, or six unknown pipe flows. As a result, six equations will be required. This will

involve j (or 4) conservation of mass equations and l+f-1 (or 2) conservation of energy

equations. For the example system, the four conservation of mass equations can be

expressed as:

 𝑄1 − 𝑄2 − 𝑄4 = 0 (2-7)

 𝑄2 − 𝑄5 − 𝑄3 = 0 (2-8)

 𝑄6 − 𝑄3 − 𝑄4 = 0 (2-9)

 𝑄6 − 𝐷6 = 0 (2-10)

Where 𝑄𝑖 is the unknown flow in pipe i and 𝑑6 is the demand at node 6 (i.e., 500

gpm). For the example system, one conservation of energy equation can be written for the

only pipe loop (i.e., involving pipes 2, 3, and 4) and another energy equation can be written

18

connecting the two fixed grade nodes (i.e., involving 1, 2, and 5), Mathematically, these

two equations can be expressed as:

 𝐹𝐺𝑁5 − 𝐹𝐺𝑁1 = − ℎ𝐿1 − ℎ𝐿2 − ℎ𝐿5 (2-11)

 ℎ𝐿4 − ℎ𝐿3 − ℎ𝐿2 = 0 (2-12)

Where 𝐹𝐺𝑁5 and 𝐹𝐺𝑁1 represent the water levels in each fixed grade node, and

ℎ𝐿𝑖 represents the head loss in pipe i.

Since equations 2-11 and 2-12 are nonlinear in terms of Q (i.e., equation 2-5), they

must first be linearized before they can be solved. This can be accomplished using

Newton’s method, where:

 𝑄𝑖+1 = 𝑄𝑖 −
𝐻(𝑄𝑖)

𝐻′(𝑄𝑖)
 (2-13)

By approximating each 𝐻(𝑄𝑖) in equations (2-11) and (2-12) using equation (2-

13), each energy equation can we expressed as:

 [H′(Qi){Qi+1} = {−H(Qi) + H′(Qi)(Qi)} + 𝛥𝐸] (2-14)

Where H, H’, and Q, are all vectors and E is a scalar (in this case the difference

in elevation between the two tanks). Now that the energy equations have been linearized,

they may be combined with the conservation of mass equations to yield six equations in

terms of six unknowns: (Q1i+1…Q6i+1) as shown in equations 2-15a and 2-15b (broken

into two equations for visibility).

19

[

1 −1 0 −1 0 0
0 1 −1 0 −1 0
0 0 −1 −1 0 1
0 0 0 0 0 1
0 𝐺𝐿(𝑄2)𝑖 𝐺𝐿(𝑄3)𝑖 𝐺𝐿(𝑄4)𝑖 0 0

𝐺𝐿(𝑄1)𝑖 𝐺𝐿(𝑄2)𝑖 0 0 𝐺𝐿(𝑄5)𝑖 0]

[

𝑄1(𝑖+1)

𝑄2(𝑖+1)

𝑄3(𝑖+1)

𝑄4(𝑖+1)

𝑄5(𝑖+1)

𝑄6(𝑖+1)]

= 𝑋 (2-15a)

 𝑋 =

[

0
0
0
𝑞6

−𝐻𝐿𝑜𝑜𝑝(𝑄𝑖) + 𝐺𝐿𝑜𝑜𝑝(𝑄𝑖)𝑄𝑖

−𝐻𝑝𝑎𝑡ℎ(𝑄𝑖) + 𝐺𝑝𝑎𝑡ℎ(𝑄𝑖)𝑄𝑖 + ∆𝐸]

 (2-15b)

Where 𝐺𝐿(𝑄𝑖)𝑖 is the gradient of the headloss term for a specific pipe (i.e., 𝐺𝐿(𝑄𝑖) =

𝐻𝐿
′(𝑄𝑖)), and where the matrix coefficients are all scalar quantities while the last two terms

in the right-hand side vector are vector quantities e.g., 𝐻𝐿𝑜𝑜𝑝(𝑄𝑖) = 𝐻𝐿4(𝑄4) – 𝐻𝐿3(𝑄3) –

𝐻𝐿2(𝑄2). The algorithm is initiated with initial guesses for each 𝑄𝑖 (which is typically done

assuming an initial velocity of 5 fps in each pipe). These Q’s are then used to solve for the

various 𝐺𝐿 and 𝐻𝐿 coefficients which are then loaded into the matrix and the right-hand

side vector. Once populated, the system of equations is then solved for each Qi+1. Once

determined, these are used to update each 𝑄𝑖, where 𝑄𝑖 = Qi+1, and the process is then

repeated until the Q’s all converge to a stable solution.

Global Gradient Algorithm

The gradient method originally developed by Todini and Pilati (1987) solves the

NRM directly for flows and heads simultaneously within the EPANET software. For

networks with known pipe resistances, in this case they are assumed to be known, we may

formulate the energy equations as follows (Bhave and Gupta, 2013):

 (𝐻𝑖 + ∆𝐻𝑖) − (𝐻𝑗 + ∆𝐻𝑗) = 𝑅𝑥𝑄𝑥
𝑛 + 𝑛𝑅𝑥|𝑄𝑥|

𝑛−1∆𝑄𝑥 (2-16)

20

Where 𝐻𝑖 is the known or assumed head at node i, 𝐻𝑗 is the known or assumed head

at node j, ∆𝐻 is the change in head for each respective node, 𝑅𝑥 is the resistance constant

in the pipe x (specific to which loss equation and units being used) which connects nodes

i and j, 𝑄𝑥 is flow in a pipe x, and ∆𝑄𝑥 is the change in flow in pipe x between iterations.

The Taylor series expansion and subsequent derivation of the NRM results in the

right-hand side of equation 2-16. The left-hand side of the equation represents the updated

heads at nodes i and j given the solution to the NRM on the RHS. By simplifying, (𝐻𝑖 +

 ∆𝐻𝑖) and (𝐻𝑗 + ∆𝐻𝑗) in equation 2-16 may be replaced by 𝐻(𝑖+1) and 𝐻(𝑗+1). By moving

𝑛𝑅𝑥|𝑄𝑥|
𝑛−1∆𝑄𝑥 to the LHS and subtracting 𝑛𝑅𝑥𝑄𝑥

𝑛 from both sides, the equation now

becomes:

 𝐻(𝑖+1) − 𝐻(𝑗+1) − (𝑛𝑅𝑥|𝑄𝑥|
𝑛−1)𝑄𝑥+1 = (1 − 𝑛)𝑅𝑥𝑄𝑥

𝑛 (2-17)

Where 𝑄𝑥+1 is the updated flow in the pipe. What this allows for is the unknowns

(updated heads and flows) to be expressed on the LHS and the knowns to be expressed on

the RHS of the equation. In the case where a FGN (known head) is a starting or terminal

node, move 𝐻(𝑖+1) 𝑜𝑟 𝐻(𝑗+1) over to the RHS respectively. The total number of equations

needed to solve the system is given as:

 𝐽 + 𝑃 = # 𝑜𝑓 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (2-18)

Where 𝑗 is the number of junctions and 𝑝 is the number of pipes (see equation 2-6

for help identifying the number of pipes). Using figure 2-3, there are 4 junctions and 6

pipes making the system of equations to solve equal to 10. The continuity equations remain

the same as in the NRM for pipes whereas the energy equations reflect the GGA

methodology. Please note that when formulating the following equations, 𝐻(𝑖+1) represents

21

the source node, 𝐻(𝑗+1) represents the terminal node. These terms are multiplied by 1 if

flow proceeds from i to j and -1 if it is from j to i.

 𝐻𝑗2 + 𝐺𝑝1(𝑄1)𝑄1(𝑖+1) = 𝐻𝐹𝐺𝑁1 + (𝑛 − 1)𝐻𝐿1(𝑄1) (2-19)

 −𝐻𝑗2 + 𝐻𝑗3 + 𝐺𝑝2(𝑄2)𝑄2(𝑖+1) = (𝑛 − 1)𝐻𝐿2(𝑄2) (2-20)

 −𝐻𝑗3 + 𝐻𝑗4 + 𝐺𝑝3(𝑄3)𝑄3(𝑖+1) = (𝑛 − 1)𝐻𝐿3(𝑄3) (2-21)

 −𝐻𝑗2 + 𝐻𝑗4 + 𝐺𝑝4(𝑄4)𝑄4(𝑖+1) = (𝑛 − 1)𝐻𝐿4(𝑄4) (2-22)

 −𝐻𝑗3 + 𝐺𝑝5(𝑄5)𝑄5(𝑖+1) = −𝐻𝐹𝐺𝑁2 + (𝑛 − 1)𝐻𝐿5(𝑄5) (2-23)

 −𝐻𝑗4 + 𝐻𝑗6 + 𝐺𝑝6(𝑄6)𝑄6(𝑖+1) = (𝑛 − 1)𝐻𝐿6(𝑄6) (2-24)

Where 𝐻𝑗 represents the head at a specified junction, 𝐻𝐹𝐺𝑁 is the head at a fixed

grade node (separate labeling for j and FGN unnecessary and used only for clarity), 𝐺𝑝(𝑄𝑝)

is the gradient in the pipe with respect to the pipes flow (𝑛𝑅𝑥|𝑄𝑥|
𝑛−1), 𝑄(𝑖+1) is the updated

flow term, and 𝐻𝐿(𝑄𝑝) is the headloss in the pipe with respect to the pipes flow. The

following is the matrix representation of the above equations:

2
2

[

𝐺𝑝1(𝑄1) 0 0 0 0 0 1 0 0 0

0 𝐺𝑝2(𝑄2) 0 0 0 0 −1 1 0 0

0 0 𝐺𝑝3(𝑄3) 0 0 0 0 −1 1 0

0 0 0 𝐺𝑝4(𝑄4) 0 0 −1 0 1 0

0 0 0 0 𝐺𝑝5(𝑄5) 0 0 −1 0 0

0 0 0 0 0 𝐺𝑝6(𝑄6) 0 0 −1 1

1 −1 0 −1 0 0 0 0 0 0
0 1 −1 0 −1 0 0 0 0 0
0 0 −1 −1 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0]

[

𝑄1(𝑖+1)

𝑄2(𝑖+1)

𝑄3(𝑖+1)

𝑄4(𝑖+1)

𝑄5(𝑖+1)

𝑄6(𝑖+1)

𝐻𝑗2

𝐻𝑗3

𝐻𝑗4

𝐻𝑗6]

 = 𝑋 (2-25a)

 𝑋 =

[

𝐻𝐹𝐺𝑁1 + (𝑛 − 1)𝐻𝐿1(𝑄1)

(𝑛 − 1)𝐻𝐿2(𝑄2)

(𝑛 − 1)𝐻𝐿3(𝑄3)

(𝑛 − 1)𝐻𝐿4(𝑄4)

−𝐻𝐹𝐺𝑁2 + (𝑛 − 1)𝐻𝐿5(𝑄5)

(𝑛 − 1)𝐻𝐿6(𝑄6)
0
0
0
𝑞6]

 (2-25b)

23

Important to note from this section is the understanding that this methodology

allows for the explicit solution of heads and flows at each iteration which vastly increases

its speed relative to other algorithms. This thesis will continue to develop the framework

of hydraulic modeling assuming that the equations being solved follow the EPANET GGA

because of its use in the digital twin model (more on digital twins in section 2.3).

Extended Period Simulation

The process through which hydraulic models are expanded from static (steady state)

simulations to their more dynamic, temporally varying counterparts is called extended

period simulation (EPS). EPS can be captured through modeling the change in all the tank

volumes over time which may be seen in equation 2-26 (Rossman et. al., 2020).

𝑑𝑉𝑠

𝑑𝑡
= 𝑄𝑠,𝑛𝑒𝑡 (2-26)

Where
𝑑𝑉𝑠

𝑑𝑡
 is the change in tank volume over time and 𝑄𝑠,𝑛𝑒𝑡 is the net flow into or

out of the tank. Continuing with the methodology developed by Rossman in the EPANET

2.2 manual (Rossman et. al., 2020), a second equation is then needed that relates the head

at the surface level of the tank to the volume of the tank (equation 2-27).

 𝐻𝑠 = 𝐸𝑠 + 𝑌(𝑉𝑠) (2-27)

Where 𝐻𝑠 is the tank’s elevation head, 𝐸𝑠 is the tank’s bottom elevation and 𝑌(𝑉𝑠)

is the relative tank water level as a function of volume. Solving the network using the GGA

algorithm results in the flows into or out of the tanks (𝑄𝑠,𝑛𝑒𝑡) which can then be used to

solve 2-28 and 2-29. By solving equations 2-28 and 2-29 the time step may be accurately

24

advanced and hydraulic conditions known within the system.

 𝑉𝑠(𝑡 + ∆𝑡) = 𝑉𝑠(𝑡) + 𝑄𝑠,𝑛𝑒𝑡(𝑡)∆𝑡 (2-28)

 𝐻𝑠(𝑡 + ∆𝑡) = 𝐸𝑠 + 𝑌(𝑉𝑠(𝑡 + ∆𝑡)) (2-29)

 This is the generalized process behind extended period simulations. It should be

noted that any changes such as pumps turning off and on, tanks completely empty or full,

or other similar scenarios will also trigger this process.

2.1.4 Hydraulic Calibration

Another complexity of hydraulic modeling involves the process of ensuring that the

model outputs accurately reflect conditions seen in the field such as pressures, flows, and

tank levels. This process is referred to as hydraulic calibration and it is typically broken

down into 1) pipe roughness calibration using (steady state) and 2) demand calibration

using (extended period simulation). These two parameters typically have the highest

degree of uncertainty and because of this, they are the most in need of high-quality field

observations and data. Calibration for pipe roughness and demands are carried out by

adjusting the Hazen-Williams C factor and demand factors respectively to obtain a useful

model (Ormsbee and Lingireddy, 1997).

Model calibration is accomplished using seven basic steps outlined by Ormsbee

and Lingireddy (1997), 1) identify the intended use of the model, 2) determine initial

estimates of model parameters, 3) collect calibration data, 4) evaluate the model results, 5)

perform the macro-level calibration, 6) perform the sensitivity analysis, and 7) perform the

micro-level calibration. For the purpose of understanding the calibration process, only step

25

7 (micro-level calibration) will be highlighted in the following subsections which focuses

on pipe roughness and demand calibration.

Pipe Roughness Calibration

It is an industry standard to provide pipe roughness factors for pipes supplied by

manufacturers and can be found online in a plethora of handbooks. The Hazen-Williams

C-factors are typically populated into uncalibrated hydraulic models using such typical

values and some programs like KYPIPE will automatically assign default C-factors

depending on what type of material is specified. However, such values might not be totally

accurate since C-factors can decrease over time as a function of water age and water

quality. For example, a 60-year-old cast iron transmission main may have a significantly

reduced C-factor due to the formation of tuberculation.

Because C-factors may also be used in a model to compensate for several other

factors such as fitting losses and system skeletonization, field testing is critical even for

relatively newer pipes (Ormsbee and Lingireddy, 1997). The procedure for conducting

these field tests are as follows (figure 2-5): 1) select a straight-line section of pipe

containing a minimum of 3 fire hydrants, 2) isolate the pipe by closing the downstream

valve, 3) attach pressure gauges to the first two hydrants (called residual hydrants), 4)

measure the elevation differences between the first two hydrants and their respective

pressures, and then flow and record the flow rate at the 3rd hydrant. Finally, calculate the

head loss in the pipe using equation 2-30.

ℎ𝐿 =
(𝑃2− 𝑃1)

32.2
+ (𝑍2 − 𝑍1) (2-30)

26

Where ℎ𝐿 is the headloss in the pipe (ft), 32.2 if the gravitational constant (
𝑓𝑡

𝑠𝑒𝑐2
), 𝑃𝑖

is the pressure measured at the hydrants (convert from psi to psf), and 𝑍𝑖 is the elevation

of the hydrants (ft). Once this is completed, the Hazen-Williams C-factor can be

determined by rearranging equation 2-5 and solving for C.

In almost every case, it is economically infeasible to perform this test on all pipes

in a WDN. Because of this, C-factor tests are usually taken at locations that are generally

representative of the system at hand. If a neighborhood, for example, is known to have

been constructed at a certain time, it is likely that all the pipes in that area are the same and

will be subject to the same C-factor values. These tests should be conducted regularly so

that hydraulic model performance can be maintained or improve over time.

Demand Factor Calibration

Calibration of demand factors is an inherently complicated process since they are

subject to variation both spatially and temporally. Models are always populated with “base

demands” which in most cases are chosen as the average demand seen at that point in the

system over a selected period. Errors at this step (steady state) may be found given a peak

flow scenario where the HGL is drastically affected by losses encountered by pipes,

fittings, PRV’s, etc. (Walski, 2017). After calibrating pipe roughness, If the HGL is still

Figure 2-5: Example Setup for a C-Factor Test

27

well above or below what has been measured in the field and that error is somewhat evenly

distributed across a pressure zone, it can be safely assumed that the base demands need

adjusting.

When considering temporal differences in data, it is important to note that

differences between any two days will likely be significant (Walski, 2017). Using the

region surrounding the University of Kentucky campus, for example, demands may be

altered by home football games, seasonal breaks, fires, etc. Because of this, operators and

engineers must exercise extreme caution when evaluating the intended use of their models

and what data has been used to calibrate the “demand factors”. In most situations,

variations in demand may be accounted for by scaling up and or down these factors,

depending on a water treatment plant’s daily production. However, in the case of fires, this

would not be enough due to the concentrated nature of such a demand (Walski, 2017).

In conclusion, there are numerous factors and methods used to calibrate hydraulic

models which in many cases can overwhelm the operator or engineer attempting to use a

hydraulic model to guide operational decisions. There are hundreds of papers dedicated to

this subject alone, many of which are outside the scope of this paper. When describing their

7-step calibration procedure, Ormsbee and Lingireddy (1997) make note that “one of the

most difficult steps in the process has been the final adjustment of pipe roughness values

and nodal demands”. Because of this, later sections of this paper focus heavily upon the

process of demand factor calibration due to its inherent difficulty and the challenges it

poses to operators and engineers alike.

28

2.2 Digital Twins

Digital twins are a concept that first originated with a presentation given by Dr.

Michael Grieves in a 2002 presentation at the University of Michigan centered around the

creation of a “Product Lifecycle Management Center.” The name was not explicitly that of

“digital twins”, but it had all of the relevant elements: “real space, virtual space, the link

for data flow from real space to virtual space, the link for information flow from virtual

space to real space and virtual subspaces” (Grieves and Vickers, 2016).

 At its core, this concept is rooted in the successful integration of high-quality data

transmitted in real time, to a working model that is capable of producing outputs that may

be seen in the field. Consider that hydraulic models are calibrated and used based on

historical sources of information whereas digital twins are based on current or near current

data streams. The paradigm shift here is equivalent to having a picture of something as it

was in the past (and assuming how it might look and function in the future), or having the

real thing being effectively “mirrored” as it is right now.

 The water industry in the past has been slow to adopt digital solutions such as this

but several case studies in places such as Las Vegas have demonstrated the significant

return on investment that many utilities are looking for. In addition, COVID 19 prompted

an accelerated integration of these digital solutions which ultimately thrust the industry

into this relatively newfound territory (Cooper, 2021).

 Digital twins foundationally may seem simple enough to understand given the

definition by Grieves, however its application in the water industry is consistently met with

confusion due to lack of consensus on a uniform definition. Some considered digital twins

as simply a hydraulic model, others feel the necessity of live data feeds, still others think

29

of it as a supervisory control and data acquisition system (SCADA) (Cooper, 2021).

Questions also surrounded whether application of digital twins change with respect to

utility size, cost, and overall purpose.

 The need for consensus on the topic in the water industry prompted the formation

of the “Digital Twins Committee” (DTC) in AWWA. What resulted from this is the formal

definition of digital twins (within the water industry) as: “A digital, dynamic system of

real-world entities and their behaviors using models with static and dynamic data that

enable insights and interactions to drive actionable and optimized outcomes” (Saša, T., et

al. 2022).

 The definition, while targeted and well formulated, still leaves room for several

different “levels” of digital twins which vary from utility to utility. The AWWA-DTC

defines these as levels zero through three. Level zero, also referred to as “digital twin

ready” are any systems that have gone through the process of collecting historical data of

their systems or even a hydraulic model that can be doing much more than they are

currently doing (Cooper et al., 2022). Many utilities, especially those with fewer resources

find themselves at this stage.

 Level one digital twins are called “informational twins” and use the virtual

representations (typically hydraulic models) built during level zero and incorporate

historical data to improve the performance of the model (Cooper et al., 2022). For example,

historical information may come from sources such as SCADA or GIS that will allow for

more accurate prediction of day-to-day operations and planning.

30

 Level two digital twins are defined as “Operational Twins” and are different from

level one twins in that they incorporate live data streams. This version of a digital twin

most closely fits the definition originally proposed by Grieves and Vickers (2016) and

therefore is the most traditional when considering other industry standards. If created

properly, these twins give significant advantages to their respective utilities. For example,

Houston Water Planning, which serves over 5 million residents, has created a functional

digital twin and has met great success in the process. By integrating SCADA and GIS

information in real time, they have been able to identify valves which had been assumed

open but were closed due to line breaks that occurred several years ago. This correction in

the model vastly improved hydraulic modeling for the system and overall management

decision making (Tripathi, et al., 2021).

 The most advanced form of a digital twin is defined as “Connective Twins” and are

the end goal for all utilities operating under this framework. Connective twins in simple

terms are a digital twin that communicates with other digital twins. For example, there may

be a digital twin that has real time information on electrical rates, usage, and forecast

demands that integrates with a hydraulic digital twin performing similar functions. By

having the two twins communicate, electrical usage at the water utility may be optimized

to reduce cost and overall energy consumption.

 While these definitions are useful, it is important to understand that a utility

typically will find itself somewhere in between these levels and digital twin transformation

may be viewed on a spectrum of readiness, implementation, and use.

31

CHAPTER 3. DIGITAL TWIN DEVELOPMENT

 In section 2.2, it was noted that digital twin applications may look different between

any two utilities depending on their specific system needs and current levels of data

management and integration. Using Lebanon Water Works (LWW) as a case study

representing small water systems; hydraulic and water quality data were collected, and a

digital twin was built for this WDN. This section details the processes undertaken to

understand the specific needs of this utility, data collection methods, and challenges unique

to this system that may cause the success or failure of producing a useful digital twin for

distribution operators.

3.1 Lebanon Water Works

Lebanon Water Works (LWW), located in Marion County, Kentucky, provides

drinking water to the city of Lebanon with a directly serviceable population of 6,412 and

an indirectly serviced population of 14,006 (WRIS, 2023). Water is mostly drawn from the

Rolling Fork River and occasionally from Marion County Lake as a reserve. The system

currently maintains 3 tanks. In the northern portion of the system, there is an elevated tank

that has a capacity of 250,000 gallons. The other two tanks, which are identical in geometry

and are located adjacent to one another, are in the central part of the system and have a

combined storage of 188,000 gallons. There is a booster pump located near the western

side of the system that pumps to the Springfield Road tank in the north. The water treatment

plant in the very southern end of the system delivers approximately 2.6 MGD and has a

design capacity of 5.2 MGD. LWW sells most of its water (approximately 62% of last

32

year’s annual volume) through 10 key points throughout the WDN. All of these attributes

are detailed in figure 3-1.

Figure 3-1: Hydraulic Model of Lebanon Water Works

33

 3.1.1 Understanding System Needs and Relevant Data

 The original model for this research was provided by Jim Thompson of Kentucky

Engineering Group located in Versailles, Kentucky. The model elevations, pump curves,

tank elevations, and overall system topology were validated through coordinated efforts

between Mr. Thompson, LWW staff, and the author. Master meter data for all 10 selling

points were provided by the utility for dates from 6/19/2023 through 7/20/2023 at a data

resolution of 1 hour. Data for tank levels, pump intake and discharge pressure, water

treatment plant (WTP) flow rate, and free chlorine residual were provided from 6/1/2023

through 7/24/2023 with a data resolution of 2 minutes. Master meter, tank, and pump

information were all provided by LWW.

 Given the quantity and quality of available data, discussions around building a

digital twin for LWW were very different than those of communities in rural Eastern

Kentucky. LWW identified the following as the key outcomes they were seeking to obtain

through the development and use of a digital twin: 1) capability for evaluating the

placement of a new tank and a new 16” transmission main, 2) prediction of pressures at

key junctions, 3) prediction of water age in tanks, and 4) prediction of tank levels over a

24 hour period, 5) prediction of free chlorine residual at key junctions, and 6) prediction of

DBP indicators such as HAA5. The utility also expressed a desire to be able to access such

information through an easy-to-understand graphical user interface (GUI) that is accessible

to distribution operators who are assumed to have little to no knowledge of hydraulic

modeling.

34

3.2 Modeling Methodology and Tools Used

 The main tool used in processing the hydraulic data for this application is EPANET.

EPANET is an open source hydraulic and water quality engine developed by the United

States Environmental Protection Agency (U.S. EPA) which is capable of producing results

for both steady state and extended period simulations at incredible speeds (section 2.1.3).

By taking the original model developed by Jim Thompson and the Kentucky Engineering

Group in KYPIPE, the data was first exported from KYPIPE as a “.inp” file and stored for

processing.

 The GUI development platform selected for this application is MATLAB which

offers extremely simple dashboard development and user elements. Through the EPANET-

MATLAB toolkit (Eliades et al., 2016), the MATLAB GUI elements can directly interact

with the EPANET engine and display useful results to the operator.

 For this thesis, elements available for user input were limited to, 1) operational

information associated with the WTP and booster pump operations, 2) initial tank levels,

3) free chlorine concentration at the WTP, 4) bulk and wall decay coefficients (preset), 5)

basic demand patterns, and 6) total time and time step of simulation.

 Outputs in this application do not meet all the expected outcomes put forth by

LWW due to the time limitations of this work. Outputs developed as a part of this research

include: 1) prediction of pressure at key junctions, 2) prediction of free chlorine at key

junctions, 3) prediction of DBP formation at key junctions, 4) tank water age, and 5) tank

levels over a 24-hour period. Other outputs include a simple graphical display which will

give the user the ability to quickly and simply visualize all of these parameters which can

then be used to drive actionable decisions.

35

CHAPTER 4. HYDRAULIC CALIBRATION OF DIGITAL TWIN (LEBANON)

 Hydraulic calibration is the foundation upon which useful information may be

extracted from water distribution models. This process, highlighted in section 2.1.4, can

prove to be extremely difficult depending on the quality and quantity of available data.

LWW was selected to pilot this study due to the progressive nature of the utility and its

ability to provide high quality system information that most nearly mimics the live data

streams that are characteristic of digital twins.

 Assumptions made relative to the hydraulic calibration process for the digital twin

are as follows: 1) pipe roughness’ given in original model are sufficiently calibrated, 2)

pump curves are sufficiently calibrated, 3) nodal base demands are sufficiently calibrated,

4) nodal elevations are correct, 5) overall system topology is correct within reason (no

outstanding errors), 6) sensor data at tanks and pumps are accurate, and 7) all information

given is reflective of standard conditions within the system.

 The purpose of this thesis is to present ways in which a digital twin can be

developed efficiently as a decision support tool for operators. While other calibration steps

are critical to the development of a useful model, the parameter that drives much of the

error and variation of results for extended period simulations are the spatial and temporal

distribution of demand factors.

 Typically, modelers approach this step in the calibration process by ensuring that

their modeled tank level changes in their respective models are tracking with observed

telemetry data. While this provides a “snapshot” of how the utility might operate on a

typical day, this information is susceptible to significant error in the actual hydraulics (tank

36

levels, demands, flow rates, etc.) seen in the system. Demand variation from one day to the

next may be as high as 20% or more and raises the concern of calibrating a model from a

single days’ worth of information (Walski et al., 2012).

 While the benefits of having a calibrated model are known, the cost for most small

utilities is prohibitive due to the time it takes to calibrate and validate extended period

simulations which is a highly iterative and time intensive process. In addition, most

operators of these systems do not have engineering backgrounds and typically lack great

understanding of how and when models are calibrated to meet their needs. In this study,

the primary focus was on determining the correct temporal variations of nodal demands for

actual observed days. Since individual customer demands were not readily available,

several surrogate measures (i.e., pump discharges, master meters, and water tank levels)

were used to calibrate the associated temporal demand distributions. The final calibration

process was then performed by coupling the associated EPANET model with a traditional

nonlinear optimization algorithm. To facilitate this process, the system was first broken

down into two different demand management areas.

4.1 Demand Management Areas (Pressure Zones)

The calibration of demands for a water distribution system can be facilitated by

either taking advantage existing zone separations (i.e., using pressure zones) or by creating

artificial water demand zones through the installation and closing of isolations valves

which are then connected by water meters. Pressure zones are delineated by closing a series

of valves that isolate one region of a distribution system from another. By creating these

zones, portions of a WDN that exist at higher elevations can benefit from increased

37

pressures from booster pump stations and storage tanks while protecting assets at lower

elevations which would likely be damaged from these excessive pressures. To demonstrate

the concept of pressure zones, a valve is closed in the example system in figure 4-1 that

causes two independent zones to be created. When opening that same valve in figure 4-2,

assets in the south are subject to excessive pressure from the booster pump whereas service

in the northern portion of the system will likely be inadequate due to low pressures.

Figure 4-1: Pressure Zone Delineation within an Example Network

38

The ultimate number of pressure zones to be modeled can impact the best choice of

an optimization algorithm. In general, a simple bisection method was found sufficient for

two zone systems, while the Box-Complex Method (Box, 1965) was found sufficient for

multi-zone systems with more than 2 pressure zones.

Figure 4-2: Example Network with Open Valve and Unintended Pressures

39

4.1.1 Bisection Algorithm (Two Zone System)

 In some cases, especially with smaller systems, a WDN may be conveniently

divided into two distinct pressure zones or demand management zones. To find the

optimized demand factors for these zones, an objective function must first be defined. The

objective function is simply the function whose value is minimized by the chosen

algorithm. In the case of the Lebanon system, the following objective function was used:

𝑓(𝐷𝐹𝑧1,𝑡) = (𝑇𝑚,𝑧1,𝑡 − 𝑇𝑟,𝑧1,𝑡) (4-1)

 Where f(𝐷𝐹𝑧,𝑡) is the function to be minimized where 𝐷𝐹𝑧,𝑡 represents the demand

factor for zone z and time t, 𝑇𝑚,𝑧1 is the modeled tank level in zone 1, 𝑇𝑟,𝑧1 is the observed

tank level in zone 1 and whose values are a function of the demand in zone 1. These values

of the decision variables (i.e., the 𝐷𝐹𝑧,𝑡) are further constrained to not violate conservation

of mass across the system for a given total demand associated with time t (i.e., 𝑇𝐷𝑡).

𝑄𝑝𝑙𝑎𝑛𝑡,𝑡𝑖
+ 𝑄𝑡𝑎𝑛𝑘,𝑡𝑖

− 𝑄𝑠𝑜𝑙𝑑,𝑡𝑖
 = 𝑇𝐷𝑡 (4-2)

 Where 𝑡 is the time step, 𝑄𝑝𝑙𝑎𝑛𝑡 is the flow from the plant, 𝑄𝑡𝑎𝑛𝑘 is the flow from

the tanks (where flow out of tanks is taken as positive), 𝑄𝑠𝑜𝑙𝑑 is the flow out of the system

at its boundary (water sold to other utilities, these are given from master meter data), and

𝑇𝐷𝑡 is the total demand. Total demand may be expanded to include the two zones within

the system as they are typically modeled in hydraulic software:

𝑇𝐷 = (𝐷𝐹1 ∗ (Σ𝐵𝐷1)) + (𝐷𝐹2 ∗ (Σ𝐵𝐷2)) (4-3)

40

 𝐷𝐹1 is the demand factor for zone 1, Σ𝐵𝐷1 is the sum of the nodal base demands in

zone 1, 𝐷𝐹2 is the demand factor for zone 2, and Σ𝐵𝐷2 is the sum of the base demands for

zone 2. By combining equation 4-2 and 4-3, the system constraint becomes:

(𝐷𝐹1,𝑡𝑖
∗ (Σ𝐵𝐷1)) + (𝐷𝐹2,𝑡𝑖

∗ (Σ𝐵𝐷2)) = 𝑄𝑝𝑙𝑎𝑛𝑡,𝑡𝑖
+ 𝑄𝑡𝑎𝑛𝑘,𝑡𝑖

− 𝑄𝑠𝑜𝑙𝑑,𝑡𝑖
 (4-4)

 Because plant flow rate and the flow rate of water sold to neighboring utilities are

known parameters (metered data) whose exact values may be input to the model as fixed

boundary conditions, the objective function simply becomes a problem of minimizing the

difference between the model tank levels and the real (known) tank levels given these

constraints.

 Since the analysis and optimization of demand factors is not necessarily a

straightforward process (see section 2.1) this task would take an experienced engineer

many iterations with a hydraulic model to achieve values that match field conditions. This

process however is easily automated using the bisection method.

The bisection method is a simple, but very powerful algorithm that allows for the

“bracketing” of a solution to non-linear objective functions. Consider figure 4-3, a non-

linear representation of the difference between real and model tank levels within a single

zone as a function of that zone’s respective demand factors.

41

The bisection method is performed by applying the following steps to the objective

function in figure 4-3:

1) Select two possible solutions (a high demand factor and a low one) that satisfy the

problem constraint (i.e., equation 4-4) and then evaluate the objective function.

 2) Observe the results from equation 4-1, the goal being to minimize the difference

between model and real tank levels.

3) The small demand factor will yield a positive result for the objective function and the

high demand factor will be negative.

4) The solution is somewhere in the middle (also known as a bracketed solution), by testing

a 3rd point that lies directly between the first two, we begin to “squeeze” the solution.

Figure 4-3: Example of Objective Function In Equation 4-1

42

5) if the 3rd point is positive, remove the old demand factor that resulted in a positive

objective function. If negative, remove the old demand factor and repeat this process until

a solution is found.

6) Plug the optimized value of 𝐷𝐹1 into equation 4-4 and solve for 𝐷𝐹2

 By utilizing step 6 at every iteration, the bisection method needs only to be applied

to a single demand factor, in this case 𝐷𝐹1. As the objective function in equation 4-1 is

minimized, the mass balance in equation 4-4 also yields a minimized difference in real and

model tank levels for zone 2. Figure(s) 4-4 and 4-5 give a graphical representation of the

bisection method while figure 4-6 shows a flow chart representing the general process of

the Bisection method.

Figure 4-4: Example of Initializing the Bisection Method

43

Figure 4-5: Example of Improved Solution Using the Bisection Method

Figure 4-6: General Structure of Bisection Method

44

4.1.2 Box-Complex Algorithm (Multi Zonal System)

 When solving for systems with more than two demand management areas,

algorithms which can handle a solution space in multiple dimensions become necessary.

Equation 4-4 for multi zonal systems becomes:

 Σ(𝐷𝐹𝑛,𝑡𝑖
∗ (Σ𝐵𝐷𝑛)) = 𝑄𝑝𝑙𝑎𝑛𝑡,𝑡𝑖

+ 𝑄𝑡𝑎𝑛𝑘,𝑡𝑖
− 𝑄𝑠𝑜𝑙𝑑,𝑡𝑖

 (4-5)

Where n is the number of zones (dimensions) that will be used within the Box-

Complex algorithm. Because solving for one factor does not guarantee an improved

solution for other factors given systems with more than two pressure zones, equation 4-1

becomes:

 𝑓(𝐷𝐹𝑧1,𝑡…𝐷𝐹𝑧𝑛,𝑡) = Σ(𝑇𝑚,𝑧𝑛,𝑡 − 𝑇𝑟,𝑧𝑛,𝑡)
2 (4-6)

 Where Σ(𝑇𝑚,𝑧𝑛,𝑡 − 𝑇𝑟,𝑧𝑛,𝑡)
2 is the sum of the squared difference between real and

model tank levels for all tanks within a given system and 𝐷𝐹𝑧1,𝑡…𝐷𝐹𝑧𝑛,𝑡 describes all

associated demand factors for a system with multiple pressure zones.

 The Box-Complex method is the constrained form of the Simplex algorithm first

introduced by Spendley, Hext and Himsworth (Ormsbee, 1979). A simplex is a geometrical

figure consisting of N dimensions, N+1 vertices, and all their connecting sides (Press et al,

2007). Constraints for this algorithm are formulated as either explicit or implicit. Explicit

constraints provide explicit bounds on the values that the decision variable can assume.

Implicit constraints consist of other equations expressed in terms of the decision variables

whose values are also constrained to be either equal to a value (i.e., 0), or greater than or

less than a non-zero value. The Box-Complex method is especially suited for nonlinear

45

optimization problems involving both explicit and implicit inequality constraints. In some

cases, implicit equality constraints can be enforced by a separate simulation model which

is then linked with the Box-Complex optimization algorithm.

 The following generalized steps for the Box-Complex method were referenced

from Dr. Lindell Ormsbee’s original master’s degree thesis “Optimization of Hydraulic

Networks Using the Box-Complex Optimization Technique and the Linear Method of

Hydraulic Analysis” (1979) and have been slightly changed for this unique application.

1) Generate 𝑘 ≥ 𝑛 + 1 points, where n is the number of function variables. Each point

contains the necessary number of demand factors depending on the number of

pressure zones in the WDN. All of the points are randomly generated with a

standard randomizer within programs such as MATLAB and are bounded by

equation 4-5. These points are also bounded by an explicit constraint which requires

all demand factors to be greater than 0 (homeowners will not discharge into the

distribution system).

2) Each point is then evaluated given the objective function from equation 4-6. The

point with the highest value is deemed “worst” and will be used to then generate a

new point in the opposite direction using following steps.

3) Reflect the worst point through the centroid of the remaining points:

𝑃∗ = (1 + 𝛼)�̅� − 𝛼𝑃ℎ (4-7)

Where 𝑃∗ is the new point, 𝛼 is an expansion coefficient, �̅� is the centroid of the

remaining points (all points excluding the current worst point), and 𝑃ℎ is the worst

point.

46

4) Once 𝑃∗ is generated it is first checked to ensure it satisfies the explicit constraint

(i.e., 𝑃∗ > 0). If not, it is contracted halfway back toward the center using equation

4-8 until a feasible point is found. If 𝑃∗ yields an objective function value less than

𝑃ℎ , then we keep this value and discard 𝑃ℎ. If the new point is worse than 𝑃ℎ,

(i.e., has a larger value of the objective function than Ph), then the new point is

again contracted back towards the centroid using:

𝑃∗∗ = 𝜔𝑃ℎ + (1 − 𝜔)�̅� (4-8)

Where 𝑃∗∗ is the new point generated and 𝜔 is the contraction coefficient. This

process is continued until a new point is generated which yields an objective

function value less than the current Ph. Once this point is found, it then replaces Ph

in the complex, and the process is repeated. Assuming the solution space is convex

relative to the objective function, the algorithm should converge to a solution.

For this formulation of the Box-Complex algorithm, it is recommended that the

expansion coefficient remain relatively small (anywhere between 1-2 depending on

application). By using an expansion factor greater than 1 the simplex is allowed to “search”

different regions of the solution space. While values greater than 2 are also acceptable, they

may lead to slower convergence within this specific application. Contraction coefficients

may be anywhere from 0-1 where 0 will result in the centroid and 1 will result in the old

worst point respectively. Additionally, not all demand factors (dimensions in a complex)

for the WDN are used. In order to satisfy conservation of mass, (n-1) factors are

47

manipulated within the complex (where n is the total number of pressure zones), after

which the 𝑛𝑡ℎ factor is generated by solving equation 4-9:

 𝐷𝐹𝑛, 𝑡𝑖
=

𝑄𝑝𝑙𝑎𝑛𝑡, 𝑡𝑖
+ −⁄ ∑ (𝑄𝑡𝑎𝑛𝑘 𝑥,𝑡)

𝑜𝑓 𝑇𝑎𝑛𝑘𝑠
𝑥=1 − 𝑄𝑠𝑜𝑙𝑑,𝑡𝑖 − ∑ (𝐷𝐹𝑥, 𝑡∗(𝛴𝐵𝐷𝑥))

(𝑛−1)
𝑥=1

𝛴𝐵𝐷𝑛
 (4-9)

Where 𝑄𝑝𝑙𝑎𝑛𝑡, 𝑡𝑖
 is the flow into the system from the WTP, ∑ (𝑄𝑡𝑎𝑛𝑘 𝑥,𝑡)

𝑜𝑓 𝑇𝑎𝑛𝑘𝑠
𝑥=1

is the sum of all the flows from every tank in the system at a specific time step (where

leaving the tanks are considered positive), 𝑄𝑠𝑜𝑙𝑑,𝑡𝑖 is the water being sold, and

∑ (𝐷𝐹𝑥, 𝑡 ∗ (𝛴𝐵𝐷𝑥))
(𝑛−1)
𝑥=1 are the demands in every zone with the exception of the 𝑛𝑡ℎ zone.

An example of the expansion and contraction process is demonstrated in figures 4-

7 and 4-8 below (yellow circle is the solution). Given the dimensionality of the solution

space in these figures, the implied number of demand factors and therefore their respective

pressure zones are three. The Box-Complex method first determines the demand factor for

the first two zones (𝐷𝐹1 and 𝐷𝐹2) while the demand factor for zone 3 (𝐷𝐹3) is solved using

equation 4-9 and is dependent upon 𝐷𝐹1 and 𝐷𝐹2. This same approach can be extended to

problems involving additional demand factors (i.e., > 3). The general structure of the

algorithm is provided in Figure 4-9. Example code for optimizing a single hour for a four-

zone system is given in Appendix D

It should be noted that the Box-Complex method does not guarantee the global

maximum or minimum. However, if the algorithm is repeatedly run with a different set of

initial demand factors and it continues to converge to the same solution, that would suggest

that a global optimum has been achieved.

48

Figure 4-7: Example Expansion Using the Box-Complex Method

Figure 4-8: Example Contraction Using the Box-Complex Method

49

4.2 Hydraulic Calibration of LWW Digital Twin

 The hydraulic model underlying the digital twin was originally provided by the

Kentucky Engineering Group while consulting for the LWW system. This model, given as

a “.p2k” KYPIPE file, was converted into an EPANET “.inp” format and checked to ensure

no information was lost in the export process.

The nodal elevations and C-factors for the pipes given from this model are assumed

satisfactory for the desired outcomes and have not been altered from the original file. Other

topographical information in the model was confirmed using information provided by the

LWW system. In particular, the Springfield Tank, which has a non-cylindrical geometry,

required updating so that it accurately reflected discharge rates as a function of changing

elevation. Similarly, the two pumps within the model, the water treatment plant (WTP) and

booster pump stations have been confirmed as accurately populated within the model (per

meeting with Kentucky Engineering Group) and have not been altered in any way.

Figure 4-9: General Algorithm for Box-Complex Method

50

Calibration of the model therefore encompasses the accurate creation of demand

factors which comprise the extended period simulation (EPS). The first step taken towards

accomplishing this was to delineate the pressure zones within the system itself. Figure 4-

10 identifies the valves that were closed in the actual system (as well as in the model) which

allowed for the isolation of “Zone 1” and “Zone 2”. Zone 1, which is associated with

Cavalry Tanks and the water treatment plant, is in the southern portion of the system. Zone

2, which is associated with the Springfield Tank and booster pump, is in the northern

portion of the system.

Figure 4-10: LWW North and South Pressure Zone Delineation

51

After splitting the system into two clearly defined zones, the total base demand for

each zone (Σ𝐵𝐷 in equation 4.4) is found by summing the base demands of junctions within

zones 1 and 2 respectively:

Σ𝐵𝐷1 = 254.99 𝑔𝑝𝑚

Σ𝐵𝐷2 = 116.35 𝑔𝑝𝑚

These values are unique to the closed valve locations which, if changed, will require

redistribution of the base demands to zone 1 and 2 respectively. Having found these values,

equation 4.4 becomes:

(𝐷𝐹1,𝑡𝑖
∗ (254.99 gpm)) + (𝐷𝐹2,𝑡𝑖

∗ (116.35)) = 𝑄𝑝𝑙𝑎𝑛𝑡,𝑡𝑖
+ 𝑄𝑡𝑎𝑛𝑘,𝑡𝑖

− 𝑄𝑠𝑜𝑙𝑑,𝑡𝑖

Now that the relevant model parameters on the left-hand side of the equation have

been found, we move to the right-hand side dealing with real model data given from LWW.

The parameters on the right-hand side including plant flow rate, and tank discharge

(which are a function of tank geometry and level over time) were given for the time period

of June 1st, 2023, through July 24th, 2023, with data points given every two minutes. The

last parameter, the sum of the master meter demands, were given for the time period of

June 19th, 2023, through July 20th, 2023, with information on these demands given every

hour. With the master meter demands constraining the period for which we can create the

proper demand factors, a two-week period was chosen starting on June 20th and running

through July 3rd.

52

The next step in this process is to understand how we can appropriately use this

data to find demand factors for the system. Throughout the entirety of this project, there

were a plethora of data errors that were encountered and cleaned which took place before

the implementation of the algorithm. While a more comprehensive exploration of pitfalls

arising from flawed data can be found in Walski et. al (2012), this discussion specifically

addresses the issues of “data latching” and managing “noise”.

Data latching occurs when the reporting interval for the SCADA system is much

more frequent than the data being sent to it from the transmitter itself. In the case where

signal is lost from the tank, the SCADA system will continue to report the same data point

until the signal is found again. In observing the raw data set from LWW, there are several

instances where the value of the tank levels does not appear to change for several minutes

at a time. This is highly unlikely to reflect reality and it is concluded to be a result of data

latching.

Tank sensors are also susceptible to noise, which is defined as the “random

variations of sensor output unrelated to the variation in sensor input” (Masi, 2020). In the

case of telemetry data, electronic sensors may only be expected to be accurate to within

one-tenth of a foot (Walski et al., 2012). Because tank discharge is calculated as a function

of the change in tank level between two time periods, noise may wreak havoc in cases

where the period is sufficiently small (figure 4-11).

53

In the first formulation of the bisection method for this digital twin, time intervals

of 2-minutes were used for the tanks while pump data was disaggregated from their original

1-hour frequency into 10-minute frequencies. Errors that propagated were negative

demands which were necessary to satisfy equation 4.4 but were obviously not

representative of reality and occurred in approximately 21% of the 720 computed demand

factors. By choosing a time interval of 1 hour, equation 4.4 resulted in demand values that

were almost never in error (outside of significant periods of data latching) and accounted

for only 2% of the 672 computed demand factors. This is consistent with expected error in

tank flow rates using a 1-hour interval given the error in tank level (figure 4-12).

Figure 4-11: Example of Noise in Tank Data (Walski et al., 2012)

54

The function created in MATLAB to calculate these demand factors is called

“demandButtonTestPushed” (Appendix B) and follows these general steps:

1) Initialize the hydraulic simulation with starting tank levels, water treatment

plant flow rates, booster pump on/ off times, and master meter demands.

2) Create an array where the first row contains demand factor values for zone 1

which are very low (.001) and produce demand factors for zone 2 in row two

by plugging 𝐷𝐹1 into equation 4.4 and solving for 𝐷𝐹2.

3) Create a second array making the demand factor for zone 2 very small (.001)

and produce demand factors for zone 1 that are constrained by equation 4.4

Figure 4-12: Flow Error Using Separate Time Intervals (Walski et al., 2012)

55

(with this array also having the factors for zone 1 and 2 occupying rows 1 and

2 respectively).

4) By doing this, we have two arrays that contain or “sandwich” the solution

(being that each zone contains factors which are as high and as low as they may

be when constrained by equation 4.4).

5) A third array is generated by taking the first rows of the first two arrays,

summing them, and then dividing them by two. Once this is done, its

complimentary demand factor in zone 2 is calculated again by using equation

4.4.

6) This third point is the one which will be tested and updated by the bisection

algorithm. After running the simulation, if the error value is negative, the tank

level in the model is too low and the demand factor needs to become smaller.

This is accomplished by removing the 1st array which contained the high

demand factor for zone 1 and keeping the other two arrays. A new third array

is created, and the process continues until sufficient convergence (which is

arbitrarily defined as when the model tank level for zone 1 is within .005 feet

of the real tank level.)

7) In the cases where tank levels cannot converge on their real-world values, an

error adjustment is made. This adjustment takes the total flow needed to either

be discharged or added to the tanks on the pervious iteration and adds that

volume to the total demand (right hand side of equation 4.4) onto the current

iteration. This will cause the current iteration to produce demand factors that

are not technically representative of reality, however, it will realign the tank

56

levels to where they are supposed to be at a given time step and will allow for

the following demand factors to be calculated properly.

An example of this process using data from June 20th for a single hour is calculated

as follows:

The starting tank levels are 1009.40’ and 966.07’ for Springfield Road and Calvary

Tanks respectively. There is no flow coming from the water treatment plant at midnight on

the 20th of June, the booster pump is not on in that first hour, and the total master meter

demand over this period is found to be 489.01 gpm. After 1 hour the tank levels are

1007.37’ and 965.30’ which results in a discharge from both tanks of 345.15 gpm and

352.69 gpm. Equation 4.4 therefore becomes:

(𝐷𝐹1 ∗ (254.99)) + (𝐷𝐹2 ∗ (116.35)) = 0 + 697.84 − 489.02

To create the first array (in this case it will just be the single demand factor for the

first hour) the value of 𝐷𝐹1 is set to .001 and 𝐷𝐹2 is calculated as 1.79. The same is done

for array 2 by setting 𝐷𝐹2 to .001 and solving for 𝐷𝐹1 which is calculated as 0.82. Array 3

is calculated as the average of row 1 of both arrays and is found to be 0.41. Row 2 of array

3 is again constrained by equation 4.4 and found to be 0.89.

𝐴𝑟𝑟𝑎𝑦 1 = [
0.001 𝐷𝐹1,𝑡2 𝐷𝐹1,𝑡𝑛

1.79 𝐷𝐹2,𝑡2 𝐷𝐹2,𝑡𝑛
]

𝐴𝑟𝑟𝑎𝑦 2 = [
0.82 𝐷𝐹1,𝑡2 𝐷𝐹1,𝑡𝑛

0.001 𝐷𝐹2,𝑡2 𝐷𝐹2,𝑡𝑛
]

𝐴𝑟𝑟𝑎𝑦 3 = [
0.41 𝐷𝐹1,𝑡2 𝐷𝐹1,𝑡𝑛

0.89 𝐷𝐹2,𝑡2 𝐷𝐹2,𝑡𝑛
]

57

Testing the 3rd array yields an error of -0.06’ for the cavalry tank. Because this is

negative, array 2 is deleted and a new third point is created between the remaining two

arrays.

𝐴𝑟𝑟𝑎𝑦 1 = [
0.001 𝐷𝐹1,𝑡2 𝐷𝐹1,𝑡𝑛

1.79 𝐷𝐹2,𝑡2 𝐷𝐹2,𝑡𝑛
]

𝐴𝑟𝑟𝑎𝑦 2 = [
0.41 𝐷𝐹1,𝑡2 𝐷𝐹1,𝑡𝑛

0.89 𝐷𝐹2,𝑡2 𝐷𝐹2,𝑡𝑛
]

𝐴𝑟𝑟𝑎𝑦 3 = [
0.21 𝐷𝐹1,𝑡2 𝐷𝐹1,𝑡𝑛

1.33 𝐷𝐹2,𝑡2 𝐷𝐹2,𝑡𝑛
]

The error value with the new 3rd array is now .05 for the Cavalry Tank. This process

is continued until the tank in zone 1 is within the .005’ tolerance. Because this equation is

perfectly constrained by equation 4.4, the demand factor in zone 2 will result in tank levels

at or near the tolerance specified for zone 1.

While convergence in this case and most of the other cases is not an issue, for the

sake of demonstration let’s assume that the levels in both tanks are still higher than they

are supposed to be at this time step using the optimized demand factors. If the total volume

of flow in the model that needs to be drained to meet the real-world tank levels is 5000

gallons, that value will be added to the right-hand side of equation 4.4 on the next iteration.

The demand factors in the next iteration will then compensate for the error from the

previous iteration by being slightly higher than they would’ve been had the error not been

there. With the tank levels back to where they should be at the end of hour 2, the demand

factors for hour 3 may now be comfortably calculated.

58

This approach was used to generate a series of daily demand patterns (using a 1-

hour time step) for each day between Jun 20th and July 3rd, 2022 (see Appendix A). These

patterns thus provide the operators with a library of actual system demand patterns for

individual days of the week including weekends (i.e., Saturday and Sunday). This leaves

the operator with the option of providing an estimate of the projected total demand for the

next day along with one of the available demand patterns which will then be scaled up or

down to match the projected demand, and thus provide a projected hourly demand pattern

for the next day.

59

CHAPTER 5. DIGITAL TWIN APPLICATION

 Combining the system needs and general methodology in Chapter 3 with the

calibration steps noted in Chapter 4, this chapter details the specific steps taken to develop

a digital twin model for the Lebanon Water Works (LWW) system. In addition, details are

provided on the process of creating the graphical user interface as well as validating model

outputs.

5.1 Creation of the Graphical User Interface (GUI)

 MATLAB version R2022A (MathWorks, 2022) was selected as the development

platform for creating a GUI for the Lebanon digital twin. MATLAB was chosen for this

task because of the existing link between the EPANET engine through the EPANET-

MATLAB toolkit in addition to the “App Developer” toolkit existing within the MATLAB

framework. The app developer toolkit (MathWorks, 2022) allows for simple drag and drop

interactive elements where functions may be coded which tie EPANET functionality to the

button itself.

The first step in this process is the development of the home page, where operators

first engage with the digital twin (figure 5-1). Here we can see all the elements with which

users can interact and where information can be placed to initialize their EPS simulation.

6
0

Figure 5-1: Home Screen for the Digital Twin

61

In the top left corner, users encounter the “Sim Times and Water Quality” section.

Here the length of the simulation, its time and water quality steps (which control the

precision of the results), the bulk and wall decay rates, and chlorine concentration in (mg/l)

are specified (figure 5-2). The hydraulic and water quality time steps are given as options

to the operator in the event that refinement in report results is deemed appropriate. The

bulk and wall decay rates for this system are given as preset values from research done at

the University of Kentucky (Gautam and Ormsbee, 2023). While operators are discouraged

from changing this value, they are given this as an option because these values allow for

the refinement of observed chlorine concentration values in the distribution system to

match what is seen in the model. Because chlorine residuals are highly impacted by

seasonality, giving this as an option to operators allows for the relatively simple calibration

of outputs to match inevitable changes in residuals over time.

Figure 5-2: Time and Water Quality Screen

62

Just below the Sim Times and Water Quality menu is the “Tanks” section which

allows the operator to input initial tank levels as well as “control statements” for pumps

associated with the tanks (figure 5-3). Control statements are statements within EPANET

that dictate conditions under which pumps turn on and off. In this case the conditions are

made relative to the tanks and are enabled in pressing the “use” switch under each

respective tank in the Lebanon system. For example, by specifying “use” for the

Springfield Road Tank, putting the number 14 in the “On When Below” text box, and the

number 19 in the “Off When Below” box, a control statement is sent to EPANET that turns

the booster pump on when the Springfield Road Tank is below 14’ and off when the tank

is above 19’.

Pump operations may also be specified by time. Immediately to the right of the

“Sim Times and Water Quality” and “Tanks” menus is the “Pumps” menu. Here users are

given the option to specify (in military time) when the water treatment plant and booster

pumps turn on and off (figure 5-4). The program has been created such that if either of the

pump conditions in the tanks section are specified as “use”, all the inputs in the pumps

Figure 5-3: Time and Water Quality Screen

63

section will be ignored. The reason for this is to avoid confusion around the complex

switching on and off of pumps that occur when several conditions are sent to EPANET.

Because the goal of the digital twin is to promote simplicity, access to the background

EPANET output file is not given. However, because of this, if several different types of

conditional statements are given, it might be difficult to determine how EPANET has

interpreted them and troubleshoot any noticeable errors.

At the bottom of the page is the final component relative to the available options

for extended period simulation within the digital twin model, i.e., “Demand Patterns”. The

intention for this data menu is to allow operators the ability to incorporate pre-processed

demand factors (appendix A) from data derived directly from the LWW system which were

created using the demand calibration methods discussed in section 4.2. The demand factors

for the two zones represent data from June 20th through July 3rd, 2023 and allow the

operator to pick any days between them or the average weekday or weekend for that time

period. If the operator deems it appropriate, they may also scale the demand patterns up

and down through a simple scaling factor text box like what is found in the pumps section

Figure 5-4: Time and Water Quality Screen

64

(figure 5-5). To provide the operator clarity on what the factors for each zone look like, a

graph is also provided which will reflect any changes made in the demand options (figure

5-6).

Figure 5-5: Demand Setting Section

Figure 5-6: Example Graph Given for Demand Pattern In Zone

65

Once the operator has specified all initial inputs, MATLAB stores this information

within the function associated with the “Run EPS!” button and then sends this data to the

“ExtendedPeriodV2” function in MATLAB (see “RUNEPSButtonPushed” and

ExtendedPeriodV2 functions in appendix B). The ExtendedPeriodV2 function uses options

in the EPANET-MATLAB toolkit to signal for an EPS to be run and returns output values

that may be used for visualization in the application.

The outputs may be visualized in the “new results” tab (figure 5-7) where the

operator may view several parameters at select junctions, pumps, and tanks throughout the

system. In the “Tanks” section, the user may select the drop down and specify whether they

want to graph water age or the tank levels as a function of time. Depending on what input

is specified in either of the graphs, the output table in that section will reflect the tabulated

results of the selected parameter (figures 5-8 and 5-9).

6
6

Figure 5-7: Results Page from EPS

67

Figure 5-8: Example of Tank Level Output

Figure 5-9: Tabulated Results Given Selection of Tank Level

68

In the “Pumps and Master Meters (Important Junctions)” section, the user can

choose parameters from the drop-down menu relative to either the Springfield Road

(booster) pump, the water treatment plant pump, or master meters. The pumps allow for

the selection of plotting either the hydraulic grade line (HGL) in feet or the flow rate (gpm)

while the last graph takes two inputs, the parameter sought after and the specific junction

with which we are interested. The parameters available in the last graph include plotting

pressure (psi), demand (gpm), chlorine (mg/l), and total trihalomethane (TTHM) (mg/l).

Like the Tanks section, once the graphs are updated, the table will reflect the parameters

chosen detailing the data shown in the graphs.

Figure 5-10: Example Junction Output

Figure 5-11: Example Pump Output

69

To make the data accessible for the operator, the menu allows the user to only select

a small portion of the total system junctions (all of which are master meters except for two

which were arbitrarily selected to represent the northern and southern portions of the

system). One of the parameters available for selection for the “Master Meter (Important

Junctions)” graph is TTHM concentrations. This calculation is based upon a simple linear

relationship from which chlorine demand is related to TTHM based on data specific to the

LWW system (Gautam and Ormsbee, 2023). This relationship is modeled as follows:

𝐶ℎ𝑙𝑜𝑟𝑖𝑛𝑒𝐷𝑒𝑚𝑎𝑛𝑑 (
𝑚𝑔

𝑙
) = 𝐶ℎ𝑙𝑜𝑟𝑖𝑛𝑒𝑃𝑙𝑎𝑛𝑡 (

𝑚𝑔

𝑙
) − 𝐶ℎ𝑙𝑜𝑟𝑖𝑛𝑒𝐽𝑢𝑛𝑐𝑡𝑖𝑜𝑛(

𝑚𝑔

𝑙
)

𝑇𝑇𝐻𝑀 (
𝑚𝑔

𝑙
) = 0.0508 (𝐶ℎ𝑙𝑜𝑟𝑖𝑛𝑒𝐷𝑒𝑚𝑎𝑛𝑑)

As a result, the EPANET model is used to calculate the chlorine demand at the

selected junction nodes from which the TTHM concentration is then determined and

displayed.

The “Map Specifications” tab is the last element of the application and allows for

visualization of outputs as they vary both spatially and temporally. Once the user presses

the “Generate Generic Map” button, the “GenerateGenericMapButtonPushed” function is

Figure 5-12: Example of Output Table Given Inputs for Each of the Graphs

70

run in MATLAB which then generates a window detailing the pipe diameters of the LWW

system (figures 5-13 and 5-14).

 Once the generic map has been created, the user may proceed to the right half of

the tab where pressure, flow, and chlorine specifications may be made; each of these having

a check box for extended period simulation and a corresponding slider for selecting the

period of interest (figure 5-15). The user has the choice to plot the pressures and flows or

chlorine residual by simply pressing the “Generate Nodal Pressure and Pipe Flows Map”

or “Generate Nodal Chlorine Residuals Map” buttons.

Figure 5-13: Buttons for Graphing Results

7
1

Figure 5-14: Generated Interactive Map of LWW Showing Pipe Diameters

72

If the user is unsure of where a specific pipe or junction is located within the system,

the “Pipe and Junction Discovery” field may be populated. The user may enter specific

pipe or junction names within the text fields and specify what color and size they want that

element to appear as in the map window. In addition, the user may also select the “Turn

On All Pipe Names” or the “Turn On All Junction Names” check boxes and they will also

appear in the map window (figures 5-16 and 5-17). This functionality is all controlled by

the “RunDiscoveryButtonPushed” function and may be found in Appendix B. Note: The

Figure 5-15: Tools for Map Visualization

73

names, structure, and logic of each of the functions tied to the buttons are found in appendix

B with the appended term “ButtonPushed” at the end.

Figure 5-16: Discovery Tool for Map Visualization

7
4

Figure 5-17: Map Results Detailing Pressure, Flows, and “Discovery” Results

75

CHAPTER 6. DISCUSSION OF RESULTS AND CONCLUSION

The main objective of this research was to investigate the feasibility of being able

to create “digital twin” model for water distribution operators in small systems who lack

the resources and time needed to purchase or create such applications themselves. In

striving to meets these objectives, there were several lessons learned and relevant outcomes

relating to the process.

The process of implementation proved to be significant in highlighting the most

appropriate framework and methodologies for use in the development of digital twin

applications for small utilities. This proved to be an iterative process and involving the

testing of several interface configurations, optimization algorithms, and data collection

strategies in order to determine the most feasible and effective strategy.

6.1 Interface Selection and the Underlying Hydraulic Model

It is the authors experience that a significant amount of time may be spent not only

on the development and incorporation of traditional digital twin functionality, but also on

troubleshooting the underlying hydraulic model data and working within the constraints of

certain programming environments.

With regard to selecting proper programming environments, it is valuable to first

take the suggestions and objectives of the respective water utility and map those concepts

to available functionalities within each language. For example, when creating the digital

twin for the Whitesburg Water System, a link between EPANET, Excel, and MATLAB

was used and tested for suitability. The reason for connecting these three software packages

was due to the assumed familiarity and comfortability operators may have with the Excel

76

interface while also exploiting the computational power of MATLAB for efficient

hydraulic computation times.

While the EPANET-MATLAB-Excel platform proved to be capable of achieving the

objectives of this work, other methods were found to be faster and offer user interface

options more conducive to simple operator interaction. The interface detailed in this work

is proof of that process; by using the EPANET-MATLAB toolkit in combination with the

app developer toolkit available within MATLAB, the deliverables outlined in Chapter 1

were further optimized.

 It is estimated however that a significant amount of time might have been saved

throughout this work if a more robust investigation into other available programming

languages had been continued prior to the eventual selection and development of the

MATLAB environment. MATLAB was selected because of the authors familiarity with

the language and the existence of an open-source toolkit capable of connecting the

EPANET hydraulic engine to the MATLAB programming language. This was done

because of time constraints which ultimately prevented a more robust investigation. In the

end, it was concluded that Python offers a better platform that MATLAB for achieving this

objective and future development work should consider using it versus MATLAB,

especially when considering the development of digital twins for smaller systems.

 In addition to proper software selection, the process of digital twin development

would have been made more efficient if ample work was spent initially on validating

system topologies within the system under question. This is a lesson that was carried on to

the creation of the digital twin for Lebanon and is due in large part to the experiences

working in the Whitesburg system. While working in Whitesburg, several months were

77

spent on attempting to calibrate their hydraulic model using a single days’ worth of

telemetry data. After repeatedly testing and retesting many algorithms for demand

calibration and failing to get the model to agree with real world conditions, it was assumed

that there was something wrong with the approach being taken.

 Upon revisiting the original demand allocation algorithm developed for

Whitesburg (which was based on the Box Complex Method), it was found that there

seemed to be no issue at all with the algorithms themselves but was more likely due to

underlying errors in the system topology and inherent noise in their telemetry data.

Because of the impacts of the regional flood, there was never an opportunity to meet with

the operators to resolve these issues. As a result, we pivoted to work with the Lebanon

system, which has a much more reliable baseline hydraulic model and more much more

reliable telemetry data. Therefore, the developed demand allocation model was able to

produce reliable demand scenarios, after minor adjusted were made to noise issues in some

of the tank telemetry data. This allowed for seamless integration of the bisection method

into the digital twin framework and highlighted the fact that a critical first step in this

process is ensuring that 1) the physical elements of our system (pipes, tanks, pumps, etc)

are modeled to the best understanding of the utility and 2) telemetry data is equally as

reflective of the conditions seen in the system.

 This conclusion was subsequently validated by assuming the demands and the tank

telemetry data in the Whitesburg model were actually known and then seeing if the Box-

Complex model could recover them from the data assuming that the underlying model

topology was correct. Thus, by explicitly specifying the system demands in the model,

running EPANET to then produce the “actual” tank telemetry data, topological and

78

telemetry errors are controlled for. The Box-Complex method was then used to see if it

could replicate these artificial demands which it was able to do effortlessly.

6.2 Data in the Hydraulic Calibration Process

In contrast to the previous section, while having too little system information is

certainly an obstacle in creating a useful hydraulic model (and therefore a digital twin), too

much information also creates a unique set of problems. For a digital twin to produce useful

outputs from which an operator can make decisions, incoming data must be “cleaned” in a

way that captures the true physical characteristics of the WDN in real time.

It was initially tempting to look at the available telemetry and meter data from the

Lebanon Water Works (LWW) system, given that it was very abundant, and assume that

this data would also be highly accurate. A cursory glance of the data set does in fact confirm

this assumption; however, it ignores reality in that no matter how sophisticated the

practices and equipment may be, errors attributed to the capture of real-world data seem to

be unavoidable.

The “quirks” associated with the LWW system telemetry and meter data are a

function of many factors which are made manifest in the data latching and noise

characteristics described in section 4.2. Cleaning the data in order that they do not impact

the resulting outputs, requires a strong understanding of 1) when the data might be in error

2) why the data is flawed so that future instances might be predicted (human, equipment,

etc.), and 3) how to systematically remove these instances when running the demand

calibration algorithms.

79

In the case of the LWW system, a simple change in the time used in analyzing the

telemetry data resulted in demand factor errors only occurring 2% (improved from 21%)

of the time. Further investigation into other error sources may improve this value, however

that is likely unnecessary and will not significantly impact the resulting demand factors

because of the procedure adapted in this research, namely, carrying the small residual

demand error into the next time step.

It is in the authors experience that real world data in this context is as unique as any

two individuals. From monitoring equipment to the entire SCADA system and all the way

to how information is reported, data is characteristic of the system from which it was

gathered. Because system data inherently has its own patterns and tendencies that cause it

to vary from reality, a basic knowledge of each system is fundamental for creating the

programs and algorithms that will help operators plan and manage their respective utilities.

6.3 Algorithms and the Hydraulic Calibration Process

The main complication in choosing and subsequently implementing the appropriate

algorithm (in the context of demand calibration) was one of speed and robustness of a given

solution. For example, the Box Complex and bisection methods were chosen due to their

simplicity and because they both were able to calculate demand factors quickly and without

error relative to the algorithms themselves.

Because the bisection method is most suited for accurately calculating two demand

factors (section 2.1.4), the LWW system is a unique use case for this algorithm.

Additionally, even though the Box Complex Method is extendable to systems of any size,

increasing dimensionality may increase computational burden and impact the accuracy of

80

a given solution. This is due to the way the algorithm searches a solution space which can

become localized. By increasing dimensionality, the solution space is inherently being

increased and the chances that the algorithm will be able to capture an optimal solution can

be somewhat reduced. Nonetheless, the algorithm is simple to program, generally robust,

and should be considered for future applications to multi-tank systems.

Thus, as long as the physical characteristics of the system are properly reflected in

the algorithm and the data is sufficiently cleaned, the resulting demand factors are expected

to capture the real demands of the WDN in question. Given this foundation, the LWW

digital twin for example, may employ its digital twin as it currently stands to evaluate real

time telemetry and meter data for the creation of predictive demand factors.

6.4 General Conclusions

The final version of the digital twin for Lebanon, Kentucky does meet most of the

intended objectives of this thesis. While the MATLAB GUI display may be further

improved (e.g., using Python), the amount of time spent on hydraulic calibration allows for

the useful prediction of pressure, demand, and chlorine concentration. The inputs and

outputs are intentionally simple to leave the operators little room for confusion which are

likely barriers to other software programs such as EPANET or KYPIPE.

Perhaps the most important finding of the research was that the success of digital

twins for small systems is especially depending upon the availability of the utility staff to

answer questions, access to reliable physical and operational data, and the existence of (or

the ability to create) a calibrated hydraulic model of the network. Fortunately, all three

81

were available for the Lebanon system, and hence the measured success, while none of the

three were initially available for the Whitesburg system.

The research was also able to show that realistic demand scenarios can be derived

from historic tank telemetry data along with a calibrated network model by employing

either a bisection or Box Complex algorithm. Both algorithms are thus available for

applications to other systems.

Unfortunately, time and logistical constraints involving the partner utility (i.e.,

Lebanon) prevented a full testing of the Lebanon digital twin by the utility staff and

operators. Consequently, completion of the second part of objective 4 (see section 1.4) will

have to await subsequent future research.

A final benefit of this research is that the methodologies employed (as well as the

demand calibration algorithms) are easily reproducible for other systems and may be

extended to incorporate other features. By following the summary steps in table 6-1, it

would not be unreasonable to expect the creation of a digital twin for a new relatively small

system to take no more than a few weeks (given the readiness of the system for the

incorporation of a digital twin).

82

Table 6-1: Summary of Digital Twin Creation Process

1) Create EPANET file (.inp) of system.

2) Perform macro level calibration (Ormsbee and Lingireddy, 1997).

3) Delineate pressure zones.

4) Adjust the “ExtendedPeriodV2” function within the MATLAD code to

reflect new file (junction names, number of patterns, etc.)

5) Adjust the “RunEPSButtonPushed” function to reflect new file (new tanks,

pumps, etc.)

6) Create a unique Box Complex or bisection method solver for the system

using the example code in the appendices, I and then implement the

resulting demand scenarios within the application.

In conclusion, adopting digital twin models for small systems does require

significant knowledge of a particular system in combination with strong hydraulic

modeling skills, accurate data (both topologic and telemetry) a willingness to work closely

with utilities, a demand calibration algorithm, and the ability to translate all that

information into programmable language. However, through the foundation created within

this thesis, extension of the template employed in creating the Lebanon digital twin should

prove to be a simple and cost-effective alternative to other custom digital twin applications

currently available to distribution operators.

83

7. RECOMMENDATIONS

7.1 Engineering Significance

In most cases, smaller utilities in Appalachia lack the resources to create and

maintain even a simple hydraulic model. While many utilities around the country are

experiencing the effects of the current digital revolution, small systems in this region may

come to rely on open-source applications like the digital twin presented in this research in

order to stay competitive in the rapidly changing climate of water distribution system

management.

Given that much of the national attention at the moment is focused on revamping

deteriorating infrastructure throughout the country, developing tools like this for small

utilities may prove to be a significant step in maximizing the benefits of many new assets

that are expected to be implemented throughout the United States. Small utilities in

Appalachia are likely to benefit from continued research into digital twin solutions due to

the low number of operators available to manage such systems and to meet the needs of

their communities.

Additionally, this work provides an initial investigation into some of the common

pitfalls of employing digital twin solutions for water distribution systems. Lessons learned

throughout this process can facilitate the potential expedient employment of digital twins

for small water systems while also ensuring that the process of creating the application

result in an accurate and robust application for distribution operators.

84

7.2 Limitations of Approach

 While creating the platform through which data is effectively expressed is a

relatively straight forward process and depends only on the needs of a utility; cleaning and

incorporating that data may pose a challenge.

 The frequency of data, noise, and where that data is being stored are just a few

factors that complicate the effective use of such system information. It takes a large amount

of time to begin to understand the unique characteristics of each system including the

performance and reliability of individual sensors. This may impact the speed of

implementation for these types of tools.

7.3 Need for Future Research

 While the current foundation laid within this report provides a strong base upon

which other digital twins may be developed, improvements may need to be made to

improve the rapidity in which the application is implemented for each individual system

under this framework. As the capabilities of artificial intelligence and machine learning

continue to grow at unprecedented rates, it is not unreasonable to envision these types of

technologies having a significant role in developing digital twins and smoothing out the

data noise problem as well as the implementation process.

 For example, large language modelling (LLM) (i.e., similar to what is found in

ChatGPT) may be incorporated and trained on a wide range of relevant information from

operator experiences around the country. One can imagine an application that functions in

the same way that J.A.R.V.I.S. does in Marvels’ Iron Man series. Through continuous

training and integration of both text based and quantitative data, a LLM could be trained

85

to quickly produce its own hydraulic models which could then be used by an operator. For

example, if a future weather forecast included such information such as “there is rain in the

forecast and the parade will take place on main street around 3pm” a LLM like this could

produce demand scenarios that would have occurred in the past under different scenarios.

Simply put, this would be a model of models, the ultimate support tool for operators.

 Further research on the simple automation of demand forecasting might also help

support the implementation of digital twin models such as this one. While historical data

will undoubtably aid in prediction of daily operations, investigating work done with time

series modelling as well as several machine learning algorithms could be useful in

implementing a more reliable forecasting strategy for this digital twin.

7.4 Recommendations

The continued improvement of this digital twin for the LWW system will rely upon

further integration and cleaning of data to ensure its accuracy and precision. Additionally,

this is not yet a fully evolved digital twin. Live data stream integration and predictive

modelling should be included in future versions of this digital twin to approach the quality

of other services that are currently available on the market but are typically out of reach for

smaller utilities.

It is also recommended that future applications consider the use of Python

programming instead of MATLAB. Python is a high-level programming language like

MATLAB and has a minimal learning curve. Python also offers a larger library of resources

for development of features like interactive mapping relative to MATLAB.

86

Once this digital twin format has been translated into Python, functionality should

be created for simple element additions via the aforementioned interactive mapping

features. Explicit demand forecasting should also be included in addition to the historical

demand information currently populating the model. Packages within Python support

simple integration of forecasting tools and would be of great use for creating demand

scenarios more reflective of real system information.

While the current model GUI has been developed to accommodate water quality

parameters such as chlorine and TTHM prediction, the associated functional models to

drive these predictions have not yet been calibrated and linked with the EPANET and GUI

interface. Once the final water quality models have been calibrated, this linkage should be

completed.

 Lastly, the model should continue to be tested and integrated within the LWW daily

operations to validate the usefulness of the digital twin application. It is likely that in

utilizing the digital twin, operators will offer valuable feedback which will greatly improve

the usefulness of the model. It is therefore a final recommendation that the model be

occasionally updated to reflect the changing needs of the utility it is supporting.

87

APPENDICES

APPENDIX A. Demand Factors From Bisection Algorithm

Table A 1: Uncleaned Demand Factors for Zone 1 of LWW

Table A 2: Uncleaned Demand Factors for Zone 2 of LWW

88

Table A 3: Cleaned Demand Factors for Zone 1 of LWW

Table A 4: Cleaned Demand Factors for Zone 2 of LWW

89

Figure A 1: Uncleaned Demand Factors for Zone 1 of LWW (6/20/2023)

Figure A 2: Uncleaned Demand Factors for Zone 2 of LWW (6/20/2023)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 2

90

Figure A 3: Uncleaned Demand Factors for Zone 1 of LWW (6/21/2023)

Figure A 4: Uncleaned Demand Factors for Zone 2 of LWW (6/21/2023)

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 1

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 2

91

Figure A 5: Uncleaned Demand Factors for Zone 1 of LWW (6/22/2023)

Figure A 6: Uncleaned Demand Factors for Zone 2 of LWW (6/22/2023)

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 1

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 2

92

Figure A 7: Uncleaned Demand Factors for Zone 1 of LWW (6/23/2023)

Figure A 8: Uncleaned Demand Factors for Zone 2 of LWW (6/23/2023)

0

1

2

3

4

5

6

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 2

93

Figure A 9: Uncleaned Demand Factors for Zone 1 of LWW (6/24/2023)

Figure A 10: Uncleaned Demand Factors for Zone 2 of LWW (6/24/2023)

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 2

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 1

94

Figure A 11: Uncleaned Demand Factors for Zone 1 of LWW (6/25/2023)

Figure A 12: Uncleaned Demand Factors for Zone 2 of LWW (6/25/2023)

-10

-5

0

5

10

15

20

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 1

-20

-15

-10

-5

0

5

10

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 2

95

Figure A 13: Uncleaned Demand Factors for Zone 1 of LWW (6/26/2023)

Figure A 14: Uncleaned Demand Factors for Zone 2 of LWW (6/26/2023)

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 1

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 2

96

Figure A 15: Uncleaned Demand Factors for Zone 1 of LWW (6/27/2023)

Figure A 16: Uncleaned Demand Factors for Zone 2 of LWW (6/27/2023)

-10

-5

0

5

10

15

20

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 1

-20

-15

-10

-5

0

5

10

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 2

97

Figure A 17: Uncleaned Demand Factors for Zone 1 of LWW (6/28/2023)

Figure A 18: Uncleaned Demand Factors for Zone 2 of LWW (6/28/2023)

-20

-10

0

10

20

30

40

50

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 2

-8

-6

-4

-2

0

2

4

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 1

98

Figure A 19: Uncleaned Demand Factors for Zone 1 of LWW (6/29/2023)

Figure A 20: Uncleaned Demand Factors for Zone 2 of LWW (6/29/2023)

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 2

99

Figure A 21: Uncleaned Demand Factors for Zone 1 of LWW (6/30/2023)

Figure A 22: Uncleaned Demand Factors for Zone 2 of LWW (6/30/2023)

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 1

-0.5

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 2

100

Figure A 23: Uncleaned Demand Factors for Zone 1 of LWW (7/1/2023)

Figure A 24: Uncleaned Demand Factors for Zone 2 of LWW (7/1/2023)

-10

-8

-6

-4

-2

0

2

4

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 1

-20

-15

-10

-5

0

5

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 2

101

Figure A 25: Uncleaned Demand Factors for Zone 1 of LWW (7/2/2023)

Figure A 26: Uncleaned Demand Factors for Zone 2 of LWW (7/2/2023)

-20

-15

-10

-5

0

5

10

15

20

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 1

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 2

102

Figure A 27: Uncleaned Demand Factors for Zone 1 of LWW (7/3/2023)

Figure A 28: Uncleaned Demand Factors for Zone 2 of LWW (7/3/2023)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 1

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 2

103

Figure A 29: Cleaned Demand Factors for Zone 1 of LWW (6/20/2023)

Figure A 30: Cleaned Demand Factors for Zone 2 of LWW (6/20/2023)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 2

104

Figure A 31: Cleaned Demand Factors for Zone 1 of LWW (6/21/2023)

Figure A 32: Cleaned Demand Factors for Zone 2 of LWW (6/21/2023)

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 1

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 2

105

Figure A 33: Cleaned Demand Factors for Zone 1 of LWW (6/22/2023)

Figure A 34: Cleaned Demand Factors for Zone 2 of LWW (6/22/2023)

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 1

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 2

106

Figure A 35: Cleaned Demand Factors for Zone 1 of LWW (6/23/2023)

Figure A 36: Cleaned Demand Factors for Zone 2 of LWW (6/23/2023)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 2

107

Figure A 37: Cleaned Demand Factors for Zone 1 of LWW (6/24/2023)

Figure A 38: Cleaned Demand Factors for Zone 2 of LWW (6/24/2023)

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 2

108

Figure A 39: Cleaned Demand Factors for Zone 1 of LWW (6/25/2023)

Figure A 40: Cleaned Demand Factors for Zone 2 of LWW (6/25/2023)

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 1

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 2

109

Figure A 41: Cleaned Demand Factors for Zone 1 of LWW (6/26/2023)

Figure A 42: Cleaned Demand Factors for Zone 2 of LWW (6/26/2023)

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 1

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 2

110

Figure A 43: Cleaned Demand Factors for Zone 1 of LWW (6/27/2023)

Figure A 44: Cleaned Demand Factors for Zone 2 of LWW (6/27/2023)

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 1

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 2

111

Figure A 45: Cleaned Demand Factors for Zone 1 of LWW (6/28/2023)

Figure A 46: Cleaned Demand Factors for Zone 2 of LWW (6/28/2023)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 1

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 2

112

Figure A 47: Cleaned Demand Factors for Zone 1 of LWW (6/29/2023)

Figure A 48: Cleaned Demand Factors for Zone 2 of LWW (6/29/2023)

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 2

113

Figure A 49: Cleaned Demand Factors for Zone 1 of LWW (6/30/2023)

Figure A 50: Cleaned Demand Factors for Zone 2 of LWW (6/30/2023)

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 1

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 2

114

Figure A 51: Cleaned Demand Factors for Zone 1 of LWW (7/1/2023)

Figure A 52: Cleaned Demand Factors for Zone 2 of LWW (7/1/2023)

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 2

115

Figure A 53: Cleaned Demand Factors for Zone 1 of LWW (7/2/2023)

Figure A 54: Cleaned Demand Factors for Zone 2 of LWW (7/2/2023)

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 2

116

Figure A 55: Cleaned Demand Factors for Zone 1 of LWW (7/3/2023)

Figure A 56: Cleaned Demand Factors for Zone 2 of LWW (7/3/2023)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 1

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30

D
em

an
d

 F
ac

to
r

Hour

Demand Factors Zone 2

117

APPENDIX B. Code For Hydraulic Simulation And Demand Factor Calibration

%Final extended period simulation code (for result output in the app)

function [PressureComp, FlowComp, QualityComp, TankLevels, TankWaterAge, PumpHGL,

PumpFlowRate, JunctionPressure, JunctionDemand, JunctionChlorine, JunctionTTHM, Time, d]

= ExtendedPeriodV2(varargin)

%The first argument into the function will be whether or not the input

 %file is the current system in Lebanon or the new projected system with

 %the replaced tank and new 16" line

 WhatFile = varargin{1};

 if WhatFile == 0

 d = epanet('LebanonCurrent_July2023Testable.inp', 'LoadFile');

 elseif WhatFile ==1

 d = epanet('LebanonNew_July2023.inp', 'LoadFile');

 end

NodeNames = d.getNodeNameID;

Targets = ["ByPass","BeforeCalvaryMeter", "CalvaryMeter", "WoodlawnMeter",

"DanvilleHighwayMeter","SpringfieldRoadMeter","StRoseMeter", "StMaryMeter",

"CampbellsvilleMeter", "598", "808"];

[~,WhereNames] = ismember(Targets, NodeNames);

%set the initial tank levels

 tankInfo = d.getNodeTankData;

 tankMinLevel(1,1:2) = tankInfo.Minimum_Water_Level;

 %this is important because EPANET interprets tank level as the values

 %between minimum and maximum. Therefore we need the relative tank level (user input) and

the minimum

 %tank level and then add them together to place and the initial level

 %input.

 tankLevelSpecs = varargin{2};

 tankInitialLevel = varargin{2} +tankMinLevel;

 if tankInitialLevel > tankMinLevel

 %Do nothing

 elseif tankInitialLevel < tankMinLevel

 %Give the user an error if the initial level is too low

 ErrorMessage = sprintf('One of the tank input values is lower than the

mimimum tank level.\n Please retry with different initial inputs.');

 msgbox(ErrorMessage, 'Input Error', 'error');

 end

 d.setNodeTankInitialLevel(tankInitialLevel);

 %Set the initial Pump Controls - Note, these need to be cleaned up and

118

 %formatted correctly in order to be implemented into the analysis, this is

 %done on the front end in the application itself

 PumpControls = varargin{3};

 %Remove all of the original controls

 d.deleteControls;

 %add the new controls

 d.addControls(PumpControls);

%Hydraulically speaking we have the initial tank levels and now the pump

%conditions as well. Other than adding in the specified demands we are good

%to go onto our chlorine analysis

%Chlorine residual from the plant

Chlorine = varargin{4};

%relic from using two files, leave for now

if WhatFile == 0

%Set the chlorine concentration coming from the treatment plant

d.setNodeInitialQuality(986, Chlorine);

d.setNodeSourceQuality(986, Chlorine);

%Set the reaction coefficients

Bulk = varargin{5};

Wall = varargin{6};

d.setLinkBulkReactionCoeff((0*d.getLinkBulkReactionCoeff) + Bulk);

d.setLinkWallReactionCoeff((0*d.getLinkWallReactionCoeff)+Wall);

%Set the time specifications

Time4 = varargin{7};

Time5 = varargin{8};

Time6 = varargin{9};

d.setTimePatternStep(Time4 * 3600)

d.setTimeReportingStep(Time4 * 3600)

d.setTimeHydraulicStep(Time4 * 3600);

d.setTimeQualityStep(Time5 *3600);

d.setTimeSimulationDuration(Time6 * 3600);

%Set the demand patterns

DemandFactors = varargin{10};

DZ1 = DemandFactors(:,1)';

DZ2 = DemandFactors(:,2)';

%pattern for first high pressure zone (WTP)

d.setPattern(3, DZ1(1,:));

%pattern for Springfield Road Pressure Zone

d.setPattern(4, DZ2(1, :));

119

%we need to run this twice in order to get water age as well as the

%chlorine info, they are seperate analysis in EPANET

for i = 1:2

 %on the second iteration change the quality analysis to chlorine

 if i ==2

 d.setQualityType('chem', 'CHLORINE')

 end

 %relatively simple to run the analysis, here is the code for that.

 %Open, initialize (never understood why we needed that step), run and

 %store outputs, close the analysis (temporary file no longer accepting

 %values from future inputs (allows to be re-initialized I believe).

 d.openHydraulicAnalysis;

 d.initializeHydraulicAnalysis;

 %Run and close analysis

 Series = d.getComputedTimeSeries;

 d.closeHydraulicAnalysis

if i ==1

 TankWaterAge = Series.NodeQuality(:,988:989);

end

if i ==2

 QualityComp = Series.NodeQuality

 ChlorineResidual = Series.NodeQuality(:,WhereNames);

end

end

%Time comes in seconds, change to hours for output

Time = (Series.Time) ./ 3600;

%First compute tank heads (comes as HGL, I want relative tank levels

%though)

TankHeads = Series.Head;

Elevations = d.getNodeElevations;

CalvaryTankLevel = TankHeads(:,988) - (tankMinLevel(1,1) + Elevations(1,988));

SpringfieldRoadTankLevel = TankHeads(:,989) - (tankMinLevel(1,2) + Elevations(1,989));

TankLevels = [CalvaryTankLevel, SpringfieldRoadTankLevel];

%Grab the relevant chlorine values

JunctionChlorine = ChlorineResidual;

%Grab the relevant pressure values

PressureComp = Series.Pressure;

JunctionPressure = PressureComp(:,WhereNames);

%Lets get some pump information

%Springfield Road Pump Flow and head

%Convert the flows to GPM from CFS by multiplying by 448.83

FlowComp = (Series.Flow);

PumpFlowRate = FlowComp(:,1060:1061);

120

%Get the pump HGL

Heads = Series.Head;

PumpHeadIn = Heads(:,[986,983]);

PumpHeadOut = Heads(:,[864,979]);

PumpHGL = horzcat(PumpHeadIn, PumpHeadOut);

%Get the releveant junction demands

Demands = Series.Demand;

JunctionDemand = Demands(:, WhereNames);

%TTHM, HAA5, and DBP formation in Lebanon, Kentucky

%modelling using chlorine demand (the difference between the chlorine

%concentration at a junction and the chlorine demand leaving the plant) The

%equation used may be found in Yogesh's thesis paper

JunctionChlorineDemand = Chlorine - JunctionChlorine;

JunctionTTHM = 0.0508 .* JunctionChlorineDemand;

%updating due to several file changes. Easiest way to do this would be to

%copy the above code, take new file (new tank and line) and update to

%account for these changes.

%{

elseif WhatFile ==1

tankInfo = d.getNodeTankData;

tankMinLevel = [0,0,0];

tankMinLevel(1,1:2) = tankInfo.Minimum_Water_Level;

tankMinLevel(1,3) = tankMinLevel(1,1);

tankLevelSpecs = varargin{2};

tankInitialLevel = tankLevelSpecs +tankMinLevel;

pawn1 = tankInitialLevel;

tankInitialLevel(1,2) = pawn1(1,3);

tankInitialLevel(1,3) = pawn1(1,2);

d.setNodeTankInitialLevel(tankInitialLevel(1,2:3));

NodeNames = d.getNodeNameID;

Targets = ["244","229", "618", "962", "1365","1432","J-135", "J-136", "J-137", "J-166"];

[~,WhereNames] = ismember(Targets, NodeNames);

d.setNodeInitialQuality(993, Chlorine);

d.setNodeSourceQuality(993, Chlorine);

%Set the reaction coefficients

121

Bulk = varargin{5};

Wall = varargin{6};

d.setLinkBulkReactionCoeff((0*d.getLinkBulkReactionCoeff) + Bulk);

d.setLinkWallReactionCoeff((0*d.getLinkWallReactionCoeff)+Wall);

%Now set some time limitations

%Set the time specifications

Time4 = varargin{7};

Time5 = varargin{8};

Time6 = varargin{9};

d.setTimePatternStep(Time4 * 3600)

d.setTimeReportingStep(Time4 * 3600)

d.setTimeHydraulicStep(Time4 * 3600);

d.setTimeQualityStep(Time5 *3600);

d.setTimeSimulationDuration(Time6 * 3600);

%% Run the extended Period Simulation Given the Above Info

%we need to run this twice in order to get water age as well as the

%chlorine info, they are seperate analysis in EPANET

for i = 1:2

 %on the second iteration change the quality analysis to chlorine

 if i ==2

 d.setQualityType('chem', 'Chlorine')

 end

d.openHydraulicAnalysis;

d.initializeHydraulicAnalysis;

%Run and close analysis

Series = d.getComputedTimeSeries;

d.closeHydraulicAnalysis

if i ==1

 TankWaterAge = Series.NodeQuality(:,995:996);

end

if i ==2

 ChlorineResidual = Series.NodeQuality(:,WhereNames);

end

end

Time = (Series.Time) ./ 3600;

%First compute tank heads

TankHeads = Series.Head;

Elevations = d.getNodeElevations;

CalvaryTankLevel = TankHeads(:,995) - (tankMinLevel(1,1) + Elevations(1,995));

SpringfieldRoadTankLevel = TankHeads(:,996) - (tankMinLevel(1,2) + Elevations(1,996));

TankLevels = [CalvaryTankLevel, SpringfieldRoadTankLevel];

122

%Grab the relevant chlorine values

JunctionChlorine = ChlorineResidual;

%Grab the relevant pressure values

JunctionPressure = Series.Pressure;

JunctionPressure = JunctionPressure(:,WhereNames);

%Lets get some pump information

%Springfield Road Pump Flow and head

%Convert the flows to GPM from CFS by multiplying by 448.83

Flows = 448.83.*(Series.Flow);

PumpFlowRate = Flows(:,1066:1067);

%Get the pump HGL

Heads = Series.Head;

PumpHeadIn = Heads(:,[988,982]);

PumpHeadOut = Heads(:,[981,989]);

PumpHGL = horzcat(PumpHeadIn, PumpHeadOut);

%Get the releveant junction demands

Demands = Series.Demand;

JunctionDemand = Demands(:, WhereNames);

%TTHM, HAA5, and DBP formation in Lebanon, Kentucky

%modelling using chlorine demand (the difference between the chlorine

%concentration at a junction and the chlorine demand leaving the plant) The

%equation used may be found in Yogesh's thesis paper

JunctionChlorineDemand = Chlorine - JunctionChlorine;

JunctionTTHM = 0.0508 .* JunctionChlorineDemand;

%}

end

 % Code that executes after component creation

 function startupFcn(app)

Start_Toolkit;

 end

function PlotButtonPushed(app, event)

 %Tells me which column to look in for the data we are seeking

 [~, InColumn] = ismember(app.EnterJunctionPressureEditField.Value,

app.UITable_2.ColumnName);

 %Plots the relevant data for pressure

123

 x1 = app.UITable_2.Data(:,1);

 y1 = app.UITable_2.Data(:,InColumn);

 plot(app.UIAxes,x1,y1)

 %Tells me which column to look in for the data we are seeking

 [~, InColumn2] = ismember(app.EnterJunctionChlorineEditField.Value,

app.UITable_3.ColumnName);

 %Plots the relevant data for chlorine residual

 x2 = app.UITable_3.Data(:,1);

 y2 = app.UITable_3.Data(:,InColumn2);

 plot(app.UIAxes_2,x2,y2)

 %Tells me which column to look in for the data we are seeking

 [~, InColumn3] = ismember(app.EnterTankHeadEditField.Value,

app.UITable_4.ColumnName);

 %Plots the relevant data for tank levels

 x3 = app.UITable_4.Data(:,1);

 y3 = app.UITable_4.Data(:,InColumn3);

 plot(app.UIAxes_3,x3,y3)

end

 % Button pushed function: GenerateGenericMapButton

 function GenerateGenericMapButtonPushed(app, event)

 %open EPANET and load Lebanon file

 d = epanet('LebanonCurrent_July2023Testable.inp', 'loadfile');

 NodeName = d.getNodeNameID;

 %create figure template and change the name to match the system

 fig = figure('Name','Lebanon Water Works - Layout of Lebanon Kentucky Water

Distribution System');

 %plot the graph

 [EdgesandNodes,fig] = d.plotDiGraph;

 assignin("base","fig", fig);

 %send this variable to the matlab workspace so it can be used

 %later for mapping

 assignin('base', 'EdgesandNodes', EdgesandNodes);

 %give the figure a name

 %Change the weight of the lines so we can see them a little

 %better

 fig.LineWidth = 2;

 %Highlight the tanks and the pumps in the system and label them

124

 TankIndex = [988,989];

TankIndex = [988,989];

highlight(fig, TankIndex, "Marker", "s", "MarkerSize", 10, "NodeColor", "red");

PumpIndex = [864, 983];

highlight(fig, PumpIndex, "Marker", "<", "MarkerSize", 10, "NodeColor", "red");

text(fig.XData(983), fig.YData(983), NodeName(983), 'HorizontalAlignment', 'right',

'VerticalAlignment', 'top', 'FontWeight','bold', 'Color','magenta');

%This is for pump 8

text(fig.XData(864), fig.YData(864), "Pump 8", 'HorizontalAlignment', 'left',

'VerticalAlignment', 'top', 'FontWeight','bold', 'Color','magenta');

text(fig.XData(TankIndex), fig.YData(TankIndex), NodeName(TankIndex),

'HorizontalAlignment', 'right', 'VerticalAlignment', 'top',

'FontWeight','bold','Color','magenta');

%place all of the sizes of the pipes into the image as well

Diameter = d.getLinkDiameter;

%I don't think this is being used but won't delete for now until sure

%LinkNames = d.getLinkNameID;

%I am only doing the following two lines because edgesandnodes is storing

%two columns worth of data as 1 column in a table and I want them seperated

%for access

EdgesandNodes= EdgesandNodes.Edges(:,1);

Edges = splitvars(EdgesandNodes, 1);

Edges = table2array(Edges);

%because the plotdi graph is kind of a pain in the butt is gives the proper

%nodal connections (the right start and end nodes) but it doesn't give them

%as indexed values with the pipes, they are just sorted in ascending order

%in the firs column as apposed to associating them with their respective

%pipes. The following corrects that

ConnectDiameter = d.getLinkNodesIndex;

%Connect is indexed with the pipes but not proper order of start and end

%nodes, edges is the opposite. Therefore we can just sort them in ascending

%order in the columns, compare where sortConnect and sortEdges are

%(ordering the Edges variable to be properly indexed with pipes) and use

%those values to change the highlight for the diGrpah

sortConnect = sort(ConnectDiameter, 2, 'ascend');

sortEdges = sort(Edges, 2, 'ascend');

[~,index] = ismember(sortConnect, sortEdges, 'rows');

125

%assign in the matlab workspace for other map processing purposes. Here

%this is for indexing Link names so we can label them on the map.

assignin('base', 'index',index);

EdgesNew = Edges(index,:);

%assign in the matlab workspace for other map processing purposes. Here

%this is for labeling pipes.

assignin('base','EdgesNew',EdgesNew);

%Highlight for different sizes

twoInch = find(Diameter ==2);

fourInch = find(Diameter ==4);

sixInch = find(Diameter ==6);

eightInch = find(Diameter ==8);

tenInch = find(Diameter ==10);

twelveInch = find(Diameter ==12);

sixteenInch = find(Diameter ==16);

twentyInch = find(Diameter ==20);

two = EdgesNew(twoInch(1,:),:);

four = EdgesNew(fourInch(1,:),:);

six = EdgesNew(sixInch(1,:),:);

eight = EdgesNew(eightInch(1,:),:);

ten = EdgesNew(tenInch(1,:),:);

twelve = EdgesNew(twelveInch(1,:),:);

sixteen = EdgesNew(sixteenInch(1,:),:);

twenty = EdgesNew(twentyInch(1,:),:);

fig.LineWidth = 2;

%change the colors of the pipes to be properly matched

 highlight(fig, two(:,1), two(:,2), "EdgeColor", "green");

 highlight(fig, four(:,1), four(:,2), "EdgeColor", "cyan");

 highlight(fig, six(:,1), six(:,2), "EdgeColor", "red");

 highlight(fig, eight(:,1), eight(:,2), "EdgeColor", "yellow");

 highlight(fig, ten(:,1), ten(:,2), "EdgeColor", "magenta");

 highlight(fig, twelve(:,1), twelve(:,2), "EdgeColor", "blue");

 highlight(fig, sixteen(:,1), sixteen(:,2), "EdgeColor", "black");

126

 highlight(fig, twenty(:,1), twenty(:,2), "EdgeColor", "white");

 end

 % Button pushed function:

 % GenerateNodalPressureandPipeFlowsMapButton

 function GenerateNodalPressureandPipeFlowsMapButtonPushed(app, event)

 %first we need to pull in some of the results from functions

 %that were already ran

 %pull the workspace variables in for processing in the map

 PressureComp = evalin('base', 'PressureComp');

 FlowComp = evalin('base', 'FlowComp');

 EdgesandNodes = evalin('base', 'EdgesandNodes');

 fig = evalin('base', 'fig');

 d = evalin('base', 'd');

 %first define the thresholds

 Threshold1 = app.HighPressurepsiEditField.Value;

 Threshold2 = app.MediumPressurepsiEditField.Value;

 Threshold3 = app.LowPressurepsiEditField.Value;

 %now define how we want these beauties to be colored

 junctionColor1 = string(app.Color1DropDown.Value);

 junctionColor2 = string(app.Color2DropDown.Value);

 junctionColor3 = string(app.Color3DropDown.Value);

 junctionColor4 = string(app.Color4DropDown.Value);

 %was EPS selected?

 if app.EPSCheckBox.Value ==0

 %EPS was not selected so we are running our colors as "steady

 %state

 pressures = PressureComp(1,:);

 HPressure = find(pressures > Threshold1)';

 MPressure = find(pressures <= Threshold1 & pressures > Threshold2)';

 LPressure = find(pressures <= Threshold2 & pressures > Threshold3)';

 IllegalPressure = find(pressures <= Threshold3)';

 highlight(fig, HPressure, "Marker", "o", "MarkerSize", 5, "NodeColor",

junctionColor1);

 highlight(fig, MPressure, "Marker", "o", "MarkerSize", 5, "NodeColor",

127

junctionColor2);

 highlight(fig, LPressure, "Marker", "o", "MarkerSize", 5, "NodeColor",

junctionColor3);

 highlight(fig, IllegalPressure, "Marker", "o", "MarkerSize", 5, "NodeColor",

junctionColor4);

 elseif app.EPSCheckBox.Value ==1

 %EPS was selected

 Time = (app.EPSHourSlider.Value)+1;

 Time = round(Time);

 pressures = PressureComp(Time,:);

 HPressure = find(pressures > Threshold1)';

 MPressure = find(pressures <= Threshold1 & pressures > Threshold2)';

 LPressure = find(pressures <= Threshold2 & pressures > Threshold3)';

 IllegalPressure = find(pressures <= Threshold3)';

 highlight(fig, HPressure, "Marker", "o", "MarkerSize", 5, "NodeColor",

junctionColor1);

 highlight(fig, MPressure, "Marker", "o", "MarkerSize", 5, "NodeColor",

junctionColor2);

 highlight(fig, LPressure, "Marker", "o", "MarkerSize", 5, "NodeColor",

junctionColor3);

 highlight(fig, IllegalPressure, "Marker", "o", "MarkerSize", 5, "NodeColor",

junctionColor4);

 end

 PipeColor5 = string(app.Color5DropDown.Value);

 PipeColor6 = string(app.Color6DropDown.Value);

 PipeColor7 = string(app.Color7DropDown.Value);

EdgesandNodes= EdgesandNodes.Edges(:,1);

Edges = splitvars(EdgesandNodes, 1);

Edges = table2array(Edges);

%because the plotdi graph is kind of a pain in the butt is gives the proper

%nodal connections (the right start and end nodes) but it doesn't give them

%as indexed values with the pipes, they are just sorted in ascending order

%in the firs column as apposed to associating them with their respective

%pipes. The following corrects that

ConnectDiameter = d.getLinkNodesIndex;

%Connect is indexed with the pipes but not proper order of start and end

%nodes, edges is the opposite. Therefore we can just sort them in ascending

%order in the columns, compare where sortConnect and sortEdges are

128

%(ordering the Edges variable to be properly indexed with pipes) and use

%those values to change the highlight for the diGrpah

sortConnect = sort(ConnectDiameter, 2, 'ascend');

sortEdges = sort(Edges, 2, 'ascend');

[~,index] = ismember(sortConnect, sortEdges, 'rows');

EdgesNew = Edges(index,:);

%for map processing purposes, pass this value into the base workspace

assignin('base', 'index',index);

%Highlight for different flow regimes

Threshold4 = app.HighFlowcfsEditField_2.Value;

Threshold5 = app.LowFlowcfsEditField_2.Value;

if app.EPSCheckBox_2.Value ==0

FlowComp = abs(FlowComp ./ 448.8);

HFlow = find(FlowComp(1,:) > Threshold4);

MFlow = find(FlowComp(1,:) <= Threshold4 & FlowComp(1,:) > Threshold5);

LFlow = find(FlowComp(1,:) <= Threshold5);

try

LowFlow = EdgesNew(LFlow(1,:),:);

MediumFlow = EdgesNew(MFlow(1,:),:);

HighFlow = EdgesNew(HFlow(1,:),:);

catch

end

%change the colors of the pipes to be properly matched

try

 highlight(fig, LowFlow(:,1), LowFlow(:,2), "EdgeColor", PipeColor7);

 highlight(fig, MediumFlow(:,1), MediumFlow(:,2), "EdgeColor", PipeColor6);

 highlight(fig, HighFlow(:,1), HighFlow(:,2), "EdgeColor", PipeColor5);

catch

end

end

if app.EPSCheckBox_2.Value ==1

Time2 = (app.EPSHourSlider_2.Value)+1;

Time2 = round(Time2);

%Need to convert flow to CFS

FlowComp = abs(FlowComp ./ 448.8);

HFlow = find(FlowComp(Time2,:) > Threshold4);

MFlow = find(FlowComp(Time2,:) <= Threshold4 & FlowComp(Time2,:) > Threshold5);

LFlow = find(FlowComp(Time2,:) <= Threshold5);

try

129

LowFlow = EdgesNew(LFlow(1,:),:);

MediumFlow = EdgesNew(MFlow(1,:),:);

HighFlow = EdgesNew(HFlow(1,:),:);

catch

end

%change the colors of the pipes to be properly matched

try

 highlight(fig, LowFlow(:,1), LowFlow(:,2), "EdgeColor", PipeColor7);

 highlight(fig, MediumFlow(:,1), MediumFlow(:,2), "EdgeColor", PipeColor6);

 highlight(fig, HighFlow(:,1), HighFlow(:,2), "EdgeColor", PipeColor5);

catch

end

end

 end

 % Button pushed function: GenerateNodalChlorineResidualsMapButton

 function GenerateNodalChlorineResidualsMapButtonPushed(app, event)

 %Pull in the relevant chlorine data and figure

 QualityComp = evalin('base', 'QualityComp');

 fig = evalin('base','fig');

 %define thresholds from the main map page

 Threshold7 = app.HighConcentrationmglEditField.Value;

 Threshold8 = app.LowConcentrationmglEditField.Value;

 %define some of the colors we will be using

 junctionColor7 = string(app.Color8DropDown.Value);

 junctionColor8 = string(app.Color9DropDown.Value);

 junctionColor9 = string(app.Color10DropDown.Value);

 if app.EPSCheckBox_3.Value ==0

 %EPS was not selected so we are running our colors as "steady

 %state

 quality = QualityComp(1,:);

 HResidual = find(quality > Threshold7)' ;

 MResidual = find(quality <= Threshold7 & quality > Threshold8)';

 LResidual = find(quality <= Threshold8)';

 try

 highlight(fig, HResidual, "Marker", "o", "MarkerSize", 5, "NodeColor",

junctionColor7);

 highlight(fig, MResidual, "Marker", "o", "MarkerSize", 5, "NodeColor",

junctionColor8);

 highlight(fig, LResidual, "Marker", "o", "MarkerSize", 5, "NodeColor",

junctionColor9);

 catch

 end

 elseif app.EPSCheckBox_3.Value ==1

130

 %EPS was selected

 Time3 = (app.EPSHourSlider_3.Value)+1;

 Time3 = round(Time3);

 quality = QualityComp(Time3,:);

 HResidual = find(quality > Threshold7)';

 MResidual = find(quality <= Threshold7 & quality > Threshold8)';

 LResidual = find(quality <= Threshold8)';

 try

 highlight(fig, HResidual, "Marker", "o", "MarkerSize", 5, "NodeColor",

junctionColor7);

 highlight(fig, MResidual, "Marker", "o", "MarkerSize", 5, "NodeColor",

junctionColor8);

 highlight(fig, LResidual, "Marker", "o", "MarkerSize", 5, "NodeColor",

junctionColor9);

 catch

 end

 end

 end

 % Button pushed function: RunDiscoveryButton

 function RunDiscoveryButtonPushed(app, event)

 %bring in the figure from matlab 'base' workspace

 fig = evalin('base', 'fig');

 index = evalin('base','index');

 d = evalin('base', 'd');

 EdgesNew = evalin('base','EdgesNew')

 NodeName = d.getNodeNameID;

 LinkName = d.getLinkNameID;

 LinkNew = LinkName;

 JunctionName = string(app.JunctionNameEditField.Value);

 PipeName = string(app.PipeNameEditField.Value);

 JunctionIndex = find(strcmp(NodeName, JunctionName))

 %lets get the junctions all squared away

 if isempty(app.JunctionNameEditField.Value) ==1

 %means that there is no text

 fig.NodeLabel = [];

 elseif isempty(app.JunctionNameEditField.Value) ==0

 %means that someone put in some text. This will error if

 %the text is not exactly right. I will not fix that at the

 %moment

131

 %we also need the weight and color wanted for the junction

 %index

 highlight(fig, JunctionIndex, "Marker", "o", "MarkerSize",

app.JunctionWeightEditField.Value, "NodeColor", string(app.JunctionColorDropDown.Value));

 end

 %Now lets figure out the pipe labeling

 %first index it

 PipeIndex = find(strcmp(LinkName, PipeName))

 %now use the reordered edges to find what you are looking for

 WhatEdge = EdgesNew(PipeIndex,:);

 %now run the what if statement

 if isempty(app.PipeNameEditField.Value) ==1

 %means that there is no text

 fig.EdgeLabel = [];

 elseif isempty(app.PipeNameEditField.Value) ==0

 %means that someone put in some text. This will error if

 %the text is not exactly right. I will not fix that at the

 %moment

 highlight(fig, WhatEdge(:,1), WhatEdge(:,2), "EdgeColor",

string(app.PipeColorDropDown.Value), "LineWidth", app.PipeLineWeightEditField.Value);

 end

 %Now reorder the LinkName to match the indexing necessary for

 %proper pipe labeling

 LinkNew(1,index) = LinkName;

 %Turn on all of the junction names if that option is selected,

 %turn on all pipe names if that option is selected

 if app.TurnOnAllPipeNamesCheckBox.Value ==1

 fig.EdgeLabel = LinkNew;

 elseif app.TurnOnAllPipeNamesCheckBox.Value ==0

 fig.EdgeLabel = [];

 end

 if app.TurnonAllJunctionNamesCheckBox.Value ==1

 fig.NodeLabel = NodeName;

132

 elseif app.TurnonAllJunctionNamesCheckBox.Value ==0

 fig.NodeLabel = [];

 end

 end

 % Callback function

 function GetCurrentFilePipeDescriptionButtonPushed(app, event)

 d = evalin('base', 'd');

 LinkInfo = d.getLinksInfo;

 LinkName = d.getLinkNameID;

 %if the table is empty fill these puppies in

 if isempty(app.UITable2.Data) == 1

 app.UITable2.Data(:,2) = LinkInfo.LinkLength;

 app.UITable2.Data(:,3) = LinkInfo.LinkDiameter;

 app.UITable2.Data(:,4) = LinkInfo.LinkRoughnessCoeff;

 app.UITable2.Data(:,7) = LinkInfo.NodesConnectingLinksIndex(:,1);

 app.UITable2.Data(:,8) = LinkInfo.NodesConnectingLinksIndex(:,2);

 app.UITable2.Data = num2cell(app.UITable2.Data);

 app.UITable2.Data(:,1) = LinkName;

 else

 %its already populated and you just need to replace the roughness

 %coefficients

 Pawn = num2cell(LinkInfo.LinkRoughnessCoeff);

 app.UITable2.Data(:,4) = Pawn;

 end

 end

 % FUNCTION NOT IN CURRENT APP VERSION

 function ShowCurrentPumpCurvesButtonPushed(app, event)

 %%All of this is found in the KYPIPE "BASIC Computer Program for the

%%Analysis of Pressure and Flow in Pipe Distribution Systems Including

%%Extended Period Simulations" By Don Wood and is the same formulation for

%%the pump curves in EPANET

%This is the pump calibration function and will be used to help visualize,

%and optimize the use of their pumps

d = evalin('base', 'd');

Pump = d.getCurveValue;

%Pull in some of the operating point data relevant for plotting later

133

%Get Pressure Data (Index)

app.UITable_2.ColumnName

WherePump6PO = find(strcmp('O-Pump-6', app.UITable_2.ColumnName));

WherePump7PO = find(strcmp('O-Pump-7', app.UITable_2.ColumnName));

WherePump8PO = find(strcmp('O-Pump-8', app.UITable_2.ColumnName));

WherePump6PI = find(strcmp('I-Pump-6', app.UITable_2.ColumnName));

WherePump7PI = find(strcmp('I-Pump-7', app.UITable_2.ColumnName));

WherePump8PI = find(strcmp('I-Pump-8', app.UITable_2.ColumnName));

%Get Flow Data (Index)

WherePump6F = find(strcmp('~@Pump-6', app.UITable_5.ColumnName));

WherePump7F = find(strcmp('~@Pump-7', app.UITable_5.ColumnName));

WherePump8F = find(strcmp('~@Pump-8', app.UITable_5.ColumnName));

%Now we can gather that data

%This is for the Heads of the pumps at the Inlet and outlet (convert to head from

%psi)

Pump6HeadO = app.UITable_2.Data(:,WherePump6PO) .*2.30725;

Pump7HeadO = app.UITable_2.Data(:,WherePump7PO) .*2.30725;

Pump8HeadO = app.UITable_2.Data(:,WherePump8PO) .*2.30725;

Pump6HeadI = app.UITable_2.Data(:,WherePump6PI) .*2.30725;

Pump7HeadI = app.UITable_2.Data(:,WherePump7PI) .*2.30725;

Pump8HeadI = app.UITable_2.Data(:,WherePump8PI) .*2.30725;

%Because we are not solving the system head curve explcitly we need to

%actually solve for the amount of head that the pump is adding to the

%system to determine its operating point.

Pump6HeadAdded = Pump6HeadO - Pump6HeadI;

Pump7HeadAdded = Pump7HeadO - Pump7HeadI;

Pump8HeadAdded = Pump8HeadO - Pump8HeadI;

%This is for the flows (convert back to GPM from CFS)

Pump6Flow = (app.UITable_5.Data(:,WherePump6F)) .* (1/.00222802);

Pump7Flow = (app.UITable_5.Data(:,WherePump7F)) .* (1/.00222802);

Pump8Flow = (app.UITable_5.Data(:,WherePump8F)) .* (1/.00222802);

%This is to show whehter or not we are using the slider. We add a plus 1

%because the row that we search in for hour 1 values is actually in row 2

%(this is because there is an hour 0 reported value.

if app.OperatingPointSlider_5.Value > 0

Time3 = (app.OperatingPointSlider_5.Value)+1; %Pump 8

Time3 = round(Time3);

else

 Time3 = 1;

end

if app.OperatingPointSlider_3.Value >0

Time4 = (app.OperatingPointSlider_3.Value)+1; %Pump 6

Time4 = round(Time4);

else

134

 Time4 = 1;

end

if app.OperatingPointSlider_4.Value >0

Time5 = (app.OperatingPointSlider_4.Value)+1; %Pump 7

Time5 = round(Time5);

else

 Time5 = 1;

end

%%This is for the Lake Pump

PumpCurve1 = cell2mat(Pump(1,1));

%plot the first portion of the line

n = (log((PumpCurve1(1,2) - PumpCurve1(3,2)) / (PumpCurve1(1,2) -PumpCurve1(2,2))))

/(log(PumpCurve1(3,1) / PumpCurve1(2,1)));

C = (PumpCurve1(1,2) - PumpCurve1(2,2)) / (PumpCurve1(2,1)^n);

Q = linspace(0,PumpCurve1(3,1), 150);

EP = PumpCurve1(1,2) - (C * (Q.^n));

%plot the last extension of the line (the straight line portion coming

%after Q3.

S = (-n) * C * (PumpCurve1(3,1)^(n));

A = PumpCurve1(3,2) - (S * PumpCurve1(3,1));

EP2 = 50;

%end when the plotted curve ends up running into the x-axis

add = (PumpCurve1(3,1) * .10);

Q2 = PumpCurve1(3,1);

%This tells me when (maybe inefficiently) the flows will result in 0 head

while EP2 > 0

Q2 = Q2 + add;

EP2 = A + (S .* Q2);

end

%I can then linearly interpolate these flows to give me a line between the

%last known flow and the flow we predict will result in 0 head and then

%plot them.

QAll = horzcat(Q, Q2(1,2:end));

EPAll = horzcat(EP, EP2(1,2:end));

plot(app.UIAxes2_7, QAll, EPAll);

hold(app.UIAxes2_7, 'on');

scatter(app.UIAxes2_7, Pump6Flow(Time4, 1), Pump6HeadAdded(Time4,1), 'filled');

hold(app.UIAxes2_7, 'off');

%%This is for the River Pump

135

PumpCurve1 = cell2mat(Pump(1,2));

%plot the first portion of the line

n = (log((PumpCurve1(1,2) - PumpCurve1(3,2)) / (PumpCurve1(1,2) -PumpCurve1(2,2))))

/(log(PumpCurve1(3,1) / PumpCurve1(2,1)));

C = (PumpCurve1(1,2) - PumpCurve1(2,2)) / (PumpCurve1(2,1)^n);

Q = linspace(0,PumpCurve1(3,1), 150);

EP = PumpCurve1(1,2) - (C * (Q.^n));

%plot the last extension of the line (the straight line portion coming

%after Q3.

S = (-n) * C * (PumpCurve1(3,1)^(n-1));

A = PumpCurve1(3,2) - (S * PumpCurve1(3,1));

EP2 = 50;

%end when the plotted curve ends up running into the x-axis

add = (PumpCurve1(3,1) * .10);

Q2 = PumpCurve1(3,1);

%This tells me when (maybe inefficiently) the flows will result in 0 head

while EP2 > 0

Q2 = Q2 + add;

EP2 = A + (S .* Q2);

end

%I can then linearly interpolate these flows to give me a line between the

%last known flow and the flow we predict will result in 0 head and then

%plot them.

QAll = horzcat(Q, Q2(1,2:end));

EPAll = horzcat(EP, EP2(1,2:end));

plot(app.UIAxes2_4, QAll, EPAll);

hold(app.UIAxes2_4, 'on');

scatter(app.UIAxes2_4, Pump8Flow(Time3, 1), Pump8HeadAdded(Time3,1), 'filled');

hold(app.UIAxes2_4, 'off');

%%This is for the North Tank Pump

PumpCurve1 = cell2mat(Pump(1,3));

%plot the first portion of the line

n = (log((PumpCurve1(1,2) - PumpCurve1(3,2)) / (PumpCurve1(1,2) -PumpCurve1(2,2))))

/(log(PumpCurve1(3,1) / PumpCurve1(2,1)));

C = (PumpCurve1(1,2) - PumpCurve1(2,2)) / (PumpCurve1(2,1)^n);

Q = linspace(0,PumpCurve1(3,1), 150);

136

EP = PumpCurve1(1,2) - (C * (Q.^n));

%plot the last extension of the line (the straight line portion coming

%after Q3.

S = (-n) * C * (PumpCurve1(3,1)^(n-1));

A = PumpCurve1(3,2) - (S * PumpCurve1(3,1));

EP2 = 50;

%end when the plotted curve ends up running into the x-axis

add = (PumpCurve1(3,1) * .10);

Q2 = PumpCurve1(3,1);

%This tells me when (maybe inefficiently) the flows will result in 0 head

while EP2 > 0

Q2 = Q2 + add;

EP2 = A + (S .* Q2);

end

%I can then linearly interpolate these flows to give me a line between the

%last known flow and the flow we predict will result in 0 head and then

%plot them.

QAll = horzcat(Q, Q2(1,2:end));

EPAll = horzcat(EP, EP2(1,2:end));

plot(app.UIAxes2_6, QAll, EPAll);

hold(app.UIAxes2_6, 'on');

scatter(app.UIAxes2_6, Pump7Flow(Time5, 1), Pump7HeadAdded(Time5,1), 'filled');

hold(app.UIAxes2_6, 'off');

 end

 % FUNCTION NOT IN CURRENT APP VERSION

 function PlaceFieldDatainGraphButtonPushed(app, event)

 FieldData = evalin('base', 'fieldData1');

 HeadData = app.EnterFieldDataHeadFeetEditField.Value;

 FlowData = app.EnterFieldDataFlowGPMEditField.Value;

 NewData = horzcat(HeadData, FlowData);

 FieldData = vertcat(FieldData, NewData);

 fieldData1 = FieldData;

 assignin('base','fieldData1', fieldData1)

137

 hold(app.UIAxes2_4, 'on');

S1 = scatter(app.UIAxes2_4, fieldData1(:,2), fieldData1(:,1), 'magenta');

assignin('base','S1', S1)

hold(app.UIAxes2_4, 'off');

 end

 % FUNCTION NOT IN CURRENT APP VERSION

 function PlaceFieldDatainGraphButton_2Pushed(app, event)

 FieldData = evalin('base', 'fieldData2');

 HeadData = app.EnterFieldDataHeadFeetEditField_2.Value;

 FlowData = app.EnterFieldDataFlowGPMEditField_2.Value;

 NewData = horzcat(HeadData, FlowData);

 FieldData = vertcat(FieldData, NewData);

 fieldData2 = FieldData;

 assignin('base','fieldData2', fieldData2)

 hold(app.UIAxes2_7, 'on');

S2 = scatter(app.UIAxes2_7, fieldData2(:,2), fieldData2(:,1), 'magenta');

assignin('base','S2', S2)

hold(app.UIAxes2_7, 'off');

 end

 % FUNCTION NOT IN CURRENT APP VERSION

 function PlaceFieldDatainGraphButton_3Pushed(app, event)

 FieldData = evalin('base', 'fieldData3');

 HeadData = app.EnterFieldDataHeadFeetEditField_3.Value;

 FlowData = app.EnterFieldDataFlowGPMEditField_3.Value;

 NewData = horzcat(HeadData, FlowData);

 FieldData = vertcat(FieldData, NewData);

 fieldData3 = FieldData;

 assignin('base','fieldData3', fieldData3)

 hold(app.UIAxes2_6, 'on');

S3 = scatter(app.UIAxes2_6, fieldData3(:,2), fieldData3(:,1), 'magenta');

 assignin('base','S3', S3)

hold(app.UIAxes2_6, 'off');

 end

 % FUNCTION NOT IN CURRENT APP VERSION

 function RemoveFieldDatafromGraphButtonPushed(app, event)

 delete(findobj(app.UIAxes2_4,'type', 'scatter'))

 fieldData1 = [];

 assignin('base', 'fieldData1', fieldData1);

 end

138

 % FUNCTION NOT IN CURRENT APP VERSION

 function RemoveFieldDatafromGraphButton_2Pushed(app, event)

 delete(findobj(app.UIAxes2_7,'type', 'scatter'))

 fieldData2 = [];

 assignin('base', 'fieldData2', fieldData2);

 end

 % Callback function

 function RemoveFieldDatafromGraphButton_3Pushed(app, event)

 delete(findobj(app.UIAxes2_6,'type', 'scatter'))

 fieldData3 = [];

 assignin('base', 'fieldData3', fieldData3);

 end

 % FUNCTION NOT IN CURRENT APP VERSION

 function ChangeRoughnessforAllPipesButtonPushed(app, event)

 NewRoughnessValues = num2cell(app.CFactorEditField_3.Value);

 app.UITable2.Data(:,4) = NewRoughnessValues;

 end

 % FUNCTION NOT IN CURRENT APP VERSION

 function ChangeRoughnessforPipesofSameDiameterButtonPushed(app, event)

 SizeOfPipeSpecified = app.SizeofPipeEditField.Value;

 NewRoughness = num2cell(app.CFactorEditField.Value);

 DataFromTable = cell2mat(app.UITable2.Data(:,3));

 WhatRows = find(DataFromTable == SizeOfPipeSpecified);

 app.UITable2.Data(WhatRows,4) = NewRoughness;

 end

% FUNCTION NOT IN CURRENT APP VERSION

 function Button_3Pushed(app, event)

 %Read in the EPANET file

 d = evalin('base', 'd');

 %Find where the names of the rows match

 NameEnteredByUser = string(app.ReferencePipeNameEditField.Value);

 WhatRows = find(strcmp(app.UITable2.Data(:,1), NameEnteredByUser));

 %Now that we know what row contains the value of the reference

 %pipe we can go ahead and find out what the starting node is of

 %that pipe

 WhatNode = app.UITable2.Data(WhatRows, 7);

 WhatNode = round(cell2mat(WhatNode));

 %Now we can go and grab the relevant coordinates for the node

139

 NodeCoordinates = d.getNodeCoordinates;

 NodeXCoordinates = NodeCoordinates{1,1};

 NodeYCoordinates = NodeCoordinates{1,2};

 XCoordsMyNode = NodeXCoordinates(1,WhatNode);

 YCoordsMyNode = NodeYCoordinates(1,WhatNode);

 %Now we need to find any pipes that are within the specified

 %radius of the node (here we are loosely defining radius, this

 %is actually generating a box)

 terminalValue = app.RadiusftEditField.Value;

 XCoordLeft = XCoordsMyNode - terminalValue;

 XCoordRight = XCoordsMyNode + terminalValue;

 YCoordUp = YCoordsMyNode + terminalValue;

 YCoordsDown = YCoordsMyNode - terminalValue;

 %Now we can find all of the starting nodes where the

 %coordinates match the specified conditions

 WhatStartNodes = find(NodeXCoordinates < XCoordRight & NodeXCoordinates >

XCoordLeft & NodeYCoordinates > YCoordsDown & NodeYCoordinates < YCoordUp);

 %We know now which starting nodes qualify for change of

 %roghness value, we just need to do so

 StartNodes = round(cell2mat(app.UITable2.Data(:,7)));

 %Find the places where StartNodes is contained within

 %WhatStartNodes, Index by finding where the

 %WherePipeFromStartNode variable is not equal to 0

 [~,WherePipeFromStartNode] = ismember(StartNodes, WhatStartNodes);

 IndicestoUpdate = find(WherePipeFromStartNode ~=0);

 NewRoughness = num2cell(app.CFactorEditField_2.Value);

 app.UITable2.Data(IndicestoUpdate,4) = NewRoughness;

 end

% FUNCTION NOT IN CURRENT APP VERSION

 function Button_4Pushed(app, event)

 %Find where the names of the rows match

 NameEnteredByUser = string(app.PipeNameEditField_2.Value);

140

 WhatRows = find(strcmp(app.UITable2.Data(:,1), NameEnteredByUser));

 NewRoughness = num2cell(app.CFactorEditField_4.Value);

 app.UITable2.Data(WhatRows,4) = NewRoughness;

 end

% FUNCTION NOT IN CURRENT APP VERSION

 function RunEPSwithTrialRoughnessValuesButtonPushed(app, event)

 %First we have to identify where some of the changes came from,

 %we do this by comparing the origional roughness values with

 %the new values placed into the table

 d = evalin('base', 'd');

 LinkInfo = d.getLinksInfo;

 %Get the roughness values from the origional file

 LinkRoughOrig = LinkInfo.LinkRoughnessCoeff';

 UserInput = cell2mat(app.UITable2.Data(:,4));

 %find where the values are equal to each other (where there

 %have been no changes)

 Index = (LinkRoughOrig == UserInput);

 %Now that we have this we can actually find the index of where

 %the changes have happened

 IndexedChangeInRough = find(Index == 0);

 %We have this and now we can look for the roughness values of

 %the change

 ChangedRough = UserInput(IndexedChangeInRough,1);

 %Package these together as a neat input

 NewRoughness = horzcat(IndexedChangeInRough, ChangedRough);

tic;

 %find the row that you are wanting to concatenate and create a

 %cell array. Join them and remove redundant spaces. Once this

 %is done for all 12 rows we combine them into a another

 %completed cell array with the combined strings. Side note, the

 %deblank function removes the trailing whitespace produced and

 %the regexprep function searcehs for any whitespace that is

 %over 1 space long and replaces it with whitespace that is in

 %fact 1 space long

 row1 = {app.DropDown.Value,

app.DropDown_3.Value,app.DropDown_4.Value,app.DropDown_5.Value,app.DropDown_6.Value,app.D

ropDown_7.Value,app.DropDown_8.Value,app.EditField.Value, app.DropDown_86.Value};

 Newr1 = strjoin(row1, " ");

141

 %This expresion takes the joined string "Newr1" and finds where

 %the joined string has 1 or more spaces (' +') and replaces it

 %with a single space. deblank removes any trailing space.

 Newer1 = deblank(regexprep(Newr1, ' +', ' '));

 row2 = {app.DropDown_9.Value,

app.DropDown_10.Value,app.DropDown_11.Value,app.DropDown_12.Value,app.DropDown_13.Value,a

pp.DropDown_14.Value,app.DropDown_15.Value,app.EditField_2.Value, app.DropDown_87.Value};

 Newr2 = strjoin(row2, " ");

 Newer2 = deblank(regexprep(Newr2, ' +', ' '));

 row3 = {app.DropDown_16.Value,

app.DropDown_17.Value,app.DropDown_18.Value,app.DropDown_19.Value,app.DropDown_20.Value,a

pp.DropDown_21.Value,app.DropDown_22.Value,app.EditField_3.Value, app.DropDown_88.Value};

 Newr3 = strjoin(row3, " ");

 Newer3 = deblank(regexprep(Newr3, ' +', ' '));

 row4 = {app.DropDown_23.Value,

app.DropDown_24.Value,app.DropDown_25.Value,app.DropDown_26.Value,app.DropDown_27.Value,a

pp.DropDown_28.Value,app.DropDown_29.Value,app.EditField_4.Value, app.DropDown_89.Value};

 Newr4 = strjoin(row4, " ");

 Newer4 = deblank(regexprep(Newr4, ' +', ' '));

 row5 = {app.DropDown_30.Value,

app.DropDown_31.Value,app.DropDown_32.Value,app.DropDown_33.Value,app.DropDown_34.Value,a

pp.DropDown_35.Value,app.DropDown_36.Value,app.EditField_5.Value, app.DropDown_90.Value};

 Newr5 = strjoin(row5, " ");

 Newer5 = deblank(regexprep(Newr5, ' +', ' '));

 row6 = {app.DropDown_37.Value,

app.DropDown_38.Value,app.DropDown_39.Value,app.DropDown_40.Value,app.DropDown_41.Value,a

pp.DropDown_42.Value,app.DropDown_43.Value,app.EditField_6.Value, app.DropDown_91.Value};

 Newr6 = strjoin(row6, " ");

 Newer6 = deblank(regexprep(Newr6, ' +', ' '));

 row7 = {app.DropDown_44.Value,

app.DropDown_45.Value,app.DropDown_46.Value,app.DropDown_47.Value,app.DropDown_48.Value,a

pp.DropDown_49.Value,app.DropDown_50.Value,app.EditField_7.Value, app.DropDown_92.Value};

 Newr7 = strjoin(row7, " ");

 Newer7 = deblank(regexprep(Newr7, ' +', ' '));

 row8 = {app.DropDown_51.Value,

app.DropDown_52.Value,app.DropDown_53.Value,app.DropDown_54.Value,app.DropDown_55.Value,a

pp.DropDown_56.Value,app.DropDown_57.Value,app.EditField_8.Value, app.DropDown_93.Value};

 Newr8 = strjoin(row8, " ");

 Newer8 = deblank(regexprep(Newr8, ' +', ' '));

 row9 = {app.DropDown_58.Value,

app.DropDown_59.Value,app.DropDown_60.Value,app.DropDown_61.Value,app.DropDown_62.Value,a

pp.DropDown_63.Value,app.DropDown_64.Value,app.EditField_9.Value, app.DropDown_94.Value};

 Newr9 = strjoin(row9, " ");

 Newer9 = deblank(regexprep(Newr9, ' +', ' '));

 row10 = {app.DropDown_65.Value,

142

app.DropDown_66.Value,app.DropDown_67.Value,app.DropDown_68.Value,app.DropDown_69.Value,a

pp.DropDown_70.Value,app.DropDown_71.Value,app.EditField_10.Value,

app.DropDown_95.Value};

 Newr10 = strjoin(row10, " ");

 Newer10 = deblank(regexprep(Newr10, ' +', ' '));

 row11 = {app.DropDown_72.Value,

app.DropDown_73.Value,app.DropDown_74.Value,app.DropDown_75.Value,app.DropDown_76.Value,a

pp.DropDown_77.Value,app.DropDown_78.Value,app.EditField_11.Value,

app.DropDown_96.Value};

 Newr11 = strjoin(row11, " ");

 Newer11 = deblank(regexprep(Newr11, ' +', ' '));

 row12 = {app.DropDown_79.Value,

app.DropDown_80.Value,app.DropDown_81.Value,app.DropDown_82.Value,app.DropDown_83.Value,a

pp.DropDown_84.Value,app.DropDown_85.Value,app.EditField_12.Value,

app.DropDown_97.Value};

 Newr12 = strjoin(row12, " ");

 Newer12 = deblank(regexprep(Newr12, ' +', ' '));

 %Finally, bring them altogether

 NextArray = {Newer1;Newer2; Newer3; Newer4;Newer5; Newer6; Newer7;Newer8;

Newer9; Newer10;Newer11; Newer12};

%uses cell function to apply the isempty function to every row in the cell

%array. Once it identifies the rows that are empty in Next Array it deletes

%them. Found on MathWorks open forums. Essentially, all of the inputs we

%are specifying here will be sent to the extended period function as a cell

%value and then inside of the Extended period function we will convert to

%the proper format so that the epanet-matlab toolkit can process correctly.

%If this is not done we will be thrown errors.

 NextArray(cellfun('isempty',NextArray)) = cellstr('NULL');

 % now that we have the control statements, we need to add the other

 % factors that go into the simulation

 %InitialTankLevels

out13 = app.T_1.Value;

out14 = app.T_2.Value;

TankLevels = {out13; out14};

%Times

out15 = app.TotalTimeEditField.Value; %Total Time

out16 = app.HydraulicTimeStepEditField.Value; %Hydraulic Time Step

out17 = app.WaterQualityTimeStepEditField.Value; %Water Quality Time Step

Time1 = {out15};

Time2 = {out16};

Time3 = {out17};

%Decay Rates

out18 = app.BulkEditField.Value;

out19 = app.WallEditField.Value;

143

Decay = {out18; out19};

%Chlorine Value

out20 = app.ChlorinemglEditField.Value;

Chlorine = {out20};

%Comnbine all of them

Quality2 = vertcat(NextArray, TankLevels, Time1,Time2, Time3, Decay, Chlorine);

[d, QualityComp,PressureComp, FlowComp,pressure, quality, flow,Headfinal, PressureName,

QualityName, FlowName, Message] = ExtendedPeriod_Lebanon(Quality2, NewRoughness);

%so that the mapping can use these variables later

assignin('base', 'PressureComp', PressureComp);

assignin('base', 'FlowComp', FlowComp);

assignin('base', 'QualityComp', QualityComp);

%This code can probably be made simpler (with for loops for example with

%the row information. I did not think this was necessary because the system

%is rather small and am only writing a few control statements. Will have to

%check the data limitations of for looping, I didn't like how it wrote and

%rewrote the matrix for every iteration, that seemed slow. Maybe my method

%is slow too here.

app.UITable_2.ColumnName = horzcat('Time (Hours)',PressureName);

app.UITable_2.Data = pressure;

app.UITable_3.ColumnName = horzcat('Time (Hours)',QualityName);

app.UITable_3.Data = quality;

app.UITable_4.ColumnName = {'Time (Hours)', 'T-1', 'T-2'};

app.UITable_4.Data = Headfinal;

app.UITable_5.ColumnName = horzcat('Time (Hours)',FlowName);

app.UITable_5.Data = flow;

app.TextArea_5.Value = Message;

stop = toc;

app.EditField_13.Value = stop;

%This is all of the stuff I want assigned into the base workspace for

%several other functions. This will be overwritten if I run this function

%again which is good! If they want a different sim to be ran then I would

%want a lot of this stuff to change

 %assign the epanet file into the workspace to be used for other functions

 %in this application

144

assignin("base", "d", d);

%This is for pump calibration

fieldData1 = [];

fieldData2 = [];

fieldData3 = [];

assignin('base', 'fieldData1', fieldData1);

assignin('base', 'fieldData2', fieldData2);

assignin('base', 'fieldData3', fieldData3);

 end

% FUNCTION NOT IN CURRENT APP VERSION

 function SaveRoughnessChangesButtonPushed(app, event)

 filename = ('lebanon_May23.inp');

 d.saveInputFile(filename)

 end

% FUNCTION NOT IN CURRENT APP VERSION

 function RUNTRIALSIMWITHFIELDDATAButtonPushed(app, event)

%%First we need to bring in the field data as well as the matlab file

d = evalin('base', 'd');

FieldData1 = evalin('base', 'fieldData1');

FieldData2 = evalin('base', 'fieldData2');

FieldData3 = evalin('base', 'fieldData3');

if FieldData1 == [];

 FieldData1 = [0,0];

end

if FieldData2 == [];

 FieldData1 = [0,0];

end

if FieldData3 == [];

 FieldData1 = [0,0];

end

%Sort the data

FieldData1 = sortrows(FieldData1,1,'descend');

FieldData2 = sortrows(FieldData2,1,'descend');

FieldData3 = sortrows(FieldData3,1,'descend');

%Preallocate some curves to save on some processing speed. These will be

%populated and thrown into the extended period simulation

Curve1 = zeros(3,2);

Curve2 = zeros(3,2);

145

Curve3 = zeros(3,2);

%how many data points do we have total?

HowManyPoints1 = 1 + size(find(FieldData1(2:end,1) ~= 0),1);

HowManyPoints2 = 1 + size(find(FieldData2(2:end,1) ~= 0),1);

HowManyPoints3 = 1 + size(find(FieldData3(2:end,1) ~= 0),1);

%now place some logic in here to tell the button to change the curves if

%there is more than 3 points of field data, if there are not, do nothing.

%Also, I made a mistake, some of these are based on the head being in the

%first column and some are based on it being in the second column. This is

%kind of a caveman fix but we are just going to have to deal with it for

%now

pawn1 = FieldData1;

pawn2 = FieldData2;

pawn3 = FieldData3;

FieldData1(:,1) = pawn1(:,2);

FieldData1(:,2) = pawn1(:,1);

FieldData2(:,1) = pawn2(:,2);

FieldData2(:,2) = pawn2(:,1);

FieldData3(:,1) = pawn3(:,2);

FieldData3(:,2) = pawn3(:,1);

%also we need to remove any trailing 0's (from GPT)

% Find rows containing all zeros

rowsToRemove = all(FieldData1(4:end,:) == 0, 2);

% Remove the zero rows at the end

FieldData1 = FieldData1(1:end - sum(rowsToRemove), :);

% Find rows containing all zeros

rowsToRemove = all(FieldData2(4:end,:) == 0, 2);

% Remove the zero rows at the end

FieldData2 = FieldData2(1:end - sum(rowsToRemove), :);

% Find rows containing all zeros

rowsToRemove = all(FieldData3(4:end,:) == 0, 2);

% Remove the zero rows at the end

FieldData3 = FieldData3(1:end - sum(rowsToRemove), :);

if HowManyPoints1 >= 3

%now we can create many fitted lines in the data using Dr. Woods equation

%for pump curves and average all of these values then find the point that

%best fits that line and use it in setting the new pump curve

HowManyLines1 = HowManyPoints1 - 2;

146

Q = linspace(0,FieldData1(HowManyPoints1,1), 150);

i = 1;

EP = [];

while i <= HowManyLines1

n = (log((FieldData1(1,2) - FieldData1(HowManyPoints1,2)) / (FieldData1(1,2) -

FieldData1((i+1),2)))) /(log(FieldData1(HowManyPoints1,1) / FieldData1((i+1),1)));

C = (FieldData1(1,2) - FieldData1((i+1),2)) / (FieldData1((i+1),1)^n);

EPNew = FieldData1(1,2) - (C * (Q.^n));

EP = vertcat(EP, EPNew);

i = i+1;

end

%Now we get the average curve from the above run and turn it into a column

%vector

Average = mean(EP, 1)';

j =1;

closestPoint =[];

while j <= HowManyLines1

% Calculate distance between points and curve

distances = sqrt(sum((Average(j,1) - FieldData1((j+1),1)).^2, 2));

closestPoint = vertcat(closestPoint, distances)

j=j+1;

end

%which point is the keeper

[minClosestPoint, minCPIndex] = min(closestPoint);

%Now we can go ahead and fill some one of the curves

Curve1 = [FieldData1(1,1), FieldData1(1,2); FieldData1((minCPIndex+1),1),

FieldData1((minCPIndex+1),2); FieldData1((HowManyPoints1),1),

FieldData1((HowManyPoints1),2)];

 elseif HowManyPoints1 < 3

 %do nothing

end

%do the same thing for the lake pump

if HowManyPoints2 >= 3

147

%now we can create many fitted lines in the data using Dr. Woods equation

%for pump curves and average all of these values then find the point that

%best fits that line and use it in setting the new pump curve

HowManyLines2 = HowManyPoints2 - 2;

Q = linspace(0,FieldData2(HowManyPoints2,1), 150);

i = 1;

EP = [];

while i <= HowManyLines1

n = (log((FieldData2(2,2) - FieldData2(HowManyPoints2,2)) / (FieldData2(1,2) -

FieldData2((i+1),2)))) /(log(FieldData2(HowManyPoints2,1) / FieldData2((i+1),1)));

C = (FieldData2(1,2) - FieldData2((i+1),2)) / (FieldData2((i+1),1)^n);

EPNew = FieldData2(1,2) - (C * (Q.^n));

EP = vertcat(EP, EPNew);

i = i+1;

end

Average = mean(EP, 1)';

j =1;

closestPoint =[];

while j <= HowManyLines2

distances = sqrt(sum((Average(j,1) - FieldData2((j+1),1)).^2, 2));

closestPoint = vertcat(closestPoint, distances)

j=j+1;

end

[minClosestPoint, minCPIndex] = min(closestPoint);

Curve2 = [FieldData2(1,1), FieldData2(1,2); FieldData1((minCPIndex+1),1),

FieldData2((minCPIndex+1),2); FieldData2((HowManyPoints2),1),

FieldData2((HowManyPoints2),2)];

 elseif HowManyPoints2 < 3

end

%now we can do the same for the north tank pump

if HowManyPoints3 >= 3

%now we can create many fitted lines in the data using Dr. Woods equation

%for pump curves and average all of these values then find the point that

%best fits that line and use it in setting the new pump curve

148

HowManyLines3 = HowManyPoints3 - 2;

Q = linspace(0,FieldData3(HowManyPoints3,1), 150);

i = 1;

EP = [];

while i <= HowManyLines3

n = (log((FieldData3(2,2) - FieldData3(HowManyPoints3,2)) / (FieldData3(1,2) -

FieldData3((i+1),2)))) /(log(FieldData3(HowManyPoints3,1) / FieldData3((i+1),1)));

C = (FieldData3(1,2) - FieldData3((i+1),2)) / (FieldData3((i+1),1)^n);

EPNew = FieldData3(1,2) - (C * (Q.^n));

EP = vertcat(EP, EPNew);

i = i+1;

end

Average = mean(EP, 1)';

j =1;

closestPoint =[];

while j <= HowManyLines3

distances = sqrt(sum((Average(j,1) - FieldData3((j+1),1)).^2, 2));

closestPoint = vertcat(closestPoint, distances)

j=j+1;

end

[minClosestPoint, minCPIndex] = min(closestPoint);

Curve3 = [FieldData3(1,1), FieldData3(1,2); FieldData3((minCPIndex+1),1),

FieldData3((minCPIndex+1),2); FieldData3((HowManyPoints3),1),

FieldData3((HowManyPoints3),2)];

 elseif HowManyPoints3 < 3

end

%Now we need to run an extended period simulation with these points

AllCurves = horzcat(Curve1, Curve2, Curve3);

tic;

 %find the row that you are wanting to concatenate and create a

 %cell array. Join them and remove redundant spaces. Once this

 %is done for all 12 rows we combine them into a another

 %completed cell array with the combined strings. Side note, the

 %deblank function removes the trailing whitespace produced and

 %the regexprep function searcehs for any whitespace that is

 %over 1 space long and replaces it with whitespace that is in

149

 %fact 1 space long

 row1 = {app.DropDown.Value,

app.DropDown_3.Value,app.DropDown_4.Value,app.DropDown_5.Value,app.DropDown_6.Value,app.D

ropDown_7.Value,app.DropDown_8.Value,app.EditField.Value, app.DropDown_86.Value};

 Newr1 = strjoin(row1, " ");

 %This expresion takes the joined string "Newr1" and finds where

 %the joined string has 1 or more spaces (' +') and replaces it

 %with a single space. deblank removes any trailing space.

 Newer1 = deblank(regexprep(Newr1, ' +', ' '));

 row2 = {app.DropDown_9.Value,

app.DropDown_10.Value,app.DropDown_11.Value,app.DropDown_12.Value,app.DropDown_13.Value,a

pp.DropDown_14.Value,app.DropDown_15.Value,app.EditField_2.Value, app.DropDown_87.Value};

 Newr2 = strjoin(row2, " ");

 Newer2 = deblank(regexprep(Newr2, ' +', ' '));

 row3 = {app.DropDown_16.Value,

app.DropDown_17.Value,app.DropDown_18.Value,app.DropDown_19.Value,app.DropDown_20.Value,a

pp.DropDown_21.Value,app.DropDown_22.Value,app.EditField_3.Value, app.DropDown_88.Value};

 Newr3 = strjoin(row3, " ");

 Newer3 = deblank(regexprep(Newr3, ' +', ' '));

 row4 = {app.DropDown_23.Value,

app.DropDown_24.Value,app.DropDown_25.Value,app.DropDown_26.Value,app.DropDown_27.Value,a

pp.DropDown_28.Value,app.DropDown_29.Value,app.EditField_4.Value, app.DropDown_89.Value};

 Newr4 = strjoin(row4, " ");

 Newer4 = deblank(regexprep(Newr4, ' +', ' '));

 row5 = {app.DropDown_30.Value,

app.DropDown_31.Value,app.DropDown_32.Value,app.DropDown_33.Value,app.DropDown_34.Value,a

pp.DropDown_35.Value,app.DropDown_36.Value,app.EditField_5.Value, app.DropDown_90.Value};

 Newr5 = strjoin(row5, " ");

 Newer5 = deblank(regexprep(Newr5, ' +', ' '));

 row6 = {app.DropDown_37.Value,

app.DropDown_38.Value,app.DropDown_39.Value,app.DropDown_40.Value,app.DropDown_41.Value,a

pp.DropDown_42.Value,app.DropDown_43.Value,app.EditField_6.Value, app.DropDown_91.Value};

 Newr6 = strjoin(row6, " ");

 Newer6 = deblank(regexprep(Newr6, ' +', ' '));

 row7 = {app.DropDown_44.Value,

app.DropDown_45.Value,app.DropDown_46.Value,app.DropDown_47.Value,app.DropDown_48.Value,a

pp.DropDown_49.Value,app.DropDown_50.Value,app.EditField_7.Value, app.DropDown_92.Value};

 Newr7 = strjoin(row7, " ");

 Newer7 = deblank(regexprep(Newr7, ' +', ' '));

 row8 = {app.DropDown_51.Value,

app.DropDown_52.Value,app.DropDown_53.Value,app.DropDown_54.Value,app.DropDown_55.Value,a

pp.DropDown_56.Value,app.DropDown_57.Value,app.EditField_8.Value, app.DropDown_93.Value};

 Newr8 = strjoin(row8, " ");

 Newer8 = deblank(regexprep(Newr8, ' +', ' '));

 row9 = {app.DropDown_58.Value,

150

app.DropDown_59.Value,app.DropDown_60.Value,app.DropDown_61.Value,app.DropDown_62.Value,a

pp.DropDown_63.Value,app.DropDown_64.Value,app.EditField_9.Value, app.DropDown_94.Value};

 Newr9 = strjoin(row9, " ");

 Newer9 = deblank(regexprep(Newr9, ' +', ' '));

 row10 = {app.DropDown_65.Value,

app.DropDown_66.Value,app.DropDown_67.Value,app.DropDown_68.Value,app.DropDown_69.Value,a

pp.DropDown_70.Value,app.DropDown_71.Value,app.EditField_10.Value,

app.DropDown_95.Value};

 Newr10 = strjoin(row10, " ");

 Newer10 = deblank(regexprep(Newr10, ' +', ' '));

 row11 = {app.DropDown_72.Value,

app.DropDown_73.Value,app.DropDown_74.Value,app.DropDown_75.Value,app.DropDown_76.Value,a

pp.DropDown_77.Value,app.DropDown_78.Value,app.EditField_11.Value,

app.DropDown_96.Value};

 Newr11 = strjoin(row11, " ");

 Newer11 = deblank(regexprep(Newr11, ' +', ' '));

 row12 = {app.DropDown_79.Value,

app.DropDown_80.Value,app.DropDown_81.Value,app.DropDown_82.Value,app.DropDown_83.Value,a

pp.DropDown_84.Value,app.DropDown_85.Value,app.EditField_12.Value,

app.DropDown_97.Value};

 Newr12 = strjoin(row12, " ");

 Newer12 = deblank(regexprep(Newr12, ' +', ' '));

 %Finally, bring them altogether

 NextArray = {Newer1;Newer2; Newer3; Newer4;Newer5; Newer6; Newer7;Newer8;

Newer9; Newer10;Newer11; Newer12};

%uses cell function to apply the isempty function to every row in the cell

%array. Once it identifies the rows that are empty in Next Array it deletes

%them. Found on MathWorks open forums. Essentially, all of the inputs we

%are specifying here will be sent to the extended period function as a cell

%value and then inside of the Extended period function we will convert to

%the proper format so that the epanet-matlab toolkit can process correctly.

%If this is not done we will be thrown errors.

 NextArray(cellfun('isempty',NextArray)) = cellstr('NULL');

 % now that we have the control statements, we need to add the other

 % factors that go into the simulation

 %InitialTankLevels

out13 = app.T_1.Value;

out14 = app.T_2.Value;

TankLevels = {out13; out14};

%Times

out15 = app.TotalTimeEditField.Value; %Total Time

out16 = app.HydraulicTimeStepEditField.Value; %Hydraulic Time Step

out17 = app.WaterQualityTimeStepEditField.Value; %Water Quality Time Step

151

Time1 = {out15};

Time2 = {out16};

Time3 = {out17};

%Decay Rates

out18 = app.BulkEditField.Value;

out19 = app.WallEditField.Value;

Decay = {out18; out19};

%Chlorine Value

out20 = app.ChlorinemglEditField.Value;

Chlorine = {out20};

%Comnbine all of them

Quality2 = vertcat(NextArray, TankLevels, Time1,Time2, Time3, Decay, Chlorine);

[d, QualityComp,PressureComp, FlowComp,pressure, quality, flow,Headfinal, PressureName,

QualityName, FlowName, Message] = ExtendedPeriod_Lebanon(Quality2, AllCurves);

%so that the mapping can use these variables later

assignin('base', 'PressureComp', PressureComp);

assignin('base', 'FlowComp', FlowComp);

assignin('base', 'QualityComp', QualityComp);

%This code can probably be made simpler (with for loops for example with

%the row information. I did not think this was necessary because the system

%is rather small and am only writing a few control statements. Will have to

%check the data limitations of for looping, I didn't like how it wrote and

%rewrote the matrix for every iteration, that seemed slow. Maybe my method

%is slow too here.

app.UITable_2.ColumnName = horzcat('Time (Hours)',PressureName);

app.UITable_2.Data = pressure;

app.UITable_3.ColumnName = horzcat('Time (Hours)',QualityName);

app.UITable_3.Data = quality;

app.UITable_4.ColumnName = {'Time (Hours)', 'T-1', 'T-2'};

app.UITable_4.Data = Headfinal;

app.UITable_5.ColumnName = horzcat('Time (Hours)',FlowName);

app.UITable_5.Data = flow;

app.TextArea_5.Value = Message;

stop = toc;

app.EditField_13.Value = stop;

%This is all of the stuff I want assigned into the base workspace for

152

%several other functions. This will be overwritten if I run this function

%again which is good! If they want a different sim to be ran then I would

%want a lot of this stuff to change

 %assign the epanet file into the workspace to be used for other functions

 %in this application

assignin("base", "d", d);

 end

% FUNCTION NOT IN CURRENT APP VERSION

 function ReadPumpFieldDataFromExcelFileRecommendedButtonPushed(app, event)

%Read the data in from excel file

rawTable = readtable('Curves.xlsx');

Curve1 = rawTable{:,1:2};

Curve2 = rawTable{:,3:4};

Curve3 = rawTable{:,5:6};

%Turn any NaN's to 0

Curve1(isnan(Curve1))=0;

Curve2(isnan(Curve2))=0;

Curve3(isnan(Curve3))=0;

%For the River Pump

fieldData1 = Curve1;

hold(app.UIAxes2_4, 'on');

S1 = scatter(app.UIAxes2_4, fieldData1(:,2), fieldData1(:,1), 'magenta');

hold(app.UIAxes2_4, 'off');

assignin('base', 'fieldData1', fieldData1);

%For the Lake Pump

fieldData2 = Curve2;

hold(app.UIAxes2_7, 'on');

S2 = scatter(app.UIAxes2_7, fieldData2(:,2), fieldData2(:,1), 'magenta');

hold(app.UIAxes2_7, 'off');

assignin('base', 'fieldData2', fieldData2);

%For the North Tank Pump

fieldData3 = Curve3;

hold(app.UIAxes2_6, 'on');

S3 = scatter(app.UIAxes2_6, fieldData3(:,2), fieldData3(:,1), 'magenta');

hold(app.UIAxes2_6, 'off');

assignin('base', 'fieldData3', fieldData3);

 end

 % Callback function

 function STORENEWPUMPCURVESButtonPushed(app, event)

 filename = ('lebanon_May23.inp');

 d.saveInputFile(filename)

 end

 % Button pushed function: RUNEPSButton

 function RUNEPSButtonPushed(app, event)

153

 %Clear axes on the results page (necessary if there is data still

 %in them from a previous simulation)

THIS IS THE MAIN SCRIPT FOR THE EPS RUNNING THE APPLICATION

 cla(app.UIAxes_4)

 cla(app.UIAxes_5)

 cla(app.UIAxes_7)

 cla(app.UIAxes_8)

 cla(app.UIAxes_9)

 %Pull in the demand factors so that they can be used in the

 %simulation

 DZ1 = evalin('base', 'DZ1');

 DZ2 = evalin('base', 'DZ2');

 DemandFactors = [DZ1, DZ2];

 %%Get the initial tank levels

 SpringfieldTank = app.InitialTanklevelEditField_9.Value;

 CalvaryTanks = app.InitialTanklevelEditField_10.Value;

 InitialTankLevels = [CalvaryTanks, SpringfieldTank];

 if strcmp(app.SpringfieldRoadPumpSwitch.Value, 'Use') ==1 &&

strcmp(app.WTPSwitch.Value, 'Use') ==1

 % Set the WTP to respond to tank levels. Note that this

 % needs to be written in a specific format for EPANET

 % to use. Hence the variable "Row1" etc.

 %Turn on when

 Value1 = (app.OnWhenBelowEditField_2.Value) + 27;

 Row1 = 'LINK ~@Pump-8 OPEN IF NODE T-12 BELOW ';

 combinedString1 = sprintf('%s%d', Row1, Value1);

 %Turn off when

 Value2 = (app.OffWhenAboveEditField_2.Value) + 27;

 Row2 = 'LINK ~@Pump-8 CLOSED IF NODE T-12 ABOVE ';

 combinedString2 = sprintf('%s%d', Row2, Value2);

 % Do the same for the Springfield Road pump

 %Turn on when

 Value3 = (app.OnWhenBelowEditField.Value) + 104.5;

 Row3 = 'LINK ~@Pump-7 OPEN IF NODE T-13 BELOW ';

 combinedString3 = sprintf('%s%d', Row3, Value3);

 %Turn off when

 Value4 = (app.OffWhenAboveEditField.Value) + 104.5;

 Row4 = 'LINK ~@Pump-7 CLOSED IF NODE T-13 ABOVE ';

 combinedString4 = sprintf('%s%d', Row4, Value4);

 end

154

 if strcmp(app.SpringfieldRoadPumpSwitch.Value, 'Use') ==0 &&

strcmp(app.WTPSwitch.Value, 'Use') ==0

 %If neither settings were specified as "Use" call

 %"NULL" and delete later when pushed into the extended

 %period simulation

 combinedString1 = 'NULL';

 combinedString2 = 'NULL';

 combinedString3 = 'NULL';

 combinedString4 = 'NULL';

 end

 if strcmp(app.SpringfieldRoadPumpSwitch.Value, 'Use') ==1 &&

strcmp(app.WTPSwitch.Value, 'Use') ~= 1

 %If Springfield Road is used and WTP is not, do the

 %following:

 %Do not use WTP pumps (relative to tank

 %levels)

 combinedString1 = 'NULL';

 combinedString2 = 'NULL';

 %Turn on when

 Value3 = (app.OnWhenBelowEditField.Value) + 104.5;

 Row3 = 'LINK ~@Pump-7 OPEN IF NODE T-13 BELOW ';

 combinedString3 = sprintf('%s%d', Row3, Value3);

 %Turn off when

 Value4 = (app.OffWhenAboveEditField.Value) + 104.5;

 Row4 = 'LINK ~@Pump-7 CLOSED IF NODE T-13 ABOVE ';

 combinedString4 = sprintf('%s%d', Row4, Value4);

 end

 if strcmp(app.SpringfieldRoadPumpSwitch.Value, 'Use') ~=1 &&

strcmp(app.WTPSwitch.Value, 'Use') == 1

 %If WTP is used and Springfield Road is not, do the

 %following:

 %Do not use Springfield Road pump (relative to tank

 %levels)

 combinedString3 = 'NULL';

 combinedString4 = 'NULL';

 %Turn on when

 Value1 = (app.OnWhenBelowEditField_2.Value) + 27;

 Row1 = 'LINK ~@Pump-8 OPEN IF NODE T-12 BELOW ';

 combinedString1 = sprintf('%s%d', Row1, Value1);

 %Turn off when

 Value2 = (app.OffWhenAboveEditField_2.Value) + 27;

155

 Row2 = 'LINK ~@Pump-8 CLOSED IF NODE T-12 ABOVE ';

 combinedString2 = sprintf('%s%d', Row2, Value2);

 end

%Initialize the string used for the control statements here because that

%makes inputting them into EPANET (via EPANET-MATLAB Toolkit) much easier.

%At least in my experience.

SpringfieldPumpStringOPEN = 'LINK ~@Pump-7 OPEN AT TIME ';

SpringfieldPumpStringCLOSED = 'LINK ~@Pump-7 CLOSED AT TIME ';

WTPPumpStringOPEN = 'LINK ~@Pump-8 OPEN AT TIME ';

WTPPumpStringCLOSED = 'LINK ~@Pump-8 CLOSED AT TIME ';

%Now read in all of the values

%Springfield Road on times

spring1 = app.ONATTIMEEditField.Value;

spring2 = app.ONATTIMEEditField_5.Value;

spring3 = app.ONATTIMEEditField_4.Value;

spring4 = app.ONATTIMEEditField_3.Value;

spring5 = app.ONATTIMEEditField_6.Value;

spring6 = app.ONATTIMEEditField_7.Value;

spring7 = app.ONATTIMEEditField_8.Value;

spring8 = app.ONATTIMEEditField_9.Value;

%Springfield Road off times

spring9 = app.OFFATTIMEEditField.Value;

spring10 = app.OFFATTIMEEditField_2.Value;

spring11 = app.OFFATTIMEEditField_3.Value;

spring12 = app.OFFATTIMEEditField_4.Value;

spring13 = app.OFFATTIMEEditField_5.Value;

spring14 = app.OFFATTIMEEditField_6.Value;

spring15 = app.OFFATTIMEEditField_7.Value;

spring16 = app.OFFATTIMEEditField_8.Value;

%WTP on times

WTP1 = app.ONATTIMEEditField_10.Value;

WTP2 = app.ONATTIMEEditField_13.Value;

WTP3 = app.ONATTIMEEditField_12.Value;

WTP4 = app.ONATTIMEEditField_11.Value;

WTP5 = app.ONATTIMEEditField_14.Value;

WTP6 = app.ONATTIMEEditField_15.Value;

WTP7 = app.ONATTIMEEditField_16.Value;

WTP8 = app.ONATTIMEEditField_17.Value;

%WTP off times

WTP9 = app.OFFATTIMEEditField_9.Value;

WTP10 = app.OFFATTIMEEditField_12.Value;

WTP11 = app.OFFATTIMEEditField_11.Value;

WTP12 = app.OFFATTIMEEditField_10.Value;

WTP13 = app.OFFATTIMEEditField_13.Value;

WTP14 = app.OFFATTIMEEditField_14.Value;

WTP15 = app.OFFATTIMEEditField_15.Value;

156

WTP16 = app.OFFATTIMEEditField_16.Value;

%create the springfield pump open control statements as they are recognized

%in EPANET

combinedString5 = sprintf('%s%s', SpringfieldPumpStringOPEN, spring1);

combinedString6 = sprintf('%s%s', SpringfieldPumpStringOPEN, spring2);

combinedString7 = sprintf('%s%s', SpringfieldPumpStringOPEN, spring3);

combinedString8 = sprintf('%s%s', SpringfieldPumpStringOPEN, spring4);

combinedString9 = sprintf('%s%s', SpringfieldPumpStringOPEN, spring5);

combinedString10 = sprintf('%s%s', SpringfieldPumpStringOPEN, spring6);

combinedString11 = sprintf('%s%s', SpringfieldPumpStringOPEN, spring7);

combinedString12 = sprintf('%s%s', SpringfieldPumpStringOPEN, spring8);

%create the springfield pump closed control statements as they are recognized

%in EPANET

combinedString13 = sprintf('%s%s', SpringfieldPumpStringCLOSED, spring9);

combinedString14 = sprintf('%s%s', SpringfieldPumpStringCLOSED, spring10);

combinedString15 = sprintf('%s%s', SpringfieldPumpStringCLOSED, spring11);

combinedString16 = sprintf('%s%s', SpringfieldPumpStringCLOSED, spring12);

combinedString17 = sprintf('%s%s', SpringfieldPumpStringCLOSED, spring13);

combinedString18 = sprintf('%s%s', SpringfieldPumpStringCLOSED, spring14);

combinedString19 = sprintf('%s%s', SpringfieldPumpStringCLOSED, spring15);

combinedString20 = sprintf('%s%s', SpringfieldPumpStringCLOSED, spring16);

%create the WTP pump open control statements as they are recognized

%in EPANET

combinedString21 = sprintf('%s%s', WTPPumpStringOPEN, WTP1);

combinedString22 = sprintf('%s%s', WTPPumpStringOPEN, WTP2);

combinedString23 = sprintf('%s%s', WTPPumpStringOPEN, WTP3);

combinedString24 = sprintf('%s%s', WTPPumpStringOPEN, WTP4);

combinedString25 = sprintf('%s%s', WTPPumpStringOPEN, WTP5);

combinedString26 = sprintf('%s%s', WTPPumpStringOPEN, WTP6);

combinedString27 = sprintf('%s%s', WTPPumpStringOPEN, WTP7);

combinedString28 = sprintf('%s%s', WTPPumpStringOPEN, WTP8);

%create the WTP pump closed control statements as they are recognized

%in EPANET

combinedString29 = sprintf('%s%s', WTPPumpStringCLOSED, WTP9);

combinedString30 = sprintf('%s%s', WTPPumpStringCLOSED, WTP10);

combinedString31 = sprintf('%s%s', WTPPumpStringCLOSED, WTP11);

combinedString32 = sprintf('%s%s', WTPPumpStringCLOSED, WTP12);

combinedString33 = sprintf('%s%s', WTPPumpStringCLOSED, WTP13);

combinedString34 = sprintf('%s%s', WTPPumpStringCLOSED, WTP14);

combinedString35 = sprintf('%s%s', WTPPumpStringCLOSED, WTP15);

combinedString36 = sprintf('%s%s', WTPPumpStringCLOSED, WTP16);

%Combine all control statements under one variable

AllSimpleControls = {combinedString1;

combinedString2;combinedString3;combinedString4;combinedString5;combinedString13;combined

String6;combinedString14;combinedString7;combinedString15;combinedString8;combinedString1

6;combinedString9;combinedString17;combinedString10;combinedString18;combinedString11;com

binedString19;combinedString12;combinedString20;combinedString21;combinedString29;

combinedString22; combinedString30;combinedString23; combinedString31;combinedString24;

combinedString32;combinedString25; combinedString33;combinedString26;

157

combinedString34;combinedString27; combinedString35;combinedString28; combinedString36};

 % If either of the "USE" buttons are specified, just use the first four

 % control statements

 if strcmp(app.SpringfieldRoadPumpSwitch.Value, 'Use') ==1 ||

strcmp(app.WTPSwitch.Value, 'Use') ==1

 AllSimpleControls = {combinedString1;

combinedString2;combinedString3;combinedString4};

 end

 %If a cell is populated with just the string, that means no user input

 %was specified. Here this is tagged and deleted. This is done for all

 %four possible statments.

 Logic1 = strcmp(SpringfieldPumpStringOPEN, AllSimpleControls);

 WhereLogic1 = find(Logic1 ==1);

 AllSimpleControls(WhereLogic1, :) = [];

 Logic2 = strcmp(SpringfieldPumpStringCLOSED, AllSimpleControls);

 WhereLogic2 = find(Logic2 ==1);

 AllSimpleControls(WhereLogic2, :) = [];

 Logic3 = strcmp(WTPPumpStringOPEN, AllSimpleControls);

 WhereLogic3 = find(Logic3 ==1);

 AllSimpleControls(WhereLogic3, :) =[];

 Logic4 = strcmp(WTPPumpStringCLOSED, AllSimpleControls);

 WhereLogic4 = find(Logic4 ==1);

 AllSimpleControls(WhereLogic4,:) =[];

 %NULL is also deleted

 Logic5 = strcmp('NULL', AllSimpleControls);

 WhereLogic5 = find(Logic5 ==1);

 AllSimpleControls(WhereLogic5, :) = [];

[PressureComp, FlowComp, QualityComp, TankHeads, TankWaterAge, PumpHGL, PumpFlowRate,

JunctionPressure, JunctionDemand, JunctionChlorine, JunctionTTHM, Time, d] =

ExtendedPeriodV2(0,InitialTankLevels,

AllSimpleControls,app.ChlorinemglEditField_2.Value,app.BulkEditField_2.Value,

app.WallEditField_2.Value, app.HydraulicTimeStepEditField_2.Value,

app.WaterQualityTimeStepEditField_2.Value, app.TotalTimeEditField_2.Value,

DemandFactors);

%Tank names accidentally reversed relative to elements to be filled in the

%application!

Pawn1 = TankHeads;

TankHeads(:,1) = Pawn1(:,2);

TankHeads(:,2) = Pawn1(:,1);

158

app.UITable4.Data = horzcat(Time,TankHeads);

%Set the column name for the table

app.UITable4.ColumnName = ["Time(hours)","Springfield Tank","Calvary Tanks"];

User can specify which parameter they are looking for

%This is for the Springfield Road Pump

if strcmp(app.ShowDropDown.Value, 'HGL (ft.)') ==1

 Pump1Info = PumpHGL(:,3);

else

 Pump1Info = PumpFlowRate(:,1);

end

%for the WTP Pump

if strcmp(app.ShowDropDown_2.Value, 'HGL (ft.)') ==1

 Pump2Info = PumpHGL(:,4);

else

 Pump2Info = PumpFlowRate(:,2);

end

%for the junctions themselves

if strcmp(app.ShowPredictedDropDown_8.Value, 'Pressure (psi)') ==1

 JunctionInfo = JunctionPressure;

elseif strcmp(app.ShowPredictedDropDown_8.Value, 'Demand (gpm)') ==1

 JunctionInfo = JunctionDemand;

elseif strcmp(app.ShowPredictedDropDown_8.Value, 'Chlorine (mg/l)') ==1

 JunctionInfo = JunctionChlorine;

else

 JunctionInfo = JunctionTTHM;

end

%This has been packaged nicely now into the tables. The tables are the

%elements referenced for the graphs to be populated

app.UITable4_2.Data = horzcat(Time, Pump1Info, Pump2Info, JunctionInfo);

%Place results in workspace so that the graphs may be used

assignin('base', 'TankHeads', TankHeads);

assignin('base', 'TankWaterAge', TankWaterAge);

assignin('base', 'PumpHGL', PumpHGL);

assignin('base', 'PumpFlowRate', PumpFlowRate);

assignin('base', 'JunctionPressure', JunctionPressure);

assignin('base', 'JunctionDemand', JunctionDemand);

assignin('base', 'JunctionChlorine', JunctionChlorine);

assignin('base', 'JunctionTTHM', JunctionTTHM);

assignin('base', 'Time', Time);

%Set the column name for the table that all of the graphs base themselves

%off of

app.UITable4_2.ColumnName = {'Time'; 'Springfield Road Pump'; 'Water Treatment Plant

Pump'; 'Route 208 By-Pass';'Before Calvary Meter';'Calvary Meter';'Woodlawn

Meter';'Danville Meter';'Springfield Road Meter'; 'Saint Rose Meter'; 'Saint Mary Meter';

159

'Campbellsville Meter';'Mercer Ave';'Indiana Creek Road'};

%For mapping later

%so that the mapping can use these variables later

assignin('base', 'PressureComp', PressureComp);

assignin('base', 'FlowComp', FlowComp);

assignin('base', 'QualityComp', QualityComp);

assignin('base', 'd', d);

%Use a message box to tell the user that the simulation has been run and

%that they may proceed to other evaluations

msgbox("EPS Successfully Ran, User May Proceed to Functionality On Next Page",

"Success");

 end

 % Button pushed function: UpdateGraphandTableButton

 function UpdateGraphandTableButtonPushed(app, event)

 %Call in the tank values from the workspace

 TankHeads = evalin('base', 'TankHeads');

 Pawn1 = TankHeads;

 TankHeads(:,1) = Pawn1(:,2);

 TankHeads(:,2) = Pawn1(:,1);

 TankWaterAge = evalin('base', 'TankWaterAge');

 Time = evalin('base', 'Time');

 if strcmp(app.ShowPredictedDropDown.Value, 'Tank Level (ft.)') ==1

 %Set all of the information for the Sprngfield Road Tank

 app.UIAxes_4.YLabel.String = 'Tank Level (ft.)';

 plot(app.UIAxes_4, Time,TankHeads(:,2))

 app.UITable4.Data(:,2) = TankHeads(:,2);

 else

 %Set all of the information for the Sprngfield Road Tank

 app.UIAxes_4.YLabel.String = 'Water Age (Hours)';

 plot(app.UIAxes_4, Time,TankWaterAge(:,2))

 app.UITable4.Data(:,2) = TankWaterAge(:,2);

 end

 end

 % Button pushed function: UpdateGraphandTableButton_2

 function UpdateGraphandTableButton_2Pushed(app, event)

 %Call in the tank values from the workspace

 TankHeads = evalin('base', 'TankHeads');

 Pawn1 = TankHeads;

160

 TankHeads(:,1) = Pawn1(:,2);

 TankHeads(:,2) = Pawn1(:,1);

 TankWaterAge = evalin('base', 'TankWaterAge');

 Time = evalin('base', 'Time');

 %Set all the information for the Calvary Tanks and the New tanks

 if strcmp(app.ShowPredictedDropDown_4.Value, 'Tank Level (ft.)') ==1

 %This means that we are using the old tanks here

 app.UIAxes_5.YLabel.String = 'Tank Level (ft.)';

 plot(app.UIAxes_5, Time,TankHeads(:,1))

 app.UITable4.Data(:,3) = TankHeads(:,1);

 else

%Set all the information for the Calvary Tanks

 app.UIAxes_5.YLabel.String = 'Water Age (Hours)';

 plot(app.UIAxes_5, Time,TankWaterAge(:,1))

 app.UITable4.Data(:,3) = TankWaterAge(:,1);

 end

 end

 % Callback function

 % Button pushed function: UpdateGraphandTableButton_4

 function UpdateGraphandTableButton_4Pushed(app, event)

 PumpFlowRate = evalin('base', 'PumpFlowRate');

 PumpHGL = evalin('base', 'PumpHGL');

 Time = evalin('base', 'Time');

 %Now we need to update the springfield road information

 if strcmp(app.ShowDropDown.Value, 'HGL (ft.)')

 app.UITable4_2.Data(:,2) = PumpHGL(:,3);

 app.UIAxes_7.YLabel.String = 'HGL in ft.';

 plot(app.UIAxes_7, Time, PumpHGL(:,3))

 hold(app.UIAxes_7, 'on')

 plot(app.UIAxes_7, Time, PumpHGL(:,1))

 hold(app.UIAxes_7, 'off')

 else

 app.UIAxes_7.YLabel.String = 'Flow Rate (gpm)';

 app.UITable4_2.Data(:,2) = PumpFlowRate(:,1);

 plot(app.UIAxes_7, Time, PumpFlowRate(:,1))

161

 end

 end

 % Button pushed function: UpdateGraphandTableButton_5

 function UpdateGraphandTableButton_5Pushed(app, event)

 PumpFlowRate = evalin('base', 'PumpFlowRate');

 PumpHGL = evalin('base', 'PumpHGL');

 Time = evalin('base', 'Time');

 %Now we need to update the springfield road information

 if strcmp(app.ShowDropDown_2.Value, 'HGL (ft.)')

 app.UITable4_2.Data(:,3) = PumpHGL(:,4);

 app.UIAxes_8.YLabel.String = 'HGL in ft.';

 plot(app.UIAxes_8, Time, PumpHGL(:,4))

 hold(app.UIAxes_8, 'on')

 plot(app.UIAxes_8, Time, PumpHGL(:,2))

 hold(app.UIAxes_8, 'off')

 else

 app.UIAxes_8.YLabel.String = 'Flow Rate (gpm)';

 app.UITable4_2.Data(:,3) = PumpFlowRate(:,2);

 plot(app.UIAxes_8, Time, PumpFlowRate(:,2))

 end

 end

 % Button pushed function: UpdateGraphandTableButton_6

 function UpdateGraphandTableButton_6Pushed(app, event)

 %Read in all of the processed data from the simulation

 JunctionPressure = evalin('base', 'JunctionPressure');

 JunctionDemand = evalin('base', 'JunctionDemand');

 JunctionChlorine = evalin('base', 'JunctionChlorine');

 JunctionTTHM = evalin('base', 'JunctionTTHM');

 Time = evalin('base', 'Time');

 %first we must figure out what junction and parameter we are looking at

 Junction = app.AtJunctionDropDown.Value;

 Parameter = app.ShowPredictedDropDown_8.Value;

 %first we will update the table that represents the data

 if strcmp(Parameter, 'Pressure (psi)')

 app.UITable4_2.Data(:,4:14) = JunctionPressure;

 elseif strcmp(Parameter, 'Demand (gpm)')

162

 app.UITable4_2.Data(:,4:14) = JunctionDemand;

 elseif strcmp(Parameter, 'Chlorine (mg/l)')

 app.UITable4_2.Data(:,4:14) = JunctionChlorine;

 else

 app.UITable4_2.Data(:,4:14) = JunctionTTHM;

 end

 %Now we can access this data to update the UIAxes (index the

 %names to access the correct column)

 NameOfJunctions = ["Route 208 By-Pass",”Before Calvary Meter”, "Calvary

Meter","Woodlawn Meter","Danville Meter","Springfield Road Meter", "Saint Rose Meter",

"Saint Mary Meter", "Campbellsville Meter","Mercer Ave","Indiana Creek Road"];

 [~, WhereIsNameOfJunc] = ismember(Junction, NameOfJunctions);

 DataForSpecificJunction = app.UITable4_2.Data(:,(WhereIsNameOfJunc+3));

 app.UIAxes_9.YLabel.String = sprintf('%s', Parameter);

 plot(app.UIAxes_9, Time, DataForSpecificJunction);

 end

 % FUNCTION USED FOR DEMAND CALIBRATION PROCESS

%Lines made here to draw readers attention

 function DemandButtonTestPushed(app, event)

 %%Gather the initial tank levels

 SpringfieldTank = app.InitialTanklevelEditField_9.Value;

 CalvaryTanks = app.InitialTanklevelEditField_10.Value;

 NewTank = app.InitialTanklevelEditField_11.Value;

 InitialTankLevels = [CalvaryTanks, SpringfieldTank,NewTank];

 %properly

 %Look at the pump operations specific to the tanks

 %for springfield road, cavalry tanks, and new tank respectively

 %Not really sure why && is working instead of what I thought it

 %should be which is ||. Weird

 if strcmp(app.SpringfieldRoadPumpSwitch.Value, 'Use') ==0 &&

strcmp(app.SpringfieldRoadPumpSwitch.Value, 'Use') ==1

 elseif strcmp(app.SpringfieldRoadPumpSwitch.Value, 'Use') ==0

163

 combinedString1 = 'NULL';

 combinedString2 = 'NULL';

 elseif strcmp(app.SpringfieldRoadPumpSwitch.Value, 'Use') ==1

 Value1 = (app.OnWhenBelowEditField.Value) + 104.5;

 Row1 = 'LINK ~@Pump-7 OPEN IF NODE T-13 BELOW ';

 combinedString1 = sprintf('%s%d', Row1, Value1);

 Value2 = (app.OffWhenAboveEditField.Value) + 104.5;

 Row2 = 'LINK ~@Pump-7 CLOSED IF NODE T-13 ABOVE ';

 combinedString2 = sprintf('%s%d', Row2, Value2);

 end

 %These are the conditions specifed for Cavalry Tank

 if strcmp(app.WTPPumpSwitch_4.Value, 'Use') ==1 &&

strcmp(app.WTPPumpSwitch_4.Value, 'Use') ==0

 elseif strcmp(app.WTPPumpSwitch_4.Value, 'Use') ==0

 combinedString3 = 'NULL';

 combinedString4 = 'NULL';

 elseif strcmp(app.WTPPumpSwitch_4.Value, 'Use') ==1

 Value1 = (app.OnWhenBelowEditField_2.Value) +27;

 Row1 = 'LINK ~@Pump-7 OPEN IF NODE T-12 BELOW ';

 combinedString3 = sprintf('%s%d', Row1, Value1);

 Value2 = (app.OffWhenAboveEditField_2.Value) +27;

 Row2 = 'Link ~@Pump-7 CLOSED IF NODE T-12 ABOVE ';

 combinedString4 = sprintf('%s%d', Row2, Value2);

 end

 %These are the conditions specifed for New Tank

 if strcmp(app.SpringfieldRoadPumpSwitch_3.Value, 'Use') ==1 &&

strcmp(app.SpringfieldRoadPumpSwitch_3.Value, 'Use') ==0

 elseif strcmp(app.SpringfieldRoadPumpSwitch_3.Value, 'Use') ==0

 combinedString5 = 'NULL';

 combinedString6 = 'NULL';

 elseif strcmp(app.SpringfieldRoadPumpSwitch_3.Value, 'Use') ==1

 Value1 = (app.OnWhenBelowEditField_3.Value)+104.5;

 Row1 = 'LINK ~@Pump-7 OPEN IF NODE T-12 BELOW ';

 combinedString5 = sprintf('%s%d', Row1, Value1);

 Value2 = (app.OffWhenAboveEditField_3.Value) +104.5;

 Row2 = 'Link ~@Pump-7 CLOSED IF NODE T-12 ABOVE ';

 combinedString6 = sprintf('%s%d', Row2, Value2);

 end

164

 %now that we have the above groupings of pump protocols, we

 %can go to the time specified settings

%This is for the springfield road pump

SpringfieldPumpStringOPEN = 'LINK ~@Pump-7 OPEN AT TIME ';

SpringfieldPumpStringCLOSED = 'LINK ~@Pump-7 CLOSED AT TIME ';

WTPPumpStringOPEN = 'LINK ~@Pump-8 OPEN AT TIME ';

WTPPumpStringCLOSED = 'LINK ~@Pump-8 CLOSED AT TIME ';

%Now read in all of the values

spring1 = app.ONATTIMEEditField.Value;

spring2 = app.ONATTIMEEditField_3.Value;

spring3 = app.ONATTIMEEditField_4.Value;

spring4 = app.ONATTIMEEditField_5.Value;

spring5 = app.OFFATTIMEEditField.Value;

spring6 = app.OFFATTIMEEditField_2.Value;

spring7 = app.OFFATTIMEEditField_3.Value;

spring8 = app.OFFATTIMEEditField_4.Value;

spring9 = app.ONATTIMEEditField_6.Value;

spring10 = app.OFFATTIMEEditField_5.Value;

spring11 = app.ONATTIMEEditField_7.Value;

spring12 = app.OFFATTIMEEditField_6.Value;

combinedString7 = sprintf('%s%s', SpringfieldPumpStringOPEN, spring1);

combinedString8 = sprintf('%s%s', SpringfieldPumpStringOPEN, spring2);

combinedString9 = sprintf('%s%s', SpringfieldPumpStringOPEN, spring3);

combinedString10 = sprintf('%s%s', SpringfieldPumpStringOPEN, spring4);

combinedString11 = sprintf('%s%s', SpringfieldPumpStringCLOSED, spring5);

combinedString12 = sprintf('%s%s', SpringfieldPumpStringCLOSED, spring6);

combinedString13 = sprintf('%s%s', SpringfieldPumpStringCLOSED, spring7);

combinedString14 = sprintf('%s%s', SpringfieldPumpStringCLOSED, spring8);

combinedString15 = sprintf('%s%s', SpringfieldPumpStringOPEN, spring9);

combinedString16 = sprintf('%s%s', SpringfieldPumpStringOPEN, spring11);

combinedString17 = sprintf('%s%s', SpringfieldPumpStringCLOSED, spring10);

combinedString18 = sprintf('%s%s', SpringfieldPumpStringCLOSED, spring12);

AllSimpleControls = {combinedString1;

combinedString2;combinedString3;combinedString4;combinedString5;combinedString6;combinedS

tring7;combinedString11;combinedString10;combinedString12;combinedString9;combinedString1

3;combinedString8;combinedString14;combinedString15;combinedString17;combinedString16;com

binedString18};

165

%% The below describes how I placed a junction in EPANET instead of a pump so I can

control the outflow exactly. This is actually done when trying to generate system pump

curves as well.

%This is also the unique new way we will be placing the WTP pump data into

%the simulation. We are doing this because we want to force the inflow to

%be a certain value (because when we are looking at historical data we know

%the inflow into the system.

WTPPumpData = [app.CurrentFlowgpmEditField.Value,

app.Hour1gpmEditField.Value,app.Hour2gpmEditField.Value,app.Hour3gpmEditField.Value,app.H

our4gpmEditField.Value,app.Hour5gpmEditField.Value,app.Hour6gpmEditField.Value,app.Hour7g

pmEditField.Value,app.Hour8gpmEditField.Value,app.Hour9gpmEditField.Value,app.Hour10gpmEd

itField.Value,app.Hour11gpmEditField.Value,app.Hour12gpmEditField.Value,app.Hour13gpmEdit

Field.Value,app.Hour14gpmEditField_2.Value,app.Hour15gpmEditField_2.Value,app.Hour16gpmEd

itField_2.Value,app.Hour17gpmEditField_2.Value,app.Hour18gpmEditField_2.Value,app.Hour19g

pmEditField_2.Value,app.Hour20gpmEditField_2.Value,app.Hour21gpmEditField_2.Value,app.Hou

r22gpmEditField_2.Value,app.Hour23gpmEditField_2.Value];

%Because there are only 24 entries (and we are working at a time scale of

%around 10 minute reporting period) we need to make the inputs for an hour

%over 5 entries

PumpPattern = ones(1,144);

try

 RealTotalDemand = evalin('base', 'TotalDemand')';

 RealTotalDemand = RealTotalDemand(1,2:25);

 RealTankLevels = evalin('base', 'TankLevels');

 RealTankFlow = evalin('base', 'TankFlow');

 FlowData = evalin('base', 'FlowData');

 %read in the flow meter data

 BeforeCavMeter = evalin('base', 'BeforeCavMeter')';

 CavMeter = evalin('base', 'CavMeter')';

 WoodlawnMeter = evalin('base', 'WoodlawnMeter')';

 DanvilleMeter = evalin('base', 'DanvilleMeter')';

 SpringfieldRoadMeter = evalin('base', 'SpringfieldRoadMeter')';

 SaintRoseMeter = evalin('base', 'SaintRoseMeter')';

 SaintMaryMeter = evalin('base', 'SaintMaryMeter')';

 CampMeter = evalin('base', 'CampMeter')';

 ByPassMeter = evalin('base', 'ByPassMeter')';

 TotalMeterDemand = evalin('base', 'TotalMeterDemand')';

%The goal below was to clear the data from the workspace after it has been

%used because I wanted to give the user the option to specify pump

166

%operations (the try function above will use data from the excel and not

%from user input if it sees any data still in the workspace). However, this

%hasn't worked the way I intended anyways and I will probably just remove

%because this function will likely not be available to the user and it

%solely going to be used for the purpose of generating demand factors that

%will be stored for the sake of user usage.

 PumpPattern = FlowData(2:25,1)';

 clear TotalDemand

 clear TankLevels

 clear TankFlow

catch

 %If there is an error that means we have not populated the workspace

 %with a pump pattern. Use the user inputted pump pattern instead

PumpPattern(1,1:6) = PumpPattern(1,1:6) .* WTPPumpData(1,1);

PumpPattern(1,7:12) = PumpPattern(1,7:12) .* WTPPumpData(1,2);

PumpPattern(1,13:18) = PumpPattern(1,13:18) .* WTPPumpData(1,3);

PumpPattern(1,19:24) = PumpPattern(1,19:24) .* WTPPumpData(1,4);

PumpPattern(1,25:30) = PumpPattern(1,25:30) .* WTPPumpData(1,5);

PumpPattern(1,31:36) = PumpPattern(1,31:36) .* WTPPumpData(1,6);

PumpPattern(1,37:42) = PumpPattern(1,37:42) .* WTPPumpData(1,7);

PumpPattern(1,43:48) = PumpPattern(1,43:48) .* WTPPumpData(1,8);

PumpPattern(1,49:54) = PumpPattern(1,49:54) .* WTPPumpData(1,9);

PumpPattern(1,55:60) = PumpPattern(1,55:60) .* WTPPumpData(1,10);

PumpPattern(1,61:66) = PumpPattern(1,61:66) .* WTPPumpData(1,11);

PumpPattern(1,67:72) = PumpPattern(1,67:72) .* WTPPumpData(1,12);

PumpPattern(1,73:78) = PumpPattern(1,73:78) .* WTPPumpData(1,13);

PumpPattern(1,79:84) = PumpPattern(1,79:84) .* WTPPumpData(1,14);

PumpPattern(1,85:90) = PumpPattern(1,85:90) .* WTPPumpData(1,15);

PumpPattern(1,91:96) = PumpPattern(1,91:96) .* WTPPumpData(1,16);

PumpPattern(1,97:102) = PumpPattern(1,97:102) .* WTPPumpData(1,17);

PumpPattern(1,103:108) = PumpPattern(1,103:108) .* WTPPumpData(1,18);

PumpPattern(1,109:114) = PumpPattern(1,109:114) .* WTPPumpData(1,19);

PumpPattern(1,115:120) = PumpPattern(1,115:120) .* WTPPumpData(1,20);

PumpPattern(1,121:126) = PumpPattern(1,121:126) .* WTPPumpData(1,21);

PumpPattern(1,127:132) = PumpPattern(1,127:132) .* WTPPumpData(1,22);

PumpPattern(1,133:138) = PumpPattern(1,133:138) .* WTPPumpData(1,23);

PumpPattern(1,139:144) = PumpPattern(1,139:144) .* WTPPumpData(1,24);

end

 Logic1 = strcmp(SpringfieldPumpStringOPEN, AllSimpleControls);

 WhereLogic1 = find(Logic1 ==1);

 AllSimpleControls(WhereLogic1, :) = [];

 Logic2 = strcmp(SpringfieldPumpStringCLOSED, AllSimpleControls);

 WhereLogic2 = find(Logic2 ==1);

 AllSimpleControls(WhereLogic2, :) = [];

167

 Logic5 = strcmp('NULL', AllSimpleControls);

 WhereLogic5 = find(Logic5 ==1);

 AllSimpleControls(WhereLogic5, :) = [];

%Get Outputs from the simulation

%test some initial demand points these are all constrained by the demand

%equation built out by getting the total base demands for the different

%pressure zones. This will change if the zones or individual base demands

%themsevles are altered. ExtendedPeriodDemandCalibrator

%These are named in reference to zone 1. Demand pattern high is a high

%demand pattern for zone 1 and a low one for zone 2. Demand pattern low is

%a low demand pattern for zone 1 and a high one for zone 2. 254.6 is the

%base demand in zone 1 and 116.3467 is the base demand in zone 2

demandPatternLow = ones(1, 24).*.001;

demandPatternLowComp = ((RealTotalDemand)- (demandPatternLow * 254.9906)) ./ 116.3467;

demandPatternHighComp = ones(1, 24).*.001;

demandPatternHigh = ((RealTotalDemand) - (demandPatternHighComp * 116.3467)) ./ 254.9906;

demandPatternLow = vertcat(demandPatternLow, demandPatternLowComp);

demandPatternHigh = vertcat(demandPatternHigh, demandPatternHighComp);

demandPatternsNew = (demandPatternHigh(1,:) + demandPatternLow(1,:)) ./ 2;

demandPatternsNewComp = ((RealTotalDemand)- (demandPatternsNew * 254.9906)) ./ 116.3467;

demandPatternsNew = vertcat(demandPatternsNew, demandPatternsNewComp);

%What File are we using

WhatFile = app.RunWithNewTankCheckBox.Value;

 if WhatFile == 0

 d = epanet('LebanonCurrent_July2023.inp', 'LoadFile');

 elseif WhatFile ==1

 d = epanet('LebanonNew_July2023.inp', 'LoadFile');

 end

assignin('base', 'd', d);

%initialize some of the variables for the bi-section method

[TankLevelsNew] = ExtendedPeriodDemandCalibrator(InitialTankLevels,

AllSimpleControls,3600,86400, PumpPattern, demandPatternsNew, BeforeCavMeter(1,2:25),

CavMeter(1,2:25), WoodlawnMeter(1,2:25), DanvilleMeter(1,2:25),

SpringfieldRoadMeter(1,2:25), SaintRoseMeter(1,2:25), SaintMaryMeter(1,2:25),

CampMeter(1,2:25), ByPassMeter(1,2:25));

168

I =1;

CavalryCount = 0;

SpringCount = 1;

Tank1Error = 1;

%24 hours in a day

while I < 24

%Now here with the bi-section method. I've had to re-do this a bunch of

%times. Yes this is simple but word to the wise, make sure you look

%critically at your data before you try to work with garbage (GIGO

%principle abused here before)

 %lets check the error

 %Cav Tank

 Tank1Error = RealTankLevels(I+1, 2) - TankLevelsNew(I+1,2);

 %Cav Tank

 Tank2Error = RealTankLevels(I+1, 1) - TankLevelsNew(I+1,1);

 %if the tank level is close to relity, advance to the next step

 if abs(Tank1Error) <.005

 I =I+1

 %make some adjustments to the objective function to account for

 %the difference between the model tank levels and the real ones

 RealTotalDemand(1,I) = (2*((TankLevelsNew((I),2) - RealTankLevels((I+1),2)) *

(3.1415/4) * (48^2) * (7.48 / 60))) +

(sprinfieldRoadTankFunction(TankLevelsNew(I,1),RealTankLevels((I+1),1))) +

FlowData(I+1,1) - TotalMeterDemand(1,I+1) ;

 demandPatternLow(2,I) = ((RealTotalDemand(1,I))- (demandPatternLow(1,I) *

254.9906)) ./ 116.3467;

 demandPatternHigh(1,I) = ((RealTotalDemand(1,I)) -

(demandPatternHighComp(1,I) * 116.3467)) ./ 254.9906;

 demandPatternsNew(1,I) = (demandPatternHigh(1,I) + demandPatternLow(1,I)) ./

2;

 elseif abs(Tank1Error) >=.005

 if abs(demandPatternHigh(1,I) - demandPatternsNew(1, I)) <= .0001

 I=I+1

 %make some adjustments to the objective function to account for

 %the difference between the model tank levels and the real ones

 RealTotalDemand(1,I) = (2*((TankLevelsNew((I),2) - RealTankLevels((I+1),2)) *

(3.1415/4) * (48^2) * (7.48 / 60))) +

(sprinfieldRoadTankFunction(TankLevelsNew(I,1),RealTankLevels((I+1),1))) +

FlowData(I+1,1) - TotalMeterDemand(1,I+1) ;

 demandPatternLow(2,I) = ((RealTotalDemand(1,I))- (demandPatternLow(1,I) *

254.9906)) ./ 116.3467;

 demandPatternHigh(1,I) = ((RealTotalDemand(1,I)) -

(demandPatternHighComp(1,I) * 116.3467)) ./ 254.9906;

 demandPatternsNew(1,I) = (demandPatternHigh(1,I) + demandPatternLow(1,I)) ./

2;

169

 elseif abs(demandPatternLow(1,I) - demandPatternsNew(1,I)) <= .0001

 I = I+1

 %make some adjustments to the objective function to account for

 %the difference between the model tank levels and the real ones

 RealTotalDemand(1,I) = (2*((TankLevelsNew((I),2) - RealTankLevels((I+1),2)) *

(3.1415/4) * (48^2) * (7.48 / 60))) +

(sprinfieldRoadTankFunction(TankLevelsNew(I,1),RealTankLevels((I+1),1))) +

FlowData(I+1,1) - TotalMeterDemand(1,I+1) ;

 demandPatternLow(2,I) = ((RealTotalDemand(1,I))- (demandPatternLow(1,I) *

254.9906)) ./ 116.3467;

 demandPatternHigh(1,I) = ((RealTotalDemand(1,I)) -

(demandPatternHighComp(1,I) * 116.3467)) ./ 254.9906;

 demandPatternsNew(1,I) = (demandPatternHigh(1,I) + demandPatternLow(1,I)) ./

2;

 %or if we are still improving, enter the script below

 elseif demandPatternHigh(1,I) ~= demandPatternsNew(1, I) || demandPatternLow(1,I)

~= demandPatternsNew(1,I)

 %If the error is greater than 1 for the cav tank that means the demand is

 %too low and needs to come up

 if Tank1Error >0

 demandPatternHigh(1,I) = demandPatternsNew(1,I);

 demandPatternsNew(1,I) = (demandPatternHigh(1,I) +

demandPatternLow(1,I)) ./ 2;

 demandPatternsNewComp = ((RealTotalDemand) - (demandPatternsNew(1,:)

* 254.9906)) ./ 116.3467;

 demandPatternsNew(2,I) = demandPatternsNewComp(1, I);

 end

 %If the error is less than 1 for the Cav tank, that means that the demand

 %is too high in the model and needs to come down

 if Tank1Error <0

 demandPatternLow(1,I) = demandPatternsNew(1,I);

 demandPatternsNew(1,I) = (demandPatternHigh(1,I) +

demandPatternLow(1,I)) ./ 2;

 demandPatternsNewComp = ((RealTotalDemand) - (demandPatternsNew(1,:)

* 254.9906)) ./ 116.3467;

 demandPatternsNew(2,I) = demandPatternsNewComp(1, I);

 end

 [TankLevelsNew] = ExtendedPeriodDemandCalibrator(InitialTankLevels,

AllSimpleControls,3600,86400, PumpPattern, demandPatternsNew, BeforeCavMeter(1,2:25),

CavMeter(1,2:25), WoodlawnMeter(1,2:25), DanvilleMeter(1,2:25),

SpringfieldRoadMeter(1,2:25), SaintRoseMeter(1,2:25), SaintMaryMeter(1,2:25),

CampMeter(1,2:25), Meter(1,2:25));

 end

 end

 if I > 23

 pinchme = 1;

 end

end

170

 end

 % Callback function

 function FillUsingExcelDataButtonPushed(app, event)

 T = readtable('RealTankDataTest.xlsx');

 TotalDemand = T{:,20};

 FlowData = T{:,8};

 TankLevels = T{:,21:22};

 TankFlow = T{:,5:6};

 %Flow Information at the Meters (periphery of the system)

 Before_Cavalry = T{:,9};

 Calvary_Meter = T{:,10};

 WoodLawn_Meter = T{:,11};

 DanvilleHighway_Meter = T{:,12};

 SpringfieldRoad_Meter = T{:,13};

 SaintRose_Meter = T{:,14};

 SaintMary_Meter = T{:,15};

 Campbellsville_Meter = T{:,16};

 ByPass_Meter = T{:,17};

 TotalMeterDemand = T{:, 19};

 assignin('base','FlowData', FlowData);

 assignin('base','TotalDemand', TotalDemand);

 assignin('base','TankLevels', TankLevels);

 assignin('base','TankFlow', TankFlow);

 %Assign the meter data into the base workspace in MATLAB for

 %use in the demand creation function

 assignin('base','BeforeCavMeter', Before_Cavalry);

 assignin('base','CavMeter', Calvary_Meter);

 assignin('base','WoodlawnMeter', WoodLawn_Meter);

 assignin('base','DanvilleMeter', DanvilleHighway_Meter);

 assignin('base','SpringfieldRoadMeter', SpringfieldRoad_Meter);

 assignin('base','SaintRoseMeter', SaintRose_Meter);

 assignin('base','SaintMaryMeter', SaintMary_Meter);

 assignin('base','CampMeter', Campbellsville_Meter);

 assignin('base','ByPassMeter', ByPass_Meter);

 assignin('base', 'TotalMeterDemand', TotalMeterDemand);

 end

 % Value changed function: Zone1PatternDropDown

 function Zone1PatternDropDownValueChanged(app, event)

 value = app.Zone1PatternDropDown.Value;

 % Read in the demand patterns from excel file

171

 tDemand = readtable('DemandFactors.xlsx');

 %Turn that data (which is in cell format) into a num variable

 demandsZone1 = horzcat(tDemand{:,1:14}, tDemand{:,29:30});

 %index dates and find which values to extract

 dateNames = ["June 20", "June 21","June 22","June 23","June 24","June

25","June 26","June 27","June 28","June 29","June 30","July 1","July 2","July 3","Average

Weekday","Average Weekend"];

 [~, whereDate] = ismember(value, dateNames);

 %Now the user can specify which demand pattern he/ she wants to

 %use and it will populate within the simulation

 DZ1 = demandsZone1(:,whereDate);

 %Operators allowed to scale

 if app.ScaleZone1PatternByEditField.Value ~=0

 DZ1 = DZ1 *app.ScaleZone1PatternByEditField.Value

 end

 %Take the demand factor and assign in workspace so that it can

 %be used in the EPS simulation

 assignin('base', 'DZ1', DZ1);

 Time = [1:24];

 %Take this and populate the graph next to the user input

 plot(app.UIAxes_10, Time,DZ1)

 end

 % Value changed function: Zone2PatternDropDown

 function Zone2PatternDropDownValueChanged(app, event)

 value = app.Zone2PatternDropDown.Value;

 % Read in the demand patterns from excel file

 tDemand = readtable('DemandFactors.xlsx');

 %Turn that data (which is in cell format) into a num variable

 demandsZone2 = horzcat(tDemand{:,15:28}, tDemand{:,31:32});

 %index dates and find which values to extract

 dateNames = ["June 20", "June 21","June 22","June 23","June 24","June

25","June 26","June 27","June 28","June 29","June 30","July 1","July 2","July 3","Average

Weekday","Average Weekend"];

 [~, whereDate] = ismember(value, dateNames);

 %Now the user can specify which demand pattern he/ she wants to

 %use and it will populate within the simulation

 DZ2 = demandsZone2(:,whereDate);

 %Operators allowed to scale

 if app.ScaleZone2PatternByEditField.Value ~=0

 DZ2 = DZ2 *app.ScaleZone2PatternByEditField.Value

172

 end

 %Take the demand factor and assign in workspace so that it can

 %be used in the EPS simulation

 assignin('base', 'DZ2', DZ2);

 Time = [1:24];

 %Take this and populate the graph next to the user input

 plot(app.UIAxes_11, Time,DZ2)

 end

 % Value changed function: ScaleZone1PatternByEditField

 function ScaleZone1PatternByEditFieldValueChanged(app, event)

 value = app.ScaleZone1PatternByEditField.Value;

 % Read in the demand patterns from excel file

 tDemand = readtable('DemandFactors.xlsx');

 %Turn that data (which is in cell format) into a num variable

 demandsZone1 = horzcat(tDemand{:,1:14}, tDemand{:,29:30});

 %index dates and find which values to extract

 dateNames = ["June 20", "June 21","June 22","June 23","June 24","June

25","June 26","June 27","June 28","June 29","June 30","July 1","July 2","July 3","Average

Weekday","Average Weekend"];

 [~, whereDate] = ismember(app.Zone1PatternDropDown.Value, dateNames);

 %Now the user can specify which demand pattern he/ she wants to

 %use and it will populate within the simulation

 DZ1 = demandsZone1(:,whereDate);

 %Operators allowed to scale

 if value ~=0

 DZ1 = DZ1 *app.ScaleZone1PatternByEditField.Value

 end

 %Take the demand factor and assign in workspace so that it can

 %be used in the EPS simulation

 assignin('base', 'DZ1', DZ1);

 Time = [1:24];

 %Take this and populate the graph next to the user input

 plot(app.UIAxes_10, Time,DZ1)

 end

 % Value changed function: ScaleZone2PatternByEditField

 function ScaleZone2PatternByEditFieldValueChanged(app, event)

 value = app.ScaleZone2PatternByEditField.Value;

 % Read in the demand patterns from excel file

 tDemand = readtable('DemandFactors.xlsx');

173

 %Turn that data (which is in cell format) into a num variable

 demandsZone2 = horzcat(tDemand{:,15:28}, tDemand{:,31:32});

 %index dates and find which values to extract

 dateNames = ["June 20", "June 21","June 22","June 23","June 24","June

25","June 26","June 27","June 28","June 29","June 30","July 1","July 2","July 3","Average

Weekday","Average Weekend"];

 [~, whereDate] = ismember(app.Zone2PatternDropDown.Value, dateNames);

 %Now the user can specify which demand pattern he/ she wants to

 %use and it will populate within the simulation

 DZ2 = demandsZone2(:,whereDate);

 %Operators allowed to scale

 if value ~=0

 DZ2 = DZ2 *app.ScaleZone2PatternByEditField.Value;

 end

 %Take the demand factor and assign in workspace so that it can

 %be used in the EPS simulation

 assignin('base', 'DZ2', DZ2);

 Time = [1:24];

 %Take this and populate the graph next to the user input

 plot(app.UIAxes_11, Time,DZ2)

 end

 end

174

APPENDIX C. User’s Manual for Digital Twin (Lebanon)

1) Install MATLAB software (version R2022A used but other version within a few

years give or take will likely work).

(https://www.mathworks.com/help/install/ug/install-products-with-internet-

connection.html) Downloading and license registration is free at many Universities

and a purchased license is likely not necessary.

2) Install EPANET (Version 2.2)

https://www.epa.gov/water-research/epanet

3) Install the EPANET-MATLAB Toolkit (Eliades et al, 2016):

https://www.mathworks.com/matlabcentral/fileexchange/25100-

openwateranalytics-epanet-matlab-toolkit

4) Ensure that the toolkit is pointed in the correct directory.

Place the downloaded toolkit within your MATLAB folder and unzip it in that

location. Once this is accomplished, edit the “Start_Toolkit.m” file to specify where

exactly the toolkit is located.

https://www.mathworks.com/help/install/ug/install-products-with-internet-connection.html
https://www.mathworks.com/help/install/ug/install-products-with-internet-connection.html
https://www.epa.gov/water-research/epanet
https://www.mathworks.com/matlabcentral/fileexchange/25100-openwateranalytics-epanet-matlab-toolkit
https://www.mathworks.com/matlabcentral/fileexchange/25100-openwateranalytics-epanet-matlab-toolkit

175

176

177

5) Take “OperatorDashboard_Lebanon_FinalV2_exported.m” and run the script by

hitting the play button in the upper middle ribbon.

178

6) The main interface should now be visible. The next steps will go through the

process of using inputs. Firstly, the user may the hydraulic and water quality time

steps to refine results but this is not necessary. Total time is preset at 24 hours for

the extended period sim (EPS) but this may be changed to longer or shorter time

steps.

7) Water quality parameters may also be specified but are not necessary. Bulk and

wall reaction rates should remain as they are unless an experienced user clearly

understands the complex chemistry of their system. Chlorine is the concentration

of chlorine at the WTP being pumped out into the system.

179

8) Initial tank levels are to be specified in the “tanks” section. It is important to know

what your MAX tank levels are because the way the software is currently set up,

an error may not be thrown if an initial input is over these values.

Also relevant to this section is the “Use” button. The use button allows the user to

specify when the pumps will turn on and off dependent on associated tank levels.

If “Use” is turned on, the program will ignore inputs in the “PUMPS” section.

180

9) After specifying the tanks levels in the program, if the user has not used either of

the “use” switches for the pumps, the dashboard will use any times specified in the

“PUMPS” section as control switches for the pump. These times must be military

time (0:00, 20:00, etc.) and should lie within the specified total time for the

simulation.

181

10) Now the user is encouraged to explore the demand section. The demands have been

pre-processed for their suitability within the LWW. There is an associated excel

file relative to this data that should have been downloaded with the other files sent

with this program. Please do not alter this file unless there is a clear understanding

of demand factors and how the program is bringing these factors in.

The range of factors is representative of the system between the June 20th and July

3rd 2023. User may use any of these or an average of them as specified by “average

weekend” and “average weekday”. If other date ranges are required, please reach

out to the University of Kentucky with meter, tank, and pump information as well

as their relevant time stamps and they will be processed and sent back.

Factors will conveniently appear in the graphs as soon as they are selected and they

may be scaled up and down to increase flexibility within the factors.

Once this has all been specified, hit “Run EPS!” and see results on the next page.

182

11) In the “Tanks section” on the New Results Page, the user may specify viewing

either the water age or the tank levels as a function of time which will be plotted in

the top two graphs. In the “Pumps and Master Meters (Important Junctions)”

section, the user can specify pump parameters for the first two graphs (HGL and

flow rate) and can look at several parameters for the junctions (pressure, demand,

chlorine residual, and TTHM concentrations). As soon as a parameter is picked,

select “Update Graph and Table” and the graphs and tables will reflect specified

parameters.

183

12) Mapping may also be accomplished in the “Map Specifications Page” within the

program. First, the user MUST select “Generate Generic Map”.

184

13) A MATLAB figure will be created, and it is suggested that it be placed on another

monitor if there are more than one available. The map will initially color all of the

pipes based on their nominal diameter.

14) Within each of the categories, the user may specify tolerances on parameters and

plot them on the map. For example, I may set the high pressure to 80, medium

pressure to 60 and the low pressure to 20. This will then look to each of the colors

that I have specified and if the pressure at a node is above 80 it will plot as color 1,

in between 80 and 60 will plot as color 2, and so on. User may also check the EPS

box and move the slider to specify times to observe. If this is not checked a steady

state sim will be shown. This is the same methodology for all of the parameters in

this section, after changing the specifications, the user may “Generate Nodal

Pressure and Pipe Flow Map”, or “Generate Nodal Chlorine Residuals Map”.

185

15) In addition, user may also view the names of the pipes and junctions in the “Pipe

and Junction Discovery” tab. By typing a name directly as it is viewed in the

program and specifying a weight, we can view certain pipes and junctions. This is

the most sensitive to user input error and careful attention to the case and spelling

of pipes and junctions will give satisfactory results.

186

16) If the name of a junction or pipe is unknown, the user may check either the “Turn

On All Pipe Names” or “Turn On All Junction Names” feature, select “Run

Discovery” again, and the names will appear and can be found by interactively

zooming in and out of the map. This can be turned off by deselecting the check

boxes and hitting the “Run Discovery” button.

187

188

APPENDIX D. Example Box-Complex Method Code For Four Zone System

%Pull in relevant EPANET file

d = epanet('DecemberEditsWhitesburg.inp', 'LoadFile');

%Completely Random Demand Factors

demandFactors = [2,0.5,3;4,1,2;3,1.5,0.5;5,1.2,1];

%Because I am only testing one hour and epanet requires demand factors

for

%all 24 hours I will create 23 dummy factors

dummyPattern = ones(1,23);

%Now here are the three functions (tanks) that we need to optimize

RealTank1 = 1484.90;

RealTank2 = 1411.49;

RealTank3 = 1469.02;

%Intialize the error matrix (four points in box complex and their

%respective error)

pointsInSimplex = [1,1,1,1];

%This starts the box-complex, here I specify that all of the points need

to

%have a very small error term before it is finished. Essentially,

converge

%on the solution. However this may run for a long time and lossening the

%tolerance will allow for quicker runs

while pointsInSimplex(1,1) >=.0000001 || pointsInSimplex(1,2) >=0.0000001

|| pointsInSimplex(1,3) <= 0.0000001 || pointsInSimplex(1,4) >=0.0000001

 %evaluation of error for each of the four points in the simplex

 for i = 1:4

 %create the demand patterns to place in the simulation

 pattern1 = demandFactors(i,1);

 pattern2 = demandFactors(i,2);

 pattern3 = demandFactors(i,3);

 %The fourth demand factor is determined by the first three - this is

the

 %total demand function. This is the mass balance in the system which

 %may be found by taking the basedemand for each of the points that

are

189

 %specified by a certain demand pattern - multiplying those base

demands

 %by that factor, and summing them altogether. This gives total

demand.

 %To satisfy conservation of mass, the fourth demand factor is

 %determined by the other three. 3,226, and 48 represent the summed

base

 %demands for their respective zones. 391 represents the total demand

of

 %that specific hour.

 pattern4 = (391 - (3 * pattern1) - (226*pattern2) - (48 *

pattern3))/18;

 %Run an initial sim to initialize the box complex

 d.setPattern(1, horzcat(pattern1, dummyPattern));

 d.setPattern(2, horzcat(pattern2, dummyPattern));

 d.setPattern(3, horzcat(pattern3, dummyPattern));

 d.setPattern(4, horzcat(pattern4, dummyPattern));

 d.openHydraulicAnalysis;

 d.initializeHydraulicAnalysis;

 %Run and close analysis

 Series = d.getComputedTimeSeries;

 d.closeHydraulicAnalysis

 ModelTank1 = Series.Head(2,303);

 ModelTank2 = Series.Head(2,308);

 ModelTank3 = Series.Head(2,305);

 Error = ((ModelTank1 - RealTank1)^2) + ((ModelTank2 - RealTank2)^2)

+((ModelTank3 - RealTank3)^2);

 pointsInSimplex(1,i) = Error;

 end

if pointsInSimplex(1,1) <=.0000001 || pointsInSimplex(1,2) <=0.0000001 ||

pointsInSimplex(1,3) <= 0.0000001 || pointsInSimplex(1,3) <= 0.0000001

 break

else

 %find the worst point and create the centroid of the remaining points

 [maxVal, whereMax] = max(pointsInSimplex);

 logical = find(pointsInSimplex ~= maxVal);

 ph = demandFactors(whereMax,:);

190

 centroid = (demandFactors(logical(1,1),:) +

demandFactors(logical(1,2),:) + demandFactors(logical(1,3),:))./3 ;

 %expand the worst point over the centroid of the remaining points

 newPoint = (2.5.*centroid) - (1.5 .*ph);

 %Contract if the New Point is less than 0

 while newPoint(1,1) < 0 || newPoint(1,2) < 0 || newPoint(1,3) < 0

 newPoint = (0.5.*newPoint) + (0.5 .* centroid);

 end

 %Now evaluate the new point to see if it is better than the old point

 pattern1 = newPoint(1,1);

 pattern2 = newPoint(1,2);

 pattern3 = newPoint(1,3);

 pattern4 = (391 - (3 * pattern1) - (226*pattern2) - (48 *

pattern3))/18;

 d.setPattern(1, horzcat(pattern1, dummyPattern));

 d.setPattern(2, horzcat(pattern2, dummyPattern));

 d.setPattern(3, horzcat(pattern3, dummyPattern));

 d.setPattern(4, horzcat(pattern4, dummyPattern));

 d.openHydraulicAnalysis;

 d.initializeHydraulicAnalysis;

 %Run and close analysis

 Series = d.getComputedTimeSeries;

 d.closeHydraulicAnalysis

 ModelTank1 = Series.Head(2,303);

 ModelTank2 = Series.Head(2,308);

 ModelTank3 = Series.Head(2,305);

 Error = ((ModelTank1 - RealTank1)^2) + ((ModelTank2 - RealTank2)^2)

+((ModelTank3 - RealTank3)^2);

 %if the new error is less than the old store the value

 if Error <maxVal

 demandFactors(whereMax,:) = [pattern1,pattern2,pattern3];

 pointsInSimplex(whereMax) = Error;

 %if the error is worse than the new point, contract the worst point

 %towards the centroid

 else

191

 newPoint = (0.5 .* ph) + (0.5.*centroid);

 %evaluate the new point

 pattern1 = newPoint(1,1);

 pattern2 = newPoint(1,2);

 pattern3 = newPoint(1,3);

 pattern4 = (391 - (3 * pattern1) - (226*pattern2) - (48 *

pattern3))/18;

 d.setPattern(1, horzcat(pattern1, dummyPattern));

 d.setPattern(2, horzcat(pattern2, dummyPattern));

 d.setPattern(3, horzcat(pattern3, dummyPattern));

 d.setPattern(4, horzcat(pattern4, dummyPattern));

 d.openHydraulicAnalysis;

 d.initializeHydraulicAnalysis;

 %Run and close analysis

 Series = d.getComputedTimeSeries;

 d.closeHydraulicAnalysis

 ModelTank1 = Series.Head(2,303);

 ModelTank2 = Series.Head(2,308);

 ModelTank3 = Series.Head(2,305);

 Error = ((ModelTank1 - RealTank1)^2) + ((ModelTank2 -

RealTank2)^2) +((ModelTank3 - RealTank3)^2);

 %store some of these new values

 demandFactors(whereMax,:) = [pattern1,pattern2, pattern3];

 pointsInSimplex(whereMax) = Error;

 end

end

end

192

REFERENCES

Box, M.J. (1965). A New Method of Constrained Optimization and a Comparison With

Other Methods. Comput. J., 8, 42-52.

Bhave, P. R., & Gupta, R. (2013). Analysis of Water Distribution Networks. Narosa

Publishing House.

Cooper, James P. (2021). “Let’s discuss Digital Twins.” Journal AWWA, vol. 113, no. 7,

pp. 66–68, https://doi.org/10.1002/awwa.1769.

Cooper, J. P., Jackson, S., Kamojjala, S., Owens, G., Szana, K., & Tomić, S. (2022).

Demystifying digital twins: Definitions, applications, and benefits. Journal AWWA,

114(5), 58–65. https://doi.org/10.1002/awwa.1922

De Feo, Giovanni, et al. (2013). “Historical and technical notes on aqueducts from

prehistoric to medieval times.” Water, vol. 5, no. 4, pp. 1996–2025,

https://doi.org/10.3390/w5041996.

Eliades D.G., Kyriakou, M., Vrachimis S., Polycarpou, M.M. (2016). "EPANET-

MATLAB Toolkit: An Open-Source Software for Interfacing EPANET with

MATLAB", in Proc. 14th International Conference on Computing and Control

for the Water Industry (CCWI), The Netherlands, p.8.

(doi:10.5281/zenodo.831493)

Epp, R., & Fowler, A. G. (1970). Efficient code for steady-state flows in networks. Journal

of the Hydraulics Division, 96(1), 43–56. https://doi.org/10.1061/jyceaj.0002316

French, K.D., & Duffy, C.J. (2010). Prehispanic water pressure: A New World

first. Journal of Archaeological Science, 37, 1027-1032.

Gautam and Ormsbee. (2023). Prediction of Chlorine and Disinfection Byproduct

Concentration In Water Distribution Systems Using KYPIPE and TTHM

Regression Models: Application to Two Systems In Kentucky. Theses and

Dissertations--Civil Engineering. 134.

Georgiev, G. (2019). “‘all Models Are Wrong’ Does Not Mean What You Think It

Means.” Medium, The Startup, medium.com/swlh/all-models-are-wrong-does-not-

mean-what-you-think-it-means-610390c40c9c.

https://doi.org/10.1002/awwa.1922
https://doi.org/10.1061/jyceaj.0002316

193

Grieves, M.W., & Vickers, J.H. (2016). Digital Twin: Mitigating Unpredictable,

Undesirable Emergent Behavior in Complex Systems.

Huang, M. (2019). Consider the value of hydraulic modeling for operators. Opflow, 45(7),

16–17. https://doi.org/10.1002/opfl.1216

KYPipe LLC. (2022). KYPIPE. KYPIPE.

Lagarias, J.C., Reeds, J.A., Wright, M.H., & Wright, P.E. (1998). Convergence Properties

of the Nelder-Mead Simplex Method in Low Dimensions. SIAM J. Optim., 9, 112-

147.

Larson, T. E., & Skold, R. V. (1957). Corrosion and tuberculation of Cast Iron. Journal

AWWA, 49(10), 1294–1302. https://doi.org/10.1002/j.1551-8833.1957.tb16946.x

Masi, C. (2020). What is the cause behind measurement noise in sensors?.

https://www.researchgate.net/post/What-is-the-cause-behind-measurement-noise-

in-sensors.

Martin, D. W., & Peters, G. (1963). The application of Newton’s method to network

analysis by digital computer. J. Inst. Water Eng, 17(2), 115-129.

Ormsbee, L. E., & Lingireddy, S. (1997). Calibrating hydraulic network models. Journal

AWWA, 89(2), 42–50. https://doi.org/10.1002/j.1551-8833.1997.tb08177.x

Ormsbee, L., & Walski, T. (2016). Darcy-Weisbach versus Hazen-Williams: No calm in

West Palm. World Environmental and Water Resources Congress 2016.

https://doi.org/10.1061/9780784479865.048

Ormsbee, L.E. (1979). Optimization of Hydraulic Networks Using the Box-Complex

Optimization Technique and the Linear Method of Hydraulic Analysis.

Ormsbee, L. E. (2006). The history of Water Distribution Network Analysis: The computer

age. Water Distribution Systems Analysis Symposium 2006.

https://doi.org/10.1061/40941(247)3

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical

recipes: The art of scientific computing. Cambridge University Press.

194

Qatium. Qatium.app. (2023). https://qatium.app/

Rossman, L., Woo, H., Tryby, M., Shang, F., Janke, R., & Haxton, T. (2020). EPANET 2.2

User Manual. U.S. Environmental Protection Agency.

Savić, D.A., Kapelan, Z., & Jonkergouw, P.M. (2009). Quo vadis water distribution model

calibration? Urban Water Journal, 6, 22 – 3

Sedlak, D. L. (2014). Water 4.0: the past, present, and future of the world's most vital

resource. New Haven, Yale University Press

The MathWorks Inc. (2022). MATLAB version: 9.13.0 (R2022b), Natick, Massachusetts:

The MathWorks Inc. https://www.mathworks.com

Todini, E., & Rossman, L. A. (2013). Unified Framework for deriving simultaneous

equation algorithms for water distribution networks. Journal of Hydraulic

Engineering, 139(5), 511–526. https://doi.org/10.1061/(asce)hy.1943-

7900.0000703

Todini, E., and Pilati, S. (1987). A Gradient Method for the Analysis of Pipe Networks.

International Conference on Computer Applications for Water Supply and

Distribution, Hertfordshire, England.

Saša, T., et al. (2022). “Digital Twins: Case Studies in Water Distribution Management.”

Journal AWWA, vol. 114, no. 8, pp. 44–56, https://doi.org/10.1002/awwa.1979.

Tripathi, S., Mack, M., Byland, A., Chamberlain, L., & Shumate, C. (2021). Houston

Public Works’ Journey Toward a Digital Twin. Journal AWWA, 113(8), 80–84.

https://doi.org/10.1002/awwa.1793

Walski, T. M., Lowry, S., & Rhee, H. (2012). Pitfalls in calibrating an EPS model. Building

Partnerships. https://doi.org/10.1061/40517(2000)198

Walski, T. (2017). Procedure for hydraulic model calibration. Journal AWWA, 109(6), 55–

61. https://doi.org/10.5942/jawwa.2017.109.0075

Wood, D.J., & Charles, C.O. (1972). Hydraulic Network Analysis Using Linear

Theory. Journal of Hydraulic Engineering, 98, 1157-1170.

195

Wood, D.J., & Rayes, A. (1981). Reliability of Algorithms for Pipe Network

Analysis. Journal of Hydraulic Engineering, 107, 1145-1

WRIS Portal-Kentucky Infrastructure Authority. (2023). https://wris.ky.gov/portal/DwSys

Data/KY0780241

196

VITA

Aidan Gill

EDUCATION

Bachelor’s degree in Civil Engineering at the University of Kentucky, Lexington,

Kentucky, May 2022.

PROFESSIONAL EXPERIENCE

Graduate Research Assistant, May 2022-Present

Department of Civil Engineering – University of Kentucky

Lexington, Kentucky

Student Summer Intern, May 2021 – August 2021

Cleveland Division of Water

Cleveland, Ohio

Quality Assurance and Environmental Engineering Intern, May 2019 – August 2019

Kinetico Water Systems

Newbury, Ohio

ORGANIZATIONS

Water Professionals Student Chapter at University of Kentucky (WPSC)

Treasurer, August 2022-December 2023

American Water Works Association (AWWA)

Student Member, August 2022-Present

University of Kentucky Mens’s Rugby

Treasurer, Vice President, Captain (roles varying by year)

August 2018-December 2022

	Implementation of Digital Twins for Small Water Systems
	Recommended Citation

	tmp.1702857640.pdf.te8NF

