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Abstract
Pharmacological mobilization of hematopoietic stem progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood
(PB) is a result of mobilizing agent-induced “sterile inflammation” in the BM microenvironment due to complement cascade
(ComC) activation. Here we provide evidence that ATP, as an extracellular nucleotide secreted in a pannexin-1-dependent
manner from BM cells, triggers activation of the ComC and initiates the mobilization process. This process is augmented in a
P2X7 receptor-dependent manner, and P2X7-KO mice are poor mobilizers. Furthermore, after its release into the extracellular
space, ATP is processed by ectonucleotidases: CD39 converts ATP to AMP, and CD73 converts AMP to adenosine. We
observed that CD73-deficient mice mobilize more HSPCs than do wild-type mice due to a decrease in adenosine concentration
in the extracellular space, indicating a negative role for adenosine in the mobilization process. This finding has been confirmed
by injecting mice with adenosine along with pro-mobilizing agents. In sum, we demonstrate for the first time that purinergic
signaling involving ATP and its metabolite adenosine regulate the mobilization of HSPCs. Although ATP triggers and promotes
this process, adenosine has an inhibitory effect. Thus, administration of ATP together with G-CSF or AMD3100 or inhibition of
CD73 by small molecule antagonists may provide the basis for more efficient mobilization strategies.

Introduction

Hematopoietic stem/progenitor cells (HSPCs) circulate
under steady-state conditions in peripheral blood (PB), and
their number increases during inflammation, tissue or organ

injuries, and after administration of pro-mobilizing drugs,
such as granulocyte colony-stimulating factor (G-CSF) or
an antagonist of the CXCR4 receptor, AMD3100 (plerix-
afor) [1–7]. One of the problems with clinical mobilization
of patients as donors of HSPCs for transplantation is the fact
that a significant percentage of patients are poor mobilizers,
and more efficient mobilization strategies are needed.
Therefore, to develop better mobilization strategies, we
have to better understand the mobilization process at the
molecular and cellular levels.

During mobilization, HSPCs are released from their bone
marrow (BM) niches and migrate across the BM–PB
endothelial barrier in BM sinusoids. This process is regu-
lated by several redundant mechanisms, but, as we have
proposed, activation of the complement cascade (ComC)
through the mannan-binding lectin (MBL)-dependent
pathway has a crucial role [8, 9]. Here we suggest the novel
view that mobilization is due to the release from cells of
extracellular nucleotides (EXNs), mainly ATP, that activate
the ComC and purinergic signaling receptors in the BM
microenvironment [1]. As ATP is an important danger-
associated molecular pattern (DAMP) molecule recognized
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by MBL, it provides an important link between purinergic
signaling and ComC activation as a trigger of “sterile
inflammation” in the BM microenvironment [8, 10].

Purinergic signaling is a form of extracellular signaling
mediated mainly by ATP and its metabolite adenosine. The
purinergic signaling system has been found in bacteria, yeast,
insects, and vertebrates, and purinergic receptors, represented
by the P1, P2X, and P2Y receptor families, are among the most
abundant receptors in living organisms [11]. EXNs, and in
particular ATP and adenosine, have been reported to promote
proliferation of HSPCs and the trafficking of granulocytes and
monocytes and inhibit proliferation and migration of leukemic
cells [12–15]. Interestingly, a related member of the EXN
family and a metabolite in glycogen synthesis, UDP-glucose,
has been reported to induce mobilization of HSPCs [9, 16].

Hematopoietic stem cells express several receptors for
nucleotide- and nucleoside-based EXNs, which belong to two
different purinergic receptor families, P2 and P1 [11, 17, 18].
The P2 family includes eight receptors that have been iden-
tified so far (P2Y1, 2, 4, 6, 11, 12, 13, and 14), which are G
protein-coupled receptors that respond to stimulation by ATP,
ADP, UTP, or UDP, depending on the receptor subtype. The
P2X ionotropic channel receptor family consists of seven
members (P2X1, 2, 3, 4, 5, 6, and 7), which are activated by
ATP [11, 18, 19]. The P1 receptor family consists of four G
protein-coupled receptor subtypes, A1, A2A, A2B, and A3,
which are activated by adenosine [18–20].

We recently became interested in the role of ATP in the
mobilization of HSPCs. Our interest was prompted by dis-
covery of the role of ATP as a DAMPmolecule in activation of
mannan-binding lectin (MBL) pathway activation of the ComC
but also as a major mediator of purinergic signaling within the
BM microenvironment [1, 8, 9]. We demonstrate for first time
that purinergic signaling involving ATP and its metabolite
adenosine have an important role in the egress of HSPCs from
BM niches into PB. Moreover, these mediators have opposite
effects on the mobilization of HSPCs. Although ATP triggers
this process, adenosine inhibits it by acting as a negative
feedback molecule in the process of ATP degradation by the
ectonucleotidases CD39 and CD73. Thus, administration of
ATP or inhibition of CD73 by small molecule antagonists of
this cell-surface-expressed enzyme may provide the basis for
new and more efficient mobilization strategies.

Material and methods

Animals

Pathogen-free, 4–6-week-old C57BL/6J wild-type (WT),
B6.129P2-P2rx7tm1Gab/J (P2X7–/–), and B6.129S1-
Nt5etm1Lft/J (CD73–/–) mice were purchased from the Jack-
son Laboratory (Bar Harbor, ME, USA) at least 2 weeks

prior to experiments. Animal studies were approved by the
Animal Care and Use Committee of the University of
Louisville (Louisville, KY, USA).

Detection of PANX1 by western blot

Murine cells were isolated from pathogen-free C57BL/6
mice, suspended in BD Pharm Lyse buffer (BD Biosciences,
San Jose, CA, USA) to remove RBCs, and washed and
resuspended in RPMI medium. An aliquot of mononuclear
cells (MNCs, 1.5 × 106) were used for protein extraction.
The remainder of the MNCs was expanded to grow stroma.
After the cells reached confluence, they were trypsinized,
and 1 × 106 stromal cells (SCs) were used for protein
extraction. Cord blood cells were enriched for light-density
MNCs by Ficoll–Paque centrifugation. The MNCs (1.5 ×
106) were enriched for CD34+ cells by magnetic separation
on an autoMACS separator according to the manufacturer’s
protocol (Miltenyi Biotec, Auburn, CA, USA) and used for
protein extraction. Briefly, cells were lysed for 30 min on ice
in RIPA lysis buffer (Santa Cruz Biotechnology, Dallas, TX,
USA) containing protease and phosphatase inhibitors
(Sigma-Aldrich, St. Louis, MO, USA). Equal amounts of
protein (15 μg) were separated on a 12% SDS-PAGE gel and
transferred to a PVDF membrane. The PANX1 level was
detected by incubation with primary mouse monoclonal anti-
PANX1 antibody (R&D systems, Minneapolis, MN, USA),
followed by incubation with an HRP-conjugated goat anti-
mouse secondary antibody (Cell Signaling, Danvers, MA,
USA). Equal loading in the lanes was evaluated by stripping
the blots and reprobing with primary rabbit anti-β-actin
antibody (Novus Biologicals, Littleton, CO, USA), followed
by incubation with HRP-conjugated goat anti-rabbit sec-
ondary antibody (Cell Signaling). The membranes were
developed with enhanced chemiluminescence (ECL) reagent
(Amersham Life Sciences, Arlington Heights, IL, USA) and
subsequently exposed to film (Hyperfilm; Amersham Life
Sciences).

Isolation of Gr-1+ cells

Gr-1+ cells were isolated from the BM of adult mice as
described [21, 22]. Briefly, BM was flushed from femurs,
and the population of total nucleated cells was obtained
after lysis of red blood cells (RBCs) using 1×BD Pharm
Lyse buffer (BD Pharmingen, San Jose, CA, USA). The
cells were subsequently stained with phycoerythrin
(PE)–anti-Gr-1 antibody (anti-Ly-6G and Ly-6C, clone
RB6-8C5) for 30 min in medium containing 2% fetal
bovine serum (FBS). The cells were then washed, resus-
pended in RPMI-1640 medium and sorted using a Moflo
XDP cell sorter (Beckman Coulter, Indianapolis, IN, USA)
as populations of granulocytes (SSChighGr-1+).
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Measuring ATP levels

Gr-1+ cells were resuspended in RPMI-1640 medium plus
0.5% bovine serum albumin (BSA, 2 ml cells/400 μl med-
ium) and incubated overnight at 37 °C. Subsequently, cells
were stimulated by adding G-CSF (100 ng/ml), AMD3100
(3 μM), or G-CSF+ probenecid (100 µM) and incubated for
12 h at 37 °C. The cells were centrifuged, and conditioned
media (CM) were collected. The ATP levels were measured
using the ATP Colorimetric/Fluorometric Assay kit and the
Deproteinizing Sample Preparation kit (BioVision, Milpi-
tas, CA, USA), according to the manufacturer’s protocol.
Fluorescence analysis was performed with Ex/Em set at
535/585 nm.

In vivo mobilization studies

Mice were mobilized with G-CSF (Amgen, Thousand Oaks,
CA, USA) for 3 days (short mobilization) or 6 days (long
mobilization) at 100 μg/kg/day by subcutaneous injection
(SC); with AMD3100 (Sigma-Aldrich, St. Louis, MO,
USA) for 1 day at 5 mg/kg by intraperitoneal injection (IP);
or with UDP-glucose (Sigma-Aldrich) for 6 days at 200 mg/
kg by SC. In some cases mice received ATP (3 days, 15 mg/
kg, IP), probenecid (4 days, 200 mg/kg, IP), adenosine
(3 days, 5 mg/kg, IP), or Brilliant Blue G (3 days, 50 mg/kg,
IP). At 6 h after the last G-CSF injection, 1 h after
AMD3100 injection, or 4 h after the last UDP-glucose
injection, the mice were bled from the retro-orbital plexus
for plasma and hematology analysis, and PB was obtained
from the vena cava (with a 25-gauge needle and 1-ml syr-
inge containing 250 U heparin). MNCs were obtained by
hypotonic lysis of RBCs in BD Pharm Lyse buffer (BD
Biosciences) as described [23–28].

Fluorescence-activated cell sorting (FACS) analysis

For staining of Lin−/Sca-1+/c-Kit+ (SKL) cells and Lin
−/Sca-1+/CD45+ hematopoietic stem cells (HSCs), the
following monoclonal antibodies were used: FITC–anti-
CD117 (also known as c-Kit, clone 2B8; BioLegend, San
Diego, CA, USA) and PE–Cy5–anti-mouse Ly-6 A/E (also
known as Sca-1, clone D7; eBioscience, San Diego, CA,
USA). All anti-mouse lineage marker antibodies were pur-
chased from BD Biosciences and conjugated with PE [29],
including: anti-CD45R (also known as B220, clone RA3-
6B2), anti-Ter-119 (clone TER-119), anti-CD11b (clone
M1/70), anti-T cell receptor β (clone H57-597), anti-Gr-1
(clone RB6-8C5), anti-TCRγδ (clone GL3), and anti-CD45
(clone 30-F11) [28, 30]. Staining was performed in RPMI-
1640 medium containing 2% FBS. All monoclonal anti-
bodies were added at saturating concentrations, and the cells

were incubated for 30 min on ice, washed twice, and ana-
lyzed with an LSR II flow cytometer (BD Biosciences).

Evaluation of HSPC mobilization

For evaluation of circulating colony-forming unit-granulo-
cyte/macrophage (CFU-GM) and SKL cells, the following
formulas were used: (number of white blood cells
[WBCs] × number of CFU-GM colonies)/number of WBCs
plated= number of CFU-GM per ml of PB; and (number of
WBCs × number of SKL cells)/number of gated WBCs=
number of SKL cells per μl of PB [23, 24, 26, 27].

PB parameter counts

To obtain white and red blood cell counts, 50 μl of PB
was taken from the retro-orbital plexus of mice into microvette
EDTA-coated tubes (Sarstedt Inc., Newton, NC, USA)
and run on a HemaVet 950FS hematology analyzer
(Drew Scientific Inc., Oxford, CT, USA) within 2 h of col-
lection [23, 25].

Generation of hematopoietic chimeras

Recipient mice were irradiated with a lethal dose of irradiation
(1000cGy), and 24 h later they were transplanted through the
retro-orbital plexus with 5 × 106 BM-MNCs from donor mice.
Animals that had undergone transplantation were allowed to
recover for 9 weeks before experiments.

Transwell migration assay

Medium (650 μl of RPMI-1640 medium plus 0.5% BSA)
containing SDF-1 (10 ng/ml; Pepro Tech, Rocky Hill, NJ,
USA), sphingosine-1-phosphate (S1P; 0.1 μM; Cayman
Chemical Company, Ann Arbor, MI, USA), ceramide-1-
phosphate (C1P; 100 µM; Sigma-Aldrich), or ATP (0.25 ng/
ml; Sigma-Aldrich) was added to the lower chambers of a
Costar Transwell 24-well plate (Corning Costar, Cam-
bridge, MA, USA). Aliquots of murine BM-MNCs
resuspended in assay medium (1 × 106 cells/100 μl) were
loaded onto the upper chambers with 5-μm-pore filters and
then incubated for 3 h (37 °C, 5% CO2). An aliquot of cells
from the lower chambers was harvested and counted
by FACS analysis. The cells were gated according to
their forward scatter (FSC) and side scatter (SSC) para-
meters and counted during a 30-s acquisition at a high
flow rate. The remaining cells were resuspended in human
methylcellulose base medium provided by the manufacturer
(R&D Systems), supplemented with murine GM-CSF
(25 ng/ml) and IL-3 (10 ng/ml), for determining the num-
ber of CFU-GM colonies. Cultures were incubated for
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7 days (37 °C, 95% humidity, and 5% CO2), at which time
the colonies were counted under an inverted microscope
[26, 27, 30].

Fibronectin cell-adhesion assay

Human and murine cell lines at a density of 5 × 104/100 µl
were made quiescent overnight or for 3 h at 37 °C in RPMI-
1640 medium containing 0.5% BSA. Subsequently, the
cells were incubated with either probenecid (P8761, Sigma-
Aldrich) or the pannexin-1 peptide inhibitor 10panx
(WRQAAFVDSY, 200 µM; Bio-Techne) for 1 h at 37 °C.
The samples was then incubated for an additional hour at
37 °C with either ATP (250 ng/ml) or adenosine (250 ng/
ml). The cells were then added directly to 96-well plates
that had been previously incubated overnight at 4°C with

fibronectin (10 µg/ml) and later blocked with medium
containing 0.05% BSA for 2 h. After a 5 min incubation at
room temperature, non-adherent cells were washed from the
wells, and the remaining cells counted using an inverted
microscope [30].

Real-time quantitative reverse-transcription PCR

Total RNA of murine BM-MNCs was isolated with the
RNeasy Kit (Qiagen, Valencia, CA, USA). The RNA was
reverse-transcribed with MultiScribe reverse transcriptase
and oligo-dT primers (Applied Biosystems, Foster City,
CA, USA). Quantitative assessment of mRNA levels was
done by real-time RT-PCR using an ABI 7500 instrument
with Power SYBR Green PCR Master Mix reagent. PCR
conditions were as follows: 95 °C (15 s), 40 cycles at 95 °C
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Fig. 1 The impact of ATP on HSPC mobilization. a The expression of
PANX1 in human cord blood and murine bone marrow cells was
evaluated at the protein level by western blotting, and representative
blots are shown. The same membranes were reprobed with β-actin to
confirm equal loading of total protein. The ATP level was evaluated in
conditioned medium from Gr-1+ cells from WT mice stimulated with
G-CSF, AMD3100, or G-CSF+ probenecid. Results are shown as the

percentage of control cells. For mobilization studies, mononuclear
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administration with G-CSF (b) or AMD3100 (c) or after 3 days of G-
CSF together with probenecid (d). The numbers of WBCs, SKL (Sca-1
+/c-kit+/Lin−) cells, HSCs (Sca-1+/CD45+/Lin−), and CFU-GM clo-
nogenic progenitors were evaluated in PB. Results from two inde-
pendent experiments are pooled together. *p ≤ 0.05
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(15 s), and 60 °C (1 min). According to melting point ana-
lysis, only one PCR product was amplified under these
conditions. The relative quantity of a target, normalized to
the endogenous β2 microglobulin gene as control and
relative to a calibrator, is expressed as 2–DDCt (fold differ-
ence), where Ct is the threshold cycle, DCt= (Ct of target
genes)− (Ct of the endogenous control gene, β-micro-
globulin), and DDCt= (DCt of samples for the target gene)
− (DCt of the calibrator for the target gene). The following
primer pair was used for analysis of heme oxygenase-1
(HO-1) expression: 5′-AGGTACACATCCAAGCCGA-
GAA-3′ and 5′-CTCTGGACACTGACCCTTCTG-3′.

Statistical analysis

All results are presented as mean ± SD. Statistical analysis
of the data was done using Student’s t-test for unpaired
samples (Excel, Microsoft Corp., Redmond, WA, USA)
with a value of p ≤ 0.05 considered significant.

Results

ATP is released through the pannexin-1 channel,
acting as a DAMP molecule to trigger mobilization
of HSPCs in a ComC activation-dependent manner

ATP is the most important DAMP molecule, and, as we
reported in our previous work, ATP and other DAMPs are
secreted from granulocytes and monocytes in the BM
microenvironment when stimulated by G-CSF or
AMD3100, activating the ComC through the mannan-
binding lectin (MBL)–mannan-associated serum protease
(MASP)-dependent pathway to trigger the mobilization
process [1, 8, 9]. ATP is released from cells, mainly through
pannexin channels [31], and we first evaluated the expres-
sion of pannexin-1 (PANX1) on the surface of murine and
human mononuclear cells and cells enriched for HSPCs as
well as the level of free ATP in conditioned media from BM
cells stimulated by G-CSF or AMD3100 (Fig. 1a). We
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observed expression of PANX1 by western blot of the
studied cell types as well as the presence of ATP in media
conditioned by BM cells. Furthermore, secretion of ATP
was inhibited after exposure to the PANX1-blocking agent
probenecid [32] (Fig. 1a).

Next, we performed mobilization studies with induction
by G-CSF+ATP (Fig. 1b) and AMD3100+ATP (Fig. 1c)
in normal wild-type (WT) mice and found that exogenous
ATP additionally enhances the egress of HSPCs from BM
into PB. This effect was significantly inhibited in mice
treated with probenecid that is PANX1-blocking agent
(Fig. 1d). In Supplementary Figure 1, it can be seen that a
PANX1-specific blocking peptide as well as probenecid
enhance adhesion of murine and human HSPCs and at the
same time decrease migration not only in response to ATP
but also to other important HSPC chemottractants, such as

SDF-1, S1P, and C1P [33, 34]. This result suggests an
autocrine involvement of ATP in the sensitization of HSPCs
to chemoattractants, which requires further study.

ATP-mediated P2X7 receptor signaling is crucial for
egress of HSPCs from BM into PB

P2X7 is a member of a purinergic ionotropic channel receptor
family and is activated by extracellular ATP [35]. Interestingly,
it has been postulated that the P2X7 receptor enhances calcium
influx in response to ATP stimulation and thus co-operates
with PANX1 in cell migration [31, 34]. To address the role of
P2X7 in the mobilization process, we induced P2X7-KO mice
with G-CSF for 3 or 6 days (Fig. 2a, b) or by AMD3100
(Fig. 2c). We found that these mice have a defect in mobili-
zation in response to G-CSF but not AMD3100, which
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suggests a different involvement of P2X7 receptor in mobili-
zation induced by these two different mobilizing agents. In fact
we observed similar phenomenon in the past during mobili-
zation of C2fB-deficent mice [25].

Defective mobilization of HSPCs has also been observed
in another type of experiment in which we blocked
expression of P2X7 on the surface of hematopoietic cells
with the P2X7 receptor blocking agent Brilliant Blue G
(Supplementary Figure 2).

To address whether this poor G-CSF-mobilizing effect in
P2X7-KO mice is due to the microenvironment or a
hematopoietic stem cell-mediated defect, we created chi-
meric WT animals reconstituted with P2X7-KO bone
marrow cells and P2X7-KO mice reconstituted with BM
from WT mice (Fig. 2d). The poor mobilization effect was
reproduced in WT mice reconstituted with P2X7 bone
marrow cells, which demonstrates that the defect is
dependent on defective expression of P2X7 receptors on the
surface of hematopoietic cells.

To learn more about the role of P2X7 signaling in the
mobilization of HSPCs, we measured the levels of extra-
cellular ATP in conditioned media from the BM of mobi-
lized WT and P2X7 mice and found that mobilizing agents
increase secretion of ATP from BM cells (Fig. 3a). This
finding suggests that interaction between the P2X7 and
PANX1 receptors is more complex, most likely at the
intracellular calcium signaling level [31], and, as is shown
in Fig. 3b, BM-MNCs as well as CFU-GM progenitor cells
from P2X7-KO mice show defective migration in response
to crucial HSPC chemoattractants. This again suggests
interplay between ATP and the P2X7 receptor in autocrine
modulation of HSPC migration and requires further study.
This phenomenon was reproduced by blocking the P2X7
receptor with Brilliant Blue G (Supplementary Figure 3).

As mentioned in the introduction, it has been reported
that infusion of UDP-glucose, which is a related member of
the EXN family and a metabolite in glycogen synthesis,
induces mobilization of HSPCs [16]. This has been
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postulated to be dependent on a specific interaction of UDP-
glucose with a G protein-coupled member of the P2Y
purinergic receptor family, P2Y14 [36]. To address the
potential involvement of the P2X7 receptor in this phe-
nomenon, we mobilized WT mice and P2X7-KO mice with
UDP-glucose and found that UDP-glucose alone sig-
nificantly increases the number of circulating HSPCs, both
in WT and P2X7-KO mice (Fig. 3c). This finding supports
the notion that UDP-glucose-mediated mobilization does
not depend on the P2X7 receptor but involves the P2Y14 G
protein-coupled receptor, as previously proposed [36].

Interestingly, despite the important role of P2X7 in mobili-
zation, P2X7-KOmice have normal hematopoietic parameters in

PB as well as normal numbers of clonogenic progenitors in BM
under steady-state conditions (Supplementary Figure 4).

The ATP metabolite adenosine is a negative
regulator of HSPC mobilization

On the basis of the facts that mobilization of HSPCs is the
result of ComC-mediated sterile inflammation in BM [1, 9]
and that adenosine has a well-known anti-inflammatory
effect [37, 38], we became interested in the role of adeno-
sine as an EXN in the mobilization process. First, we
employed CD73-KO mice, which do not process extra-
cellular ATP to adenosine [39, 40] and thus have low levels
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(CoaC). ATP is also metabolized to adenosine by the ectonucleoti-
dases CD39 and CD73 as well as by E-NPP, which has the opposite
effect and inhibits both sterile inflammation in BM as well as egress of
HSPCs into PB. Egress of HSPCs is also inhibited by HO-1, which is
an anti-inflammatory enzyme that inhibits the ComC
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of this EXN in biological fluids. As shown (Fig. 4a), CD73-
KO mice have significantly enhanced mobilization in
response to G-CSF and AMD3100 (Fig. 4b). Furthermore,
the reciprocal model of creating irradiation chimeras
between CD73-KO and WT mice revealed that the observed
CD73 defect depends on defective expression of CD73 on
the surface of hematopoietic cells and not on the BM
microenvironment (Fig. 4c). Finally, in direct mobilization
experiments in WT animals we observed that mice injected
with adenosine show defective HSPC mobilization by G-
CSF (Fig. 5a) and AMD3100 (Fig. 5b).

Interestingly, despite the important role of CD73 in
mobilization, CD73-KO mice, as demonstrated in Supple-
mentary Figure 5, have normal hematopoietic parameters in
PB as well as normal numbers of clonogenic progenitors in
BM under steady-state conditions.

On the basis of the fact that heme oxygenase-1 (HO-1) is
a negative regulator of HSPC mobilization [24], we eval-
uated the effect of ATP, which, as we report here, stimulates
mobilization, and the effect of adenosine, which inhibits this
process and the expression of HO-1. As shown in Fig. 5c,
BM-MNCs exposed to ATP downregulated the expression
of HO-1 mRNA, and exposure to adenosine upregulated
mRNA encoding this anti-inflammatory enzyme.

Discussion

The seminal observation of this paper is that EXNs, parti-
cularly their most significant members, ATP and its
degradation metabolite adenosine [41], are important factors
that combine purinergic signaling with innate immunity in
triggering egress of HSPCs from BM into PB. Although
ATP released in the pannexin-1-dependent pathway from
Gr-1+ cells as DAMP molecules induces sterile inflamma-
tion in BM and activates the MBL-pathway of ComC
activation and involves activation of P2X7 receptor, ade-
nosine has the opposite, anti-inflammatory, and inhibitory
effect (Fig. 5d).

The egress of HSPCs from BM into PB is still not well
understood, despite the importance of this process in
understanding the response of the organism to inflamma-
tion, tissue and organ injury, and pharmacological mobili-
zation to obtain HSPCs for hematopoietic transplantation
[1–7]. Several pathways and cells have been proposed to
have a pivotal role in this phenomenon [1, 9, 24, 27, 28, 30,
33, 42, 43]. From an historical point of view, mobilization
has been connected to induction of proteolytic activity in
the hematopoietic microenvironment, and this effect seems
to be mediated by several redundant proteolytic enzymes
that attenuate retention axes of HSPCs in BM niches (e.g.,
SDF-1–CXCR4 and VLA-4–VCAM-1) and are involved in
permeabilization of the BM–PB endothelial barrier [5, 26].

Recently, it has been demonstrated that the lipolytic enzyme
PLC-β2, which disrupts the membrane lipid rafts required
for CXCR4 and VLA-4 receptor-mediated retention of
HSPCs in BM niches, also has a crucial role [28].

Important cellular players facilitating the mobilization
process have been identified. It has been demonstrated in a
few elegant papers that both Gr-1+ granulocytes and
monocytes are required for egress of HSPCs into PB [44,
45]. Granulocytes have been reported to be a rich source of
proteolytic [46] and lipolytic [28, 47] enzymes, being the
first cells that transmigrate through the BM–PB endothelial
barrier and pave the way for egress of HSPCs, which follow
in their footsteps [25, 26, 48]. By contrast, monocytes
secrete certain chemokines that participate in mobilization
[49]. The involvement of another cell type that lines tra-
becular bone, monocyte-derived osteoclasts [50], is still
disputed at present. Nevertheless, the egress of cells into
blood involves the coordinated effort of many cell types
residing in BM as well as β-adrenergic neural fibers [51].

Purinergic signaling was proposed almost 100 years ago
by Albert Szent-Gyorgi, who reported the effect of intra-
venously injected adenine compounds on heart rate in
experimental animals [52]. In 1972, Geoffrey Burnstock
ignited decades of controversy by proposing the existence
of a non-adrenergic, non-cholinergic neurotransmitter,
which he identified as ATP, and after years of prolonged
skepticism, the concept of EXNs as effectors of purinergic
signaling is currently widely accepted as a general inter-
cellular communication system [53]. EXNs, including
nucleotides and nucleosides, bind to several receptors from
the P1, P2X, and P2Y families. It is well established that
stimulation of mammalian cells, including BM cells, leads
to release of purine and pyrimidine nucleotides and
nucleosides and activation of autocrine/paracrine feedback
loops [54]. The most important players, however, are ATP
and its metabolite adenosine [41].

As mentioned in the introduction, EXNs, in particular
ATP and adenosine, have been reported to stimulate not
only proliferation but also to regulate development of nor-
mal HSPCs [12–15], which opens a new chapter in the
study of non-peptide-based factors regulating hematopoi-
esis. By contrast, UTP has been reported to be an inhibitor
of malignant hematopoietic cell proliferation and migration
[15]. Purinergic receptors, belonging to several families,
are among the most abundant receptors in living organisms,
and appeared early in evolution, over a billion years ago.
They have been demonstrated to be expressed on the sur-
face of HSPCs, all types of differentiated hematopoietic
cells, BM SCs, and endothelium [11]. As ATP is an
important mediator of signaling in neural fiber synapses
[55], one has to consider their potential involvement in
regulating, besides catecholamines [56], in release of
HSPCs from BM niches.
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In our work, we demonstrated that mobilizing agents
induce secretion of ATP from BM cells in a pannexin-1
(PANX1)-dependent manner. Mice exposed to PANX1
inhibitors release fewer cells from BM into PB in response
to G-CSF and AMD3100. Interestingly, infusion of addi-
tional ATP into WT mice augmented their responsiveness
to G-CSF. By contrast, inhibition of PANX1 by probenecid
impairs both ATP release and the mobilization process. In
addition, both probenecid and a PANX1-blocking peptide
decrease migration of clonogenic HSPCs, but both at the
same time increase HSPC adhesion. Inhibition of ATP
secretion also decreases activation of the ComC, which
clearly shows that ATP acts as a DAMP molecule in the
MBL-pathway of ComC activation.

As pannexin channels are not the only channels that
release ATP into the extracellular space, future work is
needed to see whether impaired mobilization in connexin-
43-deficient mice [57] could be explained by impaired
secretion of ATP as well. Another potential source of ATP
is extracellular microvesicles that are released from acti-
vated cells [58]. Nevertheless, pannexin channels, and in
particular PANX1, seem to be a key contributor to ATP
release.

ATP secreted from the cells is processed to adenosine by
several exonucleases in the extracellular space [39, 40]. As
we have demonstrated, a lack of CD73, which metabolizes
AMP to adenosine, enhances mobilization in CD73-KO
mice, indicating that adenosine is an important inhibitor of
mobilization. Corroborating this finding, mice exposed to
adenosine along with G-CSF also turned out to be poor
mobilizers. On the basis of these findings, adenosine, which
is a well-known anti-inflammatory and immunosupressive
nucleoside [37, 38], provides a negative feedback in
mobilization triggered by ATP (Fig. 5d). Therefore, small
molecule inhibitors of CD73 could be novel mobilization-
potentiating agents, and this idea is currently being tested in
our laboratory. As shown in Fig. 5d, mobilization is also
inhibited by HO-1, and, as we observed, expression of this
anti-inflammatory, ComC-inhibiting enzyme [24, 59] is
downregulated by ATP and upregulated by adenosine.

The level of adenosine in the extracellular space is also
regulated by nucleoside transporters, which are a group of
membrane transport proteins that transport nucleoside sub-
strates across the cell membrane [60]. Thus, in future it
would be interesting to see how knockout of these trans-
porters (the SLC28 concentrative nucleoside transporters
and the SLC29 equilibrative nucleoside transporters) affect
mobilization.

In conclusion, we have demonstrated for the first time
that purinergic signaling involving ATP and its metabolite
adenosine regulates mobilization of HSPCs. Thus, admin-
istration of ATP or inhibition of CD73 by small molecule
antagonists may provide new strategies for developing more

efficient mobilization. At the same time, we demonstrated
that the most abundant EXN, ATP, provides an important
link between purinergic signaling and activation of the
ComC in BM and better explains the role of sterile
inflammation in the egress of cells from the BM micro-
environment into PB. Further studies are also needed if
similar mechanism is involved in egress of other types of
BM stem cells [61–64].
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