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ABSTRACT OF THESIS

A COMPILER TARGET MODEL FOR LINE ASSOCIATIVE REGISTERS

LARs (Line Associative Registers) are very wide tagged registers, used for both
register-wide SWAR (SIMD Within a Register )operations and scalar operations on
arbitrary fields. LARs include a large data field, type tags, source addresses, and a
dirty bit, which allow them to not only replace both caches and registers in the con-
ventional memory hierarchy, but improve on both their functions. This thesis details
a LAR-based architecture, and describes the design of a compiler which can generate
code for a LAR-based design. In particular, type conversion, alignment, and register
allocation are discussed in detail.
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Chapter 1 Introduction

“Surely there must be a less primitive way of making big changes in the store than by
pushing vast numbers of words back and forth through the von Neumann bottleneck.
Not only is this tube a literal bottleneck for the data traffic of a problem, but, more
importantly, it is an intellectual bottleneck that has kept us tied to word-at-a-time
thinking instead of encouraging us to think in terms of the larger conceptual units of
the task at hand. Thus programming is basically planning and detailing the enormous
traffic of words through the von Neumann bottleneck, and much of that traffic con-
cerns not significant data itself, but where to find it.”
-John Backus
ACM Turing Award Speech, 1977

John Backus was focused on the effects of the Von Neumann design on the pro-
grammer [1] - however, the matter is fundamentally a problem of hardware design.
This document proposes an architecture based on Line Associative Registers, dis-
cusses the implications of that design, and situates it in terms of other efforts to
ameliorate the bottleneck.

1.1 Introduction

LARs (Line Associative Registers) are a memory structure designed to be used as
the upper levels of the memory hierarchy in a new class of architectures. The chief
objective of LARs-based designs is to provide a general-purpose model of computation
in which memory accesses are minimized by explicitly managing a large pool of data
and meta-data at the top of the memory hierarchy. Line Associative Registers fill the
role of both registers and caches in a traditional memory hierarchy, bringing many of
the advantages of each while avoiding their more egregious faults. This work chiefly
deals with the development of software tools for programming a LAR-based design,
but also details new advancements in the architecture, and software simulation tools
for testing these tools and features.

1.2 The Memory Hierarchy

In the majority of recent computer designs, memory is laid out in an increasingly
deep hierarchy, with a small, fast memory near the CPU at the top in the form of
registers, a series of increasingly large and slow caches, and eventually a large DRAM
bank for main memory. There is also typically an option to page inactive segments
of the DRAM bank to slow secondary storage.

At the top of the memory hierarchy is a small register file consisting of no more
than a few kilobytes of extremely fast memory, typically SRAM. For example, a naive
implementation of the x86-64 architecture common in modern PCs would feature six-
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Figure 1.1: The traditional computer memory hierarchy.

teen 64 bit integer registers, and an additional sixteen 128 bit floating point registers,
for a total of only 384 bytes of addressable register file.

Even the visible register files have grown considerably in size. For example, Intel’s
traditionally register-starved x86 architecture has sprung a series of extensions: a
series of width extensions bringing the sixteen basic registers from sixteen to thirty-
two, and subsequently 64 bits, eight 80-bit x87 floating point registers, and eight 64-
bit vector registers added with the MMX instruction set, and extended at lest three
times, once with SSE, to 128 bits, again with the transition to x86-64, to 16 registers,
and again with AVX [2], to 256 bits per register.

At the very large end for designs in common use, Intel’s Itanium architecture [3]
features 128 64-bit registers, 128 82-bit floating point registers, and an additional 64
one-bit predicate registers, for a total of 2344 bytes of addressable register file. This
propensity for extremely small register files has a number of valid rationale: high
speed memory, typically SRAM on the same die as the processor functional units, is
extremely expensive in terms of die area and hence cost, and the simple reality that
it is much easier to sustain fast addressing on smaller memories.
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The register file in almost all computers is addressed separately from main mem-
ory, which creates problems with aliasing; the inability to determine whether indexed
accesses point to the same location, creating unnecessary traffic over the memory bus
to guarantee synchronization after changes. In modern systems, the register file will
often support renaming, which allows for a larger number of physical registers than
are specified in the instruction set. This allows the system to keep more data resi-
dent at the top of the memory hierarchy, as well as opportunities to hide or eliminate
false dependencies, while maintaining instruction-level compatibility. This practice
comes at a cost of significant complexity and power consumption, and is opaque to
the software.

Many designs considerably extend the size of their register file internally with
various register renaming schemes, however, this extended space is available only
for automated micro-optimization, rather than programmer or compiler managed
optimizations, as it is not explicitly manageable and varies wildly between implemen-
tations of the same ISA.

Typical modern computers use a large bank of DRAM as main memory. This
DRAM bank is larger, slower, lower power, and far less expensive than SRAM used
for the upper levels of the hierarchy, and in many early computers. A large DRAM is
necessarily slower than smaller static memories because it requires a relatively com-
plicated decoding scheme to address and route from a large memory, as well as timing
instability due to required refresh cycles. Furthermore, in a system supporting vir-
tual memory (paging or segmentation), there will be a translation layer (page table)
mapping between virtual and physical addresses which adds further delays and tim-
ing variability to accessing main memory. To improve performance without dramat-
ically increasing costs, a system of smaller, faster caches is placed between the main
memory and the processor. These caches are generally on the order of hundreds of
kilobytes to a few megabytes, and may be managed by a wide variety of increasingly
sophisticated automatic mechanisms, and are most often implemented in SRAM. Be-
cause the cache represents an extremely small fraction of the system memory, any
automated replacement scheme is susceptible to unpredictable and/or pathological
conditions, in which the access pattern and the replacement scheme interact unfa-
vorably. Finally, caches exacerbate the nondeterministic timing of memory accesses;
a datum fetched from cache will arrive orders of magnitude faster than a datum
fetched from main memory, and it is impossible (or, at very least, impractical) to
accurately statically predict whether a particular datum will be in cache prior to
a particular read. Analogous to the use of caches to attempt to improve memory
fetch performance, the address translation process is typically also cached, employing
a translation lookaside buffer (TLB) to cache probable page table lines in a smaller,
faster memory close to the CPU. Also like the caching of data, the TLB accelerates
properly-predicted address translations (hits), but further slows down misses, and in-
troduces a large variability in the time it will take for a memory access to complete.

The Register-Cache-Memory hierarchy is not the only memory layout which has
seen widespread use. A variety of computer designs employ a small scratchpad mem-
ory [4]. Scratchpads are small, fast memories, generally of the same scale and tech-
nology as Caches, but are explicitly managed. This allows scratchpads to be managed
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with far more accurate but computationally expensive static techniques, which can, in
theory, dramatically improve their utility relative to a cache of the same size. Unfor-
tunately, because a scratchpad is explicitly managed, it requires that the scratchpads
must be consistent in size and access behavior among compatible machines, or code
must be recompiled to specifically target the different sizes of scratchpad.

There is a common addendum to Moore’s law [5] noting that while the speed of
central processing units tends to increase at an exponential rate, DRAM speeds and
sizes have only grown roughly linearly. This has created a large disparity of perhaps
400 clock cycles between the speed of a system’s CPU and main memory, which has
been the impetus for the ever deeper memory hierarchy.

Copyright© Paul Selegue Eberhart, 2019.
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Chapter 2 History

The LARs design has its roots in a variety of previous projects. It descends most
directly from three existing areas of research: CRegs [6], a type of tagged registers,
SWAR (SIMD Within A Register) designs [7] such as Intel’s SSE, and compiler-
managed memory hierarchies [8].

Research into LARs began with the master’s thesis of Krishna Melarkode [9],
in 2004, and has since developed in scope and complexity, to include a number of
hardware verification models, designs for software tooolchains and simulators, and a
considerable amount of theoretical work into the implications of such a design.

LARs-like features have appeared in many recent commercial designs - wider,
more comprehensive SIMD extensions like Intel’s AVX [2] approach a general-purpose
SWAR architecture. Likewise, a weak implementation of an explicitly managed
tagged file can be found in the Itanium architecture’s ALAT (Advanced Load Address
Table)[3]. However, in insuring that the design failed safe if improperly managed,
many of it’s potential benefits have been lost.

Similarly, the idea of decoupling of instruction fetch and execution to confront the
Von Neumann bottleneck has been in practice since at least the mid 1960s. Most of
these efforts, such as the use of scoreboarding in the CDC6600 (1964) and Tomosulo
Algorithm in the IBM S360 Model 91 (1967) have been primarily focused on the ef-
ficient use of execution units, and only tackled memory access behavior insomuch as
they have been required to to meet their goals. More explicit, generalized decoupling
of fetch and execution has also appeared in a number of designs, perhaps most rad-
ically in the CSPI MAP 200 array processors of the early 1980s[10]. These designs,
however, tend to, in one designer’s own words “place a great deal of responsibility for
resource scheduling and interlocking on software.” [10], and practicable implementa-
tions are largely a question of re-automating these issues into automatic (typically
hardware-driven) mechanisms.

A major issue in working with LARs, or other architectural changes that signifi-
cantly alter long-held assumptions, is that they are not readily miscible with current
practice. An incremental approach to introducing LAR-like features is impossible as
effectively utilizing LARs requires fundamental changes to accepted practice. Efforts
to introduce them to existing designs or apply existing tooling is doomed to be awk-
ward and ineffective; the extent of this incompatibility was not fully appreciated at
the beginning of this project. In fact, as discussed below, one attempt to employ a
structure very similar to a LAR in the form of the Itanium ALAT has already failed,
likely because it was compromised to improve compatibility with a conventional mem-
ory hierarchy. It is hoped that this research will yield concepts and techniques which
which will be necessary to build computer systems employing LARs or similar struc-
tures.
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2.1 CRegs

A direct predecessor project to LARs was cache-registers, CRegs [6]. CReg is pro-
nounced “C-Reg,” and is a portmanteau of “Cache Registers.” CRegs are scalar stor-
age elements that operate in their own distinct address space, much like conventional
registers. The primary CReg contribution is the load-time addition of address tags
to datum near the top of the memory hierarchy. CRegs were introduced in 1989 by
Henry Dietz and Chi-Hung Chi, with the primary intention of providing hardware
support to resolve ambiguous aliasing. Ambiguous aliasing is the situation in which
it is impossible to statically determine whether two names refer to the same value.
Ambiguous aliases present a significant problem for systems that rely on conventional
registers, as every aliased datum must be flushed from the register to a level of the
memory hierarchy where the source addresses can be compared any time any aliased
value is written to, creating large, correlated, and unpredictable memory traffic.

To borrow an example from the original CRegs publication, the snippet of pascal-
like pseudocode below is a trivial case of an ambiguous alias.

readln(i,j);
b := a[i]+a[j];

Because i and j are read from user input, it is entirely impossible to statically
determine if a[i] and a[j] refer to the same memory location, and so they must
either be operated on in-memory, or, if a[i] and a[j] have been loaded into registers,
both be evicted from their registers and re-read whenever either is written to in order
to maintain consistency. CRegs solve the problem of ambiguous aliases in all cases,
by use of an address tag on each element, and associatvity in the storage elements.
LARs retain the address tag and associativity properties of CRegs, but extend them
with vector behavior from another contemporary memory technology, described in
the next section.

2.2 SIMD and SWAR

Another major predecessor technology for LARs is SWAR (SIMD Within A Register).
SWAR is a form of low-level parallelism, in which SIMD (Single Iinstruction Multiple
Data) operations are performed on collections of data packed into a single wider
register. Like the vector machines they are derived from, SWAR instructions enable
machines to perform operations over a set of similar data. As these extensions de-
velop, they often lead to the introduction of wider registers into to the datapath of
the enhanced processors. Most SWAR implementations are extensions to an existing
scalar architecture, such as the AltiVec extensions to PowerPC, or NEON extensions
to ARM. Intel’s x86 platform has endured an entire series of SWAR additions to the
instruction set, starting with MMX in 1997, and accreting no fewer than 17 sets of
additional vector instructions since.

This after-the-fact design model comes with a variety of implications and com-
promises in the functionality and generality of SWAR extensions.

6



Most implementations of SWAR extensions have extensive, and sometimes curi-
ous, limitations. For example, Intel’s MMX contains instructions for adding eight
8-bit, four 16-bit or two 32-bit signed or unsigned integers packed into a single 64-bit
register, and an instruction for multiplying four 16-bit integers packed into a 64-bit
register, but not eight 8-bit integers in the same configuration [11]. Likewise, there
are generally strict alignment constraints on SIMD extensions, both for in-memory
structures which interact with the cache hierarchy to speed or slow loading the vec-
tor registers, and on the contents of the vector registers themselves [12], which tend to
create additional bookeeping operations and memory traffic in order to use the vector
instructions. Worse, the practice of using different register sets for scalar and vec-
tor operations exacerbates the aliasing problems discussed above, forcing loads and
stores simply to maintain consistency when data is proximally handled by both the
scalar and vector hardware.

Even systems designed primarily around custom very-wide SIMD engines have
tended to rely heavily on conventional (and typically commodity) scalar processors to
run the host operating system. These heterogeneous designs offer several advantages,
especially in reducing the required complexity and keeping scheduler noise from the
operating system away from the high-performance vector processors. These system
architectures also force several design decisions, such as requiring special language
and platform support to program and schedule the vector processors, which results
in certain limitations, such as an awkward split memory space, and limiting the
applicability of code developed against them to comparatively rare systems hosting
the same variety of vector coprocessor.

For example, perhaps the archetypal accelerator-based machine, the Ardent Titan
[13], relied on vector processors whose vector register file held 8192 64-bit values
(addressable as anything from one vector of length 8192 to 32 vectors of length 256)
in 1988. It, however, used a MIPS R2000 (and later R3000) processor per vector unit
to run the operating system, and used the vector units only for compute offload.
Being marketed as a graphics workstation, this design rather directly predicts the
eventual evolution of systems with conventional host processors and attached GPUs.

Despite vector extensions being a somewhat awkward bolt-on, modern perfor-
mance tuning and optimization guides suggest using the vector extensions, often
almost to the exclusion of the host scalar instruction set [12]. Similarly, recent trends
in high performance computing have concentrated on various derangements of vector
co-processor, such as GPUs, whose pipelines are very SWAR-like.

LARs are designed with a modified SWAR model as the primary mode of com-
putation, with designed-in accommodations for scalar operations. This corresponds
to the ideal/desired behavior for many computing applications, where some amount
of scalar operations for addressing and edge cases must be interspersed with the vec-
torizable primary computational work to be performed in a SIMD execution mode.
Unlike SIMD coprocessor designs, LARs allows these interspersed instructions to be
performed on the same, without any expensive memory transfers between host and
coprocessor, realigments or corner-turns to suit the relative alignment constraints
of the host and coprocessor or extension, or aliasing/timing concerns between data
touched by the scalar and vector execution units. Likewise, LARs accept arbitrary
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base addresses, reducing the amount of effort required to massage data into position
for vector operations.

Packed SIMD/Vector Registers

Perhaps the closest current designs to LARs are efforts to add flexible vector exten-
sions to modern ISAs. The dominant example, RISC-V’s proposed Vector Extensions
[14] offer a sort of generalized length-independent vector support instead of fixed-
width SWAR. These designs make a number of decisions which place them in a
slightly different design space than traditional vector machines, SWAR extensions, or
LARs. The RISC V proposal does employ something resembling tagged registers; a
set of configuration registers specify the type and vector length of items stored in a
re-configurable register file, and must be appropriately manipulated before using the
vector units. Like LARs, this allows for polymorphic instructions based on the tags.
A major distinction in this design is that the lengths (in operands) of vector opera-
tions are also determined by a vector length register, set with setvl, essentially pro-
viding hardware-parameterized vectors suitable for allocation via strip-mining [15].
Unfortunately, these vectors do not have any form of alias analysis or scheduling sup-
port beyond simple predicates, so they can not tolerate dependencies between data
in a vector operation. Worse, because of the parameterization, inherently scalar, or
at best mapped onto a multi-issue pipeline, in actual execution.

2.3 Tagged Architectures

A final major influence on LARs design are tagged architectures. Tagged architectures
are computer architectures in which metadata, such as type information, is stored
with the data, rather than inferred form the instructions used to manipulate that data
[16]. Tagged architectures offer a number of theoretical advantages over conventional
designs, and historically incur a number of practical drawbacks, which LARs attempt
to eliminate.

To enumerate a few of tagged architectures’ purported advantages, tags provide an
opportunity for a smaller, simpler instruction sets, as they enable generic instructions.
This allows for more compact instruction encodings and, in principle, simpler code
generation and greater code reuse. Tags also enable unusual addressing modes, such
as field-and-offset to allow word-oriented machines to address bytes [17]. Tagging also
provides automated type checking and conversion, making most operations inherently
type safe, and avoiding complicated subroutines to convert between types. Many
tagging systems also enable data protection, by marking data with some form of
access descriptor.

Tagged architectures have generally fallen into two categories; fixed tagging, in
which each memory location is associated with a tag, and distributed tagging, in which
each logical object is associated with a tag. Fixed tagging allows tags to be retrieved
in a regular pattern, that is without additional address calculations, while dynamic
tagging allows for fewer tags and tagging of irregularly sized objects. However, both
systems still require that tags be moved in and out of main memory along with the
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objects they describe, creating additional memory traffic through the Von Neumann
Bottleneck, which is increasingly untenable as increases in processing speed continue
to outstrip improvements in memory access.

A number of commercial designs have employed tagged architectures, most fa-
mously the Burroughs Large Systems family [18](1961), IBM System/38[17] (1979)
and SWARD [19], LISP machines [20] (1981), and Intel iAPX 432 [21] (1981). While
several of these machines were commercially successful, they were all eventually out-
competed [16] by simpler untagged designs. Even those machines developed expressly
to execute dynamically typed languages, like the LISP machines, which have the most
to gain as they must constantly perform type checking at runtime, were eventually
superseded by simpler untagged designs and software support. This decline has given
tagged architectures something of a bad name in modern times, particularly by as-
sociation with Intel’s iAPX project [21], which was an high-profile expensive failure
[22], due in part to its use of a tagging system. The iAPX tags were exceptionally
long - it employed 128-bit object descriptors and 32-bit access descriptors which had
to be handled during almost all memory accesses [17].

The Burroughs Large Systems offer some similarities to the tags proposed for
LARs. The B5000 [18] reserved a single bit of each (48 bit) machine word, to dis-
tinguish “control” and “numeric” data, though it did not use this tag system in the
case of character data or code. The B6500 and later expanded to three bits of tag,
which allowed for a considerably richer description; for example, the low bit is used
to distinguish words which belong to the system state (low bit set) from those which
belong to the user code (low bit unset). While the Burroughs Large System architec-
ture was a stack machine, and their tag system was primarily as a security measure,
comparable to a more fine-grained NX (No-Execute) bit found in the paging hard-
ware in many modern designs, these latter members of the family also used their tags
to distinguish data types. Another historical machine whose memory handling can
be used as a point of reference for LARs is the Harris H500/800 family [23] and their
progenitor the Datacraft 6024, marketed in the late 1970s. The Harris’ distinguish-
ing feature was its sophisticated-for-the-time cache-backed virtual memory system
operating on 48-bit words. Like the IBM System/38 above, these machines were
word-oriented, and used their tagging system to allow for subword addressing when
operating on byte or 24-bit word oriented data. LARK is designed with a general-
ization of this idea, in which memory accesses are always line-at-a-time, and the low
bits of addresses for smaller data objects are performed by treating the low bits of
addresses as offsets into a LAR.

The major weakness of historical tagged designs is that the addition of tags in
main memory creates additional memory traffic with each datum. As computer per-
formance in the modern era is typically constrained chiefly by the memory system,
this is an unacceptable compromise. Another major problem for tagged architectures
is language support; most general-purpose programming languages do not offer na-
tive facilities that match up with the tags on a particular architecture, which results
in stilted use of tags and/or additional load on the toolchain to determine the map-
ping. Relatively successful tagged architectures have tended to be co-developed with
a programming language; n the case of the LISP Machines, the machine was designed
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specifically to support the needs of the existing LISP language family. Similarly, the
System/38 uses a layered ISA, where the user-facing software toolchain produces a
high-level intermediate language, which is then translated by what we would now re-
fer to as a firmware layer [17] - in many ways presaging the now-common design of
dynamically translating a high-level ISA into microps in microcode.

The tagging employed in LARK, and intended for use in any LARs based architec-
ture, is different than any of the prior designs - instead of tagging in memory, LARK’s
LOAD and STORE instructions set and manipulate tags on data in the DLAR file, giv-
ing the benefits of a tagged architecture, without incurring the penalty in memory
traffic suffered by designs which maintain tags in RAM. To do this, data is tagged
when loaded into a LAR from main memory, and the tags remain attached to the
data in the LAR file even if moved or duplicated, but are never written back to main
memory.

2.4 Compiler-Managed Data Motion

There are a number of approaches present in commercial designs to allow the software
toolchain to guide or control the movement of data up and/or down the memory
hierarchy, rather than relying directly on automated, heuristic cache management.

The general solution to compiler-managed control of fast memories is to simply
expose the fast memories to the architecture as a memory segment - typically the
small fast memories in this arragement are called “scratchpads.” The most recent
successful architecture to use a scratchpad was the SPU in the IBM Cell processor
[24], though it is certainly not unique in this arrangement. This explicitly-managed
separate memory offers a number of challenges. The scratchpad memory itself must
be managed with additional instructions. The size of the scratchpad is exposed in
the ISA, which restricts portability; a larger scratchpad cannot be utilized without
altering the code, as is possible with caches. One feature which is neither a clear
advantage or disadvantage is that while in a cache hierarchy, data in the cache is a
copy of data in main memory; while in a scratchpad, the data in the scratchpad is
not backed by main memory unless expressly transferred.

The most common solution to offer limited software control of the memory hierar-
chy are the cache control instructions are present in the majority of modern architec-
tures. A typical example is the x86 family PREFETCHh and CLFLUSH [25] instructions,
which hint a promotion of the line containing a data byte up the cache hierarchy, and
invalidate a line evicting it from the entire cache hierarchy respectively. These in-
structions do not offer complete programmatic control of caches; the cache control
logic can ‘choose’ to ignore a promotion hint, and cache occupants must still obey the
associativity rules of the cache, so promotions may inadvertently evict needed data.

Prefetching is also something of a leak in abstraction layers, exposing implementation-
specific details and behaviors which “do[es] not affect program behavior” [25] at the
level of the ISA. This variation among implementations also makes the effective use
of prefetch instructions non-portable in much the same way as explicitly managed
memory structures, like scratchpads, leading to the same concerns about requiring
recompilation for specific targets.
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There is some variety in the cache control instructions offered among ISAs, Pow-
erPC in particular has a relatively powerful set of cache control primitives exposed
through a mixture of instructions and status registers. The PowerPC cache controls
allow a range of interesting features, and in fact the cache hierarchy is typically in
a disabled state until initialized by software [26]. Configuration includes completely
disabling particular instruction or data caches to avoid coherency contention, manip-
ulating manipulating the prediction policies among a set of platform-defined alterna-
tives, whole-cache or specific-way locking, and separate flushing and invalidation, the
use of which incurs state-tracking within the program, as there is hardware-enforced
protection to prevent the flushing of data which has been modified but not written
back, a complication not incurred by LARs.

Like most designs, typical PowerPC cache hierarchies have specific instruction
and data caches for L1, but shared caches for higher levels. Unlike most designs,
PowerPC cache control allows for control of how the shared caches are used, such as
marking the entire L2 cache as an instruction cache, and forcing all data traffic onto
the bus.

Speaking in generalities about ARM caches is not productive because there is an
extensive diversity of cache hierarchies employed in ARM compatible designs [27].

Prefetching can also be performed automatically. A downside of automatic prefetch-
ing in most modern architectures is the risk of poisoning caches with speculative
loads; because most cache mechanisms are automated and associative, an incorrect
speculative load may not only generate spurious memory traffic, but evict a piece of
data which was actually needed from cache. This may cascade into more than a sin-
gle fetch of stall, for example if the evicted data was both dirty and immediately
needed, the process will have to wait as the line is written back, then read again.
Worse, if the data in the page table was used for indirection, whole chains of other-
wise unnecessary memory accesses may be triggered as accesses cascade. LARs avoid
this entirely by exclusively explicitly managing the memory hierarchy, such that “ac-
cidental” algorithmic eviction is not a threat.

The structure most similar to LARs in a modern commercial designs is the
Advanced Load Address Table (ALAT) present in the Intel Itanium architecture
[28]. The ALAT is a 32-entry associative memory which is used to perform specula-
tive data loads. An ld.a instruction can be generated by the compiler, which will
produce an entry in the ALAT listing the source address, size, destination register,
and state of the load. In the Itanium architecture, the ALAT is used as a supple-
ment to a conventional automated cache memory hierarchy, which allows a limited
degree of compiler-guided pre-fetch without risking poisoning associative caches with
speculative loads. Results obtained by modifying a compiler to perform as much spec-
ulative loading as possible indicate that compiler-managed (pre)fetch, even driven
by naive but extremely aggressive speculative loading, will perform well under most
circumstances, and cause only very rare, minor performance regressions [28].

LARK, like any realizable LAR-based architecture, relies entirely on statically
scheduled prefetching for all instruction loads - and all data loads.

Copyright© Paul Selegue Eberhart, 2019.
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Chapter 3 LARK

This chapter attempts to explain both the general properties of LAR-based designs,
and specifically discusses the LARK architecture, a straw-man design used across the
current generation of LARs research. The first two major sections are dedicated to ex-
plaining the LAR structures themselves - DLARS (Data Line Associative Registers),
and their simpler peer, ILARS (Instruction Line Associative Registers)

3.1 DLARs

The defining element of a LARs-based design is the DLAR. A file of DLARs fills the
roles of both the register file and data cache in a fully LAR-based architecture. Each
DLAR consists of a wide data field, on the order of kilobits, and a set of meta-data
fields, which include a source address, dirty bit and type information to indicate the
interpretation of the data field. Type tagging at the register level is a best case
compromise. It allows for an extremely regular instruction set via context sensitivity,
and eliminates the need for explicit type conversion instructions. It also avoids the
common problems of type tagged architectures, such as those famously experienced by
Intel’s iAPX432 [21] which employed a fully tagged object oriented memory system,
and in turn created a massive penalty in terms of memory traffic, exactly the thing
LARs are intended to minimize. A generic diagram of a file of DLARs is shown below.

LAR NR Data Address WDSZ TYP DTAG OFFSET
2m blocks n−m bits m bits 1 bit

D0
D1
D2
... ... ... ... ... ... ...
Dxx

Figure 3.1: Data LAR structure

A LAR file of useful size requires a considerable quantity of fast memory to im-
plement. However, LARs can replace both caches and registers in the memory hi-
erarchy, and with features such as register renaming and the continuing growth of
caches, require no more high-speed memory than a conventional modern design.

The tagging in LARs is, again, dissimilar to most predecessors in that it performs
tagging at load time, and tags only the register file, not the main memory, thus avoid-
ing the space inefficiency and, more importantly, additional memory bus bandwidth
of a tagged-in-memory system. The address tags on DLARs importantly allow for
associativity; two DLARS pointed at the same base address will present a consistent
view of their contained data.
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Figure 3.2: DLARs cache specified sections of memory

In use, DLARs are best thought of as annotated windows into main memory. A
DLAR, once loaded, caches a line-size segment of main memory, to which it guaran-
tees extremely fast access (reads and writes) through a convenient handle (the DLAR
number). It also provides type annotations to simplify specifying operations inside
the window. The associativity property of DLARs guarantee that any change made
to the DLAR-masked area of memory will be consistent; all accesses to that range
will necessarily go through the DLAR file, so there is no risk of aliasing. The version
of the data in main memory is eventually written back via the lazy write-back mech-
anism, but particular changes which are subsequently overwritten while still resident
in the DLAR file may never reach main memory. An illustration of this behavior is
illustrated in figure 3.2, showing one DLAR caching the memory block at base ad-
dress x, and two caching the same block at location y.

It would be possible but likely unwise to combine a LAR file with caches; it
is in principle possible for a designer to back a LAR file with a cache. However,
caches are most likely not a good use of circuitry in a design with a LAR file -
the relatively low effective utilization and added data life-cycle complexity do not
make caches a practical use of chip area in a design already equipped with LARs.
Furthermore, adding a cache to a LAR-based system would likely ruin the ability to
make reasonable static scheduling decisions - statically scheduling instructions around
memory timing is already difficult, effectively statically scheduling instructions in the
face of order-of-magnitude nondeterminism in memory access timing is impossible, a
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problem experienced by existing VLIW designs.

3.2 ILARs

The other possible major use for a LAR-like structure is in the instruction path.
The requirements for a LAR in the instruction path are slightly different than those
in a data path, and thus practical implementations of LAR based architectures will
require differently-structured LARs for use in the instruction path. The basic LAR
structure described earlier is appropriate for a Data LAR (DLAR), while ILARs
(Instruction LARs) hold only blocks of instruction-sized units, are indexed by the
program counter, and are not directly mutatable, removing the need for most of the
metadata fields.

LAR NR Data Address
linesize addrsize

I0
I1
I2
... ... ...
D255

Figure 3.3: Instruction LAR structure

An useful side-effect of the line oriented nature of a LAR-based memory hierarchy
is that in-memory instructions could easily be stored in a compressed form. ILAR-
sized could reasonably be compressed in-memory, and decompressed at load time,
saving both storage space and memory bandwidth. This adds a minor complication
in that it violates the assumption of an injective mapping between the contents of the
LAR file and the contents of memory, and a major complication in that constant-time
decompression, ideally with a constant ratio, would be required for this to be practica-
ble. Exploring and designing the compression scheme and load mechanism is roughly
an MS worth of work in itself - a thesis exploring exactly that already exists in the
work of Nien Lim [29]. Others have explored this sort of block-oriented instruction
compression in the context of VLIW architectures [30] with moderate promise. Com-
pressing ILARs also creates restrictions on self-modifying or otherwise dynamically
generated code, though not a significantly higher barrier than Harvard architectures’
separate instruction and data memories, or even the separate instruction and data
caches found in most modern designs.

3.3 Architecture Specification

A major porition of this work is the development of a straw-man design, called LARK
(Line Associative Register architecture from Kentucky, also a pun on “on a lark”)
which is a large and complete enough architecture to provide a practical common
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target for research and development, but be no more complicated than is necessary
for that function.

The LARK architecture is specified to allow software tools, such as simulators,
compilers, and system support code, to be written for a LARs-based design. LARK
is intended to be small and simple to use, and is specifically designed to privilege easy
leveraging of LAR advantages over supporting either common practices or hardware
implementation concerns. LARK features 64-bit direct memory addressing, a dozen
native data type primitives, and only 18 instructions in three basic formats. The
instruction set is somewhat richer than it first seems, as may of the basic instructions
can be modified with type flags and even more unusually, a vector/scalar switch bit.

LARK does not support a number of features expected in a modern architecture,
such as privileged execution, virtual memory, or specific input/output management.
While most of these features could be straightforwardly amended into the design, in-
put/output will require additional special consideration, as the native lazy write-back
semantics would need to be selectively defeated, though that is not particularly com-
plicated by the standards of modern [IO]MMU behavior. Nor does LARK include
some of the possible advanced features of a LAR-based design, eschewing enhance-
ments like instruction compression in favor of a simpler, more general design.

Memories

The most distinctive feature of LARK is its storage elements; a pair of LAR files
which supplant both registers and caches as the sole architectural memory element.
LARK contains two 255 entry LAR files, on for instruction and one for data, which
with their metadata contain 1082624 bits (roughly 132 kilobytes) of memory, which
is at once quite large as compared to named architectural register files, and extremely
modest when compared to renamed register files or caches. Hierarchically below the
LAR files, there is a conventional 64-bit address space, without virtual memory, as
exposed by a commodity memory controller and RAM modules.

DLAR File

The primary distinguishing structure of LARK is its data LAR (DLAR). DLARs con-
tain a 2048-bit data field, a 64-bit address field, two bits each to specify the size and
type of each datum in the data field, and a dirty bit. LARK has 256 such DLARs
numbered D0-D255, comprising 256 ∗ (2048 + 64 + 2 + 2 + 1) = 541952 bits, roughly
66 kilobytes of memory for the DLAR file.

The type and word-size fields hold the values in table 3.1, which are always en-
coded in the same way where they appear elsewhere in the ISA, such as in instruction
encodings.

The nonstandard IEE754-style 8 bit quarter-precision float is encoded as a (1 +
4 + 3) - one bit for the sign, four bits for the exponent, and three bits for the man-
tissa. It is otherwise extended to match IEE754-style encoding; a bias of (24)/2) = 7
is applied to the exponent, an all-0 exponent is understood to denote a zero value,
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LAR NR Data Address WDSZ TYP DTAG OFFSET
2048 bits n−m bits m bits 2 bits 2 bits 1 bit

D0
D1
D2
... ... ... ... ... ... ...
D255

Figure 3.4: Data LAR Structure

Table 3.1: Word Size Encodings

Value Object Size
00 8
01 16
10 32
11 64

Table 3.2: Type Encodings

Value Type
00 Reserved
01 Unsigned Integer
10 Signed Integer (2’s compliment)
11 Float (IEEE754-ish)

and an all-1 exponent is ∞ with a zero mantissa or NaN with a non-zero mantissa.
This atypical format is included partly for the sake of orthogonality, and are likely
of limited utility, but also act as acknowledgement of the variety of algorithms ap-
pearing in fields like machine learning, in which very fast, high-range, low-precision
calculations are desirable.

The Address field is a single value, but is dynamically reinterpreted into a base
and offset based on the value of wdsz; when wdsz is set to 8 (00) the low 8 bits are
treated as a word offset to index each of the 256 words in the line, likewise, when
wdsz is set to 64 (11), only the low 5 bits are understood as offset to index each of
the 32 words in the line.
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ILAR File

The second architectural memory of LARK is its Instruction LAR (ILAR) file. The
ILAR file is also composed of 256 2048-bit data fields supplemented with metadata,
making up 540672 bits (again, roughly 66 kilobytes) of memory. However, ILARs are
structurally simpler and include only the data and address fields; the contents of an
ILAR is always assumed to be 32, 64-bit instructions, so the type and word-size fields
are unnecessary. Likewise, ILARs are not directly writable, so the dirty bit can be
omitted; the non-writability of the active instruction memory (the ILAR file) is one
of several non-Von Neumann properties in a strictly LAR based architecture.

LAR NR Data Address
2048 bits 64 bits

I0
I1
I2
... ... ...
D255

Figure 3.5: Instruction LAR Structure

Instruction Set

The LARK instruction set consists of 54 instructions broken into four groups: Mem-
ory, Arithmetic, Flow Control, and Utility. Opcodes are eight bits, and encodings are
chosen for simplicity, readability, and orthogonality rather than compactness. This is
in keeping with LARK’s design as a proof of concept architecture - simple implemen-
tation and easy manipulation by humans are valued over compactness or performance.

Memory

The LARK instruction set contains only two kinds of operation loads and, somewhat
misleadingly, stores. These basic instructions are modified by a byte of type data
used to set the type and wdsz fields of the destination LAR. The load instructions,
intuitively, load a 2048-bit block of data from memory into a DLAR, and set the
address, type, wdsz fields of the target LAR. DLARS are always loaded aligned to
a DLAR-width, but the low bits of the address can point anywhere inside the line as
an offset. The store instructions, less intuitively, do not trigger a writeback to main
memory, but change the tags on a target DLAR. The only writeback mechanism in
LARK is lazy; the DLAR file is continuously scanned, and the next DLAR with the
dirty bit set is written back during idle memory bus cycles, giving a simple round-
robin opportunistic write-back scheme. There is some possibility that certain code
sequences with rapid load-and-write to widely spaced addresses could eventually force
a stall when DLARs targeted for loads are marked dirty, but this scheme is sufficient
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for evaluation. Different LARs experiments have handled attempting to overwrite
a dirty DLAR differently. The simplest scheme, as specified for LARK, is to stall,
leaving guaranteed free memory bus cycles until the round-robin writeback system
clears it. This has the potential advantage of reducing pressure on the memory bus
when it has become congested, but the disadvantage of potentially long stalls of
unknown length as the round robin write back comes around to the desired DLAR.
Another option is to “cut” the dirty DLAR being written to the front of the write
back order, bounding the stall to the time for a single extra memory write, but risking
more frequent stalls. More sophisticated options, such as buffers or queues for reads
and/or writes offer advantages for scheduling, and this was the method employed in
the LOON LARs demonstrator [31]. To determine the most advantageous scheme
for attempting to load to a dirty DLAR would require analyzing , which is not yet
possible.

Memory instructions are prefixed with 0b01, followed by a 0b00 for loads and a
0b01 for stores. The next two bits encode the type of the tag to be set on the target
DLAR, with the same patterns used in the TYPE field of a DLAR as documented in
3.2. The final two bits encode the wordsize for the contents of the target DLAR,
analogously using the same encodings as the wdsz field of a DLAR as documented
in 3.1. This scheme not only uses the same encodings for instruction fields as for
corresponding DLAR fields, but creates a conveniently compact and human readable
sequential numbering within the groups of instructions.

OP DST SRC1 SRC2 IMM
8 8 8 8 32

Figure 3.6: LARK memory instruction format

OP - Opcode Field - 8 Bits.
DST - Destination LAR - 8 Bits.
SRC1 - First Operand Source LAR (Address field of this LAR used as base address
for load) - 8 Bits.
SRC2 - Second operand source LAR (Data field of this LAR used for effective address
calculation) - 8 Bits.
IMM - Immediate value, added for effective address calculation (Signed) - 32 Bits.

The addressing mode is as follows:
Base Addr = SRC1.Address + SRC2.Data + (IMM*WDSZ)

This results in the encodings shown in table 3.3.

Arithmetic

The LARK instruction set contains only 13 arithmetic instructions, with two variants
each, which cover conventional arithmetic operations, as well as comparisons and log-
ical and bitwise operations. Such a small number of instructions are adequate because
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Table 3.3: LARK Memory Instructions

Mnemonic Encoding (Bin) Encoding (Hex)
LOAD8U 0b01000100 0x44
LOAD16U 0b01000101 0x45
LOAD32U 0b01000110 0x46
LOAD64U 0b01000111 0x47
LOAD8I 0b01001000 0x48
LOAD16I 0b01001001 0x49
LOAD32I 0b01001010 0x4A
LOAD64I 0b01001011 0x4B
LOAD8F 0b01001100 0x4C
LOAD16F 0b01001101 0x4D
LOAD32F 0b01001110 0x4E
LOAD64F 0b01001111 0x4F
STORE8U 0b01010100 0x54
STORE16U 0b01010101 0x55
STORE32U 0b01010110 0x56
STORE64U 0b01010111 0x57
STORE8I 0b01011000 0x58
STORE16I 0b01011001 0x59
STORE32I 0b01011010 0x5A
STORE64I 0b01011011 0x5B
STORE8F 0b01011100 0x5C
STORE16F 0b01011101 0x5D
STORE32F 0b01011110 0x5E
STORE64F 0b01011111 0x5F

type distinction is achieved from the type and wdsz fields of the destination DLAR
rather than the issued instruction. The only variants for arithmetic instructions is
whether the instruction is scalar, operating on a single field of a DLAR, or vector,
operating on an entire DLAR in parallel. All arithmetic instructions are encoded
with prefix 0b10 in the high two bits, and the scalar/vector distinction is denoted by
the third highest bit of the opcode, which is set to 0 for scalar operations, and 1 for
vectors. This encoding is reasonably compact and leads to a human-readable prefix
property. The mnemonics are written with a S or V postfix to denote if the operation
is scalar or vector.

The format for arithmetic instructions is as follows.
OP DST[DESTOFF], SRC1[OFF1], SRC2[OFF2], IMM
Where offsets and the immediate are optional, and assumed zero if not defined.

OP - Opcode Field, 8 bits
DST - Destination LAR, 8 bits
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SRC1 - First Operand Source LAR, 8 bits
SRC2 - Second operand source LAR, 8 bits
OFF1 - Field offset in the first source LAR (for scalar ops), 8 bits
OFF2 - Field offset in the second source LAR (for scalar ops), 8 bits
DESTOFF - field offset in the destination LAR (for scalar ops), 8 bits
IMM - Immediate value, 8 bits

Table 3.4: LARK Arithmetic Instruction Behaviors
Instruction Function
ADD DST=S1+S2
SUB DST=S1-S2
MUL DST=S1*S2
DIV DST=S1/S2
MOD DST=S1%S2
AND DST=S1&S2
OR DST=S1|S2
XOR DST=S1^S2
NEG DST=∼S1
SLL DST=S1<<IMM
SRA DST=S1>>IMM (always sign extend result)
SRL DST=S1>>IMM
SLT DST=S1>S2

Table 3.5: LARK Arithmetic Instruction Encodings

Mnemonic Encoding (Bin) Encoding (Hex)
ADDS/ADDV 0b10x00000 0x80/0xA0
SUBS/SUBV 0b10x00001 0x81/0xA1
MULS/MULV 0b10x00010 0x82/0xA2
DIVS/DIVV 0b10x00011 0x83/0xA3
MODS/MODV 0b10x00100 0x84/0xA4
ANDS/ANDV 0b10x00101 0x85/0xA5
ORS/ORV 0b10x00110 0x86/0xA6
XORS/XORV 0b10x00111 0x87/0xA7
NOTS/NOTV 0b10x01000 0x88/0xA8
SLLS/SLLV 0b10x01001 0x89/0xA9
SRAS/SRAV 0b10x01010 0x8A/0xAA
SRLS/SRLV 0b10x01011 0x8B/0xAB
SLTS/SLTV 0b10x01100 0x8C/0xAC
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To convert the bits of a line, rather than just change the tags, a two-operation
sequence must be performed. First, a dummy load must be performed to prime a
LAR with the desired type information. For an in-place conversion, load the SAME
address as the source line with the desired type. Then, perform an identity operation
on the line, to trigger the ALU’s internal type conversion hardware.

When up-converting (ie. 8-bit to 16-bit types), values are read from the position
specified by the corresponding OFF until the target LAR size is filled. When down-
converting, or converting from an offset too far into the line to supply enough values
to fill the target, results are placed starting from DESTOFF, until the number of
output bits are exhausted, and the remaining fields are padded with 0.

For vector operations, the SRC1OFF and SRC2OFF offsets are ignored for DLARs
with the largest wdsz fields set in the operation, as they operate on an entire line of
values at once. For source DLARs with wdsz set to d

DSTOFF determines were in the destination line the results are placed. This
means the DSTOFF MUST be low enough in the line to fit the destination, and
aligned to the number of values coming from the source (IE. If SRC is 32i, DST is
8u, DSTOFF must fall on a 64-place boundary. Use the OFF field in a vector op to
specify which portion of a line is converted when up-converting types.

Flow Control

LARK uses only three instructions for flow control. These instructions have prefix
0x11 in the high bits. SEL, read “Select” is the lone branching instruction in LARK.
As emitted by the compiler, the instruction encodes a LAR and offset to test for
condition, and two labels. Control flow jumps to the first label if the condition is
nonzero, and the second if it is zero.

OP - Opcode Field, 8 bits
COND - Condition LAR, 8 bits
CONDOFF - Offset into condition LAR, 8 bits
TGT1 - Target ILAR for nonzero condition, 8 bits
OFF1 - Field offset in the nonzero target ILAR, 8 bits
TGT2 - Target ILAR for zero condition, 8 bits
OFF2 - Field offset in the zero target ILAR, 8 bits
PAD - Pad bits, 8 bits

In the assembler, the labels are converted to the block and offset instruction format
supported by the architecture. In conjunction with SLT and XOR, any common flow
pattern can be implemented with SEL.

CALL and RETURN manipulate the hardware call stack described in 3.3.

Utility

In LARK there is only one utility instruction - FETCH. FETCH and is conveniently en-
coded as 0x00, which simplifies bootstrapping the system. FETCH copies a block of
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Table 3.6: LARK Flow Control Instructions
Mnemonic Encoding (Bin) Encoding (Hex)
SEL 0b11000000 0xC0
CALL 0b11000001 0xC1
RETURN 0b11000010 0xC2

instructions from memory and load into the target ILAR. At this time LARK does
not include any form of instruction compression. As the benefit of this compression is
less assured than other features of a LAR-based architecture, is explored elsewhere,
and it’s inclusion imposes significant design complexity, the current design makes no
attempt to impose a compression scheme. However, because it is written with mod-
ular instructions, it would be relatively simple to replace the fetch instruction with
one or several compressed-mode alternatives.

OP DST SRC1 SRC2 NUM IMM
8 8 8 8 16 16

Figure 3.7: LARK utility instruction format

OP - Opcode, 8 bits
DEST - Destination ILAR, 8 bits
SRC1 - ILAR who’s address field acts as a base address, 8 bits
SRC2 - DLAR to use for the offset, 8 bits
NUM - Number of contiguous ILARs to be loaded, 16 bits
IMMEDIATE - Immediate value for address calculation, 16 bits
Addressing is again performed by the rather odd:
Address=SRC1.Address+Src2.Data+Immediate

This operation is, however, not generated by the compiler. Instead, it is inserted
as part of the packing and alignment process in during assembly.

Table 3.7: LARK Utility Instruction

Mnemonic Encoding (Bin) Encoding (Hex)
FETCH 0b00000000 0x00

Calling Convention, Persistent Pointers

In order to execute useful code, a set of calling conventions must be established.
These conventions are to meet similar requirements to any architecture; provide ac-
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cess to constants, ensure orderly transitions between functions, and generally provide
guidelines for the use of shared resources. First, and similar to several established
architectures like MIPS, DLAR0 is a constant 0. All of the native number encodings
understand a field full of logic 0 as 0 in their number system, and the ALU features
type conversion hardware, so the 0 register is inherently polymorphic.

DLAR1 is kept tagged as a 64bit unsigned integer, to hold vector of important,
frequently accessed values. These include the following pointers:
CP - Points to the beginning of the current constant pool.
SP - Points to the top of a stack of return blocks (one LAR, supports offsets)
FP - Frame pointer, Points to a DLAR (Possibly more than one) containing the cur-
rent context.

Table 3.8: DLAR1 Contents
0 1 2 3 4 5 6 7
CP SP FP

This document does not establish exactly how the stack will work; because of the
same problem as packing data of differing types in general, no overwhelmingly sat-
isfactory solution has been discovered, straightforward possibilities either burn an
excessive number of DLAR names to map a contiguous memory used for a set of
variously-typed data, or require complicated indirected addressing schemes to sepa-
rate data in differing types.

Bootstrapping a machine with ILARs is not significantly more difficult than a
conventional architecture. In particular for LARK, because the FETCH opcode is 00,
placing a single ILAR-sized chunk of instructions at the bottom of the memory space
and executing an all-0 instruction at startup will load the block from the bottom of
memory into ILAR 0, which gives 8 initial instructions to FETCH some bring-up code
and SEL to it.

Examples

Beginning with a single-instruction example, figure 3.8 shows the behavior of a typical
load operation. Specifically, figure 3.8 shows the critical parts of the DLAR file during
the execution of the instruction LOAD16I D3 D0 D5 0. This instruction specifies that
DLAR D3 be type-tagged for 16-bit signed integers, and loads the 2048-bit-aligned
block containing the memory specified by the other operands. Note the addressing
mode allows for a datum in an already-loaded LAR to be used as an absolute pointer
by setting SRC1 to D0, specifying the DLAR whose offset is currently pointed at the
desired address as SRC2, and leaving the immediate value as 0. Because it is an
aligned load, though the base address is two bytes into the range, the base address
is written to the address field, the data is copied on aligned boundaries, and the low
bits are interpreted as an offset in terms of WDSZ-sized items, stored in the offset field;
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in this case, 1. This example shows a byte-addressed memory with 16-bit addresses
for brevity, though LARK is specified with a 64-bit address space.

Figure 3.8: Behavior of LOAD16I D3 D0 D5 0

Figure 3.9 illustrates a load of an already-cached segment of memory. This in-
struction would cause no additional memory bus traffic. Instead, it will tag the target
DLAR with the type and wordsize specified in the instruciton and same address as
an already-in-use DLAR, and alter the DLAR file map to point the target DLAR’s
data section (D6) to the same piece of memory already mapped for that base address
(in this case, D3) – thus providing two differently-annotated handles on the same line
of data. Also note that here the addressing scheme is used to take the base address
of another DLAR plus an immediate offset by specifying a DLAR holding the desired
base address as the first source operand, D0 as the second source operand, and an
immediate value.

To demonstrate one of the most confusing aspects of LARK, figure 3.10 shows the
a copy being performed with a sequence of instructions ending in a store. This
is performed in several steps to first set up the addresses, then associatively copy
the desired values into a DLAR to re-tag with an aliased load as in the previous
example, and finally to issue a store to change the address tag of the copy. The
first operation is once again treating D5 as a line containing pointers, set its offset
appropriately to the desired target address before this store with a LOAD D5 D5 D0
3 instruction. The copy is much like the previous example, in this case a LOADF32 D9
D3 D0 0 to prime D9 as the location for the copy. Finally, issuing a STORE16U D9 D0
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Figure 3.9: Behavior of subsequent LOADF32 D6 D3 D0 2

D5 0 will set DLAR D9’s address to the address indicated by the arguments, the type
tags to the values indicated in the instruction, and copy the data in source DLAR
(D3) to the storage of the destination DLAR (D9), breaking the associativity. This
operation will set the dirty bit on the destination line D9 to mark it for write-back
to main memory in the same way as any other operation requiring main memory be
eventually updated due to a change in the stored data.

Figure 3.10: Performing a copy with LARs

For a larger demonstration, the below describes a a trivial example program as
pseudo-C, with the body compiled to both LARK and MIPS-like assembly. Remem-
ber, like a conventional register, LARs are able to hold values being operated on.
Like a cache line, LARs can contain a number of spatially proximal scalar values. As
in SWAR, a LAR is able to hold a vector of values to be operated on in parallel. Like
their progenitor CRegs [6] LARs are able to transparently resolve ambiguous aliases
in hardware.

Which yields the following counts:
The reason there are ranges on the LARs memory access counts is because if the

used locations are aliased to any “live” value, the memory access is replaced with a
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nasty(int* i, int* j, int* k)
{

i=j+k;
k=j&k;

}

LARs MIPS

LOADSW D1 D31 0 j
LOADSW D2 0 D1 0
LOADSW D3 D31 0 k
LOADSW D4 0 D3 0
LOADSW D5 D31 0 i
LOADSW D6 0 D5 0
ADDS D6 D2 D4
ANDS D4 D2 D4

LW $t1, j($sp)
LW $t2, 0($t1)
LW $t3, k($sp)
LW $t4, 0($t3)
LW $t5, k($sp)
LW $t6, 0($t4)
ADD $t6, $t2, $t4
SW $t6, 0($t5)
LW $t2, 0($t1)
LW $t4, 0($t3)
AND $t4, $t2, $t4
SW $t4, 0($t3)

Figure 3.11: Sample code compiled for MIPS and LARK

Table 3.9: Instruction Count Comparison for Sample Code

LARs MIPS
Memory Accesses 0-5 9

Reads 0-3 7
Writes 0-2 2

Total Instruction Count 9 11

simple associative update. Even if we allow that the MIPS version may have passed
it’s parameters in registers, it would only reduce the number of instructions to parity
at eight, and there would still be eight assured memory accesses for the MIPS version.
While it is true that some or all of these memory accesses may be satisfied from cache,
this would still require traffic across the memory interface. An associative update in
the LARs version is entirely internal to the processor, and does not incur any bus
traffic. It is also worth noting that the LARs version could operate on entire vectors,
each the length of the data field, by only changing the ADD and AND operations to
their vector forms. There would be no additional memory references nor additional
cycles in processing the operations.

In an ideal case, a LAR based architecture as currently conceived would be able to
execute nearly 128 operations per cycle, presuming a predictably ordered instruction
stream, and 8-bit data which comes in at least LAR-width vectors. A task with such
a high degree of regularity and parallelism is extremely unlikely outside of certain
highly specialized multimedia applications. A more realistic estimate will still provide
excellent execution density, for several reasons. Firstly, because of the inherently
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parallel nature of LAR loads, and complete absence of explicit stores, there will
be a large savings on memory access instructions. Likewise, where ILP is available
it can be easily and transparently exploited with exactly the same mechanisms used
for scalar operations, with no mode changes as are inherent to many SWAR designs
[7]. Finally, the LAR’s use of dirty tags and alias analysis precipitously reduce the
number of loads from main memory, preventing stalls while waiting for main memory.

3.4 The Simulator

In order to explore a full-datatype LAR-based system, a simple simulator matching
the LARK spec has been implemented.

The simulator, LARKem (LARK-Emulator), is written in in standard C, with
a sprawling collection of macros to hide the relatively complicated struct used to
represent each DLAR, and associated selection logic to perform typed operations.
Like LARK itself, LARKem is designed to be as simple as possible to manipulate,
rather than performance or accuracy, and it has many internal decisions that reflect
this bias. The source code for LARKem is attached as appendices beginning with
A.1.

In LARKem, each LARK instruction is implemented as a C function, to keep their
behavior as orthogonal as possible. However, because the bulk of each instruction is
accessor boilerplate, each function is actually generated by a two-layer deep system
of macros. The outer layer of macro is the accessor logic for performing the operation
aluops.h, memops.h These require several odd sub-classes to account for typing rules.
For example, the macros SALUBINOP and VALUBINOP in aluops.h are a macros (with
some helpers of their own, no less) which handles the necessary selection logic and
casting to perform various bitwise operations on types that C’s type system don’t
allow bitwise operations on. These macros are then called in LARKemNoSIMD.c to
implement most of the machine operations, with occasional exceptions (such the
unary not operators). Each of these operand type macros in turn relies on the
massive DLAR accessor macro found in DLARConvert.h

One decision which makes the included version slightly incorrect but much simpler
is the use of a full host float for all of the narrower floating-point types. While it
would be possible to generically implement the smaller floats not supported by host
systems using code like that found in 3.1, the additional twiddling was deemed not
worth it, particularly because a faster, more precise simulator would most likely han-
dle at least half-precision (16-bit) floats with non-portable extensions, like compiler
intrinsics to use the half-precision conversion support offered by the F16C instruction
added to x86 with AVX [2].

//For 16 bit floats
i=(t.v.i >> (52-10) & 0x3ff)
e=(((((t.v.i >> 52) - 1023) & 0x1f) + 15) << 10)
if(t.v.i<0)

{s |= 0x8000)}
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//For 8 bit floats
// sign1:exponent4:mantissa3 , exponent bias of 7.

mantissa=(t.v.i >> (52-3) & 0x7)
exponent=(((((t.v.i >> 52) - 1023) & 0x0f) + 7) << 3)
if(t.v.i<0)

{s |= 0x80)}

Listing 3.1: Sample code for implementing non-standard narrow floats

One major enhancement that has not been attempted in the current version of
the simulator is the use of SIMD intrinsics to substantially accelerate the vector
operations. As most modern architectures offer some manner of SIMD extension, it
would be possible, with considerable effort, to map at least a subset of LAR vector
operations onto the hardware SIMD support. Because no platform’s selection of
SIMD-enabled operations will neatly match LARK’s needs, and no two platform’s
selection of supported operations will be exactly the same, the effort to write a high-
performance simulator for a proof-of-concept architecture doesn’t seem worthwhile.
The effort could be constrained somewhat with the use of compiler intrinsics, but
this would result in far more complicated, less portable, and less adaptable code,
defeating the main purpose of LARKem as an easy-to-adapt research tool.

Copyright© Paul Selegue Eberhart, 2019.
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Chapter 4 The Compiler

In the initial project plan, the objective was to produce an LLVM [32] backend which
could generate code for the LARK spec. LLVM, initially standing for “Low Level
Virtual Machine,” but since officially stripped of it’s acronym connotation, is a col-
lection of modular compiler and toolchain technologies. LLVM was initially viewed as
the most promising existing infrastructure by reputation, and early explorations into
features of the tooling and intermediate representation. By the same token building
on top of GCC was rejected very early in the process due to the extreme learning
curve to make substantive changes to it’s code base [33], and lack of generic tooling
for handling multi-width registers.

However, the state of the LLVM code-base and documentation at the time (2011-
2012) scuttled that idea. The documentation referred to the MIPS back-end as an
example, and after some exploration it was determined that the MIPS back-end did
not even generate valid code, and the model it was built on was completely inca-
pable of supporting the desired memory behavior. The single largest disincentive
to attempting to use LLVM is that it promoted almost all data types to a generic
virtual machine-word in an early pass, making the source-to-hardware width tracking
required to effectively allocate LARs impossible within the existing infrastructure.
Another major problem is that, while the TableGen tooling used to define a target
architecture in LLVM [34] includes a concept of SubRegs which initially looked appli-
cable to LARs, it did not appear to actually support structures as complex as a LAR.
Finally, the rate of code-churn on the interfaces in LLVM at the time (2011-2012) was
so severe that by the time the author was up to speed to evaluate the relevant internal
structures and behaviors, they had almost all been significantly changed upstream in
the new release in only a matter of months.

Instead, constructing a minimal reference design was selected as a more promising
approach. Thus, the special-purpose language, termed LARC as it is a C-like con-
struction designed to target LARs, and is merely a proof-of-concept design (named
from the expression “On a lark”). LARC includes a number of simplifying additions,
chiefly around adding language support for native vectors, allowing explicit use of ar-
chitectural features without having to include still-difficult analysis features like au-
tomatic vectorization. The LARC frontend has been implemented with pccts/Antlr
2 [35].

Obviously an ideal toolchain for LARs would perform automatic vectorization and
packing into LAR-sized units. Based on the difficulty present in effective automatic
vectorization and packing for SIMD architectures, performing the far more general
case of the similar problem for LARs fits in a semantic niche somewhere in the vicin-
ity of “wanting a unicorn pony.” The persistent difficulty of performing automatic
vectorization appears to be an enduring killer of over-ambitious computer architec-
tures.
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4.1 Input Language

A straw-man language, LARC, has been designed to illustrate the behavior and in-
formation tracking suitable for targeting a LAR-based design. The LARC input lan-
guage is a C-like language, but is in no way an exact super- or sub- set of ANSI C.
Rather, a number of C language features have been omitted for ease of implementa-
tion, and a small number of features to ease the demonstration of LAR features have
been added.

LARC’s type system is not extensible as in C - there are no user-defined data types
- but is initially much larger. LARC supports C99-style types for all the native
types supported by LARK - uint8_t, uint16_t, uint32_t, as well as first-class
native-width vectors of all the types, denoted with an infix “vec” in the identifier
name, creating types like uint8vec_t, etc.

A grammar for the language has been specified as an ANTLR2 [36] compatible
grammar. ANTLR is a highly flexible parser-generator which accepts LL(k) gram-
mars in a specialized EBNF (extended Backus–Naur form) format, and is capable
of automatically generating an abstract syntax tree and stub code for working with
parses of that grammar. larcast.g in the appendix is the larc grammar, annotated
appropriately to build an abstract syntax tree generator.

This LARC has no relation to the Univac LARC (Livermore Advanced Research
Computer) of the early 1960s.

4.2 Register Allocation and Vectorization

A primary interesting difference between compiling for an architecture based on LARs
and compiling for a conventional register-based architecture is the problem of register
allocation. Modern architectures uniformly include a relatively small set of indepen-
dent registers, possibly with some overlap or aliasing, such as the reuse of the x87
floating point registers for MMX instructions, and no direct relationship to memory
image.

LARs are comprised of a relatively large memory, mapped 1:1 with main mem-
ory, and have complicated rules about acceptable packing. This has a variety of im-
plications for the allocation problem. First, it convolutes the problems of memory
layout and register allocation; because LARs are 1:1 mapped with main memory, al-
locating variables to LARs determines both the in-memory structure and the register
allocation.

A naive approach is to allocate DLAR, with that DLAR kept loaded across the
liveness of all the variables stored in the memory range corresponds to. This means
that, for scalar code, one strategy is to use a particular DLAR-sized block of memory
will be used to store like-typed variables whose liveness interval overlaps as much as
possible. Scalar operations can then be readily performed between loaded DLARS, or
even between different offsets in the same DLAR, with only the minor complication
of guaranteeing offsets be aligned with the size of the type in question.

In more detailed description of this naive approach would be:
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• For the first variable of a type seen in the current block being analyzed, select
an unused memory region, mark it with the appropriate type, and place the
value in it

• for subsequent values of the same type, load them consecutively into the open
DLAR for that type

• when the current DLAR for the type being allocated is full, allocate another
one at the next available location

with a numbe of relatively low-hanging variations possible optimizations, such as

• separating allocations of arrays from scalars so that arrays begin on a LAR-size
aligned boundary to maximize opportunities for natural vector alignment

• growing the different-type regions from widely separated base addresses, such
that long memory regions to encourage natural packing

• analysis around struct like data structures to ensure that like-members are
serialized into like-offsets in a set of DLAR-sized chunks to maximize the like-
lihood of trivially extractable parallelism

Unfortunately, this analysis has to be performed on relatively large units. The
traditional approach of performing initial analysis on basic blocks will not work well
within this regime; in fact, this will work better the larger the block it is performed
over, as it will maximize both memory packing/DLAR utilization an expose maximum
parallelism.

Alternatively, at a cost of occupying more DLARs for the same data, it is possible
to issue a series of STOREs with the same base address but different type tags to
different DLArs, loading them with differently type-tagged views of the same memory.
This makes the alignment problem much harder as it involves the packing of different-
sized values such that the alignment constraints for each type are respected. This
is, however, extremely costly in terms of DLAR pressure (it occupies a DLAR name
for each type the line must be accessed as), prevents the use of vector instructions
on those data, and leaves an avenue for accidental operation on bits as though they
are the wrong type via offset errors. This seems less preferable, but bears mention
that, because of their tagged direct-mapping to memory, LARs should be relatively
flexible in their use, particularly when compared to the long registers in SWAR/SIMD
systems, which can typically only be used when the data has been carefully pre-
massaged into alignment.

On the topic of similarity to SWAR designs, DLARs are also inherently vectors,
which brings in the relatively well-known vectorization problems to efficiently utilizing
a DLAR-based machine. The fact that they are type-tagged is not an additional
complication for vector operations, as the requirement that that like-typed data be
packed into a single vector is already present, and the address tags make the problem
slightly easier, as there will be no requirement to flush painstakingly-aligned data due
to potential aliasing. For vector operations, the LAR allocation problem is also
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difficult, but in a somewhat more precedented way. It is largely analogous to the
problem of loading (packing) the vector registers on processors with SIMD extensions,
eg. packing a set of 8 16 bit values into a 128bit XMM register for SSE2 such that
packed operations can be performed on all eight values simultaneously.

Attempting to automatically vectorize by packing vector-sized sets of scalar oper-
ations is an active area of research for production compilers. Speaking in generalities,
these techniques tend to not be particularly effective as compared to hand-coded vec-
tor support written with purpose-made data types and machine-specific compiler in-
trinsics. However, even small gains in exploiting parallelism have potential for large
improvements in performance, and hand-coded vector operations are both difficult to
write and machine specific, so the premise of even mildly effective automatic vector-
ization is extremely attractive.

Some transformations, like loop vectorization in which loops with no (or ana-
lyzable) data dependencies are unrolled into machine-vector-sized blocks to be per-
formed in parallel, are relatively well-understood, but only applicable in narrow cir-
cumstances. Other more general transformations, like those intended to extract
superword-level parallelism by locating indipendent scalar operations that happen
to require similar sequences of instructions on same-type data [37] require very large-
scale analyses, typically crossing basic blocks in order to accrue collections of similar
operations of a size that makes vectorization practical.

The currently (on the scale of decades) in-vogue preference toward graph-coloring
register allocation [38] is wildly suitable for LAR allocation for a variety of reasons,
from it’s lack of facility for tracking or favoring spatial locality, to the basic restriction
that the NP hard coloring problem does not tolerate performing allocations on large
blocks of code, as required when performing vectorization, well. However, a greedy
algorithm will tend to favor spacial locality, better tolerates large blocks due to lower
computational demands, and is easier to adapt for allocations partitioned by type.
A linear-scan register allocation scheme [39], as described by Poletto and Sarkar,
modified for LARs, would be very similar to the naive LAR allocation approach
described above, and this similarity lends both legitimacy and an existing body of
work from which some optimizations and refinements may be borrowed.

Spilling

Spilling is the act of evicting less-critical data from the obligatorily small upper
levels of a memory hierarchy to make room for more urgently needed data. In most
conventional architectures, spilling is performed on the register file by storing values
currently in the separately-addressed registers back to main memory. Register spilling
is a notably different issue in LAR-based designs, as the entire top portion of the
memory hierarchy is explicitly, statically software managed, and all data promoted
in the memory hierarchy are origin tagged within the same addressing scheme. In
principle, the but can be accomplished with more sophistication and finesse because
the explicitly compiler-managed nature of LARs renders LAR-spilling a compile-time
problem. A downside of this is that, like all compiler-managed memory models,
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platform differences to the memory hierarchy require recompilation or changes to
run-time systems, where transparent caches provide opportunistic improvement.

This also creates a significant obligation on the operating system and calling
conventions for LAR-based deigns to ensure that, at unit boundaries like function
calls or program scheduling events, the proper LARs are (re)loaded with the proper
data.

4.3 The Assembler

Assembling for LARK, like any design using ILARs, makes demands on the assembler
that no conventional architecture would. Early in this project, the assembler was
declared explicitly out of bounds, however, discussing some of the reasons assembling
for ILARs is a challenge is worthwhile. The primary source of difficulty is that ILARs
must be explicitly FETCHed such that the instruction block will be in the appropriate
ILAR before it can possibly be reached, and FETCH is an instruction itself, the first
obvious challenge is that FETCHes must be inserted into the instruction stream in
proper locations such that all possible instruction targets will always be loaded before
they can be reached. This breaks down into several serious sub-problems. One
obvious issue is that the assembler must be able to accurately track all reachable
code paths so that it can make the basic guarantee that needed instructions will be
fetched into an ILAR early enough to ensure they are loaded by the time they are
reached. Additionally, because the ILAR file is of limited size, the assembler needs
to keep track of instruction reachability. This process is similar to liveness analysis
on variables; reachable instructions must be kept in ILARs, and ILARs no longer
containing reachable instructions need to be tracked for reuse. Finally, the insertion
of the FETCHes adds instructions to the program to be scheduled, so the process of
inserting fetches changes the scheduling problem as it proceeds.

There are some fallback options that would allow relaxation of these demands on
the assembler. Unlikely code paths could be left in main memory, and calls to them
indirected through loader routine which will determine and preform the appropriate
FETCHes before returning control. Similarly, some fraction of ILAR slots could be
reserved for inserting FETCHes or loading and redirecting flow into additional ILAR
sized blocks of fetches or code for computing fetches.

In order to check for consistency, an AIK [40] specification which can assemble
LARK instructions has been written. This assembler is not adequate to generate
usable code without assembly with pre-inserted fetches, as from hand-written code
or a compiler capable of performing fetch scheduling and insertion on its own.

4.4 Virtual Memory

While designing a virtual memory system for a LAR-based architecture is far out of
scope for this work, considering what it would entail is illustrative to the alterations
to memory behavior required to utilize LARs.

Much like in a system with a conventional memory hierarchy; leveraging a vir-
tual memory system would allow for, among other desirable behaviors, isolation and
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relocation of binaries, in exchange for some added complexity in both hardware and
required linker and OS support. The first decision that would be required for virtual
memory on LARs is whether the LAR-file address tags would be in terms of logical
of physical addresses- whether the LAR tags pass through the MMU. In a VM sys-
tem which uses virtually-tagged LARs would have the problem that dual-mapped
segments would no longer be guaranteed alias-free unless additional checking were
performed in the virtual memory system itself. In a VM system which uses physically-
tagged LARs, every operation that mutates the address field of a LAR must go
through the MMU which even accelerated by a TLB (Translation Lookaside Buffer)
could potentially impose an unacceptable performance penalty on routine operations.

Copyright© Paul Selegue Eberhart, 2019.
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Chapter 5 Results

The primary result of this work is the determination that LARs represent a sufficient
disruption to the status-quo that there is not a ready incremental adaptation of
existing technologies to work for or with a LAR-based design. Because LARs’ tagging
convolves memory layout and register allocation, there is not a straightforward way
to adapt existing register allocation techniques to LARs. Conversely, the need for
statically predictable memory behavior makes it impractical to bolt LARs into a
design with a conventional cached memory hierarchy.

In the path to make this determination, a variety of artifacts have been produced.
First, LARK, a fleshed-out ISA based entirely on LARs was designed as a demon-

strator for the purposes of evaluation. The LARK specification is complete enough
to implement, though certain supporting decisions about usage conventions, particu-
larly stack behavior, have not been made for lack of evidence. A software simulator,
LARKem, was written to verify this design and act as a target for testing the soft-
ware toolchain. LARKem has never functioned fully, for lack of a front-end, but the
code for the basic data structures and opcodes has been written and unit tested.

Secondly, some preliminary attempts at a software toolchain have been under-
taken. After adapting an existing toolchain was determined impractical, the be-
ginnings of a full-custom toolchain have been designed and written. First, LARC, a
C-like language has been designed to address the particular needs of LARs in terms of
type system and native vectors. This design was translated into an ANTLR grammar,
which has been annotated to generate an abstract syntax tree, onto which tree-walkers
can be attached to test algorithms for suitability. Some preliminary algorithms for
performing LAR allocations are suggested.

Similarly, a grammar for generating machine code from assembly has been writ-
ten. This grammar is not particularly useful as an assembler, as it is not capable of
scheduling and inserting data movement instructions, as would be required in a prac-
tical LARK toolchain.

Finally, a far reaching literature survey situates LARs in the larger computing
context. This survey reveals a number of curious comparisons with historical designs,
reveals interesting trends in prior efforts to address the VonNeumann bottleneck.

Copyright© Paul Selegue Eberhart, 2019.
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Chapter 6 Conclusion

If you tilt your head to the right, LARs look like the union of two resounding architec-
tural successes; SIMD and clever scheduling to reduce stalls due to memory traffic. If,
however, you tilt your head to the left, it looks like the union of two resounding
failures; exposed VLIW and software-managed memory hierarchies. This position
between a “good” and “bad” idea makes LARs an interesting study in the conditions
and that set those technologies up for their respective successes and failures.

Perhaps the most interesting thing to come out of this work are the notes on vari-
ous long-running trends in computer architecture, particularly a 25-year slide toward
extremely dynamic memory behavior, and . LARs represent another path, mov-
ing back towards relatively flat, static, and extremely predictable memory behavior,
scheduled cleverly by the compiler and/or programmer, rather than embracing dy-
namism outside the reasonable comprehension of any human.

One of the thing made evident by the historical survey is that many of the an-
tecedent technologies for LARs went out of fashion largely because of the difficulties
they present for high-level languages and dynamic, multitasking environments. Multi-
tasking environments and their confounding effects on static scheduling have lead
to a a dramatic move toward dynamically scheduled systems whose actual execu-
tion and memory semantics are largely invisible to the programmer and compiler.
Furthermore, as memory access times become non-deterministic with more sophis-
ticated memory devices and hierarchies, attempting to statically schedule around
memory delays even at the micro-level becomes an impossible exercise in bounded
conservatism and contingency plans between each step of any non-streaming memory
read. Likewise, most widely-used languages have, at best, a handful of types, which
are typically poorly defined in terms of bit width (In C, a short is no longer than
an int...), and at worst rely entirely on type inference, making the effective utiliza-
tion of constrained, narrow types difficult. These are reasonable design decisions for
languages intended to target machines with a clear native machine width, but cre-
ate a serious impediment to effectively mapping to devices with multiple supported
encodings and precisions, like SIMDs or LARs. There has been some motion on this
front, like the addition of the <stdint.h> types in C99, and analogous more-specific
types present in other recent systems languages like Rust and Go, as well as various
domain specific languages targeting GPUs, SIMD extensions, or specialized scientific
computing applications. These developments are an encouraging indication of a rec-
ognized need.

In another move toward LAR-friendly design spaces, in the last few years we have
started to observe cracks in the edifice of dynamic optimization with caches and
multi-issue pipelines hidden entirely below the ISA abstraction that typifies mod-
ern computer architectures. The extreme complexity of these designs forces compiler
writers to perform a different set of acrobatics to model various implementation de-
tails, and the dynamic rescheduling devices themselves have a number of drawbacks.
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One drawback lies in the power, and far less importantly, chip area used by the
collection of always-active circuitry involved in instruction decoding, cache manage-
ment, and branch prediction hardware. Another recent and extremely high-profile

Speculation attacks which exploit unexpected statically unpredictable but dy-
namically observable behaviors of these hidden-behind-the-ISA optimizations have
become a significant threat [41], providing a new impetus to consider the value of a
return to more static behavior.

A disadvantage of turning away from dynamic designs is that static architectures
inherently expose lower-level details to the programming interface, hobbling porta-
bility. In the modern era of proprietary software and unreasonable build times even
for source-available software, the most viable alternative is binary translation, using
some kind of software shim to just-in-time, statically, or iteratively translate from
a distribution binary into a machine-specific form. This method was attempted by
Transmeta, who employed “code morphing,” an iterative translator, to convert x86 bi-
naries to run on their VLIW designs [42]. Whether they were eventually out-competed
by designs that did their translation dynamically in microcode because of their choice
to do their translation at a slightly higher level, or this was incidental is not clear,
and the continued success of “microcode” driven binary translationm, from the IBM
System/38’s machine interface (intermediate language) in the late 1970s [17] to the
micro- and macro- op fusion in Intel [43] x86 parts since 2011 implies this option will
continue to be an option to separate ISA-as-API and implementation.

LARs are expressly designed to address the modern reality that parallelism is
required for performance, and scalar operations are required for reasonable program-
ming models, so intermixing the two should be natural and with little penalty. While
they appear very foreign when compared to recent computer architectures, and place
different demands , LARs are an avenue to exploring areas of the computer archi-
tecture design space long ignored, sometimes for contextually-appropriate reasons, in
the light of recent developments in the rest of computing. By rearranging the choices
on which behaviors are exposed in the programming model, LAR-based designs pro-
vide an opportunity to move toward simpler, more predictable, and more efficient
designs that make better use of hardware resources, while also presenting a sim-
pler model to compiler writers. The design of the LARK ISA, historical situation
of LARs among extant architectures, and documentation of the toolchain require-
ments to target LARK in this work serve to explore and demonstrate the viability of
LAR-like designs as a promising direction for computer design.

Copyright© Paul Selegue Eberhart, 2019.
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Appendix A LARKem

Listing A.1: LARKemNoSIMD.c
#include "LARKemNoSIMD.h"
#include "DLARConvert.h"

//FIXME: I need to police the DLAR[0] =0 and DLAR[1]= [PC,CP,SP,FP] as
UINTVEC64X32 restrictions somehow.

//FIXME: Change the casts for bitwise operations on floats to forcably
touch the wrong element of the union.

//Stuff for reading in assembly
char asmline[ASMBUFSZ];
FILE * asmFile;

//Declare the data LAR file
DLAR_t DLARFile[256];

//and the instruction LAR file
ILAR_t ILARFile[256];

//AAAND a RAM... (Tiny for now)
uint8_t RAMFile[MEMSZ];

//DLAR0 is 0
//DLAR1 starts out [CP, SP, FP,...] and is used for status
//Do I need a Block:Offset PC in there?

//Temporaries for ALU
//vector path
DLAR_t ALULARA;
DLAR_t ALULARB;
//scalar path
scalarbuf_t ALURegA;
scalarbuf_t ALURegB;

//Quick-and-dirty main
// This needs to be replaced with something to use assembled code
int main(int argc, char* argv[])
{

//DLAR0 is polymorphic 0, always.
//I'm not sure if there is a convienent way to make it static

and addres the same as others...
DLARFile[0].addr=0;
DLARFile[0].flags=0x00;
int x;
for(x=0;x<255;x++)
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{
DLARFile[0].data.UINTVEC8X256[x]=0;

}
if(argc > 0)
{

asmFile=fopen(argv[1],"r");
}
else
{printf("Usage: larkem asmfile.lasm");}
if(asmFile==NULL)
{printf("Invalid asmfile/file not found");}

//Read lines until end of file
// while(fgets(asmline,ASMBUFSZ,asmFile) != NULL)
// {
// instrparse();
// }
// return 0;
}

//
//
// //Parse out a line of assembly
// int instrparse()
// {
// int items = 0;
// char *item;
// do
// {
// item=strtok(asmline, " ");
//
// items++;
// }while(item!=NULL);
// return 0;
// }

/*
//Decode that instruction:
int instrdec()
{

switch(opname)

"LOAD8U"
"LOAD16U"
"LOAD32U"
"LOAD64U"
"LOAD8I"
"LOAD16I"
"LOAD32I"
"LOAD64I"
"LOAD8F"
"LOAD16F"
"LOAD32F"
"LOAD64F"
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"ADDs"
"SUBs"
"MULs"
"DIVs"
"MODs"

"ANDs"
"ORs"
"XORs"
"NEG"
"SLL"
"SRA"
"SRL"

"SLT"

"SEL"
"CALL"
"RETURN"

}

*/
//Arithmetic Instructions: Scalar Mode

SALUOP(ADD, +, dst, src1, src2, off1, off2, destoff, imm)

SALUOP(SUB, -, dst, src1, src2, off1, off2, destoff, imm)

SALUOP(MUL, *, dst, src1, src2, off1, off2, destoff, imm)

SALUOP(DIV, /, dst, src1, src2, off1, off2, destoff, imm)

SALUBINOP(MOD, %, dst, src1, src2, off1, off2, destoff, imm)

SALUBINOP(AND, &, dst, src1, src2, off1, off2, destoff, imm)

SALUBINOP(OR, |, dst, src1, src2, off1, off2, destoff, imm)

SALUBINOP(XOR, ^, dst, src1, src2, off1, off2, destoff, imm)

int doNOTs(uint8_t dst, uint8_t src1, uint8_t src2, uint8_t off1,
uint8_t off2, uint8_t destoff, uint8_t imm)

{
uint8_t dsize = pow(2, ((DLARFile[dst].flags & 0xC0)+3));
uint8_t dtype = DLARFile[dst].flags&0x30;
DLARFile[dst].flags &= 0x08;
if((typeconverts(&ALURegA, dst , src1, off1) == 0) && (

typeconverts(&ALURegB, dst , src2, off2) == 0))
{

switch(dsize)
{
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case 0x00: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC8X256[destoff] = ~(ALURegA.
data.UINT8); break;

case 0x20: DLARFile[dst].data.
INTVEC8X256[destoff] = ~(ALURegA.
data.INT8); break;

case 0x30: DLARFile[dst].data.
FLOATVEC8X256[destoff] = (float8_t)
(~((int64_t)ALURegA.data.FLOAT8));
break;

} break;
case 0x40: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC16X128[destoff] = ~(ALURegA.
data.UINT16); break;

case 0x20: DLARFile[dst].data.
INTVEC16X128[destoff] = ~(ALURegA.
data.INT16); break;

case 0x30: DLARFile[dst].data.
FLOATVEC16X128[destoff] = (float16_t
)(~((int64_t)ALURegA.data.FLOAT16));
break;

} break;
case 0x80: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC64X32[destoff] = ~(ALURegA.
data.UINT32); break;

case 0x20: DLARFile[dst].data.
INTVEC32X64[destoff] = ~(ALURegA.
data.INT32); break;

case 0x30: DLARFile[dst].data.
FLOATVEC32X64[destoff] = (float32_t)
(~((int64_t)ALURegA.data.FLOAT32));
break;

} break;
case 0xC0: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC64X32[destoff] = ~(ALURegA.
data.UINT64); break;

case 0x20: DLARFile[dst].data.
INTVEC64X32[destoff] = ~(ALURegA.
data.INT64); break;

case 0x30: DLARFile[dst].data.
FLOATVEC64X32[destoff] = (float64_t)
~(((int64_t)ALURegA.data.FLOAT64));
break;

} break;
}

}

41



else
{return 1;}

}

int doSLLs(uint8_t dst, uint8_t src1, uint8_t src2, uint8_t off1,
uint8_t off2, uint8_t destoff, uint8_t imm)

{
uint8_t dsize = pow(2, ((DLARFile[dst].flags & 0xC0)+3));
uint8_t dtype = DLARFile[dst].flags&0x30;
DLARFile[dst].flags &= 0x08;
if ((typeconverts(&ALURegA, dst , src1, off1) == 0) && (

typeconverts(&ALURegB, dst , src2, off2) == 0))
{

switch(dsize)
{

case 0x00: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC8X256[destoff] = (ALURegA.
data.UINT8) << imm; break;

case 0x20: DLARFile[dst].data.
INTVEC8X256[destoff] = (ALURegA.data
.INT8) << imm; break;

case 0x30: DLARFile[dst].data.
FLOATVEC8X256[destoff] = (float8_t)
((int64_t)(ALURegA.data.FLOAT8) <<
imm); break;

} break;
case 0x40: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC16X128[destoff] = (ALURegA.
data.UINT16) << imm; break;

case 0x20: DLARFile[dst].data.
INTVEC16X128[destoff] = (ALURegA.
data.INT16) << imm; break;

case 0x30: DLARFile[dst].data.
FLOATVEC16X128[destoff] = (float16_t
)((int64_t)(ALURegA.data.FLOAT16) <<
imm); break;

} break;
case 0x80: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC64X32[destoff] = (ALURegA.
data.UINT32) << imm; break;

case 0x20: DLARFile[dst].data.
INTVEC32X64[destoff] = (ALURegA.data
.INT32) << imm; break;

case 0x30: DLARFile[dst].data.
FLOATVEC32X64[destoff] = (float32_t)
((int64_t)(ALURegA.data.FLOAT32) <<
imm); break;

} break;
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case 0xC0: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC64X32[destoff] = (ALURegA.
data.UINT64) << imm; break;

case 0x20: DLARFile[dst].data.
INTVEC64X32[destoff] = (ALURegA.data
.INT64) << imm; break;

case 0x30: DLARFile[dst].data.
FLOATVEC64X32[destoff] = (float64_t)
((int64_t)(ALURegA.data.FLOAT64) <<
imm); break;

} break;
}

}
else
{return 1;}

}

//FIXME: C's right shifts are implementaiton defined...
int doSRLs(uint8_t dst, uint8_t src1, uint8_t src2, uint8_t off1,

uint8_t off2, uint8_t destoff, uint8_t imm)
{

uint8_t dsize = pow(2, ((DLARFile[dst].flags & 0xC0)+3));
uint8_t dtype = DLARFile[dst].flags&0x30;
DLARFile[dst].flags &= 0x08;
if ((typeconverts(&ALURegA, dst , src1, off1) == 0) && (

typeconverts(&ALURegB, dst , src2, off2) == 0))
{

switch(dsize)
{

case 0x00: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC8X256[destoff] = (ALURegA.
data.UINT8) >> imm; break;

case 0x20: DLARFile[dst].data.
INTVEC8X256[destoff] = (ALURegA.data
.INT8) >> imm; break;

case 0x30: DLARFile[dst].data.
FLOATVEC8X256[destoff] = (float8_t)
((int64_t)(ALURegA.data.FLOAT8) >>
imm); break;

} break;
case 0x40: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC16X128[destoff] = (ALURegA.
data.UINT16) >> imm; break;

case 0x20: DLARFile[dst].data.
INTVEC16X128[destoff] = (ALURegA.
data.INT16) >> imm; break;
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case 0x30: DLARFile[dst].data.
FLOATVEC16X128[destoff] = (float16_t
)((int64_t)(ALURegA.data.FLOAT16) >>
imm); break;

} break;
case 0x80: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC64X32[destoff] = (ALURegA.
data.UINT32) >> imm; break;

case 0x20: DLARFile[dst].data.
INTVEC32X64[destoff] = (ALURegA.data
.INT32) >> imm; break;

case 0x30: DLARFile[dst].data.
FLOATVEC32X64[destoff] = (float32_t)
((int64_t)(ALURegA.data.FLOAT32) >>
imm); break;

} break;
case 0xC0: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC64X32[destoff] = (ALURegA.
data.UINT64) >> imm; break;

case 0x20: DLARFile[dst].data.
INTVEC64X32[destoff] = (ALURegA.data
.INT64) >> imm; break;

case 0x30: DLARFile[dst].data.
FLOATVEC64X32[destoff] = (float64_t)
((int64_t)(ALURegA.data.FLOAT64) >>
imm); break;

} break;
}

}
else
{return 1;}

}

//FIXME: C's right shifts are type sensitive and implementaiton defined
...

int doSRAs(uint8_t dst, uint8_t src1, uint8_t src2, uint8_t off1,
uint8_t off2, uint8_t destoff, uint8_t imm)

{
uint8_t dsize = pow(2, ((DLARFile[dst].flags & 0xC0)+3));
uint8_t dtype = DLARFile[dst].flags&0x30;
DLARFile[dst].flags &= 0x08;
if ((typeconverts(&ALURegA, dst , src1, off1) == 0) && (

typeconverts(&ALURegB, dst , src2, off2) == 0))
{

switch(dsize)
{

case 0x00: switch(dtype)
{

case 0x10: DLARFile[dst].data.
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UINTVEC8X256[destoff] = (ALURegA.
data.UINT8) >> imm; break;

case 0x20: DLARFile[dst].data.
INTVEC8X256[destoff] = (ALURegA.data
.INT8) >> imm; break;

case 0x30: DLARFile[dst].data.
FLOATVEC8X256[destoff] = (float)((
int64_t)(ALURegA.data.FLOAT8) >> imm
); break;

} break;
case 0x40: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC16X128[destoff] = (ALURegA.
data.UINT16) >> imm; break;

case 0x20: DLARFile[dst].data.
INTVEC16X128[destoff] = (ALURegA.
data.INT16) >> imm; break;

case 0x30: DLARFile[dst].data.
FLOATVEC16X128[destoff] = (float)((
int64_t)(ALURegA.data.FLOAT16) >>
imm); break;

} break;
case 0x80: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC64X32[destoff] = (ALURegA.
data.UINT32) >> imm; break;

case 0x20: DLARFile[dst].data.
INTVEC32X64[destoff] = (ALURegA.data
.INT32) >> imm; break;

case 0x30: DLARFile[dst].data.
FLOATVEC32X64[destoff] = (float)((
int64_t)(ALURegA.data.FLOAT32) >>
imm); break;

} break;
case 0xC0: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC64X32[destoff] = (ALURegA.
data.UINT64) >> imm; break;

case 0x20: DLARFile[dst].data.
INTVEC64X32[destoff] = (ALURegA.data
.INT64) >> imm; break;

case 0x30: DLARFile[dst].data.
FLOATVEC64X32[destoff] = (double)((
int64_t)(ALURegA.data.FLOAT64) >>
imm); break;

} break;
}

}
else
{return 1;}

}
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int doSLTs(uint8_t dst, uint8_t src1, uint8_t src2, uint8_t off1,
uint8_t off2, uint8_t destoff, uint8_t imm)

{
uint8_t dsize = pow(2, ((DLARFile[dst].flags & 0xC0)+3));
uint8_t dtype = DLARFile[dst].flags&0x30;
DLARFile[dst].flags &= 0x08;
if ((typeconverts(&ALURegA, dst , src1, off1) == 0) && (

typeconverts(&ALURegB, dst , src2, off2) == 0))
{

switch(dsize)
{

case 0x00: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC8X256[destoff] = (ALURegA.
data.UINT8) < (ALURegB.data.UINT8);
break;

case 0x20: DLARFile[dst].data.
INTVEC8X256[destoff] = (ALURegA.data
.INT8) < (ALURegB.data.INT8);break;

case 0x30: DLARFile[dst].data.
FLOATVEC8X256[destoff] = (ALURegA.
data.FLOAT8) < (ALURegB.data.FLOAT8)
; break;

} break;
case 0x40: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC16X128[destoff] = (ALURegA.
data.UINT16) < (ALURegB.data.UINT16)
; break;

case 0x20: DLARFile[dst].data.
INTVEC16X128[destoff] = (ALURegA.
data.INT16) < (ALURegB.data.INT16);
break;

case 0x30: DLARFile[dst].data.
FLOATVEC16X128[destoff] = (ALURegA.
data.FLOAT16) < (ALURegB.data.
FLOAT16); break;

} break;
case 0x80: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC64X32[destoff] = (ALURegA.
data.UINT32) < (ALURegB.data.UINT32)
; break;

case 0x20: DLARFile[dst].data.
INTVEC32X64[destoff] = (ALURegA.data
.INT32) < (ALURegB.data.INT32);
break;
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case 0x30: DLARFile[dst].data.
FLOATVEC32X64[destoff] = (ALURegA.
data.FLOAT32) < (ALURegB.data.
FLOAT32); break;

} break;
case 0xC0: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC64X32[destoff] = (ALURegA.
data.UINT64) < (ALURegB.data.UINT64)
; break;

case 0x20: DLARFile[dst].data.
INTVEC64X32[destoff] = (ALURegA.data
.INT64) < (ALURegB.data.INT64);
break;

case 0x30: DLARFile[dst].data.
FLOATVEC64X32[destoff] = (ALURegA.
data.FLOAT64) < (ALURegB.data.
FLOAT64); break;

} break;

}
}
else { return 1;}

}

//Arithmetic Instructions: Vector Mode
VALUOP(ADD, +, dst, src1, src2, off1, off2, destoff, imm)

VALUOP(SUB, -, dst, src1, src2, off1, off2, destoff, imm)

VALUOP(MUL, *, dst, src1, src2, off1, off2, destoff, imm)

VALUOP(DIV, /, dst, src1, src2, off1, off2, destoff, imm)

VALUBINOP(MOD, %, dst, src1, src2, off1, off2, destoff, imm)

VALUBINOP(AND, &, dst, src1, src2, off1, off2, destoff, imm)

VALUBINOP(OR, |, dst, src1, src2, off1, off2, destoff, imm)

VALUBINOP(XOR, ^, dst, src1, src2, off1, off2, destoff, imm)

int doNOTv(uint8_t dst, uint8_t src1, uint8_t src2, uint8_t off1,
uint8_t off2, uint8_t destoff, uint8_t imm)

{
int i;
uint8_t dsize = pow(2, ((DLARFile[dst].flags & 0xC0)+3));
uint8_t dtype = DLARFile[dst].flags&0x30;
DLARFile[dst].flags &= 0x08;
if(typeconvertv(&ALULARA, dst , src1, off1) == 0)
{

for(i=0;i<LARWIDTH/dsize;i++)
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{
switch(dsize)
{
case 0x00: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC8X256[i] = ~ALULARA.data.
UINTVEC8X256[i]; break;

case 0x20: DLARFile[dst].data.
INTVEC8X256[i] = ~ALULARA.data.
INTVEC8X256[i]; break;

case 0x30: DLARFile[dst].data.
FLOATVEC8X256[i] = (float8_t)(~(
int64_t)ALULARA.data.FLOATVEC8X256[i
]); break;

} break;
case 0x40: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC16X128[i] = ~ALULARA.data.
UINTVEC16X128[i]; break;

case 0x20: DLARFile[dst].data.
INTVEC16X128[i] = ~ALULARA.data.
INTVEC16X128[i]; break;

case 0x30: DLARFile[dst].data.
FLOATVEC16X128[i] = (float16_t)(~(
int64_t)ALULARA.data.FLOATVEC16X128[
i]); break;

} break;
case 0x80: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC32X64[i] = ~ALULARA.data.
UINTVEC32X64[i]; break;

case 0x20: DLARFile[dst].data.
INTVEC32X64[i] = ~ALULARA.data.
INTVEC32X64[i]; break;

case 0x30: DLARFile[dst].data.
FLOATVEC32X64[i] = (float32_t)(~(
int64_t)ALULARA.data.FLOATVEC32X64[i
]); break;

} break;
case 0xC0: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC64X32[i] = ~ALULARA.data.
UINTVEC64X32[i]; break;

case 0x20: DLARFile[dst].data.
INTVEC64X32[i] = ~ALULARA.data.
INTVEC64X32[i]; break;

case 0x30: DLARFile[dst].data.
FLOATVEC64X32[i] = (float64_t)(~(
int64_t)ALULARA.data.FLOATVEC64X32[i
]); break;
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} break;
}

}
return 0;

}
else
{ return 1;}

}

//Vile extra casts to fix C's context-sensitive shift operators
int doSLLv(uint8_t dst, uint8_t src1, uint8_t src2, uint8_t off1,

uint8_t off2, uint8_t destoff, uint8_t imm)
{ int i;

uint8_t dsize = pow(2, ((DLARFile[dst].flags & 0xC0)+3));
uint8_t dtype = DLARFile[dst].flags&0x30;
DLARFile[dst].flags &= 0x08;
if((typeconvertv(&ALULARA, dst , src1, off1) == 0) && (

typeconvertv(&ALULARB, dst , src2, off2) == 0))
{

for(i=0;i<LARWIDTH/dsize;i++)
{

switch(dsize)
{

case 0x00: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC8X256[i] = ALULARA.
data.UINTVEC8X256[i] << imm;
break;

case 0x20: DLARFile[dst].data.
INTVEC8X256[i] = (int8_t)((
uint8_t)ALULARA.data.
INTVEC8X256[i] << imm);
break;

case 0x30: DLARFile[dst].data.
FLOATVEC8X256[i] = (float8_t
)((uint64_t)ALULARA.data.
FLOATVEC8X256[i] << imm);
break;

} break;
case 0x40: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC16X128[i] = ALULARA.
data.UINTVEC16X128[i] << imm
; break;

case 0x20: DLARFile[dst].data.
INTVEC16X128[i] = (int16_t)
((uint16_t)ALULARA.data.
INTVEC16X128[i] << imm);
break;

case 0x30: DLARFile[dst].data.
FLOATVEC16X128[i] = (
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float16_t)((uint64_t)ALULARA
.data.FLOATVEC16X128[i] <<
imm); break;

} break;
case 0x80: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC32X64[i] = ALULARA.
data.UINTVEC32X64[i] << imm;
break;

case 0x20: DLARFile[dst].data.
INTVEC32X64[i] = (int32_t)((
uint32_t)ALULARA.data.
INTVEC32X64[i] << imm);
break;

case 0x30: DLARFile[dst].data.
FLOATVEC32X64[i] = (
float32_t)((uint64_t)ALULARA
.data.FLOATVEC32X64[i] <<
imm); break;

} break;
case 0xC0: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC64X32[i] = ALULARA.
data.UINTVEC64X32[i] << imm;
break;

case 0x20: DLARFile[dst].data.
INTVEC64X32[i] = (int64_t)((
uint64_t)ALULARA.data.
INTVEC64X32[i] << imm);
break;

case 0x30: DLARFile[dst].data.
FLOATVEC64X32[i] = (
float64_t)((uint64_t)ALULARA
.data.FLOATVEC64X32[i] <<
imm); break;

} break;

}
}
return 0;

}
else
{return 1;}

}

//Vile extra casts to fix C's context-sensitive shift operators
int doSRAv(uint8_t dst, uint8_t src1, uint8_t src2, uint8_t off1,

uint8_t off2, uint8_t destoff, uint8_t imm)
{ int i;

uint8_t dsize = pow(2, ((DLARFile[dst].flags & 0xC0)+3));
uint8_t dtype = DLARFile[dst].flags&0x30;
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DLARFile[dst].flags &= 0x08;
if((typeconvertv(&ALULARA, dst , src1, off1) == 0) && (

typeconvertv(&ALULARB, dst , src2, off2) == 0))
{

for(i=0;i<LARWIDTH/dsize;i++)
{

switch(dsize)
{

case 0x00: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC8X256[i] = (uint8_t)
((int8_t)ALULARA.data.
UINTVEC8X256[i] >> imm);
break;

case 0x20: DLARFile[dst].data.
INTVEC8X256[i] = ALULARA.
data.INTVEC8X256[i] >> imm;
break;

case 0x30: DLARFile[dst].data.
FLOATVEC8X256[i] = (float8_t
)((int64_t)ALULARA.data.
FLOATVEC8X256[i] >> imm);
break;

} break;
case 0x40: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC16X128[i] = (uint16_t
)((int16_t)ALULARA.data.
UINTVEC16X128[i] >> imm);
break;

case 0x20: DLARFile[dst].data.
INTVEC16X128[i] = ALULARA.
data.INTVEC16X128[i] >> imm;
break;

case 0x30: DLARFile[dst].data.
FLOATVEC16X128[i] = (
float16_t)((int64_t)ALULARA.
data.FLOATVEC16X128[i] >>
imm); break;

} break;
case 0x80: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC32X64[i] = (uint32_t)
((int8_t)ALULARA.data.
UINTVEC32X64[i] >> imm);
break;

case 0x20: DLARFile[dst].data.
INTVEC32X64[i] = ALULARA.
data.INTVEC32X64[i] >> imm;
break;

51



case 0x30: DLARFile[dst].data.
FLOATVEC32X64[i] = (
float32_t)((int64_t)ALULARA.
data.FLOATVEC32X64[i] >> imm
); break;

} break;
case 0xC0: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC64X32[i] = (uint64_t)
((int64_t)ALULARA.data.
UINTVEC64X32[i] >> imm);
break;

case 0x20: DLARFile[dst].data.
INTVEC64X32[i] = ALULARA.
data.INTVEC64X32[i] >> imm;
break;

case 0x30: DLARFile[dst].data.
FLOATVEC64X32[i] = (
float64_t)((int64_t)ALULARA.
data.FLOATVEC64X32[i] >> imm
); break;

} break;

}
}
return 0;

}
else
{return 1;}

}
//Vile extra casts to fix C's context-sensitive shift operators
int doSRLv(uint8_t dst, uint8_t src1, uint8_t src2, uint8_t off1,

uint8_t off2, uint8_t destoff, uint8_t imm)
{ int i;

uint8_t dsize = pow(2, ((DLARFile[dst].flags & 0xC0)+3));
uint8_t dtype = DLARFile[dst].flags&0x30;
DLARFile[dst].flags &= 0x08;
if((typeconvertv(&ALULARA, dst , src1, off1) == 0) && (

typeconvertv(&ALULARB, dst , src2, off2) == 0))
{

for(i=0;i<LARWIDTH/dsize;i++)
{

switch(dsize)
{

case 0x00: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC8X256[i] = ALULARA.
data.UINTVEC8X256[i] >> imm;
break;

case 0x20: DLARFile[dst].data.
INTVEC8X256[i] = (int8_t)((
uint8_t)ALULARA.data.
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INTVEC8X256[i] >> imm);
break;

case 0x30: DLARFile[dst].data.
FLOATVEC8X256[i] = (float8_t
)((uint64_t)ALULARA.data.
FLOATVEC8X256[i] >> imm);
break;

} break;
case 0x40: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC16X128[i] = ALULARA.
data.UINTVEC16X128[i] >> imm
; break;

case 0x20: DLARFile[dst].data.
INTVEC16X128[i] = (int16_t)
((uint16_t)ALULARA.data.
INTVEC16X128[i] >> imm);
break;

case 0x30: DLARFile[dst].data.
FLOATVEC16X128[i] = (
float16_t)((uint64_t)ALULARA
.data.FLOATVEC16X128[i] >>
imm); break;

} break;
case 0x80: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC32X64[i] = ALULARA.
data.UINTVEC32X64[i] >> imm;
break;

case 0x20: DLARFile[dst].data.
INTVEC32X64[i] = (int32_t)((
uint32_t)ALULARA.data.
INTVEC32X64[i] >> imm);
break;

case 0x30: DLARFile[dst].data.
FLOATVEC32X64[i] = (
float32_t)((uint64_t)ALULARA
.data.FLOATVEC32X64[i] >>
imm); break;

} break;
case 0xC0: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC64X32[i] = ALULARA.
data.UINTVEC64X32[i] >> imm;
break;

case 0x20: DLARFile[dst].data.
INTVEC64X32[i] = (int64_t)((
uint64_t)ALULARA.data.
INTVEC64X32[i] >> imm);
break;
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case 0x30: DLARFile[dst].data.
FLOATVEC64X32[i] = (
float64_t)((uint64_t)ALULARA
.data.FLOATVEC64X32[i] >>
imm); break;

} break;

}
}

}
else
{return 1;}

}

//I'm not even sure if SLT is fully defined for vectors...
// Currently makes a full vector of results... sum for scalar.
int doSLTv(uint8_t dst, uint8_t src1, uint8_t src2, uint8_t off1,

uint8_t off2, uint8_t destoff, uint8_t imm)
{

int i;
uint8_t dsize = pow(2, ((DLARFile[dst].flags & 0xC0)+3));
uint8_t dtype = DLARFile[dst].flags&0x30;
DLARFile[dst].flags &= 0x08;
if ((typeconvertv(&ALULARA, dst , src1, off1) == 0) && (

typeconvertv(&ALULARB, dst , src2, off2) == 0))
{

for(i=0;i<2048/dsize;i++)
{

switch(dsize)
{

case 0x00: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC8X256[i] = ALULARA.
data.UINTVEC8X256[i] <
ALULARB.data.UINTVEC8X256[i
]; break;

case 0x20: DLARFile[dst].data.
INTVEC8X256[i] = ALULARA.
data.INTVEC8X256[i] <
ALULARB.data.INTVEC8X256[i];
break;

case 0x30: DLARFile[dst].data.
FLOATVEC8X256[i] = ALULARA.
data.FLOATVEC8X256[i] <
ALULARB.data.FLOATVEC8X256[i
]; break;

} break;
case 0x40: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC16X128[i] = ALULARA.
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data.UINTVEC16X128[i] <
ALULARB.data.UINTVEC16X128[i
]; break;

case 0x20: DLARFile[dst].data.
INTVEC16X128[i] = ALULARA.
data.INTVEC16X128[i] <
ALULARB.data.INTVEC16X128[i
]; break;

case 0x30: DLARFile[dst].data.
FLOATVEC16X128[i] = ALULARA.
data.FLOATVEC16X128[i] <
ALULARB.data.FLOATVEC16X128[
i]; break;

} break;
case 0x80: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC32X64[i] = ALULARA.
data.UINTVEC32X64[i] <
ALULARB.data.UINTVEC32X64[i
]; break;

case 0x20: DLARFile[dst].data.
INTVEC32X64[i] = ALULARA.
data.INTVEC32X64[i] <
ALULARB.data.INTVEC32X64[i];
break;

case 0x30: DLARFile[dst].data.
FLOATVEC32X64[i] = ALULARA.
data.FLOATVEC32X64[i] <
ALULARB.data.FLOATVEC32X64[i
]; break;

} break;
case 0xC0: switch(dtype)
{

case 0x10: DLARFile[dst].data.
UINTVEC64X32[i] = ALULARA.
data.UINTVEC64X32[i] <
ALULARB.data.UINTVEC64X32[i
]; break;

case 0x20: DLARFile[dst].data.
INTVEC64X32[i] = ALULARA.
data.INTVEC64X32[i] <
ALULARB.data.INTVEC64X32[i];
break;

case 0x30: DLARFile[dst].data.
FLOATVEC64X32[i] = ALULARA.
data.FLOATVEC64X32[i] <
ALULARB.data.FLOATVEC64X32[i
]; break;

} break;
}

}
}
else
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{ return 1;}
}

//Loads
LDOP(8U, 0x10, dst, src1, src2, off1, off2, destoff, imm)
LDOP(16U, 0x50, dst, src1, src2, off1, off2, destoff, imm)
LDOP(32U, 0x90, dst, src1, src2, off1, off2, destoff, imm)
LDOP(64U, 0xD0, dst, src1, src2, off1, off2, destoff, imm)

LDOP(8I, 0x20, dst, src1, src2, off1, off2, destoff, imm)
LDOP(16I, 0x60, dst, src1, src2, off1, off2, destoff, imm)
LDOP(32I, 0xC0, dst, src1, src2, off1, off2, destoff, imm)
LDOP(64I, 0xE0, dst, src1, src2, off1, off2, destoff, imm)

LDOP(8F, 0x30, dst, src1, src2, off1, off2, destoff, imm)
LDOP(16F, 0x70, dst, src1, src2, off1, off2, destoff, imm)
LDOP(32F, 0xB0, dst, src1, src2, off1, off2, destoff, imm)
LDOP(64F, 0XF0, dst, src1, src2, off1, off2, destoff, imm)

//Stores
STOP(8U, 0x10, dst, src1, src2, off1, off2, destoff, imm)
STOP(16U, 0x50, dst, src1, src2, off1, off2, destoff, imm)
STOP(32U, 0x90, dst, src1, src2, off1, off2, destoff, imm)
STOP(64U, 0xD0, dst, src1, src2, off1, off2, destoff, imm)

STOP(8I, 0x20, dst, src1, src2, off1, off2, destoff, imm)
STOP(16I, 0x60, dst, src1, src2, off1, off2, destoff, imm)
STOP(32I, 0xC0, dst, src1, src2, off1, off2, destoff, imm)
STOP(64I, 0xE0, dst, src1, src2, off1, off2, destoff, imm)

STOP(8F, 0x30, dst, src1, src2, off1, off2, destoff, imm)
STOP(16F, 0x70, dst, src1, src2, off1, off2, destoff, imm)
STOP(32F, 0xB0, dst, src1, src2, off1, off2, destoff, imm)
STOP(64F, 0XF0, dst, src1, src2, off1, off2, destoff, imm)

//Not 100% Sure this is working as intended
// This is another place where the macro system could have been

more elegant, but replication to the rescue...
int doSEL(uint8_t dst, uint8_t src1, uint8_t src2, uint8_t off1, uint8_t

off2, uint8_t destoff, uint8_t imm)
{

int testcond;
int srctyp= DLARFile[dst].flags & TYPMASK;
switch(DLARFile[dst].flags & WDSZMASK)
{

case SZ8:
switch(srctyp)
{
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case TUINT:
testcond = (int)DLARFile[dst].data.

UINTVEC8X256[destoff]; break;
case TINT:

testcond = (int)DLARFile[dst].data.
INTVEC8X256[destoff]; break;

case TFLOAT:
testcond = (int)DLARFile[dst].data.

FLOATVEC8X256[destoff]; break;
}

break;
case SZ16:

switch(srctyp)
{

case TUINT:
testcond = (int)DLARFile[dst].

data.UINTVEC16X128[destoff];
break;

case TINT:
testcond = (int)DLARFile[dst].

data.INTVEC16X128[destoff];
break;

case TFLOAT:
testcond = (int)DLARFile[dst].

data.FLOATVEC16X128[destoff
]; break;

}
break;
case SZ32:

switch(srctyp)
{

case TUINT:
testcond = (int)DLARFile[dst].

data.UINTVEC32X64[destoff];
break;

case TINT:
testcond = (int)DLARFile[dst].

data.INTVEC32X64[destoff];
break;

case TFLOAT:
testcond = (int)DLARFile[dst].

data.FLOATVEC32X64[destoff];
break;

}
break;
case SZ64:

switch(srctyp)
{

case TUINT:
testcond = (int)DLARFile[dst].

data.UINTVEC64X32[destoff];
break;

case TINT:
testcond = (int)DLARFile[dst].

57



data.INTVEC64X32[destoff];
break;

case TFLOAT:
testcond = (int)DLARFile[dst].

data.FLOATVEC64X32[destoff];
break;

}
break;
}

if(testcond != 0)//Set PC to first target.. just being
redundantly explicit

{
DLARFile[1].data.UINTVEC64X32[0]=ILARFile[src1].instr[

off1];
}
else//Set PC to second target
{

DLARFile[1].data.UINTVEC64X32[0]=ILARFile[src2].instr[
off2];

}
}

//Fetch an ILAR-width line of instructions from memory
//No compression currently implimented , just does a linear load.

int doFETCH(uint8_t dst, uint8_t src1, uint8_t src2, uint8_t off1,
uint8_t off2, uint8_t destoff, uint8_t imm)

{
int i;
int address;
ADDRCALC(dst, src1, src2, off1, off2, destoff, imm)
ILARFile[dst].addr=address;
for(i=0;i<255;i++)
{

ILARFile[dst].instr[i]=RAMFile[address+i];
}

}

Listing A.2: LARKemNoSIMD.h
//The "NoSIMD" version
// There is a small chance that doing -mfpmath flags appropriately would

do well with this...
#include <stdint.h>
#include <stdio.h>
#include <math.h>
#include <strings.h>
#include "aluops.h"
#include "memops.h"

//Masks for the status bits
#define WDSZMASK 0xC0
#define TYPMASK 0x30
#define DIRTYMASK 0x08
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//Constants
#define LARWIDTH 2048
#define MEMSZ 4096

#define TUINT 0x10
#define TINT 0x20
#define TFLOAT 0x30

#define SZ8 0x00
#define SZ16 0x40
#define SZ32 0x80
#define SZ64 0xC0

#define ASMBUFSZ 255

//Normalize nomenclature , make it easy to swap other representations in
for unusual width floats

// But everything is really a machine-native float, because screw adding
another layer to make baby-floats

#define float8_t float
#define float16_t float
#define float32_t float
#define float64_t double

//This is a DLAR. Fear it.
typedef struct
{

uint8_t flags;
uint64_t addr;
//All the same size and shape...
union
{

uint8_t UINTVEC8X256[256];
uint16_t UINTVEC16X128[128];
uint32_t UINTVEC32X64[64];
uint64_t UINTVEC64X32[32];

int8_t INTVEC8X256[256];
int16_t INTVEC16X128[128];
int32_t INTVEC32X64[64];
int64_t INTVEC64X32[32];

//Are <32 bit floats going to have to be assembled by
hand?

//FIXME for now blowing my alignment and reusing floats
float8_t FLOATVEC8X256[256];
float16_t FLOATVEC16X128[128];
float32_t FLOATVEC32X64[64];
float64_t FLOATVEC64X32[32];

}data;
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}DLAR_t;

//A scalar buffer with type tags to use for the scalar ALU path
typedef struct
{

uint8_t flags;
union
{

uint8_t UINT8;
uint16_t UINT16;
uint32_t UINT32;
uint64_t UINT64;

int8_t INT8;
int16_t INT16;
int32_t INT32;
int64_t INT64;

//Are <32 bit floats going to have to be assembled by
hand?

//FIXME for now, three names for the same "float"
float8_t FLOAT8;
float16_t FLOAT16;
float32_t FLOAT32;
float64_t FLOAT64;

}data;
}scalarbuf_t;

//ILAR Structure ILAR
typedef struct
{

uint64_t addr;
uint64_t instr[2048];

}ILAR_t;

//Prototype for the horrible lar-width conversion function
int typeconvertv(DLAR_t *buf, int dst , int src, uint8_t srcoff);
int typeconverts(scalarbuf_t *buf, int dst , int src, uint8_t srcoff);

/*

doLOAD8U
doLOAD16U
doLOAD32U
doLOAD64U
doLOAD8I
doLOAD16I
doLOAD32I
doLOAD64I
doLOAD8F
doLOAD16F
doLOAD32F
doLOAD64F
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doSTORE8U
doSTORE16U
doSTORE32U
doSTORE64U
doSTORE8I
doSTORE16I
doSTORE32I
doSTORE64I
doSTORE8F
doSTORE16F
doSTORE32F
doSTORE64F

void doADDs(uint8_t dst, uint8_t src1, uint8_t src2, uint8_t off1,
uint8_t off2, uint8_t destoff, int imm);

void doSUBs(uint8_t dst, uint8_t src1, uint8_t src2, uint8_t off1,
uint8_t off2, uint8_t destoff, int imm);

void doMULs(uint8_t dst, uint8_t src1, uint8_t src2, uint8_t off1,
uint8_t off2, uint8_t destoff, int imm);

void doDIVs(uint8_t dst, uint8_t src1, uint8_t src2, uint8_t off1,
uint8_t off2, uint8_t destoff, int imm);

void doMODs(uint8_t dst, uint8_t src1, uint8_t src2, uint8_t off1,
uint8_t off2, uint8_t destoff, int imm);

doANDs
doORs
doXORs
doNEGs
doSLLs
doSRAs
doSRLs

doSLTs

doADDv
doSUBv
doMULv
doDIVv
doMODv

doANDv
doORv
doXORv
doNEGv
doSLLv
doSRAv
doSRLv

doSLTv

doSEL
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//doCALL
//doRETURN
*/

Listing A.3: DLARConvert.h
#include "LARKemNoSIMD.h"
#include <math.h>

//Ia Ia accesessormacrothulu fhtagn!
// This loads an item in an ALU DLAR buffer (buf) with typeconverted data from SRC
// DSTTYP is the destination type (DLAR type, not C type)
// DSTOFF is an offset in the destination (integer)
// CTYP is the C type to be converted to
// SRC is a location in the DLARFile (integer)
// SRCOFF is an offset in the source (integer)
#define DLARCONVERTV(DESTTYP, DESTOFF, CTYP, SRC, SRCOFF)\
switch(srcsize)\
{\

case SZ8: \
switch(srctyp)\
{\
case TUINT:\

buf->data.DESTTYP[(DESTOFF)] = (CTYP) DLARFile[(SRC)].data.
UINTVEC8X256[(SRCOFF)]; break;\

case TINT:\
buf->data.DESTTYP[(DESTOFF)] = (CTYP) DLARFile[(SRC)].data.

INTVEC8X256[(SRCOFF)]; break;\
case TFLOAT:\

buf->data.DESTTYP[(DESTOFF)] = (CTYP) DLARFile[(SRC)].data.
FLOATVEC8X256[(SRCOFF)]; break;\

}\
break;\
case SZ16:\

switch(srctyp)\
{\

case TUINT:\
buf->data.DESTTYP[(DESTOFF)] = (CTYP) DLARFile[(SRC)].

data.UINTVEC16X128[(SRCOFF)]; break;\
case TINT:\

buf->data.DESTTYP[(DESTOFF)] = (CTYP) DLARFile[(SRC)].
data.INTVEC16X128[(SRCOFF)]; break;\

case TFLOAT:\
buf->data.DESTTYP[(DESTOFF)] = (CTYP) DLARFile[(SRC)].

data.FLOATVEC16X128[(SRCOFF)]; break;\
}\

break;\
case SZ32: \

switch(srctyp)\
{\

case TUINT:\
buf->data.DESTTYP[(DESTOFF)] = (CTYP) DLARFile[(SRC)].

data.UINTVEC32X64[(SRCOFF)]; break;\
case TINT:\
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buf->data.DESTTYP[(DESTOFF)] = (CTYP) DLARFile[(SRC)].
data.INTVEC32X64[(SRCOFF)]; break;\

case TFLOAT:\
buf->data.DESTTYP[(DESTOFF)] = (CTYP) DLARFile[(SRC)].

data.FLOATVEC32X64[(SRCOFF)]; break;\
}\

break;\
case SZ64: \

switch(srctyp)\
{\

case TUINT:\
buf->data.DESTTYP[(DESTOFF)] = (CTYP) DLARFile[(SRC)].

data.UINTVEC64X32[(SRCOFF)]; break;\
case TINT:\

buf->data.DESTTYP[(DESTOFF)] = (CTYP) DLARFile[(SRC)].
data.INTVEC64X32[(SRCOFF)]; break;\

case TFLOAT:\
buf->data.DESTTYP[(DESTOFF)] = (CTYP) DLARFile[(SRC)].

data.FLOATVEC64X32[(SRCOFF)]; break;\
}\

break;\
}\

//A silly little macro to simplify filling the remainder of a DLAR on a
downconvert

#define DLARFILLV(DESTTYP, FILL)\
while(i<LARWIDTH/SRCSZ)\
{\

buf->data.DESTTYP[i] = FILL;\
i++;\

}\

//Differs from vector version only by having one fewer levels of indirection on
the buffer

#define DLARCONVERTS(DESTTYP, CTYP, SRC, SRCOFF)\
switch(srcsize)\
{\

case SZ8: \
switch(srctyp)\
{\
case TUINT:\

buf->DESTTYP = (CTYP) DLARFile[(SRC)].data.UINTVEC8X256[(
SRCOFF)]; break;\

case TINT:\
buf->DESTTYP = (CTYP) DLARFile[(SRC)].data.INTVEC8X256[(

SRCOFF)]; break;\
case TFLOAT:\

buf->DESTTYP = (CTYP) DLARFile[(SRC)].data.FLOATVEC8X256[(
SRCOFF)]; break;\

}\
break;\
case SZ16:\

switch(srctyp)\
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{\
case TUINT:\

buf->DESTTYP = (CTYP) DLARFile[(SRC)].data.
UINTVEC16X128[(SRCOFF)]; break;\

case TINT:\
buf->DESTTYP = (CTYP) DLARFile[(SRC)].data.INTVEC16X128

[(SRCOFF)]; break;\
case TFLOAT:\

buf->DESTTYP = (CTYP) DLARFile[(SRC)].data.
FLOATVEC16X128[(SRCOFF)]; break;\

}\
break;\
case SZ32: \

switch(srctyp)\
{\

case TUINT:\
buf->DESTTYP = (CTYP) DLARFile[(SRC)].data.UINTVEC32X64

[(SRCOFF)]; break;\
case TINT:\

buf->DESTTYP = (CTYP) DLARFile[(SRC)].data.INTVEC32X64
[(SRCOFF)]; break;\

case TFLOAT:\
buf->DESTTYP = (CTYP) DLARFile[(SRC)].data.

FLOATVEC32X64[(SRCOFF)]; break;\
}\

break;\
case SZ64: \

switch(srctyp)\
{\

case TUINT:\
buf->DESTTYP = (CTYP) DLARFile[(SRC)].data.UINTVEC64X32

[(SRCOFF)]; break;\
case TINT:\

buf->DESTTYP = (CTYP) DLARFile[(SRC)].data.INTVEC64X32
[(SRCOFF)]; break;\

case TFLOAT:\
buf->DESTTYP = (CTYP) DLARFile[(SRC)].data.

FLOATVEC64X32[(SRCOFF)]; break;\
}\

break;\
}\

Listing A.4: converter.c
#include "DLARConvert.h"

//FIXME: The scalar and vector versions really should be derived from
the same pool of functions and macros...

//This is the full-vector typeconverter
// It converts a DLARFile entry "src" to the type of a DLARFile entry "

dst", and puts it in "buf"
// The DLARCONVERT macro is another couple layers of switches and evil,

abstracted out
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// Returns 0 on success, anything else is a fail. (1 for invalid size, 2
for invalid type, 3 for alignment problem)

int typeconvertv(DLAR_t *buf, int dst , int src, uint8_t srcoff)
{

//reusable iterator
int i;

//Convert WDSZ fields to actual wordsizes in bits
int dstsize = pow(2, ((DLARFile[dst].flags & WDSZMASK)+3));
int srcsize = pow(2, ((DLARFile[src].flags & WDSZMASK)+3));
uint8_t dsttyp = DLARFile[dst].flags&TYPMASK;
uint8_t srctyp = DLARFile[src].flags&TYPMASK;

//Set ALU buffer types to match destination DLAR
buf->flags = DLARFile[dst].flags;

if(dstsize > srcsize)//Upconvert
{
if(((LARWIDTH/srcsize)-srcoff) >= (LARWIDTH/dstsize))
{
switch(dstsize)
{
case 8:
switch(dsttyp)
{
case TUINT:

for(i=0;i<LARWIDTH/8;i++)
{

DLARCONVERTV(UINTVEC8X256 , i, uint8_t, src, i+srcoff)
}

break;
case TINT:

for(i=0;i<LARWIDTH/8;i++)
{

DLARCONVERTV(INTVEC8X256 , i, int8_t, src, i+srcoff)
}

break;
case TFLOAT:

for(i=0;i<LARWIDTH/8;i++)
{

DLARCONVERTV(FLOATVEC8X256 , i, float8_t, src, i+srcoff)
}

break;
default:

return 2;
break;
}
break;
case 16:
switch(dsttyp)
{
case TUINT:

for(i=0;i<LARWIDTH/16;i++)
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{
DLARCONVERTV(UINTVEC16X128 , i, uint16_t, src, i+srcoff)

}
break;
case TINT:

for(i=0;i<LARWIDTH/16;i++)
{

DLARCONVERTV(INTVEC16X128 , i, int16_t, src, i+srcoff)
}

break;
case TFLOAT:

for(i=0;i<LARWIDTH/16;i++)
{

DLARCONVERTV(FLOATVEC16X128 , i, float16_t , src, i+srcoff)
}

break;
default: return 2;
break;
}
break;
case 32:
switch(dsttyp)
{
case TUINT:

for(i=0;i<LARWIDTH/32;i++)
{

DLARCONVERTV(UINTVEC32X64 , i, uint32_t, src, i+srcoff)
}

break;
case TINT:

for(i=0;i<LARWIDTH/32;i++)
{

DLARCONVERTV(INTVEC32X64 , i, int32_t, src, i+srcoff)
}

break;
case TFLOAT:

for(i=0;i<LARWIDTH/32;i++)
{

DLARCONVERTV(FLOATVEC32X64 , i, float32_t , src, i+srcoff)
}

break;
default: return 2;
break;
}
break;
case 64:
switch(dsttyp)
{
case TUINT:

for(i=0;i<LARWIDTH/64;i++)
{

DLARCONVERTV(UINTVEC64X32 , i, uint64_t, src, i+srcoff)
}

break;
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case TINT:
for(i=0;i<LARWIDTH/64;i++)
{

DLARCONVERTV(INTVEC64X32 , i, int64_t, src, i+srcoff)
}

break;
case TFLOAT:

for(i=0;i<LARWIDTH/64;i++)
{

DLARCONVERTV(FLOATVEC64X32 , i, float64_t , src, i+srcoff)
}

break;
default:

return 2;
break;
}
break;
default: return 1;
}
}
else
{
return 3; //Not enough elements in SRC
}
}
else //Downconvert
//These cases do "As many as are available , starting from [0], then

pad out with 0"
{
switch(dstsize)
{
case 8:
switch(dsttyp)
{
case TUINT:
for(i=0;i<LARWIDTH/srcsize;i++)
{

DLARCONVERTV(UINTVEC8X256 , i, uint8_t, src, i)
DLARFILL(UINTVEC8X256 , 0)

}
break;
case TINT:
for(i=0;i<LARWIDTH/srcsize;i++)
{

DLARCONVERTV(INTVEC8X256 , i, int8_t, src, i)
DLARFILL(INTVEC8X256 , 0)

}
break;
case TFLOAT:
for(i=0;i<LARWIDTH/srcsize;i++)
{

DLARCONVERTV(FLOATVEC8X256 , i, float8_t, src, i)
DLARFILL(FLOATVEC8X256 , 0.0)

}
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break;
default:
return 2;
break;
}

break;
case 16:
switch(dsttyp)
{
case TUINT:
for(i=0;i<LARWIDTH/srcsize;i++)
{

DLARCONVERTV(UINTVEC16X128 , i, uint16_t, src, i)
DLARFILL(UINTVEC16X128 , 0)

}
break;
case TINT:
for(i=0;i<LARWIDTH/srcsize;i++)
{

DLARCONVERTV(INTVEC16X128 , i, int16_t, src, i)
DLARFILL(INTVEC16X128 , 0)

}
break;
case TFLOAT:
for(i=0;i<LARWIDTH/srcsize;i++)
{

DLARCONVERTV(FLOATVEC16X128 , i, float16_t , src, i)
DLARFILL(FLOATVEC16X128 , 0.0)

}
break;
default: return 2;
break;
}
break;
case 32:
switch(dsttyp)
{
case TUINT:
for(i=0;i<LARWIDTH/srcsize;i++)
{

DLARCONVERTV(UINTVEC32X64 , i, uint32_t, src, i)
DLARFILL(UINTVEC32X64 , 0)

}
break;
case TINT:
for(i=0;i<LARWIDTH/srcsize;i++)
{

DLARCONVERTV(INTVEC32X64 , i, int32_t, src, i)
DLARFILL(INTVEC32X64 , 0)

}
break;
case TFLOAT:
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for(i=0;i<LARWIDTH/srcsize;i++)
{

DLARCONVERTV(FLOATVEC32X64 , i, int32_t, src, i)
DLARFILL(FLOATVEC32X64 , 0.0)

}
break;
default: return 2;
break;
}
break;
case 64:
switch(dsttyp)
{
case TUINT:
for(i=0;i<LARWIDTH/srcsize;i++)
{

DLARCONVERTV(UINTVEC64X32 , i, uint64_t, src, i)
DLARFILL(UINTVEC64X32 , 0)

}
break;
case TINT:
for(i=0;i<LARWIDTH/srcsize;i++)
{

DLARCONVERTV(INTVEC64X32 , i, int64_t, src, i)
DLARFILL(INTVEC64X32 , 0)

}
break;
case TFLOAT:
for(i=0;i<LARWIDTH/srcsize;i++)
{

DLARCONVERTV(FLOATVEC64X32 , i, float64_t , src, i)
DLARFILL(FLOATVEC64X32 , 0.0)

}
break;
default:
return 2;
break;
}
break;
default: return 1;
}
}

return 0;
}

// A scalar-only typeconvert function --
// The vector case is completely seprate because branching overhead is

OBSCENE on this operation (and I wrote the vector version first)
// Also, this one gets to skip a lot of tests and suchlike
int typeconverts(scalarbuf_t *buf, int dst , int src, uint8_t srcoff)
{

//Convert WDSZ fields to actual wordsizes in bits
int dstsize = pow(2, ((DLARFile[dst].flags & WDSZMASK)+3));
int srcsize = pow(2, ((DLARFile[src].flags & WDSZMASK)+3));
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uint8_t dsttyp = DLARFile[dst].flags&TYPMASK;
uint8_t srctyp = DLARFile[src].flags&TYPMASK;

//Set ALU buffer types to match destination DLAR
buf->flags = DLARFile[dst].flags;

if(dstsize > srcsize)//Upconvert
{
switch(dstsize)
{
case 8:
switch(dsttyp)
{
case TUINT:

DLARCONVERTS(UINT8, uint8_t, src, srcoff)
break;
case TINT:

DLARCONVERTS(INT8, int8_t, src, srcoff)
break;
case TFLOAT:

DLARCONVERTS(FLOAT8, float8_t, src, srcoff)
break;
default:

return 2;
break;
}
break;
case 16:
switch(dsttyp)
{
case TUINT:

DLARCONVERTS(UINT16, uint16_t, src, srcoff)
break;
case TINT:

DLARCONVERTS(INT16, int16_t, src, srcoff)
break;
case TFLOAT:

DLARCONVERTS(FLOAT16, float16_t , src, srcoff)

break;
default: return 2;
break;
}
break;
case 32:
switch(dsttyp)
{
case TUINT:

DLARCONVERTS(UINT32, uint32_t, src, srcoff)

break;
case TINT:

DLARCONVERTS(INT32, int32_t, src, srcoff)
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break;
case TFLOAT:

DLARCONVERTS(FLOAT32, float32_t , src, srcoff)
break;
default: return 2;
break;
}
break;
case 64:
switch(DLARFile[dst].flags&TYPMASK)
{
case TUINT:

DLARCONVERTS(UINT64, uint64_t, src, srcoff)
break;
case TINT:

DLARCONVERTS(INT64, int64_t, src, srcoff)
break;
case TFLOAT:

DLARCONVERTS(FLOAT64, float64_t , src, srcoff)
break;
default:

return 2;
break;
}
break;
default: return 1;
}
}
else //Downconvert
//These cases do "As many as are available , starting from [0], then

pad out with 0"
{
switch(dstsize)
{
case 8:
switch(dsttyp)
{
case TUINT:

DLARCONVERTS(UINT8, uint8_t, src, srcoff)
break;
case TINT:

DLARCONVERTS(INT8, int8_t, src, srcoff)
break;
case TFLOAT:

DLARCONVERTS(FLOAT8, float8_t , src, srcoff)
break;
default:

return 2;
break;
}

break;
case 16:

71



switch(dsttyp)
{
case TUINT:

DLARCONVERTS(UINT16, uint16_t , src, srcoff)
break;
case TINT:

DLARCONVERTS(INT16, int16_t, src, srcoff)
break;
case TFLOAT:

DLARCONVERTS(FLOAT16, float16_t , src, srcoff)
break;
default: return 2;
break;
}
break;
case 32:
switch(dsttyp)
{
case TUINT:

DLARCONVERTS(UINT32, uint32_t, src, srcoff)
break;
case TINT:

DLARCONVERTS(INT32, int32_t, src, srcoff)
break;
case TFLOAT:

DLARCONVERTS(FLOAT32, int32_t, src, srcoff)
break;
default: return 2;
break;
}
break;
case 64:
switch(dsttyp)
{
case TUINT:

DLARCONVERTS(UINT64, uint64_t , src, srcoff)
break;
case TINT:

DLARCONVERTS(INT64, int64_t, src, srcoff)
break;
case TFLOAT:

DLARCONVERTS(FLOAT64, float64_t , src, srcoff)
break;
default:

return 2;
break;
}
break;
default: return 1;
break;
}
}

return 0;
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}

Listing A.5: aluops.h
// Simple two-operand operations are constructed from nested macros...
// Operations which do not fit the pattern of these nested macros are

made using hand-modified versions of the expanded code

//Wherever operations are disallowed in C, casting to int64_t

//Macro'd prototype for simple scalar ALU operation
#define SALUOP(OPNAME, OP, DST, SRC1, SRC2, OFF1, OFF2, DSTOFF, IMM)\
int do##OPNAME##s(uint8_t DST, uint8_t SRC1, uint8_t SRC2, uint8_t OFF1,

uint8_t OFF2, uint8_t DSTOFF, uint8_t IMM)\
{\

uint8_t dsize = pow(2, ((DLARFile[dst].flags & WDSZMASK)+3));\
uint8_t dtype = DLARFile[DST].flags&TYPMASK;\
DLARFile[DST].flags &= 0x08;\
if ((typeconverts(&ALURegA, DST , SRC1, OFF1) == 0) && (

typeconverts(&ALURegB, DST , SRC2, OFF2) == 0))\
{\

DLAROPTYPS(OFF1, OFF2, DST, DSTOFF, OP)\
return 0;\

}\
else\
{\

return 1;\
}\

}\

//Macro'd prototype for scalar ALU operations that C doesn't like doing
on non-integer bit patterns

#define SALUBINOP(OPNAME, OP, DST, SRC1, SRC2, OFF1, OFF2, DSTOFF, IMM)\
int do##OPNAME##s(uint8_t DST, uint8_t SRC1, uint8_t SRC2, uint8_t OFF1,

uint8_t OFF2, uint8_t DSTOFF, uint8_t IMM)\
{\

uint8_t dsize = pow(2, ((DLARFile[DST].flags & 0xC0)+3));\
uint8_t dtype = DLARFile[DST].flags&0x30; DLARFile[DST].flags &=

0x08;\
if ((typeconverts(&ALURegA, DST , SRC1, OFF1) == 0) && (

typeconverts(&ALURegB, DST , SRC2, OFF2) == 0))\
{\

switch(dsize)\
{\

case 0x00: switch(dtype)\
{\

case 0x10: DLARFile[DST].data.
UINTVEC8X256[DSTOFF] = (ALURegA.data
.UINT8) OP (ALURegB.data.UINT8);
break;\

case 0x20: DLARFile[DST].data.
INTVEC8X256[DSTOFF] = (ALURegA.data.
INT8) OP (ALURegB.data.INT8); break
;\
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case 0x30: DLARFile[DST].data.
FLOATVEC8X256[DSTOFF] = (float8_t)
(((int64_t)ALURegA.data.FLOAT8) OP
((int64_t)ALURegB.data.FLOAT8));
break;\

} break;\
case 0x40: switch(dtype)\
{\

case 0x10: DLARFile[DST].data.
UINTVEC16X128[DSTOFF] = (ALURegA.
data.UINT16) OP (ALURegB.data.UINT16
); break;\

case 0x20: DLARFile[DST].data.
INTVEC16X128[DSTOFF] = (ALURegA.data
.INT16) OP (ALURegB.data.INT16);
break;\

case 0x30: DLARFile[DST].data.
FLOATVEC16X128[DSTOFF] = (float16_t)
(((int64_t)ALURegA.data.FLOAT16) OP
((int64_t)ALURegB.data.FLOAT16));
break;\

} break;\
case 0x80: switch(dtype)\
{\

case 0x10: DLARFile[DST].data.
UINTVEC64X32[DSTOFF] = (ALURegA.data
.UINT32) OP (ALURegB.data.UINT32);
break;\

case 0x20: DLARFile[DST].data.
INTVEC32X64[DSTOFF] = (ALURegA.data.
INT32) OP (ALURegB.data.INT32);
break;\

case 0x30: DLARFile[DST].data.
FLOATVEC32X64[DSTOFF] = (float32_t)
(((int64_t)ALURegA.data.FLOAT32) OP
((int64_t)ALURegB.data.FLOAT32));
break;\

} break;\
case 0xC0: switch(dtype)\
{\

case 0x10: DLARFile[DST].data.
UINTVEC64X32[DSTOFF] = (ALURegA.data
.UINT64) OP (ALURegB.data.UINT64);
break;\

case 0x20: DLARFile[DST].data.
INTVEC64X32[DSTOFF] = (ALURegA.data.
INT64) OP (ALURegB.data.INT64);
break;\

case 0x30: DLARFile[DST].data.
FLOATVEC64X32[DSTOFF] = (float64_t)
(((int64_t)ALURegA.data.FLOAT64) OP
((int64_t)ALURegB.data.FLOAT64));
break;\

} break;\
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}\
return 0;\

}\
else\
{return 1;}\

}\

//Macro'd prototype for vector ALU operation
#define VALUOP(OPNAME, OP, DST, SRC1, SRC2, OFF1, OFF2, DESTOFF, IMM)\
int do##OPNAME##v(uint8_t DST, uint8_t SRC1, uint8_t SRC2, uint8_t OFF1,

uint8_t OFF2, uint8_t DESTOFF, uint8_t IMM)\
{\

int i;\
uint8_t dsize = pow(2, ((DLARFile[dst].flags & WDSZMASK)+3));\
uint8_t dtype = DLARFile[dst].flags&TYPMASK;\
DLARFile[DST].flags &= 0x08;\
if ((typeconvertv(&ALULARA, DST , SRC1, OFF1) == 0) && (

typeconvertv(&ALULARB, DST , SRC2, OFF2) == 0))\
{\

for(i=0;i<LARWIDTH/dsize;i++)\
{\

DLAROPTYPV(DST, i, OP)\
}\
return 0;\

}\
else\
{\

return 1;\
}\

}\

//Macro'd prototype for vector ALU operations that C doesn't like doing
on non-integer bit patterns

#define VALUBINOP(OPNAME, OP, DST, SRC1, SRC2, OFF1, OFF2, DESTOFF, IMM)
\

int do##OPNAME##v(uint8_t DST, uint8_t SRC1, uint8_t SRC2, uint8_t OFF1,
uint8_t OFF2, uint8_t DSTOFF, uint8_t IMM)\

{\
int i;\
uint8_t dsize = pow(2, ((DLARFile[DST].flags & 0xC0)+3));\
uint8_t dtype = DLARFile[DST].flags&0x30; DLARFile[DST].flags &=

0x08;\
if ((typeconvertv(&ALULARA, DST , SRC1, OFF1) == 0) && (

typeconvertv(&ALULARB, DST , SRC2, OFF2) == 0))\
{\

for(i=0;i<2048/dsize;i++)\
{\

switch(dsize)\
{\

case 0x00: switch(dtype)\
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{\
case 0x10: DLARFile[DST].data.

UINTVEC8X256[i] = ALULARA.
data.UINTVEC8X256[i] OP
ALULARB.data.UINTVEC8X256[i
];break;\

case 0x20: DLARFile[DST].data.
INTVEC8X256[i] = ALULARA.
data.INTVEC8X256[i] OP
ALULARB.data.INTVEC8X256[i];
break;\

case 0x30: DLARFile[DST].data.
FLOATVEC8X256[i] = (
float64_t)((int64_t)ALULARA.
data.FLOATVEC8X256[i] OP (
int64_t)ALULARB.data.
FLOATVEC8X256[i]);break;\

} break;\
case 0x40: switch(dtype)\
{\

case 0x10: DLARFile[DST].data.
UINTVEC16X128[i] = ALULARA.
data.UINTVEC16X128[i] OP
ALULARB.data.UINTVEC16X128[i
];break;\

case 0x20: DLARFile[DST].data.
INTVEC16X128[i] = ALULARA.
data.INTVEC16X128[i] OP
ALULARB.data.INTVEC16X128[i
];break;\

case 0x30: DLARFile[DST].data.
FLOATVEC16X128[i] = (
float64_t)((int64_t)ALULARA.
data.FLOATVEC16X128[i] OP (
int64_t)ALULARB.data.
FLOATVEC16X128[i]);break;\

} break;\
case 0x80: switch(dtype)\
{\

case 0x10: DLARFile[DST].data.
UINTVEC32X64[i] = ALULARA.
data.UINTVEC32X64[i] OP
ALULARB.data.UINTVEC32X64[i
];break;\

case 0x20: DLARFile[DST].data.
INTVEC32X64[i] = ALULARA.
data.INTVEC32X64[i] OP
ALULARB.data.INTVEC32X64[i];
break;\

case 0x30: DLARFile[DST].data.
FLOATVEC32X64[i] = (
float64_t)((int64_t)ALULARA.
data.FLOATVEC32X64[i] OP (
int64_t)ALULARB.data.
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FLOATVEC32X64[i]);break;\
} break; case 0xC0: switch(dtype)\
{\

case 0x10: DLARFile[DST].data.
UINTVEC64X32[i] = ALULARA.
data.UINTVEC64X32[i] OP
ALULARB.data.UINTVEC64X32[i
];break;\

case 0x20: DLARFile[DST].data.
INTVEC64X32[i] = ALULARA.
data.INTVEC64X32[i] OP
ALULARB.data.INTVEC64X32[i];
break;\

case 0x30: DLARFile[DST].data.
FLOATVEC64X32[i] = (
float64_t)((int64_t)ALULARA.
data.FLOATVEC64X32[i] OP (
int64_t)ALULARB.data.
FLOATVEC64X32[i]);break;\

} break;\
}\

}\
return 0;\

}\
else \
{return 1;}\

}\

//A Sub-Macro for resolving typing
#define DLAROPTYPV(DST, OFF, OP)\
switch(dsize)\
{\

case SZ8:\
switch(dtype)\
{\
case TUINT:\

DLAROPDOV(UINTVEC8X256 ,DST, OFF, OP)\
break;\

case TINT:\
DLAROPDOV(INTVEC8X256 ,DST, OFF, OP)\
break;\

case TFLOAT:\
DLAROPDOV(FLOATVEC8X256 ,DST, OFF, OP) \
break;\

}\
break;\
case SZ16:\

switch(dtype)\
{\

case TUINT:\
DLAROPDOV(UINTVEC16X128 ,DST, OFF, OP)\
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break;\
case TINT:\

DLAROPDOV(INTVEC16X128 ,DST, OFF, OP)\
break;\

case TFLOAT:\
DLAROPDOV(FLOATVEC16X128 ,DST, OFF, OP) \
break;\

}\
break;\
case SZ32: \

switch(dtype)\
{\

case TUINT:\
DLAROPDOV(UINTVEC32X64 ,DST, OFF, OP)

break;\
case TINT:\

DLAROPDOV(INTVEC32X64 , DST, OFF, OP)
break;\

case TFLOAT:\
DLAROPDOV(FLOATVEC32X64 , DST, OFF, OP)

break;\
}\

break;\
case SZ64: \

switch(dtype)\
{\

case TUINT:\
DLAROPDOV(UINTVEC64X32 , DST, OFF, OP)

break;\
case TINT:\

DLAROPDOV(INTVEC64X32 , DST, OFF, OP)
break;\

case TFLOAT:\
DLAROPDOV(FLOATVEC64X32 , DST, OFF, OP)

break;\
}\

break;\
}\

//A Sub-Macro for setting up operation typing; scalar operation version
#define DLAROPTYPS(OFF1, OFF2, DST, DSTOFF, OP)\
switch(dsize)\
{\

case SZ8:\
switch(dtype)\
{\
case TUINT:\

DLAROPDOS(UINT8, UINTVEC8X256 , OP, OFF1, OFF2,
DST, DSTOFF)\

break;\
case TINT:\

DLAROPDOS(INT8, INTVEC8X256 , OP, OFF1, OFF2, DST
, DSTOFF)\
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break;\
case TFLOAT:\

DLAROPDOS(FLOAT8, FLOATVEC8X256 , OP, OFF1, OFF2,
DST, DSTOFF) \

break;\
}\

break;\
case SZ16:\

switch(dtype)\
{\

case TUINT:\
DLAROPDOS(UINT16, UINTVEC16X128 , OP,

OFF1, OFF2, DST, DSTOFF)\
break;\

case TINT:\
DLAROPDOS(INT16, INTVEC16X128 , OP, OFF1,

OFF2, DST, DSTOFF)\
break;\

case TFLOAT:\
DLAROPDOS(FLOAT16, FLOATVEC16X128 , OP,

OFF1, OFF2, DST, DSTOFF)\
break;\

}\
break;\
case SZ32: \

switch(dtype)\
{\

case TUINT:\
DLAROPDOS(UINT32, UINTVEC64X32 , OP, OFF1

, OFF2, DST, DSTOFF) break;\
case TINT:\

DLAROPDOS(INT32, INTVEC32X64 , OP, OFF1,
OFF2, DST, DSTOFF) break;\

case TFLOAT:\
DLAROPDOS(FLOAT32, FLOATVEC32X64 , OP,

OFF1, OFF2, DST, DSTOFF) break;\
}\

break;\
case SZ64: \

switch(dtype)\
{\

case TUINT:\
DLAROPDOS(UINT64, UINTVEC64X32 , OP, OFF1

, OFF2, DST, DSTOFF) break;\
case TINT:\

DLAROPDOS(INT64, INTVEC64X32 , OP, OFF1,
OFF2, DST, DSTOFF) break;\

case TFLOAT:\
DLAROPDOS(FLOAT64, FLOATVEC64X32 , OP,

OFF1, OFF2, DST, DSTOFF) break;\
}\

break;\
}\
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//This actually performs the operation once the types are set up - just
saves some typing...

//MAY not need to pass OFF in, but better safe than eaten by the
preprocessor.

#define DLAROPDOV(TYP, DST, OFF, OP)\
DLARFile[DST].data.TYP[OFF] = ALULARA.data.TYP[OFF] OP ALULARB.data.TYP[

OFF];\

#define DLAROPDOS(STYP, VTYP, OP, OFF1, OFF2, DST, DSTOFF)\
DLARFile[DST].data.VTYP[DSTOFF] = (ALURegA.data.STYP) OP (ALURegB.data.

STYP);\

Listing A.6: memops.h
// memops.h
// Macros for Data Memory Operations

//These are inherently vector operations...
//TYP is the mnemonic type (a number+letter)
//ETYP is the encoded type (a number)

//Store copies data between LARs, while manipulates the tags
#define STOP(TYP, ETYP, DST, SRC1, SRC2, OFF1, OFF2, DESTOFF, IMM)\
int doSTORE##TYP(uint8_t DST, uint8_t SRC1, uint8_t SRC2, uint8_t OFF1,

uint8_t OFF2, uint8_t DESTOFF, uint8_t IMM)\
{\
int address;\
ADDRCALC(DST, SRC1, SRC2, OFF1, OFF2, DESTOFF, IMM)\
DLARFile[DST].addr=address;\
DLARFile[DST].flags=ETYP | ((DLARFile[SRC1].flags & DIRTYMASK));\
typeconvertv(&DLARFile[DST], DST , SRC1, OFF1);\
}\

#define LDOP(TYP, ETYP, DST, SRC1, SRC2, OFF1, OFF2, DESTOFF, IMM)\
int doLOAD##TYP(uint8_t DST, uint8_t SRC1, uint8_t SRC2, uint8_t OFF1,

uint8_t OFF2, uint8_t DESTOFF, uint8_t IMM)\
{\
int address;\
ADDRCALC(DST, SRC1, SRC2, OFF1, OFF2, DESTOFF, IMM)\
DLARFile[DST].addr=address;\
DLARFile[DST].flags=ETYP;\
int i;\
if(ETYP==0x10)\

for(i=0;i<256;i++)\
{\

DLARFile[DST].data.UINTVEC8X256[i]=RAMFile[address+i];\
}\

else if(ETYP==0x50)\
for(i=0;i<128;i++)\
{\

DLARFile[DST].data.UINTVEC16X128[i]=RAMFile[address+i];\
}\

else if(ETYP==0x90)\
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for(i=0;i<64;i++)\
{\

DLARFile[DST].data.UINTVEC32X64[i]=RAMFile[address+i];\
}\

else if(ETYP==0xD0)\
for(i=0;i<32;i++)\
{\

DLARFile[DST].data.UINTVEC64X32[i]=RAMFile[address+i];\
}\

else if(ETYP==0x20)\
for(i=0;i<256;i++)\
{\

DLARFile[DST].data.INTVEC8X256[i]=RAMFile[address+i];\
}\

else if(ETYP==0x60)\
for(i=0;i<128;i++)\
{\

DLARFile[DST].data.INTVEC16X128[i]=RAMFile[address+i];\
}\

else if(ETYP==0xC0)\
for(i=0;i<64;i++)\
{\

DLARFile[DST].data.INTVEC32X64[i]=RAMFile[address+i];\
}\

else if(ETYP==0xE0)\
for(i=0;i<32;i++)\
{\

DLARFile[DST].data.INTVEC64X32[i]=RAMFile[address+i];\
}\

else if(ETYP==0x30)\
for(i=0;i<256;i++)\
{\

DLARFile[DST].data.FLOATVEC8X256[i]=RAMFile[address+i];\
}\

else if(ETYP==0x70)\
for(i=0;i<128;i++)\
{\

DLARFile[DST].data.FLOATVEC16X128[i]=RAMFile[address+i
];\

}\
else if(ETYP==0xB0)\

for(i=0;i<64;i++)\
{\

DLARFile[DST].data.FLOATVEC32X64[i]=RAMFile[address+i];\
}\

else if(ETYP==0xF0)\
for(i=0;i<32;i++)\
{\

DLARFile[DST].data.FLOATVEC64X32[i]=RAMFile[address+i];\
}\

}\

//A special macro for calculating addresses with LARK's weird-ass
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addressing mode
// This should probably do a bounds check against RAMSZ
#define ADDRCALC(DST, SRC1, SRC2, OFF1, OFF2, DESTOFF, IMM)\
int srctyp=DLARFile[SRC2].flags&TYPMASK;\
switch(DLARFile[(SRC2)].flags & WDSZMASK)\
{\

case SZ8:\
switch(srctyp)\
{\

case TUINT:\
address= (DLARFile[SRC1].addr + DLARFile

[(SRC2)].data.UINTVEC8X256[(OFF2)]+
(IMM*pow(2, ((DLARFile[DST].flags &
WDSZMASK)+3)))); break;\

case TINT:\
address= (DLARFile[SRC1].addr + DLARFile

[(SRC2)].data.INTVEC8X256[(OFF2)]+ (
IMM*pow(2, ((DLARFile[DST].flags &
WDSZMASK)+3)))); break;\

case TFLOAT:\
address= (DLARFile[SRC1].addr + DLARFile

[(SRC2)].data.FLOATVEC8X256[(OFF2)]+
(IMM*pow(2, ((DLARFile[DST].flags &
WDSZMASK)+3)))); break;\

}\
break;\
case SZ16:\

switch(srctyp)\
{\

case TUINT:\
address= (DLARFile[SRC1].addr + DLARFile

[(SRC2)].data.UINTVEC16X128[(OFF2)]+
(IMM*pow(2, ((DLARFile[DST].flags &
WDSZMASK)+3)))); break;\

case TINT:\
address= (DLARFile[SRC1].addr + DLARFile

[(SRC2)].data.INTVEC16X128[(OFF2)]+
(IMM*pow(2, ((DLARFile[DST].flags &
WDSZMASK)+3)))); break;\

case TFLOAT:\
address= (DLARFile[SRC1].addr + DLARFile

[(SRC2)].data.FLOATVEC16X128[(OFF2)
]+ (IMM*pow(2, ((DLARFile[DST].flags
& WDSZMASK)+3)))); break;\

}\
break;\
case SZ32:\

switch(srctyp)\
{\

case TUINT:\
address= (DLARFile[SRC1].addr + DLARFile

[(SRC2)].data.UINTVEC32X64[(OFF2)]+
(IMM*pow(2, ((DLARFile[DST].flags &
WDSZMASK)+3)))); break;\
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case TINT:\
address= (DLARFile[SRC1].addr + DLARFile

[(SRC2)].data.INTVEC32X64[(OFF2)]+ (
IMM*pow(2, ((DLARFile[DST].flags &
WDSZMASK)+3)))); break;\

case TFLOAT:\
address= (DLARFile[SRC1].addr + DLARFile

[(SRC2)].data.FLOATVEC32X64[(OFF2)]+
(IMM*pow(2, ((DLARFile[DST].flags &
WDSZMASK)+3)))); break;\

}\
break;\
case SZ64: \

switch(srctyp)\
{\

case TUINT:\
address= (DLARFile[SRC1].addr + DLARFile

[(SRC2)].data.UINTVEC64X32[(OFF2)]+
(IMM*pow(2, ((DLARFile[DST].flags &
WDSZMASK)+3)))); break;\

case TINT:\
address= (DLARFile[SRC1].addr + DLARFile

[(SRC2)].data.INTVEC64X32[(OFF2)]+ (
IMM*pow(2, ((DLARFile[DST].flags &
WDSZMASK)+3)))); break;\

case TFLOAT:\
address= (DLARFile[SRC1].addr + DLARFile

[(SRC2)].data.FLOATVEC64X32[(OFF2)]+
(IMM*pow(2, ((DLARFile[DST].flags &
WDSZMASK)+3)))); break;\

}\
break;\

}\
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Appendix B lark1.aik

Listing B.1: lark1.aik

;I had a confusion with the aliasing , so just replicating with regexes
...

;Yah, there are a lot of DLARS in this design...
.const 0 L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17

L18 L19 L20 L21 L22 L23 L24 L25 L26 L27 L28 L29 L30 L31 L32 L33 L34
L35 L36 L37 L38 L39 L40 L41 L42 L43 L44 L45 L46 L47 L48 L49 L50 L51
L52 L53 L54 L55 L56 L57 L58 L59 L60 L61 L62 L63 L64 L65 L66 L67 L68
L69 L70 L71 L72 L73 L74 L75 L76 L77 L78 L79 L80 L81 L82 L83 L84 L85
L86 L87 L88 L89 L90 L91 L92 L93 L94 L95 L96 L97 L98 L99 L100 L101
L102 L103 L104 L105 L106 L107 L108 L109 L110 L111 L112 L113 L114
L115 L116 L117 L118 L119 L120 L121 L122 L123 L124 L125 L126 L127
L128 L129 L130 L131 L132 L133 L134 L135 L136 L137 L138 L139 L140
L141 L142 L143 L144 L145 L146 L147 L148 L149 L150 L151 L152 L153
L154 L155 L156 L157 L158 L159 L160 L161 L162 L163 L164 L165 L166
L167 L168 L169 L170 L171 L172 L173 L174 L175 L176 L177 L178 L179
L180 L181 L182 L183 L184 L185 L186 L187 L188 L189 L190 L191 L192
L193 L194 L195 L196 L197 L198 L199 L200 L201 L202 L203 L204 L205
L206 L207 L208 L209 L210 L211 L212 L213 L214 L215 L216 L217 L218
L219 L220 L221 L222 L223 L224 L225 L226 L227 L228 L229 L230 L231
L232 L233 L234 L235 L236 L237 L238 L239 L240 L241 L242 L243 L244
L245 L246 L247 L248 L249 L250 L251 L252 L253 L254 L255;

;LOADs
LOAD8U dst src1 src2 imm := 0x44:8 dst:8 src1:8 src2:8 imm:32;
LOAD16U dst src1 src2 imm := 0x45:8 dst:8 src1:8 src2:8 imm:32;
LOAD32U dst src1 src2 imm := 0x46:8 dst:8 src1:8 src2:8 imm:32;
LOAD64U dst src1 src2 imm := 0x47:8 dst:8 src1:8 src2:8 imm:32;
LOAD8I dst src1 src2 imm := 0x48:8 dst:8 src1:8 src2:8 imm:32;
LOAD16I dst src1 src2 imm := 0x49:8 dst:8 src1:8 src2:8 imm:32;
LOAD32I dst src1 src2 imm := 0x4A:8 dst:8 src1:8 src2:8 imm:32;
LOAD64I dst src1 src2 imm := 0x4B:8 dst:8 src1:8 src2:8 imm:32;
LOAD8F dst src1 src2 imm := 0x4C:8 dst:8 src1:8 src2:8 imm:32;
LOAD16F dst src1 src2 imm := 0x4D:8 dst:8 src1:8 src2:8 imm:32;
LOAD32F dst src1 src2 imm := 0x4E:8 dst:8 src1:8 src2:8 imm:32;
LOAD64F dst src1 src2 imm := 0x4F:8 dst:8 src1:8 src2:8 imm:32;

;Stores
STORE8U dst src1 src2 imm := 0x54:8 dst:8 src1:8 src2:8 imm:32;
STORE16U dst src1 src2 imm := 0x55:8 dst:8 src1:8 src2:8 imm:32;
STORE32U dst src1 src2 imm := 0x56:8 dst:8 src1:8 src2:8 imm:32;
STORE64U dst src1 src2 imm := 0x57:8 dst:8 src1:8 src2:8 imm:32;
STORE8I dst src1 src2 imm := 0x58:8 dst:8 src1:8 src2:8 imm:32;
STORE16I dst src1 src2 imm := 0x59:8 dst:8 src1:8 src2:8 imm:32;
STORE32I dst src1 src2 imm := 0x5A:8 dst:8 src1:8 src2:8 imm:32;
STORE64I dst src1 src2 imm := 0x5B:8 dst:8 src1:8 src2:8 imm:32;
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STORE8F dst src1 src2 imm := 0x5C:8 dst:8 src1:8 src2:8 imm:32;
STORE16F dst src1 src2 imm := 0x5D:8 dst:8 src1:8 src2:8 imm:32;
STORE32F dst src1 src2 imm := 0x5E:8 dst:8 src1:8 src2:8 imm:32;
STORE64F dst src1 src2 imm := 0x5F:8 dst:8 src1:8 src2:8 imm:32;

;ALU Operations
ADDs dst src1 src2 off1 off2 destoff imm := 0x80:8 dst:8 src1:8 src2:8

off1:8 off2:8 destoff:8;
SUBs dst src1 src2 off1 off2 destoff imm := 0x81:8 dst:8 src1:8 src2:8

off1:8 off2:8 destoff:8;
MULs dst src1 src2 off1 off2 destoff imm := 0x82:8 dst:8 src1:8 src2:8

off1:8 off2:8 destoff:8;
DIVs dst src1 src2 off1 off2 destoff imm := 0x83:8 dst:8 src1:8 src2:8

off1:8 off2:8 destoff:8;
MODs dst src1 src2 off1 off2 destoff imm := 0x84:8 dst:8 src1:8 src2:8

off1:8 off2:8 destoff:8;
ANDs dst src1 src2 off1 off2 destoff imm := 0x85:8 dst:8 src1:8 src2:8

off1:8 off2:8 destoff:8;
ORs dst src1 src2 off1 off2 destoff imm := 0x86:8 dst:8 src1:8 src2:8

off1:8 off2:8 destoff:8;
XORs dst src1 src2 off1 off2 destoff imm := 0x87:8 dst:8 src1:8 src2:8

off1:8 off2:8 destoff:8;
NOTs dst src1 src2 off1 off2 destoff imm := 0x88:8 dst:8 src1:8 src2:8

off1:8 off2:8 destoff:8;
SLLs dst src1 src2 off1 off2 destoff imm := 0x89:8 dst:8 src1:8 src2:8

off1:8 off2:8 destoff:8;
SRAs dst src1 src2 off1 off2 destoff imm := 0x8A:8 dst:8 src1:8 src2:8

off1:8 off2:8 destoff:8;
SRLs dst src1 src2 off1 off2 destoff imm := 0x8B:8 dst:8 src1:8 src2:8

off1:8 off2:8 destoff:8;
SLTs dst src1 src2 off1 off2 destoff imm := 0x8C:8 dst:8 src1:8 src2:8

off1:8 off2:8 destoff:8;

ADDv dst src1 src2 off1 off2 destoff imm := 0xA0:8 dst:8 src1:8 src2:8
off1:8 off2:8 destoff:8;

SUBv dst src1 src2 off1 off2 destoff imm := 0xA1:8 dst:8 src1:8 src2:8
off1:8 off2:8 destoff:8;

MULv dst src1 src2 off1 off2 destoff imm := 0xA2:8 dst:8 src1:8 src2:8
off1:8 off2:8 destoff:8;

DIVv dst src1 src2 off1 off2 destoff imm := 0xA3:8 dst:8 src1:8 src2:8
off1:8 off2:8 destoff:8;

MODv dst src1 src2 off1 off2 destoff imm := 0xA4:8 dst:8 src1:8 src2:8
off1:8 off2:8 destoff:8;

ANDv dst src1 src2 off1 off2 destoff imm := 0xA5:8 dst:8 src1:8 src2:8
off1:8 off2:8 destoff:8;

ORv dst src1 src2 off1 off2 destoff imm := 0xA6:8 dst:8 src1:8 src2:8
off1:8 off2:8 destoff:8;

XORv dst src1 src2 off1 off2 destoff imm := 0xA7:8 dst:8 src1:8 src2:8
off1:8 off2:8 destoff:8;

NOTv dst src1 src2 off1 off2 destoff imm := 0xA8:8 dst:8 src1:8 src2:8
off1:8 off2:8 destoff:8;

SLLv dst src1 src2 off1 off2 destoff imm := 0xA9:8 dst:8 src1:8 src2:8
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off1:8 off2:8 destoff:8;
SRAv dst src1 src2 off1 off2 destoff imm := 0xAA:8 dst:8 src1:8 src2:8

off1:8 off2:8 destoff:8;
SRLv dst src1 src2 off1 off2 destoff imm := 0xAB:8 dst:8 src1:8 src2:8

off1:8 off2:8 destoff:8;
SLTv dst src1 src2 off1 off2 destoff imm := 0xAC:8 dst:8 src1:8 src2:8

off1:8 off2:8 destoff:8;

;Flow control

;SEL is actually the same as ARITH, but interpreted a little differently
.

SEL op dst src1 src2 off1 off2 destoff imm:=0xC0:8 dst:8 src1:8 src2:8
off1:8 off2:8 destoff:8 imm:8;

; How the HELL do call and return get shoveled into the not-ILAR stuff
...

CALL;
RETURN;

;using 00 as an opcode is a little sketch, but it is the one required
for boostraping

FETCH dest src1 src2 num imm := 0x00:8 dest:8 src1:8 src2:8 num:4 imm
:28;
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Appendix C larc

Listing C.1: larcast.g
/* LARC Compiler
* Paul S. Eberhart , 2011-04-15
* Borrows somewhat from the MIMDC interpreter by Hank Dietz and

Will Cohen
* and the (C++ mode) public domain (Terrence Parr/Randy McRee/Tory

Eneboe) ANSI C grammar provided as an example.
* Implements a C-like language to target a LAR-based architecture

*/

#header <<
#include <sys/types.h>
#include <math.h>
#include <string.h>
#define TOKBUF 24

//A datastructure for the attributes

typedef struct
{

// 1 for int, 2 for float, 3 for literal... 0 is a debug case
int typ;
union {float f; int i; char t[TOKBUF];} value;

} Attrib;

#define AST_FIELDS Attrib data;

//#define zzcr_ast(ast,attr,tok,text) memcpy(&(ast->data), attr, sizeof
(*attr));

#define zzcr_ast(ast,attr,tok,text) ast->data.value = *attr.value; ast->
data.typ=*attr.typ;

>>

//LARC Predefined tokens

//Types
#token UINT_8T "t_8u"
#token UINT_16T "t_16u"
#token UINT_32T "t_32u"
#token UINT_64T "t_64u"
#token INT_8T "t_8i"
#token INT_16T "t_16i"
#token INT_32T "t_32i"
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#token INT_64T "t_64i"
#token FLOAT_8T "t_8f"
#token FLOAT_16T "t_16f"
#token FLOAT_32T "t_32f"
#token FLOAT_64T "t_64f"
#token UINTVEC8X256 "v_8u256"
#token UINTVEC16X128 "v_16u128"
#token UINTVEC32X64 "v_32u64"
#token UINTVEC64X32 "v_64u32"
#token INTVEC8X256 "v_8i256"
#token INTVEC16X128 "v_16i128"
#token INTVEC32X64 "v_32i64"
#token INTVEC64X32 "v_64i32"
#token FLOATVEC8X256 "v_8f256"
#token FLOATVEC16X128 "v_16f128"
#token FLOATVEC32X64 "v_32f64"
#token FLOATVEC64X32 "v_64f32"

//Operators
#token ASSIGN "="
#token EQUAL "=="
#token LESSTHAN "\<"
#token PLUS "\+"
#token MINUS "\-"
#token STAR "\*"
#token DIVIDE "/"
#token MOD "\%"
#token BITWISEOR "\|"
#token BITWISEXOR "^"
#token AMPERSAND "&"
#token NOT "\~"
#token RTSHIFT "\<\<"
#token LFTSHIFT "\>\>"

//Keywords
#token RETURN "return"
#token WHILE "while"
#token IF "if"
#token ELSE "else"

//Misc. Tokens and classes of literal
#token LCURLYBRACE "\{"
#token RCURLYBRACE "\}"
#token LPAREN "\("
#token RPAREN "\)"
#token SEMICOLON ";"
#token OCTALINT "0[0-7]*{[uUlL]}"
#token DECIMALINT "[1-9][0-9]*{[uUlL]}"
#token HEXINT "(0x|0X)[0-9a-fA-F]+{[uUlL]}"
#token FNUM1 "[0-9]+.[0-9]*{[Ee]{\+|\-}[0-9]+}"

//<< val.data.f = atof(zzlextext); >>
#token FNUM2 "[1-9][0-9]*[Ee]{\+|\-}[0-9]+"

//<< val.f = atof(zzlextext); >>
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#token FNUM3 ".[0-9]+{[Ee]{\+|\-}[0-9]+}"
//<< val.data.f = atof(zzlextext); >>

#token "'" << zzmode(CHARACTERS); zzmore(); >>
#token "\"" << zzmode(STRINGS); zzmore(); >>
#token IDENTIFIER "[a-zA-Z_][a-zA-Z0-9_]*"

//Whitespace and such
#token Eof "@"
#token SPACE "[\ ]+" <<zzskip();>>
#token TAB "[\t]+" <<zzskip();>>
#token NEWLINE "[\n]" << zzskip(); zzline++; >>

//Comments
#token "\/\*" << zzmode(COMMENTS); zzskip(); >>
#token "\/\/" <<zzmode(SLCOMMENT); zzskip();>>
#lexclass SLCOMMENT
#token "~[\n]" <<zzskip();>>
#token "[\n]" <<zzmode(START); zzskip(); zzline++;>>

#lexclass COMMENTS
#token "[\n\r]" << zzskip(); zzline++; >>
#token "~[\n]" <<zzskip();>>
#token "\*\/" << zzmode(START); zzskip (); >>
#token "\/\*" << zzskip(); >>
#token "~[\*\n\r]+" << zzskip(); >>

#lexclass STRINGS

#token STRING "\"" << zzmode(STRINGS); >>
#token "\\n" << zzreplchar ((char) 0x0A); zzmore(); >>
#token "\\t" << zzreplchar ((char) 0x09); zzmore(); >>
#token "\\v" << zzreplchar ((char) 0x0B); zzmore(); >>
#token "\\b" << zzreplchar ((char) 0x08); zzmore(); >>
#token "\\r" << zzreplchar ((char) 0x0D); zzmore(); >>
#token "\\f" << zzreplchar ((char) 0x0C); zzmore(); >>
#token "\\a" << zzreplchar ((char) 0x07); zzmore(); >>
#token "\\\\" << zzreplchar ((char) 0x5C); zzmore(); >>
#token "\\?" << zzreplchar ((char) 0x3F); zzmore(); >>
#token "\\'" << zzreplchar ((char) 0x27); zzmore(); >>
#token "\\\"" << zzreplchar ((char) 0x22); zzmore(); >>
#token "\\0[0-7]*" << zzreplchar ((char) strtol (zzbegexpr+1, NULL, 8));

zzmore(); >>
#token "\\[1-9][0-9]*" << zzreplchar ((char) strtol (zzbegexpr+1, NULL,

10)); zzmore(); >>
#token "\\(0x|0X)[0-9a-fA-F]+" << zzreplchar ((char) strtol (zzbegexpr
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+1, NULL, 16)); zzmore(); >>
#token "[\n\r]" << zzline++; zzmore(); >>
#token "~[\"\n\r\\]+" << zzmore(); >>

#lexclass CHARACTERS

//Deal with escaped characters.
#token CHARACTER "'" << zzmode(START); >>
#token "\\n" << zzreplchar((char) 0x0A); zzmore(); zzmode(DONE); >>
#token "\\t" << zzreplchar((char) 0x09); zzmore(); zzmode(DONE); >>
#token "\\v" << zzreplchar((char) 0x0B); zzmore(); zzmode(DONE); >>
#token "\\b" << zzreplchar((char) 0x08); zzmore(); zzmode(DONE); >>
#token "\\r" << zzreplchar((char) 0x0D); zzmore(); zzmode(DONE); >>
#token "\\f" << zzreplchar((char) 0x0C); zzmore(); zzmode(DONE); >>
#token "\\a" << zzreplchar((char) 0x07); zzmore(); zzmode(DONE); >>
#token "\\\\" << zzreplchar((char) 0x5C); zzmore(); zzmode(DONE); >>
#token "\\?" << zzreplchar((char) 0x3F); zzmore(); zzmode(DONE); >>
#token "\\'" << zzreplchar((char) 0x27); zzmore(); zzmode(DONE); >>
#token "\\\"" << zzreplchar((char) 0x22); zzmore(); zzmode(DONE); >>
#token "\\0[0-7]*" << zzreplchar((char) strtol (zzbegexpr+1, NULL, 8));

zzmore(); zzmode(DONE); >>
#token "\\[1-9][0-9]*" << zzreplchar((char) strtol (zzbegexpr+1, NULL,

10)); zzmore(); zzmode(DONE); >>
#token "\\(0x|0X)[0-9a-fA-F]+" << zzreplchar((char) strtol (zzbegexpr+1,

NULL, 16)); zzmore(); zzmode(DONE); >>
#token "[\n\r]" << zzline++; zzmore(); >>
#token "~['\n\r\\]" << zzmore(); zzmode(DONE); >>

#lexclass DONE

#lexclass START

//C Preamble
<<
/* Stuff for the printing of ASTs */
void show(tree)
AST *tree;
{

printf("[");
switch(tree->data.typ)
{
case 1: printf("%d", tree->data.value.i); break;
case 2: printf("%f", tree->data.value.f); break;
case 3: printf("%s", tree->data.value.t); break;
default: printf("%s", tree->data.value.t); break;
}
printf(",%d] ",tree->data.typ);

}
void before() { printf(" ("); }
void after() { printf(") "); }
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zzcr_attr(Attrib *attr, int token, char *text)
{

switch(token)
{

//Floats
case FNUM1:
case FNUM2:
case FNUM3: attr->value.f = atof(text); attr->typ = 2;

break;
//Ints
case OCTALINT:
case HEXINT:
case DECIMALINT: attr->value.i = atoi(text); attr->typ =

1; break;
//String data
case STRING: strcpy(attr->value.t,text); attr->typ = 3;

break;
default: strcpy(attr->value.t, text); attr->typ = -1;

}
}

zzd_attr(Attrib* attr)
{

if ((attr->typ == 3) && (attr!=NULL))
{

free(attr); attr=NULL;
}

}

/*
larcast(AST *t, Attrib *a, int tok, char *text)
{

//Make a copy of the Attrib for the tree
memcpy(t->data ,a, sizeof(*a));

}
*/

AST *root = NULL;
//A Main
main()
{

printf("Calling ANTLR\n");
ANTLR(prog(&root), stdin);
printf("Input accepted! \n");
printf("Printing tree, format is [Token,Type], parens indicate

nesting.\n");
zzpre_ast(root,show,before,after);
printf("\n");

}

>>

prog: (decl)* (func)* "@" <<printf("Recognized program \n");>>
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;

//The LARC type system is kind of complicated , becuase it supports every
native type on the LARK1 spec, including native-width vectors.

typ: UINT_8T | UINT_16T | UINT_32T | UINT_64T |
INT_8T | INT_16T | INT_32T | INT_64T |
FLOAT_8T | FLOAT_16T | FLOAT_32T | FLOAT_64T |
UINTVEC8X256 | UINTVEC16X128 | UINTVEC32X64 | UINTVEC64X32 |
INTVEC8X256 | INTVEC16X128 | INTVEC32X64 | INTVEC64X32 |
FLOATVEC8X256 | FLOATVEC16X128 | FLOATVEC32X64 | FLOATVEC64X32

;

//Declarations of functions vs. variables are factored strangely to
avoid ambiguity

decl:
typ (IDENTIFIER) (vardec | func)

;

//Later, specifers will be needed to be able to do I/O and suchlike.
For now type id (name)*

vardec:
(","IDENTIFIER)* ";"
<<printf("Found a declaration\n");>>

;

//Right now a totally empty function is OK
func: "\(" {typ IDENTIFIER ( "," typ IDENTIFIER)*} "\)" stat
<<printf("Found a function definition\n");>>
;

stat:
"\{"(decl)* (stat)* "\}" |
RETURN { expr } ";"|
WHILE "\(" expr "\)" stat |
IF "\(" expr "\)" stat { ELSE stat } |
expr ";" |
";"

;

//Handles Expressions , Broken down by type. Order = precedence , trying
to match K&R C where convienent.

// PSE20110505: This was in here for some reason I can't fathom... (","
assign_e)

// PSE20120131 -- Derp. That is the comma operator.
Replaced.

expr: assign_e ("," assign_e)*
;

//Initalizing native vector with "v_8u256 a = [0,1,2,3,4];" should do
some counting

// - make sure it fits and pad extras with 0?
assign_e: or_e {"="^ expr}
;
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or_e: xor_e ("\|"^ xor_e)*
;

xor_e: and_e ("^"^ and_e)*
;

and_e: rel_e ("&"^ rel_e)*
;

rel_e: shft_e (("<"^ | "=="^) shft_e)*
;

//How is the arithmetic v. logical right context handled?
shft_e: addsub_e (("\<\<"^ | "\>\>"^) addsub_e)*
;

addsub_e: muldiv_e (("\+"^ | "\-"^) muldiv_e)*
;

muldiv_e: neg_e (("\*"^ | "/"^ | "\%"^) neg_e)*
;

neg_e: "\~"^ neg_e
| cast_e

;

//This is going to be ugly behind the scenes -- vector-to-vector casts!
cast_e: {"\(" typ "\)"} primary_e
;

primary_e: IDENTIFIER | num | vec
;

//The many sorts of constant are down here.
num: (int_c | float_c)
;

int_c: OCTALINT | DECIMALINT | HEXINT
;

float_c: FNUM1 | FNUM2 | FNUM3
;

//Doing the two separtately has an obvious prefix problem with "["
// Requires user to put at least one value in there to tag type.
vec: "\[" ((int_c)+ | (float_c)+) "\]";
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