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ABSTRACT OF DISSERTATION 
 
 
 

THE EFFECTS OF FORM OF SELENIUM ON THE BOVINE CORPUS 
LUTEUM, UTERINE ENDOMETRIUM, AND DEVELOPMENT OF THE 

CONCEPTUS 
 

Widespread regions of the southeast United States have soils deficient in selenium 
(Se), necessitating Se supplementation to cattle grazing in these areas. Adequate dietary Se 
is required for optimal immune function, growth, and fertility. In forages, Se is 
predominantly found in the organic form (OSe), which is known to increase bioavailability. 
However, the inorganic form (ISe) is typically found in commercial mineral mixes. We 
previously reported that supplementation with an isomolar 1:1 mix (MIX) of ISe (sodium 
selenite, Prince Se Concentrate; Prince Agri Products, Inc., Quincy, IL) and OSe (SEL-
PLEX, Alltech Inc., Nicholasville, KY) increases early luteal phase concentrations of 
progesterone (P4) above that in cows on ISe or OSe alone. Research has demonstrated that 
increased early luteal phase P4 advances embryonic development. A series of experiments 
were performed to investigate the effect of form of supplemental Se on 1) the early bovine 
corpus luteum and 2) the uterine endometrium and conceptus at maternal recognition of 
pregnancy. The objective of Experiment 1 was to investigate the effect of form of 
supplemental Se on the transcriptome of the bovine corpus luteum (CL) with the goal of 
elucidating form of Se-regulated luteal processes affecting fertility. Results indicated that 
MIX-supplemented cows had increased mRNA abundance of transcripts regulating 
cholesterol biosynthesis and increased CL content of several immune-response transcripts 
compared to cows supplemented with ISe alone. These results suggest that the MIX-
induced increase in early luteal phase P4 is due to an increase in cholesterol availability 
and that the form of dietary Se affects immune function of the CL. Experiment 2 examined 
the effect of form of supplemental Se on the uterine endometrium and conceptus 
development at maternal recognition of pregnancy. The objective was to determine 
changes induced by the form of supplemental Se on the bovine endometrium and 
developing conceptus on day 17 of pregnancy. Form of supplemental Se differentially 
affected the transcriptome of the uterine endometrium at maternal recognition of 
pregnancy, resulting in form-induced effects on embryonic length. Combining the results 
from both experiments, supplemental Se in the MIX versus ISe form alters the 
transcriptome of the bovine CL on day 7 of the estrous cycle, the transcriptome of the 
uterine endometrium at maternal recognition of pregnancy and advances embryonic 
development. In conclusion, incorporating Se into a mineral supplementation strategy as 
MIX is an easy transition for producers that can ultimately increase the fertility levels in 
their herds. An increase in fertility can cause a shift in the calving distribution, leading to 
more calves born earlier in the season and subsequently calves are older and heavier at 
weaning, ultimately leading to increased profit potential. 

 
KEYWORDS: Selenium, Corpus luteum, Progesterone, Endometrium, Conceptus 
development 
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CHAPTER 1. Introduction 

 
The selenium (Se) content of soils varies with type, texture, organic matter 

content and precipitation (Mehdi and Dufrasne, 2016). Likewise, the Se content of 

forages varies with the type of feed, the soil type, and the region (Mehdi and Dufrasne, 

2016). In the United States, the distribution of Se content of grains and forages varies 

greatly in different geographical regions (Ammerman and Miller, 1975). The majority of 

producers in the southeast, including Kentucky, have forages and grains that are low 

(<0.05 ppm) to variable (~50% contain >0.1 ppm) in Se (Ammerman and Miller, 1975). 

Therefore, it is not unexpected that producers in the southeast have the highest proportion 

of cattle classified as Se-deficient compared to other geographical regions (Dargatz and 

Ross, 1996). In cattle, deficiencies in Se have been demonstrated to decrease immunity 

(Erskine et al., 1989), growth (Gleed et al., 1983), and fertility (McClure et al., 1986).  

Cattle grazing Se-deficient forages necessitates the need to provide supplemental 

Se to these animals. The suggested dietary requirement of Se for beef cattle is at 0.1 ppm 

(National Academies of Sciences and Medicine, 2016). The FDA has approved both 

inorganic (ISe) and organic (OSe) forms of Se for beef cattle production (FDA, 2020). In 

the feed industry Se is commonly supplemented as ISe. However, the bioavailability of 

Se is significantly higher for OSe than ISe (Khanam and Platel, 2016).  

Another challenge faced by many cattle producers is a high percentage of early 

embryonic loss which can have a detrimental impact on the profit potential for both beef 

and dairy operations. In cattle, fertilization rates are between 90 and 100%, when semen 

of known high fertility is used in artificial insemination (Diskin et al., 2006; Diskin and 

Morris, 2008). However, it has been reported that only 50 to 60% of beef cows 
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inseminated remain pregnant by day 30 (Bridges et al., 2013). More specifically, it is 

estimated that 70-80% of the embryonic loss occurs between day 8 and 16 after 

insemination (Sreenan and Diskin, 1986). 

Lower concentrations of progesterone (P4) during the early luteal phase after 

artificial insemination have been associated with lower conception rates (Mann and 

Lamming, 1999). In contrast, increased concentrations of P4 immediately following 

conception have been associated with advanced conceptus elongation (Carter et al., 2008) 

and increased interferon tau (IFNT) production (Mann and Lamming, 2001). IFNT 

inhibits development of the endometrial luteolytic mechanism required for the pulsatile 

release of prostaglandin F2α (PGF2α), thereby ensuring continued production of P4 by the 

corpus luteum (CL) (Spencer et al., 2007). 

Our lab has previously reported increased early concentrations of P4 in cows 

supplemented with a 1:1 combination of ISe:OSe (MIX) compared to cows supplemented 

with OSe or ISe alone on days 6 (Cerny et al., 2016b) and 7 (Carr et al., 2020) of the 

estrous cycle. However, to our knowledge, studies regarding the mechanism of form of 

Se-induced increased concentrations of early luteal phase P4 or effects on the uterine 

endometrium and conceptus have not been reported. The specific goals and objectives of 

this dissertation are stated in Chapter 4. 
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CHAPTER 2. Literature Review 

 

2.1. Selenium Supplementation of Cattle 

 

The basic element selenium (Se) was discovered by Swedish chemist, Berzelius in 

1817 (Johansson et al., 2005) and named, Selene, after the Greek goddess of the moon 

(Shini et al., 2015). Selenium was initially considered a toxin because it was responsible 

for a disorder in livestock that grazed the plains of the Nebraska and Dakota territories 

(Hatfield et al., 2014). In the 1930’s, it was reported that foot and hair disorders occurring 

in animals grazing in these areas resulted from the animal’s consumption of seleniferous 

plants with high levels of Se accumulated from the soil (Franke, 1934). Up to 1957 Se 

was regarded as a toxin, until it was found to prevent liver necrosis in rats (Sohwarz and 

Foltz, 1958). It has become clear that Se is toxic at high levels, but considered an 

essential dietary micronutrient at low levels (Hatfield et al., 2014). However, there is a 

narrow range between dietary adequacy and toxicity (Shini et al., 2015). 

 

2.1.1. Selenium Deficiency 

 

In soils, the Se content varies with type, texture, organic matter content and 

precipitation (Mehdi and Dufrasne, 2016). Likewise, the Se content of forages varies with 

the type of feed, the soil type, and the region (Mehdi and Dufrasne, 2016). Similarly, 

additional research has shown a wide range (0.23 to 2.663 ppm) of Se in a variety of 

feedstuffs (Perry et al., 1976). Moreover, within a type of feedstuff, Se content ranged 
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from 0.017 to 0.219 ppm in 12 samples of shelled corn (Perry et al., 1976). The variation 

of Se content within shelled corn alone presents many challenges with respect to 

supplementation with Se, as it is a common feed ingredient used in livestock production.  

In the United States, the distribution of Se content of grains and forages varies 

greatly in different geographical regions (Ammerman and Miller, 1975). The majority of 

producers in the southeast, including Kentucky, have forages and grains that are low 

(<0.05 ppm) to variable (~50% contain >0.1 ppm) in Se (Ammerman and Miller, 1975). 

Therefore, it is not unexpected that producers in the southeast have the highest proportion 

of cattle classified as Se-deficient compared to other geographical regions (Dargatz and 

Ross, 1996).  Interestingly, survey results from the same study indicated that more 

producers located in the southeast U.S. were providing supplemental Se to their herds 

compared to other regions (Dargatz and Ross, 1996).  

Research has demonstrated that dietary Se is essential for an optimum immune 

response (Arthur et al., 2003). In cattle, deficiencies in Se have been demonstrated to 

decrease immunity (Erskine et al., 1989), growth (Gleed et al., 1983), and fertility 

(McClure et al., 1986), with supplementation of a Se-enriched yeast reported to improve 

growth performance, immune function, and antioxidant status in newly received cattle 

(Sgoifo Rossi et al., 2017). 

 

2.2. Supplemental Selenium 

 

Cattle grazing Se-deficient forages necessitates the need to provide supplemental 

Se to these animals. The suggested dietary requirement of Se for beef cattle is at 0.1 ppm 
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(National Academies of Sciences and Medicine, 2016). Additionally, the FDA has 

determined a maximum Se supplementation rate of 0.3 ppm in feed and a daily maximum 

intake not to exceed 3 mg Se per head (FDA, 2020). Common mineral supplementation 

methods include ad-libitum access to loose minerals, pressed blocks, liquid supplements, 

and molasses-based tubs (Greene, 2000). However, it appears that Se supplementation is 

not consistent in maintaining or achieving adequate concentrations of Se in whole blood 

(Dargatz and Ross, 1996). The study by Dargatz and Ross (1996), found that over 16% of 

cattle sampled were considered severely deficient (whole blood Se content <0.05 ppm) 

even though supplemental Se was provided (Dargatz and Ross, 1996). Patterson et al. 

(2013) also reported a wide variation in ad libitum mineral intake, ranging from 18.8 to 

106.5 g/day. The authors reported a mean mineral consumption of 54.00 ± 7.43 g/day, 

which is 36% less than the typical formulation intake expectations of 85 g/day (Patterson 

et al., 2013). Perhaps the variation in ad libitum mineral intake reported by Patterson et 

al. (2013) could explain the proportion of cattle considered Se deficient by Dargatz and 

Ross (1996) even though supplemental Se was provided.  

The FDA has approved both inorganic and organic forms of Se for beef cattle 

production (FDA, 2020). In the inorganic form, Se can be present as sodium selenite and 

sodium selenate (Suzuki, 2005). In the feed industry, sodium selenite is the most common 

supplemental form (Podoll et al., 1992). However, sodium selenate is absorbed ten-fold 

better by plants than sodium selenite (Terry et al., 2000). Organic forms of Se include 

selenomethionine (SeMet) and selenocysteine (SeCys), and are the two most common 

ones in forages (Mehdi and Dufrasne, 2016). The bioavailability of Se is significantly 

higher for organic forms than inorganic forms (Khanam and Platel, 2016). As reviewed 
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by Daniels (1996), organic Se is more effective at raising blood Se than sodium selenite 

or sodium selenate. Sulfur present in methionine and cysteine is substituted by Se to form 

SeMet and SeCys, respectively (Mehdi and Dufrasne, 2016). Commercially available 

sources of organic Se include specially cultivated strains of yeast (Saccharomyces 

cerevisiae) and are available from several manufacturers (e.g., SEL-PLEX, Alltech, KY, 

USA). In these Se enriched yeasts, SeMet is the predominant form of Se (Korhola et al., 

1986).  

 

2.2.1. Inorganic Se 

 

Sodium selenite and sodium selenate are well known inorganic sources of Se 

(Suzuki, 2005).  The absorption rates of sodium selenite and sodium selenate differ when 

added to a milk-based infant formula, 73.4% and 97.1% respectively, and the mean 

urinary excretion also differs between sodium selenite (9.7%) and sodium selenate 

(36.4%) (Van Dael et al., 2002). Therefore, the mean apparent retention of Se from 

sodium selenite (63.7%) or sodium selenate (60.7%) is comparable (Van Dael et al., 

2002). Sodium selenite and selenate can be reduced simply to selenide as demonstrated in 

Figure 2.1 (Suzuki, 2005) and the amount not immediately converted into SeCys is 

methylated and excreted (Sgoifo Rossi et al., 2017). However, selenite is readily reduced 

to selenide by glutathione, while selenate requires more reducing conditions (Suzuki, 

2005). Selenide of selenite and selenate origin are taken up differently by the liver and 

utilized for synthesizing selenoprotein P and cellular glutathione peroxidase (Suzuki, 

2005). Supplemental Se as sodium selenate or sodium selenite supports normal serum 
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concentrations of Se and glutathione peroxidase activities in lambs, horses, and lactating 

dairy cows (Podoll et al., 1992). However, the efficiency of absorption of Se varies 

greatly between ruminants and nonruminants (Romero-Pérez et al., 2010). In sheep, 

absorption of Se was 34% compared to 85% in swine when administered orally (Mahan 

et al., 1999). This low absorption rate in ruminants is believed to occur from the 

reduction of dietary Se to insoluble forms in the rumen environment (Spears, 2003). 

Additionally, inorganic Se may not be readily stored, but remains in a separate pool and 

is utilized for the immediate synthesis of functional selenoproteins (Daniels, 1996). 

 

2.2.2. Organic Se I: Selenomethionine  

 

Organic Se, specifically SeMet, is more bioavailable than inorganic Se (Daniels, 

1996; Khanam and Platel, 2016). Selenomethionine can be nonspecifically substituted for 

methionine (Met) in a large number of proteins, especially skeletal muscle protein, and 

skeletal muscle SeMet incorporated in this manner represents 40-50% of the total body 

Se pool (Daniels, 1996). In plants, the predominant form of Se exists as SeMet 

(Mangiapane et al., 2014). Since the chemical and physical properties of Se and sulfur are 

similar, plants tend to synthesize SeMet when Se is available, as they cannot distinguish 

between Se and sulfur (Lyons et al., 2007). Additionally, SeMet is the predominant form 

of Se in organic Se-enriched yeasts, as previously mentioned (Korhola et al., 1986). 

Interestingly, animals and humans are unable to synthesize SeMet as they have no 

efficient mechanism for Met synthesis (Schrauzer, 2000). However, exogenous sources 

of SeMet can be incorporated in its intact form into proteins by the same AUG codon as 
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that to the Met codon without distinguishing between SeMet and Met (Suzuki, 2005). 

Proteins containing Se in the form of SeMet are called Se-containing proteins, but not 

selenoproteins (Suzuki, 2005). Interestingly, only SeMet is incorporated into body 

proteins, which allows Se to be stored in the organism and reversibly released by normal 

metabolic processes (Schrauzer, 2000). Ingested SeMet can be absorbed in the small 

intestine via the Na+-dependent neutral amino acid transport system (Vendeland et al., 

1994). However, several transporter systems have been proposed to be involved in Se 

uptake (Cousins and Liuzzi, 2018). As illustrated in Figure 2.1, after absorption, SeMet 

can be incorporated into proteins to replace the methionine, or catabolized and the Se can 

be utilized to synthesize SeCys (Sgoifo Rossi et al., 2017). SeMet is transformed to 

SeCys through the trans-selenation pathway (Suzuki, 2005). The SeCys formed is then 

degraded further into the liver to serine and selenide (Schrauzer, 2000). Selenide is either 

used for selenoprotein synthesis or methylated and exhaled or excreted as shown in 

Figure 2.1 (Schrauzer, 2000). 

 

2.2.3. Organic Se II: Selenocysteine 

  

Selenocysteine is a major form of Se in the cell and is the 21st naturally occurring 

amino acid (Labunskyy et al., 2014). SeCys is a cysteine (Cys) residue analogue with a 

Se-containing selenol group in place of the sulfur-containing thiol group in Cys 

(Johansson et al., 2005). Proteins containing Se in the form of SeCys are called 

selenoproteins (Suzuki, 2005). SeCys is present as an amino acid residue in 

selenoproteins in plants and animals and is incorporated into amino acid sequences of 
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selenoproteins by the specific codon to SeCys residue, UGA (Suzuki, 2005). In animal 

tissues, the principal chemical form of Se is SeCyst (Mangiapane et al., 2014). Unlike 

SeMet, animals are able to endogenously synthesize SeCys from inorganic Se (Daniels, 

1996). The pKa for SeCys is lower than for Cys, 5.2 versus 8.3, respectively (Huber and 

Criddle, 1967). Consequently, at physiological pH, the selenol of SeCys is mainly in its 

anionic selenolate form, making SeCys significantly more reactive than Cys (Johansson 

et al., 2005). SeCys is required for Se-dependent enzyme functions (Khanam and Platel, 

2016). The majority of characterized selenoproteins are enzymes and their SeCys residue 

is essential for the catalytic activity (Johansson et al., 2005). As reviewed in 1996 and 

shown in Figure 2.1, SeCys does not accumulate and the Se is released by SeCys β lyase 

to be reduced to selenide and becomes available for selenoprotein synthesis in the liver 

(Daniels, 1996). Biosynthesis of SeCys represents the main regulatory point for 

selenoprotein biosynthesis and not absorption as occurs with many nutrients (Shini et al., 

2015). 

 

2.3. Selenoprotein Synthesis 

 

The biological effects of Se are largely mediated by selenoproteins (Labunskyy et 

al., 2014) and are present in all three domains of life: eubacteria, archaebacteria and 

eukaryotes (Böck et al., 1991; Hatfield et al., 2014; Labunskyy et al., 2014). 

Approximately 100 selenoprotein families have been discovered (Hatfield et al., 2014). 

However, there are 25 genes encoding selenoproteins in humans (Hatfield et al., 2014; 

Labunskyy et al., 2014) and approximately half of these genes code for proteins with 
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known functions (Kryukov et al., 2003; Hatfield et al., 2014). Although the specific 

functions of selenoproteins are diverse, the principal function is their participation in 

redox homeostasis (Hatfield et al., 2014). 

Selenoproteins contain Se in the form of SeCys being a Cys-analogue with a Se 

atom replacing the sulfur atom in Cys (Johansson et al., 2005). There are no known 

human or animal functionally active selenoproteins that contain SeMet (Shini et al., 

2015) and all selenoproteins contain at least one SeCys (Labunskyy et al., 2014). The 

codon for incorporating SeCys residues is UGA, which is the stop codon in general 

(Suzuki, 2005). A unique feature of SeCys is that is has its own tRNA (Labunskyy et al., 

2014) and is the only known tRNA that controls the expression of an entire class of 

proteins (Hatfield et al., 2014). Since the biosynthesis of SeCys occurs on its tRNA and 

the SeCys moiety is synthesized from serine, the SeCys tRNA molecule is designated as 

SeCys-tRNA[Ser]SeCys  (Hatfield et al., 1994; Hatfield et al., 2006; Hatfield et al., 2014).  

There are five components required for the translation of UGA codon to SeCys 

residue in selenoproteins (Suzuki, 2005). This includes two cis-sequences, a SeCys-

insertion sequence (SECIS) element, a SeCys codon (UGA) in the coding region and 

three trans-acting factors, a SeCys-specific translation elongation factor (eEFSeCys), the 

SeCys SeCystRNA, and a SECIS-binding protein (SBP2) (Suzuki, 2005; Hatfield et al., 

2006; Labunskyy et al., 2014) as shown in Figure 2.2. The SECIS elements in the 3’-

untranslated region of selenoprotein mRNAs are responsible for recoding the UGA 

codeword as SeCys and bypassing stop (Hatfield et al., 2006). Additionally, essential 

functions of SBP2 include binding to the SECIS core, binding to the ribosome, and 
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insertion of SeCys into selenoprotein (Hatfield et al., 2006). Finally, expression of 

selenoproteins is differentially regulated by Se availability (Labunskyy et al., 2014).  

 

2.4. Effects of Supplemental Se on Cattle Reproduction 

 

Supplementing dairy cows during the pre- and postpartum periods with a Se-

enriched yeast increased postpartum plasma concentrations of progesterone (P4) 

compared to providing no supplemental Se (Kamada, 2017). Importantly, it has been 

reported that postpartum concentrations of P4 are positively correlated with conception 

rate (Inskeep, 2004). Similarly, our lab has previously reported increased early 

concentrations of P4 in cows supplemented with a 1:1 combination (MIX) of inorganic 

Se and organic Se (SEL-PLEX; Alltech, Inc., Nicholasville, KY, USA) compared to 

cows supplemented with inorganic Se alone on days 6 (Cerny et al., 2016b) and 7 (Carr et 

al., 2020) of the estrous cycle. Lower concentrations of P4 during the early luteal phase 

after artificial insemination have been associated with lower conception rates (Mann and 

Lamming, 1999).  

Additionally, providing supplemental Se has demonstrated to reduce the incidence 

of metritis and ovarian cysts (Wilde, 2006) and to increase first service pregnancy rates 

(McClure et al., 1986) in dairy cattle. Moreover, supplementing dairy cattle with organic 

Se increased second-service pregnancy rates compared to inorganic Se (Thatcher et al., 

2010). This increase in fertility could be attributed to the reduction in early embryonic 

death (Mehdi and Dufrasne, 2016). 
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2.5. Corpus Luteum 

 

Corpora lutea were first identified in rabbits in 1573 by Volcherus Coiter (Asdell, 

1928). Latin for “yellow body,” corpora lutea were named by Marcello Malpighi in 1689 

and first accurately described by Regnier de Graff in 1672 (Asdell, 1928; Smith et al., 

1994; Niswender et al., 2000). De Graaf described them as globular bodies that formed 

only after coitus (Asdell, 1928) and appeared on the ovary and remained there until after 

parturition (Niswender et al., 2000). Moreover, de Graaf observed that the number of 

corpora lutea was related to the number of offspring (Asdell, 1928; Short, 1977; Di 

Renzo et al., 2020) and that removal of the ovaries during pregnancy caused parturition in 

cows (Di Renzo et al., 2020). Similarly, Frankel found that removing ovaries or corpora 

lutea from pregnant rabbits resulted in abortion or resorption of the embryos, as reviewed 

by Niswender et al. (2000).  

For nearly 150 years, it was believed that corpora lutea formed only after coitus. 

However, Home in 1817 found that corpora lutea are present on the ovaries of virgins 

(Asdell, 1928). Interestingly, Prenant and Born in 1898 suggested that the CL is 

responsible for secretions that support the early embryo and facilitates the implantation 

process in the uterus (Corner, 1974). Nearly 30 years later, the term “progestin” was 

proposed to describe the substance produced by the CL that exerts “pro-gestation” 

activity (Allen and Corner, 1929; Corner and Allen, 1929; Allen, 1930). Virtually 

simultaneously, four research groups, including Butenandt and Westphal, Slotta, 

Hartmann and Wettstein, and Corner and Allen, purified and crystallized the luteal factor 

produced by the CL (Smith et al., 1994; Niswender et al., 2000; Di Renzo et al., 2020). 
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Finally, in 1935 the luteal factor being referred to generically as “corpus luteum 

hormone,” was agreed to be named “progesterone” (for progestational steroidal ketone) 

(Allen et al., 1935; Allen, 1970). 

 

2.5.1. Luteal Development 

 

The CL in ruminants and other mammals contains specific hormone-producing 

luteal cells along with several other cell types (O'Shea, 1987). Steroidogenic luteal cells 

include both small and large luteal cells (Hansel et al., 1987). Other cell types identified 

in the CL include fibroblasts, endothelial cells and pericytes (Farin et al., 1986; Hansel et 

al., 1991). Non-steroidogenic luteal cells including macrophages and endothelial cells, 

along with the capillary system account for approximately 14% of the volume and just 

over half (53%) of the cells in the mature bovine CL (Parry et al., 1980; O'Shea et al., 

1989). Additionally, fibroblasts are classically associated with the structural component 

of a tissue (Fields and Fields, 1996) and are approximately 6% of the total volume of the 

bovine CL (O'Shea et al., 1989). 

Corpora lutea are a continuation of follicular maturations and form after ovulation 

from the remaining follicular cells (Smith et al., 1994). The theca and granulosa cells of 

the follicle differentiate into the small and large luteal cells, respectively (Donaldson and 

Hansel, 1965; Alila and Hansel, 1984; Niswender et al., 1986). The preovulatory surge of 

luteinizing hormone (LH) causes differentiation of follicular cells into luteal cells, a 

process known as luteinization (Schams and Berisha, 2004; Stocco et al., 2007). 

Luteinization is characterized by increased steroid production, a switch from producing 



14 
 

estradiol (E2) to progesterone (P4) and of enzymes responsible for these changes 

(Juengel and Niswender, 1999).  

 

2.5.2. Luteinization 

 

In follicular cells, the activation of the LH receptor (LH-R) by the LH surge 

causes ovulation and rapidly initiates a program of terminal differentiation of the 

ovulated follicle into a CL through a process known as luteinization (Stocco et al., 2007). 

Luteinization involves the transition of a periovulatory follicle into a highly vascular CL 

capable of secreting large quantities of P4 (Smith et al., 1994). The granulosa layer is 

thrown into folds about the follicular antrum and theca cells are borne into the developing 

CL by invasion of connective tissue and vascular tissue at these folds (Murphy, 2000). 

The reprogramming of follicular cells into luteal cells is irreversible and requires exit 

from the cell cycle (Murphy, 2000; Stocco et al., 2007). Activation of the LH-R is 

coupled to the stimulatory guanine nucleotide binding protein Gs and signals to adenylyl 

cyclase to increase cyclic AMP (cAMP) and activate cAMP-dependent protein kinase A 

(PKA) (Richards, 2001). Once PKA is activated, its catalytic unit moves to the nucleus 

where it phosphorylates numerous transcription factors (Stocco et al., 2007).  

Altering cellular responsiveness to external signals, allowing luteal cells to 

respond to a new set of hormones, is one of the more important changes during 

luteinization (Stocco et al., 2007). The LH surge causes silencing of the follicle 

stimulating hormone receptor (FSH-R), a transient decline in the LH-R, and sustained 

stimulation of the prolactin (PRL) receptor (PRL-R) in some species, such as mice and 
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rats (Stocco et al., 2007). However, prolactin does not appear to be essential for normal 

luteal function during the estrous cycle in cows and ewes (Niswender et al., 2000). 

Additionally, within 6 h following the LH surge, there is a transient increase in P4 

receptor (PR) mRNA in the granulosal layer of the bovine periovulatory follicle (Cassar 

et al., 2002; Jo et al., 2002). Although the LH induction of PR in granulosa cells is a 

central event in ovulation, its role in luteinization is not clear (Stocco et al., 2007). 

Interestingly, PR-null mice treated with gonadotropin are able to form CL, which contain 

trapped oocytes (Lydon et al., 1996). Furthermore, the LH surge causes a shift in the 

expression of the estrogen receptor (ER) from predominately ERβ to Erα, with levels of 

ERα found at levels 10-fold higher in the CL (Telleria et al., 1998). 

 

2.5.3. Steroidogenic Cells 

 

2.5.3.1. Steroidogenic Cells: Small Luteal Cells 

 

As mentioned earlier, small luteal cells originate from thecal cells (Donaldson and 

Hansel, 1965). Small luteal cells are less than 23 µm in diameter, comprise 26% of the 

luteal cells and 28% of the CL volume (Fields and Fields, 1996). In addition, small luteal 

cells are more numerous than large luteal cells and can be identified by their elongated 

shape using light microscopy (O'Shea et al., 1979; Farin et al., 1986). These cells are 

known for low basal production of P4 that when stimulated with LH responds with 

increased secretion of P4 (Hansel and Dowd, 1986). The magnitude of LH-stimulated 

secretion of P4 is greater in small versus large luteal cells (Smith et al., 1994). 
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Interestingly, most of the LH receptors are located on the small luteal cells 

(Schams and Berisha, 2004). The LH receptors are coupled to the PKA second messenger 

pathway which stimulates many components of the synthetic pathway for P4 as 

demonstrated in Fig. 2.3 (Niswender et al., 2007). Simulating small luteal cells stimulated 

with LH or analogs of cyclic AMP can increase the secretion of P4 by as much as 20-fold 

(Fitz et al., 1982). However, as highlighted in Fig. 2.3, activation of the protein kinase C 

(PKC) pathway in small luteal cells inhibits LH-stimulated secretion of P4 (Wiltbank et 

al., 1991).  

 

2.5.3.2. Steroidogenic Cells: Large Luteal Cells 

 

As one would expect, large luteal cells have a diameter (24-45 µm) that is larger 

compared to small luteal cells (Fields and Fields, 1996). Using light microscopy, large 

luteal cells appear spherical or polyhedral and the nucleus appears rounded (Niswender et 

al., 2007). Although large luteal cells comprise only 3% of all luteal cells, they account 

for approximately 40% of the volume of the CL (O'Shea et al., 1989). In contrast to small 

luteal cells, large luteal cells do not respond to LH (Alila et al., 1988). However, they are 

the steroidogenic cells that secrete oxytocin (Fields et al., 1992). This production of 

oxytocin from large luteal cells occurs during the estrous cycle, but not during the post-

implantation period of pregnancy, and indicates the role of this oxytocin is for luteal 

regression (Fields et al., 1992).   

The basal secretion rates of P4 by large luteal cells are 10- to 20-fold higher than 

small luteal cells on a per cell basis (Fitz et al., 1982). Importantly, large luteal cells are 
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responsible for 80% of the total production of P4 by the CL (Niswender et al., 1985). 

Interestingly, it has been suggested there are at least two populations of secretory 

granules: one, containing oxytocin, of the estrous cycle, and one of the post-implantation 

period, with unknown contents (Fields et al., 1992). It has been suggested that PKC does 

not play an essential role in large luteal cells as made evident by the failure of 

phospholipase C to stimulate the synthesis of P4, whereas the synthesis of P4 was 

stimulated after phospholipase C was added to small luteal cells (Alila et al., 1988). 

However, stimulating large luteal cells with prostaglandin F2α (PGF2α) activates the PKC 

second messenger pathway which inhibits the synthesis of P4 (Wiltbank et al., 1991; 

Juengel and Niswender, 1999). In contrast, prostaglandin E2 (PGE2) has been shown to 

increase production of P4 from luteal cells in cows and sheep (Fitz et al., 1984a; Fitz et 

al., 1984b; Alila et al., 1988; Shelton et al., 1990; Bennegård-Edén et al., 1995). There 

are multiple types of receptors for PGE2 that are linked to different second messenger 

systems (Narumiya, 1997), that ultimately lead to increased synthesis of P4 (Niswender 

et al., 2000). 

Receptors for growth hormone (GH) are located mainly on large luteal cells (Lucy 

et al., 1993). As reviewed by Schams and Berisha (2004), research has demonstrated that 

GH stimulates the secretion of P4 and oxytocin by bovine CL in vitro and supports the 

development of the CL in vivo. Moreover, GH may influence luteal function indirectly by 

increasing expression of IGF-I, which may stimulate secretion of P4 through 

modification of the cytoskeleton (Niswender et al., 2000). In addition, studies have 

shown that GH is a more powerful stimulator of the production of PGF2α and P4 in the 

early bovine CL than LH (Kobayashi et al., 2001). Furthermore, in contrast to small 
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luteal cells, large luteal cells of ewes, pigs, cows, and humans, increased synthesis of P4 

in response to luteotropins such as PGI2, PGE2, GH, and IGF-I is not mediated through 

increased activation of PKA  

 

2.5.4. Angiogenesis 

 

As discussed earlier, changes that occur during CL formation include the 

differentiation of follicular cells to luteal cells, tissue remodeling and growth, a switch in 

steroidogenesis, and increasing production of P4 (Robinson et al., 2007). However, in 

order to meet these demands, the growth of blood vessels and establishment of a blood 

supply (angiogenesis) is essential (Niswender et al., 2000). The development of 

capillaries from preexisting blood vessels is essential for the formation and function of 

the CL (Fraser et al., 2000; Reynolds et al., 2000). The extent of angiogenesis within the 

CL reaches a maximum within 2-3 days after ovulation (Reynolds et al., 2000). Each 

luteal cell is in direct contact with several capillaries (Stocco et al., 2007), giving the CL 

one of the highest rates of blood flow, per unit of tissue, of any adult organ as reviewed 

by (Reynolds et al., 2000). 

Angiogenesis is a complex process, a delicate balance between promoters and 

inhibitors, and precise control in the ovary is critical for normal luteal function (Schams 

and Berisha, 2004). Several important promoters of angiogenesis include vascular 

endothelial growth factor A (VEGFA), acidic and basic fibroblast growth factor (FGF-1 

and FGF-2), insulin like growth factors (IGF-1 and IGF-2) and angiopoietins (ANPT-1 

and ANPT-2) (Schams and Berisha, 2004). The mRNA expression of VEGF and its 
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receptor are highest in the early luteal phase of angiogenesis (Neuvians et al., 2004). 

However, data suggest that FGF2 plays a more important role in the initiation of 

angiogenesis post-ovulation, while VEGFA plays a more constitutive role in maintaining 

the development of developing capillaries/blood vessels (Robinson et al., 2007). 

Interestingly, LH increased the production of FGF2 both in vivo and in vitro (Robinson et 

al., 2007). Additionally, secreted protein, acidic, cysteine-rich (SPARC) was present at 

constant levels throughout the development of the CL and works with VEGFA in the 

maintenance of the vasculature (Robinson et al., 2007). As reviewed by Townson and 

Liptak (2003), monocyte chemoattractant protein-1, a chemokine specific for monocytes 

and T-lymphocytes, is expressed during ovulation and CL formation (Townson and 

Liptak, 2003). It appears that the combined actions of chemokines and leukocytes may 

encourage vascularization during luteal development (Townson and Liptak, 2003). The 

establishment of an inadequate vascular supply to the CL is postulated to have significant 

ramifications on steroid secretion later in the luteal phase (Fraser and Wulff, 2001). 

 

2.5.5. Immune Cell Function in the Corpus Luteum 

 

Immune cells play an active role in controlling the lifespan and function of the CL 

(Penny et al., 1999). During the early luteal phase, production of P4 requires rapid growth 

of the CL which is dependent on angiogenesis (Robinson et al., 2007). Angiogenic 

factors, including VEGF and FGF along with their receptors, are strongly regulated 

during the development of the bovine CL (Neuvians et al., 2004). Additionally, a high 

concentration of interleukin-8 (IL8) is present in the bovine CL during the early luteal 
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phase (Jiemtaweeboon et al., 2011), which effectively stimulates production of P4 in 

bovine luteinizing granulosa cells (Shimizu et al., 2012). Receptors for IL8 include 

CXCR1 and CXCR2 (Shirasuna and Miyamoto, 2017).  

On the contrary, production of P4 is inhibited by tumor necrosis factor α (TNFα), 

gamma-interferon (IFNG) and interleukin 1β (IL-1β) (Pate, 1995). These three cytokines 

are also potent stimulators of prostaglandin production (Pate, 1995). However, research 

indicates that mRNA encoding TNFα is present in the bovine CL before luteolysis (Pate, 

1995). It has also been proposed that TNFα promotes formation of the CL by increasing 

proliferation and steroidogenesis of luteinizing granulosa cells (Yan et al., 1993). 

Luteolytic effects of TNFα and IFNG on human and non-human primate luteal cells also 

involve Fas cell surface death receptor and Fas ligand (Pate et al., 2010). 

 

2.5.6. Luteal Steroidogenesis of Progesterone 

 

The first challenge for a steroid producing cell, including luteal cells, is obtaining 

the precursor, cholesterol (Christenson and Devoto, 2003). A constant supply of 

cholesterol is needed for the synthesis of steroid hormones in the CL (Stocco et al., 

2007). Cholesterol used for steroid synthesis in the ovary may come from de novo 

synthesis or through cellular uptake of lipoprotein cholesterol transported by low (LDL) 

or high (HDL) lipoproteins (Grummer and Carroll, 1988). Additionally, mobilization of 

cholesterol esters contributes to the supply of free cholesterol for steroid synthesis 

(Gwynne and Strauss III, 1982). Producing cholesterol from de novo synthesis typically 

plays a minor role in the normal functioning tissue, as evidenced by low levels of 3-
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hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, the rate-limiting enzyme 

in cholesterol biosynthetic pathway (Gwynne and Strauss, 1982; Grummer and Carroll, 

1988). However, cholesterol from circulating lipoproteins appears to provide the major 

source of substrate used for steroid synthesis (Pate and Condon, 1989). 

The biosynthesis of P4 requires two enzymatic steps; 1) the conversion of 

cholesterol to pregnenalone, catalyzed by P450 side chain cleavage (P450scc) located on 

the inner mitochondrial membrane, and 2) the subsequent conversion of pregnenalone to 

P4, catalyzed by 3β-hydroxysteroid dehydrogenase (3β-HSD) present in the smooth 

endoplasmic reticulum as shown in Fig. 2.3 (Christenson and Devoto, 2003). Cholesterol 

cannot freely diffuse in the cytosol and reach the mitochondria without first binding to 

carrier proteins due to its hydrophobic nature (Stocco et al., 2007). Sterol carrier protein-

2 is considered to play a role in the intracellular movement of cholesterol in steroidogenic 

cells (Seedorf et al., 2000). Once cholesterol has reached the outer mitochondrial 

membrane, it is transported to the inner mitochondrial membrane (Stocco et al., 2007). In 

1994, it was discovered that an LH-induced protein, named steroidogenic acute 

regulatory protein (StAR), is localized in the mitochondria, and allows for the transfer of 

cholesterol to the inner mitochondrial membrane (Clark et al., 1994). There is a very 

tight, positive correlation with StAR protein and steroidogenesis (Manna et al., 2009). 

Additionally, the transport of cholesterol to the inner mitochondrial membrane by StAR 

protein is the rate-limiting step in steroidogenesis (Clark et al., 1994; Manna et al., 2016). 

The expression, activation, and extinction of StAR protein is mediated by PKA, PKC, 

and a host of other signaling pathways (Fig. 2.3) (Stocco and Clark, 1996; Manna et al., 

2009; Manna et al., 2016). Steroidogenesis is mediated by mechanisms that enhance 
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transcription, translation, or the activity of StAR (Manna et al., 2009). Several 

transcription factors including SF-1, C/EBPβ, SREBP-1a, cFOS, GATA-4, Sp-1 and 

CREB family members have been implicated in the transcriptional stimulation of the 

StAR gene (Manna et al., 2003). In contrast, dosage-sensitive sex reversal-adrenal 

hypoplasia congenital region on the X chromosome gene 1 (DAX-1) and forkhead box 

protein L2 (FOXL2) were demonstrated to play key roles in the repression of StAR, by 

binding to a recognition motif found in the promoter region of the StAR gene, and 

serving as a marker for granulosa cell differentiation (Pisarska et al., 2004). The 

preovulatory LH surge results in acquisition of the 3βHSD enzyme by granulosa cells and 

an overall increase in the enzyme activity within corpora lutea, which facilitates high 

rates of P4 biosynthesis (Smith et al., 1994). Progesterone is then thought to diffuse from 

the cell and there is no evidence that P4 can be stored in high quantities in luteal tissue 

(Niswender et al., 2000). After P4 enters the circulation, it is subject to metabolism in the 

blood (Gomes and Erb, 1965). The half-life of P4 has been estimated to be approximately 

30 minutes in cows, 7-8 minutes in the ewe, and only 3-5 minutes in humans as reviewed 

by Gomes and Erb (1965). Additional studies indicate that P4 is converted to androgenic 

substances in the liver and excreted via the bile into the feces (Miller and Turner, 1961, 

1963). 

Hormones that support the growth and/or function of the CL, known as 

luteotropic hormones, include LH, GH, PRL, IGF-1, oxytocin, prostaglandin E2 (PGE2), 

and prostaglandin I2 (PGI2) (Niswender et al., 2000). It seems clear that LH is required to 

maintain normal expression of mRNA, and presumably proteins, encoding StAR, 

P450scc, and 3βHSD (Niswender et al., 2000). Although the pulsatile release of LH is 
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required for luteal development in cattle, pulses of LH are not required for maintenance 

of P4 secretion in cattle (Peters et al., 1994). However, the CL is dependent on LH, as 

research has demonstrated that the removal of the pituitary results in regression of the CL 

(Denamur et al., 1966, 1973; Haworth, 1997). Concentrations of P4 in serum are 

dependent on the amount of steroidogenic tissue, blood flow, and capacity of the 

steroidogenic tissue to synthesize P4 (Niswender et al., 2000). Moreover, the 

steroidogenic capacity of individual luteal cells, and their ability to respond to LH, 

increases during luteal development (Niswender et al., 2000). 

As previously discussed, it is generally accepted that steroidogenic tissues can 

derive cholesterol from circulating lipoproteins that may provide the major source of 

substrate for the synthesis of steroids (Pate and Condon, 1989). However, PGF2α can 

inhibit the utilization of lipoproteins for the synthesis of P4 (Pate and Nephew, 1988). 

Limiting the supply of substrate for steroidogenesis could be one mechanism by which 

PGF2α exerts is luteolytic effect (Pate and Condon, 1989). It has been demonstrated that 

the synthesis of cholesterol and production of P4 is regulated by the availability of 

lipoprotein, which can be inhibited by PGF2α (Pate and Condon, 1989). Additionally, 

PGF2α can suppress de novo sterol synthesis, further limiting the pool of cholesterol that 

would be available for the production of P4 (Pate and Condon, 1989). In fact PGF2α was 

identified as the uterine-derived luteolytic hormone responsible for the regression of the 

CL and cessation of the secretion of progesterone by luteal cells (Schramm et al., 1983). 

 

2.5.7. Luteal Regression 
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Luteolysis is defined as lysis or structural demise of the CL (Niswender et al., 

2000). In the absence of pregnancy, the CL undergoes structural and functional luteolysis 

on days 15-16 and the cycle begins again (Bazer et al., 1998). During normal luteolysis 

there is a loss of the capacity to synthesize and secrete P4 (Miyashita et al., 1994) 

followed by the loss of the cells that comprise the CL (Knickerbocker et al., 1988; Pate, 

1994). As mentioned in the section 2.5.6., PGF2α is the factor from the uterus that 

initiates luteolysis (Schramm et al., 1983). Interestingly, P4 exposure during the early to 

mid-luteal phase of the estrous cycle is essential for initiation of endometrial PGF2α 

production and luteolysis (Bazer et al., 1998). PGF2α enters the ovarian artery from the 

utero-ovarian vein, via a counter current exchange mechanism (Staples and Whylie, 

1984).  

Uterine release of luteolytic PGF2α is regulated primarily by estrogen, P4, and 

oxytocin as reviewed in Bazer et al. (1998). To modulate uterine responses to oxytocin, 

estrogen and P4 regulate oxytocin receptor (OTR) gene expression in the endometrial 

epithelium (McCracken et al., 1984). Endometrial OTR synthesis is blocked for 10 to 12 

days by P4, a phenomenon termed the “progesterone block” to endometrial OTR 

formation (Bazer et al., 1998). However, continuous exposure of the endometrium to P4 

negatively regulates PR expression in the luminal and glandular epithelium (Spencer et 

al., 2004; Spencer et al., 2008b). Without sufficient PR, the endometrial epithelium 

expresses ER, responds to estrogen and up-regulates expression of OTR (Spencer and 

Bazer, 1995; Spencer et al., 1995). Estrogen up-regulates OTR gene expression, while 

oxytocin, acting through OTR, induces pulsatile release of PGF2α (Hixon and Flint, 

1987). PGF2α then initiates a positive-feedback loop involving release of additional luteal 
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oxytocin and PGF2α of both luteal and uterine origin as reviewed by Niswender et al. 

(2000).  

 

2.5.8. Luteal Function 

 

2.5.8.1. Maternal Recognition of Pregnancy 

 

The major role of the CL is the biosynthesis of P4 (Behrman et al., 1971), which 

is required for the maintenance of normal pregnancy in mammals (Niswender et al., 

2000). As discussed earlier, the functional lifespan of the CL is controlled by the release 

of PGF2α from the uterus (Bazer et al., 1998). Maintenance of luteal function in most 

pregnant mammals is dependent upon the interrelationship between the embryo, the 

ovaries, and hypophysis (Moor, 1968). In 1969, Roger Short coined the term “maternal 

recognition of pregnancy” (MRP) and is defined as the process where a chemical signal 

from the conceptus prevents luteolysis caused by the release of PGF2α from the 

endometrium, therefore sustaining secretion of P4 beyond the length of a normal estrous 

cycle (Short, 1969). Later, researchers at the University of Florida determined that the 

MRP signal was interferon tau (IFNT) in ovine (Wilson et al., 1979) and bovine (Lewis 

et al., 1979). The pregnancy recognition signal occurs on day 12 in pigs, days 13-14 in 

sheep, and days 16-17 in cattle (Spencer, 2013). The antiluteolytic effect of IFNT 

produced by the conceptus is the primary cause of the maintenance of the CL in sheep 

and cattle (Thatcher et al., 1995). The oxytocin receptors are blocked by IFNT and as a 

result, the uterus does not produce the pulsatile release of PGF2α initiating luteal 
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regression (Spencer, 2013). Additionally, IFNT may inhibit the action of TNFα and 

oxytocin  and therefore stop the pulsatile release of PGF2α from continuing (Okuda et al., 

2002). The effects of IFNT on the CL and endometrium are further discussed in Section 

1.6. Uterine Function at Maternal Recognition of Pregnancy. 

 

2.5.8.2. Implications of Concentrations of Progesterone 

 

Lower concentrations of P4 during the early luteal phase after artificial 

insemination have been associated with lower conception rates (Mann and Lamming, 

1999). Moreover, low circulating concentrations of P4 in the first week after ovulation 

are associated with under-developed conceptuses (Forde and Lonergan, 2012), 

transcriptomic alterations (Barnwell et al., 2016), and a low likelihood of establishing 

pregnancy (Wiltbank et al., 2016). In contrast, increased concentrations of P4 

immediately following conception has been associated with advanced conceptus 

elongation (Carter et al., 2008) and increased IFNT production (Mann and Lamming, 

2001). Furthermore, embryo quality on day 16 was greater in cows with an earlier 

increase in concentrations of P4 after ovulation (Mann and Lamming, 2001). Artificially 

increasing early luteal-phase concentrations of P4 has been demonstrated to increase 

development of the conceptus (Garrett et al., 1988). Likewise, providing exogenous P4 

between days 3 to 7 post-insemination resulted in increased pregnancy rates (Yan et al., 

2016). 

In the uterus, P4 acts on the endometrium as a differentiation factor (Cummings 

and Yochim, 1984). Progesterone stimulates secretions in the glandular epithelium 
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(Maslar et al., 1986) and changes the patterns of proteins secreted by endometrial cells 

(Maslar et al., 1986). Together, these proteins provide an environment that supports early 

embryonic development (Niswender et al., 2000). The effects of P4 on the uterus will be 

discussed in greater detail in the next section, Uterine Function at Maternal Recognition 

of Pregnancy.  
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2.6. Uterine Function at Maternal Recognition of Pregnancy 

 

2.6.1. Overview 

 

In cattle, fertilization rates are high and between 90 and 100%, when semen of 

known high fertility is used in artificial insemination (Diskin et al., 2006; Diskin and 

Morris, 2008). However, some studies reported that fertilization rates in lactating beef 

cows averaged 75%, with a range of 60 to 100% (Breuel et al., 1993; Santos et al., 2004). 

In comparison, beef heifers showed higher fertilization rates, averaging 88%, with a 

range between 75 and 100% (Maurer and Chenault, 1983; Dunne et al., 2000). However, 

it has been reported that only 50 to 60% of beef cows inseminated remain pregnant by 

day 30 (Bridges et al., 2013). Embryonic losses are defined as those that occur from 

fertilization until day 42 of pregnancy when differentiation and implantation has occurred 

(Santos et al., 2004). Embryonic losses are further divided into two categories and 

classified as early embryonic loss (EEL; fertilization to day 27) and late embryonic loss 

(LEL; day 28 to 42) (Santos et al., 2004). 

Under the heightened physiological demands observed in high producing, 

lactating dairy cows, 20-50% have experienced pregnancy loss during the first week of 

gestation (Wiltbank et al., 2016). It is estimated that 70-80% of the embryonic loss occurs 

between day 8 and 16 after insemination (Sreenan and Diskin, 1986). Similarly, from 

days 8 to 27 of gestation, a period of time encompassing embryo elongation and MRP, 

pregnancy losses average approximately 30% (Wiltbank et al., 2016). Late embryonic 

loss occurs in a smaller percentage of females, ranging from 3 to 14% of beef cows and 
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heifers (Humblot, 2001; Santos et al., 2004; Perry et al., 2005). The loss of pregnancy at 

any stage of gestation has a clear negative impact for the reproductive performance and 

profit potential in beef and dairy operations.  

After hatching from the zona pellucida, blastocysts develop into a tubular form, 

and then elongate on day 15 in cattle, to filamentous conceptuses that occupy much of the 

length of the uterine horn (Spencer et al., 2008b). Progesterone acts on the uterus to 

indirectly stimulate pre-implantation blastocyst growth and elongation (Garrett et al., 

1988; Mann and Lamming, 2001). During this critical window of MRP, the elongating 

conceptus must secrete a chemical signal to signal pregnancy and to prevent uterine 

release of luteolytic pulses of PGF2α and therefore luteal regression (Short, 1969). As 

discussed earlier, IFNT has been identified as the MRP signal in cattle (Lewis et al., 

1979) and occurs around days 16-17 in cattle (Spencer, 2013). This type I interferon is 

exclusively produced by the mononuclear trophectoderm cells of the elongating 

conceptus during the peri-implantation period (Farin et al., 1990). During MRP, the 

conceptus trophectoderm secretes IFNT between days 10 and 21, with maximal 

production on days 14 to 16 (Roberts et al., 1999). IFNT acts in a paracrine manner on 

the endometrium to inhibit development of the endometrial luteolytic mechanism 

required for the pulsatile release of PGF2α, thereby ensuring continued production of P4 

by the CL (Spencer et al., 2007). Specifically, IFNT acts on luminal epithelia and 

superficial glandular epithelia to suppress transcription of ER and OTR (Spencer and 

Bazer, 1996; Fleming et al., 2001), thereby abrogating development of the endometrial 

luteolytic mechanism (Spencer and Bazer, 1995; Spencer et al., 1995; Choi et al., 2001). 

Moreover, the antiestrogenic actions of IFNT prevent estrogen-induced increases in ER 
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and thus PR expression, OTR synthesis, and hence, production of luteolytic pulses of 

PGF2α as detailed in Fig. 2.4 (Spencer and Bazer, 2002).  

Additionally, IFNT increases PGE2 synthase (PGES) in the CL and increases the 

PGE receptor (EP), EP2, in endometrial stroma (Arosh et al., 2004). However, in the 

endometrium, IFNT decreases expression of PGF2α synthase (PGFS) (Arosh et al., 2004) 

and high concentrations of IFNT stimulate PGE2 production or increase its production 

relative to PGF2α (Parent et al., 2003). This key alteration leads to an increase in the 

PGES to PGFS ratio in the endometrium, suggesting that although levels of expression of 

PGES and PGFS are the same in a given tissue, prostaglandin biosynthesis would be 

favorably directed toward PGE2, rather than PGF2α  (Arosh et al., 2004). PGE2 is 

considered a luteoprotective or luteotrophic mediator at the time of MRP (Pratt et al., 

1977; Magness et al., 1981) and it is well known that PGE2 stimulates luteal secretion of 

P4 in small luteal cells by increasing cAMP (Hansel and Blair, 1996). Additionally, IFNT 

stimulates a number of genes in a cell-specific manner within the endometrium that are 

implicated in uterine receptivity and conceptus development (Spencer et al., 2007), and 

will be discussed in more detail in Section 2.6.3  

Successful pregnancy in mammals requires both a viable embryo and a receptive 

endometrium (Walker et al., 2010). Synchronous signaling between the endometrium and 

embryo during the pre-implantation period is critical for normal embryo development, 

implantation of the embryo, and placentation (Wolf et al., 2003). Uterine receptivity has 

been shown to be dependent on P4 (Mansouri-Attia et al., 2009). Additionally, uterine 

factors include enzymes, cytokines, growth factors, ions, hormones, glucose, transport 

proteins, and adhesion molecules, collectively termed “histotroph,” have been shown to 
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be mainly synthesized by the endometrial glands (Martal et al., 1997). Research has 

indicated that P4-induced changes in endometrial gene expression leads to changes in the 

composition of histotroph that are required for post-hatching conceptus survival and 

growth (Spencer et al., 2008a). The importance of histotroph for conceptus development 

was demonstrated in the uterine gland knockout (UGKO) model in sheep in which 

embryos fail to develop beyond the blastocyst stage in adult UGKO ewes (Spencer and 

Gray, 2006). 

The early embryo is nourished by histotroph from the uterine glands which are 

located in the intercaruncular endometrium (ICAR) (Atkinson et al., 1984). While, small 

aglandular caruncular (CAR) areas of stromal origin are scattered over the endometrium 

surface (Mansouri-Attia et al., 2009). The CAR and ICAR areas encompass two distinct 

endometrial zones, with apparent differences in structure and biological functions 

(Mansouri-Attia et al., 2009). The endometrial glands of the ICAR areas have been 

shown to be crucial for the development of the conceptus (Gray et al., 2001). Whereas the 

CAR areas are present in the cyclic endometrium and they fuse with the fetal cotyledons 

to form placentomes in the pregnant animals (Atkinson et al., 1984). During this pivotal 

time period encompassing MRP, failure or delays in trophoblast elongation and/or 

embryonic development result in loss of pregnancy possibly due to suboptimal histotroph 

(Wiltbank et al., 2016). 

Pregnancy also represents an immunological contradiction, in that the 

immunologically foreign embryo is able to form a close physical relationship with the 

maternal endometrium that lasts throughout pregnancy (Walker et al., 2010). 

Interestingly, apposition, adhesion, and invasion processes are thought to be controlled by 
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the endometrium (von Rango, 2008). The fact that an embryo can survive in the presence 

of the maternal immune system has led to the hypothesis that the uterus is an 

immunologically privileged site (Bainbridge, 2000). The immune response to pregnancy 

may be one of the key regulators of pregnancy maintenance, and deregulation of the 

immune response may be responsible, at least in part, for the large number of pregnancy 

losses that occur near the time of MRP (Walker et al., 2010). 

 

2.6.2. Progesterone Induced Changes 

 

Progesterone is the hormone of pregnancy and unequivocally required in all 

mammals for maternal support of conceptus survival and development (Spencer and 

Bazer, 2002). The actions of P4 are mediated by PR (Spencer and Bazer, 2002). 

Progesterone stimulates and maintains endometrial functions necessary for conceptus 

growth, implantation, placentation, and development to term (Bazer, 1975; Bazer et al., 

1979; Spencer and Bazer, 2002; Spencer et al., 2004). Heifers and ewes with lower 

concentrations of P4 in the early luteal phase had smaller conceptuses that secreted less 

IFNT (Nephew et al., 1991; Mann and Lamming, 2001). Conversely, increased 

concentrations of P4 immediately following conception has been associated with 

advanced conceptus elongation (Carter et al., 2008) and increased IFNT production 

(Mann and Lamming, 2001). 

From the perspective of the maternal system, a key regulator of uterine function 

and histotroph involves the circulating concentrations of P4 (Wiltbank et al., 2016). 

Progesterone both positively and negatively regulates expression of genes in the 
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endometrium, and P4 and IFNT stimulate a number of genes, particularly in the 

endometrial epithelia (Spencer et al., 2008b). Progesterone receptors are expressed in 

endometrial epithelia and stroma during the early to mid-luteal phase, allowing direct 

regulation of genes by P4 (Spencer et al., 2008b). However, continuous exposure of the 

endometrium to P4 negatively regulates PR expression in the luminal and glandular 

epithelium, and the down regulation of PR is temporally associated with the induction of 

many P4-stimulated genes (Spencer et al., 2004; Spencer et al., 2008b). As reviewed by 

Spencer et al. (2004), the paradigm of loss of PR in uterine epithelia immediately before 

implantation is common to sheep, cattle, pigs, western spotted skunks, baboons, rhesus 

monkeys, humans, and mice. Thus, regulation of endometrial epithelial function during 

the peri-implantation period must be directed by specific factors produced by PR-positive 

stromal cells in response to P4 (Cunha et al., 1985).  

Regulation of diacylglycerol O-acyltransferase homolog 2 (DGAT2) and 

myostatin (MSTN) have been associated with P4-dominant environments (Forde et al., 

2009). DGAT2 catalyzes the final step in the formation of triglyceride to acylcoenzyme 

A and that triglyceride is a potential energy source up to the blastocyst stage in cattle 

(Forde et al., 2009). Interestingly, a P4-induced earlier increase in DGAT2 expression 

may increase availability of triglyceride as an energy source for the developing conceptus 

(Forde et al., 2009). Similarly, P4 induction of MSTN may increase glucose secretion 

into histotroph, contributing to the advanced development of the conceptus after hatching 

(Forde et al., 2009).  

One of the first PR targets identified and known to be central to uterine function is 

the growth factor, Indian hedgehog (IHH), which is induced in the epithelium and exerts 
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paracrine effects on the stroma (Matsumoto et al., 2002; Takamoto et al., 2002). 

Importantly, epithelial IGG induces stromal chicken ovalbumin upstream promoter-

transcription factor II (COUPTFII) expression (Takamoto et al., 2002; Lee et al., 2006), 

which both inhibits estrogen-induced epithelial proliferation to allow implantation and 

induces bone morphogenetic protein 2 (BMP2) in the stroma to effect the decidualization 

response (Kurihara et al., 2007; Lee et al., 2010). Another PR target in the endometrium 

is homeobox protein-A10 (HOXA10), and HOXA10 knockout mice are infertile due to 

uterine defects that appear to be a result of lost stromal P4 responsiveness (Benson et al., 

1996; Lim et al., 1999). Interestingly, PR in decidualized stromal cells activates the 

insulin-like growth factor binding protein-1 (IGFBP-1) promoter (Gao et al., 1999) that 

modulate insulin-like growth factor activity and bioavailability (Satterfield et al., 2008). 

In situ hybridization analyses revealed that IGFBP-1 mRNAs were expressed specifically 

in luminal epithelia and superficial glandular epithelia of ICAR and in luminal epithelia 

of CAR tissue (Satterfield et al., 2008). Importantly, IGFBP1 is upregulated in the 

endometrium during early pregnancy and is implicated as a regulator of blastocyst 

implantation and placental growth and development (Giudice and Saleh, 1995). 

Additionally, P4 regulates forkhead Box L2 (FOXL2) expression in the endometrium of 

ruminants and stimulates FOXL2 promoter activity through PR nuclear receptors 

(Eozenou et al., 2020). In bovine endometrium, a negative correlation between 

circulating concentrations of P4 and FOXL2 gene expression exists (Eozenou et al., 

2012). FOXL2 appears to be important in the endometrium as well as a key gene 

involved in ovarian differentiation and maintenance of ovarian function (Eozenou et al., 

2012; Georges et al., 2014; Elzaiat et al., 2017). Interestingly, it has been revealed that 
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FOXL2 is a transcriptional repressor of the StAR protein gene (Pisarska et al., 2004). As 

discussed in section 2.5.6, StAR protein transports cholesterol to the inner mitochondrial 

membrane and is the rate-limiting step in steroidogenesis (Clark et al., 1994; Manna et 

al., 2016).  

Uterine receptivity to implantation is P4-dependent; however, implantation events 

are preceded by loss of PR and estrogen receptors by uterine epithelia (Spencer and 

Bazer, 2002; Spencer et al., 2008b). It is likely that P4 stimulates PR-positive stromal 

cells to express one or more progestamedins (eg., fibroblast growth factors-7 and -10, 

and/or hepatocyte growth factor), that act via their respective receptors on uterine 

epithelia and trophectoderm to regulate expression of interferon stimulated genes (ISGs) 

(Bazer et al., 2008). Moreover, for most, if not all, actions of type I/II interferons on the 

uterus, P4 is permissive to ISG expression, with genes being induced by interferons or 

induced by P4 and stimulated by interferon (Bazer et al., 2008). 

 

2.6.3. Interferon Stimulated Genes 

 

In addition to its antiluteolytic actions, IFNT acts on endometrial genes, ISGs, in a 

specific spatial and temporal manner (Bazer et al., 2008; Bazer et al., 2009). 

Interestingly, in a comparison of pregnant and cyclic heifers, differentially expressed 

genes identified on day 16 of pregnancy were found to be due to the presence of the 

conceptus and the majority were expressed in response to IFNT produced by the 

conceptus (Forde et al., 2011). Similarly, ISGs were among the most up-regulated group 

of genes in pregnant animals; this is consistent with maximal production of the MRP 
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signal, IFNT, by the embryo during this time (Walker et al., 2010). Following binding of 

IFNT to its receptors (IFNAR1 and IFNAR2), it initiates cell signaling via Janus 

activation kinases (JAKs) and tyrosine kinase 2 (TYK2) as demonstrated in Fig. 2.5 

(Bazer et al., 2008; Walker et al., 2010). IFNT then induces the expression of classical 

ISGs in the stromal cells that express interferon sensitive response elements (ISREs) 

(Forde et al., 2011). In contrast, expression of interferon regulatory factor 2 (IRF2) in the 

luminal and glandular epithelium of sheep inhibits classical ISG expression (Choi et al., 

2001; Spencer et al., 2008b). However, IFNT does stimulate a number of genes in the 

endometrial epithelia that transport nutrients or enhance genes for proteins important for 

conceptus elongation and uterine receptivity to implantation (Forde et al., 2011). These 

include wingless-type mouse mammary tumor virus integration site family member 7A 

(WNT7A), as well as galectin, proteases, transporters for glucose and amino acids, and 

IGFBP1 (Bazer et al., 2008). WNT7A, a luminal epithelia-specific gene in all mammals 

studied, stimulates ovine trophectoderm cell proliferation by activating the canonical 

WNT signaling pathway which is proposed to coordinate conceptus-endometrial 

interactions required for implantation in mice and humans (Hayashi et al., 2007). The 

WNT family of genes encode highly conserved secreted glycoproteins that regulate cell 

and tissue growth and differentiation during embryonic development (Polakis, 2000).  

The energy substrate for mammalian conceptuses switches from pyruvate to 

glucose at the blastocyst stage, which coordinates with increases in expression of uterine 

glucose transport proteins during early pregnancy (Das et al., 1998; Zhao et al., 2005; 

Riley and Moley, 2006). An increase in the uterine glucose transport proteins is 

especially important, as neither conceptuses nor uterine endometrium can carry-out 
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gluconeogenesis (Bazer et al., 2008). Specifically, two glucose transporters, SLC2A1 and 

SLC5A11, were identified as P4-induced and IFNT-stimulated during the peri-

implantation period (Bazer et al., 2008). 

Several ISGs have been identified as being differentially expressed between 

pregnant and cyclic animals; many of which may function to provide localized immune 

system suppression to allow the embryo to survive within the uterus (Walker et al., 

2010). Specifically, IFITM, TAP, and OAS proteins were upregulated in pregnant 

animals and are involved in local immune suppression (Walker et al., 2010). In particular, 

silencing major histocompatibility complex (MHC) class I alpha chain and beta2 

microglobulin (B2M) genes in endometrial luminal and superficial glandular epithelia 

during pregnancy may be critical in preventing immune rejection of the conceptus 

allograft (Bazer et al., 2008).  

OAS upregulation during early pregnancy is also involved in regulating the 

production of osteopontin (SPP1) (Spencer et al., 1999; McAveney et al., 2000), which is 

also up-regulated in pregnant animals (Walker et al., 2010). Additionally, upregulation of 

SPP1 in pregnant animals promotes adhesion of the trophoblast to the endometrium, 

stimulates morphological changes in the trophoblast (Johnson et al., 2003) and regulates 

the immune response (Walker et al., 2010). Upregulation of these genes may be an 

important mechanism to enhance the response to potential viral pathogens during the time 

of local immune suppression that occurs in response to the embryo (Walker et al., 2010). 

The upregulation of MX1 and MX2, both ISGs, supports this hypothesis and are 

upregulated in response to viral infection (Hicks et al., 2003; Bauersachs et al., 2009). 

Interestingly, MX2 is also upregulated in peripheral blood leukocytes during pregnancy 
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(Gifford et al., 2007) and suggests that the innate immune system is active during early 

pregnancy (Walker et al., 2010). Additionally, some of these genes are also thought to be 

important regulators of luteal regression (Hicks et al., 2003). For example, OAS inhibits 

PGF2α synthesis, possibly through the alteration of arachidonic acid metabolism (Schmitt 

et al., 1993).  

Intriguingly, several reports indicate induction or increases in ISGs in peripheral 

blood lymphocytes and the CL during pregnancy or in ewes receiving intrauterine 

injections of IFNT (Spencer et al., 2008b). Thus, IFNT or IFNT-stimulated immune cells 

may traffic out of the uterus to exert systemic effects that alter maternal physiology, 

particularly in the CL of pregnancy (Spencer et al., 2008b). The immune response to 

pregnancy may be one of the key regulators of pregnancy maintenance, and deregulation 

of the immune response may be responsible, at least in part, for the large percentage of 

pregnancies lost during the time around MRP (Walker et al., 2010). 
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2.7. Working Mechanism of Selenium-Induced Increased Conception Rate 

 

Research has demonstrated that organic forms of Se have increased levels of 

bioavailability compared to inorganic Se. Our lab has previously demonstrated increased 

concentrations of early luteal phase P4 on days 6 and 7 of the estrous cycle in cows 

supplemented with MIX compared to OSe or ISe alone. However, the mechanism 

responsible for the Se-induced increased P4 remain unknown. Increased concentrations 

of P4 could be due in part to 1) increased availability of the steroid precursor, cholesterol, 

2) increased expression of enzymatic transcripts involved in steroidogenesis, or 3) 

decreased catabolism of P4 in the liver. Perhaps cows supplemented with MIX have 

increased expression of StAR, the rate-limiting enzyme in steroidogenesis, increased 

enzymatic activity involved in cholesterol biosynthesis, or decreased expression of liver 

enzymes involved in catabolism of P4. It is plausible that some combination of the 

thoughts listed above are responsible for the MIX-induced increased concentrations of P4 

observed in our lab.  

The benefits of increased early luteal phase concentrations of P4 are well known. 

Additionally, inducing increased concentrations of P4 earlier in the cycle has 

demonstrated to stimulate secretory activity of the uterine endometrium, which stimulates 

advance conceptus development. Perhaps the MIX-induced increased concentrations of 

P4 earlier in gestation leads to conceptuses further along in development, that produce 

large quantities of IFNT earlier after insemination, thus advancing the timing of maternal 

recognition of pregnancy, and ultimately leading to increased conception rates. Increased 

concentrations of IFNT earlier would result in earlier suppression of ER and OTR, 
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therefore suppressing the luteolytic effects of oxytocin induced pulsatile release of 

PGF2α. 

 Throughout the estrous cycle and gestation, follicles grow and regress in patterns 

of two or three follicular waves. Research has demonstrated that cows with three 

follicular waves are more fertile, the occurrence of 2- or 3-waves is random, and the 

number of follicular waves can be controlled with exogenous hormones. Cows exhibiting 

two follicular waves have a dominant follicle present for a longer period, thus prolonging 

the exposure of E2. It is possible there is simply a shift in the population of females 

exhibiting three follicular waves rather than two in those supplemented with MIX instead 

of ISe. 

 Furthermore, successful pregnancy outcome involves a receptive uterine 

environment and regulation of the immune response. Histotroph secretion from the 

uterine endometrium nourishes the developing embryo. Genes involved in histotroph 

secretions have been well documented. Perhaps cows or heifers supplemented with MIX 

have increased abundance of transcripts associated with these secretions necessary for the 

developing embryo/conceptus. The process of pregnancy involves the invasion of a 

foreign embryo and is quite astonishing as it’s an immunological contradiction. Research 

has shown that Se is necessary for an optimum immune response. It is possible that MIX 

supplemented animals have an increased ability to deregulate the immune response 

necessary for pregnancy establishment and maintenance compared to animals 

supplemented with ISe alone.  

 A successful pregnancy outcome is dependent upon a multitude of factors 

beginning before insemination and throughout gestation. Taking everything into 
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consideration, the MIX-induced increase in early concentrations of P4 could be 

explained, at least in-part, by increased expression of transcripts involved in histotroph 

secretion from the endometrium, which would enhance the growth and development of 

the conceptus, stimulating an earlier release of IFNT, and thus signaling MRP earlier 

after insemination. Collectively, these speculations could lead to increased conception 

rates in MIX-supplemented animals compared to ISe-supplemented counterparts. 

Increasing conception rates is economically relevant to beef and dairy operations alike 

and can have a tremendous impact on their profit potential. 
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Figure 2.1 Illustration of metabolic pathway for selenium.1 

 

1Abbreviations: SeMet, selenomethionine; SeCys, selenocysteine.  
Adapted from Suzuki (2005). 
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Figure 2.2 Illustration of translation mechanism for the synthesis of selenoprteins.1 

 

1 Two cis-sequences, a SECIS element in the 3’-untranslated region and a SeCys codon 
(UGA) in the coding region, and three trans-acting factors, a SeCys-specific translation 
elongation factor (EFSeCys), the SeCys  SeCystRNA, and a SECIS-binding protein (SBP2) 
are proposed for the translation of the UGA codon to the SeCys sequence. Adapted from 
Suzuki (2005). 
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Figure 2.3 Model showing the acutely regulated steps in the steroidogenic pathway in a 
generic luteal cell.1  

 

1The increased activity of PKA activation indicated by green plus signs, while decreased 
activity from PKC activation indicated by red minus sign. 
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Figure 2.4 Schematic illustrating current working hypothesis of IFN tau action to regulate 
OTR gene expression during maternal recognition of pregnancy in sheep.1 
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Figure 2.5 Genes differentially expressed between pregnant and cyclic dairy cows are 
shaded red (up-regulated in pregnant) and green (down-regulated in pregnant).1 

1The bovine embryo produces IFNt which binds to type-1 interferon receptors, leading to 
the activation of the JAK-STAT (Janus kinase-signal transducer and activator of 
transcription) pathway and the synthesis of a range of interferon stimulated gene 
products. Adapted from (Walker et al., 2010). 
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CHAPTER 3. Statement of the Problem 

 

In the United States, the distribution of Se content of grains and forages varies 

greatly in different geographical regions (Ammerman and Miller, 1975). The majority of 

producers in the southeast, including Kentucky, have forages and grains that are low 

(<0.05 ppm) to variable (~50% contain >0.1 ppm) in Se (Ammerman and Miller, 1975). 

The suggested dietary requirement of Se for beef cattle is at 0.1 ppm (National 

Academies of Sciences and Medicine, 2016). Cattle grazing Se-deficient forages 

necessitates the need to provide supplemental Se to these animals.  

In cattle, deficiencies in Se have been demonstrated to decrease immunity 

(Erskine et al., 1989), growth (Gleed et al., 1983), and fertility (McClure et al., 1986). 

Supplementing dairy cows during the pre- and postpartum periods with a Se-enriched 

yeast increased postpartum plasma concentrations of progesterone (P4) compared to 

providing no supplemental Se (Kamada, 2017). Importantly, it has been reported that 

postpartum concentrations of P4 are positively correlated with conception rate (Inskeep, 

2004). 

Lower concentrations of P4 during the early luteal phase after artificial 

insemination have been associated with lower conception rates (Mann and Lamming, 

1999). Moreover, low circulating concentrations of P4 in the first week after ovulation 

are associated with under-developed conceptuses (Forde and Lonergan, 2012), 

transcriptomic alterations (Barnwell et al., 2016), and a low likelihood of establishing 

pregnancy (Wiltbank et al., 2016). In contrast, increased concentrations of P4 

immediately following conception has been associated with advanced conceptus 
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elongation (Carter et al., 2008) and increased IFNT production (Mann and Lamming, 

2001). The pregnancy recognition signal, IFNT, occurs on days 16-17 in cattle (Spencer, 

2013). The antiluteolytic effect of IFNT produced by the conceptus is the primary cause 

of the maintenance of the CL in sheep and cattle (Thatcher et al., 1995). IFNT acts in a 

paracrine manner on the endometrium to inhibit development of the endometrial 

luteolytic mechanism required for the pulsatile release of PGF2α, thereby ensuring 

continued production of P4 by the CL (Spencer et al., 2007) 

In cattle, fertilization rates are high and between 90 and 100%, when semen of 

known high fertility is used in artificial insemination (Diskin et al., 2006; Diskin and 

Morris, 2008). However, it has been reported that only 50 to 60% of beef cows 

inseminated remain pregnant by day 30 (Bridges et al., 2013). It is estimated that 70-80% 

of the embryonic loss occurs between day 8 and 16 after insemination (Sreenan and 

Diskin, 1986). 

Therefore, the overall goals of this dissertation were to investigate whether the 

form of supplemental Se (ISe and MIX) in vitamin-mineral mixes would affect the early 

cycle bovine CL and the uterine endometrium and conceptus at maternal recognition of 

pregnancy. More specifically, the objectives were 1) to investigate the effect of form of 

supplemental Se on the transcriptome of the bovine CL with the goal of elucidating form 

of Se-regulated luteal processes affecting fertility (Experiment 1, Chapter 4) and 2) to 

determine changes induced by the form of supplemental Se on the bovine endometrium 

and developing conceptus on day 17 of pregnancy (Experiment 2, Chapter 5). 
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CHAPTER 4. Form of dietary selenium affects mRNA encoding cholesterol biosynthesis 

and immune response elements in the early luteal phase bovine corpus luteum. 

 

4.1. Abstract   

 

Widespread regions of the southeast United States have soils, and hence forages, 

deficient in selenium (Se), necessitating Se supplementation to grazing cattle for optimal 

immune function, growth, and fertility. We have reported that supplementation with an 

isomolar 1:1 mix (MIX) of inorganic (ISe) and organic forms of Se increases early luteal 

phase (LP) progesterone (P4) above that in cows on ISe alone. Increased early LP P4 

advances embryonic development. Our objective was to determine the effect of form of 

Se on the transcriptome of the early LP corpus luteum (CL) with the goal of elucidating 

form of Se-regulated processes affecting steroidogenesis and fertility. Non-lactating, 

three-year-old Angus-cross cows underwent 45-day Se-depletion then repletion periods, 

then at least 90 days of supplementation (TRT) with 35 ppm Se/day as either ISe (n=5) or 

MIX (n=5). CL were then recovered on Day 7 of the estrous cycle, total RNA isolated 

and the effect of TRT on the luteal transcriptome evaluated using bovine gene 1.0 ST 

arrays (Affymetrix, Inc., Santa Clara, CA). The level of expression of transcripts in each 

CL was subjected to one-way ANOVA using Partek Genomic Suite software to 

determine TRT effects. Microarray analysis indicated a total of 887 transcripts that were 

differentially expressed and functionally annotated, with 423 and 464 up- and down-

regulated (P<0.05) in MIX vs. ISe CL, respectively. Bioinformatic analysis (Ingenuity 

Pathway Analysis) revealed the top TRT-affected canonical pathways to include seven 



 50 

specific to cholesterol biosynthesis and two to inflammatory responses. Results from the 

microarray analysis were corroborated by targeted real-time PCR. MIX CL had increased 

(P<0.05) abundance of transcripts regulating cholesterol biosynthesis including DHCR7, 

DHCR24, and CYP51A1 (fold changes of 1.65, 1.48, and 1.40, respectively), suggesting 

MIX-induced increases in P4 to be due, in part, to increased availability of substrate to 

luteal cells. In addition, MIX CL had increased (P<0.05) abundance of immune-response 

transcripts including C1QC, FAS, ILR8B, and IL1R1 (fold changes of 2.30, 1.74, 1.66, 

and 1.63, respectively). SREBF1 mRNA was also increased (1.32-fold, P<0.05) in the 

MIX CL, which increases cholesterol synthesis and stimulates IL1Β, linking effects of 

form of supplemental Se (TRT) on cholesterol biosynthesis and immune function in the 

CL.  

 

Keywords: Corpus luteum, progesterone, selenium 
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4.2. Introduction 

 

In the United States, the distribution of selenium (Se) in soils, and hence grains 

and forages, varies across the country (Ammerman and Miller, 1975). Particularly in the 

southeast, including Kentucky, producers are faced with grazing forages deficient in this 

mineral (Ammerman and Miller, 1975). In turn, this leads to deficiencies in whole blood 

Se in animals grazing in these regions (Dargatz and Ross, 1996). In cattle, deficiencies in 

Se have been demonstrated to decrease immunity (Erskine et al., 1989), growth (Gleed et 

al., 1983), and fertility (McClure et al., 1986). Ultimately, this necessitates the inclusion 

of Se in a mineral supplementation strategy. Mineral supplements are commonly 

provided ad libitum in the form of loose minerals, pressed blocks, liquid supplements, 

and molasses-based tubs (Greene, 2000). Most often, Se is supplemented in the inorganic 

(ISe) dietary form of sodium selenite or sodium selenate (Podoll et al., 1992). However, 

research has demonstrated lower concentrations of Se in whole blood in cows 

supplemented with ISe compared to cows supplemented with organic (OSe) Se (Sel-Plex; 

Alltech, Inc., Nicholasville, KY, USA) (Patterson et al., 2013; Cerny et al., 2016b; Jia et 

al., 2018).  

In dairy cattle, supplementing with Se has been demonstrated to reduce the 

incidence of metritis and ovarian cysts (Wilde, 2006) and to increase first service 

pregnancy rates (McClure et al., 1986). Additionally, supplementing with OSe increased 

second-service pregnancy rates in dairy cattle when compared to ISe (Thatcher et al., 

2010). This increase in fertility could be attributed to the reduction in early embryonic 

death (Mehdi and Dufrasne, 2016). Supplementing dairy cows during the pre- and 
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postpartum periods with a Se-enriched yeast increased postpartum plasma concentrations 

of progesterone (P4) compared to providing no supplemental Se (Kamada, 2017). 

Importantly, it has been reported that postpartum concentrations of P4 are positively 

correlated with conception rate (Inskeep, 2004).  

Similarly, our lab has previously reported increased early concentrations of P4 in 

cows supplemented with a 1:1 combination (MIX) of ISe (sodium selenite; Prince Agri 

Products, Inc. Quincy, IL) and OSe (SEL-PLEX; Alltech, Inc., Nicholasville, KY, USA) 

compared to cows supplemented with ISe or OSe on day 6 (Cerny et al., 2016b), or  ISe 

on day 7 (Carr et al., 2020) of the estrous cycle. Lower concentrations of P4 during the 

early luteal phase after artificial insemination have been associated with lower conception 

rates (Mann and Lamming, 1999). It is known that P4 positively impacts the oocyte, 

endometrium, and embryo (Lonergan, 2011). Artificially increasing early luteal-phase 

concentrations of P4 has been demonstrated to increase development of the conceptus 

(Garrett et al., 1988). Furthermore, embryo quality on day 16 was greater in cows with an 

earlier increase in concentrations of P4 after ovulation (Mann and Lamming, 2001). 

Results from a meta-analysis indicated that providing exogenous P4 between days 3 to 7 

post-insemination resulted in increased pregnancy rates (Yan et al., 2016).  

The objective of this study was to investigate the effect of form of supplemental 

Se on the transcriptome of the bovine corpus luteum (CL) with the goal of elucidating 

form of Se-regulated luteal processes affecting steroidogenesis and fertility. We 

hypothesized that the form of Se supplemented to cows would alter the transcriptome of 

the bovine CL that favored increased concentrations of early luteal phase P4 as 

previously reported in our lab (Cerny et al., 2016b; Carr et al., 2020). Mineral 
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supplementation is a production practice that is easily implemented by producers and 

incorporating Se as MIX would be a simple transition with the potential to increase 

fertility in their herds. 

 

4.3. Material and Methods 

 

The experimental procedures in this project were approved by the Institutional 

Animal Care and Use Committee at the University of Kentucky, protocol number 2017-

2828. 

 

4.3.1. Animals and Experimental Procedure 

 

Non-lactating, three-year-old Angus-cross cows (N=10) were randomly selected 

from pre-existing, Se form-specific cow herds as previously described (Patterson et al., 

2013; Matthews et al., 2014; Cerny et al., 2016a; Cerny et al., 2016b). At the beginning 

of this experiment, animals received ad libitum access to a basal mineral mix with no Se 

for a 45-day Se-depletion period. This was followed by a 45-day period with ad libitum 

access to the mineral mix formulated to contain 35-ppm Se as ISe for 45 days to return 

systemic blood Se in all cows to adequate concentrations (National Academies of 

Sciences and Medicine, 2016). Following the period of Se repletion, cows were randomly 

assigned to have at least 90 days of individual access to a basal mineral mix containing 

35-ppm Se as inorganic (n=5; ISe; sodium selenite; Prince Agri Products, Inc. Quincy, 

IL) or as 1:1 combination of ISe and OSe (n=5; MIX; SEL-PLEX; Alltech, Inc., 
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Nicholasville, KY) as described by (Carr et al., In Review). Cows were individually fed 

their respective vitamin-mineral mixes using in-pasture Calan gates (Patterson et al., 

2013). 

To ensure cows maintained adequate status of total blood Se for the duration of 

the study, whole blood was collected from each cow at the start and endpoint of the 

depletion and repletion periods and bimonthly until the end of the experiment for the 

determination of total whole blood concentrations of Se (Patterson et al., 2013; Cerny et 

al., 2016a). 

 

4.3.2. Diet 

 

All cows grazed a common, novel, nontoxic endophyte-infected tall fescue 

(Lacefield MaxQ II) pasture, with the addition of a common corn silage diet during the 

winter months. Forage and silage samples were collected and analyzed (Dairy One 

Forage Testing Laboratory, Ithaca, NY) for Se and trace mineral content. Concentration 

of Se in the silage was 0.03 mg/kg as fed and 0.08 mg/kg on a dry matter basis and in the 

forage was 0.01 mg/kg as fed and 0.04 mg/kg on a dry matter basis. These values are 

consistent with being classified as Se deficient for cattle (National Academies of Sciences 

and Medicine, 2016).  

 

4.3.3. Experimental Regimen and Tissue Collection 
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Cows were supplemented with their respective mineral treatment for at least 90 

days before being randomly injected with dinoprost tromethamine (25 mg, Lutalyse, 

Zoetis, Parisppany, NJ) to induce regression of the CL and then monitored for behavioral 

estrus (Day 0) using visual appraisal and electronic cow monitoring technology 

(CowManager, Gerverscop 9, The Netherlands). Presence of a preovulatory follicle and 

subsequent ovulation were confirmed via transrectal ultrasonography using a 5-8 MHz 

linear transducer (Ibex Pro, E.I. Medical Imaging, Loveland, CO). On days 5, 6, and 7, 

the diameter of the CL was determined by transrectal ultrasonography and approximately 

8 ml of blood was collected into additive-free tubes (Vacutainer, Becton, Dickinson and 

Company, Franklin Lakes, NJ) by jugular venipuncture for retrieval and quantification of 

serum P4 via radioimmunoassay. On day 7, CL were removed by supra-vaginal 

lutectomy and immediately placed in ice-cold culture media (24 mM HEPES-buffered 

Ham’s F-12 (1x) culture medium plus L-glutamine and sodium bicarbonate containing 

0.5% bovine serum albumin and 20 µg/mL gentamicin), weighed, and then cut into two 

halves. One half was transported to the laboratory on ice in culture media for dissociation 

and culture of the fully differentiated luteal cells as reported in (Carr et al., In Review). 

The second half was divided into eight pieces and snap frozen in liquid nitrogen to be 

used for RNA extraction and the determination of transcript expression after 

hybridization to microarray chips and by real-time polymerase chain reaction (qPCR). 

 

4.3.4. RNA Extraction  
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Total RNA was extracted from 400-600 mg of frozen luteal tissue using TRIzol 

Reagent (Invitrogen Corporation, Carlsbad, CA) following the manufacturer’s 

instructions. The purity and concentration of total RNA samples were analyzed using a 

NanoDrop ND-100 Spectophotometer (NanoDrop Technologies, Wilmington, DE, USA). 

All samples had high purity, with 260/280 absorbance ratios of 1.97 or greater. The 

integrity of total RNA was examined by gel electrophoresis using an Aligent 2100 

Bioanalyzer System (Agilent Technologies, Santa Clara, CA) at the University of 

Kentucky Microarray Core Facility. Visualization of gel images and electropherograms 

verified that all RNA samples were of high integrity with 28S/18S rRNA absorbance 

ratios ranging from 1.9-2.3.  

 

4.3.5. Microarray Analysis 

 

The effect of form of Se on the transcriptome of the bovine CL was evaluated 

using Bovine gene 1.0 ST Arrays (GeneChip; Affymetrix, Inc., Santa Clara, CA, USA) 

and conducted according to the manufacturer’s standard protocol at the University of 

Kentucky Microarray Core Facility as described (Bridges et al., 2011; Bridges et al., 

2012; Li et al., 2019). Briefly, RNA (3 μg/sample) was reverse-transcribed to double-

stranded cDNA and then to single stranded complementary RNA (cRNA). The cRNA 

was labeled with biotin and then further fragmented to be used as probes to hybridize the 

gene chips in the GeneChip Hybridization Oven 640 (Affymetrix), using 1 chip per RNA 

sample. Following hybridization, the chips were washed and stained on a GeneChip 

Fluidics Station 450 (Affymetrix.) The reaction image and signals were read with a 
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GeneChip Scanner (GCS 3000, 7G; Affymetrix) and the data collected using the 

GeneChip Operating Software (GCOS, version 1.2; Affymetrix).  

For each sample, the raw expression intensity values from the GCOS (i.e., 10 

*.cel files from the raw methylation measurements) were imported into Partek Genomics 

Suite software (PGS, version 6.6; Partek Inc., St. Louis, MO). Robust Multichip 

Averaging algorithm adjusted with probe length and GC Oligo contents was implemented 

for GeneChip background correction  (Irizarry et al., 2003).  The background corrected 

data were further converted into expression values using quantile normalization across all 

chips and median polish summarization of multiple probes for each probe set. 

All the GeneChip transcripts were annotated using the NetAffx annotation 

database for Gene Expression on Bovine GeneChip Array ST 1.0, provided by the 

manufacturer (http://affymetrix.com/analysis/index.affx, last accessed in August 2019, 

annotation file last updated in July 2016). Quality of data was assessed using light 

intensity expression values on a per chip and per gene basis and visualized as box plots. 

Pearson (linear) Correlation generated the similarity matrix (last accessed in August 

2019, Partek Genomics Suite 6.6 6.15.0422). The average correlation between any of the 

10 GeneChips was 0.98 (Fig. 4.1) and all GeneChips were further analyzed. Principal 

component analysis (Fig. 4.2) was performed to elucidate the quality of the microarray 

hybridization and visualize the general data variation among the chips.  

To assess treatment effects on the relative expression of the CL gene transcripts, 

qualified microarray data were subjected to one-way ANOVA using the same PGS 

software. Gene chip transcripts were annotated using the NetAffx annotation database for 

Gene Expression on Bovine GeneChip Array ST 1.0, provided by the manufacturer 

http://affymetrix.com/analysis/index.affx
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(http://affymetrix.com/analysis/index.affx, last accessed in August 2019, annotation file 

last updated in July 2016). A total of 887 transcripts showed treatment effects at the 

significance level of P<0.05 with false discovery rate (FDR) of <56%. The high FDR in 

this experiment appears to be due to the relatively small sample size and/or the increased 

variation that was observed by principal component analysis (described in Section 4.4.3) 

in the CL retrieved from MIX versus ISe supplemented cows. However, corroborating 

microarray data with a high FDR by qPCR on multiple gene transcripts allows 

confirmation of the observed changes (Rockett and Hellmann, 2004). 

 These differentially expressed genes/gene transcripts (DEGs) were subjected to 

hierarchical clustering analysis using PGS software and to canonical, functional, and 

network pathway analyses using QIAGEN’S Ingenuity Pathway Analysis (IPA, 

QIAGEN, Redwood City, CA, USA, www.qiagen.com/ingenuity). The raw data (10 *.cel 

files) collected by GCOS plus the GC Robust Multichip Averaging corrected data 

processed by PGS software of this manuscript have been deposited into the Gene 

Expression Omnibus (National Center for Biotechnology Information 

(http://www.ncbi.nlm.nih.gov/geo/) as accession number GSE190092.    

 

4.3.6. Real-time PCR Analysis  

 

The relative quantification of mRNA for genes of interest was performed using 

qPCR using standard procedures in our laboratory, as described previously (Cerny et al., 

2016a). Briefly, 1 μg of each cow’s CL RNA was reverse transcribed to cDNA using the 

SuperScript™ IV VILO™ Master Mix with ezDNAse™ Enzyme (Invitrogen by Thermo 

http://affymetrix.com/analysis/index.affx
http://www.qiagen.com/ingenuity
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Fisher Scientific, Vilnius, Lithuania). Additionally, a no reverse-transcription control 

sample was transcribed and analyzed via qPCR to ensure that products from the targeted 

transcripts were not obtained from genomic DNA. 

The relative abundance of mRNA encoding cholesterol-associated transcripts: 

ACAT1, CYP51A1, DHCR7, DHCR24, FGF2, LSS, NSHDL, POR, SCD, SF1, SREBF, 

SQLE and TM7SF2 and the immune related transcripts: C1QC, FAS, FDFT1, HMGCS1, 

IL18, IL1R1, ILR8A, ILR8B, IFNG, ITGAM, TNFα, VEGFA and VEGFC were quantified. 

Primer sequences used and GenBank accession numbers for the cholesterol- and 

immune-related transcripts are listed in Table 4.1 and 4.2, respectively. The qPCR 

procedures were performed using the Bio-Rad CFX Maestro™ thermal cycler (Bio-Rad, 

Hercules, CA, USA) with iTaq Universal SYBR® Green Supermix (Bio-RAD, Hercules, 

CA, USA). A total volume of 25 μl was used in each qPCR reaction containing 5 μl of 

cDNA, 1 μl of a 10 μM stock of each primer (forward and reverse), 12.5 μl of 2 x SYBR 

Green PCR Master Mix, and 5.5 μl of nuclease-free water. The relative amount of each 

transcript was calculated using the 2-ΔΔCT method (Livak and Schmittgen, 2001). Primer 

sets for genes of interest were designed and obtained from NCBI Primer-BLAST tool 

(https://www.ncbi.nlm.nih.gov/tools/primerblast/) against RefSeq.  

All cDNA products were validated via DNA sequencing for verification of target 

at Eurofins MWG Operon LLC (Louisville, KY, USA), as previously described (Cerny et 

al., 2016a; Jia et al., 2018). The resulting sequences were then compared to the NCBI 

RefSeq mRNA sequences used for primer templates. The primer pair design, amplicon 

length of product, and product identity for each targeted transcript are shown in Tables 

4.1 and 4.2. Three constitutively expressed genes (β-ACTIN, HPRT1 and SDHA) with CT 
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values not affected (P > 0.05) by Se-form treatment were used to normalize the relative 

mRNA expression to the geometric mean of the three. For qPCR analysis, n = 5 for ISe 

and MIX treatments. All reactions were performed in triplicate.  

 

4.3.7. Se and P4 Analysis  

 

As indicated in Carr et al. (Unpublished), total blood Se was determined by the 

University of Kentucky’s Veterinary Diagnostics Laboratory (Lexington, KY) and Se 

was quantified using an Agilent 7900 inductively coupled plasma-mass spectrometer, as 

described previously (Wahlen et al., 2005).   

Concentrations of P4 were quantified in samples of serum by a commercially 

available competitive RIA without extraction (ImmuChem™ Coated Tube Progesterone 

125-I RIA Kit, MP Biomedicals, Costa Mesa, CA) according to manufacturer’s 

instructions. One assay performed for analysis of the serum with an intra assay CV of 

4.99%. 

 

4.3.8. Statistical Analysis 

 

 Data are presented as least square means (±SEM) with individual cow as the 

experimental unit. Data were analyzed for normal distribution and homogeneity. When 

appropriate, data were transformed for normality by natural log transformation. 

Microarray hybridization data (relative expression of CL gene transcripts) were subjected 

to one-way ANOVA using the PGS software as described above.  
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 To determine the effect of form of Se on concentrations of systemic Se and P4, 

data were analyzed using the PROC MIXED procedure of SAS statistical software 

package (version 9.4; SAS Institute, Inc. Cary, NC) as an ANOVA with repeated 

measures. The form of dietary Se was considered the fixed effect for both and the P4 data 

were natural log transformed due to being not normally distributed.  

Additionally, the effect of form of Se supplementation on the relative abundance 

of CL mRNA transcripts were analyzed as an ANOVA using the PROC GLM procedure 

of SAS statistical software package (version 9.4; SAS Institute, Inc. Cary, NC). For all 

analyses, n=5 for ISe and MIX, and significance was declared at P < 0.05 and a tendency 

to differ was declared when 0.05 < P < 0.10. 

 

4.4. Results 

 

4.4.1. Concentrations of Whole Blood Se 

 

Cows were maintained on form of Se-specific treatments that provided adequate 

concentrations of whole blood Se (Gerloff, 1992; Dargatz and Ross, 1996) for the 

duration of this experiment (Fig. 4.3, adapted from (Carr et al., In Review)). Although the 

concentration of total blood Se remained numerically higher in the ISe- than MIX-treated 

cows, differences were not significant (P>0.05) at any time point during the experiment 

(Carr et al., In Review). 

 

4.4.2. Progesterone 
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Serum collected from cows on days 5 through 7 of the estrous cycle was used to 

determine concentrations of P4. Previous studies from our lab indicate an increase of ~1 

ng/mL at these same time points (Cerny et al., 2016b; Carr et al., 2020). In the current 

study, concentrations of P4 and CL diameter and weight were not affected (P>0.05) by 

form of Se-treatment (Table 4.3, adapted from Carr et al. (In Review). However, the 

difference of ~1 ng/mL and no differences in CL size are consistent with our previous 

studies (Cerny et al., 2016b). 

 

4.4.3. Differentially Expressed Genes 

 

Principle component analysis (PCA) of all microarray data was performed to 

evaluate the correlation and variation among gene chips. This allows for visualization of 

patterns through the distribution of samples to highlight similarities and differences 

(Partek, 2009). The score plot (Fig. 4.2) showed the first principal component (PC #1, x-

axis) explained 16.3% of the total variance, whereas PC #2 (y-axis) and PC #3 (z-axis) 

explained 13% and 11.6% of the variance, respectively. Total variance (40.9%) is the 

cumulative percent of variance accounted for in our datasets based upon eigenvector 

multivariate analysis. Overall, the score plot indicated that the chips in the ISe treatment 

group were closely clustered together, whereas the chips in the MIX treatment group 

displayed greater variation among each cow.  

Individual ANOVA were conducted to identify altered expression of mRNA 

transcripts between the CL of MIX and ISe supplemented cows. With P < 0.05 a total of 
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887 gene transcripts were identified as functionally annotated, with 423 and 464 

transcripts up- and down-regulated, respectively. Hierarchical clustering analysis of the 

887 DEGs indicated a complete separation among Se treatment groups (Fig. 4.4). The 10 

most highly up- and down-regulated genes in the CL of MIX versus ISe treated cows 

identified are provided in Table 4.4.  

 

4.4.4. Pathways and Gene Network Analysis 

 

To determine the physiological significance of Se treatment induced DEGs 

bioinformatics analysis of canonical, functional, and network pathway analysis were 

performed using QIAGEN’S Ingenuity Pathway Analysis (IPA, QIAGEN, Redwood 

City, CA, www.qiagen.com/ingenuity). Canonical pathway analysis indicated that of the 

top 10 pathways affected, seven were specific to cholesterol biosynthesis and 2 involved 

in inflammatory responses (Table 4.5). Additionally, overlaying of canonical pathways 

revealed cross talk among cholesterol biosynthesis and inflammatory response pathways 

(Fig. 4.5).  

 

4.4.5. Real-time PCR Analysis of Selected mRNA Transcripts 

 

Real-time PCR analysis was used to corroborate the microarray analysis-

identified altered expression of transcripts involved in cholesterol biosynthesis and 

immune response elements in MIX versus ISe-treated cows (Table 4.6 and 4.7, 

respectively). The results of these two analyses were consistent in terms of increased 

http://www.qiagen.com/ingenuity
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expression and statistical significance (P<0.05) in MIX versus ISe treated cows for the 

following transcripts in cholesterol biosynthesis: CYP51A1, DHRC24, DHRC7 and 

SREBF1 along with transcripts related to immune response: C1QC, FAS, IL1R1 and 

ITGAM. The cholesterol-related transcripts ACAT1, FDFT1, FGF2, HMGC1, LSS, 

NSDHL, POR, SF1, SQLE and TM7SF2 as well as the immune-related transcripts IL18, 

TNFα, VEGFA and VEGFC were not detected to be different (P>0.05) by qPCR. 

Although the microarray analysis did not identify them as DEGs, the expression of 

ILR8A, ILR8B and IFNG was assessed by qPCR. Real-time PCR indicated that ILR8A did 

not differ (P=0.19), however ILR8B and IFNG was increased (P<0.05) in MIX versus 

ISe treated cows.  

 

4.5. Discussion 

 

The aim of this study was to investigate the effect of form of supplemental Se on 

the transcriptome of the bovine CL. Moreover, we sought to determine form of Se-

regulated luteal processes affecting fertility that could, in-part, explain the increased early 

luteal phase concentrations of P4 previously reported by our lab (Cerny et al., 2016b; 

Carr et al., 2020). In the present study, MIX supplemented cows had numerically greater 

concentrations of P4 compared to ISe treated cows. Although not statistically significant, 

the difference of 1.1 ng/mL is similar to the 1.7 ng/mL and 1.0 ng/mL MIX-induced 

differences in concentrations of P4 reported by our lab in previous studies that used a 

larger number of animals (Cerny et al., 2016b; Carr et al., 2020). The inability to detect 

statistical significance of a MIX-induced increased concentration of P4 is likely limited 
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by the number of animals used in the present study; however, cows in the present study 

were also managed on novel, non-toxic endophyte-infected tall fescue pastures and 

received a common corn silage diet during the winter months. Cows used in previous 

studies from our lab were grazing toxic endophyte-infected tall fescue pastures (Cerny et 

al., 2016b; Carr et al., 2020). It may be that there is a relationship between endophyte 

toxicity and form of supplementary Se that accounts for the differences between these 

studies. Interestingly, research has also demonstrated that peripheral concentrations of P4 

are decreased by an increased plane of feed intake due to increased metabolic clearance 

rate of the steroids (Sangsritavong et al., 2002).  

Previous research has indicated increased concentrations of P4 at different times 

of the estrous cycle and throughout gestation when exogenous Se is supplemented to the 

diet of dairy cows and heifers (Kamada and Hodate, 1998; Kamada et al., 2014; Kamada, 

2017). Supplementing with inorganic Se, specifically sodium selenite, increased plasma 

concentrations of P4 during the estrous cycle in non-lactating dairy cows compared to 

cows lacking supplemental Se (Kamada and Hodate, 1998). Similarly, providing dairy 

cows with supplemental Se-yeast increased early luteal phase concentrations of P4 when 

estrus occurred between 60 and 80 days postpartum (Kamada, 2017). Additionally, 

supplementation with sodium selenite increased concentrations of P4 during the last 10 

weeks of gestation in dairy heifers compared to cows receiving a basal diet without 

supplemental Se (Kamada et al., 2014). However, it is important to note that these studies 

examined the effects of supplemental Se compared to control diets versus examining a 

Se-form effect on concentrations of P4.  
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Concentrations of P4 during early pregnancy have a large effect on the outcome 

of insemination success (Mann and Lamming, 1999). As reviewed by Mann and 

Lamming (1999), delayed increases in the postovulatory rise of P4 and low early luteal 

phase concentrations of P4 lead to impaired embryo development and ultimately reduced 

pregnancy rates. Increased concentrations of P4 during the first five days of pregnancy 

stimulate changes in uterine secretions that advance conceptus growth and development 

(Garrett et al., 1988). Further, there appears to be an optimal range of concentrations of 

P4 on day 7 of gestation that is conducive to pregnancy (Barnwell et al., 2015). 

Pregnancy rates were higher when serum concentrations of P4 were between 2-5 ng/mL 

at the time of embryo transfer on day 7 of the estrous cycle (Niemann et al., 1985). 

The precursor for steroid synthesis is cholesterol (Grummer and Carroll, 1988; 

Rekawiecki et al., 2008). Cholesterol used for steroid synthesis in the ovary may come 

from de novo synthesis or through cellular uptake of lipoprotein cholesterol transported 

by low (LDL) or high (HDL) lipoproteins (Grummer and Carroll, 1988). Additionally, 

mobilization of cholesterol esters contributes to the supply of free cholesterol for steroid 

synthesis (Gwynne and Strauss III, 1982). However, cholesterol from circulating 

lipoproteins appears to provide the major source of substrate used for steroid synthesis 

(Pate and Condon, 1989). The proportion of cholesterol produced from de novo synthesis 

varies across species (Grummer and Carroll, 1988). When bovine granulosa cells were 

cultured with lipoproteins, de novo synthesis accounted for 25% to 36% of production of 

P4 (Savion et al., 1982). 

Cholesterol biosynthesis from acetyl-CoA is accomplished in a process involving 

more than 30 different enzymes and numerous cofactors (Vance and Van den Bosch, 
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2000). An important metabolic pathway involved in cholesterol biosynthesis is the 

mevalonate pathway (Pool et al., 2018). The mevalonate pathway begins with the 

reversible condensation of two molecules of acetyl-CoA to acetoacetyl-CoA using the 

enzyme acetyl-CoA acetyltransferase (ACAT1; ACAT2) (Mazein et al., 2013). 

Hydroxymethylglutaryl-CoA synthase (HMGCS1) then forms 3-hyrdoxy-3-

methylglutaryl-CoA (HMG-CoA) from acetoacetyl-CoA (Mazein et al., 2013). Next, 3-

hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) catalyzes the conversion of 

HMG-CoA into mevalonic acid (Mazein et al., 2013). Importantly, HMGCR is the rate 

limiting enzyme in de novo synthesis of cholesterol (Grummer and Carroll, 1988).Sterol 

regulatory element binding protein (SREBP) also known as sterol regulatory element 

binding factor (SREBF), regulates the transcription of HMGCR and HMGCS (Brown and 

Goldstein, 1997). Insufficient levels of cholesterol cause the SREBP precursor to be 

cleaved, SREBP migrates to the nucleus, and promotes expression of the genes involved 

in cholesterol biosynthesis (Vance and Van den Bosch, 2000). After forming mevalonic 

acid, a series of phosphorylations and decarboxylations forms isopentenyl pyrophosphate 

(IPP), that is polymerized to form geranyl pyrophosphate (GPP) and farnesyl 

pyrophosphate (FPP), and FPP may condense to form squalene and subsequently be 

converted to the sterols (Rudney and Sexton, 1986). Squalene synthetase (FDFT1) is the 

first committed enzyme involved in sterol synthesis (Goldstein and Brown, 1990).  

Results from the microarray analysis indicate a MIX-induced increase in the 

expression of key transcripts involved in cholesterol biosynthesis. Transcripts encoding 

the following proteins (CYP51A1, DHCR24, DHCR7, FDFT1, HMGCS1, HMGCR, 

LSS, NSDHL, SCD, SREBF1, and SQLE) were found to be upregulated in MIX 



 68 

supplemented cows compared to those supplemented with ISe alone. As depicted in Fig. 

4.6, the involvement of these key transcripts involved in cholesterol biosynthesis should 

contribute to increased early luteal phase concentrations of P4. Importantly, these 

findings occur in the presence of similar whole blood concentrations of Se in ISe and 

MIX supplemented cows.  

Immune cells play an active role in controlling the lifespan and function of the CL 

(Penny et al., 1999). During the early luteal phase, production of P4 requires rapid growth 

of the CL, which is dependent on angiogenesis (Robinson et al., 2007). Angiogenic 

factors, including vascular endothelial growth factor (VEGF) and fibroblast growth factor 

(FGF) along with their receptors, are strongly regulated during the development of the 

bovine CL (Neuvians et al., 2004). Additionally, a high concentration of interleukin-8 

(IL8) is present in the bovine CL during the early luteal phase (Jiemtaweeboon et al., 

2011), which effectively stimulates production of P4 in bovine luteinizing granulosa cells 

(Shimizu et al., 2012). Receptors for IL8 include CXCR1 and CXCR2 (Shirasuna and 

Miyamoto, 2017). Microarray analysis indicated increased mRNA expression of FAS, 

VEGFA, and VEGFC, while qPCR identified increased expression of CXCR2 in MIX 

versus ISe supplemented cows.  

On the contrary, production of P4 is inhibited by tumor necrosis factor α (TNFα), 

gamma-interferon (IFNG) and interleukin 1β (IL-1β) (Pate, 1995). These three cytokines 

are also potent stimulators of prostaglandin production (Pate, 1995). However, research 

indicates that mRNA encoding TNFα is present in the bovine CL before luteolysis (Pate, 

1995). It has also been proposed that TNFα promotes formation of the CL by increasing 

proliferation and steroidogenesis of luteinizing granulosa cells (Yan et al., 1993). 
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Luteolytic effects of TNFα and IFNG on human and non-human primate luteal cells also 

involve Fas cell surface death receptor and Fas ligand (Pate et al., 2010). Interestingly, 

mRNA encoding FAS, TNFα, IFNG, and interleukin 1 receptor type 1 (receptor for IL-

1β) were upregulated in MIX supplemented cows. Perhaps indicative of MIX 

supplemented cows being further along in their preparation for luteolysis. Similarly, 

lactating dairy cows supplemented with OSe had greater serum concentrations of IL-1 

and slightly increased serum concentrations of TNFα compared to cows supplemented 

with ISe (Gong et al., 2014). In contrast, Se deficiency in broilers has shown to increase 

levels of IL-1β and IFNG (Liu et al., 2016). 

Bioinformatic analysis revealed that the LXR/RXR Activation pathway connected 

pathways associated with cholesterol biosynthesis and immune response elements. 

Intriguingly, the LXR pathways maintains cholesterol homeostasis and regulates immune 

and inflammatory responses (Wang and Tontonoz, 2018). The LXR family consists of 

two isotopes, LXRα and LXRβ (Noelia and Castrillo, 2011). Mice lacking LXRα 

accumulate large amounts of cholesterol in the liver when fed a high cholesterol diet 

(Peet et al., 1998). Importantly, LXRs work with SREBP2 to maintain cellular and 

systemic sterol levels (Wang and Tontonoz, 2018). Low levels of cholesterol cause 

SREBP2 to drive the transcription of genes encoding proteins involved in cholesterol 

biosynthesis and uptake of LDL cholesterol (Hua et al., 1993). Additionally, LXRs 

inhibit inflammatory genes, such as COX-2 and IL-1β, after TNFα or IL-1β stimulation 

as reviewed by Noelia and Castrillo (2011). Research has demonstrated that IL-1β 

inhibits LH-stimulated steroidogenesis (Pate, 1995) and COX-2 is involved in the 

production of prostaglandins (Simon, 1999). 
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4.5.1. Conclusion 

 

Evidence from this study supports our hypothesis that form of supplemental Se 

positively influences the expression of key transcripts that favor increased concentrations 

of early luteal phase P4. Cows supplemented with MIX had increased expression of 

several key transcripts involved in cholesterol biosynthesis and immune response 

elements compared to those supplemented with ISe alone. The results from the 

microarray analysis on the CL confirmed the top canonical pathways were those 

associated with cholesterol biosynthesis and inflammatory responses. Importantly, MIX-

induced upregulation of cholesterol biosynthesis pathways and associated transcripts play 

a pivotal role in increasing the early luteal phase concentration of P4, which is a salient 

finding of this area of research. 
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Figure 4.1 Microarray array-array intensity correlation plot. 
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Figure 4.2 Score plot of principal component analysis of microarray transcriptome analysis of 
10 CL samples from cows supplemented with 3 mg Se/d in vitamin-mineral mixes as sodium 
selenite (ISe, n=5, red sphere) or a 1:1 blend of ISe and OSe (MIX, n=5) 
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Figure 4.3 Effect of form of Se on whole blood concentrations (ppm; LS Mean ± SEM) 
of Se in cows supplemented with either ISe (Sodium selenite; n = 5) or a 1:1 combination 
(MIX) of ISe and OSe (Sel-Plex; n = 5).1 

 

1Data were analyzed as an ANOVA with repeated measures. Whole blood Se was not 
affected by treatment (P = 0.2393) but was affected by time (P < 0.0001). Adapted from 
Carr et al. (Unpublished). 
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Figure 4.4 Hierarchical cluster analysis of the 887 genes identified as differentially 
expressed (ANOVA P-values of <0.05) by the CL of cows supplemented with 3 mg Se/d 
in vitamin-mineral mixes as sodium selenite (ISe, n=5) or a 1:1 blend of ISe and OSe 
(MIX, n=5). 
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Figure 4.5  Overlapping canonical pathways associated with cholesterol biosynthesis and inflammatory responses from the bioinformatic analysis 
(Ingenuity Pathway Analysis). 
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Figure 4.6 Mechanism of cholesterol availability and steroidogenesis with an emphasis on cholesterol biosynthesis. Green arrows indicate increased 
mRNA expression of transcripts identified from the microarray analysis. 
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Table 4.1 Primer sets and product identities of qPCR analysis of cholesterol-associated genes. 

Gene Gene Name Accession 
Number1 

Oligonucleotide Primer Design  
(5’ to 3’) direction 

Amplicon 
length (bp) 

Product 
identity 2 

      

ACAT1 Acetyl-CoA 
acetyltransferase 1 NM_001046075.1 F: GAACAGAGGAGCAACACCA 

R: CCATCATTCAGTGTGCTGGC 379 99% 

      

CYP51A1 
cytochrome P450, family 
51, subfamily A, 
polypeptide 1 

NM_001025319.2 F: CTCGCATCCATGCTGCTCAT 
R: CTCCCCAGCAGGTAGGTAA 261 100% 

      

DHCR7 7-dehydrocholesterol 
reductase NM_001014927.1 F: AGAGGTTGGAGGGCCCAAT 

R: CGTGACCCATGCTGTGTAGA 332 100% 

      

DHCR24 24-dehydrocholesterol 
reductase NM_001103276.1 F: GGGCTGGAGTTCGTTCTCAT 

R: ACCCGCAGTGAAACAGTGA 249 99% 

      

FGF2 Fibroblast growth factor 2 NM_174056.4 F: AAGCGGCTGTACTGCAAGAA 
R: ACACTCGTCTGTAACACATTTAGAA 216 100% 

      

FDFT1 Farnesyl-diphosphate 
farnesyltransferase 1 NM_001013004.1 F: TGGAGTTCGTGAAGTGCTTGG 

R: ATACTGCATGGCGCATTTCC 207 100% 

      

HMGCS1 
3-hydroxy-3-
methylglutaryl-CoA 
synthase 1 

NM_001206578.1 F: ACCTCAGTGCATTAGACCGC 
R: ATCCCCAAAGGCTTCTAGGC 236 98% 

      

LSS Lanosterol synthase NM_001046564.1 F: CCCAGTCCCAGATCCACAAC 
R: AGGGTGCAGACGGGAGAA 239 100% 
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Table 4.1 (continued) 

NSDHL 
NAD(P) Dependent 
Steroid Dehydrogenase-
Like 

NM_001035482.2 F: CGAATCCTGACAGGCCTCAA 
R: CTCCTCACGGTCTTGTCCAC 254 100% 

      

POR Cytochrome p450 
oxidoreductase NM_001035390.1 F: GCCCAGGACTTCTACGACTG 

R: TACTGGCGAATGCTGGACTC 290 99% 

      

SCD Stearoyl-CoA desaturase NM_173959.4 F: TCCGACCTAAGAGCCGAGAA 
R: TGGGCAGCACTATTCACCAG 200 100% 

      

SF1 Splicing factor 1 NM_001081614.1 F: CAGAGAGTCGGCCCTACCAT 
R: CTGATCCATTGGAGGAGGG 228 99% 

      

SREBF1 
Sterol regulatory element 
binding transcription 
factor 1 

NM_001113302.1 F: ACATCTCTTGGAGCGAGCAC 
R: CACCACAGCTGTCAGAGAGG 229 99% 

      

SQLE Squalene epoxidase NM_001098061.1 F: AGCTTCCTCCCTTCTTCACCA 
R: TGCAACACATTTTCCACCAAGT 339 99% 

      

TM7SF2 Transmembrane 7 
superfamily member 2 NM_174622.3 F: CTTTGGTACGAGGAGGCAGTC 

R: TCTCAAGGTCAGCCACTCTG 271 100% 

      
      
Housekeeping Transcripts     
      

ACTB Actin beta NM_173979.3 F: AGCGGGAAATCGTCCGTGAC 
R: TGTTGGCGTAGAGGTCCTTGC 278 99% 
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Table 4.1 (continued) 

HPRT1 
Hypoxanthine 
phosphoribosyltransferase 
1 

NM_001034035.2 F: GCCAGCCGGCTACGTTAT 
R: ATCCAACAGGTCGGCAAAGA 256 100% 

      

SDHA 
Succinate dehydrogenase 
complex flavoprotein 
subunit A 

NM_174178.2 F: GCAGAACCTGATGCTTTGTG 
R: CGTAGGAGAGCGTGTGCTT 185 99% 

      
1 These contents are associated with each gene symbol and are the accession numbers of the sequences retrieved from the NCBI 
RefSeq database for designing primers and probes. 
2 All qPCR products were validated by sequencing. The identity values (%) presented are the base pair ratios between the total 
amplicon length and the number of identical base pairs.  
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Table 4.2 Primer sets and product identities of qPCR analysis of immune-related genes. 

Gene Gene Name Accession 
Number1 

Oligonucleotide Primer Design  
(5’ to 3’) direction 

Amplicon 
length 
(bp) 

Product 
identity 2 

      

C1QC Complement C1q 
C chain NM_001206396.1 F: TGGCCCCTCCTGGTACTAAA 

R: TTCCCAGGATAGCCAGGTGT 236 100% 

      

FAS Fas cell surface 
death receptor NM_174662.2 F: TTATGGGCCCTCCTGATCCT 

R: TCCTCCATACCGTTCTTCCG 230 100% 

      

IFNG Interferon 
gamma NM_174086.1 F: TAGCTAAGGGTGGGCCTCTC 

R: TCTCCGGCCTCGAAAGAGAT 356 99% 

      

IL1R1 Interleukin 1 
receptor type 1 NM_001206735.1 F: GAGTTTGTGCAGCATGAGCC 

R: CACTGTGTGCTGTGTTCACG 241 100% 

      

IL18 Interleukin 18 NM_174091.2 F: TGGCTGCAGAACAAGTAGAAGA 
R: TGGTTACGGCCAGACCTCTA 297 100% 

      

IL8RA 

Chemokine (C-
X-C motif) 
receptor 1 
(CXCR1) 

NM_174360.3 F: TGGTTGGTGACTCAGTCTTTC 
R: CCCAGGAGGCTTAGCAAGAA 229 100% 

      

IL8RB 

Chemokine (C-
X-C motif) 
receptor 2 
(CXCR2) 

NM_001101285.1 F: ACACTGACCTGCCCTCTATTC 
R: CCCAACCCTTTGCCTTGGA 261 100% 
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Table 4.2 (continued) 

ITGAM Integrin subunit 
alpha M NM_001039957.1 F: CAGATCTCCCCCAAGCTTCA 

R: TGGAGGCAGACTTTCACCTG 245 99% 

      

TNFα Tumor necrosis 
factor NM_173966.3 F: TGCCTTGGCTCAGATGTGTT 

R: GGTTACAGGCATGACTCCCC 205 100% 

      

VEGFA 
Vascular 
endothelial 
growth factor A 

NM_174216.2 F: AAGAAAATCCCTGTGGGCCTT 
R: TCTGGTTCCCGAAACCCT 206 100% 

      

VEGFC 
Vascular 
endothelial 
growth factor C 

NM_174488.2 F: CTCCTGCCGATGCATGTCTA 
R: GAAGCCTGAAGTCCCCCTTT 285 100% 

      
 
1 These contents are associated with each gene symbol and are the accession numbers of the sequences retrieved from the NCBI 
RefSeq database for designing primers and probes. 
2 All qPCR products were validated by sequencing. The identity values (%) presented are the base pair ratios between the total 
amplicon length and the number of identical base pairs.
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Table 4.3 Effect of form of Se on concentrations of P4 in the peripheral plasma of cows 
during the early luteal phase of the estrous cycle.1 

  Treatment  
Variable ISe MIX P-value2 

  LS Mean ±SEM LS Mean ±SEM  
Progesterone (ng/mL)    
     
Year 1*    
(n=) 9 9  
Day 6† 3.44 ± 0.18 5.14 ± 0.60 0.035 
CL diameter (mm) 18.2 ± 0.5 18.8 ± 0.6  
    
    
Year 2**    
(n=) 12 12  
Day 7† 2.92 ± 0.27 3.91 ± 0.16 0.006 
     
Year 3    
(n=) 5 5  
Day 5 0.59 ± 0.58 1.20 ± 0.55 0.456 
Day 6 0.86 ± 0.55 1.19 ± 0.55 0.678 
Day 7 1.87 ± 0.55 2.92 ± 0.55 0.198 
     
CL weight (g) 6.07 ± 0.82 6.77 ± 0.82 0.563 
CL diameter (mm) 22.3 ± 1.09 23.2 ± 1.09 0.576 

  

1 Selenium was supplemented at 35 ppm as either inorganic (ISe; sodium selenite) or a 
1:1 combination (MIX) of ISe and OSe (SEL-PLEX). Selenium was supplemented 
individually using in-pasture Calan gates(Patterson et al., 2013).  
2 P-values associated with one-way ANOVA (year1, OSe treatment not shown), one-way 
ANOVA with repeated measures (year 2 and 3), and t-test (CL weight and CL diameter). 
† Means with different superscripts differ, P < 0.05. 
*Reported in (Cerny et al., 2016b) 
**Reported in (Carr et al., 2020) 
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Table 4.4 Top 10 most highly up- and down-regulated DEGs in the CL of MIX versus 
ISe treated cows.1 

Gene 
Symbol Gene Description Ratio Fold 

change 
P-

value2 

LOC505037 
similar to egf-like module containing, mucin-like, 
h 1.89 0.89 0.014 

FGG fibrinogen gamma chain 1.81 0.81 0.020 
LPL lipoprotein lipase 1.80 0.80 0.014 
DRAM1 DNA-damage regulated autophagy modulator 1 1.69 0.69 0.002 
SPP1 secreted phosphoprotein 1 1.63 0.63 0.013 
ITIH5 inter-alpha (globulin) inhibitor H5 1.62 0.62 0.019 
VSIG4 V-set and immunoglobulin domain containing 1.60 0.60 0.007 

SLC5A6 
solute carrier family 5 (sodium-dependent vitamin 
transporter 1.59 0.59 0.022 

KLRD1 KLRD1 // natural killer cells antigen CD94-like 1.57 0.57 0.017 

GABRB1 
gamma-aminobutyric acid (GABA) A receptor, 
beta 1 1.56 0.56 0.019 

         
Gene 

Symbol Gene Description Ratio Fold 
change 

P-
value2 

DFNA5 deafness, autosomal dominant 5 0.45 -0.55 0.020 
LOC786728 similar to ribosomal protein L27a-like 0.46 -0.54 0.002 
FAM127A family with sequence similarity 127, member A 0.50 -0.50 0.044 
KCNIP4 Kv channel interacting protein 4 0.51 -0.49 0.009 
NEFH neurofilament, heavy polypeptide 0.55 -0.45 0.018 
VCAM1 vascular cell adhesion molecule 1 0.59 -0.41 0.041 
PTN pleiotrophin 0.62 -0.38 0.007 
LOC785533 UL16 binding protein 1-like 0.62 -0.38 0.001 
CLEC12B C-type lectin domain family 12, member B 0.66 -0.34 0.045 
ANKRD1 ankyrin repeat domain 1 (cardiac muscle) 0.66 -0.34 0.026 

1 Selenium was supplemented at 35 ppm as either inorganic (ISe; sodium selenite) or a 
1:1 combination (MIX) of ISe and OSe (SEL-PLEX). Selenium was supplemented 
individually using in-pasture Calan gates (Patterson et al., 2013).  
2 For statistical analysis, one-way ANOVA using the Partek Genomic Suite program was 
used to determine significance of each transcript in each comparison.  
 



 

 
 

84 

Table 4.5 Top 10 IPA-identified canonical pathways of genes differentially expressed from CL of cows supplemented with 3 mg Se/d 
in vitamin-mineral mixes as sodium selenite (ISe, n=5) or a 1:1 belnd of ISe and OSe (MIX, n=5).. 

1The ratio calculated as the number of differentially expressed genes (P<0.05) in a given pathway divided by the total number of genes 
that make up that pathway. 

 
  

Canonical Pathway Gene Symbol(s) Ratio1 -log(p-value) 

Cholesterol Biosynthesis I CYP51A1, DHCR24, DHCR7, FDFT1, LSS, 
NSDHL, SQLE, TM7SF2 0.615 8.85 

Cholesterol Biosynthesis II (via 24,25-dihydrolanosterol) CYP51A1, DHCR24, DHCR7, FDFT1, LSS, 
NSDHL, SQLE, TM7SF2 0.615 8.85 

Cholesterol Biosynthesis III (via Desmosterol) CYP51A1, DHCR24, DHCR7, FDFT1, LSS, 
NSDHL, SQLE, TM7SF2 0.615 8.85 

Superpathway of Cholesterol Biosynthesis CYP51A1, DHCR24, DHCR7, FDFT1, 
HMGCS1, LSS, NSDHL, SQLE, TM7SF2 0.321 6.79 

Assembly of RNA Polymerase II Complex GTF2E1, GTF2F1, GTF2H5, POLR2B, 
POLR2F, POLR2G, POLR2H, TAF1 0.160 3.69 

LXR/RXR Activation 
ACACA, CD14, CYP51A1, FASN, FDFT1, 

IL18, IL1R1, LPL, NCOR2, SAA1, SCD, 
SREBF1 

0.099 3.2 

Zymosterol Biosynthesis CYP51A1, NSDHL, TM7SF2 0.500 3.19 

Nucleotide Excision Repair Pathway GTF2H5, POLR2B, POLR2F, POLR2G, 
POLR2H, RAD23B 0.171 3.06 

Epoxysqualene Biosynthesis FDFT1, SQLE 1.000 2.97 

Caveolar-mediated Endocytosis Signaling ARCN1, B2M, COPB1, COPE, ITGA6, ITGAM, 
ITGB2, ITGB3 0.110 2.58 
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Table 4.6 Microarray and real-time RT-PCR identification of selected cholesterol-related genes from CL of cows supplemented with 3 
mg Se/d in vitamin-mineral mixes as sodium selenite (ISe, n=5) or a 1:1 blend (MIX, n=5) of ISe and OSe (SEL-PLEX).1 

  Microarray2 RT-PCR2 

Gene Gene Name Ise MIX P-value ISe Mix SEM P-value 

ACAT1 Acetyl-CoA acetyltransferase 1 1.0 0.93 0.34 1.03 0.96 0.09 0.5891 

CYP51A1 Cytochrome P450, family 51, subfamily A, 
member 1 

1.00a 1.19b 0.0159 1.008a 1.416b 0.064 0.002 

DHCR24 24-dehydrocholesterol reductase 1.00a 1.12b 0.0039 1.017a 1.507b 0.122 0.0217 

DHCR7* 7-dehydrocholesterol reductase 1.00a 1.09b 0.0103 1.011a 1.670b 0.206 0.0457 

FDFT1 Farnesyl-diphosphate farnesyltransferase 1 1.00a 1.21b 0.0419 1.040 1.180 0.112 0.4028 

FGF2 Fibroblast growth factor 2 . . . 1.39 1.66 0.56 0.6396 

HMGCR 3-hydroxy-3-methylglutaryl-CoA reductase 1.00x 1.22y 0.0538 . . . . 

HMGCS1 3-hydroxy-3-methylglutaryl-CoA synthase 1 1.00a 1.10b 0.0207 1.030 1.061 0.164 0.8962 

LSS Lanosterol synthase 1.00a 1.13b 0.0011 1.020 1.250 0.110 0.1771 

NSDHL NAD(P) dependent steroid dehydrogenase-like 1.00a 1.08b 0.0083 1.007 1.024 0.052 0.8238 

POR P450 (cytochrome) oxidoreductase 1.00a 1.10b 0.009 1.06 1.36 0.16 0.2092 

SCD Stearoyl-CoA desaturase (delta-9-desaturase) 1.00a 1.07b 0.009 1.02 0.89 0.11 0.4347 
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Table 4.6 (continued) 
       

SF1 Splicing factor 1 1.00 1.02 0.404 1.05 0.83 0.11 0.2142 

SREBF1  Sterol regulatory element-1 1.00a 1.10b 0.0124 1.023a 1.346b 0.088 0.0314 

SQLE Squalene epoxidase 1.00a 1.14b 0.0236 1.036 1.310 0.244 0.3747 

TM7SF2 Transmembrane 7, superfamily, member 2 1.00a 1.34b 0.0232 1.053 1.129 0.220 0.8139 

1 Selenium was supplemented at 35 ppm as either inorganic (ISe; sodium selenite) or a 1:1 combination (MIX) of ISe and OSe (SEL-
PLEX). Selenium was supplemented individually using in-pasture Calan gates(Patterson et al., 2013).  
2 Data are expressed as a ratio of MIX relative to ISe expression. 
a,b Means within a row that lack a common superscript differ (P<0.05) 
x,y Means within a row that lack a common superscript tend to differ (0.05 < P < 0.10) 
*Natural log transformed due to lack of normality 
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Table 4.7 Microarray and real-time RT-PCR identification of selected immune-related genes from CL of cows supplemented with 3 
mg Se/d in vitamin-mineral mixes as sodium selenite (ISe, n=5) or a 1:1 blend (MIX, n=5) of ISe and OSe (SEL-PLEX).1 

  Microarray2 RT-PCR2 

Gene Gene Name Ise MIX P-value ISe Mix SEM P-value 

C1QC Complement C1q C chain 1.00a 1.32b 0.0149 1.023a 2.349b 0.216 0.0025 

FAS Fas cell surface death receptor 1.00a 1.33b 0.0247 1.021a 1.776b 0.245 0.0357 

IFNG Interferon gamma  . . 1.18a 3.05b 0.51 0.0319 

IL18 Interleukin 18, interferon-gamma-inducing factor 1.00a 1.24b 0.0471 1.027 1.246 0.115 0.2146 

IL1R1 Interleukin 1 receptor type 1 1.00a 1.34b 0.0428 1.040a 1.693b 0.196 0.0468 

ILR8 A* Chemokine (C-X-C motif) receptor 1 (CXCR1) . . . 1.051 2.881 0.818 0.1948 

ILR8 B Chemokine (C-X-C motif) receptor 2 (CXCR2) . . . 1.007a 1.671b 0.107 0.0023 

ITGAM Integrin subunit alpha M 1.00a 1.23b 0.0291 1.042a 1.766b 0.132 0.0046 

TNFα Tumor necrosis factor 1.00 1.07 0.3 1.23 2.28 0.59 0.2425 

VEGFA Vascular endothelial growth factor A 1.00 1.09 0.24 1.03 1.41 0.21 0.2295 

VEGFC Vascular endothelial growth factor C 1.00 1.04 0.417 1.01 1.08 0.06 0.4521 
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1 Selenium was supplemented at 35 ppm as either inorganic (ISe; sodium selenite) or a 1:1 combination (MIX) of ISe and OSe (SEL-
PLEX). Selenium was supplemented individually using in-pasture Calan gates(Patterson et al., 2013).  
Table 4.7 (continued) 

2 Data are expressed as a ratio of MIX relative to ISe expression. 
3 Means within a row that lack a common superscript differ (P<0.05) 
*Natural log transformed due to lack of normality 
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CHAPTER 5. Form of dietary selenium affects mRNA encoding interferon stimulated 

and progesterone induced genes in the bovine endometrium and conceptus length at 

maternal recognition of pregnancy. 

 

5.1. Abstract   

 

Widespread regions of the southeast United States have soils, and hence forages, 

deficient in selenium (Se), necessitating Se supplementation to grazing cattle for optimal 

immune function, growth, and fertility. We have reported that supplementation with an 

isomolar 1:1 mix (MIX) of inorganic (ISe) and organic forms of Se increases early luteal 

phase (LP) progesterone (P4) above that in cows on ISe alone. Increased early LP P4 

advances embryonic development. Our objective was to determine effects of form of Se 

on the development of the bovine conceptus and the endometrium using targeted qPCR 

on day 17 of gestation, the time of maternal recognition of pregnancy (MRP). Angus-

cross yearling heifers underwent 45-day Se-depletion then repletion periods, then at least 

90 days of supplementation (TRT) with 35 ppm Se/day as either ISe (n=10) or MIX 

(n=10). Heifers were inseminated to a single sire after a detected estrus (Day 0). On Day 

17 of gestation, caruncular (CAR) and intercaruncular (ICAR) endometrium samples and 

the developing conceptus were recovered. Real-time PCR (qPCR) was performed to 

determine the relative abundance of targeted transcripts in CAR and ICAR samples and 

were subjected to one-way ANOVA to determine TRT effects. Effects of TRT on 

conceptus development were analyzed using a one-tailed student T-Test. MIX heifers had 

decreased (P<0.05) abundance of several P4-induced and interferon-stimulated mRNA 



 

90 
 

transcripts, including IFIT3, ISG15, MX1, OAS2, RSAD2, DGAT2, FGF2 in CAR and 

DKK1 in ICAR. Additionally, MIX heifers tended (0.05 ≤ P ≤ 0.10) to have decreased 

mRNA abundance of IRF1, IRF2, FOXL2, and PGR in CAR, and HOXA10 and PAQR7 

in ICAR. In contrast, MIX-supplemented heifers had increased (P<0.05) mRNA 

abundance of MSTN in ICAR. Importantly, MSTN increases glucose secretion into 

histotroph and contributes to advanced conceptus development. Interestingly, and a 

salient finding of this experiment, a MIX-induced increase (25.96 ± 3.95 cm vs. 17.45 ± 

3.08 cm; P=0.0533) in conceptus length was observed when compared to heifers 

supplemented with ISe alone. Intriguingly, this advancement in conceptus development 

occurs in the presence of similar concentrations of serum P4 (P=0.88) and whole blood 

Se (P=0.07) at MRP. Collectively, results from this experiment suggests that the onset of 

MRP may be shifted and occurs earlier in MIX vs. ISe supplemented heifers.  

 

Keywords: Selenium, progesterone, endometrium, conceptus 
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5.2. Introduction 

 

The majority of producers in the southeast United States, including Kentucky, 

have forages and grains that are low (<0.05 ppm) to variable (~50% contain >0.1 ppm) in 

selenium (Se) (Ammerman and Miller, 1975). Therefore, it is not unexpected that 

producers in the southeast have the highest proportion of cattle classified as Se-deficient 

compared to other geographical regions (Dargatz and Ross, 1996). In cattle, deficiencies 

in Se have been demonstrated to decrease immunity (Erskine et al., 1989), growth (Gleed 

et al., 1983), and fertility (McClure et al., 1986). In the feed industry, Se is commonly 

supplemented in the inorganic (ISe) dietary form of sodium selenite or sodium selenate 

(Podoll et al., 1992). However, research has demonstrated lower concentrations of Se in 

whole blood in cattle supplemented with ISe compared to cattle supplemented with 

organic (OSe) Se (Sel-Plex; Alltech, Inc., Nicholasville, KY, USA) (Patterson et al., 

2013; Cerny et al., 2016b; Jia et al., 2018).  

Supplementing dairy cows during the pre- and postpartum periods with a Se-

enriched yeast increased postpartum plasma concentrations of progesterone (P4) 

compared to providing no supplemental Se (Kamada, 2017). Importantly, it has been 

reported that postpartum concentrations of P4 are positively correlated with conception 

rate (Inskeep, 2004). Similarly, our lab has previously reported increased early luteal 

phase concentrations of P4 in cows supplemented with a 1:1 combination (MIX) of ISe 

(sodium selenite; Prince Agri Products, Inc. Quincy, IL) and OSe (SEL-PLEX; Alltech, 

Inc., Nicholasville, KY, USA) compared to cows supplemented with ISe or OSe on day 6 

(Cerny et al., 2016b), or  ISe on day 7 (Carr et al., 2020) of the estrous cycle. Moreover, 
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we have recently reported that this increase in P4 could be explained, in-part, by 

increased cholesterol biosynthesis (Crites et al., Unpublished) and increased cholesterol 

uptake (Carr et al., Unpublished) in corpora lutea recovered from MIX versus ISe 

supplemented cows. 

Progesterone plays a crucial role in creating an optimal uterine environment that 

favors advanced conceptus elongation (Lonergan, 2011). Progesterone acts on the uterus 

to indirectly stimulate pre-implantation blastocyst growth and elongation (Garrett et al., 

1988; Mann and Lamming, 2001). The elongating conceptus must secrete a chemical 

signal to signal pregnancy and to prevent uterine release of luteolytic pulses of 

prostaglandin F2α (PGF2α) and therefore luteal regression, a process referred to as 

“maternal recognition of pregnancy” (MRP) (Short, 1969). In cattle that signal is 

interferon tau (IFNT) (Lewis et al., 1979) and MRP occurs around days 16-17 (Spencer, 

2013). 

In the uterus, P4 acts on the endometrium as a differentiation factor (Cummings 

and Yochim, 1984) and stimulates secretions in the glandular epithelium. Increased 

concentrations of P4 immediately following conception have been associated with 

advanced conceptus elongation (Garrett et al., 1988; Carter et al., 2008) and increased 

IFNT production (Mann and Lamming, 2001). 

Additionally, IFNT stimulates a number of genes in a cell-specific manner within 

the endometrium that are implicated in uterine receptivity and conceptus development 

(Spencer et al., 2007). Together, these proteins provide an environment that supports 

early embryonic development (Niswender et al., 2000). The early embryo is nourished by 

histotroph from the uterine glands which are located in the intercaruncular endometrium 
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(ICAR) (Atkinson et al., 1984), and have shown to be crucial for the development of the 

conceptus (Gray et al., 2001). Additionally, small aglandular caruncular (CAR) areas of 

stromal origin are scattered over the endometrium surface (Mansouri-Attia et al., 2009). 

The CAR areas are present in the cyclic endometrium and fuse with the fetal cotyledons 

to form placentomes in pregnant animals (Atkinson et al., 1984). During this pivotal time 

period encompassing MRP, failure or delays in trophoblast elongation and/or embryonic 

development result in loss of pregnancy possibly due to suboptimal histotroph (Wiltbank 

et al., 2016). Although fertilization rates are high in cattle (Diskin and Morris, 2008), 

pregnancy losses average approximately 30% from days 8 to 27 of gestation, a period of 

time encompassing embryo elongation and MRP (Wiltbank et al., 2016). The loss of 

pregnancy at any stage of gestation has a clear negative impact on the reproductive 

performance and profit potential in beef and dairy operations. 

The objectives of this study were to investigate the effects of form of 

supplemental Se on gene expression in bovine endometrium and the developing 

conceptus on day 17 of pregnancy, further contributing to our long-term goal of 

elucidating form of Se-regulated processes affecting fertility. We hypothesized that the 

form of Se supplemented to cows would alter gene expression in both CAR and ICAR 

bovine endometrium, with MIX creating an environment that favors conceptus 

development. More specifically, we hypothesized that conceptus development would be 

more advanced in heifers supplemented with MIX versus ISe. Providing supplemental 

mineral is a production practice that is easily implemented by producers and 

incorporating Se as MIX would be a simple transition with the potential to increase 

fertility in their herds. 
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5.3. Material and Methods 

 

The experimental procedures in this project were approved by the Institutional 

Animal Care and Use Committee at the University of Kentucky, protocol number 2017-

2828. 

 

5.3.1. Animals and Experimental Procedure 

 

Fall-born, Angus-cross yearling heifers (N=20) were randomly selected from pre-

existing, Se form-specific cow herds as previously described (Patterson et al., 2013; 

Matthews et al., 2014; Cerny et al., 2016a; Cerny et al., 2016b) and were housed at the C. 

Oran Little Research Center at the University of Kentucky. At the beginning of this 

experiment, animals received ad libitum access to a basal mineral mix with no exogenous 

source of Se for a 45-day Se-depletion period. This was followed by a 45-day period with 

ad libitum access to the mineral mix with 35-ppm Se as ISe for 45 days to return systemic 

blood Se in all cows to adequate concentrations (National Academies of Sciences and 

Medicine, 2016). Following the period of Se repletion, cows were randomly assigned to 

have at least 90 days of ad libitum access to a basal mineral mix containing 35-ppm Se as 

inorganic (n=10; ISe; sodium selenite; Prince Agri Products, Inc. Quincy, IL) or as 1:1 

combination of ISe and OSe (n=10; MIX; SEL-PLEX; Alltech, Inc., Nicholasville, KY) 

as described by (Carr et al., In Review). Throughout the depletion and repletion periods, 

all heifers grazed a common, novel, nontoxic endophyte-infected tall fescue (Lacefield 
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MaxQ II) pasture and during the Se-specific treatment periods, heifers grazed toxic 

endophyte-infected tall fescue pastures with the addition of a common corn silage diet.  

To ensure heifers maintained adequate status of total blood Se for the duration of 

the study, whole blood was collected from each heifer at the start and endpoint of the 

depletion and repletion periods and bimonthly until the end of the experiment for the 

determination of total whole blood concentrations of Se (Patterson et al., 2013; Cerny et 

al., 2016a). 

 

5.3.2. Experimental Regimen and Tissue Collection 

 

Heifers were supplemented with their respective mineral treatment for at least 90 

days before being randomly injected with one or two doses of dinoprost tromethamine 

(25 mg, Lutalyse, Zoetis, Parisppany, NJ) to induce regression of the corpus luteum (CL) 

and then monitored for behavioral estrus (Day 0), twice daily, using visual appraisal and 

electronic cow monitoring technology (CowManager, Gerverscop 9, The Netherlands). 

At detected estrus (0 h) presence of a preovulatory follicle was confirmed via transrectal 

ultrasonography using a 5-8 MHz linear transducer (Ibex Pro, E.I. Medical Imaging, 

Loveland, CO) prior to insemination. Heifers were inseminated at 0 h, 12 h, and 24 h 

using frozen semen from a single bull with known high fertility. On days 0, 5, 6, 7, 8, 11, 

14 and 17 approximately 8 mL of blood was collected into additive-free tubes 

(Vacutainer, Becton, Dickinson and Company, Franklin Lakes, NJ) by jugular 

venipuncture for retrieval and quantification of serum P4 via radioimmunoassay. 

Additionally, on days 0 and 17, 8 mL of whole blood was collected in EDTA-containing 
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(2.7 mg/mL) blood collection tubes (Becton Dickinson, Franklin Lakes, NJ) by jugular 

venipuncture for concentration of whole blood Se. The presence and diameter of the CL 

was determined by transrectal ultrasonography on the morning of day 17 prior to 

transport to the University of Kentucky Meat Laboratory. 

 On day 17 after insemination, the ovaries and uterus were collected from each 

heifer after euthanasia by captive bolt stunning and exsanguination at the USDA 

inspected University of Kentucky Meat Laboratory. Reproductive tracts were 

immediately removed, placed on ice, and processed for the collection of the conceptus 

and tissue samples from the CL and endometrium. Specifically, the uterine horn 

contralateral to the CL was ligated approximately 4 cm from the uterine bifurcation and 

the ovary bearing the CL was removed. Subsequently, an artificial insemination sheath 

(Alpha sheath, IMV Technologies USA, Maple Grove, MN) was inserted transcervical to 

the internal os and 20 mL of ice-cold physiologically buffered saline (PBS) was infused 

into the uterine horn, massaged gently, and exited through an incision at the tip of the 

ipsilateral uterine horn. Uterine luminal flushing media and the conceptus were recovered 

in a sterile 100 by 15-mm Petri dish. If no conceptus was recovered in the first flush, then 

an additional flush of 20 mL of PBS was performed. If no conceptus was recovered after 

flushing four consecutive times, heifers were determined to be nonpregnant and were 

removed from the experiment. A complete, intact conceptus was recovered from MIX 

(n=6) and ISe (n=6) heifers. Only heifers with a recovered conceptus were included in all 

analyses. Digital images of the conceptuses were captured over 6.35 mm grid paper and 

conceptus lengths were measured using the software program, Digimizer (version 5.6.0), 
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by two independent technicians. Conceptus lengths were averaged to determine a 

composite conceptus length to be used in statistical analyses.  

 Endometrial samples were only collected from the ipsilateral horn to the CL for 

gene expression analysis. The ipsilateral uterine horn was longitudinally opened by 

scissors and carcuncular (CAR) and intercaruncular (ICAR) endometrium samples were 

collected by the same individual for all animals using an 8mm biopsy punch (Integra 

LifeSciences Production Corporation, Mansfield, MA). After collection, the conceptus, 

CAR, ICAR and luteal samples were snap-frozen in liquid nitrogen and stored at -80°C to 

be used for RNA extraction and the determination of transcript expression by real-time 

polymerase chain reaction (qPCR). 

 

5.3.3. RNA Extraction  

 

Total RNA was extracted from ~200 mg of frozen CAR and ICAR endometrial 

tissue using TRIzol Reagent (Invitrogen Corporation, Carlsbad, CA) following the 

manufacturer’s instructions. The purity and concentration of total RNA samples were 

analyzed using a NanoDrop ND-100 Spectophotometer (NanoDrop Technologies, 

Wilmington, DE, USA). All samples had high purity, with 260/280 absorbance ratios of 

1.88 or greater.  

 

5.3.4. Real-time PCR Analysis  
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The relative quantification of mRNA for genes of interest was performed using 

qPCR using standard procedures in our laboratory, as described previously (Cerny et al., 

2016a; Carr et al., In Review). Briefly, 1 μg of each cow’s CL RNA was reverse 

transcribed to cDNA using the SuperScript™ IV VILO™ Master Mix with ezDNAse™ 

Enzyme (Invitrogen by Thermo Fisher Scientific, Vilnius, Lithuania). Additionally, a no 

reverse-transcription control sample was transcribed and analyzed via qPCR to ensure 

that products from the targeted transcripts were not obtained from genomic DNA. 

 The relative abundance of mRNA encoding interferon-stimulated associated 

transcripts: ACKR3, IFIT3, IRF1, IRF2, ISG15, MSXI, MX1, MX2, OAS1, OAS2 and 

RSAD2 and the P4-induced transcripts: DGAT2, DKK1, FABP3, FGF2, MSTN, SLC1A5, 

SLC1A3, SLC46A3, FOXL2, IHH, HOXA10, and IGFBP1 were quantified. Next, the 

relative abundance of P4-associated enzymatic transcripts: PTGS2 and PGES and the 

receptor transcripts: OXTR, ESR1, PGR, PGRMC1, PGRMC2, PAQR5, PAQR7, PAQR8, 

EP1, EP2, EP3, EP4, PGFR, IFNAR1 and IFNAR2 were quantified. Primer sequences 

used and GenBank accession numbers are listed in Tables 5.1 and 5.2, respectively. The 

qPCR procedures were performed using the Bio-Rad CFX Maestro™ thermal cycler 

(Bio-Rad, Hercules, CA, USA) with iTaq Universal SYBR® Green Supermix (Bio-RAD, 

Hercules, CA, USA). A total volume of 25 μl was used in each qPCR reaction containing 

5 μl of cDNA, 1 μl of a 10 μM stock of each primer (forward and reverse), 12.5 μl of 2 x 

SYBR Green PCR Master Mix, and 5.5 μl of nuclease-free water. The relative amount of 

each transcript was calculated using the 2-ΔΔCT method (Livak and Schmittgen, 2001). 

Primer sets for genes of interest were designed and obtained from NCBI Primer-BLAST 

tool (https://www.ncbi.nlm.nih.gov/tools/primerblast/) against RefSeq.  
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All cDNA products were validated via DNA sequencing for verification of target 

at ACGT, Inc. (Wheeling, IL, USA). The resulting sequences were then compared to the 

NCBI RefSeq mRNA sequences used for primer templates. The primer pair design, 

amplicon length of product, and product identity for each targeted transcript are shown in 

Tables 5.1 and 5.2. Three constitutively expressed genes (β-ACTIN, GAPDH and SDHA) 

with CT values not affected (P > 0.05) by Se-form treatment were used to normalize the 

relative mRNA expression to the geometric mean of the three. For qPCR analysis, n = 6 

and 6 for ISe and MIX treatments, respectively. Data were normalized to ISe expression 

and all reactions were performed in duplicate.  

 

5.3.5. Se and P4 Analysis  

 

 Total blood Se was determined by the University of Kentucky’s Veterinary 

Diagnostics Laboratory (Lexington, KY) and Se was quantified using an Agilent 7900 

inductively coupled plasma-mass spectrometer, as described previously (Wahlen et al., 

2005).   

 Concentrations of P4 were quantified in samples of serum by a commercially 

available competitive RIA without extraction (ImmuChem™ Coated Tube Progesterone 

125-I RIA Kit, MP Biomedicals, Costa Mesa, CA) according to manufacturer’s 

instructions. There was one assay performed for analysis of the serum with an intra assay 

CV of 10.16%. 

 

5.3.6. Statistical Analysis 
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 Data are presented as least square means (±SEM) with individual cow as the 

experimental unit. Data were analyzed for normal distribution and homogeneity. When 

appropriate, data were transformed for normality by natural log transformation.  

 To determine the effect of form of Se on concentrations of systemic Se and P4, 

data were analyzed using the PROC MIXED procedure of SAS statistical software 

package (version 9.4; SAS Institute, Inc. Cary, NC) as an ANOVA with repeated 

measures. The form of dietary Se was considered the fixed effect for both and the P4 data 

were natural log transformed due to being not normally distributed. The effect of form of 

Se supplementation on conceptus length was analyzed as a one-tailed student’s T-test, 

using the PROC TTEST procedure of SAS statistical software package (version 9.4; SAS 

Institute, Inc. Cary, NC). 

Additionally, the effect of form of Se supplementation on the relative abundance 

of CAR and ICAR mRNA transcripts were analyzed as an ANOVA using the PROC 

GLM procedure of SAS statistical software package (version 9.4; SAS Institute, Inc. 

Cary, NC). For all analyses n=6 for ISe and MIX treatments and significance was 

declared at P < 0.05 and a tendency to differ was declared when 0.05 < P < 0.10. 

 

5.4. Results 

 

5.4.1. Concentrations of Whole Blood Se 

 



 

101 
 

 Cows were maintained on form of Se-specific treatments (ISe vs. MIX) that 

provided adequate concentrations of whole blood Se (Gerloff, 1992; Dargatz and Ross, 

1996) for the duration of this experiment (Fig. 5.1). There was an effect of time 

(P<0.0001) and tended to be a main effect of form of Se (P=0.0704), but there was no 

significant treatment by time interaction (P=0.5066). 

 

5.4.2. Progesterone 

 

Serum collected from heifers on days 0, 5, 6, 7, 8, 11, 14 and 17 of gestation was 

used to determine concentrations of P4. Previous studies from our lab indicate an increase 

of ~1 ng/mL on days 6 and 7 of the estrous cycle (Cerny et al., 2016b; Carr et al., 2020). 

In the current study, concentrations of P4 were not affected (P=0.88) by form of Se-

treatment (Fig. 5.2). However, there was an effect of day (P<0.0001), but there was no 

treatment by day interaction (P=0.77). Although not significant, there is a form of Se-

induced numerical increase in concentrations of P4 on days 6 and 7 in the study herein, a 

time consistent with our previous studies (Cerny et al., 2016b). 

 

5.4.3. Conceptus Length 

  

Form of Se supplementation affected conceptus length on day 17 of gestation. 

Conceptus length was increased (P=0.0533) in heifers supplemented with MIX (25.96 ± 

3.95 cm) compared to ISe (17.45 ± 3.08 cm) (Fig. 5.3). A representative image of a 

collected conceptus is shown in Fig. 5.4. 
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5.4.4. Real-time PCR Analysis of Selected mRNA Transcripts 

 

The relative abundance of 40 mRNA encoding interferon-stimulated associated 

transcripts, P4-induced transcripts, P4-associated enzymatic transcripts and receptor 

transcripts were analyzed in both CAR and ICAR samples via qPCR.  

Of the 11 interferon-stimulated associated transcripts (Table 5.3), the level of 

expression of mRNA encoding IFIT3, ISG15, MX1, OAS2 and RSAD2 was lower 

(P<0.05) in CAR retrieved from MIX versus ISe supplemented heifers (Fig. 5.5). 

Similarly, the relative abundance of IRF1 and IRF2 tended (0.05 < P < 0.1) to be lower 

in CAR retrieved from MIX versus ISe supplemented heifers (Fig. 5.5).  

Of the 12 targeted P4-induced transcripts (Table 5.4), the level of expression of 

mRNA encoding DGAT2 and FGF2 was lower (P<0.05) in CAR retrieved from MIX 

versus ISe supplemented heifers (Fig. 5.6). Additionally, the relative abundance of 

FOXL2 tended (0.05 < P < 0.1) to be lower in CAR retrieved from MIX versus ISe 

supplemented heifers. Similarly, MIX supplemented heifers had lower (P<0.05) levels of 

expression of mRNA encoding DKK1 and tended (0.05 < P < 0.1) to have increased 

expression of mRNA encoding HOXA10 in ICAR samples compared to heifers 

supplemented with ISe. However, MIX supplemented heifers had greater (P<0.05) levels 

of expression of mRNA encoding MSTN in ICAR compared to ISe supplemented heifers 

(Fig. 5.6). In addition, of the 17 targeted receptor transcripts (Table 5.5), the expression 

of mRNA encoding the nuclear P4 receptor (PGR) in CAR samples and the P4 membrane 
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receptor (PAQR7) in ICAR samples tended (0.05 < P < 0.1) to be decreased in MIX 

versus ISe treated cows (Fig. 5.7). 

 

5.5. Discussion 

 
The aim of this study was to investigate the effect of form of supplemental Se on 

the uterine endometrium and developing conceptus at the time of MRP in cattle. More 

specifically, we sought to determine alterations in conceptus development and targeted 

gene expression in the bovine endometrium at MRP on day 17 of gestation. Recently we 

have observed a MIX-induced increase in CL mRNA transcripts associated with 

cholesterol biosynthesis (Crites et al., Unpublished) and cholesterol uptake (Carr et al., In 

Review), which could partly explain the increased concentrations of P4 in the early luteal 

phase observed previously in our lab (Cerny et al., 2016b; Carr et al., 2020).  

In the present study, MIX supplemented cows had numerically greater 

concentrations of P4 versus ISe supplemented cows on days 6 and 7 of gestation. 

Although not statistically significant, the increased concentrations of P4 occur at similar 

times reported in our previous studies that used a larger number of animals (Cerny et al., 

2016b; Carr et al., 2020). The inability to detect statistical significance of a MIX-induced 

increased concentration of P4 is likely limited by the number of animals used in the 

present study; however, cows in the present study were also managed on both non-toxic 

and toxic endophyte-infected tall fescue pastures and received a common corn silage diet 

during the winter months. Cows used in previous studies from our lab were grazing toxic 

endophyte-infected tall fescue pastures (Cerny et al., 2016b; Carr et al., 2020). Previous 

research has demonstrated that heifers fed endophyte-infected fescue had lower luteal 
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phase concentrations of P4 than heifers consuming a diet containing endophyte-free 

fescue (Jones et al., 2003). Perhaps there is a relationship between endophyte toxicity and 

form of supplementary Se that accounts for the differences between these studies. 

Successful pregnancy in mammals requires both a viable embryo and a receptive 

endometrium (Walker et al., 2010). Synchronous signaling between the endometrium and 

embryo during the pre-implantation period is critical for normal embryo development, 

implantation of the embryo, and placentation (Wolf et al., 2003). Uterine receptivity has 

been demonstrated to be dependent on P4 (Mansouri-Attia et al., 2009). Additionally, 

uterine factors including enzymes, cytokines, growth factors, ions, hormones, glucose, 

transport proteins, and adhesion molecules, collectively termed “histotroph,” have been 

shown to be mainly synthesized by the endometrial glands (Martal et al., 1997). Research 

has indicated that P4-induced changes in endometrial gene expression leads to changes in 

the composition of histotroph that are required for post-hatching conceptus survival and 

growth (Spencer et al., 2008a).  

The actions of P4 are mediated by P4 receptors (PR) (Spencer and Bazer, 2002). 

Progesterone receptors are expressed in endometrial epithelia and stroma during the early 

to mid-luteal phase, allowing direct regulation of genes by P4 (Spencer et al., 2008b). 

However, continuous exposure of the endometrium to P4 negatively regulates PR 

expression in the luminal and glandular epithelium, and the down regulation of PR is 

temporally associated with the induction of many P4-stimulated genes (Spencer et al., 

2004; Spencer et al., 2008b). As reviewed by Spencer et al. (2004), the paradigm of loss 

of PR in uterine epithelia immediately before implantation is common to sheep, cattle, 

pigs, and mice, amongst other species. Furthermore, the loss of PR is associated with the 
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induction of numerous gene associated with cell adhesion (Spencer et al., 2008b). Results 

from qPCR performed in the study herein indicated a tendency for the relative abundance 

of mRNA encoding the nuclear P4 receptor (PGR) and progestin and adipoQ receptor 

family member 7 (PAQR7) to be decreased in ICAR tissue recovered from MIX 

compared to ISe supplemented heifers. Since PR are downregulated from continuous 

exposure to P4, this MIX-induced reduction in PGR and PAQR7 fits in with the 

increased concentration of P4 previously reported in our lab (Cerny et al., 2016b; Carr et 

al., In Review) and the numerical increase on days 6 and 7 in the present study. 

Progesterone regulates forkhead Box L2 (FOXL2) expression in the endometrium 

of ruminants and stimulates FOXL2 promoter activity through nuclear P4 receptors 

(PGR) (Eozenou et al., 2020). Results from qPCR indicated that heifers supplemented 

with MIX had decreased mRNA abundance of FOXL2 and PGR. In bovine endometrium, 

a negative correlation between circulating concentrations of P4 and FOXL2 gene 

expression exists (Eozenou et al., 2012). FOXL2 appears to be important in the 

endometrium as well as a key gene involved in ovarian differentiation and maintenance 

of ovarian function (Eozenou et al., 2012; Georges et al., 2014; Elzaiat et al., 2017). 

Interestingly, it has been revealed that FOXL2 is a transcriptional repressor of the StAR 

protein gene (Pisarska et al., 2004). Importantly, StAR protein transports cholesterol to 

the inner mitochondrial membrane and is the rate-limiting step in steroidogenesis (Clark 

et al., 1994; Manna et al., 2016). Therefore, repressing the StAR protein gene would lead 

to reduced concentrations of progesterone. 

Histotroph represents maternal contributions to uterine luminal fluid and is 

composed of glucose, fatty acids, and amino acids (Forde et al., 2014). Although 
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gluconeogenesis does not occur in the uterus (Zimmer and Magnuson, 1990; Yánez et al., 

2003), glucose is stored as glycogen (Demers et al., 1972; Greenstreet and Fotherby, 

1973). It is likely that uterine glycogen reserves are an important source of energy for 

pre-embryonic growth and development (Dean et al., 2014). Diacylglycerol O-

acyltransferase homolog 2 (DGAT2) catalyzes the final step in the formation of 

triglyceride to acylcoenzyme A and that triglyceride is a potential energy source up to the 

blastocyst stage in cattle (Forde et al., 2009). In the present study, qPCR results revealed 

that MIX supplemented heifers had decreased relative abundance of DGAT2 in CAR 

tissue compared to heifers supplemented with ISe. Moreover, a P4-induced earlier 

increase in DGAT2 expression may increase availability of triglyceride as an energy 

source for the developing conceptus (Forde et al., 2009). Additionally, P4 induction of 

myostatin (MSTN) may increase glucose secretion into histotroph, contributing to the 

advanced development of the conceptus after hatching (Forde et al., 2009). Intriguingly, 

MIX supplemented heifers had increased relative abundance of MSTN compared to ISe 

heifers in ICAR tissue. These results suggest that conceptus recovered from MIX heifers 

were more advanced in their development due to an earlier increase P4, leading to an 

earlier increase in DGAT2 and increased MSTN on day 17 of gestation. 

Similarly, in spermatogenesis, the preferred energy substrate of round spermatids 

by sertoli cells is lactate (Goddard et al., 2003; Boussouar and Benahmed, 2004). 

Previous research from our lab indicated increased expression of mRNA encoding lactate 

dehydrogenase A (LDHA) in testis of calves born to MIX-dams (Cerny et al., 2016a) and 

importantly, LDHA is required for the production of lactate. Additionally, MIX steers 

had 99% more hepatic glutamine synthetase (GS) activity than ISe steers (Jia et al., 2018) 
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and GS is involved in scavenging ammonia that escapes periportal hepatocyte 

detoxification by synthesizing glutamine from sinusoidal ammonia and glutamate 

(Wagenaar et al., 1994). 

Progesterone stimulates and maintains endometrial functions necessary for 

conceptus growth, implantation, placentation, and development to term (Bazer, 1975; 

Bazer et al., 1979; Spencer and Bazer, 2002; Spencer et al., 2004). Heifers and ewes with 

lower concentrations of P4 in the early luteal phase had smaller conceptuses that secreted 

less IFNT (Nephew et al., 1991; Mann and Lamming, 2001). Conversely, increased 

concentrations of P4 immediately following conception has been associated with 

advanced conceptus elongation (Carter et al., 2008) and increased IFNT production 

(Mann and Lamming, 2001). Although concentrations of P4 were similar between 

treatments at MRP in the present study, conceptus development was advanced in MIX 

versus ISe supplemented heifers. Importantly, the MIX-induced increase in conceptus 

development occurred in the presence of similar concentrations of whole blood Se. This 

MIX-induced increase in conceptus development is a salient finding of this research and 

could be, in-part, due to the increased relative abundance of MSTN discussed earlier. It 

has been suggested that heifers with artificially increased concentrations of P4 soon after 

insemination had protein products required to advance conceptus development 

transported to the uterine lumen at an earlier stage than in normal P4 environments 

(Forde et al., 2009). Perhaps the increased concentrations of progesterone previously 

reported by our lab on days 6 (Cerny et al., 2016b) and 7 (Carr et al., 2020; Carr et al., In 

Review) and the numerical increase in concentrations of P4 on days 6, 7, and 11 in MIX 

versus ISe heifers in the present study allowed for an earlier induction of MSTN, 
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ultimately contributing to the advanced conceptus development of MIX embryos 

recovered herein. 

In addition to its antiluteolytic actions, IFNT produced by the conceptus acts on 

endometrial genes, known as interferon stimulated genes (ISGs), in a specific spatial and 

temporal manner (Bazer et al., 2008; Bazer et al., 2009). Interestingly, in a comparison of 

pregnant and cyclic heifers, differentially expressed genes identified on day 16 of 

pregnancy were due to the presence of the conceptus and the majority were expressed in 

response to IFNT produced by the conceptus (Forde et al., 2011).  

Following binding of IFNT to its receptors (IFNAR1 and IFNAR2), it initiates 

cell signaling via Janus activation kinases (JAKs) and tyrosine kinase 2 (TYK2) (Bazer et 

al., 2008; Walker et al., 2010) and can induce ISG expression (Michalska et al., 2018). 

Similarly, IRF1 can regulate expression of ISGs in response to type I and II interferons 

(Michalska et al., 2018). In the present study, qPCR results indicated MIX supplemented 

heifers tended to have decreased abundance of IRF1 and IRF2 compared to ISe heifers. 

Treating ovine luminal epithelia cells with IFNT induced IRF1 expression within 1 h, 

maximal expression at 3 h, and steadily declined through 48 h (Stewart et al., 2001). This 

suggests that the maximal expression of IFNT, and thus the timing of MRP, is shifted and 

occurs earlier in the MIX supplemented heifers. 

In sheep, classical ISGs, such as interferon stimulated gene 15 (ISG15), mouse 

myxovirus resistance 1 (MX1), and 2’,5’ oligoadenylate synthase (OAS), induced by 

IFNT are limited to uterine glandular epithelia and stromal cells because uterine luminal 

epithelia and superficial glandular epithelia express interferon regulatory factor 2 (IRF2) 

which is a potent inhibitor of gene transcription that silences expression of genes such as 
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estrogen receptor 1 (ESR1) and signal transducer and activator of transcription factor 1 

(STAT1) (Bazer et al., 2008).  

OAS upregulation during early pregnancy is involved in regulating the production 

of osteopontin (SPP1) (Spencer et al., 1999; McAveney et al., 2000), which is also up-

regulated during pregnancy (Walker et al., 2010). In the present study, MIX heifers had 

decreased abundance of mRNA encoding OAS2 in CAR tissue compared to ISe heifers. 

Additionally, upregulation of SPP1 in pregnant animals promotes adhesion of the 

trophoblast to the endometrium, stimulates morphological changes in the trophoblast 

(Johnson et al., 2003) and regulates the immune response (Walker et al., 2010). 

Upregulation of these genes may be an important mechanism to enhance the response to 

potential viral pathogens during the time of local immune suppression that occurs in 

response to the embryo (Walker et al., 2010). The upregulation of MX1 and MX2, both 

ISGs, supports this hypothesis and are upregulated in response to viral infection (Hicks et 

al., 2003; Bauersachs et al., 2009). Heifers supplemented with MIX had decreased 

relative abundance of MX1, but similar abundance of MX2 compared to ISe heifers in 

the present study. Additionally, MX genes induced by IFNT at pre-implantation may play 

a role in pregnancy recognition, uterine reception, and/or conceptus attachment to the 

endometrium (Shirozu et al., 2015).  

Additionally, supplementing heifers with MIX reduced the relative abundance of 

mRNA encoding radical S-adenosyl methionine domain containing 2 (RSAD2) in CAR. 

RSAD2 is produced during viral infection in response to interferons to limit viral 

replication and modulate adaptive immunity (Helbig et al., 2005). Moreover, RSAD2 

could act as an immunomodulatory factor preventing viral infection of the uterus during 
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the critical stage of implantation (Mansouri-Attia et al., 2009). Interestingly, expression 

of RSAD2 and MX1 was not limited to the stroma or the glandular epithelium but was 

also detectable in the luminal epithelium at implantation (Mansouri-Attia et al., 2009).  

 

5.5.1. Conclusion 

 

Evidence from this study supports our hypothesis that form of supplemental Se 

influences the expression of transcripts in the bovine endometrium at MRP and that MIX 

advances conceptus development compared to ISe. Results from qPCR indicated that 

heifers supplemented with MIX had decreased expression of several transcripts known to 

be induced by P4 and/or stimulated by interferons. Additionally, compared to ISe 

supplemented heifers, MIX supplemented heifers tended to have decreased abundance of 

mRNA encoding PGR and PAQR7, and the paradigm of loss of PR in uterine epithelia 

immediately before implantation occurs in both sheep and cattle, amongst other species. 

Similarly, MIX heifers tended to have decreased abundance of mRNA encoding IRF1, 

which is stimulated by IFNT and has reduced responsiveness to IFNT overtime. 

Moreover, MIX supplemented heifers had increased abundance of mRNA encoding 

MSTN, which increases glucose secretion into histotroph, thus advancing conceptus 

development. Interestingly, a MIX-induced increase in conceptus length was observed 

compared to heifers supplemented with ISe and is a salient finding of this experiment. 

Collectively, these results suggest that the onset of MRP may be shifted and occurs 

earlier in MIX supplemented heifers compared to those supplemented with ISe alone.  

  



 

111 
 

Table 5.1 Primer sets and product identities of qPCR analysis of progesterone-induced 
and interferon-stimulated genes. 

 
Gene Gene Name Accession Number1 Oligonucleotide Primer Design  

(5’ to 3’) direction 
Amplicon 
length (bp) 

Product 
identity 2 

      
Progesterone-induced transcripts    
     

DGAT2 
Bos taurus diacylglycerol O-
acyltransferase 2 

NM_205793.2 
F: AACACACCCAAGAAAGGTGGC 
R: GCTTACTTCTGTGGCCTCTGT 

204 100% 

      

DKK1 
Bos taurus dickkopf WNT 
signaling pathway inhibitor 1 

NM_001205544.1 
F: GGCAGCAAGTACCAGACCAT 
R: AGAAGGCATGCATATCCCGTT 

207 100% 

      

FABP3 
Bos taurus fatty acid binding 
protein 3 

NM_174313.2 
F: TGAAGTCACTCGGTGTCGGT 
R: TCAACCATCTCCCGCACAAG 

271 100% 

      

FGF2 
Bos taurus fibroblast growth 
factor 2 

NM_174056.4 
F: AAGCGGCTGTACTGCAAGAA 
R: ACACTCGTCTGTAACACATTTAGAA 

216 100% 

      

FOXL2 Bos taurus forkhead box L2 NM_001031750.1 
F: GCAGAAGCCCCCATACTCTT 
R: GGTCCAGCGTCCAGTAGTTG 

239 100% 

      

HOXA10 Bos taurus homeobox A10 NM_001105017.1 
F: TTTCGGAAATGTGTCAAGGCAA 
R: CGGATCCGGTTTTCTCGGTT 

262 100% 

      

IGFBP1 
Bos taurus insulin like growth 
factor binding protein 1 

NM_174554.3 
F: CAGCGATGAGGCTACAGATAC 
R: GCTGCTCCCTGGCTAATCTG 

257 99% 

      

IHH 
Bos taurus Indian hedgehog 
signaling molecule 

NM_001076870.2 
F: GCCAACAATCACACTGAGCC 
R: CCAAGCTGTGAAACAGTCGC 

274 100% 

      

MSTN Bos taurus myostatin NM_001001525.3 
F: TGCCCACGGAGTCTGATCTT 
R: TGCCTGGGTTCATGTCAAGT 

237 100% 

      

SLC1A3 
Bos taurus solute carrier family 1 
member 3 

NM_174600.2 
F: GGGCGCCGTGATAAACAATG 
R: GAGGGGCGTACCACATGAT 

242 100% 

      

SLC1A5 
Bos taurus solute carrier family 1 
member 5 

NM_174601.2 
F: CAAGGAGGTGCTCGATTCGT 
R: ACAGGGGCGTACCACATGAT 

306 100% 

      

SLC46A3 
Bos taurus solute carrier family 46 
member 3 

NM_001103303.2 
F: TCTACTGAGCAAGGGACCAT 
R: CCCGTATTCCTGCTGACGTA 

200 100% 

      

      
Interferon-stimulated transcripts    
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Table 5.1 (continued)     

ACKR3 
Bos taurus atypical chemokine 
receptor 3 

NM_001098381.2 
F:  TACTCAGAGCCGGGGAACTT 
R:  TGTAGCAGTGCGTGTCGTAG 

226 99% 

      

IFIT3 
Bos taurus interferon induced 
protein with tetratricopeptide 
repeats 3 

NM_001075414.1 
F:  ATTCTGAAGCAGGCCGTTGA 
R:  TCCAGTGCCCTTAGCAACAG 

224 100% 

      

ISG15 
Bos taurus ISG15 ubiquitin like 
modifier 

NM_174366.1 
F:  CCATCCTGGTGAGGAACGAC 
R:  GAACACGGTGCACCCCTTCA 

200 99% 

      

MSXI Bos taurus msh homeobox 1 NM_174798.2 
F:  CCATTTCTCGGTGGGAGGAC 
R:  GTACTGCTTCTGGCGGAACT 
 

241 100% 

      

MX1 
Bos taurus MX dynamin like 
GTPase 1 

NM_173940.2 
F:  ACATGATCGTCAAGTGCCGT 
R:  ACAGGGGCAGAGTTTTACAAATG 

201 100% 

      

MX2 
Bos taurus MX dynamin like 
GTPase 2 

NM_173941.2 
F:  GCTCCAGAAGGCCATGGAAAT 
R:  AACCACGCCGTAAATCTGGT 

208 100% 

      

OAS1 
Bos taurus 2',5'-oligoadenylate 
synthetase 1 

NM_001029846.2 
F:  GGAGACGTGCTTCCAAGAGT 
R:  TCTTCAGTCACCTGAGCTTGTG 

381 99% 

      

OAS2 
Bos taurus 2'-5'-oligoadenylate 
synthetase 2 

NM_001024557.1 
F:  ACTGGTTTCAAAAGTGCCAGG 
R:  CAGCCAGCAGGTGTTATCCA 

314 98% 

      

RSAD2 
Bos taurus radical S-adenosyl 
methionine domain containing 2 

NM_001045941.1 
F:  GTGGTTCCAGAAGTACGGTGA 
R:  AACCGTTCCGCTTCTCTCAG 

315 100% 
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Table 5.2 Primer sets and product identities of qPCR analysis of steroidogenesis-
associated and reference genes. 

Gene Gene Name Accession Number1 Oligonucleotide Primer Design  
(5’ to 3’) direction 

Amplicon 
length (bp) 

Product 
identity 2 

      
Enzymatic transcripts    
     

PTGES Prostaglandin E synthase NM_174443.2 
F: CGCTGCTGGTCATCAAAATGT 
R: GGTCTCCATGTCATTCCGGT 

173 97% 

      

PTGS2 
Prostaglandin-endoperoxide 
synthase 2 

NM_174445.2 
F: CCCATGGGTGTGAAAGGGAG 
R: TCCACCCCATGGTTCTTTCC 

203 100% 

      

      
Receptor transcripts    
     

IRF1 
Bos taurus interferon regulatory 
factor 1 

NM_001191261.2  
F:  ACAGCCCCGATACCTTCTCT 
R:  CTTCCCATCCACGCTTGTCT 

338 100% 

      

IRF2 
Bos taurus interferon regulatory 
factor 2 

NM_001205793.2 
F:  TGGGCCATCCATACAGGAAA 
R:  CCGTCCAGATGTGACTGTCC 

383 99% 

      

OXTR  Bos taurus oxytocin receptor NM_174134.2 
F:  GCAGCTTCTGTGGGACATCA 
R:  TCCACGTGATGTAGGCCTTG 

326 99% 

      

ESR1 Estrogen receptor 1 NM_001001443.1 
F:  ATGGCCATGGAATCTGCCAA 
R:  GGTCTTTCCGTATTCCGCCT 

256 99% 

      

PGR Nuclear progesterone receptor NM_001205356.1 
F:  CCCACAGGAGTTTGTGAAGC 
R:  AGTGCCCGGGACTGGATAAA 

291 99% 

      

PGRMC1 
Progesterone receptor membrane 
component 1 

NM_001075133.1 
F:  GGCCGTATGGAGTCTTTGCT 
R:  TTGTCTGAGTACACGGTGGG 

217 100% 

      

PGRMC2 
Progesterone receptor membrane 
component 2 

NM_001099060.1 
F:  GCTTGCGGTCAATGGGAAAG 
R:  GACGGTTCTTCCCCTGGTTT 

264 99% 

      

EP1 3 Prostaglandin E receptor 1 NM_001192148.1 
F:  GGCCGCTGTTTTTGGCCGTG 
R:  CCTCCATGGCTGCCCTTGGC 

142 100% 

      

EP2 Prostaglandin E receptor 2 NM_174588.2   
F:  GCTTCATCGGACACAAGCAG 
R:  CTCCGCCATGGATACCCTTT 

197  100% 

      

EP3 Prostaglandin E receptor 3 NM_181032.1 
F: CGCCGTTGCTGATAATGATGT 
R: GTCCTTTCAAAAGCTGGCAA 

204 100% 

      

EP4 Prostaglandin E receptor 4 NM_174589.2 
F: CGGGACCAATGCATCATCCT 
R: TTGGCCCTTCAAGTAGGTGG 

241 100% 
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Table 5.2 (continued)     

PAQR5 4 
Progestin and adipoQ receptor 
family member 5 (mPRγ) 

XM_024997926.1 
F: GGTTCTTCTCGTGGAGGTTTGT 
R: GTTCCTGGACATGGAGCTGAA 

151 96% 

      

PAQR7 4 
Progestin and adipoQ receptor 
family member 7 (mPRα) 

NM_001038553.1 
F:  CCGGCGGTCCATCTATGA 
R:  CCACCCCCTTCACTGAGTCTT 

159 99% 

      

PAQR8 
Progestin and adipoQ receptor 
family member 8 (mPRβ) 

NM_001101135.2 
F: TGTAGCCTTGCGAGACACAG 
R: CAGCATCGCAGAAGAATGCC 

214 100% 

      

PTGFR Prostaglandin F receptor NM_181025.3 
F: TGGTGTTCTCTGGTCTGTGC 
R: GGCTAGGAGCCCCAGAAAAG 

293 100% 

      

IFNAR1 
Bos taurus interferon alpha and 
beta receptor subunit 1 

NM_174552.2 
F: ACAGGCGGAATAAAGGGAGC 
R: GGCTGATCGGAGAAATACTCGT 

220 99% 

      

IFNAR2 
Bos taurus interferon alpha and 
beta receptor subunit 2 

NM_174553.2 
F: CCCAGACGAGAATCAGAGTCAT 
R: TGGGGAGCTGCCTCATTTTC 

299 100% 

      

      
Housekeeping Transcripts     
      

ACTB Actin beta NM_173979.3 
F: GAGCGGGAAATCGTCCGTGAC 
R: GTGTTGGCGTAGAGGTCCTTGC 

278 99% 

      

GAPDH 
Glyceraldehyde 3-phosphate 
dehydrogenase 

NM_001034034.2 
F: ACATCAAGTGGGGTGATGCT 
R: GGCATTGCTGACAATCTTGA 

201 97% 

      

SDHA 
Succinate dehydrogenase complex 
flavoprotein subunit A 

NM_174178.2 
F: GCAGAACCTGATGCTTTGTG 
R: CGTAGGAGAGCGTGTGCTT 

185 99% 
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Table 5.3 Real-time PCR1 identification of selected interferon-stimulated genes from CAR and ICAR endometrium of heifers 
supplemented with 3 mg Se/d in vitamin-mineral mixes as sodium selenite (ISe, n=6) or a 1:1 blend (MIX, n=6) of ISe and OSe (SEL-
PLEX).2 

  CAR3 ICAR3 

Gene Gene Name Ise MIX SEM P-value ISe Mix SEM P-value 

ACKR3** Bos taurus atypical chemokine receptor 3 1.05 0.82 0.128 0.2175 1.03 0.86 0.159 0.2866 

IFIT3** Bos taurus interferon induced protein with 
tetratricopeptide repeats 3 

1.08a 0.65b 0.13 0.0415 1.07 0.85 0.148 0.370 

IRF1* Bos taurus interferon regulatory factor 1 1.05x 0.75y 0.111 0.0815 1.03 0.94 0.119 0.5845 

IRF2 Bos taurus interferon regulatory factor 2 1.02x 0.83y 0.059 0.0564 1.02 0.87 0.076 0.1884 

ISG15** Bos taurus ISG15 ubiquitin like modifier 1.04a 0.76b 0.088 0.0476 1.05 0.94 0.104 0.650 

MSXI Bos taurus msh homeobox 1 1.05 1.08 0.121 0.8452 1.08 0.85 0.146 0.2896 

MX1** Bos taurus MX dynamin like GTPase 1 1.00a  0.79b 0.059 0.0282 1.02 0.94 0.076 0.5332 

MX2 Bos taurus MX dynamin like GTPase 2 1.03 0.79 0.100 0.1064 1.04 0.82 0.123 0.2401 

OAS1 Bos taurus 2',5'-oligoadenylate synthetase 1 1.02 0.82 0.154 0.3843 1.04 0.94 0.229 0.7507 

OAS2* Bos taurus 2'-5'-oligoadenylate synthetase 2 1.03a 0.67b 0.097 0.0133 1.05 0.88 0.116 0.3358 

RSAD2* Bos taurus radical S-adenosyl methionine 
domain containing 2 

1.05a 0.57b 0.137 0.0109 1.02 0.82 0.080 0.1005 

1 Data are expressed as a ratio of MIX relative to ISe expression. 
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Table 5.3 (continued) 
2 Selenium was supplemented at 35 ppm as either inorganic (ISe; sodium selenite) or a 1:1 combination (MIX) of ISe and OSe (SEL-
PLEX). Selenium was supplemented to treatment groups ad libitum.  
3Values are LS means and SEM. 
a,b Means within a row that lack a common superscript differ (P<0.05) 
x,y Means within a row that lack a common superscript tend to differ (0.05 < P < 0.10) 
*CAR natural log transformed due to lack of normality 
**ICAR natural log transformed due to lack of normality 
***CAR and ICAR natural log transformed due to lack of normality   
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Table 5.4 Real-time PCR1 identification of selected progesterone-induced genes from CAR and ICAR endometrium of heifers 
supplemented with 3 mg Se/d in vitamin-mineral mixes as sodium selenite (ISe, n=6) or a 1:1 blend (MIX, n=6) of ISe and OSe (SEL-
PLEX).2 

  CAR3 ICAR3 

Gene Gene Name Ise MIX SEM P-value ISe Mix SEM P-value 

DGAT2** Bos taurus diacylglycerol O-acyltransferase 2 1.05a 0.64b 0.109 0.0254 1.03 0.88 0.130 0.3518 

DKK1 Bos taurus dickkopf WNT signaling pathway 
inhibitor 1 

1.07 0.93 0.166 0.5515 1.10a 0.64b 0.147 0.0496 

FABP3* Bos taurus fatty acid binding protein 3 
 

1.38 1.38 0.426 0.9208 1.77 1.82 0.464 0.9375 

FGF2 Bos taurus fibroblast growth factor 2 1.04a 0.71b 0.097 0.0407 1.02 0.95 0.145 0.7203 

FOXL2 Bos taurus forkhead box L2 1.05x 0.70y 0.119 0.0657 1.02 0.79 0.120 0.2088 

HOXA10 Bos taurus homeobox A10 1.04 0.91 0.096 0.3343 1.07x 0.71y 0.143 0.0974 

IGFBP1*** Bos taurus insulin like growth factor binding 
protein 1 

1.09 0.78 0.201 0.2356 1.21 0.98 0.239 0.6958 

IHH Bos taurus Indian hedgehog signaling 
molecule 

1.16 1.23 0.241 0.8348 1.08 0.89 0.163 0.4307 

MSTN Bos taurus myostatin 1.05 1.45 0.177 0.1370 1.03a 1.71b 0.140 0.0070 

SLC1A3** Bos taurus solute carrier family 1 member 3 1.04 1.09 0.129 0.7999 1.04 0.90 0.122 0.4045 

SLC1A5 Bos taurus solute carrier family 1 member 5 1.06 0.91 0.124 0.4239 1.04 1.01 0.128 0.8698 
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Table 5.4 (continued) 
        

SLC46A3 Bos taurus solute carrier family 46 member 3 1.05 1.25 0.149 0.3831 1.09 1.19 0.189 0.7140 

1 Data are expressed as a ratio of MIX relative to ISe expression. 
2 Selenium was supplemented at 35 ppm as either inorganic (ISe; sodium selenite) or a 1:1 combination (MIX) of ISe and OSe (SEL-
PLEX). Selenium was supplemented to treatment groups ad libitum.  
3Values are LS means and SEM. 
a,b Means within a row that lack a common superscript differ (P≤0.05) 
x,y Means within a row that lack a common superscript tend to differ (0.05 < P < 0.10) 
*CAR natural log transformed due to lack of normality 
**ICAR natural log transformed due to lack of normality 
***CAR and ICAR natural log transformed due to lack of normality 
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Table 5.5 Real-time PCR1 identification of selected steroidogenic enzymes and receptor genes from CAR and ICAR endometrium of 
heifers supplemented with 3 mg Se/d in vitamin-mineral mixes as sodium selenite (ISe, n=6) or a 1:1 blend (MIX, n=6) of ISe and 
OSe (SEL-PLEX)2. 

  CAR3 ICAR3 

Gene Gene Name Ise MIX SEM P-value ISe Mix SEM P-value 

OXTR** Bos taurus oxytocin receptor 1.54 1.40 0.489 0.8533 2.2 2.03 0.563 0.9095 

ESR1 Estrogen receptor 1 1.07 0.79 0.130 0.1620 1.04 0.86 0.107 0.2603 

PGR Nuclear progesterone receptor 1.03x 0.77y 0.094 0.0738 1.06 1.01 0.175 0.8259 

PGRMC1** Progesterone receptor membrane component 1 1.02 1.10 0.078 0.4961 1.05 0.98 0.108 0.8517 

PGRMC2 Progesterone receptor membrane component 
2 

1.05 1.02 0.119 0.8486 1.03 1.03 0.094 0.9656 

EP14** Prostaglandin E receptor 1 1.04 0.89 0.100 0.3295 1.02 1.11 0.223 0.5907 

EP2 Prostaglandin E receptor 2 1.18 1.09 0.207 0.7714 1.09 1.39 0.167 0.2335 

EP3** Prostaglandin E receptor 3 1.20 0.75 0.212 0.1687 1.34 1.07 0.39 0.4176 

EP4* Prostaglandin E receptor 4 1.01 0.88 0.107 0.2024 1.04 1.12 0.142 0.6971 

PAQR55* Progestin and adipoQ receptor family 
member 5 (mPRγ) 

1.31 1.24 0.246 0.6879 1.07 1.15 0.167 0.7570 

PAQR7 Progestin and adipoQ receptor family 
member 7 (mPRα) 

1.05 0.78 0.132 0.1772 1.06x 0.73y 0.128 0.0934 
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Table 5.5 (continued) 
        

PAQR8 Progestin and adipoQ receptor family 
member 8 (mPRβ) 

1.07 0.89 0.141 0.3700 1.06 1.03 0.151 0.9067 

PTGFR*** Prostaglandin F receptor 2.28 1.22 0.716 0.8113 4.19 5.08 2.513 0.2158 

IFNAR1 Bos taurus interferon alpha and beta receptor 
subunit 1 

1.05 0.86 0.103 0.2297 1.04 0.94 0.130 0.6095 

IFNAR2* Bos taurus interferon alpha and beta receptor 
subunit 2 

1.02 0.89 0.094 0.3071 1.02 0.91 0.114 0.4811 

PTGES Prostaglandin E synthase 1.11 0.92 0.154 0.3875 1.36 0.83 0.276 0.2095 

PTGS2*** Prostaglandin-endoperoxide synthase 2 1.05 0.91 0.194 0.4047 1.20 1.56 0.228 0.2484 

1 Data are expressed as a ratio of MIX relative to ISe expression. 
2 Selenium was supplemented at 35 ppm as either inorganic (ISe; sodium selenite) or a 1:1 combination (MIX) of ISe and OSe (SEL-
PLEX). Selenium was supplemented to treatment groups ad libitum.  
3Values are LS means and SEM. 
4 From (Weems et al., 2012). 
5 From (Kowalik et al., 2018). 
a,b Means within a row that lack a common superscript differ (P≤0.05) 
x,y Means within a row that lack a common superscript tend to differ (0.05 < P < 0.10) 
*CAR natural log transformed due to lack of normality 
**ICAR natural log transformed due to lack of normality 
***CAR and ICAR natural log transformed due to lack of normality 
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Figure 5.1 Concentration of Total Se in Whole Blood. 

 
Effect of form of Se on whole blood concentrations (ppm; LS Mean ± SEM) of Se in 
cows supplemented with either ISe (Sodium selenite; n = 6) or a 1:1 combination (MIX) 
of ISe and OSe (Sel-Plex; n = 6). Data were analyzed as an ANOVA with repeated 
measures. Whole blood Se tended to be affected by treatment (P = 0.0704) and was 
affected by time (P < 0.0001), but there was no significant treatment by time interaction 
(P=0.5066). 
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Effect of form of Se on serum concentrations (ng/mL; LS Mean ± SEM) of Se in cows 
supplemented with either ISe (Sodium selenite; n = 6) or a 1:1 combination (MIX) of ISe 
and OSe (Sel-Plex; n = 6). Data were analyzed as an ANOVA with repeated measures. 
Serum progesterone was not affected by treatment (P = 0.88) but was affected by day (P 
<0.0001), however there was no treatment by day interaction (P=0.77). 
  

Figure 5.2 Concentration of Progesterone in Serum. 
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Effect of form of Se on average conceptus length (cm; LS Mean ± SEM) in heifers 
supplemented with either ISe (Sodium selenite; n = 6) or a 1:1 combination (MIX) of ISe 
and OSe (Sel-Plex; n = 6). Recovered conceptuses are represented by individual dot in 
their respective treatments and within treatment the mean is represented by a black 
triangle. Data were analyzed as a one-tailed student’s T-TEST. 
a,bMeans with different superscripts differ p=0.0533. 
 
 
  

Figure 5.3 Effect of Treatment on Conceptus Length. 
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Figure 5.4 Representative image of conceptus collected on day 17 of gestation. 

 
  



 

125 
 

Figure 5.5 Relative expression of mRNA transcripts encoding interferon stimulated genes. 

Effect of form of Se on the expression of 
mRNA transcripts encoding interferon 
stimulated genes in the endometrium of 
heifers supplemented with vitamin mineral 
mixes containing Se as ISe (sodium 
selenite; n = 6) or a 1:1 combination (MIX) 
of ISe and OSe (Sel-Plex; n = 6). P-values 
are associated with ANOVA. Significant 
differences at P < 0.05 are indicated by an 
asterisk and tendencies at 0.05 < P < 0.1 are 
indicated by ŧ. 
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Effect of form of Se on the expression of mRNA transcripts encoding interferon 
stimulated genes in the endometrium of heifers supplemented with vitamin mineral mixes 
containing Se as ISe (sodium selenite; n = 6) or a 1:1 combination (MIX) of ISe and OSe 
(Sel-Plex; n = 6). P-values are associated with ANOVA. Significant differences at P < 
0.05 are indicated by an asterisk and tendencies at 0.05 < P < 0.1 are indicated by ŧ. 
 
 
  

Figure 5.6 Relative expression of mRNA transcripts encoding progesterone-induced genes. 
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Effect of form of Se on the expression of mRNA transcripts encoding interferon 
stimulated genes in the endometrium of heifers supplemented with vitamin mineral mixes 
containing Se as ISe (sodium selenite; n = 6) or a 1:1 combination (MIX) of ISe and OSe 
(Sel-Plex; n = 6). P-values are associated with ANOVA. Tendencies at 0.05 < P < 0.1 are 
indicated by ŧ.

Figure 5.7 Relative expression of mRNA transcripts encoding recepto r genes. 
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CHAPTER 6. Summary and Conclusions 

 

Cattle operations in the southeast United States are challenged by grazing Se-

inadequate forages due to Se-deficient soils. The effects of Se-deficiencies have been 

evaluated in many studies and have been implicated with immune, growth, and 

reproductive challenges. Our lab has previously reported increased early concentrations 

of P4 in cows supplemented with a 1:1 combination of ISe:OSe (MIX) compared to cows 

supplemented with OSe or ISe alone on days 6 (Cerny et al., 2016b) and 7 (Carr et al., 

2020) of the estrous cycle. The benefits of increased early luteal phase P4 on 

endometrium secretions, conceptus development, IFNT production, and conception rates 

are well known. However, to our knowledge, studies regarding the mechanism of form of 

Se-induced increased concentrations of early luteal phase P4 or effects on the uterine 

endometrium and conceptus have not been reported. Therefore, the overall goals of this 

dissertation were to investigate whether the form of supplemental Se (ISe and MIX) in 

vitamin-mineral mixes would affect the early cycle bovine CL and the uterine 

endometrium and conceptus at maternal recognition of pregnancy. More specifically, the 

objectives were 1) to investigate the effect of form of supplemental Se on the 

transcriptome of the bovine CL with the goal of elucidating form of Se-regulated luteal 

processes affecting fertility (Experiment 1, Chapter 4) and 2) to determine changes 

induced by the form of supplemental Se on the bovine endometrium and developing 

conceptus on day 17 of pregnancy (Experiment 2, Chapter 5). 

In the first experiment (Chapter 4), Angus-cross cows were supplemented (3 

mg/d) with MIX or ISe forms of Se to evaluate the transcriptome profiles (microarray) of 
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CL on day 7 of the estrous cycle. The concentrations of Se in whole blood was not 

statistically different between treatments, however we found that cows supplemented 

with MIX had increased expression of several key transcripts involved in cholesterol 

biosynthesis and immune response elements compared to those supplemented with ISe 

alone. The results from the microarray analysis on the CL confirmed the top canonical 

pathways were those associated with cholesterol biosynthesis and inflammatory 

responses. Importantly, MIX-induced upregulation of cholesterol biosynthesis pathways 

and associated transcripts play a pivotal role in increasing the early luteal phase 

concentration of P4, which is a salient finding of this research. 

The timing and process of MRP are essential for the maintenance of both the CL 

and developing conceptus. In a two-week period surrounding MRP, pregnancy losses 

average ~30%. This reduction in pregnancies has a negative impact on the reproductive 

performance and profit potential within a herd. Therefore, the objectives of Experiment 2 

(Chapter 5), were to investigate the effect of form of supplemental Se on gene expression 

in bovine endometrium and the developing conceptus on day 17 of pregnancy. Angus-

cross, fall yearling heifers were supplemented (3 mg/d) with MIX or ISe forms of Se to 

evaluate the gene expression in the endometrium as well as alterations to the developing 

conceptus on day 17 of gestation. Results from this experiment indicated that ISe-

supplemented heifers had increased expression of several P4-induced and interferon-

stimulated mRNA transcripts, including the mRNA encoding the nuclear P4 receptor. 

Additionally, MIX-supplemented heifers had increased mRNA abundance of MSTN, 

which increases glucose secretion into histotroph, thus advancing conceptus 

development. Interestingly, and a salient finding of this experiment was a MIX-induced 
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increase in conceptus length was observed compared to heifers supplemented with ISe. It 

appears that the onset of MRP may be shifted and occurs earlier in MIX supplemented 

heifers compared to those supplemented with ISe alone.  

In conclusion, this dissertational research describes novel effects of different 

forms of dietary Se (ISe or MIX) on the CL and endometrium gene expression profiles 

and conceptus development. MIX treated cows and heifers had increased expression of 

transcripts involved in cholesterol biosynthesis and advanced conceptus development 

compared to those supplemented with ISe. The translational impact of these studies has 

the potential to improve fertility and profit potential in beef and dairy operations. By 

understanding how the CL and endometrium responds to supplemental form of Se, 

targeted vitamin-mineral mix supplementation strategies can be explored in the future. 

Further research is warranted to determine form of Se-induced changes after MRP and 

implantation have occurred, which would add to the overall impact on fertility.  
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