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ABSTRACT OF DISSERTATION 

 
 
 

IMPROVING KENTUCKY’S WINTER WHEAT AND DOUBLE CROP SOYBEAN 
ROTATION 

 

The winter wheat double crop soybean rotation is an economically viable rotation 
for Kentucky farmers. Recent decreases in commodity prices has warranted the need to 
evaluate intensive management practices that can increase yields and profitability in this 
crop rotation. There were three goals of this dissertation: 1.) identify management 
practices that would decrease deoxynivalenol (DON) in harvested wheat grain and 
increase wheat heading and anthesis uniformity, 2.) evaluate double crop soybean 
planting timing and identify intensive management practices to increase seed yield, and 
3.) determine the profitability of these management options. These studies were 
conducted in Princeton KY between 2016 and 2019. In-furrow phosphorus did not 
decrease DON or heading and anthesis uniformity. Increased seeding rate decreased the 
number of days to beginning anthesis (Zadoks 60) in late planted wheat, however did not 
decrease DON contamination. Harvesting wheat at 20 to 22% grain moisture increased 
grain quality, but also increased DON contamination compared to harvesting at 13 to 
15% grain moisture. Harvesting at 20 to 22% grain moisture, enabled an earlier planting 
timing of double crop soybeans which resulted in soybean yield increase. Increased 
seeding rate and the use of prophylactic R3 foliar pesticide application increased double 
crop soybean yields respectively. The use of seed treatment did not increase seed yield. 
Partial budget analysis indicate that the wheat intensive management treatments had 
negative net benefits, and that only the increased seeding rate and the use of prophylactic 
foliar pesticide application had positive net benefits. Overall, intensive management 
options were identified that increase yield and profitability for Kentucky’s winter wheat 
and double crop soybean rotation.  

 
KEYWORDS: Winter wheat, double crop soybean, anthesis uniformity, harvest timing, 

planting timing, agronomic intensive management  
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 LITERATURE REVIEW 

1.1 Introduction: 

 Soybean and wheat are valuable crops grown in Kentucky and the United States.  

In the U.S., soybean (Glycine max (L) Merrill) and wheat (Triticum aestivum L.) are the 

second and third most produced grain crops. The U.S. produced approximately 119 

million metric tonnes (MT) of soybeans in 2017 valued at $41 billion USD (United States 

Department of Agriculture, 2018), whereas the U.S. produced over 46 million MT of 

wheat valued at $8.1 billion USD (National Agricultural Statistics Service, 2018b). In 

2017, Kentucky produced over 2.7 million MT of soybean, valued at $992 million USD 

(United States Department of Agriculture, 2018) and produced approximately 650,000 

MT of soft red winter wheat in 2017, valued at approximately $109 million USD 

(National Agricultural Statistics Service, 2018a).  

 There are two common grain crop rotational systems in Kentucky, full season and 

double crop. The full season rotation consists of harvesting a single crop, either corn or 

soybean, from one piece of land per year. The double cropping rotation consists of 

harvesting two crops in one year from one piece of land, typically winter wheat and 

soybean (Knott and Lee, 2018; Knott et al., 2018b; Shapiro et al., 1992). The decision to 

implement a double crop rotation is mostly based on location (usually south of the 40th 

parallel), length of growing season and crop and risk diversification strategy (Shapiro et 

al., 1992). Double cropping allows for a larger land use efficiency ratio (Caviglia et al., 

2011) and the potential for higher net economic returns as compared to full season crops 

(Kelley, 2003). In 2017, approximately 16% of the harvested soybean grain hectares in 

Kentucky were in double crop production; approximately 125,000 ha were in double crop 
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soybean production out of the 785,000 ha in total soybean production (United States 

Department of Agriculture, 2018). Improving yields while implementing sustainable 

production practices for growers is imperative to continuing agriculture production.  

1.2 Wheat Classification: 

The U.S. Wheat Associates Organization divides wheat into six classes: hard red 

winter wheat, hard red spring wheat, soft red winter wheat, soft white wheat, hard white 

wheat (all T. aestivum L.), and durum wheat (T. turgidum L. spp. durum) (U.S.Wheat, 

2019; USDA-FGIS, 2013). These six classes are based upon kernel hardness, color, and 

growing season. In general, kernel hardness is classified as either ‘soft’ or ‘hard’ and is 

measured by their respective endosperm texture and the force that is needed to crush the 

wheat kernel (Newton et al., 1927; Pauly et al., 2013). Soft wheat is primarily used to 

make cookies, crackers, and cakes, whereas hard white and hard red wheat are usually 

used to make bread (Pauly et al., 2013; U.S.Wheat, 2019). Durum wheat has the greatest 

measure of kernel hardness and is used in pasta production (Pauly et al., 2013).   

Wheat is also classified by its kernel color, either ‘white’ or ‘red’. The color 

classification is dependent on the red pigments in the seed coat (Nilsson-Ehle, 1909; 

Strickberger, 1976). The distinction between the two kernel colors is important because 

they differ in milling, baking, taste, flour yield, and visual characteristics (Dowell, 1997). 

Red seed coat kernels contain more tannins and phenolic compounds in the bran as 

compared to white seed coat kernels, which can affect quality of the final wheat product 

(Ransom, 2015).             
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A final classification of U.S. wheat is based upon growing season. Spring wheat is 

planted in spring and harvested in late summer of the same calendar year, whereas winter 

wheat is planted in the fall and is harvested in early summer the following calendar year 

(USDA, 2010). Kentucky is an ideal location to produce winter wheat because of its 

temperate winter temperature and the ability to have a double crop rotation of soybeans 

following winter wheat. The primary wheat grown in Kentucky is soft red winter wheat 

(Lee et al., 2009; U.S.Wheat, 2019). 

1.3 Wheat Development Stages:  

Wheat growth and development stages are usually described using either the 

Feekes growth scale (Feekes, 1941) or the Zadoks growth scale (Zadoks et al., 1974). 

Producers and agronomist in the U.S. typically use the Feekes growth stages, as they are 

most common on pesticide labels. The Feekes scale designates growth stages from 1 

(seedling growth at one leaf) to 11 (ripening) (Feekes, 1941). The Zadoks scale describes 

wheat growth stages in more detail, ranging from 00 (dry seed) to 99 (secondary seed 

dormancy lost) (Zadoks et al., 1974). Even though the Feekes scale is less descriptive, it 

is detailed enough to provide accurate growth stages for important crop management 

decisions.  

Major early developmental stages include seedling emergence (Feekes 1; Zadoks 

10) and fall growth that produces tillers (Feekes 2; Zadokes 20). Tillers are additional 

stems that develop from the axial meristems below the primary meristem during early 

plant growth (Kiesselbach and Sprague, 1926). Most tillers produce a head as the plant 

matures. Fall growth is important for winter survival, however excessive fall tiller growth 
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can make the plant more prone to winterkill (Fowler, 1982; Herbek and Lee, 2009; 

Janssen, 1929). Feekes 3 (Zadoks 25) is usually considered “green up”, where the plant 

begins to actively grow after winter dormancy (Herbek and Lee, 2009). Stand counts 

which include tillers are measured at approximately this growth stage to determine winter 

survival populations and to assist with nitrogen management decisions (Lee et al., 2009). 

Spring nitrogen applications (Feekes 3; Zadoks 26) are important during spring re-growth 

as additional fertilizer aids in tiller and main stem growth, and increases the number of 

kernels per tiller (Frederick and Marshall, 1985). During the “jointing” phases (Feekes 6 

to 9), internode elongation occurs and the meristem of the main stem and each tiller 

emerges above the soil surface (Feekes, 1941; Herbek and Lee, 2009). During this same 

period, the wheat head develops and the number of kernels per head is determined 

(Bonnett, 1936; Fischer, 1985). The boot stage (Feekes 10; Zadoks 45) occurs after the 

flag leaf has emerged from the leaf sheath, while the head is within the leaf sheath 

(Feekes, 1941; Herbek and Lee, 2009; Lollato, 2016).  

Heading occurs at Feekes 10.5 (Zadoks 58), when the wheat head has emerged 

fully from the flag leaf sheath. Anthesis occurs shortly after wheat heading. Anthesis and 

pollination normally begins in the center of the wheat head (Feekes 10.5.1; Zadoks 60) 

and progresses to the top (Feekes 10.5.2; Zadoks 60) and then the bottom (Feekes 10.5.3; 

Zadoks 60). Anthesis happens quickly, taking approximately three to five days to 

complete in Kentucky (Herbek and Lee, 2009). Once anthesis has occurred, the plant 

begins kernel development and grain fill (Fischer, 1985). 

Important grain fill growth stages are the kernel watery ripe stage (Feekes 10.5.4; 

Zadoks 71), milk stage (Feekes 11.1; Zadoks 75), and soft dough (Feekes 11.2; Zadoks 
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85). Grain filling period is important as stored products of photosynthesis are transported 

to the growing kernels. This phenomenon is important as kernel size is determined during 

this critical time period (Borrás et al., 2004). Grain filling is heavily influenced by the 

environment; any stress can lower kernel size and decrease the grain filling period 

(Borrás et al., 2004; Sinclair and Jamieson, 2006). In Kentucky, the main concern that 

can reduce the grain fill period and kernel weight is daily temperatures that exceed 30 °C 

(Chowdhury and Wardlaw, 1978; Wardlaw and Moncur, 1995). On average the grain 

filling period is about one month for wheat grown in Kentucky (Herbek and Lee, 2009).  

Physiological maturity occurs at Feekes 11.3 (Zadoks 91) while harvest maturity 

occurs at Feekes 11.4 (Zadoks 92). In Kentucky, wheat is harvested once grain moisture 

has decreased to an appropriate level, typically 18 to 20% grain moisture; however, 

wheat producers without drying facilities will harvest when grain moisture is less than 

15% (Herbek and Lee, 2009). Harvested grain can then be stored on farm or sold directly 

to the elevators or millers. In general, test weight is usually maximized from 14 to 16% 

grain moisture, however grain harvested at higher moisture content will have a lower test 

weight until it is dried to approximately 13 to 15% grain moisture (Brooker et al., 1992). 

Generally, test weight is the grain weight per volumetric “Winchester” bushel (USDA-

FGIS, 2013). Grain test weight is dependent on (1) the degree of kernel damage, (2) the 

initial moisture content, (3) the temperature reached by the grain during the drying 

process, (4) the final moisture content, and (5) the grain variety (Brooker et al., 1992).   
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1.4 Wheat Agronomic Management: 

 Soft red winter wheat requires management throughout the growing season to 

produce optimal yield potential. Wheat yields are directly influenced by 1) the number of 

spikes per unit area, 2) the number of kernels per spike, and 3) the weight of those 

kernels (Kiesselbach and Sprague, 1926). Wheat producers try to harvest maximum yield 

potential by intensive management practices throughout the season. Environmental 

conditions, soil type and fertility, weeds, insects, and plant diseases can decrease yield 

potential during the growing season.    

Soft red winter wheat grown in Kentucky, is usually planted in 19 cm rows into 

no-till corn stubble during the month of October (Lee et al., 2009). In a recent survey of 

wheat producers and industry professionals, nearly 90% of wheat growers in Kentucky, 

utilized wheat seed with a fungicide and insecticide seed treatment (Villanueva, 

unpublished data). The typical planting window across Kentucky is approximately 6 

October to 12 November (USDA, 2010). This planting window allows for adequate fall 

growth and tiller formation (Lee et al., 2009). However, soft red winter wheat sometimes 

is planted in late November in Kentucky for a variety of reasons including unsuitable 

planting conditions, soybean harvesting responsibilities, and shortage of labor. As 

planting date is delayed, grain yield can decrease (Blue et al., 1990) due to a shorter 

growing period in the fall, less tiller development, and delayed plant development and 

maturity in the spring (Janssen, 1929; Lee et al., 2009). A later wheat harvest timing can 

lead to a delayed double crop soybean planting timing and lower soybean yield (Knott et 

al., 2019).    
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A seeding rate of approximately 3,700,000 seeds ha-1, is typical in Kentucky for 

soft red winter wheat. This number may change based on seed germination rate and seed 

bed preparation (tilled vs. no till) (Lee et al., 2009).  Increasing the seeding rate can 

increase wheat yields (Blue et al., 1990), but also decrease the number of non-main stem 

tillers per unit area (Kiesselbach and Sprague, 1926).  In certain situations, an increase in 

seeding rate can decrease tillers per unit area without negatively impacting yield (Otteson 

et al., 2008).  However, in situations where there is a spring freeze event, having tillers is 

critical because they can be at an earlier growth stage compared to the main stem and can 

better tolerate and survive the freeze event (Knott et al., 2017). Furthermore, late planted 

wheat has shown to have increased tiller number and grain yields when phosphorus was 

applied at planting with soils that historically have a low soil test phosphorus value (Blue 

et al., 1990; Lutcher et al., 2012; Sander and Eghball, 1999).  

Early spring management decisions are important to continue the wheat crop into 

maturity. Early season stand counts, taken at approximately the Feekes 3 (Zadoks 26) 

growth stage are important to determine winter survival population and spring nitrogen 

requirements (Lee et al., 2009). Proper nitrogen application is important during the 

Feekes 3 to Feekes 5 (Zadoks 26 to Zadoks 30) growth stages as winter wheat nitrogen 

needs greatly increase at Feekes 6 and after (Murdock et al., 2009). Herbicides can be 

applied during an early season timing window to control early season weed emergence 

(Martin and Green, 2009). Insect pest pressure should be scouted, and insecticides can be 

applied if needed (Johnson and Townsend, 2009). 

During the spring months, as winter wheat continues to grow from Feekes 5 to 

Feekes 9 (Zadoks 30 to Zadoks 39), fields should be scouted for foliar disease pressure 
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that is high enough to reduce crop yields (Hershman and Johnson, 2009).  In Kentucky, 

Pucinnia triticina (the causal agent of wheat leaf rust), Puccinia graminis f. sp. tritici (the 

causal agent of wheat stem rust), and Puccinia striiformis (the causal agent of stripe rust) 

as well as Mycosphaerella graminicola (the casual agent of septoria tritici blotch) and 

Parastagonospora nodorum (the casual agent of septoria nodorum blotch) can infect 

wheat plants during this time (Hershman and Johnson, 2009). There is plant host 

resistance for all of these pathogens, however few winter wheat cultivars are completely 

resistant to all of these diseases (Mehra et al., 2019; Ponomarenko et al., 2011; Schuman 

and Leonard, 2000). Fungicide applications are recommended when disease pressure is 

above economic threshold levels at specific growth stages (Feekes 8 to 9; Zadoks 37 to 

39), to help protect the flag leaf and grain yield potential (Guy et al., 1989; Ransom and 

McMullen, 2008). Using both genetic resistance and fungicide applications has been 

shown to have the best monetary return when disease pressure is high (Ransom and 

McMullen, 2008; Wegulo et al., 2011b).      

Wheat heading and flowering growth stages require intensive management to 

control diseases that occur during anthesis that could lower grain yields and quality 

(Herbek and Lee, 2009; Hershman and Johnson, 2009). Wheat heads are most susceptible 

to disease pressure during anthesis (Feekes 10.5.1; Zadoks 60) and into the soft dough 

stage (Feekes 11.2; Zadoks 85). In Kentucky, the most common disease affecting wheat 

heads is Fusarium head blight (FHB). Fusarium graminearum is the main causal agent of 

FHB in North America and greatly reduce the yield potential of the crop a few weeks 

prior to harvest (Andersen, 1948; Bushnell et al., 2003; McMullen et al., 2012; McMullen 

et al., 1997; Miller, 1994). Economic levels of FHB in 1993 in Minnesota, North Dakota, 
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South Dakota, and the Canadian providence of Manitoba have caused economic losses of 

over $1 billion USD (McMullen et al., 1997). From 1998 to 2001, nine states in the 

northern Great Plains and central United States had a cumulative direct economic loss of 

$1.074 billion USD, when indirect losses were taken into account, there was an economic 

loss of approximately $2.59 billion USD (McMullen et al., 2012). The 2003 FHB 

epidemic of the southeastern United States had estimated pre-milling losses of over $13.6 

million USD for wheat growers (Cowger and Sutton, 2005). Fusarium head blight can be 

epidemic in nature however; it is usually a regional problem with severe losses occurring 

in locations that have wet years and warm environments. 

Plant disease occurrence is dependent on a pathogen being present, a susceptible 

host being present, and environmental conditions suitable for pathogen infection 

occurring at the same time and place. Fusarium graminearum overwinters in plant debris, 

mainly corn, wheat, and barley. Warm (25°C) and moist environmental conditions are 

favorable for the spores to germinate and infect the wheat florets (Andersen, 1948; Dill-

Macky, 2010; McMullen et al., 1997). Fusarium head blight is considered to be 

monocyclic, where primary infection occurs once during the growing season. Wheat 

spikelets are susceptible to infection from flowering through soft dough stage (Andersen, 

1948; Bushnell et al., 2003). Fusarium graminearium can infect wheat with asexual 

spores called macroconidia or with sexual spores called ascospores (Dill-Macky, 2010; 

Schmale III and Bergstrom, 2003). In warm, wet environments, ascospores form within 

perithecia that form on infected plant debris that then forcible dischare ascospores  into 

the air. Ascospores can be moved by air currents to land on wheat heads (Dill-Macky, 

2010; Schmale III and Bergstrom, 2003). F. graminearum macroconidia can also travel 
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via air currents to infect the flowering wheat head (Andersen, 1948; Pritsch et al., 2000). 

Both spore types require warm (25 °C) moist conditions to facilitate spore germination 

and subsequently infect plant tissue (Andersen, 1948; Dill-Macky, 2010; Pritsch et al., 

2000; Schmale III and Bergstrom, 2003). 

The degree of FHB severity is dependent on the growth stage, level of host plant 

resistance, the amount of inoculum present in the environment, and the duration of 

continued wetness with warm air temperature (25°C) from anthesis through soft dough 

stage (Andersen, 1948; Bushnell et al., 2003; Cowger and Arellano, 2013). Fusarium 

head blight symptoms can appear as soon as three to five days after infection occurs 

(Andersen, 1948; Bushnell et al., 2003; Pritsch et al., 2000); however, symptoms 

generally are more prominent approximately 14 to 21 days after anthesis (Andersen et al., 

2015; D'Angelo et al., 2014; Willyerd et al., 2012). Wheat heads affected by FHB will 

have spikelets that are prematurely bleached and salmon to orange colored masses of F. 

graminearum macroconidia, called sporodochia, may be observed on the base of the 

diseased spikelet (Dill-Macky, 2010; Stack and McMullen, 1998).  The infected spikes 

often produce sterile wheat kernels that are discolored, shriveled, and are lighter in 

weight than healthy kernels.  These Fusarium damaged kernels (FDK) are called 

“tombstones” because they sometimes can have a white chalky appearance, as well as a 

pink hue. These tombstone kernels greatly affect grain quality due to their lighter density 

and the potential to have the mycotoxin deoxynivalenol (DON) present in the harvested 

grain (Salgado et al., 2014; Salgado et al., 2015).  

Deoxynivalenol can have an adverse health effect on animals and humans. At low 

levels of toxicity, symptoms can include skin irritations, feed refusal, lack of appetite and 
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vomiting. Swine livestock can be affected by DON with concentrations as low as 1 ppm, 

whereas cattle and poultry are more tolerant of DON. At high concentrations, DON can 

cause problems with horses and other animals during lactation (USDA, 2006). The 

United States Food and Drug Administration (FDA) has set advisory levels for DON in 

finished wheat products for human and animal consumption. They are as follows: i) one 

part per million (ppm) DON on finished wheat products for human consumption; ii) ten 

ppm DON on grains and grain by-products for ruminating beef and feedlot cattle older 

than four months as well as for chickens where the contaminated ingredients to not make 

up more than 50% of the diet; iii) five ppm DON on grains and grain by-products 

destined for swine; and iv) five ppm DON on grains and grain by-products destined for 

all other animals (FDA, 2010). 

Studies have revealed that there is a strong relationship between fungal biomass 

and DON contamination in wheat (Brown et al., 2010; Cowger and Arellano, 2013; 

Pritsch et al., 2000; Snijders and Krechting, 1992). Deoxynivalenol can accumulate 

throughout the entire wheat head, including in the grain, glumes, and rachis (Cowger and 

Arellano, 2013). F. graminearum appears to stimulate plant host stress and defense 

responses leading the plant pathogen to recognize these defense mechanisms and 

activates the mycotoxin biosynthesis. It has shown that DON biosynthesis is higher 

during the infection of F. graminearum compared to being in culture, suggesting that 

signals from the plant play an important role in triggering DON biosynthesis (Kazan et 

al., 2012). It is important to note, that even though DON is phytotoxic to plant tissue, 

DON contamination is not consistently correlated with disease resistance ratings, nor is it 

required for FHB disease symptomology (McCormick, 2003).   
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There are important management strategies that wheat producers can use to 

disrupt the pathogen life cycle, disease progression, and potentially lower DON 

accumulation. These include 1) planting wheat cultivars with moderate resistance to 

FHB, 2) applying fungicides to protect wheat heads, 3) tillage to bury inoculum present 

on the previous crop residue, and 4) rotate with other non-host crops (Hershman and 

Johnson, 2009; Wegulo et al., 2015). These management practices work best when two or 

more are integrated together (McMullen et al., 1997; Ransom et al., 2006; Wegulo et al., 

2015). In Kentucky, planting a wheat cultivar with moderate resistance to FHB and 

applying fungicides at anthesis are the most common FHB management strategies.  

Planting wheat cultivars with moderate resistant to FHB is an easy practice to 

mitigate the potential for severe FHB. Currently, four types of resistance to FHB have 

been discovered. Type I resistance is resistance against the initial pathogen infection 

(Schroeder and Christensen, 1963). Whereas type II resistance is resistance to the spread 

of the pathogen within the plant (Schroeder and Christensen, 1963). Type I and II are the 

most well known types of resistance and what are predominantly used in breeding 

programs (Kolb et al., 2001; Rudd et al., 2001). Type III resistance is resistance to toxins 

(McCormick, 2003). Resistance to toxins can be the result of toxin degradation by the 

plant, the plant’s insensitivity to the toxin, or a limitation to the amount of time the toxin 

accumulates in the head tissue (McCormick, 2003; Mesterházy, 2003). The last type of 

resistance is type IV, which is tolerance to FHB, where tolerant wheat maintains yield 

despite there being presence of disease. The degree of each of the resistance types will 

vary depending on the stage of maturity, the variety of wheat, and the environmental 
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conditions during infection. Even though the four types of resistance are independently 

inherited, in most cases a correlation exists between types (Mesterházy, 2003).      

Chemical control of FHB has historically been achieved by applying 

demethylationinhibitor (DMI) fungicides when 50% of wheat heads are at beginning 

anthesis (Feekes 10.5.1) (Hershman and Johnson, 2009). Common DMI fungicide 

chemistries include tebuconazole (Folicur;Bayer CropScience, St. Louis, MO), 

metconazole (Caramba; BASF, Research Triangle Park, NC), prothioconazole (Proline; 

Bayer CropScience, St. Louis, MO), and a combination of 

prothioconazole+tebuconazole, (Porsaro; Bayer CropScience, St. Louis, MO). These 

three fungicide active ingredients have a similar mode of action of inhibiting sterol 

biosynthesis in fungal cell membranes and are a part of the FRAC (Fungicide Resistant 

Action Committee) Code 3 Group (FRAC, 2019). Although most labels and university 

recommendations are to apply DMI fungicides at 50% flowering, research has shown that 

application up to six to eleven days after Feekes 10.5.1 (Zadoks 60) have shown to 

reduce FHB index, DON levels, and FDK (D'Angelo et al., 2014; Freije and Wise, 2015). 

A new active ingredient in the succinate dehydrogenase inhibitor (SDHI) class, known as 

pydiflumetofen, developed by Syngenta Crop Protection (Greensboro, NC) was 

registered for use in 2019 to help manage FHB. Pydiflumetofen is combined with 

propiconzaole (another DMI fungicide) and marketed as Miravis Ace (Syngenta Crop 

Protection). Pydiflumetofen + propiconazole has a mode of action targeting fungal 

cellular respiration and is part of the FRAC Group 7 (FRAC, 2019).  

Fungicide application at anthesis often does not include full coverage of the wheat 

head.  Estimates of wheat head coverage may be as high as 40 to 50% coverage in field 
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applications of fungicides (Hershman and Johnson, 2009), while lower estimates are 

around 12% wheat head coverage (Bradley et al., 2017).  Although there are caveats 

associated with the use of chemical control, timely application of effective fungicides 

along with planting a moderately resistant cultivar has shown to reduce FHB and DON 

contamination (D'Angelo et al., 2014; Freije and Wise, 2015; Wegulo et al., 2011a; 

Willyerd et al., 2012). Other heading and anthesis diseases include glume blotch (caused 

by Parastagonospora nodoum) (Mehra et al., 2019; Solomon et al., 2006), loose smut 

(caused by Ustilago tritici) and black chaff (caused by Xanthomonas campestris pv. 

translucens) (Dill-Macky, 2010; Hershman and Johnson, 2009). In general these diseases 

are at low severity level in Kentucky during grain fill and generally do not pose the 

concern that FHB does (Hershman and Johnson, 2009).   

Management decisions continue through grain filling and harvest. Wheat in 

Kentucky is typically harvested once grain has dried down enough to be handled safely 

(less than 20% grain moisture), especially at 13 to 15% grain moisture (Herbek and Lee, 

2009). Setting the combine correctly to minimize harvest loss, and to thresh and clean 

grain properly is key to a successful harvest timing (McNeill et al., 2009). An additional 

management strategy to decrease the amount of poor grain in the combine grain tank is to 

adjust the shutter opening (concave) and increase air flow and speed (fan speed) to blow 

some of the lightweight kernels out the back of the combine (Salgado et al., 2011). 

Implementing grain harvesting strategies along with planting a wheat cultivar with 

moderate resistance to FHB and applying an efficacious fungicide have shown to reduce 

the total discount when grain is sold at the elevator (Salgado et al., 2014).   
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Harvest timing could impact the level of DON accumulation in the grain. Delayed 

grain harvest due to inclement weather events or other unforeseen problems can decrease 

grain yields, test weights, and increase DON contamination in soft red winter wheat in 

the southeastern U.S. (Farrer et al., 2006). If DON contamination has shown to increase 

in delayed harvest timings, potentially harvesting early at higher than 15% grain 

moisture, could decrease DON levels. Corn harvested at higher grain moisture has 

reported lower concentrations of mycotoxins (Jones and Duncan, 1981), whereas left in 

the field, corn grain dries more slowly allowing for the continued development and toxin 

production by fungi in the pre-harvested grain (Munkvold, 2003).   

Once wheat grain is harvested it must be dried, if grain moisture content is above 

14%, before it is stored (McNeill et al., 2009). It is important to quickly dry grain down 

to the appropriate moisture content as to halt fungal development and mycotoxin 

production (Munkvold, 2003). If wheat is being stored over summer it should be dried to 

12.5% grain moisture and kept at dry conditions (less than 65% relative humidity) to 

prevent mycotoxin problems and post-harvest sprouting (McNeill et al., 2009).     

1.5 Soybean Development Stages: 

 Soybean growth and developmental stages are described using the scale 

developed by Fehr et al. (1971). The scale is divided into two sections, vegetative (V) and 

reproductive (R). The vegetative growth stages are identified by the number of fully 

developed trifoliolate leaves on the main stem, whereas the reproductive stages are 

identified based on the size and development of flowers, pod size, seed size, and pod 

color (Fehr et al., 1971). It is important to note that at least 50% or more of the soybean 
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plants represented in a field must be at that growth stage (Fehr et al., 1971; Knott et al., 

2018a). 

 Early important growth stages are seedling emergence (VE) and unifoliate leaves 

(VC). These growth stages are important for early stand establishment and occur before 

the first true trifoliolate fully develops (Knott et al., 2018a). The soybean plant’s 

meristem is at the top of the plant and is exposed as soon as it emerges (Fehr et al., 1971). 

At these very early growth stages, damage to the soybean plant can cause significant 

yield loss. It is important to collect early season stand counts to determine plant 

population at the VC to V1 growth stages, in case of poor plant emergence and the need 

to replant the field (Knott and Lee, 2018). Early season post emergence herbicide 

applications are typically made during the V1 to V3 growth stages as plants are still small 

to allow for equipment to travel within the row spacing without running over plants 

(Knott et al., 2018a). The vegetative stages continue until a flower develops on the main 

stem. 

 Reproductive stages begin when the first flower develops on the main stem with 

the R1 growth stage (Fehr et al., 1971). Beginning flower (R1) is a very important stage 

as the plant starts to set and open flowers on the main stem. The R2 stage is when there 

are flowers open on one of the top two nodes with a fully developed trifoliolate (Fehr et 

al., 1971). The R3 growth stage of beginning pod is an important management growth 

stage. During this growth stage, many foliar applied inputs (fungicide, insecticide, and 

foliar fertilizers) can be applied (Knott and Lee, 2018). These inputs are applied at this 

stage to protect the soybean leaves from pests to maximize grain fill during the upcoming 

growth stages. The full pod growth stage (R4) begins the period where the plant is most 
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sensitive to environmental stress. During the R4 and R5 (beginning seed) growth stages, 

environmental stress occur during this time period can lower seed yield, via a reduction 

in number of seeds per pod or number of pods per plant (Borrás et al., 2004; Brevedan 

and Egli, 2003; Knott et al., 2018a). Seed size can also be affected during the R5 and R6 

(full seed) growth stage as the seed develops and is filled with assimilates (Egli and 

Bruening, 2001; Egli and Bruening, 2005; Egli et al., 1985). Large reduction in yields can 

be seen when any environmental stress is encountered during the R5 and R6 growth 

stages.  

 Physiological maturity occurs at the R7 growth stage, when there is at least one 

pod on the main stem that has turned brown or tan (Fehr et al., 1971). During this growth 

stage, the pods begin turning brown or tan, reduction of grain moisture begins, and leaf 

senescence begins (Knott et al., 2018a). Full maturity (R8) is the final soybean growth 

stage, when 95% of the soybean pods have turned brown or tan (Fehr et al., 1971). 

Soybean harvest occurs when the seed contains approximately 13 to 15% grain moisture. 

It is important that the grain is at this moisture content for threshing ability with the 

combine and to avoid spoilage during long term storage (McNeill, 2018).    

1.6  Soybean Agronomic Management: 

 Soybean requires management throughout the growing season to maximize yield 

potential. Soybean grain yield is a function of the number of seeds per unit area and the 

weight of those seeds (Weber et al., 1966). Management practices often attempt to 

maximize yield potential by improving factors such as plant stand establishment, weed 
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management, disease and insect pest management, crop rotation systems, and harvesting 

and storage tactics (Heatherly and Elmore, 2004).  

 Soybean is a short day, photoperiod sensitive plant, where floral induction occurs 

when days are shorter than a certain time length (Garner and Allard, 1920). In result of 

soybean being photoperiod sensitive, relative soybean maturity groups or zones were 

established according to the length of the period from planting to maturity (Scott, 1970). 

Maturity groups (MG) range from the earliest maturing MG 000 planted at higher 

latitudes to late maturing MG X planted close to the equator (Mourtzinis et al., 2017; 

Scott, 1970; Venard et al., 2018; Zhang et al., 2007). In general, the U.S. will produce 

MG 0 to MG VI across the Midwest, Great Plains, and the Southeast, while in Kentucky 

MG III, and MG IV, are most commonly grown, with some MG II and MG V produced 

(Knott and Lee, 2018; Venard et al., 2018).          

 Planting timing is an important management decision. Soybean in Kentucky can 

be planted as either a full season crop or as a double crop (short season crop). Depending 

on the planting timing producers will plant a fuller season soybean (MG IV or MG V) for 

full season soybeans, whereas in a double crop option, and earlier soybean cultivar is 

commonly used (MG III or MG IV) (Knott and Lee, 2018). Soybean should be planted 

on time for their relative MG and location because soybean yield declines as soybean 

planting timing is delayed (Egli and Cornelius, 2009; Egli et al., 1987; Kane et al., 1997; 

Knott et al., 2019; Weaver et al., 1991). In general, full season soybeans are planted in 

early to mid-May whereas double crop soybeans are planted in mid-June to early July in 

Kentucky, after winter wheat has been harvested (Knott and Lee, 2018).  
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 Soybeans are typically planted in 38 cm or 76 cm row spacing across the soybean 

growing regions (Marburger et al., 2016). In Kentucky, soybeans are most commonly 

planted at 38 cm row spacing (Knott and Lee, 2018). Soybean plants are better able to 

maximize solar radiation interception and close the soybean canopy faster with the 

narrower row spacing (Weaver et al., 1991; Weber et al., 1966). Another way to increase 

the number of photosynthetically active leaves per unit area is through plant populations. 

Higher plant populations usually result in increased solar radiation interception (Ball et 

al., 2000; Weber et al., 1966); however there is a threshold at which greater plant 

populations do not result in increased grain yield (Carpenter and Board, 1997). This is 

due to the ability of soybean to compensate at lower plant populations by producing more 

branches and pods per plant and/or more seeds per pod, but with a smaller seed size 

(Board et al., 2003). The opposite can occur at high populations, where the plant may 

have fewer branches with less pods per plant and/or seeds per pod, but with a larger seed 

size (Board et al., 2003). Finding the balance between too low of plant population and too 

high of a population is critical for profitable soybean production.  

 In Kentucky, the general recommendation for final plant stand is 247,000 plants 

ha-1 for full season soybeans and 345,800 plants ha-1 for double crop soybeans (Knott and 

Lee, 2018). To achieve these plant populations, seeding rates should be increased to 

account for potential loss due to poor germination, seed quality, planting conditions, and 

other factors that could reduce stand establishment (Knott and Lee, 2018). In addition to 

increasing seeding rates, seed treatments can be used to protect the planted seed and 

young seedling. Soybean seed treatments are usually a combination of seed applied 

fungicides, insecticides, and nematicides and are recommended when soybeans are 
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planted early in the growing season in cool, moist soils (Bradley, 2008; Munkvold, 

2009). The increased use of seed treatments corresponds with the trend towards earlier 

soybean planting leading to increase risks of seed decay, seedling disease, and early 

season insect attack (Munkvold, 2009).  

 After soybeans are planted, management includes herbicide applications and 

scouting insect pests and disease pressure. Usually insect pests and disease pressures are 

low during the vegetative growing phase, and the major concern is weed pressure. Once 

flowering starts (R1), it is important to continue to scout for mid-season disease and 

insect pressure. If insect or disease pressure has reached economic thresholds in the R1 to 

R3 growth stages, usually a fungicide or insecticide application may be warranted 

(Bradley and Wise, 2018; Mueller et al., 2013; Villanueva et al., 2018).   

 Common foliar soybean pathogens that can infect soybean at during the 

reproductive stages can be Cercospora kikuchii (the causal agent of Cercospora blight), 

Septoria glycines (the casual agent of Septoria brown spot), and Cercospora sojina (the 

causal agent of Frogeye leaf spot) (Bradley and Wise, 2018; Mueller et al., 2013; Mueller 

et al., 2016). All three foliar pathogens are common in Kentucky with C. sojina being of 

most concern (Bradley, 2019). There is host resistance against C. sojina (Wise and 

Newman, 2015) and almost no host resistance to C. kikuchii (Ward-Gauthier et al., 2015) 

and S. glycines (Hartman, 2015). C. sojina has fungicide resistance to the quinone outside 

inhibitors (QoI) fungicide class in the United States, therefore it is recommended that if 

fungicide applications are necessary that a product with two fungicide classes be used 

(Bradley and Wise, 2018; Zhang et al., 2012; Zhang et al., 2018). 
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 During the early reproductive stages (R1 to R3) it is also important to scout for 

insect pests. Common leaf defoliating insects are bean leaf beetle (Cerotoma trifurcata), 

Japanese beetles (Popillia japonica), and soybean looper (Chrysodeix includens) 

(Hodgson et al., 2012; Villanueva et al., 2018). Green stink bugs (Euschistus spp.) and 

brown stink bugs (Acrosternum hilare) are pests that can cause damage to the developing 

pods (R3 to R5) and lower yield potential (Hodgson et al., 2012). It is important to scout 

these insects for economic thresholds, as defoliation rates of 20% or greater at the R3 to 

R4 soybean growth stage can usually warrant a foliar insecticide application (Villanueva, 

2018).    

 During the later reproductive stages (R5 to R6) and until physiological maturity, it 

is important to continue to scout; however, as soybean growth progresses, the ability to 

control the disease and/or insect pests decreases. Poor seed quality can occur very late in 

the season while the plant is senescing and drying down due to frequent re-wetting of the 

seed and opportunistic pathogens present in the field (Bradley, 2018). It is important in 

these situations to harvest the soybeans a soon as possible.  

 High input intensive management system for full season soybean has become 

popular; however, questions remain about the economics of this system. A nationwide 

high input soybean study found that across all environments, seed treatment inputs has a 

low break even probability, whereas, the R3 foliar insecticide application had the best 

break even probability at greater than 50% (Orlowski et al., 2016). There has been many 

studies conducted on full season soybean evaluating high input management systems 

(Bellaloui et al., 2014; Gaspar et al., 2014; Marburger et al., 2016; Orlowski et al., 2016), 
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however, there have been few studies investigating high input management in double 

crop soybean.  
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2.1 Abstract 

Fusarium graminearum, the major causal agent of Fusarium head blight (FHB) of wheat 

(Triticum aestivum) in the U.S., can produce mycotoxins, such as deoxynivalenol (DON), 

during infection. Contamination of wheat grain with DON is a major concern for wheat 

producers and millers, and the U.S. Food and Drug Administration (FDA) has set 

advisory levels for DON in finished wheat products for human and animal consumption. 

Practices utilized to manage FHB and DON contamination include planting wheat 

cultivars with moderate resistance to FHB and applying efficacious fungicides at the 

beginning of anthesis. Under severe epidemics, DON contamination can exceed FDA 

advisory levels despite implementation of these measures. Additionally, fungicide 

efficacy can be limited when anthesis is not uniform among plants in the field, which can 

occur when planting is delayed or if there is non-uniform seedling establishment. The 

objectives of this study were to evaluate the effect of 1) in-furrow phosphorus application 
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at planting and seeding rate on heading and anthesis uniformity, FHB symptomology, 

DON contamination, grain yield, yield components, and test weight; and 2) harvesting at 

different grain moisture concentrations on FHB symptomology, DON contamination, 

grain yield and test weight. Field trials were established in Princeton, Kentucky, from 

2017 to 2019, to evaluate in-furrow phosphorus application at planting (0 kg P2O5 ha-1 

and 47 kg P2O5 ha-1); seeding rate (376 live seeds m-2 and 603 live seeds m-2); and grain 

moisture at harvest (20 to 22% and 13 to 15%). In-furrow phosphorus increased grain 

yield and spikes m-2, but had no effect on heading and anthesis uniformity or DON 

contamination. The 603 live seeds m-2 seeding rate decreased the number of days to 

Zadoks 60 for the November planted wheat, and decreased FHB incidence, but did not 

decrease DON contamination. Harvesting at 20 to 22% grain moisture decreased 

Fusarium damaged kernel ratings and percent kernel infection but increased DON 

contamination in the harvested grain. Although in-furrow phosphorus, seeding rate, and 

harvesting 20 to 22% grain moisture did not decrease DON contamination, there is 

potential for these treatments to alleviate negative effects of late planted wheat grown in 

stressful environments.     

2.2 Introduction: 

Fusarium graminearum (Schwabe) is the major cause of Fusarium head blight 

(FHB) in wheat (Triticum aestivum L.) in the United States and can produce mycotoxins, 

such as deoxynivalenol (DON) during infection (Andersen, 1948). Fusarium head blight 

is usually a regional problem with severe infection occurring in years where 

environmental conditions are warm (25°C) and moist during anthesis through soft dough 

stage; furthermore, severe epidemics can occur when conditions are favorable for 
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infection, which can lead to reduced grain yield (Andersen, 1948; McMullen et al., 2012). 

However, the major concern to wheat producers and millers is DON contamination, as 

the mycotoxin can cause adverse health effects in humans and animals if consumed in 

high levels. The U.S. Food and Drug Administration has set advisory levels for DON in 

finished wheat products for humans at 1 ppm, swine at 5 ppm, and cattle at 10 ppm 

(FDA, 2010). Current management practices include planting moderately resistant 

cultivars and applying efficacious fungicides at beginning anthesis to control FHB and 

DON contamination (Zadoks 60) (Wegulo et al., 2015; Wegulo et al., 2011; Willyerd et 

al., 2012). Integrating cultivar resistance and fungicide application at anthesis can be an 

effective practice to manage FHB and DON contamination (Wegulo et al., 2011; 

Willyerd et al., 2012). Despite implementing these management practices, when 

environmental conditions are favorable for F. graminearum infection, DON 

contamination can exceed FDA advisory levels (McMullen et al., 2012). Additional 

management practices are needed to mitigate the limitations of current recommendations 

as DON contamination can sometimes reach critical levels even when FHB symptoms are 

not severe (Andersen et al., 2015; Cowger and Arrellano, 2010; Knott, 2014).  

Additional agronomic management practices may need to be implemented to 

better mitigate FHB and DON contamination. For example, in-furrow phosphorus and 

seeding rates can alter tiller development, potentially creating a more uniform head 

development and anthesis (Chen et al., 2019; Otteson et al., 2008; Schaafsma and 

Tamburic-Ilincic, 2005). Several tillers on a wheat plant can develop fertile spikes and 

shed pollen across a range of days as all of these tillers are not at the same development 

stage during heading and anthesis (Kiesselbach and Sprague, 1926; Noversoke, 2014; 
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Tilley et al., 2019). More uniform spike development could lead to more uniform anthesis 

and better fungicide efficacy, as current fungicides (prothioconazole + tebuconazole and 

metconaxole) have been shown to reduce FHB incidence by only approximately 50% 

compared to a non-treated control (Paul et al., 2018). Phosphorus can be applied in a 

variety of placements in the soil during fall application; however in-furrow application at 

planting has been shown to result in greater grain yield compared to broadcast application 

(Fiedler et al., 1989; Grant et al., 2001; Peterson et al., 1981). Phosphorus has also been 

shown to increase early-season tiller development, which has resulted in increased spikes 

m-2 and grain yield (Blue et al., 1990; Chen et al., 2019; Knapp and Knapp, 1978; Sander 

and Eghball, 1999). Knapp and Knapp (1978) observed that wheat fertilized with fall 

applied phosphorus reached Zadoks 58 (100% of spike visible) earlier than wheat planted 

without phosphorus. It is speculated that plants with vigorous early season tiller 

development may have more of the plant’s tillers at the same growth stage at spike 

development and anthesis. Another management practice that may alter tiller 

development is increased seeding rate. Increasing the seeding rate can increase the 

number of main stem and primary tillers m-2 (Blue et al., 1990; Geleta et al., 2002; 

Lloveras et al., 2004) while decreasing the number of secondary and tertiary tillers per 

unit area (Kiesselbach and Sprague, 1926; Lloveras et al., 2004; Otteson et al., 2008; 

Tilley et al., 2019). Decreasing the number of non-main stem tillers does not usually 

decrease yield, as the main spike and primary tiller are the major contributors to grain 

yield (Chen et al., 2019; Otteson et al., 2008). In theory, having more main stems and 

primary tillers per unit area would result in more spikes that are uniform in their 

developmental stage, setting up a scenario which could lead to greater fungicide efficacy.  
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Another management practice that may decrease DON contamination in harvested 

wheat grain is harvest timing. Anecdotal observations from producers suggest that 

harvesting wheat at a grain moisture greater than 15% could decrease DON 

contamination in the harvested grain compared to harvesting grain at a moisture less than 

15%. Current harvest strategies to decrease DON contamination in harvested grain 

include optimizing combine harvester settings and air speed to remove Fusarium 

damaged kernels (FDK) from entering the grain tank (Salgado et al., 2011). However, 

wheat harvested in Ontario, Canada, at approximately 18 to 25% grain moisture has been 

shown to have a lower incidence of Fusarium spp. kernel infection leading to higher 

grain quality, although there was no difference in DON contamination compared to grain 

harvested at less than 15% grain moisture (Xue et al., 2004). Similarly harvesting corn 

(Zea mays L.), when grain moistures are greater than 15% has been shown to reduce the 

amount of mycotoxin, as continual mycotoxin development can occur as the corn dries 

slowly in the field, compared to harvesting at less than 15% grain moisture (Munkvold, 

2003). Even though F. graminearum and DON can continue to accumulate when wheat 

grain moisture is greater than 17% (Hope et al., 2005), potentially harvesting at greater 

than 15% grain moisture could lower mycotoxin levels in soft red winter wheat.  

The goal of this study was to determine whether additional management practices 

would increase anthesis uniformity, decrease DON contamination, and improve grain 

yield and quality. The specific objectives of this study were to evaluate the effect of: 1) 

in-furrow phosphorus application at planting and seeding rate on heading and anthesis 

uniformity, FHB symptomology (including FHB incidence, FHB severity, FHB index, 

Fusarium damage kernel (FDK) rating, and percent kernel infection (PKI)), DON 
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contamination, grain yield, yield components, and test weight; and 2) harvesting at 

different grain moisture concentrations on FHB symptomology, DON contamination, 

grain yield, thousand kernel weights (TKW) and test weight.   

2.3 Materials and Methods: 

2.3.1 Environments and Exper imental Design 

 Soft red winter wheat trials were established at the University of Kentucky Grain 

and Forage Center of Excellence at the Research and Education Center in Princeton KY 

(37°6’ N, 87°52’ W) in the fall of 2016, 2017, and 2018. In each year, a total of four 

environments were established. Three environments were established on a Crider silt 

loam (fine-silty, mixed, active, mesic Typic Paledalf) and one was established on a 

Zanesville silt loam (fine-silty, mixed, active, mesic Oxyaquic Fragidalf) (Table 1). Plots 

were planted with a research no-till drill (Plotseed XL; Wintersteiger Inc., Salt Lake City, 

UT) into corn stubble. Rows were spaced 18 cm apart and each plot was approximately 

1.2 m wide and 4.6 m long. Two of the Crider environments were infested with F. 

graminearum inoculated corn kernels and mist irrigated, creating high FHB disease 

pressure conditions (Verges et al., 2006). The remaining Crider environment and 

Zanesville environment were not infested with F. graminearum inoculated corn kernels 

or mist-irrigated. Each environment was arranged as a split-split plot randomized 

complete block design. The main plot was harvest timing, which consisted of two target 

harvest moistures: a high moisture harvest at 20 to 22% grain moisture (early) and a 

normal moisture harvest at 13 to 15% grain moisture (normal). The split-plot was 

planting timing, which consisted of two planting timings of October and November 
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(Table 1). Throughout the rest of the article, the harvest timing and planting timing 

combinations will be referred to as: October early harvest, October normal harvest, 

November early harvest, and November normal harvest. In 2016, the split-split plot 

consisted of four management treatments, replicated five times: two in-furrow 

phosphorus rates (0 kg ha-1 P2O5 or 47 kg ha-1 P2O5), and two cultivars (moderately 

resistant to FHB cultivar [Pembroke 2016] or moderately susceptible to FHB cultivar 

[Cumberland]). In 2017 and 2018, the split-split plot consisted of eight management 

treatments, replicated five times: two in-furrow phosphorus rates (0 kg ha-1 P2O5  or 47 kg 

ha-1 P2O5), two seeding rates (377 plants m-2 or 603 plants m-2), and two cultivars 

(moderately resistant to FHB cultivar [Pembroke 2016] or moderately susceptible to FHB 

cultivar [Pioneer 26R53]). Wheat plots were managed for nitrogen and herbicide 

applications according to University of Kentucky Cooperative Extension Service 

recommendations (Lee et al., 2009).  

Fungicide applications for FHB were applied to three of the four environments 

each year (Table 1) when wheat was at Zadoks 60 (beginning anthesis) growth stage. In 

2017 and 2018, prothioconazole + tebuconazole (Prosaro, Bayer CropScience, St. Louis, 

MO) was applied at 0.1 kg a.i. ha-1 + 0.1 kg a.i ha-1 and 0.0125% v/v non-ionic surfactant 

(Ad-Spray 80, Helena Chemical Company, Collierville, TN) was included in the spray 

solution. In 2019, the fungicide metconazole (Caramba, BASF Corp., Research Triangle 

Park, NC) was applied at a rate of 0.1 kg a.i. ha-1 and 0.125% v/v non-ionic surfactant 

was added to the spray solution.  
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2.3.2 Wheat heading and anthesis uniformity 

Wheat heading and flowering uniformity were measured in the spring of 2018 and 

2019 in the Crider ambient environment. In 2018, once a day, for approximately two 

weeks for each planting timing, approximately 0.6 m of one row of wheat heads per plot 

was photographed with a Canon Power Shot camera (Elph 115IS, Canon, Melville, NY). 

The pictures were analyzed for the number of wheat heads that were at growth stage Zadoks 

58, Zadoks 60, and Zadoks 68 each day. In 2019, growth stages (Zadoks 58, Zadoks 60, 

and Zadoks 68) were measured in the field for approximately two weeks for each 

planting timing.  

2.3.3 Fusar ium Head Blight Symptomology  

One meter row of spikes were hand harvested per plot approximately 17 to 20 

days after Zadoks 68. These spikes were placed in a walk in freezer (-19°C, Hobart, Troy, 

OH) to preserve the samples until spikes m-2, number of spikelets spike-1, FHB incidence, 

FHB severity, and FHB index could be determined. Spikes m-2 and FHB incidence (% of 

plants with FHB symptoms) were measured from the entire sample. Number of spikelets 

spike-1 were measured from 15 random spikes, and FHB severity (% head area affected) 

was measured from 15 FHB symptomatic spikes. Fusarium head blight index were 

determined using the equation FHB index=(FHB incidence x FHB severity)/100.  
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2.3.4 Wheat Harvest 

Wheat was harvested using a small plot combine (Delta; Wintersteiger, Inc., Salt 

Lake City, UT) equipped with a weigh system (Harvest Master, Juniper Systems, Inc., 

Logan, UT). Approximately 1.4 kg of grain were collected from each plot. The wheat 

harvested at the target high grain moisture of 20 to 22% was stored in plastic bags in a 

walk in cooler (4°C, Forma-Kool, Chesterfield, MI) until the wheat could be dried to 

12.5% grain moisture with a laboratory-scale thin-layer drying system (White et al., 

1985). Wheat harvested at target normal grain moisture of 13 to 15% was stored in paper 

bags at 22°C and 50% relative humidity. Despite enduring harvest challenges, some years 

the target harvest moisture of 20 to 22% was unable to be met, however grain was 

harvested as early as possible (Table 2). The Zanesville 2017 environment was unable to 

be harvested due to environmental factors, and the Zanesville 2019 November normal 

harvest was unable to be harvested due to poor plant emergence and end season plant 

density (Table 2). Grain moisture and test weight were measured using a Dickey-John 

Grain Analysis Computer (GAC) (Model 2500-UGMA; Dickey-John, Auburn, IL) 

immediately after harvest and drying. Test weight was only measured in 2018 and 2019. 

Grain yields were adjusted to 13.5% grain moisture. 

 Thousand kernel weights (TKW), FDK ratings, and DON contamination were 

measured post-harvest. One thousand kernels were counted with a Seedburo Seed 

Counter (Model 801; Des Plaines, IL) and then weighed to determine TKW. Thousand 

kernel weights were then adjusted to 13.5% grain moisture. A random grain sample of 

approximately 200g was visually inspected for percentage of Fusarium damaged kernels 
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based on a visual scale similar to Paul (2015). This was repeated twice, for a total of three 

observations, per plot and then averaged to determine FDK rating for each plot. A 

random 100g sample from each plot was ground into a rough wheat meal powder using a 

Romer Series II mill (Romer Labs, Inc., Union MO). The mill was vacuumed cleaned 

between each sample. A 20g subsample was used for the DON analysis per the protocol 

for QuickTox for QuickScan DON Flex kits by Envirologix (Portland, ME). Analyses 

were preformed using the provided protocol and DON contamination levels were 

determined using the QuickScan system (Envrionlogix, Portland, ME). A subsample of 

grain from a select number of plots each year was also sent to the University of 

Minnesota to validate DON contamination using gas-chromatography, mass-

spectrometry.  

2.3.5 Percent Kernel Infection 

Twenty asymptomatic kernels from each plot were surface disinfested by soaking 

in a 10% bleach water solution for one mine, then a sterile water rinse, followed by 

soaking in 90% ethanol for one minute. Kernels were then triple rinsed in sterile water 

before aseptically transferred to peptone pentacholoronitrobenze (PCNB) agar Dill-

Macky (2003). This was repeated four times for a total of five runs. Plates were stored in 

a growth chamber (Model: I-36VL, Percival, Perry IA), programed to run 12 hours at 

24.7°C with light and 12 hours at 22°C without light. Percent kernel infection (PKI) was 

measured six days after plating; infected kernels were defined as kernels with visual signs 

of Fusarium spp. pink mycelium. Fusarium spp. was not identified to specific species.  
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2.3.6 Data Analyses  

Normality was confirmed (PROC UNIVARIATE; SAS, v9.4; SAS Institute Inc., 

Cary, NC) prior to analyses of variance (PROC GLIMMIX; SAS, v9.4) for days to 

beginning anthesis (Zadoks 60), spikes m-2, spikelets spike-1, TKW, PKI, grain yield, and 

test weight. To obtain normally distributed data, FDK ratings were arcsine square root 

transformed, while DON contamination, FHB Incidence, FHB severity, and FHB index 

were log transformed. 

Analyses of variance were initially performed (PROC GLIMMIX; SAS, v9.4) for 

a full model that included year, environment, main effect and all possible combinations 

(specified in SAS as year|environment|main effect) as fixed effects and replication as 

random effects. Significant (P < 0.05) interactions did not exist between year and any of 

the main effects or environment and any of the main effects for all dependent variables. 

In addition, significant (P < 0.05) interactions were not detected for any of the dependent 

variables (listed above) for in-furrow phosphorus by seeding rate, in-furrow phosphorus 

by cultivar, or seeding rate by cultivar. There was a significant (P < 0.05) planting timing 

by seeding rate interaction for days to beginning anthesis (Zadoks 60), grain yield and 

TKW. For grain yield, test weight, FDK, and PKI, there was a significant (P<0.05) 

planting timing by harvest timing interaction. There was a significant (P<0.05) harvest 

timing by cultivar interaction for test weight. Therefore, three reduced models were 

examined. 

The first reduced model examined (PROC GLIMMIX; SAS v9.4) specified the 

main effect as a fixed effect and year, environment, and replication as random effects for 
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all dependent variables for the in-furrow phosphorus main effect and for spikes m-2, 

spikelets spike-1, FHB incidence, FHB severity, FHB index, test weight, FDK, PKI, and 

DON contamination for the seeding rate main effect, as well as TKW and DON 

contamination for the harvest timing main effect. The second reduced model (PROC 

GLIMMIX; SAS v9.4) specified the main effect and main effect by planting timing 

interaction as a fixed effects and year, environment, and replication as random effects for 

days to beginning anthesis, grain yield, and TKW for the seeding rate main effect and for 

grain yield, test weight, FDK, and PKI for the harvest timing main effect. The third 

reduced model specified the main effect and main effect by cultivar interactions as a 

fixed effect year, environment, and replication as random effects for test weight for the 

harvest timing main effect.  

Least squares means (LSmeans) were separated with the “lines” option and 

adjusted with the Tukey–Kramer method. LSmeans of the arcsine FDK ratings were sine 

transformed to obtain mean FDK ratings; means separation was based on analysis of 

arcsine transformed data. LSmeans of the log transformed DON, FHB incidence, FHB 

severity, and FHB index data were raised to the power of 10 to obtain mean DON, FHB 

incidence, FHB severity, and FHB index; mean separation was based on analysis of log 

transformed data. 

2.4 Results 

2.4.1 In-furrow phosphorus 

 In-furrow phosphorus had an effect on spikes m-2 and yield. When 47 kg P2O5 ha-

1 was placed in-furrow, spikes m-2 increased by 27 spikes m-2 when compared to the 
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treatment that lacked in-furrow phosphorus (Table 3). The use of in-furrow phosphorus 

increased yield by 144 kg ha-1 compared to the treatment that did not have phosphorus 

(Table 4). Despite the significant (P=0.0333) yield increase, wheat began flowering 

(Zadoks 60) at the same time, about 2 days after heading (Table 3). In addition, traits 

associated with FHB symptomology (FHB incidence, FHB severity, FHB index, FDK 

rating, DON contamination, and PKI), number of spikelets spike-1, TKW and test weight 

did not differ regardless of phosphorus treatment (Tables 3 and 4).   

2.4.2 Seeding rate 

The seeding rate by planting timing interaction indicated that the 603 plants m-2 

seeding rate planted in November was at beginning anthesis (Zadoks 60) 0.5 days earlier 

than to the 377 plants m-2 seeding rate planted in November (Table 2). The October 

planted wheat did not differ in number days (2.0) to Zadoks 60 for either seeding rate 

(Table 3). There was no difference in days to Zadoks 58 or Zadoks 68 (data not shown).  

Seeding rate had a small but significant effect on FHB incidence, in which 

incidence decreased (P=0.0224) by 0.8% for the 603 plants m-2 seeding rate compared to 

the 377 plants m-2 seeding rate (Table 3). Fusarium head blight severity (P=0.075), FHB 

index (P=0.2294), FDK ratings (P=0.1019), PKI (P=0.3945), and DON contamination 

(P=0.0765) were not affected by seeding rate (Table 3 and 4). 

 Seeding rate had an effect on the yield components of spikes m-2, spikelets spike-

1 and TKW. When the 603 plants m-2 seeding rate was used, spikes m-2 increased 

(P<0.0001) by 41 spikes m-2 compared to the 377 plants m-2 seeding rate (Table 3). The 

603 plants m-2 seeding rate had fewer (P<0.0001) spikelets spike-1 (12.3) compared to the 



36 
 

377 plants m-2 seeding rate (13.0) (Table 3). Wheat planted in October had TKW 

decreased by 0.5 g for the 603 plants m-2 seeding rate compared to the 377 plants m-2 

seeding rate, while the November planted wheat TKW did not differ (P=0.0422) for 

either seeding rate (Table 4). For the wheat planted in November, yield increased 

(P=0.0148) by 279 kg ha-1 for the 603 plants m-2 seeding rate compared to the 377 plants 

m-2 seeding rate. The October planted wheat yield was significantly (P=0.0148) greater 

than the November wheat yields at each seeding rate, however the October 603 plants m-2 

seeding rate did not differ from the October 377 plants m-2 seeding rate (Table 4).   

2.4.3 Harvest timing 

Harvest timing affected DON contamination, grain yield and grain quality. Wheat 

harvested at 20 to 22% grain moisture had increased (P<0.0001) DON contamination by 

0.7 ppm compared to wheat harvested at 13 to 15% grain moisture (Table 4). Grain yield, 

test weight, FDK ratings and PKI indicated a harvest timing by planting timing 

interaction. The November early harvest had an increase in grain yield of 290 kg ha-1 

compared to the November normal harvest; in contrast, the October early harvest and 

October normal harvest had the highest yields and did not differ (P=0.0004) (Table 4). 

The October normal harvest had the greatest test weight overall (694 kg m-3), followed by 

the October early harvest (683 kg m-3), then the November normal harvest (662 kg m-3), 

and lastly the November early harvest (647 kg m-3) (Table 4). The October early harvest 

FDK rating was 2.6% less than the October normal harvest rating, however both were 

significantly (P=0.0034) less than the November early harvest (14.1%) and the 

November normal harvest (14.4%) (Table 4). The November normal harvest had the 
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greatest (P<0.0001) PKI (37%), followed by the November early harvest (35%), while 

both the October early harvest (30%) and normal harvest (29%) were significantly less 

than November early harvest and normal harvest (Table 4). Wheat harvested at 20 to 22% 

grain moisture increased TKW by 0.8g compared to wheat harvested at 13 to 15% grain 

moisture (Table 4). There was a harvest timing by cultivar interaction for test weight. The 

early harvest susceptible cultivar had the lowest test weight compared to the normal 

harvest susceptible cultivar, and the resistant cultivar at both harvest timings (P=0.0004) 

(Table 5).  

2.5 Discussion 

2.5.1 In-furrow phosphorus:  

 Grain yield and spikes m-2 increased when 47 kg ha-1 P2O5 was applied in-furrow 

at planting. This result was interesting, in that grain yield and spikes m-2 increased due to 

the phosphorus application because all environments of this study had soil-test 

phosphorus levels that have been identified as adequate to support wheat production in 

Kentucky (Ritchey and McGrath, 2018). Knapp and Knapp (1978) observed an increase 

in spike m-2 and yield from fall applied phosphorus on adequate phosphorus soils, while 

Halvorson and Havlin (1992), and Oakes et al. (2016) only observed an increase in yield 

as rates of phosphorus fertilizer increased in adequate phosphorus soils. However, a 

majority of yield response due to fall applied phosphorus have occurred in phosphorus 

deficient soils (Blue et al., 1990; Chen et al., 2019; Karamanos et al., 2003; Sander and 

Eghball, 1999). In addition to yield increase, Chen et al. (2019) observed an increase in 

the number of fertile primary tillers when phosphorus was applied in phosphorus 
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deficient soils. There have been anecdotal observations from Canada that in-furrow 

phosphorus applied at planting as a starter fertilizer have increased wheat heading and 

anthesis uniformity (Hooker, 2015). In-furrow phosphorous did not increase heading and 

anthesis uniformity when measured over heading duration, days to beginning anthesis 

(Zadoks 60), days to full anthesis (Zadoks 68), and total anthesis duration (data not 

shown), nor did it decrease DON contamination and FHB symptomology (Tables 2 and 

3). This lack of response is due in part to the reduced response of phosphorus application 

to winter wheat in soils with adequate phosphorus (Fiedler et al., 1989; Grove et al., 

2018; Karamanos et al., 2003).    

 Starter phosphorus has been observed to improve plant health and yields in 

stressful situations. For example, in late planted wheat in adequate phosphorus soils, the 

addition of starter fertilizer with phosphorus increased grain yield in late planted winter 

wheat (Knapp and Knapp, 1978; Oakes et al., 2016). Similar results are reported in 

deficient phosphorus soils by Blue et al. (1990) and Sander and Eghball (1999). In-

furrow phosphorus did not increase grain yield for the November planted wheat in the 

current study (data not shown). Blue et al. (1990) also reported that starter phosphorus 

reduced the negative effects of a low seeding rate. However, there was not a response in 

grain yield when in-furrow phosphorus was used at the 377 plants m-2 seeding rate 

planted in November (data not shown). The response of phosphorus in stressful growing 

conditions can be attributed to the wheat plants stimulated root development and early 

tiller growth from the starter phosphorus (Knapp and Knapp, 1978; Oakes et al., 2016; 

Sander and Eghball, 1999; Teng et al., 2013).  
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2.5.2 Seeding rate: 

The increased seeding rate of 603 plants m-2 decreased the number of days to 

beginning anthesis (Zadoks 60). Previous studies have observed an earlier anthesis date 

with a higher seeding rate (Geleta et al., 2002) as well as a shortened anthesis period 

(Schaafsma and Tamburic-Ilincic, 2005). Additional studies from Canada have shown 

that increasing the seeding rate increases main stem numbers and shortening flowering by 

creating a less variable wheat field at fungicide application (Beres et al., 2018). Increased 

fungicide coverage could decrease FHB incidence and severity and reduce DON 

contamination. Although, there was no difference in days to heading, Zadoks 58 (2.5 

days), and days to full flower, Zadoks 68, (2.2 days) for the 603 plants m-2 seeding rate in 

the present study.   

Although there was no observable difference in days to heading and days to full 

flower, the more uniformed beginning flowering may have contributed to the decrease in 

FHB incidence in the 603 plants m-2 seeding rate. Schaafsma and Tamburic-Ilincic 

(2005) observed a shortened anthesis period from an increased seeding rate; however the 

more uniform anthesis increased FHB index and DON contamination. There was no 

difference in FHB severity, FHB index, FDK rating, PKI, and DON contamination in the 

present study, suggesting that the increased uniformity did not increase FHB regardless 

of disease pressure. The inoculated environments averaged FHB indexes of 5 and 16, 

with and without fungicides respectively, while both ambient environments each 

averaged an FHB index of 1 (unpublished data). Even in the high disease pressure 

situation, (inoculated, no fungicide application), DON contamination did not differ for 



40 
 

seeding rate (data not shown). The decreased FHB incidence and the lack of difference 

for DON contamination and other FHB symptomology measurements indicates that there 

is potential for a more uniform anthesis without increasing FHB symptomology.  

 In addition to altering heading and anthesis uniformity, an increased seeding rate 

can affect yield and yield components. Yield is determined by the number of spikes per 

unit area, the number of kernels per spike, and the weight of those kernels (Kiesselbach 

and Sprague, 1926). Increasing the seeding rate to 603 plants m-2 increased grain yield 

especially in the November planted wheat, and altered the yield components by 

increasing the number of spike m-2, decreasing the number of spikelets spike-1 and 

decreasing the TKW for October planted wheat. Similar results have been reported where 

a higher seeding rate increased grain yield and spikes m-2 (Blue et al., 1990; Geleta et al., 

2002; Lloveras et al., 2004; Otteson et al., 2008). However, there have been mixed 

findings on spikelets spike-1 and TKW response to seeding rate. Some studies observed 

an increase in kernels spike-1 and increased kernel weight (Blue et al., 1990; Geleta et al., 

2002), while others observed a decrease in kernels per spike and decreased kernel weight 

(Lloveras et al., 2004; Ma et al., 2018). Although spikelets spike-1 and TKW decreased, 

increasing the seeding rate increases the number of spikes m-2, increasing the proportion 

of yield coming from the main stem and primary tiller, as secondary and tertiary tillers 

decrease (Otteson et al., 2008). Having more main stems and primary tillers while 

increasing yield, may promote a more uniform heading and anthesis period for better 

fungicide application, without compromising yield.  

 Increasing the seeding rate when wheat is grown in stressful environments has 

improved yields. There was an increase of 269 kg ha-1 from the 603 plants m-2 seeding 
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rate compared to the 377 plants m-2 seeding rate in the November planted wheat. The 

November planted wheat was exposed to colder temperatures during seed germination 

and seedling emergence, producing very little vegetation throughout the winter, while the 

October planted wheat was able to produce adequate tiller growth before winter. This is 

similar to findings of Oakes et al. (2016) where the on-time planted winter wheat had 

more fall tiller growth and development, than late planted winter wheat which had more 

spring tiller growth. Increasing the seeding rate for late planted wheat would increase the 

number of tillers and spikes produced in the spring, alleviating the negative effects of late 

planting. This can lead to increased grain yields in late planted winter wheat, although 

yields were still lower than on-time planted wheat (Blue et al., 1990; Ma et al., 2018). 

 

2.5.3 Harvest timing: 

Harvesting at a targeted 20 to 22% grain moisture decreased FDK ratings in the 

October planted wheat, and decreased PKI in the November planted wheat. Fusarium 

damaged kernel ratings and PKI have been shown to increase with the presence of post 

anthesis moisture, especially 45 days or more after anthesis (Cowger and Arellano, 2013; 

Xue et al., 2004). There was approximately 10 to 16 cm of precipitation 

(http://www.kymesonet.org) that occurred between the early harvest timing and normal 

harvest timing each year. Harvesting 12 to 21 days earlier at high moisture, may have 

prevented the additional development of FDK and PKI by removing the grain from the 

FHB conducive environment. These findings are similar to anecdotal observations by 
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Kentucky wheat producers where harvesting at greater than 15% grain moisture has led 

to greater grain quality.   

Harvesting at a targeted 20 to 22% grain moisture decreased FDK and PKI in 

certain situations, but DON contamination did not decrease compared to harvesting at 13 

to 15% grain moisture. This was somewhat unexpected as FDK is strongly associated 

with DON contamination (Paul et al., 2005) and there was a decrease in FDK ratings in 

the October early harvest. The increase in DON contamination at the higher grain 

moisture does not agree with some Kentucky wheat growers’ anecdotal observations. 

However there have also been reports by Cowger and Arellano (2013) and Culler et al. 

(2007) of DON contamination declining during grain fill and harvest maturity. 

Deoxynivalenol is thought to be a virulence factor in F. graminearum infection and that 

DON biosynthesis occurs shortly after infection (Hallen-Adams et al., 2011). 

Deoxynivalenol biosynthesis gene expression was greatest directly after infection and 

during fungal colonization, but diminished as the plants matured (Hallen-Adams et al., 

2011). It is proposed that DON is removed from the host by a detoxification method 

(Audenaert et al., 2013) or through leaching via free water movement from the plant 

(Culler et al., 2007; Gautam and Dill‐Macky, 2012). Another possibility of increased 

DON in the high moisture grain, is that less tombstone kernels were blown out during 

combine harvest. Thousand kernel weights were increased for grain harvested at 20 to 

22% grain moisture compared to grain harvested at 13 to 15% grain moisture. Combine 

settings can be adjusted to increase fan speed to increase the potential of tombstone 

kernels blown out of the combine, thus increasing the quality of the grain in the tank 

(Salgado et al., 2011). The heavier tombstone kernels at early harvest may not have been 
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light enough to be blown out of the combine, potentially leading to the increased DON 

contamination.  

Harvesting at a targeted 20 to 22% grain moisture increased grain yield in the 

November planted wheat and increased TKW overall. The October planted wheat yield 

was not effected by harvesting at 20 to 22% grain moisture. Test weights were decreased 

at each planting timing when harvested at 20 to 22% grain moisture (Table 4). This is 

expected as test weight is somewhat inversely proportional to grain moisture content; as 

grain moisture decreases test weight will increase until the maximum test weight is 

reached at approximately 14 to 15% grain moisture (Brooker et al., 1992; Nelson, 1980). 

When grain is harvested at elevated grain moisture content, drying the grain to 13 to 15% 

grain moisture can increase the final test weight (Brooker et al., 1992). It is important to 

note that wheat grain harvested at the targeted 20 to 22% grain moisture must be dried 

soon after harvest to prevent spoilage and mycotoxin accumulation as F. graminearum 

can continue to grow and produce DON in harvested grain at grain moistures above 17% 

(Hope et al., 2005; McNeill et al., 2009).  

Test weight also decreased in the susceptible cultivar when it was harvested at 20 

to 22% grain moisture however; there was no difference in test weights of the resistant 

cultivar (Table 5). The decrease in test weight of the susceptible cultivar at high grain 

moisture was unexpected. The grain moisture may have influenced this decrease; 

however, the resistant cultivar did not have a decrease in test weight when harvested 

early. It possibly could be influenced by poor quality grain, as this is the FHB susceptible 

cultivar. Salgado et al. (2015) reported test weight decreased at least 5% at an FHB index 

level of 10. The Kentucky environments averaged a FHB index level of 6, which may 



44 
 

have influenced the 2.6% reduction in test weight of the high moisture test weight of the 

susceptible cultivar. Salgado et al. (2015) also observed the test weight of the resistant 

cultivar test weight was less influenced by FHB severity and FHB index compared to the 

test weights of the susceptible cultivar. The same trends were observed in the high 

moisture harvest between the susceptible and resistant cultivars. With these trends, winter 

wheat producers should use a FHB-resistant cultivar to help preserve test weight.  

Harvesting at 20 to 22% grain moisture of on-time planted wheat did not decrease 

grain yield, and only reduced test weight by 1.6%. The October early harvest had 

increased TKW, reduced FDK, had no difference in PKI, and greater DON contamination 

compared to the October normal harvest. When wheat producers sell grain, dockage can 

occur when standards are not met for grain moisture, test weight, and DON 

contamination. If producers have a grain drying system on farm, they can dry their grain 

to 12.5% and increase their test weight, creating less dockage when selling grain; 

however, they would not be able to change the DON contamination in the grain. 

Harvesting at 20 to 22% grain moisture provides the potential to plant double crop 

soybeans after wheat harvest, 12 to 21 days earlier, where the increase in soybean yield 

could potentially pay for the drying cost and dockage and still retain a profit.     

2.6 Conclusions 

 This study investigated integrating additional management practices of in-furrow 

phosphorus, seeding rate, and harvest timing to decrease DON contamination in the 

grain. Our results indicated that in-furrow phosphorus did not affect DON contamination 

but did increase grain yield and spikes m-2. The 603 plants m-2 seeding rate decreased the 
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number of days to beginning anthesis in the November planted wheat and decreased FHB 

incidence, however there was no difference in DON contamination, PKI, or FDK ratings. 

The 603 plants m-2 seeding rate did increase yields in the November planting timing, 

indicating that in late planted wheat increasing the seeding rate will decrease the negative 

impacts of late planting. Overall, application of in-furrow phosphorus and increased 

seeding rate had little effect on heading and anthesis uniformity. Harvesting at 20 to 22% 

grain moisture did not affect the October planted grain yield, while it did preserve the 

November early harvest grain yield. Test weight decreased with the high moisture 

harvest, however TKW increased while FDK and PKI decreased in certain situations 

compared to the normal moisture harvest. Harvesting at 20 to 22% grain moisture led to 

greater DON contamination than harvesting at 13 to 15% grain moisture.    

Although application of in-furrow phosphorus and increased seeding rate did not 

affect DON contamination and harvesting at 20 to 22% grain moisture resulted in greater 

DON contamination, these treatments increased grain yield and decreased days to 

anthesis and PKI in more stressful environments. Thus, there is potential for these 

treatments to be used to reduce the negative effects of planting wheat late.   
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Table 1. Environmental conditions of soil type, Fusarium graminearum infestation type, fungicide application, planting dates, 
and harvest dates of soft red winter wheat trials in Princeton, Kentucky, USA from 2017 to 2019. Each environment had two 
planting timings (October and November) and each planting timing had two harvest timings (targeted at 20 to 22% grain 
moisture and 13 to 15% grain moisture). 

Environment Soil Type F. graminearum 
Infestation Type 

Fungicide 
Application 
at Zadoks 
60 

Planting Date 

Target 
Grain 
Moisture 
at 
Harvest 

Harvest Date 

2016 2017 2018 % 2017 2018 2019 

1 Crider 
Silt Loam 

Infested with F. 
graminearum 
inoculated scabby 
corn kernels 

No 

25-
Oct 

18-
Oct 

11-
Oct 

20 to 22 08-Jun 08-Jun 12-Jun 
13 to 15 21-Jun 19-Jun 13-Jun 

22-
Nov 

28-
Nov 

28-
Nov 

20 to 22 12-Jun 15-Jun 28-Jun 
13 to 15 21-Jun 02-Jul 28-Jun 

2 Crider 
Silt Loam 

Infested with F. 
graminearum 
inoculated scabby 
corn kernels 

Yes a 

25-
Oct 

18-
Oct 

11-
Oct 

20 to 22 08-Jun 08-Jun 12-Jun 
13 to 15 21-Jun 02-Jul 13-Jun 

22-
Nov 

28-
Nov 

28-
Nov 

20 to 22 12-Jun 15-Jun 28-Jun 
13 to 15 21-Jun 02-Jul 28-Jun 

3 Crider 
Silt Loam 

No F. 
graminearum 
inoculum was 
applied  

Yes 

15-
Oct 

18-
Oct 

09-
Oct 

20 to 22 08-Jun 08-Jun 11-Jun 
13 to 15 21-Jun 02-Jul 13-Jun 

22-
Nov 

28-
Nov 

28-
Nov 

20 to 22 12-Jun 15-Jun 28-Jun 
13 to 15 21-Jun 02-Jul 28-Jun 

4 Zanesville 
Silt Loam 

No F. 
graminearum 
inoculum was 
applied 

Yes 

15-
Oct 

19-
Oct 

11-
Oct 

20 to 22 08-Jun 08-Jun 12-Jun 
13 to 15 21-Jun 02-Jul 13-Jun 

22-
Nov 

28-
Nov 

28-
Nov 

20 to 22 - 15-Jun 28-Jun 
13 to 15 - 02-Jul - 
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a In 2017 and 2018, Prothiconazole + Tebuconazole (Prosaro, Bayer Crop Science, St. Louis, MO) were applied at a rate of 0.1 

kg a.i. ha-1 + 0.1 kg a.i. ha-1 and 0.0125% v/v non-ionic surfactant (Ad-Spray 80, Helena Chemical Company, Collierville, TN) 

was added to the spray solution.  In 2019, Caramba (Metconazole, BASF, Research Triangle Park, NC) was applied at a rate of 

0.1 kg a.i. ha-1 + and 0.125% v/v non-ionic surfactant was added to the spray solution. 



 

48 
 

Table 2. Target and actual harvest grain moistures for all environments from soft red 
winter wheat trials from Princeton KY 2017 to 2019.  
   Harvest 

2017 
Harvest 
2018 

Harvest 
2019 

Environment Planting 
Timing 

Target 
Grain 
Moisture 
(%) 

Actual 
Grain 
Moisture 
(%) 

Actual 
Grain 
Moisture 
(%) 

Actual 
Grain 
Moisture 
(%) 

1 

October 
20 to 22 11.9 17.3 15.5 

13 to 15 13.8 15.0 15.5 

November 
20 to 22 14.4 19.0 14.3 

13 to 15 14.8 15.0 13.3 

2 

October 
20 to 22 12.4 20.9 15.7 

13 to 15 13.8 13.9 15.5 

November 
20 to 22 15.5 20.0 13.8 

13 to 15 14.5 12.9 12.9 

3 

October 
20 to 22 16.4 25.1 21.2 

13 to 15 15.5 12.3 18.9 

November 
20 to 22 15.5 23.2 15.0 

13 to 15 14.8 11.7 12.4 

4 

October 
20 to 22 - a 17.8 15.6 

13 to 15 - 12.5 14.7 

November 
20 to 22 - 25.1 16.1 

13 to 15 - 13.8 - b 
 

 

 a Zanesville 2017 (Environment 4) was not able to be harvested due to environmental 

conditions.  

b The Zanesville 2019 (Environment 4) November normal harvest was not able to be 

harvested due to poor stand emergence and poor end season plant density.   
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Table 3. Mean of Fusarium head blight (FHB) incidence, FHB severity, FHB index, 
spikes m-2, spikelets spike-1, days to 100% heading (Zadoks 58), and days to beginning 
anthesis (Zadoks 60) for soft red winter wheat with differing treatments of in-furrow 
phosphorus and seeding rate at Princeton, Kentucky, USA, from 2017 to 2019.  

Main Effect Spikes 
m-2 

Spikelets 
spike-1 

FHB 
incidence 

(%) 

FHB 
Severity 

(%) 

FHB 
Index 

Days to Beginning 
Anthesis (Zadoks 

60) 

In-Furrow 
Phosphorus       

0 kg ha-1 637 Ba 13.8 17.2 14.4 3.8 2.4 

47 kg ha-1 664 A 13.8 17.5 14.0 3.9 2.3 

P > F 0.0067 0.8069 0.9025 0.6740 0.9500 0.1151 
       
      Planting Timingb 

Seeding Rate      October November 

377 plants m-2 634 B 13.0 A 24.5 A 16.1 5.6 2.0 C 3.0 A 

603 plants m-2 675 A 12.3 B 23.7 B 16.7 5.5 2.0 C 2.5 B 

P > F <0.0001 <0.0001 0.0224 0.0750 0.2294 0.0057 

a means with a different letter within the same column and main effect are significantly 

different (P<0.05) 

b means with a different letter within the planting timing by main effect interaction are 

significantly different (P<0.05).  
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Table 4. Means of yield, test weight, thousand kernel weight, Fusarium damaged kernel ratings, percent kernel infection, and 
deoxynivalenol for soft red winter wheat with different in-furrow phosphorus, seeding rate, and harvest treatments at 
Princeton, Kentucky, USA from 2017 to 2019. 

Main 
Effect Yield (kg ha-1) 

Test weight  

(kg m-3) 
Thousand Kernel 

Weight (g) 

Fusarium 
Damaged 

Kernel Rating 
(%) 

Percent 
Kernel 

Infection (%) 

Deoxynivalen
ol (ppm) 

In-Furrow 
Phosphor

us 
      

0 kg ha-1 4776 Ba 672 30.3 10.8 33 2.1 

47 kg ha-1 4920 A 673 30.3 10.4 33 2.0 

P > F 0.0333 0.8212 0.7587 0.5073 0.5410 0.5009 
       
 Planting Timingb  Planting Timing    

Seeding 
Rate 

Octobe
r 

Novemb
er  Octobe

r 
Novemb

er    

377 plants 
m-2 

5119 
A 3375 C 671 31.0 B 31.2 A 12.4 24 2.4 

603 plants 
m-2 

5131 
A 3654 B 674 30.5 C 31.4 A 11.9 24 2.3 

P > F 0.0148 0.0761 0.0422 0.1019 0.3945 0.0765 
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Table 4 (Continued) Means of yield, test weight, thousand kernel weight, Fusarium damaged kernel ratings, percent kernel 
infection, and deoxynivalenol for soft red winter wheat with different in-furrow phosphorus, seeding rate, and harvest 
treatments at Princeton, Kentucky, USA from 2017 to 2019. 

 Planting Timing Planting Timing  Planting Timing Planting Timing  

Harvest 
timing 

Octob
er 

Novemb
er 

Octob
er 

Novemb
er  Octob

er 
Novemb

er 
Octob

er 
Novemb

er  

13 to 
15% 
grain 

moisture 

5450 
A 3991 C 694 A 662 C 29.9 B 8.3 B 14.4 A 29 C 37 A 1.7 B 

20 to 
22% 
grain 

moisture 

5639 
A 4281 B 683 B 647 D 30.7 A 5.7 C 14.1 A 30 C 35 B 2.4 A 

P > F 0.0004 0.0171 <0.0001 0.0034 0.0010 <0.0001 

 

a means with a different letter within the same column and main effect are significantly different (P<0.05). 

b means with a different letter within the planting timing by main effect interaction are significantly different (P<0.05).
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Table 5. Means of test weight with different harvest treatments at Princeton, Kentucky, 
USA from 2017 to 2019. 

Main Effect 
Test weight 

(kg m-3) 

 Cultivar 

Harvest timing Susceptible Resistant 

13 to 15% grain moisture 677 Aa 679 A 

20 to 22% grain moisture 659 B 674 A 

P > F 0.0004 

 

a means with a different letter within the same main effect are significantly different 

(P<0.05). 
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 INTENSIVE MANAGEMENT PRACTICES TO INCREASE SEED YIELD OF 
DOUBLE CROP SOYBEANS IN KENTUCKY 

 

3.1 Introduction 

Soybean (Glycine max (L) Merrill) is an important oilseed crop produced in 

Kentucky, and is grown in either a full season rotation or in a double crop rotation 

following soft red winter wheat (Knott and Lee, 2018; Knott et al., 2018; Shapiro et al., 

1992). Double cropping allows for a larger land use efficiency ratio and the potential for 

higher net economic returns as compared to full season soybean  (Caviglia et al., 2011). 

Double crop soybean yields generally are reduced compared to full season soybean 

because of the harsher environmental conditions (delayed planting, solar radiation 

intensity, higher temperatures, and moisture availability) (Egli et al., 1987). In recent 

years, there has been an increased interest to maximize double crop soybean yields.  

One possible way to increase double crop soybean yields is to plant earlier. 

Planting timing is an important management decision as soybean yield decreases as 

planting timing is delayed (De Bruin and Pedersen, 2008; Egli and Cornelius, 2009; 

Knott et al., 2019). Specifically for Kentucky, the optimal planting window for a maturity 

group (MG) IV soybean is mid-April to early May; after 9 May yield losses of 0.5% per 

day can occur (Knott et al., 2019). Similar yield declines have been reported across the 

Midwest and Midsouth (Bastidas et al., 2008; De Bruin and Pedersen, 2008; Egli and 

Cornelius, 2009). This is especially important for double crop soybean as they are 

typically planted from mid-June to early July and need to acquire adequate leaf area to 

maximize light interception (Ball et al., 2000; Egli et al., 1987; Jones et al., 2003).  
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Another possible management option to increase seed yield is increasing plant 

population. Increasing the seeding rate has increased seed yield in many full season 

soybean studies (Carciochi et al., 2019; De Bruin and Pedersen, 2008; Lee et al., 2008). 

Maximizing light interception as quickly as possible is important as double crop soybean 

is grown in harsher environmental conditions (Egli et al., 1987; Holshouser and Jones, 

2003; Jones et al., 2003). Increasing plant population is an additional management 

treatment to increase the number of photosynthetically active leaves per unit area to 

maximize solar radiation interception (Ball et al., 2000; Weber et al., 1966). However, 

there is a threshold at which increasing plant populations does not increase seed yield 

(Carpenter and Board, 1997).  

In addition to an increased seeding rate, soybean producers often use seed 

treatments to protect the planted seed and increase the number of plants ha-1. Soybean 

seed treatments usually include a combination of fungicides, insecticides, and 

nematicides and may provide the most benefit when soybeans are planted early in the 

growing season in cool moist soils (Bradley, 2008; Munkvold, 2009). Using a seed 

treatment usually increases early plant population compared to not using a seed 

treatment, which has led to widespread seed treatment use by soybean growers (Gaspar et 

al., 2014; Gaspar et al., 2017; Marburger et al., 2016; Munkvold, 2009). Despite 

widespread usage, there have been many reports that the use of seed treatment did not 

increase seed yield and break even probability was low (Gaspar et al., 2014; Gaspar et al., 

2017; Mourtzinis et al., 2019; Orlowski et al., 2016). There are few reports of double 

crop soybean yield response to seed treatment. 
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 Another management practice to increase soybean yield is a prophylactic foliar 

pesticide application. During early reproductive growth stages insect pest and disease 

pressure can increase to cause a decline in plant health; therefore if economic thresholds 

are met during the R1 to R3 (Fehr et al., 1971) growth stages, a fungicide and/or 

insecticide application may be warranted (Bradley and Wise, 2018; Mueller et al., 2013; 

Villanueva, 2018). There have been increasing reports of soybean producers applying a 

fungicide and/or insecticide as a prophylactic application at the R3 growth stage 

regardless of economic thresholds. The prophylactic application usually resulted in a 

yield increase; however, the break even probability is variable depending on application 

and product cost as well as soybean sale price (Henry et al., 2011; Kandel et al., 2016; 

Marburger et al., 2016; Orlowski et al., 2016). 

Decreased soybean prices in recent years have soybean growers interested in 

inexpensive intensive management options to increase soybean yields. Soybean 

management practices of planting timing, seeding rate, seed treatment usage, and disease 

and insect pest management can be implemented to maximize soybean seed yield. There 

has been research evaluating intensive management practices in full season soybean 

(Bluck et al., 2015; Marburger et al., 2016; Mourtzinis et al., 2016; Orlowski et al., 

2016); however, there is little research in the use of these practices in double crop 

soybean. Therefore, the objectives of this study were to investigate the effect of 1) wheat 

harvest timing on soybean planting date on soybean seed yield, seeds m-2 and seed 

weight, and 2) intensive management treatments of seeding rate, seed treatment usage, 

and prophylactic R3 foliar pesticide application on soybean early season plant population, 

harvest plant populations, days to canopy closure, seed yield, seeds m-2, and seed weight. 
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3.2 Materials and Methods 

 Double crop soybean trials were established in Princeton KY (37°6’N, 87°52’W) 

in the summer of 2017, 2018, and 2019. Trials were evaluated on two soil types: a well-

drained Crider silt loam (fine-silt, mixed active, mesic Typic Paledalf) and a moderately 

well drained Zanesville silt loam (fine-silt, mixed, active, Oxyaquic Fradidalf) (Table 6). 

Plots were established with a Kincaid Voltra precision research planter (Kincaid 

Equipment Co., Haven, KS) into wheat stubble in a no-till system. Rows were spaced 38 

cm apart and plots were approximately 1.5 m wide and 6.1 m long. The Pioneer (Corteva, 

Johnston, IA) variety P35T58R, a Maturity Group III soybean, was used each year. Each 

trial was established as a split plot randomized complete block design. The main plot was 

planting timing, which corresponded to soft red winter wheat harvest; main plots were 

planted after wheat harvested at a target harvest moisture of 20 to 22% grain moisture 

(early) or a target harvest moisture of 13 to 15% grain moisture (normal). The split plot 

consisted of six intensive management treatments replicated five times. Three treatments 

utilized a seeding rate of 370,500 seeds ha-1 and the three other treatments utilized a 

seeding rate of 555,750 seeds ha-1 (Table 7). Within each seeding rate, one treatment did 

not utilize the seed treatment and foliar pesticides were applied when economic 

thresholds were reached for Frogeye leaf spot (caused by Cercospora sojina) and leaf 

defoliation cause by insect pests. Another treatment included the use of Pioneer Premium 

seed treatment and foliar pesticides were applied when disease and insect economic 

thresholds were reached (Bradley, 2019; Villanueva, 2018). The Pioneer Premium seed 

treatment contained two fungicides, Allegiance (Bayer CropScience, St. Louis, MO 

[Metalaxyl; 0.02 mg a.i. seed-1]), and EverGol Energy (Bayer CropScience, St. Louis, 

MO, [Prothioconazole + Penflufen + Metalaxyl; 0.019 mg a.i. seed-1]) and an insecticide 
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Gaucho (Bayer CropScience, St. Louis, MO [Imidacloprid; 0.154 mg a.i. seed-1]). The 

final treatment in each seeding rate included the use of Pioneer Premium seed treatment 

and a prophylactic R3 foliar pesticide application of the fungicide Quadris Top 

(azoxystrobin + difenoconazole, Syngenta Crop Protection, Greensboro, NC) and 

insecticide Warrior II with Zeon Technology (lambda-cyhalothrin, Syngenta Crop 

Protection, Greensboro, NC).  

 Early season plant populations were measured at approximately the V2 growth 

stage. Plant populations were measured by counting the number of plants in three meters 

of row length from the two middle rows in each plot. In 2018 and 2019, soybean plots 

were photographed once a week with a Cannon Power Shot camera (Elph 115IS, Cannon, 

Melville, NY) approximately 1.25 m above the ground starting at approximately the V4 

growth stage until approximately the R6 growth stage to measure canopy closure timing. 

These images were used to determine canopy closure using Canopeo software (Oklahoma 

State University, Stillwater, OK) (Patrignani and Ochsner, 2015) at the default setting 

(Red/Green [0.95], Blue/Green [0.95], Noise Reduction [100]). Canopy closure was 

determined once the fractional green canopy cover reached 90%. Foliar pesticide was 

applied using a CO2-pressurized backpack sprayer. Azoxystrobin + difenoconazole 

(Quadris Top) was applied at a rate of 0.1 kg a.i. ha-1 + 0.07 kg a.i. ha-1 and lambda-

cyhalothrin (Warrior II with Zeon Technology) applied at a rate of 0.14 kg a.i. ha-1 plus 

0.0125% v/v non-ionic surfactant (Ad-Spray 80, Helena Chemical Company, Collierville 

TN) was added to the spray solution. Frogeye leaf spot severity and leaf defoliation 

severity caused by insect prests were measured on the day of the prophylactic application 

and then 14 and 28 days after treatment (DAT), for all plots. Severity was determined by 
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the percentage of the leaf affected by frogeye leaf spot or leaf defoliation cause by insect 

pests, respectively. Severity protocols were based upon Dorrance and Mills (2010) for 

frogeye leaf spot and upon Culman et al. (2014) for leaf defoliation caused by insect 

pests. Scouting of disease and insect pressure started at the R3 growth stage and 

continued until the R6 growth stage once a week to determine if the other treatment plots 

had reach economic thresholds. In 2017, this was unable to be done. Harvest plant 

populations were measured as described above, prior to harvest when plants were at 

physiological maturity.  

 Double crop soybean plots were harvested using a small plot combine (Delta; 

Wintersteiger, Inc, Salt Lake City, UT) equipped with a weigh system (Harvest Master, 

Juniper Systems, Inc., Logan, UT) to collect grain yield, grain moisture, and test weight. 

Approximately 1.4 kg of grain were collected from each plot. Yield was adjusted to 13% 

moisture. Seeds m-2 and seed weight were measured from the collected grain sample. 

Seed weight was determined from the weight and number of seeds needed to fill the 

volume of 237mL (one cup). Seeds m-2 was calculated based on the determined seed 

weight, grain yield, and area of the plot (Egli, 1988).  

3.3 Data Analyses 

Normality was confirmed (PROC UNIVARIATE; SAS v9.4; SAS Institute, Inc, 

Cary NC) prior to analyses of variance (PROC GLIMMIX; SAS v9.4) for seed yield, 

seeds m-2, seed weight, early season plant populations, harvest plant populations, and 

days to canopy. To obtain normally distributed data frogeye leaf spot severity and leaf 

defoliation severity were arcsine square root transformed.  
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The 2017 data were analyzed separately from the 2018 and 2019 data because all 

economic threshold foliar treatments were unable to be applied. In both data sets, 

analyses of variance were initially performed (PROC GLIMMIX; SAS v9.4) for a full 

model that included year, environment, and main effect and all possible combinations 

(specified in SAS as year|environment|main effect) as fixed effects and replication as a 

random effect. Significant (P<0.05) interactions did not exist for year by main effect or 

environment by main effect for all dependent variables. Therefore, a reduced model was 

used where the main effect was considered a fixed effect and year, environment, and 

replication were considered random effects for all dependent variables. A second reduced 

model for disease severity and insect defoliation severity was used where days after 

treatment by intensive management treatment was considered a fixed effect and year, 

environment, and replication were considered random effects.  

Significant (P<0.05) main effects for seed yield, seeds m-2, seed weight, early 

season plant population, harvest plant population, and days to canopy were determined 

using CONTRAST and ESTIMATE statements in PROC GLIMMIX. Least squares 

means (LSmeans) were separated with the “lines” option and adjusted with the Tukey-

Kramer method for the six intensive management treatments for yield, seeds m-2, and 

seed weight. LSmeans of the arcsine disease severity and insect defoliation severity were 

sine transformed to obtained mean days after treatment by intensive management 

treatment means; means separation were based on analyses of arcsine transformed data.  
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3.4 Results and Discussion  

3.4.1 Environmental Conditions 

 Double crop soybean studies were established in mid-June for the early planting 

timing or late June to early July for the normal planting timing (Table 6). During double 

crop planting, Princeton, KY received either above or at the 30 year mean for 

precipitation amount for June (Table 8). Specifically during the first two weeks of June 

when the early planting usually occurs (Table 6), Princeton KY received similar or below 

the 30 year mean for rain fall for 2017 (60mm [+0mm]), 2018 (38mm [-22mm]), and 

2019 (6mm [-54mm]). During this timeframe, the early planting timing were planted into 

adequate soil moisture and seedbed conditions. Princeton, KY received above normal 

precipitation during the last two weeks of June for all three years, causing a delay in the 

13 to 15% grain moisture wheat harvest and planting of the normal planting timing of 

double crop soybean. Princeton received 77mm (+23mm), 160mm (+106mm), and 

104mm (+50mm) respectively for 2017, 2018, and 2019 during the time period of June 

16 to 30. From 1 to 15 July, Princeton KY received below the 30 year mean for rain fall 

in 2017 (44mm [-18mm]), 2018 (51mm [-11mm]), and 2019 (30mm (-19mm]). During 

these critical planting timings, soil conditions changed from ideal to saturated. Every 

effort was made to establish trials in proper soil conditions; however, that was not always 

possible for the normal planting timing, due to saturated soil conditions and especially the 

less drainage ability on the Zainesville soil type. This can be seen in the early season 

plant populations. The early plant timing had 21% increase (P<0.001) early season plant 

population compared to the normal planting timing in 2018 and 2019 (Table 9) when 

there was an above average amount of precipitation during 16 June to 30 June. The 
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normal planting timing had lower early season plant populations due to the more 

saturated soils and was more prone to seed rot and seedling establishment issues. There 

was no difference (P=0.2421) in the early season plant population in 2017, potentially 

from the more equal distribution of rain fall from 1 June to 15 July.       

 Precipitation events had a large effect on soybean seed yield in all three years. 

There were timely precipitation events during August and September 2017, contributing 

to high double crop soybean yields (Table 10). Drought like conditions occurred during 

late July to early September in 2018 causing soybean plants to become water stressed 

during the pod set and seed filling period (R3 to R6). Princeton, KY received above over 

average precipitation in late September 2018 when plants were at the R7 growth stage 

causing poor seed quality in the harvested seed (Table 8). Drought like conditions 

occurred in September 2019 causing water limitation stress, especially in the normal 

planting timing double crop soybeans. The normal planting timing was at the sensitive R6 

growth stage during this time contributing to the decreased seed yields (Table 10). 

Precipitation events had a larger effect on double crop soybean growth and development 

as temperatures for Princeton KY for all three years were similar to the 30-year mean 

(Table 8).   

3.4.2 Planting Timing 

In 2017, the early planting timing increased soybean (P<0.0001) seeds m-2 by 308 

seeds m-2 leading to a yield increase (P<0.0001) of 503 kg ha-1 compared to the normal 

planting timing (Table 10). Similarly, the early planting timing had a significant increase 

(P<0.0001) in seed number (648 seeds m-2) and an increase (P<0.0001) in seed weight 
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(0.01 g) leading to a yield increase (P<0.0001) of 801 kg ha-1 in 2018/2019 (Table 10). 

These findings were not surprising given that there was an approximate 12-day difference 

in planting dates in 2017 and on average a 21-day difference in 2018/2019 (Table 6). 

There was a 10.4% yield decrease between the two planting timings in 2017 leading to an 

approximate 0.87% yield decrease per day. Similarly, there was 19.6% decrease in yield 

from the normal planting timing causing an approximate 0.94% yield decrease per day 

for 2018/2019. These findings corroborate multiple reports of soybean planting timing 

affecting seed yield (Beatty et al., 1982; De Bruin and Pedersen, 2008; Egli and 

Bruening, 1992; Egli and Cornelius, 2009; Knott et al., 2019; Mourtzinis et al., 2017; 

Rowntree et al., 2013). Knott et al. (2019) indicated that the optimal planting window for 

MG IV soybean in Kentucky is mid-April to mid-May, and beginning in mid-May yield 

losses of 0.5% per day begin. The yield loss per day finding by Knott et al. (2019) is on 

full season soybeans; therefore, it could be expected, that double crop soybean yield loss 

per day would be greater as double crop soybeans are planted later and have a much 

shorter growing season. Jkm     

 The early planting timing had an increased early plant population (P<0.0001) of 

61,330 plants ha-1 in 2018/2019 compared to the normal planting timing, however there 

was no difference (P=0.2421) in 2017. Although there was no difference (P=0.8682; 

P=0.7362) in harvest plant populations between the two planting timings in 2017 and 

2018/2019, respectively. Even though there was no difference between the planting 

timings for harvest plant populations, all harvest plant populations were below the 

recommended plant population of 345,800 plants ha-1 for double crop soybeans in 

Kentucky (Knott and Lee, 2018).  
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 The early planting timing was determined to be at canopy closure 49 days after 

planting while the normal planting timing was determined to be at canopy closure 45 

days after planting (Table 9). The normal planting timing had a significantly (P<0.0001) 

decrease in days to canopy closure, even though it was planted approximately 21 days 

after the early planting timing and had a decreased early season plant population 

compared to the early planting timing (Table 9). On average, both planting timings 

reached the R1 growth stage 37 days after planting, at least 10 days before canopy 

closure (data not shown). It is ideal that canopy is closed before the R1 growth stage as 

solar radiation interception is positively related to flowering and pod set (Egli et al., 

1987). Although both planting timings did not achieve canopy closure by R1, the canopy 

was closed before the R3 growth stage. The early planting timing reached the R3 growth 

stage approximately 60 days after planting, while the normal planting timing reached the 

R3 growth stage approximately 52 days after planting (data not shown). The early 

planting had an approximate 123 day growing season, while the normal planting timing 

had a growing season of 108 days, a 15 day difference. The early planting was able to 

utilize the longer growing season to maximize light interception and increase seed yield 

(Holshouser and Jones, 2003; Jones et al., 2003) 

3.4.3 Seeding Rate 

 Seeding rate affected the yield component of seeds m-2 in both 2017 and in 

2018/2019. In 2017, the 555,750 seeds ha-1 seeding rate increased (P=0.0002) seeds m-2 

by 252 seeds m-2, and increased (P<0.0001) seeds m-2 by 245 seeds m-2 in 2018/2019 

(Table 10). There was no difference of seeding rate on the yield component of seed 
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weight in 2017 (P=0.7176) and 2018/2019 (P=0.1324) (Table 10). The 555,750 seeds ha-

1 seeding rate increased seed yield by 390 kg ha-1 in 2017 and 381 kg ha-1 in 2018/2019 

(Table 10). Many reports corroborate that increasing the seeding rate can increase seed 

yield (Board et al., 2003; Carciochi et al., 2019; Cox et al., 2008; De Bruin and Pedersen, 

2008; Egli, 1988; Lee et al., 2008). Increasing the seeding rate increased the number of 

plants in a given area as indicated by the early season plant populations. In 2017, the 

555,750 seeds ha-1 seeding rate increased (P<0.0001) the plant population by 37% 

compared to the 370, 500 seeds ha-1 seeding rate (Table 4). Similar trends were observed 

in 2018/2019, where the 555,750 seeds ha-1 seeding rate increased (P<0.0001) plant 

population by 31% (Table 9). This increase caused the 555,750 seed ha-1 to reach canopy 

closure 4 days sooner (P=0.0002) than the 370,500 seeds ha-1 seeding rate (Table 9). The 

increase in the number of plants is important to maximize the amount of light interception 

to maximize their yield potential (Holshouser and Jones, 2003; Jones et al., 2003).  

 Seeding rate also had an affect on harvest plant populations as well. The 555,750 

seed ha-1 seeding rate had a 28% increase in harvest plant population compared to the 

370,500 seeds ha-1 seeding rate in 2017 (Table 9). Similarly, in 2018/2019, the 555,750 

seeds ha-1 increased the harvest plant population by 34% compared to the 370,500 seeds 

ha-1 (Table 9). In Kentucky, a harvest plant population of at least 247,000 plants ha-1 is 

needed for full season soybean, and at least 345,800 plants ha-1 is needed for double crop 

soybean (Knott and Lee, 2018).The desired 345,800 plants ha-1 harvest plant population 

for double crop soybean was only achieved by the 555,750 seeds ha-1 seeding rate in all 

years. The 370,500 seeds ha-1 resulted in harvest plant populations less than the desired 

plant population of 345,800 plants ha-1.       
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3.4.4 Seed Treatment 

 The use of seed treatment increased (P=0.0006) early season plant populations in 

2017 by 44,759 plants ha-1, and increased (P=0.0172) plant population by 18,611 plant 

ha-1 in 2018/2019 (Table 9) compared to not using a seed treatment. Similar trends were 

observed in harvest plant populations. The use of seed treatment increased (P=0.0027) 

harvest plant populations by 35,711 plants ha-1 in 2017 and increased (P=0.0239) harvest 

plant populations by 16,596 plants ha-1 in 2018/2019 (Table 9) compared to not using a 

seed treatment. Even though the use of seed treatment increased early season and harvest 

plant populations, it did not have an effect on the yield components of seeds m-2 

(P=0.172; P=0.9882), and seed weight (P=0.7863; P=0.1219), and final seed yield 

(P=0.0847; P=0.6465) in 2017 and 2018/2019 respectively (Table 10). There was no 

difference (P=0.2737) in days to canopy with the use of seed treatment compared to no 

seed treatment (Table 9). These findings are similar to other reports where the use of seed 

treatments increase early plant population but did not increase seed yield in full season 

soybean compared to not using seed treatment (Gaspar et al., 2014; Gaspar et al., 2017; 

Mourtzinis et al., 2019). The lack of yield response is somewhat expected as soybean 

plants have the ability to yield compensate to negate a lower plant population (Board et 

al., 2003; Carpenter and Board, 1997; Egli, 1988; Egli et al., 1987).     

3.4.5 Prophylactic R3 Foliar  Pesticide Application 

 Prophylactic foliar pesticide application of a fungicide (Quadris Top) and an 

insecticide (Warrior II with Zeon technology) were applied when plots were at the R3 
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growth stage, while the economic threshold plots were scouted once a week for frogeye 

leaf spot and insect leaf defoliation. If economic thresholds were reached, then the 

needed pesticide was applied (Bradley, 2019; Villanueva, 2018). The prophylactic R3 

foliar pesticide application increased seeds m-2 by 306 seeds m-2 (P<0.0001), seed weight 

by 0.01 g (P=0.0147), and seed yield by 277 kg ha-1 (P=0.0002) (Table 10). In 2018, 

insecticide only was applied at the R4 growth stage (Table 7) for the economic threshold 

treatment per University of Kentucky guidelines for both planting timings (Villanueva, 

2018). In 2019, economic thresholds for Frogeye leaf spot and insect leaf defoliation 

were met for the early planting timing and fungicide + insecticide was applied at the R4 

growth stage (Table 7). The normal planting timing reached economic thresholds for 

frogeye leaf spot at the R3 growth stage and fungicide was applied, while insect leaf 

defoliation economic thresholds were met at the R4 growth stage and insecticide was 

applied (Table 7). Over 2018 and 2019 there were low frogeye leaf severity ratings as the 

variety used has mid-level resistance to C. sojae, which could have contributed to the 

lower ratings (Figure 1). 

The prophylactic treatments had less Frogeye leaf spot severity and less insect 

leaf defoliation severity than the economic threshold plots at both the 14DAT and 

28DAT (Figure 1 and 2). This decrease could have led to a higher degree of healthy leaf 

surface for the prophylactic treated plants by suppressing disease and insect pressures 

encountered in the environment (Bradley and Wise, 2018; Kandel et al., 2016). The 

increase in disease and insect suppression potentially led to an increase in seeds m-2 and 

seed weight and ultimately seed yield (Table 11). There have been reports of increased 

seed yield when prophylactic fungicide and insecticides are applied during the R3 to R4 
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growth stages (Henry et al., 2011; Kandel et al., 2016; Marburger et al., 2016; Orlowski 

et al., 2016).   

3.4.6 Intensive Management Treatments 

It is important to identify if an increased seeding rate, seed treatment, or a 

prophylactic R3 foliar pesticide application could increase double crop soybean yield as a 

single input before identifying if the inputs would increase seed yield when combined 

together. There were significant differences between the six intensive managements in 

2017 and 2018/2019. In 2017, the Baseline (Base) treatment yielded the lowest seed 

yield, however had similar (P<0.0001) yields to the Base+ST treatment (Table 11). The 

HSR+ST+PF had the greatest seed yields but had similar (P<0.0001) yields to the 

Base+ST+PF, and HSR+ST treatments. The Base+ST, HSR, and HSR+ST treatments 

had similar (P<0.0001) yields to each other, while the Base+ST+PF, HSR, and HSR+ST 

treatments had similar (P<0.0001) yields to each other (Table 11). The Base treatment 

had the lowest seeds m-2, but had similar (P=0.0007) seeds m-2 to the Base+ST, 

Base+ST+PF, and HSR treatments (Table 11). The Base+ST, Base+ST+PF, HSR, and 

HSR+ST had similar (P=0.0007) seeds m-2 to each other, while the HSR+ST+PF had 

similar seeds m-2 to the Base+ST+PF, HSR, and HSR+ST treatments (Table 11). The 

treatments that received the prophylactic treatments, Base+ST+PF and HSR+ST+PF had 

significant seed weight increase (P<0.0001) of 0.01 g seed-1 compared to the foliar 

pesticide applied at economic threshold treatments (Table 11). Crop scouting was unable 

to be completed in 2017, therefore foliar pesticide application at economic thresholds was 
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not able to be applied, potentially causing the increase in seed yield, seed number, and 

seed weight in the prophylactic R3 pesticide application.  

 Similar trends in seed yield were observed in 2018/2019. The Base treatment had 

the minimum seed yield and the HSR+ST+PF had the maximum seed yield (Table 11). 

The Base, Base+ST, Base+ST+PF, and HSR treatments did not differ (P<0.0001) in seed 

yield from each other, whereas treatments of Base+ST, Base+ST+PF, HSR, and HSR+ST 

did not differ (P<0.0001) in seed yield (Table 11). The HSR+ST+PF had the greatest 

seeds m-2, but was not different (P<0.0001) from the HSR or HSR+ST treatments (Table 

11). Whereas Base, Base+ST, Base+ST+PF, HSR, and HSR+ST did not differ 

(P<0.0001) in seeds m-2 (Table 11). The intensive management treatments that contained 

the prophylactic R3 foliar pesticide application of Base+ST+PF and HSR+ST+PF had 

similar seed weights and were significantly (P<0.0001) greater than the Base, HSR, and 

HSR+ST treatments (Table 11). Marburger et al. (2016) observed similar trends where 

the two intensive management treatments increased seed yield, seeds m-2 and seed weight 

compared to the standard practices when compared over all locations and years. 

Specifically for the south region which included Kentucky, the high input system 

containing a prophylactic R3 foliar fungicide and insecticide application had an increased 

seed yield and seed weight (Marburger et al., 2016). However, in a similar high input 

study Orlowski et al. (2016) did not observe a relative yield change for the prophylactic 

R3 foliar fungicide and insecticide application. The lack of difference in seed yield 

between the HSR+ST and HSR+ST+PF indicates that a prophylactic pesticide 

application may not be warranted to increase seed yield. Similar trends can be seen 

between the Base+ST and Base+ST+PF treatment as well. These trends however could 
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be contributed to the resistance level to C. sojae of the soybean variety P35T58R. Pioneer 

resistance ratings of P35T58R was a 4 on a scale of 1 (low) to 9 (high). This moderate 

resistance contributed to the low frogeye leaf severity overall and potentially the lack of 

yield difference between the Base+ST and Base+ST+PF, and HSR+ST and HSR+ST+PF 

treatment, respectively.  

 There were no seed yield differences between the treatments when the seed 

treatment was used at each seeding rate; the Base treatment was not different than the 

Base+ST treatment, nor was the HSR different than the HSR+ST treatment (Table 11). 

This finding agrees with the main effect results presented earlier (Table 10). Similar lack 

of differences with high input treatments including a seed treatment are reported by 

Mourtzinis et al. (2016) and Orlowski et al. (2016). There was no difference in seed yield 

between the Base and HSR treatment (Table 6), although there was a significant increase 

in seed yield when only reporting the main effects (Table 10). The lack of difference in 

these intensive management treatments could be contributed to environmental variability 

during the two growing seasons. However, there was a significant difference between the 

Base+ST+PF and HSR+ST+PF treatment for seed yield (Table 11); indicating the 

increased seeding rate may have increased the yield as both treatments included the use 

of seed treatments and an R3 prophylactic pesticide application and the only difference 

was seeding rate.    

3.5 Conclusion:  

 The yield increases observed from an increase seeding rate, seed treatment usage, 

and prophylactic R3 foliar pesticide application as single inputs and in combination as 
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intensive management treatments indicated that there options for producers to increase 

double crop soybean seed yield. Planting double crop soybeans after high moisture wheat 

harvest has shown in improve yields by approximately 10% in 2017 and 20% in 

2018/2019, however there needs to be a system in place to handle high moisture wheat 

grain appropriately. Increasing the seeding rate increased seed yield by 391 kg ha-1, 

however there was usually at least a 30% loss from seeding rate to early season plant 

population for the higher seeding rate. Seed treatment did increase early season plant 

populations but did not increase seed yield. The prophylactic R3 foliar pesticide 

application increased seed yield by 227 kg ha-1, however the cost of application and 

product along with current disease and insect pressure needs to be considered to justify 

this management practice.  The HSR+ST+PF intensive management had the greatest 

yields, however; it was not differ than from the HSR+ST treatment, while the HSR+ST 

treatment did not differ from three other less intensive management treatments. Double 

crop soybean producers should evaluate current management practices to determine if 

any of the single inputs or intensive management practices will increase seed yield in 

their operation.   
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Table 6. Environmental conditions of year, soil type, planting dates, and harvest dates of 
double crop soybeans in Princeton, KY from 2017 to 2019. 
 
   Planting Date Harvest Date 

Environment Year Soil Type Early a Normal Early Normal 

1 2017 Crider Silt Loam 09-Jun 21-Jun 20-Oct 20-Oct 

2 2017 Zanesville Silt 
Loam 13-Jun 21-Jun 20-Oct 20-Oct 

3 2018 Crider Silt Loam 11-Jun 03-Jul 18-Oct 18-Oct 

4 2018 Zanesville Silt 
Loam 11-Jun 05-Jun 19-Oct 19-Oct 

5 2019 Crider Silt Loam 11-Jun 01-Jul 08-Oct 17-Oct 

6 2019 Zanesville Silt 
Loam 13-Jun 01-Jul 09-Oct 19-Oct 

 

a Early and normal correspond to planting timing. Early planting timing occurred after 

wheat harvested at 20 to 22% grain moisture. Normal planting timing occurred after 

wheat harvested at 13 to 15% grain moisture. Double crop soybeans were planted 

immediately after wheat harvest.  
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Table 7. Pesticide application dates of intensive management treatments on double crop soybeans grown in Princeton KY 2017 
to 2019. Growth stage at time of pesticide application is presented below the pesticide application date.  

  Pesticide Application Date and Growth Stage 
  2017 2018 c 2019 d 

Treatment Early 
Planting  

Normal 
Planting 

Early 
Planting 

Normal 
Planting 

Early 
Planting 

Normal 
Planting 

Baseline 
Management 

(Base) 

370,500 seeds ha-1/No Seed 
Treatment/ Economic 
Threshold Pesticide 

Application 

- - 
22-Aug 

(R4) 
Insecticide 

30-Aug 
(R4)  

Insecticide 

23-Aug 
(R4) 

Insecticide 
+ fungicide 

23-Aug (R3), 
Fungicide 
6-Sep (R4) 
Insecticide 

Base + Seed 
Treatment 

(ST) 

370,500 seeds ha-1/Pioneer 
Premium Seed Treatment a / 

Economic Threshold 
Pesticide Application 

- - 
22-Aug 

(R4) 
Insecticide 

30-Aug 
(R4) 

Insecticide 

23-Aug 
(R4) 

Insecticide 
+ fungicide 

23-Aug (R3), 
Fungicide  
6-Sep (R4) 
Insecticide 

Base + ST+ 
Prophylactic 

Foliar 
Application 

(PF) 

370,500 seeds ha-1/Pioneer 
Premium Seed treatment/ 
Prophylactic R3 Pesticide 

Application b 

9-Aug 
(R3) 

Insecticide 
+ 

fungicide 

15-Aug 
(R3) 

Insecticide 
+ 

fungicide 

8-Aug 
(R3) 

Insecticide 
+ 

fungicide 

23-Aug 
(R3) 

Insecticide 
+ 

fungicide 

12-Aug 
(R3) 

Insecticide 
+ fungicide 

23-Aug (R3) 
Insecticide + 

fungicide 

High Seed 
Rate (HSR) 

555,7500 seeds ha-1/No 
Seed Treatment/ Economic 

Threshold Pesticide 
Application 

- - 
22-Aug 

(R4) 
Insecticide 

30-Aug 
(R4) 

Insecticide 

23-Aug 
(R4) 

Insecticide 
+ fungicide 

23-Aug (R3), 
Fungicide 

 6-Sep (R4) 
Insecticide 

HSR+ST 

555,750 seeds ha-1/Pioneer 
Premium Seed Treatment/ 

Economic Threshold 
Pesticide Application 

- - 
22-Aug 

(R4) 
Insecticide 

30-Aug 
(R4) 

Insecticide 

23-Aug 
(R4) 

Insecticide 
+ fungicide 

23-Aug (R3), 
Fungicide  
6-Sep (R4) 
Insecticide 

HSR+ST+PF 

555,750 seeds ha-1/Pioneer 
Premium Seed treatment/ 
Prophylactic R3 Pesticide 

Application 

9-Aug 
(R3) 

Insecticide 
+ 

fungicide 

15-Aug 
(R3) 

Insecticide 
+ 

fungicide 

8-Aug 
(R3) 

Insecticide 
+ 

fungicide 

23-Aug 
(R3) 

Insecticide 
+ 

fungicide 

12-Aug 
(R3) 

Insecticide 
+ fungicide 

23-Aug (R3) 
Insecticide + 

fungicide 
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a Pioneer Premium seed treatment (Johnston, IA) contains Allegiance (Bayer CropScience, St. Louis, MO [Metalaxyl; 0.02 mg 

a.i. seed-1]), EverGol Energy (Bayer CropScience, St. Louis, MO [Prothioconazole + Penfulfen + Metalaxyl; 0.019 mg a.i. 

seed-1 ]) and Gaucho (Bayer CropScience, St. Louis, MO [Imidacloprid; 0.1542 mg a.i. seed-1]). 

b Prophylactic R3 application contained the fungicide Quadris Top (Syngenta, Wilmington, DE  [azoxystrobin + 

difenoconazole applied a rate of at 0.1 kg a.i. ha-1 + 0.07 kg a.i. ha-1]), the insecticide Warrior II with Zion technology 

(Syngenta, Wilmington, DE [lambda-cyhalothrin applied at a rate of 0.14 kg a.i. ha-1]) and a non-ionic surfactant (Ad-Spray 

30, Helena Chemical Company, Collierville TN; applied at 0.0125% v/v). The economic thresholds treatments were applied 

with either fungicide or insecticide or both if economic thresholds were met per University of Kentucky recommendations with 

the products and rates listed above.  

c The early planting reached economic thresholds on August 22, 2018 for leaf defoliation and Warrior II with Zeon Technology 

was applied to the non-prophylactic plots. The normal planting reached economic thresholds on August 30, 2018 for leaf 

defoliation and Warrior II with Zeon Technology was applied to the non-prophylactic plots 

d The early planting reached economic thresholds for Frogeye leaf spot (Cercospora sojina) and insect leaf defoliation on 

August 23, 2019, therefore Quadris Top and Warrior II with Zeon technology were applied to the non-prophylactic plots. The 

normal planting timing reached economic thresholds for frogeye leaf spot on August 23, 2019, and only Quadris Top was 
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applied to the non-prophylactic plots. The normal planting timing reached economic thresholds for insect defoliation on 

September 6, 2019 and Warrior II with Zeon Technology was applied to the non-prophylactic plots. 



 

75 
 

Table 8. Total precipitation (mm) and mean monthly temperature (°C), and 30 year mean 
for precipitation and temperatrue, respectively, at Princeton, KY from 2017 to 2019. 
 

Month Precipitation (mm) Temperature (C°) 

 201
7 

201
8 

201
9 

30 Year 
Mean 

201
7 

201
8 

201
9 

30 Year 
Mean 

May 113 119 143 118 19 23 21 20 

June 137 198 110 114 23 26 23 24 

July 57 66 79 110 26 26 25 26 

August 35 68 160 85 24 25 24 25 
Septembe
r 100 143 9 82 22 23 24 22 

October 169 75 162 98 16 16 15 15 

November 75 121 176 109 10 6 6 9 
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Table 9. Means of early season plant population, harvest plant population, and days to 
canopy closure for planting timing, seeding rate, and seed treatment usage from double 
crop soybean trials from Princeton, KY from 2017 to 2019. 
 
 Early Season Plant 

Population 
Harvest Plant 
Population 

Canopy 
Closure 

Main Effect 2017 2018/2019 2017 2018/2019 2018/2019 

Planting Timing plants ha-1 plants ha-1 plants ha-1 plants ha-1 
Days to 
Canopy 
Closure b 

Early 339,000 351,000 A 333,000 325,000 49 A 
Normal 327,000 290,000 B 334,000 323,000 45 B 
P > F 0.2421 <0.0001 0.8682 0.7362 <0.0001 
      
Seeding Rate      

370,500 seeds ha-1 281,000 
Ba 277,000B 294,000 B 277,000 B 49 A 

555,750 seeds ha-1 286,000 A 364,000 A 376,000 
A 371,000 A 45 B 

P > F <0.0001 <0.0001 <0.0001 <0.0001 0.0002 
      
Seed Treatment      
None 306,000 B 307,000 B 315,000 B 311,000 B 48 A 

Pioneer Premium c 350,000 A 326,000 A 351,000 
A 328,000 A 47 A 

P > F 0.0006 0.0172 0.0027 0.0239 0.2737 
  

a Means with a different letter within the same column and main effect are significantly 

different (P≤0.05).  

b Days to canopy closure were measured by photographing the plots once a week from V4 

to R6 growth stage. Pictures were taken approximately 1.25 m above the ground using a 

Cannon Power Shot camera (Elph 115IS, Cannon, Melvill NY). Images were analyzed 

using Canopeo software (Oklahoma State University, Stillwater, OK) at the default 

setting to determine canopy closure. Soybean canopy was considered closed when 

fractional green canopy cover reached 90%.  
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c Pioneer Premium seed treatment (Johnston, IA) contains Allegiance (Bayer 

CropScience, St. Louis, MO [Metalaxyl; 0.02 mg a.i. seed-1]), EverGol Energy (Bayer 

CropScience, St. Louis, MO [Prothioconazole + Penfulfen + Metalaxyl; 0.019 mg a.i. 

seed-1 ]) and Gaucho (Bayer CropScience, St. Louis, MO [Imidacloprid; 0.1542 mg a.i. 

seed-1]).  
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Table 10. Means of planting timing, seeding rate, seed treatment, and prophylactic R3 
foliar pesticide application on soybean yield, seeds m-2, and seed weight, from double 
crop soybeans grown in Princeton KY from 2017 to 2019.  
 
 2017 2018/2019 

Main Effect Yield 
(kg ha-1) Seeds m-2 

Seed 
Weight 
(g) 

Yield 
(kg ha-1) Seeds m-2 

Seed 
Weight 
(g) 

Planting 
timing 

      

Early 4820 A 
a 2915 A 0.17  4090 A 3008 A 0.13 B 

Normal 4310 B 2607 B 0.16  3280 B 2360 B 0.14 A 
P > F <0.0001 <0.0001 0.2487 <0.0001 <0.0001 <0.0001 
       

Seeding Rate       
370,500 seeds 
ha-1 4370 B 2635 B 0.17  3500 A 2562 B 0.13  

555,750 seeds 
ha-1 4760 A 2887 A 0.17  3880 B 2807 A 0.14  

P > F <0.0001 0.0002 0.7176 <0.0001 <0.0001 0.1324 
       
Seed 
Treatment 

      

None 4260  2649  0.16  3570  2641  0.13  
Pioneer 
Premium b 4460  2761  0.16  3610  2642  0.13  

P > F 0.0847 0.172 0.7863 0.6465 0.9882 0.1219 
       
R3 Pesticide 
Application c 

      

Economic 
Threshold - - - 3590 B 2642 B 0.13 B 

Prophylactic - - - 3870 A 2770 A 0.14 A 
P > F - - - 0.0002 0.0147 <0.0001 

 

a Means with a different letter within the same column and main effect are significantly 

different (P≤0.05).  
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b Pioneer Premium seed treatment (Johnston, IA) contains Allegiance (Bayer 

CropScience, St. Louis, MO [Metalaxyl; 0.02 mg a.i. seed-1]), EverGol Energy (Bayer 

CropScience, St. Louis, MO [Prothioconazole + Penfulfen + Metalaxyl; 0.019 mg a.i. 

seed-1 ]) and Gaucho (Bayer CropScience, St. Louis, MO [Imidacloprid; 0.1542 mg a.i. 

seed-1]). 

c Prophylactic R3 application contained the fungicide Quadris Top (Syngenta, 

Wilmington, DE  [azoxystrobin + difenoconazole applied a rate of at 0.1 kg a.i. ha-1 + 

0.07 kg a.i. ha-1]), the insecticide Warrior II with Zion technology (Syngenta, 

Wilmington, DE [lambda-cyhalothrin applied at a rate of 0.14 kg a.i. ha-1]) and a non-

ionic surfactant (Ad-Spray, 30 Helena Chemical Company, Collierville TN; applied at 

0.0125% v/v). The economic thresholds treatments were applied with either fungicide or 

insecticide or both if economic thresholds were met per University of Kentucky 

recommendations with the products and rates listed above. 
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Table 11. Means of double crop soybean intensive management treatment on seed yield, 
seeds m-2, and seed weight means from double crop soybean studies conducted in 
Princeton KY from 2017 to 2019.   

2017 2018/2019 
 

Yield 
 (kg ha-1) 

Seeds m-2 Seed 
Weight 

(g) 

Yield 
 (kg ha-1) 

Seeds m-2 Seed 
Weight 

(g) 
Intensive 

Management 
Treatments 

      

Baseline 
Management 

(Base) 

4010 D a 2494 C 0.16 B 3400 C 2532 B 0.13 C 

Base + Seed 
Treatment 

(ST) 

4260 CD 2620 BC 0.16 B 3450 BC 2531 B 0.13 BC 

Base + ST + 
Prophylactic 

Foliar 
Application 

(PF) 

4840 AB 2791 
ABC 

0.17 A 3630 BC 2623 B 0.14 AB 

High Seed 
Rate (HSR) 

4500 BC 2803 
ABC 

0.16 B 3740 BC 2751 AB 0.13 C 

HSR+ST 4660 
ABC 

2902 AB 0.16 B 3770 AB 2754 AB 0.13 C 

HSR+ST+PF 5110 A 2957 A 0.17 A 4110 A 2916 A 0.14 A 

P < F <0.0001 0.0007 <0.0001 <0.0001 <0.0001 <0.0001 

 

a Means with a different letter within the same column are significantly different 

(P≤0.05).  

b Pioneer Premium seed treatment (Johnston, IA) contains Allegiance (Bayer Crop 

Science, St. Louis, MO [Metalaxyl; 0.02 mg a.i. seed-1]), EverGol Energy (Bayer Crop 

Science, St. Louis, MO [Prothioconazole + Penfulfen + Metalaxyl; 0.019 mg a.i. seed-1 ]) 

and Gaucho (Bayer Crop Science, St. Louis, MO [Imidacloprid; 0.1542 mg a.i. seed-1]). 
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c Prophylactic R3 foliar pesticide application contained the fungicide Quadris Top 

(Syngenta, Wilmington, DE  [azoxystrobin + difenoconazole applied a rate of at 0.1 kg 

a.i. ha-1 + 0.07 kg a.i. ha-1]), the insecticide Warrior II with Zion technology (Syngenta, 

Wilmington, DE [lambda-cyhalothrin applied at a rate of 0.14 kg a.i. ha-1]) and a non-

ionic surfactant (Ad-Spray, 30 Helena Chemical Company, Collierville TN; applied at 

0.0125% v/v). The economic thresholds treatments were applied with either fungicide or 

insecticide or both if economic thresholds were met per UKY recommendations with the 

products and rates listed above
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Figure 1. Frogeye leaf spot severity ratings from double crop soybean trials from 
Princeton KY in 2018 and 2019. Ratings occurred 0 days after treatment (DAT), 14 
DAT, and 28 DAT after the prophylactic R3 foliar pesticide application.  
 

 

a Means with a different letter are significantly different (P<0.05). 

b Prophylactic R3 foliar pesticide application contained the fungicide Quadris Top 

(Syngenta, Wilmington, DE  [azoxystrobin + difenoconazole applied a rate of at 0.1 kg 

a.i. ha-1 + 0.07 kg a.i. ha-1]), the insecticide Warrior II with Zion technology (Syngenta, 

Wilmington, DE [lambda-cyhalothrin applied at a rate of 0.14 kg a.i. ha-1]) and a non-

ionic surfactant (Ad-Spray, 30 Helena Chemical Company, Collierville TN; applied at 

0.0125% v/v). The economic thresholds treatments were applied with either fungicide or 

insecticide or both if economic thresholds were met per University of Kentucky 

recommendations with the products and rates listed above. 
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Figure 2. Insect leaf defoliation severity from double crop soybean trials from Princeton 
KY in 2018 and 2019. Ratings occurred 0 days after treatment (DAT), 14 DAT, and 28 
DAT after the prophylactic R3 foliar pesticide application. 
 

 

a Means with a different letter are significantly different (P<0.05). 

b Prophylactic R3 foliar pesticide application contained the fungicide Quadris Top 

(Syngenta, Wilmington, DE  [azoxystrobin + difenoconazole applied a rate of at 0.1 kg 

a.i. ha-1 + 0.07 kg a.i. ha-1]), the insecticide Warrior II with Zion technology (Syngenta, 

Wilmington, DE [lambda-cyhalothrin applied at a rate of 0.14 kg a.i. ha-1]) and a non-

ionic surfactant (Ad-Spray, 30 Helena Chemical Company, Collierville TN; applied at 

0.0125% v/v). The economic thresholds treatments were applied with either fungicide or 

insecticide or both if economic thresholds were met per University of Kentucky 

recommendations with the products and rates listed above. 
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 ECONOMIC IMPACT OF INTENSIVE MANAGEMENT OPTIONS OF 
KENTUCKY’S WINTER WHEAT AND DOUBLE CROP SOYBEAN ROTATION 

4.1 Introduction 

Agricultural producers have been tasked with producing additional food and fuel 

while the amount of farm land decreases. Double cropping is the practice of harvesting 

two crops on one piece of land in the same year and has been shown to have an increased 

land equivalent ratio compared to single cropping, meaning more land would be needed 

in single cropping to produce the same yield as the double cropping scenario (Borchers et 

al., 2014; Caviglia et al., 2011).  Double cropping is commonly found in the Southeast 

and Midwest in the United States, specifically south of the 40th parallel, where the length 

of the growing season allows for two harvests in one year (Borchers et al., 2014; Shapiro 

et al., 1992). In Kentucky, the double crop rotation generally consists of soft red winter 

wheat that is planted in the fall of the previous year and harvested in the early summer, 

then soybeans are planted immediately after the wheat harvest (Knott and Lee, 2018; Lee 

et al., 2009). In 2019, approximately 20% of the harvested soybean hectare in Kentucky 

were in double crop soybean production (United States Department of Agriculture, 

2020).  

There are some potential economic benefits to the double crop rotation. In 

addition to another crop to sell, the ability to spread fixed costs and risks across two 

commodities can create a positive benefit (Borchers et al., 2014; Davis, 2019). Kelley 

(2003) reported that the winter wheat double crop soybean rotation had increased 

economic net benefits compared to a full season soybean rotation in the eastern Great 

Plains. The double crop rotation in Kentucky has had the best outcome for profitability in 
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the last two of years compared to full season soybean (Davis, 2019, 2020). The recent 

commodity price decrease has producers interested in inexpensive intensive management 

practices to increase wheat and soybean yields and profitability. 

Increasing wheat yields is important, but decreasing deoxynivalenol (DON), a 

mycotoxin produced by the causal agent of Fusarium head blight (FHB) (Fusarium 

graminearum) is important to growers as well (Andersen, 1948). The U.S. Food and 

Drug Administration has set advisory levels for DON in finished wheat products (FDA, 

2010), which in turn has caused elevators accepting wheat grain to price dock any wheat 

when DON contamination is over 2ppm. Generally, Kentucky elevators start docking at 

2ppm with a discount of $0.011 kg-1 with discounts going up every ppm. Depending on 

the year, elevators can reject grain if DON is over a certain limit. Current practices to 

manage FHB and DON including planting cultivars moderately resistant to FHB and 

applying efficacious fungicides at beginning anthesis (Wegulo et al., 2015). Additional 

management practices may be needed to mitigate FHB infection as DON contamination 

can exceed advisory thresholds even when FHB symptoms are not severe (Andersen et 

al., 2015; Knott, 2014).      

Management practices that alter tiller development to create a more uniform 

heading and anthesis period can lead to a greater efficacy of fungicide application at 

anthesis. Fall applied in-furrow phosphorus and increased seeding rates have been shown 

to alter tiller development (Beres et al., 2018; Chen et al., 2019; Oakes et al., 2016; 

Otteson et al., 2008; Schaafsma and Tamburic-Ilincic, 2005). There is potential when 

these inputs are applied, that tiller development could become more uniform, leading to a 

more uniform anthesis period. Another management option that may decrease DON 
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contamination in the harvested wheat grain, is harvest timing. Anecdotal observations 

from Kentucky wheat growers and millers suggest that harvesting wheat a greater than 

15% grain moisture could decrease DON and increase grain quality. Wheat kernels from 

eastern Ontario, Canada, harvested at 18 to 20% grain moisture had a lower incidence of 

Fusarium spp. and had better grain quality than kernels harvested at less than 15% grain 

moisture (Xue et al., 2004). Current harvest recommendations include optimizing 

combine settings and air speed to remove Fusarium damaged kernels from entering the 

grain tank (Salgado et al., 2011). Fusarium graminearum has been shown to continue to 

grow and DON accumulate in harvested wheat grain when at 17% grain moisture (Hope 

et al., 2005), that potentially harvesting grain at a target moisture of 20 to 22% grain 

moisture and then quickly drying the wheat may decrease the overall amount of DON in 

the harvested grain.  

Harvesting wheat early at 20 to 22% grain moisture ensures for earlier planting of 

double crop soybeans. Planting timing is critical in soybean growth and development as 

soybean yields decrease dramatically after their optimal planting date (De Bruin and 

Pedersen, 2008; Egli and Cornelius, 2009; Knott et al., 2019). In Kentucky, a maturity 

group IV soybean loses 0.5% of yield per day for every day planted after mid-May (Knott 

et al., 2019). There is potential for the yield increase from planting double crop soybean 

earlier to offset the costs associated with harvesting wheat at grain moistures greater than 

15% and drying the grain (McNeill, 2010).  

The decrease in commodity prices over the past decade have led to interest in 

increasing double crop soybean yields through intensive management practices while 

remaining profitable. Increasing the seeding rate has increased seed yields in short season 
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soybeans (Ball et al., 2000; Jones et al., 2003). The increased seeding rate has more 

plants per ha-1 leading the soybeans to have more leaf area to maximize light interception, 

which is important due to the shorter growing season of double crop soybeans (Ball et al., 

2000; Holshouser and Jones, 2003; Jones et al., 2003). Producers are also interested in 

fungicide and insecticide seed treatments to increase early season plant populations 

which has lead to wide spread use (Gaspar et al., 2014; Gaspar et al., 2017; Marburger et 

al., 2016). Prophylactic foliar pesticide application at R3 (Fehr et al., 1971) growth stage 

has become a popular management tactic in recent years to increase plant health during 

the seed set and seed fill stages (Mourtzinis et al., 2016). Prophylactic foliar pesticide 

application was able to increase seed yield in only some of the environments that it was 

tested by Mourtzinis et al. (2016) and Marburger et al. (2016) 

 Most of these intensive management treatments have either shown a small 

positive return or negate return. For example, increased seeding rate has been shown to 

reliably have a positive break even probability (De Bruin and Pedersen, 2008). Whereas 

prophylactic foliar pesticide applications have approximately a 50% probability to break 

even (Kandel et al., 2016; Orlowski et al., 2016) and the use of seed treatment rarely 

breaks even (Gaspar et al., 2014; Gaspar et al., 2017; Mourtzinis et al., 2019) for full 

season soybean. However, there has been very little research on the economic impact of 

seeding rate, seed treatment usage, and prophylactic foliar pesticide application on double 

crop soybeans. Therefore, the objectives of this study were to determine 1) the net benefit 

of in-furrow phosphorus and increased seeding rate as intensive management practices in 

soft red winter wheat, 2.)the net benefit of increased seeding rate, seed treatment usage, 

and prophylactic R3 foliar pesticide application intensive management practices in 
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double crop soybean; and 3) the profitability of the double crop rotation management 

options of wheat planting and harvest timing and double crop soybean planting timing.  

4.2 Materials and Methods 

4.2.1 Exper imental Design: Winter  Wheat 

 Soft red winter wheat trials were established in Princeton, KY (37°6’ N, 87°52’ 

W) in the fall of 2017 and 2018. One environment was established on a Crider silt loam 

(fine-silty, mixed active, mesic Typic Paledalf) and one was established on a Zanesville 

silt loam (fine-silty, mixed, active mesic Oxyaquic Fragidalf) each year (Table 12). Plots 

were planted with a research no-till drill (Plotseed XL; Wintersteiger Inc. Salt Lake City, 

UT) into corn stubble. Rows were spaced 18 cm apart, and plots were approximately 1.2 

m wide and 4.6 m long. Each environment was arranged as a split-split plot randomized 

complete block design. The main plot was harvest timing, which consisted of two target 

harvest moistures: a early high moisture harvest at 20 to 22% grain moisture and a 

normal moisture harvest at 13 to 15% grain moisture. The split plot was planting timing, 

which consisted of two planting timings of October and November. From here on the 

planting timing and harvest timing combinations will be called October early harvest, 

October normal harvest, November early harvest, November normal harvest. The split-

split plot consisted of eight management treatments, replicated five times; two in-furrow 

phosphorus rates (0 kg ha-1 P2O5 or 47 kg ha-1 P2O5), two seeding rates (377 plants m-2 or 

603 plants m-2), and two cultivars (moderately resistant to FHB cultivar [Pembroke 2016] 

or moderately susceptible to FHB cultivar [Pioneer 26R53]). Wheat plots were managed 

for nitrogen, herbicide, and fungicide  applications according to the University of 
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Kentucky Cooperative Extension Service recommendations (Lee et al., 2009). This wheat 

trial was part of a larger soft red winter wheat trial established in Princeton KY from 

2016 to 2019 by Rod et al. (2020b).  

 Wheat was harvested using a small plot combine (Delta; Wintersteiger, Inc., Salt 

Lake City, UT) equipped with a weigh system (Harvest Master, Juniper Systems, Inc, 

Logan, UT). Approximately 1.5 kg of harvested wheat from each plot was kept for post 

harvest data measurements. The wheat harvested at the target high grain moisture of 20 to 

22% was stored in plastic bags in a walk-in cooler (4°C, Forma-Kool, Chesterfield, MI) 

until wheat could be dried to 12.5% grain moisture with a laboratory-scale thin layer 

drying system (White et al., 1985). Wheat harvested at the targeted 13 to 15% grain 

moisture was stored in paper bags at 22°C and 50% relative humidity. Grain moistures 

and test weight were measured using a Dicky-John Grain Analysis Computer (Model 

2500-UGMA; Dickey-John, Auburn, IL) immediately after harvest and drying. Grain 

yield was adjusted to 13.5% grain moisture. Deoxynivalenol contamination was 

determined following the protocol of QuickTox for QuickScan DON Flex kits by 

Envirologix with Envirologix Mycotoxin test strips (Portland, ME).  

4.2.2 Exper imental Design: Double Crop Soybeans 

 Double crop soybean trails were established in Princeton KY in summer of 2018 

and 2019 following the wheat harvest from Rod et al. (2020b). Briefly, the same Crider 

and Zanesville environments used in the wheat trials above were used in the double crop 

soybean trial (Table 13). Plots were established with a no-till Kincaid Voltra precision 

planter (Kincaid, Haven, KS) into wheat stubble. Rows were spaced 38 cm apart and 
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were approximately 1.5 m wide and 6.1 m long. The Pioneer soybean variety P35T58R 

(Corteva, Johnston, IA) was used both years. Each environment was arranged in a spilt 

plot randomized complete block design. The main plot was planting timing which 

corresponded to the wheat harvest timings above; the early double crop planting timing 

occurred immediately after wheat was harvested at 20 to 22% grain moisture and the 

normal double crop planting timing occurred immediately after wheat was harvested at 

13 to 15% grain moisture. The split plot consisted of six intensive management 

treatments replicated five times (Table 14). Three treatments utilized a seeding rate of 

370,500 seeds ha-1 and the other three treatments utilized a seeding rate of 555,750 seeds 

ha-1. Within each seeding rate, one treatment did not use a seed treatment and foliar 

pesticide was applied if economic thresholds were met. Another treatment used a Pioneer 

Premium seed treatment and foliar pesticides were applied if economic thresholds were 

met. The Pioneer Premium seed treatment contains two fungicides, Allegiance (Bayer 

CropScience, St. Louis, MO [Metalaxyl; 0.02 mg a.i. seed-1]), and EverGol Energy 

(Bayer CropScience, St. Louis, MO, [Prothioconazole + Penflufen + Metalaxyl; 0.019 

mg a.i. seed-1]) and an insecticide Gaucho (Bayer CropScience, St. Louis, MO 

[Imidacloprid; 0.154 mg a.i. seed-1]). The final treatment in each seeding rate included 

the use of Pioneer Premium seed treatment and a prophylactic R3 foliar pesticide 

application of the fungicide Quadris Top (azoxystrobin + difencoconaxole, Syngenta, 

Wilmington, DE) and insecticide Warrior II with Zeon Technology (lambda-cyhalothrin, 

Syngenta, Wilmington, DE).   

  Foliar pesticide applications were applied with a CO2 backpack sprayer at the R3 

growth stage. The prophylactic pesticide application contained azoxystrobin + 
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difenoconazole (Quadris Top) applied at a rate of 0.1 kg a.i. ha-1 + 0.07 kg a.i. ha-1 and 

lambda-cyhalothrin (Warrior II with Zeon Technology) applied at a rate of 0.14 kg a.i. 

ha-1 . Non-ionic surfactant (0.0125% v/v; Ad-Spray 80, Helena Chemical Company, 

Collierville TN) was added to the total spray solution. The economic threshold treatments 

plots were scouted once a week starting at R3, to determine if disease and/or insect 

defoliation pressure reached economic threshold according to UKY recommendations. If 

threshold was met, only the needed product was applied at the above rate. Disease 

(Frogeye leaf spot, caused by Cercospora sojina) and insect defoliation incidence and 

severity were measured on the day of prophylactic application and then 14 days after 

treatment (DAT), 28 DAT, and 42 DAT for all prophylactic and economic threshold 

plots.  

 Double crop soybean plots were harvested using a small plot combine (Delta; 

Wintersteiger, Inc, Salt Lake City, UT) equipped with a weigh system (Harvest Master, 

Juniper Systems, Inc., Salt Lake City, UT). Seed yield, moisture, and test weight, were 

measured and an approximate 1.5 kg samples were collected from each plot. Yields were 

adjusted to 13% moisture. The double crop soybean trials are part of a larger double crop 

soybean trail established in Princeton KY from 2017 to 2019 Rod et al. (2020a). 

4.2.3 Partial Budget Analyses: 

Partial budgets are used to analyze the profit and cost potential to partial changes 

made to the farming operation and do not include fixed operating costs or revenues that 

would not be affected by the potential change (Tigner, 2018). Partial budgets typically 

include additional costs, additional revenue, reduced revenue, and reduced costs (Kay et 
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al., 2019; Tigner, 2018). Additional costs are associated with the new change and do not 

exist in the current moment, while reduced costs are the cost that occur at the present 

moment and would be eliminated if the change occurred (Kay et al., 2019). Additional 

revenue is the additional revenue that would come from the desired change, while the 

reduced revenue is the reduction of current revenue that would occur if the change is 

made (Kay et al., 2019). Once the additional cost, additional revenue, reduced revenue, 

and reduced costs are determined, the added income (additional revenue and reduced 

costs) is then subtracted from the added costs (additional costs and reduced revenue). If 

the net benefit is positive, the intended change would be profitable; if the net benefit is 

negative, the intended change would decrease farm profitability (Kay et al., 2019; Tigner, 

2018). There are some limitations to the budget, namely that it cannot assure a positive or 

negative return, because cost estimates and revenue estimates are used (Tigner, 2018).  

Partial budgets can be used for multiple different comparisons, for example 

different management options to increase yields. In this study, partial budgets were used 

to determine the profitability of intensive management options to winter wheat and 

double crop soybean production. Each intensive management treatment was compared to 

current Baseline management treatments for that specific crop. Additional costs and 

additional benefits (additional revenues) were used in the partial budget as there should 

not be reduced costs and reduces revenues when comparing management treatments to 

the Base treatment. In this study, additional cost was calculated as the cost of the 

intensive management treatment compared to the cost of the Base treatment. The 

additional benefit was calculated as the revenue of the intensive management treatment 
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yield increase compared to the Base yield. Net benefit was calculated as the difference of 

the additional benefit and the additional cost.  

4.2.4 Winter  Wheat Intensive Management Par tial Budget 

 A partial budget was created for each of the intensive management treatments for 

winter wheat and double crop soybean as compared to the current University of Kentucky 

recommendation. The Baseline management treatment (the University of Kentucky 

recommendations) for winter wheat production is to use a seeding rate that would achieve 

377 plants m-2 and no in-furrow phosphorus application use at planting. Each of the three 

winter wheat intensive management treatment is compared to the Base management 

treatment (Table 14). The Base+P treatment includes the 377 plants m-2 seeding rate and 

the addition of 47 kg P2O5 ha-1 applied in-furrow at planting. Wheat HSR treatment 

includes an increased seeding rate to achieve 603 plants m-2 and no in-furrow phosphorus 

application. The HSR+P treatment includes the increased seeding rate of 603 plants m-2, 

and the addition of 47 kg P2O5 ha-1; this was the most intensive wheat treatment. The 

wheat seed price ($0.73 kg-1) was based on the 2019 price of the wheat cultivar, 

Pembroke 2016 from Kentucky Foundation Seed. Triple super phosphate (0-46-0) was 

the P2O5 source and the price ($474 metric tonne-1) was based on the January 2020 price 

from an agricultural supply retailer (Agri-Chem) in Princeton, KY. The average market 

price for 2019 Kentucky wheat used was $0.193 kg-1 (United States Department of 

Agriculture, 2020).  
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4.2.5 Double Crop Soybean Intensive Management Par tial Budget 

Current double crop soybean recommendations from the University of Kentucky 

include the Baseline management treatment of a seeding rate of 370,500 seeds ha-1, no 

seed treatment usage, and applying foliar pesticide when economic thresholds are met. 

The other five double crop soybean intensive management treatments are compared to the 

soybean Base treatment (Table 14). The Base+ST treatment includes the 370,500 seeds 

ha-1 seeding rate, the use of Pioneer Premium seed treatment, and a foliar pesticide 

application when economic thresholds are met. The Base+ST+PF treatment includes the 

370,500 seeds ha-1 seeding rate, the use of Pioneer Premium seed treatment, and a 

prophylactic R3 foliar pesticide application of Quadris Top and Warrior II with Zeon 

Technology. The soybean HSR soybean treatment includes the increased seeding rate of 

555,750 seeds ha-1, no seed treatment usage, and a foliar pesticide application when 

economic thresholds are met. The HSR+ST treatment includes the increased seeding rate 

of 555,750 seeds ha-1, the use of Pioneer Premium seed treatment, and a foliar pesticide 

application when economic thresholds are met. The last intensive management treatment 

is the most intensive treatment; HSR+ST+PF include the increased seeding rate, the use 

of Pioneer Premium seed treatment, and a prophylactic R3 foliar pesticide application of 

Quadris Top and Warrior II with Zeon Technology. Double crop soybean seeding rate 

and seed treatment costs were based upon the average seed costs from Dupont Pioneer in 

2018 on a soybean unit containing 140,000 seeds. The average cost of soybean seed was 

$61 unit-1 and seed treatment cost was $17 unit-1. The prophylactic R3 foliar pesticide 

application cost is the sum of the average of a single pass custom application cost from 

University of Kentucky Department of Agricultural Economics, the fungicide cost, and 
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the insecticide cost ($70.07 ha-1). The average October 2019 soybean price of $0.326 kg-1 

for Kentucky was used for the partial budget analysis (United States Department of 

Agriculture, 2020) 

4.2.6 Double Crop Rotation Partial Budget 

 Partial budget was created to determine the net revenue potential for wheat 

harvest timing and double crop soybean planting timing. Current wheat planting timing is 

mid-October and harvested at a normal grain moisture of 13 to 15% the next June. 

Therefore, the October early harvest, November normal harvest, and November early 

harvest will be compared to the current practice of October normal harvest (Table 15). 

The scenario evaluated was taking wheat directly to the elevator after harvest to reduce 

the amount of assumptions that would need to be made. Total dockage amounts were 

calculated using the wheat dockage discount schedule from Gavilon Grain LLC in 

Eddyville KY from 2018. Dockage was removed from the wheat selling price by 

calculating the grain moisture discount, then the test weight discount, and finally DON 

contamination discount. For any wheat grain moisture over 25%, the largest moisture 

discount was used (28.75% of the original price). For any test weights under 598 kg m-3, 

the largest test weight discount was used ($0.12 kg-1). The new wheat price received was 

determined by the difference of the market wheat sale price of $0.193 kg-1 (United States 

Department of Agriculture, 2020) and the total dockage. The reduced revenue was 

calculated by the new price received by the change in grain yield compared to the 

October normal harvest timing.  
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 Double crop soybean had two planting timings; the early planting timing occurred 

immediately after wheat was harvested early at 20 to 22% grain moisture, while the 

normal soybean planting timing occurred after the normal wheat harvest timing at 13 to 

15% grain moisture. Additional revenue was determined by the soybean yield difference 

of the normal planting timing by the average Kentucky soybean price for October 2019 of 

$0.326 kg-1 (United States Department of Agriculture, 2020). Net revenue was 

determined by adding the reduced revenue to the additional revenue associated with the 

double cropping system.  

4.2.7 Data analyses 

Analysis of variance (PROC GLIMMIX; SAS v9.4, SAS Institute Inc, Cary NC) 

for yield, net benefit, wheat revenue, soybean revenue, and double crop rotation total 

revenue was performed for a full model that included year, environment, management 

treatment and all possible combinations as fixed effects and replication as a random 

effect. Significant interactions (P<0.05) did not occur for year by management treatment 

and environment by management treatment for all dependent variables. A reduced model 

was used where management treatments were considered a fixed effect and year, 

environment, and replication were considered random effect for wheat yield and net 

benefit, and soybean yield and net benefit of all the intensive management treatments. 

Significant (P<0.05) difference were detected between the UK recommendations and the 

other treatments using CONTRAST statements in PROC GLIMMIX (SAS v9.4). Least 

square means (LSmeans) were used to determine treatment means for wheat yield, wheat 

net benefit, soybean yield, soybean net benefit. To determine differences in net benefit of 
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the rotational systems, a T-test with unequal variances was preformed in Excel 

(Microsoft, Redman WA).  

4.3 Results and Discussion 

4.3.1 Intensive Management Profitability 

 Partial budget analyses were conducted of the wheat intensive management 

treatments compared to the baseline management treatments (Base) of 377 plants m-2 

seeding rate and no in-furrow phosphorus application at planting. All three intensive 

management treatments had significant (P<0.05) negative net benefits when compared to 

the baseline control net benefit (Table 14). The Base + P treatment had a net benefit of $-

42.35 ha-1, while the wheat HSR had a net benefit of $-35.35 ha-1, and finally the HSR+P 

treatment had a net benefit of $-76.17 ha-1 (Table 14). The negative net benefits of the 

Base + P and wheat HSR treatments are not surprising as grain yields were similar to the 

baseline management treatment of the UK recommendation. Grain yield was significantly 

(P<0.05) increased for the HSR+P treatment compared to the Base, however the yield 

difference was not enough to cover the high additional cost ha-1. The negative net benefit 

of the HSR+P treatment is a good example of how maximizing yield may not always 

maximize profit. These negative net benefits were somewhat expected as others have 

reported little response in yield to the addition of phosphorus in adequate phosphorus 

soils, and increased seeding rate in on-time planted wheat (Blue et al., 1990; Knapp and 

Knapp, 1978; Oakes et al., 2016; Otteson et al., 2008; Rod et al., 2020b).     

 There have been reports of in-furrow phosphorus and using an increased seeding 

rate in harsher environmental conditions to increase yield (Blue et al., 1990; Knapp and 
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Knapp, 1978; Ma et al., 2018; Oakes et al., 2016); however, there has not been economic 

justifications for this practice being profitable. All three intensive management treatments 

increased grain yield in the November planted wheat when compared to the wheat Base 

treatment grain yield, however the each intensive management net benefit was not 

different than the wheat Base net benefit (data not shown). Even though the net benefits 

did not differ from the wheat Base net benefit, each net benefit was within $8 ha-1 of the 

wheat Base net benefit (data not shown). Variables such as wheat price, dockage 

amounts, and/or cost of seed and phosphorus would have to change for intensive 

management in the late-planted wheat to be profitable. Although yields may increase 

with the intensive management options, these management options may not increase 

profitability, therefore it is important to determine profitability of management treatments 

before being implemented.   

 Partial budgets of double crop soybean were conducted to compare intensive 

management treatments to the soybean Baseline management treatment of 370,500 seed 

ha-1, no seed treatment usage, and a foliar pesticide application when economic 

thresholds are met (Table 14). Seed yields of the soybean HSR and HSR+ST and 

HSR+ST+PF treatments were significantly (P<0.05) greater than the soybean Base 

treatment. Seed yields of the Base + ST and Base + ST + PF were similar (P<0.05) to the 

soybean Base treatment seed yield. There was no difference (P<0.05) in net benefits of 

any of the intensive management treatments compared to the soybean Base net benefit 

(Table 14).  

 When yields are significantly greater than the baseline, it is important to calculate 

a net benefit for each of the intensive management treatments. Not all inputs will increase 
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yield and create a positive benefit. The HSR+ST treatment significantly increased yields, 

but had a negative net benefit compared to the Base treatment. This is a prime example of 

increasing yields does not always increase profitability. The additional cost of seed 

treatment at the higher seeding rate exceeded the additional revenue from the yield 

increase, thus creating a negative net benefit and a less profitable management option 

compared to the Base treatment.    

When positive net benefits do occur it is important to select the management 

option with the largest positive net benefit. The double crop HSR+ST+PF treatment had 

the greatest seed yield and was significantly different from the soybean Base treatment, 

but it had a net benefit of $3.91 ha-1 which is very similar to the $0 net benefit of the 

soybean Base treatment. Although, the increased seeding rate, the use of seed treatment, 

and a prophylactic R3 foliar pesticide application increased seed yields, however the 

HSR+ST+PF treatment did not have a large positive net benefit. A better option of the 

intensive management treatments to create a positive net benefit, would be the soybean 

HSR treatment. This treatment had significantly greater yield than the soybean Base and 

the largest positive net benefit of $26.77 ha-1, even though it had 370 kg ha-1 less in yield 

than the HSR+ST+PF treatment.   

All of the intensive management treatment options in both the wheat and double 

crop soybean systems had large standard deviations (Table 14). These large standard 

deviaions indicate that there is a large amount of variability in the net benefits of each 

treatment. In the wheat partial budget the HSR+P treatment had the largest standard 

deviation of $181.85, indicating that it would be the most risky option because there is a 

larger chance that the net benefit could be negative. Whereas the wheat HSR treatment 
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has the smallest standard deviation of $126.81 and would be the least risky of the 

intensive management treatments in terms of profitability. The same trends can be seen in 

the double crop soybean standard deviations (Table 14). The HSR+ST treatment has the 

largest standard deviation of $219.25 and would be the most risky option because of the 

large variability in yields with that management treatment. The Base+ST+PF treatment 

had the smallest standard deviation and therefore would be the least risky, however it still 

has a negative net benefit, and this management option should not be chosen as it is not 

the highest positive net benefit.    

When creating partial budgets it is important to choose the highest net benefit, 

even if it is not significantly different than the baseline treatment. Choosing the highest 

net benefit may be different than choosing the treatment with the highest yield or smallest 

standard deviation, however the treatment with the highest net benefit has the highest 

ability to maximize profit. The results of the partial budgets of the intensive management 

treatments (Table 15) indicate that the wheat Base treatment should continue to be used 

in soft red winter wheat production in Kentucky, while the double crop soybean HSR 

treatment of 555,750 seeds ha-1 should be used to increase yield as it created the largest 

net benefit of $26.77 ha-1.    

4.3.2  Wheat Harvest Timing and Double Crop Soybean Planting Timing 

Profitability  

 The partial budget of the rotational system identified the reduced revenue, 

additional revenue, and net revenue when changes were made to the wheat planting and 

harvest timings and double crop soybean planting timing. All changes to the planting and 
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harvest timings were compared to the baseline of the October normal harvest timing. The 

November normal harvest timing had significantly (P<0.05) less grain yield, a reduced 

revenue of $-191.81 ha-1, and no additional revenue from planting double crop soybean 

earlier. This treatment had a significantly net revenue of $-191.81 ha-1 (Table 15). The 

October early harvest timing had similar (P<0.05) yields to the October normal timing, 

however the October early harvest had a reduced revenue of $-219.66 ha-1. This reduction 

in wheat revenue was from the dockage that occurred from the high grain moisture 

(>13.5%) and low test weights. However, because the wheat was harvested at 20 to 22% 

grain moisture, the double crop soybeans were able to be planted 21 days sooner leading 

to a soybean yield increase of 673 kg ha-1 and an additional revenue of $219.40 ha-1. The 

additional revenue of the soybean yield increase off set a majority of the reduced revenue 

from harvesting early leading to a net revenue of $-0.26 ha-1. The November early harvest 

timing had significantly (P<0.05) lower yields compared to the October normal harvest, 

and had the largest reduced revenue at $-525.95 ha-1. This large reduced revenue was 

from the moisture and test weight dockage from the wheat selling price and the lower 

yields of the November planting. The November early harvest did have additional 

revenue because the double crop soybeans were able to be planted 21 days sooner, 

however it had a net revenue of $-306.55 ha-1 which was significantly (P<0.05) different 

than the October normal harvest timing.   

 All of the proposed wheat planting and harvest timings had either significantly 

reduced net benefits or very similar net benefits to the current practice of October normal 

harvest. It is interesting to note, that the October early harvest timing, may have the 

potential to have a positive net benefit if production factors change, for example soybean 
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prices increase or a lower wheat dockage schedule is used. Drying the grain on farm may 

potentially be more cost effective and have a lower reduced revenue then hauling high 

moisture grain to the elevator and occurring the large dockage. However, wheat 

producers need to have adequate drying and storage facilities on farm to handle wheat 

grain with moisture greater than 13% (McNeill, 2010).    

Results from the net revenue of the partial budget of the wheat planting and 

harvest timing and double crop soybean planting timing indicate that harvesting wheat at 

a targeted 20 to 22% grain moisture and planting double crop soybean as soon as possible 

is no different harvesting wheat at 13 to 15% grain moisture and then planting double 

crop soybeans. However, there is potential for the early harvest timing and early double 

crop planting timing to create a positive net benefit if there is a reduction in reduced 

revenue from less dockage or an increase in additional revenue from an increase in 

soybean prices.  

  



 

103 
 

Table 12. Soft red winter wheat environmental conditions of year, soil type, planting 
date, and harvest date for wheat trials in Princeton KY in 2018 and 2019.  
 
   Planting Date Harvest Date 

Environment Year Soil Type October November Early a Normal 

1 2018 Crider Silt 
Loam 

18-Oct-
2017 

28-Nov-
2017 

8-Jun 2-Jul 

15-Jun 2-Jul 

2 2018 Zanesville Silt 
Loam 

19-Oct-
2017 

28-Nov-
2017 

8-Jun 2-Jul 

15-Jun 2-Jul 

3 2019 Crider Silt 
Loam 

9-Oct-
2018 

28-Nov-
2018 

11-Jun 28-Jun 

13-Jun 28-Jun 

4 2019 Zanesville Silt 
Loam 

11-Oct-
2018 

28-Nov-
2018 

12-Jun 28-Jun 

13-Jun - 
 

a Early wheat harvest had a target grain moisture of 20 to 22%. The normal harvest timing 

had a target harvest when grain moisture was 13 to 15%. 

 

  



 

104 
 

Table 13. Double crop soybean environmental conditions of year, soil type, planting date, 
and harvest date for soybean trials established in Princeton KY in 2018 and 2019.  
   Planting Date Harvest Date 

Environment Year Soil Type Early a Normal Early Normal 

1 2018 Crider Silt 
Loam 11-Jun 3-Jul 18-Oct 18-Oct 

2 2018 Zanesville 
Silt Loam 11-Jun 5-Jul 19-Oct 19-Oct 

3 2019 Crider Silt 
Loam 11-Jun 1-Jul 8-Oct 17-Oct 

4 2019 Zanesville 
Silt Loam 13-Jun 1-Jul 9-Oct 19-Oct 

 

a The early planting date occurred immediately after wheat was harvested at a target grain 

moisture of 20 to 22%. The normal planting date occurred immediately after wheat was 

harvested at a target grain moisture of 13 to 15%.  
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Table 14. Partial budget of intensive management of wheat and double crop soybeans 
from Princeton KY in 2018 and 2019. Each intensive management treatment is compared 
to the UK recommendation for that commodity.  

Intensive 
Managemen
t Treatments 

Inputs Yield Additiona
l Cost 

Additiona
l Benefit 

Net 
Benefit 

 
Soft Red 
Winter 
Wheatb 

 kg ha-1 ha-1 

Wheat 
Baseline 

Management 
(Base) 

377 plants m-2 / 0 kg 
P2O5 ha-1 5140 $0.00 $0.00 $0.00 

Base + 
Phosphorus 

(P) 

377 plants m-2 / 47 kg 
P2O5 ha-1 5220 $58.67 $16.29 

-$42.35* 

($164.07
) d 

Wheat High 
Seed Rate 

(HSR) 

603 plants m-2/ 0 kg 
P2O5 ha-1 5250 $55.88 $20.86 

-$35.35* 

($126.81
) 

HSR+P 603 plants m-2 / 47 kg 
P2O5 ha-1 5350*a $117.55 $41.35 

-$76.17* 

($181.85
) 

Double Crop 
Soybeanc      

Soybean 
Baseline 

Management 
(Base) 

370,500 seeds ha-1/ No 
Seed treatment/ 

Economic Threshold 
Pesticide Application 

3400  $0.00 $0.00 $0.00 

Base + Seed 
Treatment 

(ST) 

370,500 seeds ha-1/ 
Pioneer Premium Seed 
Treatment/ Economic 
Threshold Pesticide 

Application 

3450  $44.99 $15.03 
-$29.96 
($207.89

) 

Base + ST + 
Prophylactic 

Foliar 
Application 

(PF) 

370,500 seeds ha-

1/Pioneer Premium 
Seed 

Treatment/Prophylacti
c R3 Pesticide 
Application 

3630  $115.06 $68.00 
-$47.06 
($186.70

) 

 Soybean 
High Seed 

Rate (HSR) 

555,750 seeds ha-1/No 
Seed Treatment/ 

Economic Threshold 
Pesticide Application 

3740*  $80.72 $107.49 
$26.77 

($192.18
) 
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Table 14 (Continued) Partial budget of intensive management of wheat and double crop 
soybeans from Princeton KY in 2018 and 2019. Each intensive management treatment is 
compared to the UK recommendation for that commodity. 

HSR+ST 

555,750 seeds ha-

1/Pioneer Premium 
Seed Treatment/ 

Economic Threshold 
Pesticide Application 

3770* $148.20 $118.64 
-$29.56 
($219.25

) 

HSR+ST+PF 

555,750 seeds ha-

1/Pioneer Premium 
Seed 

Treatment/Prophylacti
c R3 Pesticide 
Application 

4110*  $218.28 $222.19 
$3.91 

($202.59
) 

 
a astrick (* ) designates signficance difference from the UK recommended treatment at an 
alpha of 0.05. 
bIn-furrow phosphorus cost was calculated from the Triple Super Phosphate (0-46-0) 

price from Agri-Chem in Princeton, KY in January 2020. Seeding rate cost is based on 

2019 price of Pembroke 2016 with seed treatment from Kentucky Foundation Seed. The 

average 2019 wheat price of Kentucky ($0.193kg ha-1) was used.  

cSeed and seed treatment costs are based upon average seed cost from 2018 from legacy 

Pioneer, now Corteva. R3 foliar pesticide application cost is the cost of both products 

(Quadris Top, [Syngenta, Wilmington, DE] and Warrior II with Zeon Technology 

[Syngenta, Wilmington, DE]) and the average single pass custom application cost in 

Kentucky.  The average October 2019 soybean price of Kentucky ($0.326 kg ha-1) was 

used.  

d Standard deviation of the net benefit is shown in parentheses below the net benefit. 
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Table 15. Partial budget for wheat planting, wheat harvest timing, and double crop soybean planting timing as a roatational 
system from Princeton KY in 2018 and 2019. Wheat dockage discount prices are from Gavilon in Eddyville KY in 2018 and 
are subject to change by elevator wheat is delivered to. Partial budget of October early harvest, November normal harvest, 
November early harvest are compared to the current recommendation of the October normal harvest. 
 

Winter Wheat Reduced 
Revenue a Soybeans Additional 

Revenue b 
Net 

Revenue 
Planting Harvest Timing Yield (kg ha-1) $ ha-1 Yield (kg ha-1) $ ha-1 $ ha-1 
October Normal 6030 0 3517 0 0 

November Normal 4690*c -191.81 3517 0 -191.81* 
October Early 6060 -219.66 4190* 219.40 -0.26 

November Early 4150* -525.95 4190* 219.40 -306.55* 
 
a Wheat dockage schedule was from Gavilon Grain LLC in Eddyville KY from 2018. Wheat dockage prices are subject to 

change based by elevator. Dockage totals consist of grain moisture, test weight, and DON contamination dockage. Reduced 

revenue was determined using the yield difference by the wheat price ($0.193 kg-1 – wheat dockage).     

b Additional revenue was determined using the yield difference between the treatment and the October normal harvest by the 

soybean price ($0.326 kg-1).  

c astrick (*) designates signficance difference from the Base treatment of the October planted normal harvest wheat at an alpha 
of 0.05. 
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 CONCLUSION 

 

The double crop rotation of winter wheat and double crop soybean is a common 

crop rotation in Kentucky. The decrease in commodity prices over the past decade has 

warranted investigation into intensive management practices that increase yield and 

profitability. There were three goals of this dissertation: 1) identify management practices 

that would decrease deoxynivalenol (DON) in harvest wheat grain and increase wheat 

heading and anthesis uniformity, 2) evaluate double crop soybean planting timing and 

identify intensive management practices to increase seed yield, and 3) determine the 

profitability of the intensive management options. All of the field studies were conducted 

in Princeton, KY at the University of Kentucky Grain and Forage Center of Excellence 

from 2016 to 2019. 

The soft red winter wheat studies evaluated management practices that included 

the use of in-furrow phosphorus at planting (0kg P2O5 ha-1 and 47 kg P2O5 ha-1), various 

seeding rates (377 plants m-2 and 603 plants m-2), harvesting at different grain moisture 

contents (20 to 22% grain moisture and 13 to 15% grain moisture) and the use of two soft 

red winter wheat cultivars (moderately resistant to FHB and susceptible to FHB). The 

specific objectives of this study were to evaluate the effect of 1) in-furrow phosphorus 

application at planting and seeding rate on heading and anthesis uniformity, FHB 

symptomology (including FHB incidence, FHB severity, FHB index, Fusarium damage 

kernels (FDK) rating, and percent kernel infection (PKI)), DON contamination, grain 

yield, yield components, and test weight; and 2) harvesting at different grain moisture 

concentrations on FHB symptomology DON contamination, grain yield, thousand kernel 
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weights (TKW) and test weight. The studies were established in four different 

environments; two environments were on a Crider silt loam and were infested with 

Fusarium graminearum inoculated scabby corn kernels and were under a mist irrigation 

regime. One environment did not have a fungicide application at Zadoks 60, and the other 

environment had a fungicide application at Zadoks 60 of prothiconazole + tebiconazole 

(Prosaro, Bayer CropScience, St. Louis, MO) was applied at 0.1 kg a.i. ha-1 + 0.1 kg a.i 

ha-1 and 0.0125% v/v non-ionic surfactant (Ad-Spray 80, Helena Chemical Company, 

Collierville, TN) was included in the spray solution. An additional Crider soil type 

environment and a Zanesville silt loam soil type environment were established without 

infestation of F. graminearum inoculated corn kernels or mist-irrigation. Each 

environment had two planting timings (October and November) for each of the harvest 

timings. Within each planting and harvest timing combination, the eight treatments were 

replicated five times.   

 The results from this study indicated that in-furrow phosphorus did not affect 

heading and anthesis uniformity, and DON contamination. However, the use of 47 kg 

P205 ha-1 increase grain yield and spikes m-2. The increased seeding rate (603 plants m-2) 

decreased the number of days to beginning anthesis (Zadoks 60) in the November planted 

wheat, and decreased FHB incidence, spikelets spike-1 and TKW. The 603 plants m-2 

seeding rate increased spikes m-2 and increased grain yield in the November planted 

wheat. Overall, the increased seeding rate did not affect DON contamination. Harvesting 

at 20 to 22% grain moisture increased DON contamination, TKW, and grain yield in the 

November planted wheat. Harvesting at the early harvest timing decreased test weight in 

each planting timing, decreased the FDK ratings in the October planted wheat and 
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decreased PKI in the November planted wheat. Agronomic management conclusions of 

the wheat study include: 1) for on time planted wheat, in-furrow phosphorus and/or 

increased seeding rate is not needed, 2) for late planted wheat, in-furrow phosphorus 

and/or increased seeding rate may increase grain yields and off set the negative effects of 

planting late, and 3) harvest at 20 to 22% grain moisture if there is an established system 

to dry wheat grain.  

The double crop soybean studies were established as no-till plots into wheat 

stubble. Two environments were established each year, a Crider silt loam and a 

Zanesville silt loam. Each environment had two planting timings; an early (after wheat 

was harvested at 20 to 22% grain moisture) and a normal (after wheat was harvested at 13 

to 15% grain moisture). Within each planting timing there were six intensive treatments 

replicated five times. Three treatments utilized a seeding rate of 370,500 seeds ha-1 and 

the other three treatments utilized a seeding rate of 555,750 seeds ha-1. Within each 

seeding rate one treatment did not utilize a seed treatment and foliar pesticides were 

applied when economic thresholds were met for Frogeye leaf spot (caused by Cercospora 

sojina) and leaf defoliation caused by insect pests. Another treatment included the use of 

Pioneer Premium seed treatment (Corteva, Johnston, IA), which contains two fungicides, 

Allegiance (Bayer CropScience, St. Louis, MO [Metalaxyl; 0.02 mg a.i. seed-1]), and 

EverGol Energy (Bayer CropScience, St. Louis, MO, [Prothioconazole + Penflufen + 

Metalaxyl; 0.019 mg a.i. seed-1]) and an insecticide Gaucho (Bayer CropScience, St. 

Louis, MO [Imidacloprid; 0.154 mg a.i. seed-1]). Foliar pesticides were applied when 

economic thresholds were met for Frogeye leaf spot and leaf defoliation caused by insect 

pests. The final treatment in each seeding rate included the use of Pioneer Premium seed 
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treatment and a prophylactic R3 foliar pesticide application of the fungicide Quadris Top 

(Syngenta Crop Protection, Greensboro, NC) and insecticide Warrior II with Zeon 

Technology (Syngenta Crop Protection, Greensboro, NC).  

The results from this study indicated that planting double crop soybeans after 

wheat harvested at 20 to 22% grain moisture increased seed yields by approximately 800 

kg ha-1 compared to double crop soybeans planted after wheat harvested at 13 to 15% 

grain moisture. The 555,750 seeds ha-1 seeding rate increased seed yields by 

approximately 380 kg ha-1 compared to the seeding rate of 370,500 seeds ha-1. The use of 

seed treatment did not increase seed yields, although it did increase plant population. The 

prophylactic R3 foliar pesticide application increase seed yields by approximately 280 kg 

ha-1 compared to foliar pesticides only applied when economic thresholds were met. The 

most intensive management treatment of HSR+ST+PF had the highest yields but was not 

different than the HSR+PF treatment. Agronomic double crop conclusions from this 

study indicate that double crop soybean producers should plant double crop soybean as 

early as possible and that the increased seeding rate should be used.  

Profitability of the wheat and double crop soybean studies were evaluated using 

partial budgets. A partial budget compares the profitability of a proposed alternative to 

the current operation. These are good to determine the profitability of intensive 

management treatments. The wheat intensive management treatments were compared to 

the wheat Base treatment of the 377 plants m-2 and 0 kg P2O5 ha-1. The other three wheat 

treatments had negative net benefits compared to the base treatment. The double crop 

soybean intensive management treatments were compared to the soybean Base treatment 

of 370,500 seeds ha-1, no seed treatment, and foliar pesticides applied when economic 
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thresholds were met. The Base+ST, Bast+ST+PF and HSR+ST treatments had negative 

net benefits compared to the Base treatment, while the HSR and HSR+ST+PF treatments 

had positive net benefits. The HSR treatment had the highest net benefit of approximately 

$27 ha-1. The wheat harvest timing and double crop soybean planting timing rotation was 

evaluated as well. The harvest and planting timings were compared to the October 

planted Normal harvest wheat, normal double crop soybean planting timing. The October 

planted early harvest timing (20 to 22% grain moisture) and early double crop soybean 

planting timing had similar net revenues compared to the October planted normal harvest 

wheat treatment. Economic conclusions include using the Baseline treatment for wheat 

production as the other intensive management treatments had negative net benefits. The 

555,750 seeds ha-1 seeding rate had the highest positive net benefit for the double crop 

soybean treatments and should be used. Wheat harvested at 20 to 22% grain moisture and 

taken directly to the elevator has a similar net revenue as harvesting at 13 to 15% grain 

moisture however; harvesting wheat early and drying on farm may have a positive net 

benefit.  
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