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ABSTRACT OF THESIS 

 

 
FABRICATION AND CHARACTERIZATION OF PLANAR-STRUCTURE 

PEROVSKITE SOLAR CELLS 
 

Currently organic-inorganic hybrid perovskite solar cells (PSCs) is one kind of promising 
photovoltaic technology due to low production cost, easy fabrication method and high 
power conversion efficiency.  

Charge transport layers are found to be critical for device performance and stability. A 
traditional electron transport layer (ETL), such as TiO2 (Titanium dioxide), is not very 
efficient for charge extraction at the interface. Compared with TiO2, SnO2 (Tin (IV) 
Oxide) possesses several advantages such as higher mobility and better energy level 
alignment. In addition, PSCs with planar structure can be processed at lower temperature 
compared to PSCs with other structures. 

In this thesis, planar-structure perovskite solar cells with SnO2 as the electron transport 
layer are fabricated. The one-step spin-coating method is employed for the fabrication. 
Several issues are studied such as annealing the samples in ambient air or glovebox, 
different concentration of solution used for the samples, the impact of using filter for 
solutions on samples. Finally, a reproducible fabrication procedure for planer-structure 
perovskite solar cells with an average power conversion efficiency of 16.8%, and a 
maximum power conversion efficiency of 18.1% is provided.   

 
KEYWORDS: Planer-Structure Perovskite Solar Cells, Tin (IV) Oxide,  Electron 

Transport Layer, Current-Voltage Measurement, Spin-Coating.  
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CHAPTER 1.  PEROVSKITE SOLAR CELLS 

1.1 Introduction  

Today the world relies on fossil fuel resources such as coal, oil, and natural gases. 
Nevertheless, consuming fossil fuels can produce CO2 and a great deal of pollutants, 
which cause global warming and environmental pollution. Thus, it is urgent to search for 
clean and renewable energy resources. Solar power is an attractive energy source since it 
is an entirely renewable source of energy that provides energy security, independence, 
and reliability.  

Moreover, the sun is available all over the world freely as a source of energy, particularly 
in the southern states of the US. Solar power on Earth is the most abundant energy 
resource with a year’s sunlight containing about 1.5×109 terawatt hour (TWh) of energy. 
In comparison, the total known reserves of oil, coal, and gas are only ~8.5×106 TWh. 
Thus, a year’s solar power provides more than a hundred times the energy of the world’s 
entire known fossil fuel resources (Sum and Mathews 2014). Harnessing solar energy 
could yield a stable energy supply. However, the difficulty is how to convert solar energy 
efficiently and cost-effectively. Sunlight is regarded as the most promising replacement 
for fossil fuels since it is a clean, cheap, abundant, and renewable energy source. One 
solar cell absorbs photons of incident light and converts the energy of light into electrical 
energy either by indirectly converting it to heat or directly based on the photovoltaic (PV) 
effect (Kearns and Calvin 1958). Most of the solar cells are designed to process sunlight 
that reaches the Earth's surface while others are optimized for use in the Space. Solar 
cells are working based on the PV effect that occurs when the light hits a semiconductor 
material and produces a potential difference or voltage. The voltage created in the cell 
produce a current through an external electrical circuit that is used to generate power. It is 
crucial to reduce the total cost of solar energy for making it competitive with the fossil 
fuels. Also, it can be achieved by either lowering the cost of PV cells or by increasing 
their power conversion efficiency (PCE). The performance of solar cells is evaluated by 
their PCE which calculated with the following formula 1-1： 

 
Where Voc is the open-circuit voltage, Jsc is the short-circuit current density, FF is the 
fill factor, Pin is the energy of incident light, Jm-pp is the current at the maximum power 
point and Vm-pp is the voltage at the maximum power point. 
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Organic-inorganic perovskites are currently the focus of semiconductor research with the 
promise to bring the next generation of highly efficient, cost-effective photovoltaic 
technology (Saliba, M. et.al. 2018). In only a few years, prototype devices designed on a 
lab scale demonstrated power conversion efficiency (PCE) of ≥20%. However, only a 
few research groups reported perovskite solar cells (PSCs) with PCEs higher than 20%, 
which used to be found in only the most established materials such as silicon, GaAs, 
CIGS, and CdTe (Saliba, M et.al. 2016, Shin, S. S et.al. 2017). While efficiencies are 
now approaching the thermodynamic limit, there is still incomplete knowledge of 
fundamental working and degradation mechanisms. A deeper understanding is critical to 
further improve device performances and long-term stability (Ibn-Mohammed et.al. 
2017). 

 

1.2 The Promise of Perovskite Solar Cells 

Solar cells are mainly divided into three different generations. For the first 

generation of solar cells, it is made of crystalline silicon that contains materials such as 

polysilicon and monocrystalline silicon. They are the main solar cells in the solar market. 

Besides, silicon solar cells have the highest PCE up to now. The second generation solar 

cells are thin-film cells that contain amorphous silicon, cadmium telluride (CdTe), and 

CuInGaSe2 (CIGS) solar cells. Thin-film technology decreases the amount of active 

materials in a solar cell which leads to depressing the cost. Also, it is possible for thin-

film solar cells to deposit cells on various substrates including flexible substrates for 

related applications. Recently, scientists have advanced the third-generation solar cells 

including organic solar cells, dye-sensitized solar cells (DSSCs), and perovskite solar 

cells (PSCs), in order to reduce the cost of the solar cells. There is much research 

invested into these emerging technologies such as DSSCs and PSCs, since they have the 

potential to achieve the goal of producing cost-effective and high-efficiency solar cells. 

The certified efficiency table for all generations PV cells (Chart) is shown by Figure 1-1. 

The best certified PCE belongs to four junction silicon solar cell with ɳ =44.7%. CIGS 

technology reaches the efficiency as high as 21%. Currently, Cu2ZnSnS4 (CZTS) solar 

cells emerged with the less-toxic thin film solar cell technology, which achieved about 
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12% efficiency. Among the third-generation solar cells, the PCE of PSCs has increased 

from 3.81% to over 24.2% from 2009 to 2018 (Kojima, Teshima et al. 2009, NREL Best 

Research-Cells Efficiencies,2019).  

 
Figure 1.1 Best research-cell efficiencies. (NREL Best Research-Cells 
Efficiencies, 2019). 

Furthermore, solar cells can be categorized into three types according to the materials that 

were used for absorption layers: inorganic, organic, and hybrid. For example, inorganic 

solar cells, such as silicon-based and III-V compound based, are main solar cells in the 

market. Nevertheless, the manufacturing processes are usually expensive. Organic solar 

cells contain polymer-based and small molecule-based types. The scientist Tang et al. 

invented the first organic solar cell in 1986. Currently organic solar cells did not entered 

the commercial market, since their efficiency is extremely low compared to others 

(Green, Emery et al. 2011). Hybrid solar cells use inorganic-organic halide perovskite as 

the absorber layer in their structure, and the light absorber of the PSCs is APbX3 

(A=CH3NH3, (NH2)2CH2 or Cs, X= I, Br or Cl) film. PSCs are considered as the most 
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promising replacement of silicon solar cells because of their cost-effective and high 

absorption properties. Perovskite was firstly discovered in the Ural Mountains of Russia 

by Gustav Rose in 1839, and then is named after the Russian mineralogist Lev Perovski 

(1792–1856). Its name derived from a class of compounds that have the same type of 

crystal structure as CaTiO3 (ABO3, ABX3), which is known as the perovskite structure 

(Wenk and Bulakh 2016). 

Perovskite structure has many excellent properties, such as the option of low-temperature 

processing, tunable band gap, low production cost, high absorption coefficient, etc. For 

example, halide perovskites own the ideal band gap range from 1.2 eV to 2.3 eV which 

can be adjusted by the materials composition. Besides, perovskites possess high 

absorption coefficient, which indicates that only several hundreds of nanometers of 

perovskite are enough to collect sufficient light. Also, this material has long electron and 

hole diffusion lengths, which are essential for high-performance solar cells to suppress 

the recombination of photo excited charges.  

As light harvesters and hole transport materials, organic- inorganic lead (Pb) halide 

perovskites have revolutionized the emerging PV technologies since the solar cells can be 

manufactured using cost-effective solution-based processes (Lee, Teuscher et al. 2012, 

Burschka, Pellet et al. 2013, Liu, Johnston et al. 2013, Im, Jang et al. 2014, Zhou, Chen et 

al. 2014, Yang, Park et al. 2017). Kojima Group firstly reported combination of 

perovskites into a solar cell in 2009 (Kojima, Teshima et al. 2009). This cell was based 

on a dye-sensitized solar cell, which produced 3.81% PCE with a thin layer of 

CH3NH3PbI3 and 3.13% PCE with a thin layer of CH3NH3PbI3 on mesoporous TiO2 as 

electron-collector. In 2011, Park et al. improved the structure of the PSCs and achieved a 
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PCE of 6.5% (Im, Lee et al. 2011). In 2013, J. Burschka et al. used the sequential 

deposition method as a new pathway for the fabrication of PSCs to optimize the 

morphology of perovskite layer, and the certified PCE of 14.14% for the champion cell 

with the average of 12% in reverse scan measurement was reached (Burschka, Pellet et 

al. 2013). After then, excellent research about high efficiencies in organic- inorganic lead 

halide PSCs have been reported with maximum efficiencies over 22% (Bi, Tress et al. 

2016, Liu, Li et al. 2017, Yang, Park et al. 2017), exhibiting promising potential of 

perovskite materials toward future cost-effective and high-performance solar cells.  

1.3 Crystal Structure of Perovskite 

 
Perovskite crystal structure is firstly described by Victor Goldschmidt in his research on 

tolerance factors in 1926 (Goldschmidt 1926). Perovskites own a cubic structure with a 

general formula of ABO3 or ABX3, and ABO3 are oxide perovskites. They are colorless 

and wide band gap solids. Therefore, oxide perovskites are unwanted for high-efficiency 

solar cells. ABX3 are halide perovskites that can merely accomplish band gap tuning by 

varying of all three cation and anion components. In ABX3 perovskites, the eight A-site 

ions located on the eight corners of the lattice, a B-site ion, in the center of the lattice, and 

six X-atoms on the six faces. Figure 1.2 illustrates the unit cell of most commonly studied 

inorganic-organic halide perovskite Methylammonium lead tri-halide (CH3NH3PbX3). A 

is a small monovalent organic cation such as methylammonium (CH3NH3) on the corners 

of the lattice. B is a divalent group 14 metal (Ge, Sn or Pb) in the center of the lattice and 

X are halides (Cl, Br or I). CH3NH3PbX3 owns a band gap between 1.55 eV and 2.3 eV. 

The band gap is manageable by changing the halide content (Eperon, Stranks et al. 2014). 
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This type of perovskite can harvest the energy of sunlight efficiently as it absorbs both 

visible and infrared light.   

 
Figure 1.2 Unit cell of inorganic-organic halide perovskite CH3NH3PbX3, where 

X is I, Br or Cl ((Eperon, Stranks et al. 2014). 

1.4 Device Structure and the Operational Principle of Planar PSCs 

According to containing mesoporous layer or not, there are planar and mesoporous 

structures for PSCs. The planar PSCs are categorized in two forms such as planar regular 

and planar inverted PSCs, which is shown in the Figure 1.3. The planar structure consists 

of transparent conductive electrode such as Fluorine-doped thin oxide (FTO) or indium 

tin oxide (ITO)/ electron transport layer (ETL) as n-region/ perovskite absorber layer 

(intrinsic)/ hole-transporting layer as p-region, which is the structure of n-i-p. In this 

thesis, we focused on the regular planar PSC that does not include a mesoporous layer on 

top of the n-type region. This structure contains a substrate made of FTO on the top of a 

piece of glass. Light must go through this layer to reach the center of the device, so the 

glass and FTO must be low resistance and high-transmittance without reducing the light 



7 
 

power. On top of FTO, we have a thin layer as the electron transport layer (ETL), this 

layer is the n-type region of the n- i-p structure. Also, the absorbing perovskite layer work 

as the intrinsic region. Besides, the hole transport material (HTM) is spiro-OMeTAD that 

is an organic material doped with other additives, which serve as the p-type region on top 

of perovskite in the n-i-p structure. Finally, a thin layer of gold (Au) is used as the metal 

contact in order to collect the holes and connect with the electrodes. The principle of 

operation is as follows: the incidence of photons into perovskite generates electron-hole 

pairs. Electrons arrived at the electron transport layer. Next, electrons are collected by the 

FTO substrate. Meanwhile, the holes that are injected into the HTL (hole transport layer), 

eventually collected by the Au electrode. 

 

Figure 1.3 Schematics of the three PSC architectures, and corresponding SEM 
crossing-section images of representative devices are shown below with a scale 
bar of 200 nm ( Michael Saliba et al. 2018). 
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CHAPTER 2. FABRICATION METHODS OF PEROVSKITE SOLAR CELLS 

In this chapter, fabrication and deposition methods are discussed in this thesis. For 

instance, here we used RF sputtering, spin-coating methods for the deposition of a thin 

SnO2 as the ETL. These methods are explained in detail under deposition of ETL section. 

The chemicals we used were purchased from Sigma-Aldrich. All solvents were 

anhydrous. The Spiro-OMeTAD was purchased from Borun New Materials, LLC. The 

MAI, TiO2 paste (18-NRZ), FAI, FK209, MABr, and FABr materials were purchased 

from Great cell Solar Ltd. FTO coated glass (Pilkington, 15Ω.cm-2) was used as the 

substrate. 

2.1  Fluorine-doped Tin Oxide (FTO) 

Fluorine-doped Tin Oxide (FTO) is used as the substrate in our solar cells, since 

compared to the ITO, it has excellent stability at high temperatures, low cost, and keeps 

high transmittance (> 80%) at low resistance. The work function of FTO was about 4.4 

eV (Andersson, Johansson et al. 1998). However, recent studies matching with new 

cleaning processes found a higher work function of 5 eV for FTO substrates (Helander, 

Greiner et al. 2011). ITO with a band gap of 3.5-4.3 eV that owns excellent electrical 

conductivity and optical transparency is another widely used substrate for PSCs. ITO can 

also be deposited as a thin film and provides a smoother surface compared to the FTO 

substrate. Here we used FTO as a substrate in this thesis. 
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2.1.1 Sonication in Solvents                                                                                 

Cleaning of the substrate is an important step in the fabrication of PSCs, since it will 

affect the performance of the device significantly. Several cleaning process steps must be 

done in order to clean the FTO substrate correctly. For instance, cleaning FTO substrates 

with only acetone and IPA will cause high carbon contamination on the surface of FTO 

(Helander, Greiner et al. 2011). These contaminations will decrease the work function of 

FTO, which causes non- ideal band alignment in the band structure of PSCs. Therefore, 

we need to optimize the procedure during the cleaning of samples. A typical cleaning 

process includes washing substrates with hand soap detergent, and then sonication in a 

solution of Hellmanex III and DI water (2:10 volume ratio) for 30 min, after that, 

sonication with acetone, IPA, and DI water for 15 min each at a temperature of 50℃. 

Also, the substrates must be washed with DI water thoroughly after sonication in 

Hellmanex III solution. This step is very important, otherwise, the samples will show 

cloudy non-uniform regions on the surface, and these non- idealities will decrease the 

light transmission through the glass and FTO layer. Besides, we usually use the boiling 

DI water to rinse and clean the substrates. After sonication with IPA, samples dried with 

the N2 flow and kept in the room temperature for immediate use in the next step of 

experiments. We used the profiler (Figure 2.1) to check the surface of the substrates, and 

the clean surface of the substrates are shown in the graphs below: 
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2.1.2 UV Ozone Treatment  

It is crucial to own a smooth, spike-free FTO surface especially when the next top layer is 

a (~30-60 nm) thin film. UVO treatment is applied to the FTO samples before Electron 

transport Layer spinning coating and Perovskite layer spinning coating, because this 

etching process provides smoother surface compared to the non-etched samples. In 

addition, UV-Ozone treatment is necessary for removing the residuals in the electron 

transport layer such as SnO2 films and enhancing the wettability before perovskite 

depositing. Thus, in this thesis, we usually use the UVO treatment for 15 min for samples 

right before spinning coating of the SnO2 electron transport layer and perovskite layer. 

Also, the UVO treatment is provided by Graham lab at the Department of Chemistry at 

the University of Kentucky. The graph below shows the UVO instrument: 

(a) (b) 

Figure 2.1 Profiler for checking the cleanness of FTO substrate and the clean surface of 
substrates under profiler. 
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Figure 2.2 The UV-Ozone Cleaner. 

2.2 Electron Transport Layer 

The existence of electron transport layer (ETL) is vital for the performance of PSCs. It 

prevents generated holes from reaching the substrate and transport electrons toward the 

substrate. The ideal film is a thin layer of materials that can cover the entire surface of 

substrate without any micro/nano pinholes. The full coverage of surface depends on the 

factor such as deposition technique. Also, a traditional electron transport layer (ETL), 

such as TiO2, is not very efficient for charge extraction at the interface, especially in 

planar structure. In addition, the devices using TiO2 suffer from serious degradation 

under ultraviolet illumination. 

Compared with TiO2, SnO2 possesses several advantages such as higher mobility and 

better energy level alignment. More importantly, use of SnO2 as ETL can 

eliminate/minimize degradation of perovskite solar cells induced by TiO2 ETL, leading to 

significantly enhanced operational lifetime under continuous light illumination. Besides, 
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in contrast with TiO2,  SnO2 could be easily coated by low temperature solution process, 

electrodeposition process, atomic layer deposition, chemical bath deposition, electron-

beam deposition, and sputtering deposition. 

SnO2 has attracted great attentions as ETL for PSCs, and it is considered as the most 

promising alternative to TiO2 due to following reasons: 1) SnO2 possesses deep 

conduction band and good energy level as shown in Figure 2.3 (A.J. Nozik, R.Memming, 

J.Phys. Chem.1996,100 13061). The excellent band energy at ETL and perovskite 

interface will enhance electron extraction and hole blocking. 2) SnO2 preserves high bulk 

electron mobility of up to 240 cm2 V-1s-1 and high conductivity, which can greatly 

improve the electron transport efficiency and reduce the recommendation loss. 3) SnO2 

has wide optical bandgap (3.6-4.0 eV) and high transmittance over the whole visible 

spectra, which can keep most of light pass through and be absorbed by the perovskite 

layer. 4) SnO2 is easily processed by low-temperature methods (<200℃ ), which is 

compatible with flexible solar cells, tandem solar cells and large-scale commercialization. 

5) SnO2 showed outstanding chemical stability, UV-resistance properties, and less 

photocatalytic activity in comparison with TiO2 or other ETLs, which is supportive for 

overall device stability.  
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Figure 2.3 a) Energy level diagram of various electron transport layer. b) Band 
alignment of SnO2, TiO2 and perovskite layer. (Qi Jiang et al. 2018). 

2.3 Brief history of SnO2 as ETL for PSCs 

SnO2 has been tried to be used in organic solar cells and dye sensitized solar cells in 

previous research; however, the device performance is not as good as using ZnO and 

TiO2 in these two kinds of devices. In 2015, several groups independently employed 

SnO2 in PSCs. For instance, Dai team used mesoporous SnO2 nanoparticle films as ETL 

by combining with TiCl4 treatment, they got efficiency of 10.18%. Ma group used SnO2 

as condense layer and combined with TiO2 mesoporous layer as ETL and achieved PCE 

of 7.43%. Later on, Kuang team used TiCl4 treated SnO2 nanocolloidal film as ETL and a 

PCE of 14.69% was obtained. Although these significant progresses in SnO2 based 

perovskite solar cells have been obtained, the performance are still much lower than the 

devices usingTiO2 as ETL. This might be attributed to the existence of large amount of 

charge traps or recombination centers such as oxygen vacancies in SnO2 layer, which 

were caused by high temperature annealing (450℃). 

To avoid the defects induced by high temperature processing, low temperature processed 

SnO2 has been developed. Tian team employed SnO2 thin film by spin-coating SnO2 

nanoparticles on substrates followed by annealing at 200℃, a 13% PCE was achieved. 

Fang reported a big step for SnO2-based PSCs, they adopted thermal decomposition of 

SnCl2·2H2O precursor at 180℃ in ambient air to form SnO2 film on FTO substrate and 

achieved 17.21% reverse scan efficiency. Later on, Hagfeldt group used a low 
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temperature atomic layer deposition (ALD) process to grow SnO2 ETL and showed the 

PCE above 18% with Voc exceeding 1.19 V. The devices performance is still lag behind 

TiO2 devices at that time. Later You group employed high quality SnO2 nanocrystal 

colloidal as ETL and annealed under moderate temperature (150℃), a certified efficiency 

of 19.9% with almost free of hysteresis of planar structure perovskite solar cells have 

been achieved. Meanwhile, Hagfeldt team reported a 20.7% PCE measured in house 

using double layer SnO2 fabricated by spin coating and CBD method. More recently, You 

group reported the efficiency of SnO2-based PSCs has been achieved 21.6% through 

finely controlling the surface passivation layer of PbI2 and the certificated efficiency of 

20.9% has reached. The main achievements in perovskite solar cells for different groups 

using SnO2 as electron transport layer are shown in Figure 2.4(Qi Jiang et. al. Small, 

2018). 

 
Figure 2.4 The main achievements in perovskite solar cells using SnO2 as electron 
transport layer for different groups. (Qi Jiang et al. 2018). 

2.4 Growth Method of SnO2 

 Several advanced technologies can be used to deposit SnO2 layer such as solution 

process method, sputtering deposition method, atomic layer deposition method, chemical 

bath deposition method and other methods.  
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In this thesis, we tried different methods for deposition of SnO2 as the ETL layer such as 

RF sputtering method, solution process method. The details of each method are provided 

in the relevant subsection. 

2.4.1 Sputtering Deposition Method for ELT Layer 

Sputtering deposition method was used to deposit a thin, compact layer of SnO2 with 

SnO2 target. The crystallization of SnO2 can be formed during the depositing period on 

the substrates, and usually post thermal annealing was not needed, which is good for 

flexible device fabrication. Currently about 19.8% PCE have been obtained by using 

spurting deposition, but this method may cost more such as oxygen and time for 

fabrication. Here, this method was tried, but the PCE is not good due to oxygen resource. 

This issue is described in the following section.  The sputtering system is shown in the 

graph below: 

 

Figure 2.5 Sputtering deposition system. 
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2.4.2 Solution Process Method for ETL layer 

Solution process is the common method for depositing SnO2 layer by either thermal 

decomposition of Sn-based salt precursor or synthesizing SnO2 nanocolloidals. For 

thermal decompositions, SnCl2, SnCl4, or their hydrate SnCl2·2H2O, SnCl4·5H2O was 

dissolved in ethanol or other solvents, and then the precursor solution was spin coated on 

substrate and thermal annealing is needed in ambient air to convert into SnO2. (Qi Jiang 

et. al. Small, 2018，Qi Jiang et. al. Advanced Materials, 2017). 

In this thesis, we mainly used solution process method to form SnO2 layer; also using the 

spin-coater placed inside the glovebox. The results for PSCs based on different solutions 

along with the optimization of the process are provided in Chapter 3. The SnO2 colloid 

precursor was obtained from Alfa Aesar (tin (IV) oxide. For this SnO2, one is said 15% in 

H2O colloidal dispersion, the other said the accurate concentration is 20%. So we 

compared the performance of perovskite solar cells using two kinds of SnO2 solution in 

the further experiments. For solution 1, we mixed 267µL of SnO2 mixed with 1730 µL of 

water. For solution 2, we mixed 333µL of SnO2 mixed with 1670 µL of water. Usually 

110 µL of the solution was used for spin-coating at a speed of 3000 rpm for 30 seconds. 

Then in the further experiments, we also compared the performance of annealing the 

samples in the glovebox and annealing outside of the glovebox at 100℃for 30 min in the 

hood. 
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2.5 Deposition of Perovskite Layer 

Deposition of the absorber layer, that is, the perovskite layer in the PSCs is the most 

critical process step. The perovskite materials have been used for deposition by different 

methods such as spray pyrolysis (Barrows, Pearson et al. 2014), dip coating (Burschka, 

Pellet et al. 2013), chemical vapor deposition (Chen, Zhou et al. 2013), spin-coating (Lee, 

Teuscher et al. 2012), atomic layer deposition (Sutherland, Hoogland et al. 2015), and 

thermal evaporation (Malinkiewicz, Yella et al. 2014). In this thesis, we employed spin-

coating for the perovskite layer, and we deposited the perovskite films in the N2-filled 

glovebox with one-step spin-coating method.  

In this method, all perovskite composition materials were mixed with a specific molar 

ratio and dissolved in a solvent such as DMF and DMSO or a mixture of them. Then, the 

solution was left on the stir with a temperature of 65℃ for a few hours until overnight in 

order to get a homogeneous solution. Then, the solution deposited on the SnO2 layer 

samples with the anti-solvent method by spin-coating followed by annealing step. This 

method requires fewer fabrication steps compared to the two-step method. Many research 

articles reported the fabrication of high-efficiency PSCs using the one-step spin-coating 

method (Jeon, Noh et al. 2015, Roldan-Carmona, Bi, Yi et al. 2016, Saliba, Matsui et al. 

2016). For example, Roldan et al. used a non-stoichiometric PbI2:CH3NH3I ratio in the 

precursor solution and achieved a maximum PCE of above 19.09% (Roldan-Carmona, 

Gratia et al. 2015). Maximum efficiency of 20.8% was achieved with the one-step spin 

coating method from a solution containing a mixture of FAI, PbI2, MABr, and PbBr2 (Bi, 

Tress et al. 2016). The molar ratio of 1.05 for PbI2/FAI was found to be critical in the 

preparation of the perovskite solution for this method (Bi, Tress et al. 2016). Saliba et al. 
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added a small amount of oxidation-stable rubidium cation (Rb+) into the perovskite 

precursor solution with the one-step method which resulted in an efficiency of 21.6% on 

small active areas (Saliba, Matsui et al. 2016). This device also shows good stability 

characteristic under the full illumination and maximum power point tracking condition. 

In addition, in another work, Saliba et al. incorporated Cesium (Cs) into the perovskite 

precursor solution to own triple cations including FAI, MAI, and CsI (Saliba, Matsui et 

al. 2016). Using this technique with the one-step spin-coating, a stabilized power output 

of 21.17% are achieved. Also, Bi et al. used poly (methyl methacrylate) (PMMA) as a 

template to control the growth of perovskite crystals using the one-step fabrication 

method (Bi, Yi et al. 2016). With this approach, shiny and smooth perovskite films with 

excellent electronic properties fabricated, and maximum efficiency of 21.6% is reported 

(Bi, Yi et al. 2016). In this thesis, we used the one-step spin-coating with the anti-solvent 

method for fabrication of planer PSCs inside the glovebox. The Cs-doped mixed cation 

perovskite solution with a molarity of 1.3M and final formula of Cs0.05 (MA0.15FA0.85)0.95 

Pb (I0.85Br0.15)3 was usually used in this experiment. 

2.6 Deposition of Hole Transport Layer 

The hole transport layer (HTL) was deposited by using spin-coating a 70 mM solution of 

2,2’,7,7’-tetrakis-(N,N-di-p-methoxyphenylamine)9,9’-spirobifluorene (Spiro-OMeTAD) 

(purchased from Borun Chemicals Ltd, and Sigma Aldrich) in chlorobenzene 

(85.78mg/ml), with three additives to increase its conductivity. Spiro-OMeTAD is an 

organic p-type semiconductor that is typically mixed with other p-type dopants to 

improve its conductivity. Three dopants were usually used to dope the spiro-OMeTAD: 

4tert-butylpyridine (4TBP), FK209 Co (III), and Li-TFSI. Based on our experiments, 4-
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tert butylpyridine also aids the Li-TFSI solution to dissolve into the HTM solution 

readily. Without 4-tert-butylpyridine, the Li-TFSI dopant cannot get dissolved into the 

solution of spiro-OMeTAD in Chlorobenzene. If we add Li-TFSI dopant into the spiro-

OMeTAD solution before the 4-tert-butylpyridine, a milky in color solution with large 

undissolved particles will form. Thus, 28.8µL of 4-tert-butylpyridine was added into the 

solution of spiro-OMeTAD in chlorobenzene (CBZ) firstly. Then, 17.5µL from a solution 

of Li-TFSI in acetonitrile (520 mg/ml) was added to the HTM solution. At this step, the 

color of the solution is slightly yellow. Finally, 23µL of FK209 solution (150 mg/mL in 

acetonitrile) added to the HTM solution which changes the color of the whole solution 

into dark black upon addition. The molar ratio of dopants to the spiro-OMeTAD is 0.5, 

0.03, and 3.3 for Li-TFSI, FK209, and 4TBP, respectively. After annealing of perovskite 

layer, samples left in glovebox (depends on the environment) for a few minutes to cool 

down until the room temperature. Then, 70 µL of HTM solution spin-coated on the 

samples at 4000 rpm for 30 seconds. No annealing step used at this step. Devices were 

then left overnight in the air and glovebox for the Spiro-OMeTAD to dope via oxidation. 

It should be mentioned that the HTM layer must cover all surface of the perovskite. 

Otherwise, the humidity will affect the perovskite layer during the oxidation process of 

spiro-OMeTAD in a dry box. Also, if HTM solution could not cover the perovskite 

surface completely, we used a swab wetted with DMF to remove the uncovered parts of 

the perovskite and to clean the edges of the substrate.   

2.7 Deposition of Back Contact Gold Layer 

In this thesis, the thermal evaporation is the most frequently used method for deposition 

of back contact in the PSCs, since it has cheap, easy, and short time advantages. By this 
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method, the source material was heated to a high temperature at high vacuum so that the 

material can evaporate toward the substrates.  

For a common evaporation process, the samples and source material were carefully 

arranged and installed in the system. The distance from the filament to the crystal and the 

samples were carefully measured to calculate the tooling factor. The distance of the 

filament to the crystal sensor and samples was typically set to 12-15 cm. By this way, we 

make sure the samples will not become high temperature during evaporation. Then the 

chamber was pumped down for at least 45 minutes to reach to a vacuum of about 1x10-5 

mbar. The filament heated up with increasing the voltage to start the deposition process. 

A pre-deposition of about 5-20 nm was used to clean the surface of source material and to 

make sure the deposition rate is stable. Then, 80 nm gold deposited at a low deposition 

rate of 0.5-1 A/sec. Finally, at the end of the deposition process, we left samples inside 

the chamber for 5-15 min to cool down and not get stress upon quick exposure to the 

room temperature. The rapid cooling of the samples might introduce cracks in the gold 

layer since the thermal expansion coefficients of the substrate and the gold are different 

from each other.   

In this system, we used a straight coil filament for our experiments and could deposit the 

crack-free gold layer. Also, we need to clean the filament thoroughly and perform a high-

rate pre-deposition step. Thus, we concluded that the quality of the gold layer gets 

affected by the type and cleanness of the filament. Therefore, the straight filament was 

helpful to get crack-free gold films. In this case, the filament including gold wire was 

cleaned with acetone, IPA, and DI water thoroughly. Then, a one-minute pre-heating step 

was used before starting the deposition of gold. In this way, we get rid of any 
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contaminations present on the filament. Therefore, with a suitable distance between 

samples and the filament, and a low deposition rate of 0.5-1 A/sec along with 10-15 min 

cooling down a step, we could make gold layers without cracks by using the thermal 

evaporator. In brief, to get a crack-free gold layer on the HTM layer, we advise that when 

using the filament for the first time, it is good choice to bake the filament at above 900 C 

for at least 10 min to remove the contaminations. Also, it is critical to clean the filament 

before use with acetone, IPA, and DI water, respectively. Moreover, the best crucible for 

deposition of gold by thermal evaporation is the alumina-coated crucibles since the gold 

is a refractory metal that can alloy with Tungsten in the regular basket filaments. Here we 

used the straight filament made of Tungsten to get a crack-free gold layer. The thermal 

deposition system is shown in Figure 2.6 below: 

 

Figure 2.6 Thermal deposition system for gold electrode. 
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2.8 Current-Voltage Measurement 

For this thesis, the J-V measurement systems in the Graham Research Lab of Department 

of Chemistry at the University of Kentucky were used. All solar cells masked with a 

metal aperture which was used to define the active area of the devices. Also, all 

measurements were performed in forward bias scan and reverse scan. Forward scan 

means sweeping voltage from the short circuit current toward the open circuit voltage. 

Reverse scan measurement means sweeping voltage from open circuit voltage toward 

short circuit current. This system is located inside the N2-filled glovebox. 

In this system, a SS150 solar simulator (Scientech) was calibrated to give simulated AM 

1.5 sunlight at an irradiance of 100 mW/cm2. The irradiance was calibrated using an 

NREL-calibrated KG5 filtered silicon reference cell. Current-voltage curves were 

recorded by a source meter (Keithley).  

Thus, the results provided in Chapter 3 were measured with this system. The J-V 

measurement system is shown in the graph below: 

Figure 2.7 The main components of J-V measurement system. 

(a) (b) (c)
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2.9 Scanning Electron Microscopy (SEM) 

SEM is one of the most regularly used microscopy techniques in material structure 

analysis. In this thesis, we used Quanta 250 environmental scanning electron microscopy 

(ESEM) with energy dispersive spectroscopy (EDS/EDX). The Quanta 250 

environmental SEM was also employed to obtain the surface images of samples.  
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CHAPTER 3. RESULTS AND DISCUSSION FOR PEROVSKITE SOLAR CELLS 
PROCESSED IN GLOVEBOX ENVIRONMENT  

Some high performance perovskite solar cells are fabricated in the environmentally 

controlled, N2-filled glovebox system. In these systems, humidity is less than one parts 

per million (ppm). Therefore, the perovskite films will not be affected by the moisture. 

Also, a one user two-handed N2-filled MBraun glovebox with a varying pressure from 

three to six mbar was used for fabrication of perovskite solar cells. Besides, we had FTO 

coated glass (Pilkington, 8 Ω.cm-2) as the substrate in this chapter. This substrate 

provides high conductivity with transmission above 76%. It is an excellent choice for 

applications since low series resistance is required. Thus, the experiments we conducted 

in this thesis followed the procedures: cleaning FTO substrates, deposition of SnO2 

electron transport layer deposition of perovskite layer using spinning coater. Finally, a 

thermal evaporator was used for deposition of gold as the back contact. The J-V 

measurements were performed in the measurement system placed inside a glovebox in 

Graham lab at Chemistry Department. 

3.1 Brief history for Perovskite Solar Cells Processed in N2-filled Glovebox 
Environment  

Recently, PSCs have been proved that the PCEs to be larger than most organic solar cells, 

comparable to those of commercialized silicon solar cells and others based on inorganic 

semiconductors. The efficiency of PSCs reaches 24.2% in 2019, which initially started 

from a value of 4% in 2009. Currently there are many reports on high efficiency PSCs. 

For example, Jeon et al. incorporated Bromide (Br) into perovskite in order increase the 

band gap of perovskite materials, and thus increase the open circuit voltage of the device 
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to get high efficiency (Jeon, Noh et al. 2015). Moreover, incorporation of Br into the 

perovskite stabilized the perovskite layer against humidity degradation. In this work, a 

bilayer architecture of PSC from a combination of MAPbBr3 and FAPbI3 displays an 

average efficiency of 16.2% with a maximum efficiency of 18.5% (Jeon, Noh et al. 

2015). Ahn et al. fabricated highly compact perovskite layers by the spin-coating of a 

solution of methylamine, lead iodide, DMF, and DMSO, along with using diethyl ether as 

anti-solvent to remove DMF during spin-coating. Via this technique, the authors reported 

stable and highly-reproducible PSCs with an average efficiency of 18.3% for 41 cells. 

The best PCE of 19.71% obtained by this method (Ahn, Son et al. 2015). A high-

efficiency PSC reported by Yang et al. with a new fabrication technique named as 

intermolecular exchange method (Yang, Noh et al. 2015). This method offers full 

conversion of PbI2 for perovskite. Besides, it creates large and flat grain size perovskites, 

which are critical to reduce the number of defects. Also, the perovskite layer with flat 

surface offers a smooth substrate for deposition of a thin HTM layer on top of the 

perovskite layer. Therefore, PSCs fabricated with this method presented a maximum 

efficiency of 20.1% with an average efficiency of over 19% (Yang, Noh et al. 2015).  

Yi et al. reported efficiency of 20.75% for PSCs fabricated by two-step spin-coating 

method (Yi, Li et al. 2016). They worked on the complete conversion of the mesoporous 

PbX2 precursor to perovskite with a mixed solution of PbBr2, MABr, FAI, and PbI2 in a 

mixed solvent including DMF and DMSO (Yi, Li et al. 2016). The main point of Yi et 

al.’s work is making an excellent infiltration of perovskite into a mesoporous PbI2 layer 

by the reagent solution. In another research, Bi et al. have reported a new metal halide 

PSCs with maximum efficiency of 20.8% fabricated in the glovebox by one-step spin-
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coating method (Bi, Tress et al. 2016). This new perovskite with formula MAFAPbIxBr(1-

x) consists of a mixture of FAI, PbI2, MABr, and PbBr2 with the precisely controlled 

composition of materials. The PbI2/FAI molar ratio of 1.05 in the precursor solution is an 

important parameter in order to have highly-efficient PSCs (Bi, Tress et al. 2016). 

Crystallization of perovskite is the most challenge part in the fabrication of PSCs, since 

defects such as pinholes and grain boundaries mostly develop during this step. In work 

reported by Bi et al., a new approach was introduced to prepare high-quality perovskite 

films using poly (methyl methacrylate) (PMMA) as a template. PSCs fabricated by this 

approach display a certified efficiency of 21.02% and a maximum efficiency of 21.6% 

with an open-circuit voltage of 1.14 V, short-circuit current of 23.7 mA/cm2, and fill 

factor of 78% (Bi, Yi et al. 2016). In another work, Saliba et al. reported incorporation of 

small and oxidation-stable rubidium cation (Rb+) into perovskite materials. PSCs 

fabricated by this technique shows a stabilized efficiency of 21.6% with an average 

efficiency of 20.2% (Saliba, Matsui et al. 2016). It suggests that a 5% incorporation of 

Rb+ is the optimal value to get the best performance PSCs (Saliba, Matsui et al. 2016). 

Finally, Yang et al. recorded the highest efficiency for PSCs by the introduction of 

additional iodide ions into the organic cation solution with two-step spin-coating method 

through the intermolecular exchange process. The best efficiency of 22.6% with a 

certified efficiency of 22.1% is reported (Yang, Park et al. 2017).  
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3.2 SnO2 as the Electron Transport Layer in the PSCs 

As a high performance solar cell, the energy levels of various materials must be well 

aligned. For example, the band gap in the light absorber must be appropriate for 

absorbing visible light. Also, the conduction band edge in the light absorber should be 

slightly higher than the conduction band edge of the n-type semiconductor, and then 

electrons can be efficiently injected from the light absorber to the ETL. Interestingly, all 

of these energy levels can be altered with different ways. For example, by changing 

materials for the carrier transport, the conduction band edge will also change. Stability 

and scalability have become the two main challenges for perovskite solar cells with the 

research focus in the field advancing toward commercialization. Charge transport layers 

are found to be critical for device performance and stability. A traditional electron 

transport layer (ETL), such as TiO2, is not very efficient for charge extraction at the 

interface, especially in planar structure. In addition, the devices using TiO2 suffer from 

serious degradation under ultraviolet illumination.  

Compared with TiO2, SnO2 possesses several advantages such as higher mobility and 

better energy level alignment. More importantly, using of SnO2 as ETL can 

eliminate/minimize degradation of perovskite solar cells induced by TiO2 as ETL, leading 

to significantly enhanced operational lifetime under continuous light illumination. 

Besides, in contrast with TiO2, SnO2 could be easily coated by low temperature solution 

process, electrodeposition process, atomic layer deposition, chemical bath deposition, 

electron-beam deposition, and sputtering deposition. 

SnO2 has attracted great attentions as ETL for PSCs, and it is considered as the most 

promising alternative to TiO2 due to following reasons: 1) SnO2 owns deep conduction 
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band and good energy. 2) SnO2 owns high bulk electron mobility of up to 240 cm2 V-1s-

1 and high conductivity, which can potentially improve the electron transport efficiency 

and reduce the recommendation loss. 3) SnO2 has wide optical bandgap and high 

transmittance over the whole visible spectra. 4) SnO2 is easily processed by low 

temperature methods (<200℃). 5) SnO2 showed excellent chemical stability, UV-

resistance properties, and less photocatalytic activity in comparison with TiO2 or other 

ETLs, which is helpful for overall device stability (Qi Jiang et. al. Small, 2018). 

 

3.2.1 Sputtered the SnO2 thin film by sputtering system  

Here we used the sputtering to sputter the SnO2 film, and the thickness of the layer was 

controlled by some factors such as power, deposition rate, and the deposition time. The 

SnO2 target had a purity of 99.99%, and the distance between the target and sample was 

about 10 cm. The chamber was pumped down for 75 min to get the pressure of 0.05 

mTorr. To clean the target surface, the pre-deposition process performed for 6 min or 150 

°A. The process was completed in pure Ar gas with a flow meter of 15 sccm (standard 

cubic centimeter per minute). The sputtering process of compact SnO2 was finished at the 

power of 150W with a deposition rate of 0.7 °A/sec at a working pressure of 4.1 mTorr. 

In the case of gold sputtering, the power was 16 W to have a deposition rate of 0.5 °A/sec 

at a pressure of 3.6 mTorr. The film thickness was adjusted by the sputtering time and 

monitored by the film thickness meter which was mounted on the substrate stage in the 

chamber. After depositing SnO2 electron layer, we do the same steps in the following 

procedure as the solution process method. Then we measured the PCE by J-V 

measurement system, which is shown in the graphs below. From the graph, we can see 
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that the reverse PCE is only 7.56%, and forward PCE is only 4.28%. Also, the fill factor 

is very lower than normal one. We have tried to change the thickness of SnO2, and 

changed the annealing temperature, but the results are almost same. After reviewing some 

literature, we found that it needs 90% percent oxygen and 10% Ar instead of 100% Ar 

when sputtered the SnO2 film. Due to lacking enough oxygen, we stopped using 

sputtering SnO2 method, and switched to use solution process method for the further 

experiments. 

 

 

Figure 3.1 Performance of devices using sputtering SnO2 film. 
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3.2.2 Annealing outside or annealing in the glovebox after deposition of electron 

transport layer by solution process method  

In our experiments, we wanted to test the question: should we do the thermal annealing in 

ambient air, or do the thermal annealing in the glovebox? Thus, we design the 

experiments below: we bought SnCl4 (99.995%) from sigma, and the concentration is 

2.226g/mL. Here we add 50µL SnCl4 in 4.275 mL ethanol as the solution. Then we 

deposited 95µL solution for each substrates. For substrates 7 and 1, we did the annealing 

for 0.5 hour in the glovebox; for sample 8 and 4, we did annealing for 0.5 outside the 

glovebox. Also, we finished the same procedures for all the samples. Then we tested the 

performance of each samples. The graph (a) represents the sample 4, which is done the 

annealing outside of the glovebox. The graph (b) represents the sample 8, which is done 

the annealing in the glovebox. From the power conversion efficiency of these two 

samples, we can conclude that annealing the samples outside the glovebox is better than 

annealing the samples inside the glovebox. We think that the oxygen outside the 

glovebox is much more than the oxygen inside the glovebox, and the SnCl4 on the 

substrates can better converted into SnO2 due to the efficient oxygen outside the 

glovebox. 
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3.3 Cesium-Doped Mixed Cation PSCs 

Although FAPbI3 has lower band gap compared to the MAPbI3 perovskite with a band 

gap of 1.55 eV, FAPbI3 is not stable at the room temperature (Stoumpos, Malliakas et al. 

2013, Lee, Seol et al. 2014, Jeon, Noh et al. 2015). The best PSCs reported by now are 

from mixed cation perovskites containing both MA and FA, but these perovskites are 

thermally unstable and sensitive to the processing method. Doping perovskite with 

Cesium is a pathway to keep the whole material stable. Therefore, Saliba et al. suggested 

the mixed cation perovskite doped with Cesium with a general formula of 

Csx(MA0.17FA0.83)(100-x)Pb(I0.83Br0.17)3 (Saliba, Matsui et al. 2016). They reported the 

fabrication of high efficiency and highly-reproducible PSCs by the Cs-doped mixed 

cation perovskites. In this chapter, we focused on the fabrication of Cesium-doped mixed 

cation PSCs in the glovebox and optimized several parameters to increase the efficiency 

of PSCs in our lab. For the fabrication of PSCs in the glovebox, we mainly conducted the 

Figure 3.2 Comparison of perovskite solar cells performance annealed inside the 
glovebox and outside the glovebox. 
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experiments according to the following procedures: Firstly for the SnO2 electron 

transport layer deposition, then the perovskite layer deposition, next we deposit the hole 

transport layer, and the last step we finish the electrode deposition. In detail, the samples 

were left on the hotplate with a temperature of 100°C for the annealing process after 

electron transport layer finished. In this way, the moisture would not affect the surface of 

the samples. Later on, when deposition of perovskite and HTM completed, we cleaned 

the FTO area with a blade to remove the perovskite layer, and then a swab wetted with 

DMF and ethanol. At first we used the Kapton tape to cover the FTO part in our 

experiments, but after some experiments, we found that the Kapton tape leaves some 

residue on the surface of FTO. Besides, Kapton tape prevents the uniform distribution of 

the perovskite solution during spin-coating, especially for the anti-solvent method. Also, 

when we set the stir’s temperature to 65°C, the solution is divided into two separate 

liquid regions with different densities. Thus, after an overnight stirring, we decrease the 

temperature of the stir to 45°C a few hours before deposition of perovskite to have a 

homogenous solution. 

3.4  Fabrication and Optimization of Cs-doped Mixed Cation Perovskite  

In this section, we summarized the processing issues we solved during fabrication of the 

perovskite film in the glovebox. Dryness of the glovebox and the spin coater environment 

plays a vital role in getting a high-quality perovskite film. In literature, the one-step spin-

coating using the anti-solvent method with the spin-coating speed at 1000 rpm for at least 

10s followed by spin-coating at high-speed was usually used for deposition of the 

perovskite layer. Nevertheless, it does not work for our fabrication setup. The perovskite 

film will get dry quickly during the first spin step at 1000 rpm due to open-cap spin-
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coater. Thus, the 10 s spinning at low speed does not provide a shiny, black, and smooth 

surface perovskite layer. Therefore, we optimized the spin-coating parameters to 1000 

rpm for 10 sec followed by 4000 rpm for 30 secs to get a decent perovskite film. A 100 

µL of CBZ is dropped on the substrates after 20s during the second spin step at 4000 

rpm.  

3.5 Different Concentrations of SnO2 Solution for Electron Transport Layer  

Here we tried different concentrations of SnO2 as the Electron Transport Layer, since in 

the literature, one is said 20% in H2O colloidal dispersion, and the other said the accurate 

concentration is 15%. So here we use two kinds of SnO2 solution. For solution 1, we 

mixed 267µL of SnO2 mixed with 1730 µL of water as the concentration of 20%. For 

solution 2, we mixed 333 µL of SnO2 mixed with 1670 µL of water as the concentration 

of 15%. Then we tested the performance of Perovskite Solar Cells by Current-Voltage 

Measurement. For the graph (a), it expressed the test results of perovskite solar cells, 

which use the solution 1 (20%) as the SnO2 electron transport layer. For the graph (b), it 

shows the test results of perovskite solar cells, which use the solution 2(15%) as the SnO2 

electron transport layer. From the tests results, we can find that the performance of 

perovskite solar cells that use the 20% SnO2 solution is better than the performance of 

perovskite solar cells that use the 15% SnO2 solution. Thus, in our further experiments, 

we will use the 20% SnO2 solution for the electron transport layer deposition.  
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Figure 3.3 Comparison of perovskite solar cells performance which are deposited with 
different concentration of SnO2. 

 

3.6 Keeping the SnO2 layer on the electrode instead of scratching 

After deposition of Gold layer as the electrode, we usually scratch some electron 

transport layer on the substrates, in order to expose the electrode. However, in our 

experiments, we do not scratch the electron transport layer SnO2, and the samples work 

well when we do the Current-Voltage Measurement. From the paper we checked, we find 

that the band gap value of SnO2 is about 3.7 eV. For the band gap value of FTO 

(Fluorine-doped tin oxide) is about 3.8 eV. Thus, the band gap value of SnO2 and FTO is 

almost the same, and the electrons can be easily transported between SnO2 layer and FTO 

substrate.  
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3.7 Using filter for Perovskite solution  

In order to block big perovskite particle and get high quality perovskite solution, we used 

filter for the perovskite solution, and then deposited on the substrates. In detail, we 

filtered the perovskite solution (PTFE filter with pore size of 0.45µL was used) before the 

deposition of the perovskite. This step is critical for getting a smooth and shiny 

perovskite film. Otherwise, there will be some particles in the solution which are not 

dissolved completely, making the surface of perovskite non-smooth. The solution is 

prepared inside the glovebox. Also, we dropped the perovskite solution at different angle 

such as 70 degree, 45 degree and so on. Here we deposited perovskite solution on 8 

substrates. We used 150 µL perovskite solution, 100µL CBZ for each sample. For sample 

1, we adopted 1000 rpm 10sec and followed by 4000 rpm, 30sec, 45 degree. For sample 

2, we adopted we adopted 1000 rpm 10sec and followed by 4000 rpm, 30sec, 80 degree. 

For sample 3,4,5, 7, we adopted 1000 rpm 10sec and followed by 4000 rpm, 30sec, 70 

degree. When deposited for sample 4, 7, we used slow drop like two drops. For the 

Sample 5, we dropped the solution too fast. For sample 6,8 we adopted 1000 rpm 10sec 

and followed by 4000 rpm, 45sec, 70 degree. We used current-voltage measurement to 

test the samples, and we got the results below. For the sample 3, we get the best result: 

the reverse scan PCE is18.13%, and the forward scan PCE is 15.49%. Thus, the 

difference between reverse scan PCE and forward scan PCE is smaller than before, so 

using filter is helpful to reduce the hysteresis. 
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Figure 3.4 J-V curve of the best device in small size (0.078 cm2) measured from 
reverse and forward scan under one-sun condition (AM 1.5G, 100Mw cm-2). 

 

 

3.8 The dropping chlorobenzene solution angle impact on the performance of the 
samples  

Here we use the same experiment parameters except different dropping chlorobenzene 

solution angles. We compared the performance of samples with 45 degrees and 70 

degrees, and we get the PCE of the samples shown in the graphs. From the Current-

Voltage measurement, we get that the PCE of samples that are dropped chlorobenzene at 

70 degrees is better that the PCE of samples that are dropped chlorobenzene at 45 

degrees. We think that the chlorobenzene solution can be deposited uniformly when 

dropped at 70 degrees.  
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Figure  3.5 J-V curve of the device that is dropped solution at 45 degree in small 

size (0.078 cm2) measured from reverse and forward scan under one-sun 
condition(AM 1.5G, 100Mw cm-2). 

 

3.9 Using filter for both Perovskite and Hole transport layer solution  

Here we also use filter for the HTM solution beside PSK solution, and we keep the 

experiments parameters the same as the last experiments except using filter for PSK 

solution and HTM solution. Also, we used current-voltage measurement system to 

evaluate the performance of the samples. 

From the measurement, we find that the PCE is lower than that before. Thus, using filter 

for PSK solution and HTM solution together is not as good as using filter only for PSK 

solution. We think that the HTM layer became thinner than before the filter was used, 

and that is not good for entire performance of Perovskite Solar Cells. 
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Figure 3.6 The best performance of perovskite solar cells after filter of perovskite 

solution and HTM solution. 
 
 

3.10 Perovskite Solar Cells without SnO2 electron transport layer  

Since the band gap of SnO2 is about 3.7 eV. , the band gap value of FTO (Fluorine-doped 

tin oxide) is about 3.8 eV. Thus, the band gap value of SnO2 and FTO is almost the same. 

Then we designed an architecture without SnO2 electron transport layer, and tested the 

performance by current-voltage measurement. From the graph, we can see that the 

performance of perovskite solar cells without SnO2 electron transport layer is much worse 

that with SnO2 electron transport layer. We think that the quality of FTO is not good 

enough compared with the quality of the SnO2 layer we deposited, since it is fabricated 

by conventional factories.  
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Figure 3.7 The performance of perovskite solar cells without SnO2 electron 

transport layer. 
 

3.11 Back Contact Electrode  

Gold was usually used as the back electrode in the PSCs. We mainly used the thermal 

evaporation methods for deposition of the gold layer for PSC fabricated in the glovebox. 

In this section, we studied the crack on the surface of the film, and tried to solve this 

problem. 

The gold layer suffers from large cracks in the size of 300-500 nm if we use thermal 

evaporation. These cracks deteriorate the performance of the devices in many ways. 

Firstly, the cracked film may ineffectively collect the holes from the HTM layer owing to 

not strong adhesion to the HTM layer. Secondly, the cracks inside the gold layer reduce 
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the actual active area of the device, and thus underestimate the real device area. Thirdly, 

the cracks inside the gold layer can provide a pathway for the moisture to contact the 

HTM layer and affect the stability of the devices. We tried both spiro-OMeTAD and 

CuSCN HTMs to test the above parameters and found the cracks in the gold layer do not 

come from the substrate, thermal deposition rate, distance between source and samples, 

and the process of cooling. The cracks were still in the layers for all cases. Also, we 

should mention that our samples were exposed to the humidity for 1-2 hours before 

deposition of the gold and measurement of the cells. Figure 3 shows the top-view SEM 

image of the gold layer deposited by thermal evaporation. The cracks are present in the 

Au film according to the cross-sectional image. Thus, the active area is not accurately 

defined by the gold layer. The gold layer with such large cracks cannot prevent humidity 

from contacting the HTM layer. Although the overnight oxidation of HTM film is 

essential for high-performance PSCs, long-term exposure to the humidity damages the 

HTM film and deteriorates the overall performance of the device In order to make a 

crack-free Au layer on the HTM, we need to use the suitable crucible (straight coil and 

alumina-coated basket filament), then clean it with solvents and DI water thoroughly to 

not have any contamination on the filament and gold residue. Also, a pre-deposition step 

at high temperature is highly advisable before starting the deposition of gold. Besides, we 

used Tungsten basket crucible for deposition of Au. However, it always cause a full crack 

gold film. Finally, we found that a straight filament along with a cleaning process can 

make a crack-free gold layer. 
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Figure 3.8 Crack on the surface of Gold Electrode by SEM. 
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CHAPTER 4. CONCLUCTION AND FUTURE WORK 

4.1 Conclusion 

PSCs have demonstrated the PCEs greater than organic solar cells and comparable to 

those of commercialized silicon solar cells. The PCE increased from 6.5 % in 2011 to 

beyond 24.2 % in 2019. The light absorber of the PSCs is a film made of APbX3 

(A=CH3NH3, (NH2)2CH2 or Cs, X= I, Br or Cl). PSCs are considered as the most 

promising replacement of silicon solar cells due to their high efficiency at low 

manufacturing cost.  

In this thesis, compared to using the conventional TiO2 as the electron transport layer, we 

adopted SnO2 as the electron transport layer, and we successfully fabricated perovskite 

solar cells with planer structure in the N2-filled glovebox environments. Also, we studied 

the impact of several parameters on the performance of PSCs with fabrication in the N2-

filled glovebox environments, such as the annealing environment impact, different 

concertation solution impact, using filter for the perovskite solution and HTM solution, 

the dropping angle of perovskite solution, keeping the SnO2 layer instead of scratching, 

fabrication of PSCs without SnO2 electron transport layer, and fill factor issue. Here, we 

addressed several issues with the methods regarding the substrate cleaning procedure, and 

the deposition of metal back contact without cracks by thermal evaporation. Finally, we 

fabricated PSCs with efficiencies as high as ~18.13% by spin-coating a cesium-doped 

mixed cation perovskite with the final formula of Cs0.05(MA0.15FA0.85)0.95Pb(I0.85Br0.15)3 

using the anti-solvent method. We believe the efficiency can be improved by new tests 

since some parameters such as the quality of substrates can be optimized in the further 

experiments.  
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4.2 Future Work  

Although perovskites show excellent properties and PSCs recorded efficiencies higher 

than current commercialized CIGS solar cells, some issues still need more investigation 

for commercialization purposes such as the stability and hysteresis. A PV device need be 

flexible and lightweight for use in applications such as portable power sources and 

wearable products. In this case, low-cost roll-to-roll processing steps can be utilized. 

Thus, fabrication of the PSCs on the flexible substrate is a topic for researchers. 

Currently, most high-efficiency PSCs have lead in their perovskite precursor. As lead is a 

toxic material and may cause an environmental hazard, which is harmful to human 

health. Therefore, it is important to investigate a low-cost and environmentally benign 

lead-free materials for perovskite solar cells, such as replacement lead with tin (Sn). The 

maximum efficiency of lead-free PSCs is lower than that of lead-based PSCs. Thus, 

further research on lead-free PSCs is needed. Also, MAI and FAI perovskites are 

sensitive to the moisture, and then the performance of the PSCs employing these 

perovskites degrade over time in high-humidity conditions. Therefore, encapsulation of 

the PSCs needs to be considered. In addition, the spiro-OMeTAD with additives such as 

Li-TFSI are sensitive to preparation, operation, and storage. Also, they are expensive 

compared to the other materials in the PSC. Thus, some other low-cost organic HTMs 

materials are needed that function as good as spiro-OMeTAD without additives. 

Moreover, the gold material for electrode in the PSCs is expensive too, and reducing the 

cost of the PSCs for commercialization is important. Therefore, it is important to increase 

the efficiency of PSCs and to investigate low-cost materials with excellent long term 

stability. For example, carbon is not sensitive to the humidity and shows excellent 
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adhesion to the HTM film. Thus, the replacement of Au with carbon paste and carbon 

nanotube as the back electrode can be investigated for the low-cost and large-scale 

production of PSCs. Moreover, the J-V measurement of PSCs demonstrates hysteresis in 

forward and reverse scan direction. At present, there are four primary mechanisms 

reported for explaining the J−V hysteresis behavior: (a) slow transient capacitive current, 

(b) dynamic trapping and de-trapping processes of charge carriers, (c) band bending due 

to ion migration, and (d) band bending due to ferroelectric polarization (Chen, Yang et al. 

2016). For the main reasons, we need to investigate deeper in the further research. 

Furthermore, based our experiments and J-V measurements, current density and voltage 

for the devices are good, but the fill factors need to be improved. Thus, in the future 

work, improving the fill factor of the devices is one topic for further experiments. 
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