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Electric power systems are transforming from a centralized unidirectional market

to a decentralized open market. With this shift, the end-users have the possibility

to actively participate in local energy exchanges, with or without the involvement of

the main grid. Rapidly reducing prices for Renewable Energy Technologies (RETs),

supported by their ease of installation and operation, with the facilitation of Electric

Vehicles (EV) and Smart Grid (SG) technologies to make bidirectional flow of energy

possible, has contributed to this changing landscape in the distribution side of the

traditional power grid.

Trading energy among users in a decentralized fashion has been referred to as Peer-

to-Peer (P2P) Energy Trading, which has attracted significant attention from the

research and industry communities in recent times. However, previous research has

mostly focused on engineering aspects of P2P energy trading systems, often neglecting

the central role of users in such systems. P2P trading mechanisms require active

participation from users to decide factors such as selling prices, storing versus trading

energy, and selection of energy sources among others. The complexity of these tasks,

paired with the limited cognitive and time capabilities of human users, can result

sub-optimal decisions or even abandonment of such systems if performance is not

satisfactory. Therefore, it is of paramount importance for P2P energy trading systems

to incorporate user behavioral modeling that captures users’ individual trading

behaviors, preferences, and perceived utility in a realistic and accurate manner.

Often, such user behavioral models are not known a priori in real-world settings,

and therefore need to be learned online as the P2P system is operating.

In this thesis, we design novel algorithms for P2P energy trading. By exploiting a

ABSTRACT OF DISSERTATION



variety of statistical, algorithmic, machine learning, and behavioral economics tools,

we propose solutions that are able to jointly optimize the system performance while

taking into account and learning realistic model of user behavior. The results in

this dissertation has been published in IEEE Transactions on Green Communications

and Networking 2021, Proceedings of IEEE Global Communication Conference 2022,

Proceedings of IEEE Conference on Pervasive Computing and Communications 2023

and ACM Transactions on Evolutionary Learning and Optimization 2023.

KEYWORDS: P2P Energy Trading, User Behavioral Modeling, Prospect Theory,

User Preference, Reinforcement Learning, Optimization
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If you keep proving stuff that others have done, getting confidence,

increasing the complexities of your solutions - for the fun of it - then one

day you’ll turn around and discover that nobody actually did that one!

- Richard P. Feynman
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CHAPTER 1. INTRODUCTION

1.1 Background

Over the last decade, there has been significant interest in Renewable Energy

Technologies (RET) and Smart Grids (SG) fueled by the increased concern regarding

climate change and carbon footprint. The current status of power system has a

significant contribution to the carbon footprint given that 63% of world’s total

electricity production is based on fossil fuels like coal, oil, and natural gas as of

2019 [2]. In comparison, the portion of renewable sources is only 26% [2]. The figure

in United States (US) alone is 60% for fossil fuels and 20% for renewable as of

2020 [3]. However, over the course of two years through 2018 and 2019, the renewable

source based generation has seen significant increase globally with wind (+11.8%)

and solar (+22.5%) on the rise [2]. Somewhere around 2, 807 GW worth of renewable

energy technologies has been installed at the end of 2020 with 10.5% growth in 2020

alone while this figure reached to 3064 GW with 9.2% growth in 2021 [4]. Main

driving factors for this growth in renewable energy generation can be accounted to

the ease of installation for such RETs and financial incentives that they entail.

Figure 1.1: DERs and their integration with Smart Grid.

Owing to these factors, dramatic increase has been observed in the deployment of

RETs on consumers’ side as well [2] with 21 GW (+28%) residential solar installation

compared to 59.5 GW (+28.5%) in US [3]. In general, the energy sources with

small-scale power generation capabilities installed on distribution side are referred

1



to as Distributed Energy Resources (DERs), which may include solar panels, wind

turbines, and electric vehicles among others. The consumers equipped with DERs save

the expenses in long term as they cut off the cost (in part or in whole depending on the

installed generation capacity) of buying energy from the grid at costly price, followed

by the fact that this allows them to have control of how and when to produce, consume

and manage the energy. Recently, several researchers and government bodies have

put significant efforts into the evolution of SG technologies towards the paradigm of

Virtual Power Plants (VPPs) [5, 6]. Unlike the traditional systems where the energy

generation and distribution are centralized [1, 7], VPPs support a two-way flow of

electricity and information [8]. The objective of VPPs is to aggregate DERs, (such as

photovoltaics (PV), wind power, electric vehicles etc.), into the grid to provide reliable

ancillary services, traditionally provided by large power plants [9]. As a result, VPPs

represent a paradigm shift where large scale power plants will co-exist, and potentially

even be partially replaced, by distributed consumer-level energy generation [7, 9].

Figure 1.2: Visualization of Virtual Power Plant architecture. [CC BY-SA 4.0]

1.1.1 Prosumption and Need for Alternative Energy Market

DERs are generally intermittent and depending on the time of the day, weather

condition and the energy demand on any given day, the consumers equipped with

DERs can go beyond self-consumption as there will be excess energy generation which

might go wasted otherwise [1, 7, 10]. There exists two extensively employed methods

as of now for utilizing such excess energy generation on consumer’s end [11]. The first

2



approach is to install an energy storage system like battery to store excess energy

generation for later use. However, that will only incur additional costs in user’s case

not just installation cost but operational costs too. Furthermore, it has been shown

in several studies that installing a reasonable size of state-of-the-art battery back-up

system is either much expensive or their life-cycle and efficiency render them infeasible

in long-term scenario [12,13].

The second approach to utilize excess energy generation is to sell the energy to grid

through widely used schemes like Feed-in-Tariff (FiT) mechanism [13–15]. In such

mechanism, users can sell excess energy to the grid and buy again from the grid in case

of deficiency [15]. Unfortunately, these mechanisms offer very marginal benefits to

participating consumers [14, 15]. Mechanism like FiT generally involve net-metering

for energy exchange for users meaning that users will not get paid for any excess

energy they supply to the grid. Even if they do get paid, it is a nominal price that

is not as motivating for users to be involved in such schemes for long term [14, 15].

As a consequence, several grids through out the world have placed capping either in

terms of the amount of energy that these consumers can sell to the grid or in terms of

energy price. In addition to that, there have been reports of schemes like FiT being

discontinued altogether in several locations through out the world [13–15].

Instead recent efforts to create a consumer-centric energy market where consumers

can participate in exchanging energy freely without any sidelining from the grid is

taking pace [1,16,17]. A key enabler of this new market has been SG technologies [18],

which has facilitated the bidirectional flow of electricity with the advanced metering

infrastructures and smart circuit breakers. Furthermore, with the support of state-of-

the-art Internet-of-Things (IoT) devices, SG has made it more easier for consumers

to exchange, monitor and manage energy generation and consumption [19,20]. Since

consumers can monetize from excess energy that instead would have gone to waste,

this acts as a primary incentive for such users to engage in the energy exchange

3



process itself. Moreover this has also promoted the localized energy generation and

consumption which has an added benefit of reducing the energy loss incurred in

transmission/distribution system in a traditional power system [10].

Additionally, the local energy exchange among consumers also helps in managing

the energy at the distribution side without causing stress to the grid. Two-way

benefits of such an energy market has been regarded as a promising and viable

alternative to the schemes like FiT mechanism and does not require costly energy

storage options [1, 15]. With the localized energy exchange, the consumers who were

at the lower hierarchy in the traditional power system are now being actively involved

in the energy market with the increased proliferation of DERs and SG technologies

into the scene. This has, in turn, created a shift in the energy market from traditional

centralized architecture to a more robust and versatile decentralized architecture

where such consumers equipped with DERs can be involved in the energy exchange

for any excess generation on their end [10, 13–15]. These consumers who can engage

in energy exchange are called prosumers [1], as a portmanteau of pro-ducers and

con-sumers. This kind of prosumer-centric market emphasizes on the decentralized

structure that promotes local energy exchange through added monetary incentives

for both local buyers and sellers of energy [1, 17].

1.1.2 Peer-to-peer (P2P) Energy Trading

Such a decentralized energy market is referred to as the peer-to-peer (P2P) energy

trading market [10, 14, 15], as it involves the trading of energy between peers. Peers

in this case would be prosumers who want to exchange energy among each other.

Generally feasible in localized setting because of the amount of energy involved and

the constraints of physical infrastructure [7, 15], these types of energy trading have

been successfully applied in a real setting as can be seen in case of US based Brooklyn

Microgrid [21], Dutch startup called Vanderbron [22] and UK-based Piclo [23]. This

energy trading market modality has served as an alternative to the traditional energy
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trading modality and therefore, has opened new avenues to allow prosumers to trade

energy among themselves at mutually beneficial prices with added flexibility for

trading energy services [1,17]. It not only benefits the prosumers in terms of finances

and flexibility but also supports the overall cause of making the energy landscape

green, sustainable, and efficient [7, 10, 14,24].

The main concern however in case of P2P energy trading is to assert sustained

involvement of prosumers in the energy market to trade energy with one another [15].

This requires a continual active participation from prosumers with the system, which

might not work in practical setting. It has been established that humans have limited

capability to process information which reflects to their limited cognitive and time

capabilities [25]. In other words, the users deviate from rational decision making

when they are overwhelmed with a great deal of options to choose from or tend to

settle for non-rational judgements when the problem start getting relatively complex

to comprehend. This bound to human rationality is explained by the concept called

Bounded Rationality, which has been observed in real life situations and verified by

numerous studies spanning from fields like behavioral economics [26–28] to cognitive

sciences and decision-making [29].

The original work on bounded rationality in [26] mentions that the users might

suffer from fatigue in the face of complex problems and overwhelmed choices and

hence, resort to a phenomenon called satisficing, i.e. resorting to bare minimum that

meets their aspiration. Furthermore, the author in [30] notes that this phenomenon

has become more prominent in current digital age with wealth of information and

choice overload at hand. Similarly the works in [31] found that in addition to

satisficing, the users might also opt to terminate the participation in the process if they

are snowballed, bored or experience physical discomfort beyond certain limit. With

similar rhetoric, [32] points out that in the age of information overload, the users must

be subjected to only relevant information and the least amount at that. Hence, in
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light of these works, it would be safe to say that a P2P energy trading market (or any

such intelligent system, for that matter) should require minimal active participation

from users while also ensuring their sustained involvement [15, 33]. This can be

achieved through the process of automated decision making for energy exchanges

among prosumers that is augmented by occasional human participation as a feedback

for the system to guide it towards better decision-making.

Figure 1.3: Incorporating User Behavioral Modeling into P2P Energy Trading

To do so, user behavioral modeling should be incorporated into the system for

making automated decisions that closely reflects the prosumers’ energy trading

behaviors as shown in Fig. 1.3. In addition to that, the system also needs to maximize

the overall incentives on their behalf. Therefore, the P2P energy trading needs to be

prosumer-centric not just in terms of their involvement but also in terms of modeling

their behavioral patterns to predict their decision-making behavior and sustain their

long term involvement. The user behavior in turn needs to be learned from historical

user behavioral patterns/data. But oftentimes these data are unavailable or difficult

to obtain. So in absence of such data, this user behavior needs to be learned through

the adaptive learning process with online feedback from the users. This is a complex

problem of learning the users’ behavioral patterns over time while also using those

behavioral patterns for maximizing the incentives in every energy transactions.

Pertaining to the P2P energy trading, several work has been has been done in

the domain of energy exchange between peers in [34], [35], [36], [10], [37] and [38].
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These works focus on physical aspects like minimizing the loss or costs to maximizing

the exchanged energy. However, they have failed to incorporate the user utility into

the problem. There has been a work in [39] that includes the grid involvement in

the trading whereby grid sets the rules and regulation for amount of energy and

price. In context of user behavioral modeling in energy market, authors in [40]

consider dynamical price change to alter the user behavior for demand response.

In [41], prosumers with similar energy behaviors are grouped together to form a

virtual prosumer-community for energy sharing among such communities.

Similarly there have been few attempts at utilizing behavioral economics concept to

model the user behaviors. The authors in [16,42,43] have made some effort to capture

the irrationality of users under uncertain decision-making using the prospect theory

as a model to reflect user’s perceived utility. The term “utility" is referred to as the

measure of total satisfaction or benefit derived from consuming a good or service1.

The work in [15] has regarded the user participation as a central aspect of the P2P

energy trading but is only limited to the coalition formation in game theoretic setting

and does not explicitly consider user behavioral modeling. The work in [44] also uses a

prospect theory based distributed energy trading model to optimize trading decisions

for prosumers in a competitive market but with active human participation in the

form of bids and aims at learning the aggressiveness of the bids over time. However,

an explicit model that incorporates all of these system components for P2P energy

trading market together is still lacking in existing literature. Therefore there is the

requirement for developing such an energy trading market that not just facilitates the

automated energy exchange between peers but also maximizes their incentives while

prioritizing their energy trading behavior and perceived utility.

This dissertation aims at addressing the above limitations. Specifically, this

work aims at devising a prosumer-centric model for peer-to-peer energy trading

1Note that the term utility, for the rest of the dissertation, does not refer to the utility companies
that provide electricity or gas and strictly refers to the economical and psychological worth
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that optimizes the energy exchange between peers with their behavioral patterns

like preferences, price, and perceived utility into account. In order to learn these

user behavior patterns over time, mathematical optimization, machine learning and

reinforcement learning algorithms along with other classical statistical tools can be

used to design an all encompassing user modality. Through this study, we aim

to incorporate concepts of behavioral economics including bounded rationality and

prospect theory in the energy exchange problem that learns and captures the user

behavior as accurately as possible and utilizes the same to automate the decision-

making process on behalf of the users.

1.2 Objectives of This Dissertation

Main objectives of this dissertation are:

• To provide a general outlook on P2P energy trading along with possible market

modalities, user behavioral modeling and reinforcement learning.

• To conduct a detailed literature survey on existing state of P2P energy exchange

and trading approaches; along with an in-depth review of user behavioral

modeling, behavioral economics and learning of the user behavior.

• To devise a P2P energy exchange mechanism among users that aims at

learning the user behavior over time through reinforcement learning and

maximize the energy exchange between users with user preference and bounded

rationality in concern.

• To develop a prosumer-centric automated P2P energy trading platform through

the lens of prospect theory that maximizes prosumer’s perceived utility with

monetary incentives as major driving factor.

• To automate the pricing mechanism for sellers using reinforcement learning

frameworks to dynamically update selling prices based on market feedback on

price and total energy sold.
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• To propose an alternative modality of P2P energy trading involving Electric

Vehicles for joint enabling of ride- and energy-sharing services.

1.3 Dissertation Structure

The dissertation consists of seven chapters, bibliography and appendices. Chapter

1 provides the overview of the dissertation, main contributions and motivations.

Chapter 2 presents a general overview of relevant topics that sets up a foundation

for the work presented in this dissertation. An in-depth review of related works

is provided in Chapter 3 along with highlighting the research gaps that exist in

these works. In chapter 4, a P2P energy exchange model is devised that aims at

learning the user preferences through a reinforcement learning based recommendation

system while also maximizing the daily energy production and consumption. The

work in this chapter was published in IEEE Transactions on Green Communications

and Networking [45] and Proceeding of 2023 IEEE International Conference on

Pervasive Computing and Communications (IEEE PerCom) [46]. Chapter 5 proposes

the incorporation of the monetary exchanges and perceived utility of prosumers,

automating the trading behavior of users through deep reinforcement learning.

The work in this chapter is published in the proceedings of 2022 IEEE Global

Communications Conference [47] and in ACM Transactions on Evolutionary Learning

and Optimization [48]. In chapter 6, we also incorporate the electric vehicle into

the P2P energy market model. In this chapter, we develop a more comprehensive,

effective, and realistic solution to jointly enable of ride-and energy-sharing services

in a crowdsourcing setting using reverse auction, reinforcement learning and efficient

matching algorithms. The works in this chapter are published in Proceeding of 2023

IEEE Transportation Electrification Conference [49] and under peer-review at the

time of submitting this thesis (arXiv preprint [50]). Finally, the conclusion and future

directions for the work in this dissertation are discussed in detail in chapter 7.
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CHAPTER 2. GENERAL OVERVIEW OF PEER-TO-PEER ENERGY

TRADING, USER BEHAVIORAL MODELING, REINFORCEMENT

LEARNING, AND CROWDSOURCING

In this chapter, a quick overlook on Distributed Energy Resources (DERs), peer-to-

peer (P2P) energy trading market model, user behavioral modeling and reinforcement

learning is presented. We start with growth of DERs, their interconnection with the

grid, rise of prosumers and Smart Grid (SG) and then move into detailed overview

of localized energy exchange and P2P model. This is complemented with a brief

introduction to user behavioral modeling and reinforcement learning approaches that

will find application in this dissertation.

2.1 Distributed Energy Resources, Smart Grid and Their Integration

In this section, we discuss about DERs, how the growth in smart grid technologies

have bolstered the growth of such DERs in distribution side of the grid and how it is

transforming the energy landscape altogether.

The urgency to mitigate the detrimental effects of energy industry on environment

has boosted the research in the field of environment-friendly, efficient and sustainable

source of energy generation in recent years [51]. As a result, the Renewable Energy

Technologies (RETs) and more specifically green energy technologies have been at

the centre of attention [9, 51]. This has been further fueled by the IoT-enabled SG

that embraces the use of cutting edge technologies to make the grid smarter and

an active ecosystem for energy exchanges among all the stakeholders [18]. Through

the incorporation of the novel sensing, communication, computing and monitoring

technologies, this smart grid focuses on transforming the electrical grid into smarter,

more resilient, efficient and flexible grid [19, 20]. SG technologies include Phasor

Measurement Units (PMUs) to assess the grid stability in real time, Advanced

Metering Infrastructures (AMIs) that can sense bidirectional flow of electricity and
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other IoT-based multi-functional supports that can help consumers track and schedule

their energy consumption as per their requirement [18]. SG also includes smart relays

and circuit breakers that sense and recover from faults automatically and support

the remote operation [18]. This way the SG has realized a bidirectional flow of

electricity and information that can easily accommodate the flexible operation of

grid in real time. It has also made the energy ecosystem more convenient and

accessible for installation and operation at consumer’s end. Similarly the rapid rise

in adoption of Electric Vehicles (EV) and the bidirectional chargers have created new

opportunities for mobile and flexible energy management through Vehicle-to-Grid

(V2G), Vehicle-to-Home (V2H), Vehicle-to-Vehicle (V2V) [52], as well as Battery

Swapping Technology (BST) [53].

The adoption of SG as well as the convenient installation/operation and reducing

price of RETs and EVs have resulted into proliferation of such energy sources at

distribution side of the grid that has been referred to as Distributed Energy Resources

(DERs) [54]. As [55] notes, DERs can be aggregated to optimize generation, storage,

as well as demand-side resources for maximizing the utility of both the end-users and

the grid operator. The idea of aggregating DERs has resulted into the paradigm of

Virtual Power Plants (VPPs), which has attracted significant interest from both the

academic and industry community [6,56]. To this aim, the integration of such DERs

into power systems has been introduced with the help of SG [10,19,57].

Integrating renewable energy generation into Smart Grids (SGs) already exists

in the form of Feed-in-Tariff [10, 13–15]. Through this mechanism, consumers can

sell the excess energy generated to the grid and also buy from the grid in case of

deficiency [7,15]. However, [14,15] mentions that this mechanism do not offer greater

incentives to consumers. It generally employs net-metering concept meaning that the

grid do not offer monetary incentives for any net excess energy sold to the grid and

even if they do, the price offered is very low [14,16,39]. Therefore, the authors in [7,13]
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highlight that this approach is neither profitable nor flexible for such DER-based

producers. In addition to that, [15] also points out that the increased penetration of

the intermittent distributed energy resources into the grid presents critical challenges,

such as energy fluctuation in the grid and successive destabilization.

The use of energy storage like batteries could be an alternative to deal with the

challenges posed by increased penetration of DERS into the grid but at the the

existing state of these technologies, they are expensive to install and their efficiency

and life-cycle is not luring enough to encourage consumers for their wide-scale

adoption [12,13]. As an alternative solution to mitigate these challenges, the trade-off

between use of storage for excess energy and managing energy among users with DERs

was studied in [58]. The results showed that in absence of expensive and ineffective

storage, the grid can notably gain from energy exchange among the users themselves

meaning that the localized energy exchange between the consumers could help in

managing the energy without destabilizing the grid. Besides, a recent work shows

that the energy mismatch within and between microgrids pose a significant problem

which needs to be optimized through an energy market to reduce the dependency on

the grid [59]. Therefore, trading surplus energy between users in a localized setting

is more viable and attractive option [24,45,60].

2.2 Localized Energy Exchange and P2P Energy Trading

In this section, we discuss in brief about P2P energy trading modality. In doing

that, several components and market structure that realizes a P2P energy trading

model is presented.

As established in section 2.1, supported by the SG technologies, a localized energy

trading mechanism that provides a platform to exchange energy between peers can

serve as an alternative to the existing market modality. Such a mechanism is

referred as Peer-to-Peer (P2P) Energy Trading. It consists of consumers with energy

generation capabilities or "prosumers" (portmanteau of pro-ducers and con-sumers)
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who can sell their energy to other prosumers (or consumers) at a profitable price

and also buy from them at the time of their need. P2P energy trading has been

gaining popularity in recent years as a decentralized alternative to the traditional

energy trading modality that provides flexibility for end-users to be involved in

energy trading [1, 33]. While P2P market model for energy trading mitigates the

limitations of existing market modality including FiT mechanism, there are several

other added benefits of this model. The localized energy trading between prosumers

offer economical incentive for prosumers to be engaged in such a system and make

profit out of the energy which otherwise would have gone wasted.

It also offers the consumers a wide range of choices to buy energy from according

to their preferences and convenience. Specifically, P2P energy trading provides a

prosumer-centric platform that allows prosumers to trade energy with each other at a

negotiated price. The trading may or may not involve the grid [14,61]. Typically, the

operation range of trading price would be higher than FiT price offered by grid and

lower than the electricity tariff charged by utilities. Further, electric grid companies

offering rates that change with the time-of-day make the P2P paradigm even more

convenient, particularly when the price of electricity charged by the grid is at its

peak [61]. Monetary incentives resulting from P2P energy trading, for both selling

prosumers (producers) and buying prosumers (consumers), are therefore far better

compared to existing mechanisms. As a result, prosumers are more incentivized to

keep engaging with the trading for the long-term [14,61].

P2P energy trading also aims at minimizing the dependency of prosumers from grid

for energy [15], resulting in an increased reliability of the overall system. Additionally,

a higher amount of local energy generation and consumption resulting from P2P

trading leads to the minimization of the overall system energy loss, as well as

an effective way to achieve demand side management [14, 24, 35, 45, 60]. Benefits

extend also to the grid operator, by providing savings in investments that would
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have been otherwise required to develop/maintain transmission infrastructure in a

centralized power distribution architecture [1, 14]. Therefore, P2P energy trading

offers a prosumer-centric approach that has potential to benefit all stakeholders

involved, as highlighted extensively in recent studies [10,15,34,36,39,44,45].

A general P2P energy trading mechanism is shown in Fig. 2.1. In order to provide

a detailed and structured overview of P2P energy trading, the components of P2P

energy trading is described in the next subsection 2.2.1 and the possible market

modality is explained in the following subsection 2.2.2.

Figure 2.1: General Overview of P2P Energy Trading Network

2.2.1 Components of P2P Energy Trading

To realize a P2P network, there must be two important elements present in the

system. One is the physical network that makes the actual exchange possible among

peers and next is the virtual platform that provides a technical infrastructure for

controlling and managing the P2P exchange. Different literature have visualized the

network components of P2P energy trading in multitude ways [1, 7, 14, 33, 62]. Most
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succinct way of dividing the features for such a P2P energy trading can be found

in [62], which highlights seven requirements viz. (i) a localized market setup with

participants and objectives, (ii) grid connection setup to transfer the energy (iii)

information system for communication within the market and its monitoring, (iv)

market mechanism and payment rules, (v) energy allocation and pricing mechanism,

(vi) energy management trading system, and (vii) regulation. Depending on whether

these features are physical requirement or virtual requirement, they can be grouped

into physical layer and virtual layer. The most important requirement is the market

participants without whom the market would not work. This can be referred as

Human Participation which includes the prosumers and user behavioral modeling.

So in summary, the P2P energy trading can be said to composed of these three major

components as shown in the Fig. 2.2.

Figure 2.2: Division of P2P Energy Trading Network Elements

Based on this division, a general overview of the P2P energy trading network is

shown in Fig. 2.1. The network can be visualized as the physical infrastructures

that forms the core of the network to realize the actual exchange of energy through

grid connection, smart meters and communication infrastructure. This physical layer

is then encapsulated by and monitored through the virtual layer that overviews the

energy exchanges using the market mechanism and pricing and regulations. As a P2P
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network, it requires involvement from peers/prosumers in the process which either

demands their active participation or could instead automate the decision making

process on behalf of peers through the use of user behavioral modeling.

In the following, the three elements of the P2P energy trading and their components

are explained in brief.

1. Virtual Layer Elements

a) Market Mechanism and Payment Rules

The market mechanism defines overall modality of market including

payment rules and clearly defined market operation. It also enables how

the trading and energy transactions will be carried out during different

market-time horizon [14,62].

b) Energy Allocation and Pricing Mechanism

This element follows the market operation rules to allocate the energy

between buyer and seller with a specific pricing mechanism for carrying out

the trading. It also needs to consider the fairness to all buyers and sellers

during the allocation in order to provide an unbiased financial platform for

all prosumers to be engaged in. The allocation of energy and respective

pricing also depends on the overall state of energy within the market but

also needs to reflect the prosumer’s individual trading behavior [14,62].

c) Information System

Information system forms heart of the P2P energy trading in that it enables

the communication between all the market participants, provides an equal

access to all prosumers for trading energy, integrates all the elements of

P2P network together and ensures a secure platform for trading [14, 62].

With rise in blockchain technologies in recent times, it has served as an
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efficient information system to realize a P2P energy trading network and

make it a fully decentralized system altogether [14,63,64].

d) Regulation

In order to make P2P energy trading a legitimate market and ensure

the participation of prosumers, there needs to be a clearly defined all-

encompassing regulations and energy policies that will govern such market

and determine the taxes, charges, and incentives for being involved in the

market.

e) Energy Trading Management System (ETMS)

ETMS manages the supply of energy for market participants while carrying

out the trading. It has access to demand and supply information of the

prosumers and utilizes that to manage the exchange of energy. It can also

involve automatic energy trading strategies on behalf of prosumers [14,62].

2. Physical Layer Elements

a) Grid Connection

This is the fundamental element of the network through which the energy

is transferred physically among prosumers and/or grid [14, 62]. Such an

energy network could be connected with the main grid as a backup or it

could also serve as an islanded microgrid system. In the latter case, it needs

to be ensured that the energy generation is sufficient enough to meet the

energy demand of the market participants for a given market-time horizon.

b) Metering

In order to evaluate and monitor the energy exchanges on transaction basis,

the advanced metering devices need to be installed at every prosumer’s

connection point so as to track and record how much energy was bought
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or sold during a given time period for a given prosumer. Furthermore, these

metering devices also need to communicate with each other to ensure the

inflow/outflow of energy as required by the virtual layer components.

c) Communication Infrastructure

Communication infrastructure is what makes the exchange of information

and all the communication between stakeholders possible. It could employ

different communication architectures to support the flow of information

within the networks in real-time with specific consideration to latency,

throughput, security, and reliability as mentioned in the work of [7].

The communication infrastructure includes networks and technologies

that allows for distribution of information related to measurement and

commands within the network [7].

3. Human Participation

a) Market Participants

There needs to be sufficient number of market participants for enabling

the P2P energy trading and also a mechanism to keep them tied up

with the market so as to make it sustainable over longer period of time.

Furthermore, there needs to be sufficient number of sellers as well as buyers

to support the trading.

b) User behavioral modeling

Demanding active participation from prosumers for every transactions

in each time-slot can be distressing for them and might also result in

potential abandonment of the system. Therefore, in order to ensure the

sustained participation of users, the system should demand minimal active

participation from users by automating the trading decisions on their

behalf with occasional feedback from them to guide the system. This
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requires implementing a proper user behavioral modeling that reflects the

involved users’ perception and preferences for such trading behaviors. We

discuss more on user behavioral modeling in section 2.3.

2.2.2 Possible Market Structures for P2P Energy Trading

Few works have looked into what the possible market structures will look like in

practical setting for P2P energy trading which includes [1] and [7]. The authors

in [1] have recognized three modality to incorporate prosumers into the scene namely,

i) prosumer-grid integration model, ii) fully decentralized model, and iii) prosumer-

prosumer organized community group model. It further highlights that these markets

have capability to maximize the energy efficiency effort along with decentralizing and

democratizing the energy trading environment.

Figure 2.3: P2P Energy Market Models [1]: a) Fully Decentralized Model; b) & c)
Prosumer-Microgrid Model - b) Prosumer-Interconnected Microgrids, c)
Prosumer-Islanded Microgrids; and d) Organized Community Model

1. Fully Decentralized Model

This model involves direct energy exchanges between peers and can be

considered decentralized, autonomous and flexible market modality for P2P

energy trading as shown in Fig.2.3(a). It relies on bilateral contracts between

individual prosumers that interconnect with each other directly without any
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central influence for trading energy services. One such mechanism for bilateral

contract is proposed in [65] for P2P energy trading with real-time and forward

contracts between peers and utility-maximization in concern. This kind of

model might reflect the sharing economic modality that has been promoted

by companies like Airbnb in case of sharing accommodation spaces and Uber

in case of sharing privately owned vehicles. The work in [13] has also discussed

about such possibility of sharing economy modality in case of sharing electricity

between prosumers. However, this could present challenges to the operation of

such a market without any central influence and also regarding the ownership

of infrastructures. In case of non-cooperative behavior from certain prosumers

or malicious attack on the network, this could lead to the disruption of

whole network and therefore, there could be potential concern for liability and

accountability for ensuring safe exchange of energy between peers [1].

2. Prosumer-Grid Model

This model is more structured than fully decentralized model. It involves the

interconnection of peers using a microgrid with (as in Fig. 2.3(b)) or without (as

in Fig. 2.3(c)) the involvement of main grid [1]. In this market model, the energy

can be traded among prosumers through the brokerage of the interconnected

microgrid and therefore the liability for safe energy exchange is shifted toward

the grid owner. If the main grid is involved, it can serve as a backup for

prosumers to sell or buy excess energy generation or demand that cannot be

traded within the local microgrid. In case of islanded microgrid, the energy

generation and demand needs to be managed within the microgrid through

load-shifting and storage options [1].

3. Organized Community or Composite Model

This represents a market model in which the prosumers in closer proximity
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form an organized community like VPP and pool resources for use among each

other [1]. These VPPs are in turn connected with each other through grid to

engage in energy trading services among and within these VPPs. A general

representation of such a market model is presented in Fig. 2.3(d).

The selection of the appropriate market structure depends on gepgraphical location

of such market and similarity of consumption/generation profiles of prosumers among

other several factors. Another major factor could also be the role of grid in such

market and how they can be integrated into the P2P energy trading scene.

2.3 User Behavioral Modeling and Behavioral Economics

User behavioral modeling in general has become a topic of attention in recent times

given the rising interest towards intelligent and automated systems/algorithms. In

particular the user behavioral modeling have become a beneficial tool to guide and

nudge the intelligent systems and algorithms to provide personalized, customized

and adaptive recommendations, feedback and choices for users [66]. User behavioral

modeling focuses on building a mathematical construct that reflects the complex

qualitative and behavioral patterns of users in order to determine and/or predict how

the users might behave under similar circumstances for a given application [66–68].

The user behavior models in earlier days relied on hand-crafted knowledge that in

turn are accumulated from inferences made through observation about users [68].

But with the wealth of data that is generated though internet and internet-of-

things, statistical models have stood up as a favorable alternative to traditional

knowledge-based method for user modeling [68]. There are several techniques under

predictive statistical models that have been reinforced with the emergence of Artificial

Intelligence. These statistical models have been used to learn user behavior with the

help of tools like decision trees, machine learning, neural networks, Bayesian networks

and so on [68]. These techniques are data-driven which learns the underlying pattern

accordingly from the provided datasets and therefore has served as a beneficial way to
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learn the user behaviors. This mechanism for behavioral modeling involves learning

of the model from historical data.

Another mechanism to learn the user behavioral pattern include an online learning

process where the parameters of the model are learned over the time with human-in-

the-loop. It can also be content-based meaning that the behavior of a user is predicted

from their past behaviors or it can be collaborative meaning that behavior of a user

is predicted from behavior of other users with certain similarities [68]. Either way,

as pointed out by [66, 68], the accurate representation of user behavior is hugely

significant in the applicability of an intelligent system/algorithm that focuses on

automating the tasks on behalf of users.

Figure 2.4: Notions of User Behavioral Modeling

It is very difficult to model human psychology and more so to duplicate human

decision making under risk [25, 27, 69, 70], which is where the behavioral economics

comes into play. Behavioral economics extends the traditional economic model with

realistic psychological foundations that emphasizes on limited cognitive capabilities of

humans and their perception of loss and gain as deviation from a reference point [25,

69, 70]. This helps to model the user behavior more accurately and particularly

their non-rational decision making under different circumstances [25,69,70]. Bounded

Rationality is one aspect of behavioral economics that captures the limited cognitive

capabilities of humans and provides explanation to their non-rational decision making
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in the face of overwhelmed choices or intractability of the decision problem [25,70].

Another major concept in behavioral economics is Prospect Theory (PT) [69]

which can be used to model the non-rational user behavior in the face of uncertain

decision-making. It is often regarded as fairly accurate mathematical representation

of human behavior [17, 42, 69]. PT specifically models the risk-seeking and loss-

averting behaviors of humans into a mathematical construct. It extends the concept

of financial value of loss and gain and transforms it into the perceived value of loss and

gain. This perceived value is determined with the help of the diminishing marginal

sensitivities for both loss and gain with respect to deviation from some reference point

and adding probability weighting to the prospects before making decision on which

prospect to choose [69, 70]. Eq. (2.1) represents the prospect theory value function

that accounts for perceived utility as a deviation from a reference point, r0.

v(x) =


k+(x− r0)ζ+ , x ≥ r0

−k−(r0 − x)ζ− , x < r0

(2.1)

As shown in figure 2.5 and recreated from [69], the value function is evidently non-

linear with respect to x, concave in gain domain, i.e. (x ≥ r0), convex in loss domain,

i.e. (x < r0) and steeper for loss than gains emphasizing the loss-averse tendency of

humans [69].

This notion of reference point, as mentioned in [69], is compatible with basic human

perception and judgement apparatus. Human response to qualitative and subjective

attributes are always perceived in relation to something they are familiar with or in

relation to their current preference/status in regards to such attribute [69]. Some

examples would be loudness and temperature, which people prefer what they are

familiar with or have been subjected to either in the past or in the present [69, 70].

However, in addition to that, the reference point could also be an expected value

that the agent aims to achieve regardless of their current status. As an illustration,
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Figure 2.5: A prospect theory value function v(x) with ζ+ = ζ− = 0.88 and k+ =
k− = 2.25

the relevant reference point for determining perceived loss and gain could either

be the current status of wealth/welfare or some expected value that they strive to

achieve [70]. The perceived value is complemented with the integration of risk-seeking

and loss-averting behaviors in prospect theory to model the decision-making under

uncertainty and risk [27,69,70].

As highlighted in [70], user behavioral modeling requires learning of the behavioral

patterns of user over time and making refinement to the existing model to capture

the realistic non-rational behavioral patterns. Human psychology is a complex and

dynamic thing [67,69,70] and the parameters of a user behavioral model is not known

a priori as such in realistic setting. In order to learn any parameters associated with a

model, one could either resort to statistical approaches that learn from the historical

data and then apply the knowledge obtained from those data to predict in same or

some another setting. However, this approach requires the availability of data which

might not always be possible. Another approach to learn the parameters is associated

with online adaptive learning process. In such process, the system is fed with initial

estimate and then based on the outcome the estimate is updated accordingly over each

iteration which is expected to converge after some iterations. One of such adaptive

learning methods is Reinforcement Learning (RL) which utilizes a dynamic learning
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process to learn an optimal policy [71]. In the next section, we explain RL in brief.

2.4 Reinforcement Learning

Reinforcement Learning is a sequential decision-making and behavior learning

model that learns to take the best actions (in terms of maximizing the reward or

minimizing the regret) through trial and error of interacting with the environment.

In RL, the actions are taken over time by balancing exploration of the unknown states

and exploitation of the known states based on existing knowledge. The reward from

the environment for taking that particular action is then observed as a reinforcement

or feedback to update the existing knowledge [71,72]. This adaptive learning process

of reinforcement learning renders it practical in settings where the complete knowledge

of the environment is missing or complete control over environment is not required.

Therefore, in recent times there has been a huge surge in interest over reinforcement

learning based algorithms which has found application in diverse fields ranging from

games to self-driving vehicles to robots to smart grids [72].

Figure 2.6: Agent-Environment Interaction in RL

The general framework for an RL problem is governed by Markov Decision Process

(MDP). An MDP consists of 5-tuple (S,A, T , γ, R) where:

• S is the state space of the environment

• A is the action space that an agent can choose to take an action from

• T is the transition probability of the agent transitioning from one state to the

next
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• γ ∈ [0, 1) is the discount factor that puts weight on how much the immediate

rewards value over the long term rewards

• R is the reward function that provides a quantitative feedback from the

environment for the actions taken by the agent.

RL in its basic form can be regarded as an interaction between an agent and

environment as shown in Fig. 2.6. At each time step t, the agent takes an action

(at ∈ A) according to exploration-exploitation strategy which takes the agent to a

new state (st+1 ∈ S) from state (st ∈ S). The agent obtains a reward (rt ∈ R) from

the environment as a feedback on how good the action taken by the agent was and

the agent obtains an observation (ωt+1 ∈ Ω). The objective of an RL is to learn an

optimum policy and the policy in case of RL is how an agent selects action(s). Policies

can be either deterministic or indeterministic:

• Deterministic case: the policy is defined by states alone as π(s) : S → A

• Stochastic case: the policy is defined by state-action pair as π(s, a) : S × A →

[0, 1] and π(s, a) is the probability that action a may be chosen in state s

The RL agent is seeking to find a policy π(s, a) ∈ Π that maximizes an overall

expected return V π(s) : S → R over infinite horizon. This expected return is called

V-value function which is defined as

V π(s) = E
[ ∞∑

k=0

γkrt+k|st = s, π

]
(2.2)

The optimal expected return or V-value function, therefore would be the return that

is received if the policy chosen is maximum one i.e.

V ∗(s) = max
π∈Π

V π(s) (2.3)
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In addition to V-value function, another widely used metric in RL is the Q-value

function Qπ(s, a) : S ×A → R defined as

Qπ(s, a) = E
[ ∞∑

k=0

γkrt+k|st = s, at = a, π

]
(2.4)

and this equation in turn can be rewritten recursively for an MDP using Bellman’s

equation as

Qπ(s, a) =
∑
s′∈S

T (s, a, s′)
(
R(s, a, s′) + γQπ(s′, a = π(s′))

)
(2.5)

The optimal Q-value function, therefore would be similar to Eq. 2.3:

Q∗(s, a) = max
π∈Π

Qπ(s, a) (2.6)

and the optimal policy can be found through optimal Q-value function

π∗(s) = argmax
a∈A

Q∗(s, a) (2.7)

Eq. 2.7 is the reason the Q-value function is more preferred than V-value function

most of the time as it allows to determine optimal policy directly from optimal Q-value

function.

From the above discussion, it can be stated that there are three different approaches

to learn a policy which are:

• Value function representation that provides prediction of how good each state

or each state/action pair is

• a direct representation of policy π(s) or π(s, a)

• a model of the environment that is represented by the estimated transition

function and estimated reward function
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Figure 2.7: General Schema of RL Methods. Direct approach utilizes value/policy
function and indirect approach utilizes a model of the environment.

The first two approaches belong to a broader category of model-free RL and the third

approach is model-based RL which is clarified through pictorial representation in Fig.

2.7. The direct approach involves learning value or policy function while the indirect

approach involves learning of the model of the environment itself.

Based on the three approaches to learning policies, different RL algorithms can also

be classified under three headings as follows:

1. Value-based Methods

• Q-learning

• Fitted Q-learning

• Deep Q-Networks (DQN)

2. Policy-based Methods

• Stochastic Policy Gradient

• Deterministic Policy Gradient

• Actor-Critic Method

3. Model-based Method

• Lookahead Search - Monte Carlo Tree Search (MCTS)

• Trajectory Optimization - PILCO, Guided Policy Search
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2.5 Spatial Crowdsourcing and Use of Electric Vehicles for

Crowdsourcing-based Energy Sharing

Spatial crowdsourcing is a recently emerging concept that leverages the power of the

crowd to complete spatial tasks such as mapping, monitoring, and surveillance [73,74].

It involves the use of mobile devices equipped with various sensors and IoT devices

such as GPS, cameras, and accelerometers, which allow users to completing the spatial

tasks. Spatial crowdsourcing has a wide range of applications, including disaster

response, environmental monitoring, urban planning, and transportation [75].

One emerging area of research in spatial crowdsourcing is the use of electric vehicles

for crowdsourcing-based energy sharing through vehicle-to-grid (V2G) and vehicle-

to-home (V2H) technologies [50]. V2G and V2H allow electric vehicles to be used

as energy storage systems that can help balance the electricity grid and provide

backup power to homes during blackouts. This is particularly important for renewable

energy sources such as solar and wind, which can be intermittent and unpredictable.

V2G and V2H require a large number of electric vehicles to be connected to the

grid or home energy system, and this is where spatial crowdsourcing comes in. By

incentivizing electric vehicle owners to participate in crowdsourcing activities, such

as data collection or task completion, a large pool of electric vehicles can be created

that can be used for V2G and V2H. This can help to reduce the cost of implementing

these technologies and make them more accessible to a wider range of people.

Overall, spatial crowdsourcing and the use of electric vehicles for energy sharing

through V2G and V2H are promising areas of research that have the potential to

revolutionize the energy sector. By harnessing the power of the crowd and electric

vehicles, researchers can create a more efficient, sustainable, and resilient energy

system that is beneficial to all the stakeholders. The benefits can be extended by

also incorporating the ride-sharing alogn with energy-sharing which allows for diverse

range of options for the EV drivers.
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The works put forth in this dissertation derives extensively from the concepts

discussed in this chapter. Specifically, we utilize user behavioral notions like user

preferences, bounded rationality and perceived utility along with the reinforcement

learning frameworks like Combinatorial Multi-Armed Bandit (CMAB), Q-learning

and Deep Q-network (DQN) to devise an automated and prosumer-centric P2P energy

trading modality through optimization techniques and crowdsourcing mechanism.

The details of the study carried for this dissertation are discussed in detail in the

following chapters.
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CHAPTER 3. A DETAILED LITERATURE REVIEW ON P2P

ENERGY TRADING AND USER BEHAVIORAL MODELING

In this chapter, existing works carried out on the fields of P2P energy trading, user

behavioral modeling and reinforcement learning is presented in detail. In doing so, the

major limitations of the existing approaches and research in the field is highlighted

that serves as the major motivation for the proposed prosumer-centric peer-to-peer

energy trading modality.

3.1 P2P Energy Trading

The energy exchange traditionally has been confined between large power producers

and grid wherein the grid purchases from these large producers at a pre-agreed

price and sells the energy to the consumers through its interconnected network

of transmission and distribution lines. In recent times, researchers in this field

have focused in diversifying the energy market modality adopted by the grids to

accommodate changing energy landscape including topics like coordinated operation

of large power plants; incorporating intra-day and real-time energy trading modality

into the traditional market and so on. As an example, a privacy-preserving framework

is proposed in recent work [76] to facilitate the coordinated operation of large-scale

operators like renewable power system operators and private industrial energy hub

operators while minimizing overall operation costs. Similarly, an offering and bidding

mechanism for a hybrid power producer is proposed by [77] incorporating the intra-

day trading mechanism with traditional day-ahead trading models to increase the

profitability and minimize the risks. These are few representative studies among

plethora of works being done in the field.

With the growth of microgrids, however, energy exchange between microgrids

themselves and also between microgrids and the grid has also been studied in literature

and also implemented in real-world setting. There exist several works focusing on the
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possible energy exchanges between smaller microgrids with or without the involvement

of main grid. Solution to coordinated distributed generation and demand response

management problem has been presented in [78] using multi-agent based approach

while similar work is done in [59], which adopts game theoretic and hierarchical

optimization approaches to minimize the power mismatch in and among microgrids

in a multiagent-based energy market. Operational management of a multi-microgrid

system is modeled using a joint constraint in a cooperative manner in [79] using

stochastic predictive control mechanism. Local energy trading has also been explored

among the interconnected microgrids in [80] and [81] in consideration with uncertain

parameters in the system.

Of late, the increasing involvement of prosumers into energy market and rise in

SG and VPP have made it possible for the prosumers to be engaged with energy

market. There have been several mechanisms in place to trade energy between

consumers and grid with most widely adopted mechanism being FiT mechanism.

However as an alternative to selling energy to the grid, the localized energy exchange

among prosumers in a P2P fashion is on the rise. [1] offers perspectives on prosumer-

centric energy market and the challenges that entails with them. It highlights that

P2P energy market has capability to maximize the energy efficiency effort along

with decentralizing and democratizing the energy trading environment. However,

it also mentions that the biggest caveat in doing so is the fact that the mechanism

required for such prosumer-centric market are either still being developed or not

accessible to all prosumers due to lack of support from utility or lack of regulations

to govern such mechanisms. Furthermore, in devising such market structures, there

needs to be proper consideration for grid reliability, privacy preservation and user

behavioral aspect; absence of which is bound to drive prosumers away from such

market modality rather than attracting them [1]. P2P energy trading, also referred

to as sharing economy model for energy, has been regarded as a highly prospective
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electricity market model [13, 82]. Its ability to accommodate the need for a rising

number of prosumers and to provide benefits to the grid and other stakeholders

in today’s changing electricity market, has resulted in notable attention from the

research community in recent years. Authors in [14] note that in P2P energy trading,

the prosumers themselves are in control of setting the terms of the transactions and

therefore the individual gains that they receive from participating in such trading is

significant in determining the energy trading model. It further mentions that based

on current emergence of SG and blockchain technologies, deployment of P2P energy

trading can provide a highly efficient and cost-effective energy management technique

in a decentralized way.

There are several real-life implementation of such energy exchanging modality and

other numerous literary works that consider energy trading among small-scale local

prosumers and consumers. The energy exchange in a localized setting is studied

in [35] which utilizes a DC power sharing among nearby homes. It addresses the

problem of mismatching between energy harvesting and consumption in a microgrid

and proposes a greedy approach that maximizes the energy exchanges among users

while minimizing loss and energy waste. Furthermore, self-consumption of locally

generated energy within a microgrid has been studied in [24], which presents a P2P

energy sharing model with price-based demand response (PBDR) program. The

efficacy of the method is verified in terms of cost-savings and improved energy-

exchange. The authors in [10] have developed a basic P2P model to incentivize the

prosumers and also address the power loss reduction and line congestion in physical

electricity lines. Similarly, the power loss in electric lines is also considered in [36]

along with privacy of the prosumers in a P2P energy trading market and effectiveness

of the decentralized energy market is established through simulation results.

The work in [15] has regarded the user participation as a central aspect of the P2P

energy trading but is only limited to the coalition formation in game theoretic setting
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and does not explicitly consider user behavioral modeling. The work in [44] also

uses a prospect theory based distributed energy trading model to optimize trading

decisions for prosumers in a competitive market but with active human participation

in the form of bids and aims at learning the aggressiveness of the bids over time. A

mid-market price based P2P energy trading market is presented in [34] that allocates

energy from the cheapest sellers first to the buyers in order of their registration.

In [83], the authors design a decentralized algorithm for an energy trading market

with renewable energy generators and price-responsive load aggregators. The goal is

to propose a receding horizon energy trading algorithm for the load aggregators and

generators with uncertainty of energy demand and energy production in consideration.

These are some of the works that consider some form of energy exchanges between

peers. There exist several studies that consider several aspects of P2P energy trading

and in the next section we review these literature based on the approaches they

employ in their work.

3.2 Technical Approaches Employed for P2P Energy Trading

There have been several works focusing on different aspects of P2P energy trading

that use several mathematical, economic and computer science-based constructs to

realize it. Based on these works, we can basically divide the existing P2P energy

trading mechanisms into four major approaches : 1) Game Theory, 2) Auction

Mechanism, 3) Constrained Optimization, and 4) Blockchain. Table 3.1 presents

a tabulated overview of general approach and methods employed for P2P energy

trading in these literature.

1. Game Theory

Game theory is a mathematical tool that helps in decision-making among

rational agents through their strategic interactions [14,33,39,84]. This strategic

interaction can be non-cooperative or cooperative. In non-cooperative game,

the agents with partially or completely conflicting interests take their decisions
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Table 3.1: P2P Energy Trading Approaches
Technical Approach Methods Employed Literature

Game Theory Stackelberg Game, Non-Cooperative Nash Game,
Canonical Coalition Game

[39], [84], [63],
[85], [15], [33]

Auction Mechanism Double Auction, Reverse Auction [86], [64], [87],
[88]

Constrained
Optimization

Linear Programming (LP), Multiple Integer Linear
Programming (MILP), Alternating Direction Method
of Multipliers (ADMM), Non-Linear Programming

[45], [60], [89],
[90], [91], [37]

Blockchain Smart Contract, Consortium Blockchain, Elecbay,
IBM Hyperleger Fabric, Ethereum

[63], [64], [92],
[93], [34]

without communicating with each other (eg. Nash Equilibrium) while in

cooperative game, the rational agents form a coalition with other agents to

improve their position in the game (eg. characteristic form) [33]. It is to be

noted that game theory considers the agents to be rational entities that are

always capable of making optimal decisions [14, 33]. Furthermore, it requires

constant active participation of these agents in the decision-making process

which can be static or dynamic depending on whether the agents can take

action only once or can continually update their actions depending on how

other agents act.

When it comes to P2P energy trading, huge amount of works tend to resort to

game theory for carrying out the trading between rational peers. A cooperative

Stackelberg game is formulated with dynamic energy pricing for P2P energy

trading in [39] with grid as the leader that sets the prices and the prosumers as

the followers. The prosumers seek to get incentivized for managing the energy

demand locally through coalition and helping to reduce the energy demand

for grid for a given time period. Similarly, the work by [84] also uses non-

cooperative Nash game theoretic formulation to propose a hybrid approach

for load scheduling and energy sharing. They conclude that the approach

serves significant cost benefits to the participating users without sacrificing the

fairness. However, the work depends on finding a Nash bargaining solution
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which is significantly challenging computation-wise and expected to perform

worse with increase in scale. In [85], a distribution side energy trading market is

proposed as a non-cooperative, multiplayer game that finds a Nash equilibrium

solution through an extremum seeking algorithm. The problem consists of

determining market clearing prices and quantity for each players based on

Nash equilibrium solution. [63] uses the Stackelberg game to design a pricing

scheme for P2P energy trading that uses consortium blockchain technology as a

platform for secure transactions. In [15], a canonical coalition game is devised to

share energy among groups of peers through social coalition for ensuring user’s

sustainable participation in the market.

2. Auction Mechanism

Auction mechanisms are the market institution that determine the resource

allocation and price on the basis of bids and ask price submitted by market

participants. Mostly employed auction mechanisms in case of energy markets

are the double auction and reverse auction. Double auction involves buyers

submitting their bids to an auctioneer while sellers, meanwhile, submit their ask

prices. The sellers are arranged in increasing order of their ask prices and the

buyers are arranged in decreasing order of their reservation bids. An intersection

point is determined from aggregated supply and demand curve that eventually

determines the breakeven auction price and list of sellers/buyers that will engage

in trading process. This list consists of sellers with ask price below the breakeven

price and buyers with bid above the breakeven price. On the other hand, reverse

auction is the market mechanism wherein sellers submit bids and compete to

sell their product to the buyers. For auction mechanism to work efficiently,

the reservation prices and/or bids reported by market participants need to be

truthful [14], which therefore requires the auction mechanism to have individual-

rationality and incentive compatibility properties.
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There are few works that employ auction mechanism as the tool to emulate

energy trading mechanism among prosumers. The authors in [86] aim at

designing the decentralized P2P architecture that explicitly deals with the

physical network constraints while enabling the energy trading between buyers

and sellers in a step-by-step continuous double auction approach. Similarly, the

study in [87] deals with learning the interaction between prosumers’ bidding

actions and market response from historical transaction data and uses that

to achieve optimal operation and maximizing profits in a P2P electricity

market in a double auction setting. A consortium blockchain-enabled double

auction mechanism to determine energy and price traded between prosumers is

presented in [64]. Likewise, [88] proposes a blockchain-enabled reverse auction

mechanism for dynamic pricing between charging and discharging EVs in a

peer-to-peer fashion using vehicle-to-grid network.

3. Constrained Optimization

Constrained optimization is a widely used mathematical tool for optimization.

It involves optimizing a certain objective function under the influence of

constraints that limit the region of operation of variables. These objectives can

be linear or non-linear and therefore, are called Linear Programming (LP) and

Non-Linear Programming (NLP) respectively. Similarly, it could also involve

types of variable that are employed and one such special case is Mixed-Integer

Linear Programming (MILP) that involves mixed set of integer and non-integer

variables. A canonical form of constrained optimization can be expressed as

Maximize f(x) (3.1)

subject to some constraints for variables like Ax ≤ c and x ≥ 0 where

x is the vector of variables that is to be determined, c is the coefficient
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vector while A is the coefficient matrix. Eq. (3.1) is the objective function

that is to be optimized while determining the variable vector that satisfy the

constraints of the problem. Depending on whether Eq. (3.1) has linear or non-

linear function, the optimization problem becomes linear (LP) or non-linear

optimization problem (NLP).

There are several approaches devised to solve complex optimization problem,

one of such methods is Alternating Direction Method of Multipliers (ADMM).

Basically a modified version of Lagrangian scheme, ADMM divides the complex

optimization problem into dual problem with two sets of dual variables. It then

solves the dual problem using partial update between these dual variables. The

mathematical form of the ADMM is expressed as

Maximizex,zf(x) + g(z) (3.2)

subject to constraints like Ax+Bz = c and x ≥ 0 where z is the dual variable

vector of x, and f(x) and g(z) are the dual problem and hence can be separated

into two objectives as well.

In [89], the authors propose a two-stage control mechanism to realize P2P energy

sharing in microgrids. In first stage, they formulate a constrained non-linear

optimization problem that minimizes the overall energy cost of the microgrid

and in second stage, they conduct a rule-based controlling of actual set-points

based on real-time measurement with optimal scheduling obtained from stage

one as a constraint for updating the said set-points in physical application.

Another work employing constrained optimization include [90] which utilizes

MILP to optimize the operating decision for P2P electricity trading scenario

considering practical constraints surrounding DG resource like rooftop PV

and battery storage. ADMM is used instead in [91] to minimize the overall
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individual cost functions of all participants in a P2P market in a decentralized

way that reflects the negotiation between the buyers and sellers. ADMM is

employed in [65] as well to optimize the utility of all participants of P2P

energy trading in the form of their individual preferences. Similarly the reactive

power optimization in P2P energy trading is studied in [37] using optimization

framework and differential evolution-based algorithm is developed to solve this

problem with higher dimensionality.

4. Blockchain

First introduced in [94], the Blockchain Technology (BCT) is a distributed data

structure that provides a decentralized alternative to secured trading platform.

Based on replication of blockchains and consensus mechanism within members

of network, it allows the electronic transactions to be carried out without the

need for a trusted intermediary. Given the decentralized structure of P2P energy

trading, BCT can only complement the P2P energy trading with its secured

decentralized financial platform. There has been some efforts in integrating

BCT with P2P energy trading modality.

The works in [63] and [64] use blockchain-enabled P2P energy trading with

Stackelberg game and double auction mechansim respectively. Another

literature that takes advantage of state of the art blockchain technology IBM

hyperledger fabric architecture is [92]. It realizes a crowdsourced energy systems

that supports the P2P energy trading between prosumers and/or the grid.

With the inspiration from original BCT, an efficient and secure method to

carry out P2P energy trading in microgrids called Elecbay has been proposed

in [93] that utilizes game theory and Nash equilibrium to determine the energy

traded among peers during the bidding process. A simple P2P energy trading

mechanism is conceived in [34] that considers mid-market price between buyer
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and seller and assigns energy from the cheapest seller to the first registered

buyer in the blockchain registration order before moving onto the next buyer

and then to next seller accordingly.

3.3 Real-world Implementations of P2P Energy Trading

In addition to the works in literature, there has been some real-life attempts

at realizing the P2P energy trading modality albeit in a preliminary form. A

real life commercial implementation of P2P energy market is offered by Brooklyn

Microgrid (BMG) [21], Vanderbron [22] and Piclo [23]. BMG offers a localized energy

marketplace in New York City. It uses blockchain technology to allow solar PV

owners, in both residential and commercial sectors, to sell excess energy to other

NYC residents who prefer to consume the locally-generated renewable energy instead

of fossil fuel-based energy [21]. Similarly, the Dutch start-up Vanderbron enables

the local renewable electricity generators to sell their energy under an online P2P

marketplace platform independent of any grid or government agency with a small flat

subscription charge for both buyers and sellers [22]. Piclo [23] is another start-up

based on United Kingdom that aims at building and promoting decentralized energy

landscape. It conducted a pilot program for its P2P energy trading initiative [95]

that allows renewable producers to set the price and sell energy to local consumers. It

notes that this modality offers significant empowerment of distribution side costumers

and removes the hurdle for individual participation in electricity market traditionally

monopolized by large, and often times fossil fuel based, producers.

Noting the participation rate from public and positive reception of BMG, the

authors in [62] made a study with BMG [21] as a test case. They acknowledge

the market potential for localized energy trading between energy buyers and sellers,

which will only be further amplified in future through the facilitation of blockchain

technologies and improving smart grid technologies [62].

40



3.4 User Behavioral Modeling and Behavioral Economics in Context of

Energy Trading

As pointed out by [66, 68], the accurate representation of user behavior is hugely

significant in the applicability of an intelligent system/algorithm that focuses on

automating the tasks on behalf of users. Furthermore, the mathematical constructs

that these user behavioral models require are oftentimes complex and touch on

multifaceted domains. One of these fields is human psychology [96] which is driven

by numerous known factors and many more unknown factors. Similarly, the user

behavioral modeling also requires socio-economic and demographic information which

are often times sensitive and private information that are hard to obtain and also

lead towards prejudiced outcomes, if proper consideration is not given to fairness in

devising the model [97, 98]. [99] further notes that just understanding how the mind

works is not enough to build such a system and must be complemented by analysis

of data on user behavior, learning the pattern and then making continual refinements

on the model over time. It also emphasizes on user-friendliness and simplistic design

for such system to encourage sustained user participation.

Note that none of the papers mentioned in this chapter so far consider the complex

aspects of user behavior, thus assuming users to be either extraneous to the system

or fully compliant with the system decision. They usually assume the users to be

rational entity and objective decision-maker. Therefore, for these reasons the lack of

realistic modeling may cause failure when implementing P2P energy trading in the

real world [96,100,101].

3.4.1 User Perception in Energy Sharing Systems

In developing a sharing economy business model for energy, due consideration

must be given to behavioral aspects of prosumers along with easing of regulatory

barriers for such market modality [82]. Similarly, [14] and [1] have given emphasis

on accommodating the user behavioral modeling in the P2P energy trading problem
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so as to ensure the sustained participation from prosumers while incentivizing their

contribution in such trading. P2P energy trading mechanism needs to manage

the energy exchange between buyers and sellers on the basis of their individual

preferences, behaviors, perception of loss and gains that will accurately model the

user behavior in this setting. These behavioral patterns are then used to maximize

the performance of overall system while simultaneously automating the task on

behalf of users. So the need for modeling user behavior as accurately as possible

is essential for ensuring sustainable participation of prosumers in the P2P energy

market. The works [14, 17, 43, 44] have highlighted on the importance of modeling

the non-rational behavior of users in the face of uncertainty and risk. [17] notes that

the user-behavior can deviate from rational principles of conventional approaches

when it comes to making choices and averting losses. Hence, assuming that these

users are some rational entities, who always make optimal and correct decisions, is

essentially flawed [17,42,100] and therefore, in devising a P2P energy trading market,

due consideration must be given to the user behavioral modeling with concepts from

behavioral economics as a foundation for the mathematical construct.

In general, there have been some researches that focus on user behavioral modeling

in case of energy market. Modeling user behavior in SGs has been considered in the

context of Demand Response (DR) [40, 102] that is concerned with preventing the

occurrence of demand peaks. For instance in price-based DR, the price of electricity

is changed dynamically to alter the user behavior. In [41], several internal and

external factors that affect the prosumer’s energy sharing behavior are identified

that can be used to segment prosumers with similar energy behaviors together

in the form of virtual prosumer-community for energy sharing with another such

community. [103] and [100] devise several social-behavioral models to define a user

utility on perceived importance of appliances which is sought to maximize through a

constrained optimization problem. They have found that including social-behavioral
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models, that capture complex human psychology into the problem, significantly

improves the energy consumption efficiency in a smart residential environment.

It is to be highlighted that P2P trading needs to manage the energy exchange

between buyers and sellers on the basis of their individual preferences, behaviors,

and perception of loss and gains [1, 45]. These behavioral patterns can then be

used to maximize the performance of the overall system. Further, as established

in [1, 15, 45, 104], accommodating the user behavioral modeling and motivational

psychology in P2P energy trading is essential to ensure sustainable participation

of prosumers in the P2P energy market while incentivizing their contribution.

In line with that rationale, the study in [45] tries to model bounded rationality

and user preferences in a P2P energy trading scene but it requires continuous

human participation and assumes a simplistic linear model for user perception.

Conversely, the studies in [15,105] focus a game-theoretic approach for energy trading

between prosumers through social coalition formation with motivational psychology

models as framework including economic benefit and positive reinforcement models.

Regardless, they do not explicitly consider user behavioral modeling in the system

design and focus on how coalition game theoretic setting motivates the users to act

in cumulative benefit.

3.4.2 Prospect Theory in P2P Energy Trading

Recently, there has been a few efforts in integrating Prospect Theory (PT) in

energy related applications as well to capture the irrationality of users under uncertain

decision-making [16,42–44,106]. These papers notice that the classical game-theoretic

approaches consider users to be rational decision-makers which does not reflect the

actual behaviors exhibited by the users, specially under uncertain situation where

the users may deviate from rational decision-making to avert the perceived loss or

magnify the perceived utility. In relation to peer-to-peer energy trading, the authors

in [44] has proposed a prospect theory-based distributed energy trading model to

43



optimize trading decisions for prosumers in a competitive market with active human

participation as well as an adaptive learning process for learning the aggressiveness

of the bids over time. In [16], authors present a framework for energy storage

management to allow users to store or sell the energy while modeling the user’s

subjective perceptions of probable outcomes using prospect theory.

Similarly, a non-cooperative game between prosumers is formulated to meet their

energy demands by incorporating prospect theory to model the prosumer’s perception

of the probable profits surrounding stochastic wind generation and decision-making

pertaining to either selling or storing energy at a given time [17]. The authors

in [42] uses Stackelberg Game Theory to optimize energy trading between prosumers

and grid where the players make decisions in the face of uncertain future energy

price using framing effect in prospect theoretic framework. [107] studied the energy

exchange between microgrids with capability of energy generation as a prospect theory

based energy exchange game. There has also been an effort on modeling the user’s

perception towards bidding result in a power market using prospect theory [43],

that uses genetic algorithm for solving the optimal power market bidding problem.

Additionally, the authors in [108] use prospect theory to model the user response to

energy prices, and focus on the impact of such realistic behaviors on the system. The

work in [109], on the other hand, uses prospect theory for demand-side management

to figure out for grid customers whether or not to participate in load shifting based

on their subjective perception towards such decisions. Similarly, the study in [106]

considers prospect theory in the optimization framework for P2P energy trading to

incorporate the risk-aversion attitude of end-users. The authors in [110] also try to

capture the complexity of prosumer’s behavior in P2P trading between microgrids.

Although these papers model the user behavior in some ways, they require active

participation from users and also assume that such behavior (e.g., the parameters of

the PT) is known a priori and homogenous for all the users. Social science studies,
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such as the one conducted in Italy to investigate the social acceptance of nuclear

energy using an online survey [111], show that users exhibit significant heterogeneity

in their preferences for the sources of energy. In fact, it is found that the preferences

of users are affected by not only the environmental aspects but also the financial

aspects resulting from the installation of DERs and also the engaging with energy

management systems in general [112]. Neuroscience studies have also stressed the

heterogeneity of humans in reference to PT parameters [113]. Not capturing such

heterogeneity provides little benefits in terms of user behavioral modeling. Therefore

such individual preferences and perceptions need to be captured in user behavior

models through an adaptive learning process that is tailored for individual prosumers.

Furthermore, as [99] has highlighted, the behavior of users might change over time and

hence, the user behavioral modeling also needs occasional human refinement/feedback

to reflect the changed user behavior accordingly.

3.5 Reinforcement Learning in Energy Trading

RL has gained widespread interest in recent years, more so in applications where

an agent need to learn an optimal policy over time based on the feedback it receives

from the environment. It has also found its way into energy related applications for

example energy management in residential setting, power exchanges in a microgrid

and also in large scale grid settings. Pertaining to peer-to-peer energy trading,

in [87], energy trading between local prosumers is proposed that exploits Deep

Reinforcement Learning (DRL) to learn optimal energy trading strategy for each

prosumers with energy storage at each time-step. [114] proposes a distributed energy

marketplace for grid to leverage prosumers’ storage capacity with monetary incentives

and uses reinforcement learning to learn an optimal decision-making that maximizes

the economic benefit of all agents i.e. grid and other prosumers. Similarly, [115] uses

Coordinated Q-learning to optimally schedule the battery for PV-based prosumers to

reduce power consumption from grid in a distributed and cooperative way.
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The authors in [116] devised a reinforcement learning framework, specifically

Temporal Difference(0) (TD(0)) and Q-learning with risk-sensitivity of agents

included. This approach termed Risk-Sensitive Reinforcement Learning, the authors

model risk-sensitivity through a transformation function with desired risk sensitivity

parameter to transform the temporal differences that are encountered in learning

process. Similarly, [117] extends the work of [116] by utilizing prospect theory

as a risk-sensitive metric to transform temporal difference error while learning.

This approach integrates the behavioral modeling through prospect theory valuation

function into the reinforcement learning framework to make informed decision-making

that reflects risk-sensitivity (i.e. risk-seeking and/or averting behavior) of agents.

3.6 EV-based Crowdsourcing for Energy Sharing

Crowdsourcing services has received increasing attention in recent years because

of their flexibility and convenience in facilitating the completion of tasks by a set of

workers [73]. There exists a plethora of research works that focus on different aspects

of crowdsourcing from optimal task allocation [52] to preference-aware decision-

making [118] to privacy-preserving [119, 120]. Some other focus on designing an

effective and informed incentive mechanism that motivates workers for their sustained

engagement in the system [120].

Reverse auction mechanism has been widely utilized for designing incentive

mechanism including bidding and winner selection in crowdsourcing works [121–124].

In [122], a secure reverse auction protocol is devised for task assignment for spatial

crowdsourcing along with an approximation algorithm. Similarly, [123] proposes a

truthful reverse auction mechanism for location-aware crowdsensing while authors

in [121] focus on generalized second-price auction for stable task assignment. The

work in [124] also uses a truthful reverse auction mechanism to devise incentives for

workers in urban parcel delivery.

In context of electric vehicles (EV), the work in [52] employs crowdsourcing for
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solving charging problems of EVs. A V2V energy-sharing framework has been

proposed that crowdsources the charging request from EV owners and allocates

the energy considering energy trading prices, EV parameters and privacy. Some

other crowdsourcing literature focus on different problems like route optimization

of EVs [125] and parcel delivery using EVs [126]. Closer to our problem setting,

some literature have explored the use of crowdsourcing for integrating energy-sharing

services with EVs. For instance, authors in [75] proposed a V2H-based omni-

sharing modality system in a microgrid community, where energy is crowdsourced

from EVs to reduce the overall cost of the community and decrease the need for

energy storage. Another study [127] suggested an autonomous EV-based energy

crowdsourcing approach, which enables EVs to participate in energy-sharing tasks for

cloud-based energy consumers. However, this approach is challenging to implement

and doesn’t consider workers’ preferences or the impact of sub-optimal decision-

making in the context of crowdsourcing-based energy-sharing.

In fact, most of these crowdsourcing works ignore the user behavioral modeling

in task assignment. The spatial crowdsourcing work in [118] tried to solve the task

assignment problem by considering worker preferences, but this solution is better

suited for group tasks and doesn’t account for other behavioral aspects of user

behavioral modeling like bounded rationality [27] and irrational decision-making that

drastically affects the system performances. Additionally, the existing works neglect

the task recommendation problem and other realistic budget constraints, such as the

energy budgets required by the grid companies or microgrids for any time period.

Furthermore, these works are limited to homogeneous tasks like energy-sharing or

delivery services only, which can result in significant idle hours for EVs during off-

peak periods as such tasks have similar pattern.
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3.7 Limitations in Existing Literature and Motivation

As discussed in this chapter, there has been a number of researches and works

in context of localized energy exchange and some form of user behavioral modeling

along with reinforcement learning. With large scale integration of DERs into the grid

following the advent in the field of smart grid technologies, the energy grid has been

transforming towards decentralized and distributed energy architecture as seen with

the proliferation of Virtual Power Plant (VPP) architecture and rise of prosumers

from consumers. Given the limitations of storage options and trading with grid for

such prosumers, the exchange of energy between prosumers themselves is beneficial

to manage the energy consumption and demand response for grid at a local level. It

also provides a financial platform for prosumers to trade energy among themselves at

a profitable price compared to the grid. Hence the P2P energy trading modality can

be deemed as the future of energy market.

It has been established in this chapter that failure to accommodate complex human

psychology and capture their decision-making behavior through user behavioral

modeling in an intelligent system will only lead to failure of such system. Therefore,

for the efficient management of a P2P energy trading market and for ensuring

sustained participation of users in such market, there needs to be proper behavioral

modeling that aims at automating the task on behalf of users with due consideration

to their preferences, convenience and perceived utility. This kind of algorithmic

trading will demand less interaction and lesser active participation from humans

which is in line with the findings of several literature reviewed in this chapter. Also

having flexibility for the prosumers for engaging in energy exchange will bolster the

sustainability of such P2P energy market. Therefore incorporating prosumers with

EVs through V2G, V2H and V2V paradigms in addition to renewable energy sources

will be helpful to advance the P2P energy trading market a step further.

Even though there has been some work in localized energy exchange setting and
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some work in user behavioral modeling, an explicit work that aims at developing a

peer-to-peer energy trading modality among prosumers that captures their preference

and perceived utility is lacking in the literature. Pertaining to EVs in energy

sharing modalities, existing literature in crowdsourcing mechanisms have contributed

to task assignment, incentive design, privacy and energy-sharing services, there

is still room for improvement in terms of behavioral aspect like preference-aware

task recommendation and online learning of these preferences; task assignment with

overall cost minimization and energy budgets; and heterogeneity in crowdsourcing

tasks. Through this dissertation, we aim to bridge the gaps in existing literature by

devising the relevant frameworks necessary to realize the P2P energy trading in smart

residential environment through the use of several notions of behavioral economics as

constructs to learn the user behavior model. Our proposed work focuses on addressing

these limitations and developing more comprehensive, effective, and realistic solution

to enabling the P2P energy market including the joint enabling of ride-and energy-

sharing services through use of different concepts from power systems, computer

science, mathematics, psychology and economics.

However, in our work, we do not consider the physical layer related studies except

for loss consideration and energy available or required for prosumers, as there exists

plethora of research that deal with different physical layer aspects in P2P energy

trading setting. Instead, for physical layer related study, we refer the readers to

existing works including [10,36–38] that focus on reactive power optimization, voltage

regulation, line congestion among others. Also it needs to be highlighted that

although we primarily use energy as the commodity for trading, the power injection

and specifically reactive power consideration can affect the such energy exchanges

in real-world implementation. We request readers to go over the works in [37, 38]

regarding such considerations.

As such behavioral economics offer some basic construct that can be applied into
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the problem. We aim to use these concepts from behavioral economics as a basis

to model the user behavior and learn the parameters of the model accordingly using

reinforcement learning to optimize the energy exchanges between prosumers in a

localized setting.
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CHAPTER 4. A REINFORCEMENT LEARNING APPROACH FOR

USER PREFERENCE-AWARE P2P ENERGY SHARING

In this chapter, a P2P energy exchange system is proposed considering realistic and

heterogeneous user behaviors in terms of preferences and engagement. In addition

to that, limited time and cognitive capabilities of prosumers is also incorporated

into the model in accordance to the principle of bounded rationality. The work

done in this chapter was published in IEEE Transactions on Green Communications

and Networking [45] and Proceedings of IEEE International Conference on Pervasive

Computing and Communications (IEEE PerCom) 2023 [46].

Figure 4.1: P2P Energy Sharing System Overview

A general overview of the P2P system considered in this work is presented in Fig.

4.1. As depicted in the overview, a localized energy sharing community is considered.

Within this platform, prosumers are allowed to sell and buy energy to and from other

prosumers in the community, as well as from renewable and standard power plants

connected to a larger SG. This model is grounded on previous models proposed for

such energy exchange modality [1]. In this system, an active user participation in
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the day-ahead energy exchange modality is envisaged, where users may have different

preferences for different energy sources (e.g., solar, wind, nuclear, coal, etc.), as well

as a different level of engagement with the system.

The problem of matching producers and consumers is formulated as a Mixed

Integer Linear Programming (MILP), which aims at maximizing the amount of energy

exchanged among prosumers considering their individual preferences, the bounded

rationality, as well as other physical constraints that affect the energy exchange. Rest

of the chapter is organized as follows. The system model and problem statement are

described in Sections 4.1 and 4.2, respectively. Then, the proposed algorithms are

explained in detail in Sections 4.3 and 4.4. Furthermore, the experimental results are

elaborated in Section 4.5 along with the discussion on the observed results.

4.1 System Model and Assumptions

Proposed P2P energy exchange model consists of two sets of users. P defines the set

of producers which includes prosumers equipped with DERs such as PV panels; larger

utilities based on renewable energies (e.g., solar, wind, etc.); and traditional power

plants (coal, nuclear, hydroelectric, etc.). Similarly, the set of consumers, represented

as C, consists of consumers without the power generation capabilities or prosumers

with a higher consumption compared to their self-production.

Day-ahead energy market modality is adopted with energy exchanges performed

on a daily basis. For each producer i ∈ P , the system estimates production capacity

ri, and for each consumer j ∈ C, the energy demand wj, which are expected for

the next day. It has been shown that the daily production and demand capacity

can be accurately predicted with time-series analysis techniques, such as exponential

moving average and other machine learning techniques like Long Short Term Memory

(LSTM) [35, 128]. The users, and specifically consumers, are considered to have an

active role in the exchange process. Specifically, the system is envisioned to send

a daily personalized recommendation to each consumer through a smartphone app.
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Table 4.1: Notation Summary
Notation Description

P Set of producers
ri Production capacity of ith producer
C Set of consumers
wj Energy demand of jth consumer
d Time index corresponding to day

Pij
Random variable corresponding to preference of

consumer j buying from producer i
pij Mean of Pij

p̂ij Estimation of pij

mij
Number of times producer i has been

recommended to consumer j

Lij
Transmission loss between
producer i and consumer j

A RL action matrix
T Size of the exchangeable unit of energy
K Max. length of recommendations list

This recommendation consists of a list of producers, the amount of energy to be

bought from each of them, and the cost. The cost may differ for each producer, but it

is assumed that such cost does not change over time. Different from previous works in

this area, e.g., [35,59], which consider the users to always be compliant and engaged

with the system, the current work considers a realistic user behavioral model in which

users may accept, reject, or ignore each of the recommendations in the list. This

behavior is dictated by the level of engagement of consumers with the system, by their

preferences for the source of produced energy (e.g., coal, renewable, nuclear, etc.), and

by the price at which energy is sold by a producer. This preference is modeled as

a Bernoulli random variable with success probability pij ∈ [0, 1], representing the

likelihood that consumer j would buy energy from producer i. The probability is

initially unknown, and a Reinforcement Learning (RL) approach is adopted to learn

it. It is assumed that this probability does not change over time. However, several

statistical tests, such as the χ2 test [129] and the Student t-test [130], could be used

to detect changes in the user behavior, and restart the learning.

Several studies in the domain of behavioral economics have shown that humans’
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decisions and actions follow the principle of bounded rationality [28]. Specifically,

humans possess limited information, time, and cognitive capabilities which prevent

them to act optimally. These aspects of human behavior are modeled in this problem

by limiting the size of the recommendation list to a maximum length K. This reduced

size of recommendation list prevents the users from being overwhelmed by reducing

the time, information, and effort to select the energy sources to buy energy from. It is

also considered that when producer i sells energy to consumer j, there is an energy loss

in electric lines during the transfer [35]. This loss depends on the physical distance

between i and j and it is directly proportional to the amount of energy exchanged. The

loss is modeled as a fraction Lij ∈ [0, 1] of the energy exchanged. It is also assumed

that there is a maximum loss threshold Lmax that the system allows and therefore

considers only those recommendations that are within this threshold. Moreover, the

energy exchanged between two users should be greater than a minimum value α,

since it is not convenient to exchange infinitesimal amounts of energy. Note that, if

a recommendation is accepted, the system will fulfill this exchange. Conversely, if a

user ignores or rejects a recommendation, the grid would serve as a backup producer

to satisfy the user’s demand. Therefore, a recommendation is a commitment of energy

resources. Consequently, if a recommendation is rejected or ignored, it will result in

an energy waste (or in energy sold to the utility company for a much lower price). As

a result, recommendations need to be carefully designed to maximize energy exchange

and overall performance of system.

4.2 Problem Formulation

The goal of the proposed system is to find the recommendations to be sent to

the consumers so that the expected energy exchanged is maximized. Therefore, this

requirement is moulded into the optimization problem as presented in Eqs. (4.1)-

(4.1f). Table 4.1 summarizes the notations used throughout this chapter. Decision

variables of the problem are xij ∈ [0, 1]. Given the energy demand wj of consumer j,
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xij represents the fraction of wj that consumer j is being recommended to buy from

producer i. The objective function in Eq. (4.1) aims at maximizing the expected

amount of exchanged energy, considering the probability pij with which consumer j

will accept the recommendation. The binary decision variable zij ∈ {0, 1} is equal to

1 if xij > 0, i.e., if producer i is included in the recommendation of consumer j.

maximize
∑
i∈P

∑
j∈C

wjpijxij (4.1)

s.t.
∑
j∈C

(1 + Lij)wjxij ≤ ri, ∀i (4.1a)

∑
i∈P

xij ≤ 1, ∀j (4.1b)

∑
i∈P

zij ≤ K, ∀j (4.1c)

αzij ≤ wjxij ≤ wjzij, ∀i, j (4.1d)

zij ≥ xij, ∀i, j (4.1e)

xij ∈ [0, 1], zij ∈ {0, 1}, ∀i, j (4.1f)

The constraint in Eq. (4.1a) guarantees that the production capacity of producer

i is not exceeded, considering the loss that is incurred in the transmission. Similarly,

constraint (4.1b) ensures that the demand of consumer j is not exceeded. The

variables zij are used in the constraint (4.1c) to make sure that the recommendation

list is of maximum length K. Finally, Eq. (4.1d) certifies that an exchange is larger

than the minimum exchangeable allowed amount α, and Eqs. (4.1e)-(4.1f) define the

domain of the decision variables. Note that, the problem allows exchanges between

all pairs of producers and consumers, given the problem constraints. Nevertheless,

an additional constraint can be added to prevent losses above the maximum allowed

fraction Lmax by setting xij = 0 if Lij > Lmax.

The following theorem shows that the problem is NP-Hard.
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Theorem 1. The optimization problem in Eq. (4.1) is NP-Hard.

Proof. In general instance of GAP [131], there are n tasks and m processors. A

task can be assigned to a single process, and the goal is to find the assignment that

provides the maximum profit given the resources of the processors. Processor i has ri

resources. By assigning task j to processor i, a profit fij and resource consumption

of gij is observed. From this general GAP formulation, an instance of the problem

can be created through reduction. A consumer for each task and a producer for each

processor are created. K is set to 1, so that the recommendation for a consumer

contains at most a single producer. Furthermore, there is (1 + Lij)wj = gij and the

energy production of producer i is set to ri. It also sets Lmax =∞ so that all exchanges

are possible. At this point, the only difference between the reduced problem and the

GAP problem is that the decision variables xij are continuous, unlike discrete in GAP.

However, infinitesimal exchanges are not allowed in the proposed system, as they need

to be greater than or equal to α. By setting α = wj, the constraint in Eq. (4.1d)

forces the decision variable xij to coincide with the discrete variable zij. As a result,

the solution of the reduced problem provides the assignment that maximizes the profit

within the constrained processors’ resources. Therefore, the proposed problem is at

least as hard as GAP, and thus it is NP-Hard.

Note that, in addition to the NP-Hardness, the solution of such optimization

problem requires the knowledge of the expected user preferences (pij), the expected

production capacity (ri), and the expected demand (wj). As mentioned, the latter

two can be predicted using time series analysis [35]. Conversely, learning the user

behavior is challenging, as users may significantly differ in their preferences and

engagement with the system [111,112]. For these reasons, a Reinforcement Learning

(RL) approach, called User Preference Learning (UPL) is proposed in section 4.3 to

learn user preferences, inspired by [132]. UPL consists of the initialization phase

that aims at probing the user preferences at least once and optimization phase that
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requires the optimal solution of a similar version of the optimization problem in

Eq. (4.1) to guarantee the bounded regret. However, as a workaround for NP-Hard

UPL algorithm, two polynomial time algorithms are proposed for both phases of

UPL in section 4.4. Specifically, a Faster Initialization Algorithm (FIA) to speed up

the initialization phase, and a computationally-efficient heuristic called BiParTite-K

(BPT-K), based on graph matching theory, for the optimization phase are proposed.

4.3 A Reinforcement Learning Approach for User Preference Learning

The optimization problem in Eq. (4.1) requires the knowledge of the user

preferences, expressed in terms of the probabilities pij. A possible way of predicting

the expected user preference is to directly ask users when the system is installed in

their homes. However, social behavioral studies show that such information does not

always reflect the actual preferences. These situations typically occur when users

make choices that are not always motivated by a well-defined logic, such as in the

case considered in [27]. Given this lack of initial knowledge, it is necessary to learn

the users’ preferences at run time, by sending recommendations to them while at

the same time optimize the system performance. The assumption on independence

of the preference probabilities, and the linear nature of the objective function in

Eq. (4.1), allow to formulate this problem through the framework of combinatorial

multi-armed bandit [132]. Specifically, it is possible to select a subset of the available

matches (arms), observe their realization (accept/reject), and gain the linear sum

of the outcomes (exchanged energy). This learning process is guided by a balance

between exploration of the unknown user preference, and exploitation of what is

already learned.

Reinforcement Learning (RL) is an effective way to solve the multi-armed bandit

problem. A naive approach to tackle this problem is to utilize the standard UCB1

algorithm which regards each arm as an independent action [133]. However, this

approach ignores the inherent dependencies among the arms, and therefore, ends up
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learning the information about the observed actions independently [132]. Therefore,

a more efficient learning approach is to learn from the observations of the correlated

actions and select better decisions based on these correlations. For this reason, we

extend the approach proposed in [132], to the problem of finding the best matching

between consumers and producers while simultaneously learning the user preferences.

The unknown environment in the problem formulation consists of the players, i.e.,

consumers; and the available arms, i.e., producers. Besides, the action in this

case is the matching between the consumers and producers. Therefore, the reward

corresponds to the total energy exchanged among all the consumers and the producers.

The action played during a day d is modeled by the action matrix A(d). The matrix

has dimension |P | × |C| and an element aij ranges in the interval [0, 1]. The value

of aij represents the fraction of demand that producer i is selling to consumer j,

similar to the xij variables of the optimization problem. If aij = 0, there is no

exchange between the corresponding arm i and player j. Conversely, if aij > 0,

a recommendation is sent to consumer j to buy from i. The consumer decision is

observed, and the corresponding probability is updated.

Given the action matrix, the preference of consumer j, with respect to accepting a

recommendation for buying energy from producer i, is modeled as a random variable

Pij. The realization of such variable at day d is referred to as Pij(d) ∈ {0, 1}. The

mean value of Pij is denoted as pij and it is initially unknown. It is also assumed that

Pij evolves as an i.i.d. process over time. Given the energy consumption/production

predictions for day d, the system decides which recommendations should be sent to

the consumers based on the action matrix for day d, A(d) = [aij(d)]|P |×|C|. The

total number of unknown variables is Q = |P | × |C|. Moreover, the solution space

F includes all feasible action matrices that would satisfy all the constraints of the

optimization problem.

At each iteration of the optimization phase d, the system chooses the action matrix
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Algorithm 1: User Preference Learning (UPL)
/* Initialization Phase */

1 for each i ∈ P and each j ∈ C do
2 Select any A ∈ F s.t. aij > 0 ;
3 Update [p̂ij ]|P |×|C| and [mij ]|P |×|C| according to Eqs. (4.5) and (4.6);
4 end
/* Optimization Phase */

5 while True do
6 d = d+ 1;

7 Select an action A s.t. A(d) = argmax
A∈F

∑
i∈P

∑
j∈C

wjaij

(
p̂ij +

√
(Q+1) ln d

mij

)
;

8 Update [p̂ij ]|P |×|C| and [mij ]|P |×|C| according to Eqs. (4.5) and (4.6);
9 end

A(d) that maximizes the objective function given the current knowledge. This

knowledge is represented by the estimated expected p̂ij(d) for each random variable

Pij. For an action matrix A(d), the reward is defined as

RA(d)(d) =
∑
i,j

wjaij(d)Pij(d). (4.2)

Since the distribution of variables Pij are initially unknown, the goal is to find a

policy, denoted by series of action matrices in F , that minimizes the regret up to

the current time d. This is calculated as the difference between the expected reward

having perfect knowledge of the variables realizations and that obtained by the policy.

Formally, the regret is expressed as

R(d) = dR∗
A(d)(d)− E[

d∑
t′=1

RA(t′)(t
′)], (4.3)

where R∗
A(d)(d) is the reward obtained with perfect knowledge of users’ preferences.

Minimizing the regret is a hard problem, given the initially unknown variable

distribution. However, an efficient algorithm based on RL is adopted that ensures

a bounded regret with respect to the optimal [132]. Bounded regret is a desirable

property, as it ensures that the algorithm picks a non-optimal action only a limited
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number of times; which in this case translates into ensuring that in a finite time the

optimal set of matches are identified and the best recommendation are sent. This way,

the system performance are eventually maximized although the user preferences are

initially unknown. The pseudo-code of the algorithm is shown in Alg. 1, namely User

Preference Learning (UPL). It is composed of two consecutive phases: initialization

and optimization. During the initialization phase, Q actions are played randomly in

order to observe all the Q random variables at least once. Then, in the optimization

phase, the system plays an action that maximizes the function defined in line 8 of Alg.

1, over the solution space F . This can be accomplished by solving an optimization

problem with the same constraint as in Eqs. (4.1a)-(4.1f), and the following objective

function:

A(d) = argmax
A∈F

∑
i∈P

∑
j∈C

wjaij

(
p̂ij +

√
(Q+ 1)ln d

mij

)
, (4.4)

The optimization problem solved at day d is based on the estimation of the expected

values pij at day (d − 1), denoted as p̂ij(d − 1). If the selected action at time d

includes an energy transaction between consumer j and producer i, i.e., aij(d) ̸= 0,

a new realization Pij(d) of the random variable Pij is observed. This information is

used to update the current knowledge estimation of p̂ij(d), as well as the total number

mij(d) of observations of the variable Pij, as follows:

p̂ij(d) =


p̂ij(d−1)mij(d−1)+Pij(d)

mij(d−1)+1
if aij(d) ̸= 0,

p̂ij(d− 1) otherwise.
(4.5)

mij(d) =


mij(d− 1) + 1 if aij(d) ̸= 0,

mij(d− 1) otherwise.
(4.6)

Theorem 2. Let wj be homogeneous across users for sufficient amount of time, UPL
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provides bounded regret given by:

R(d) ≤
[
4a2maxQ

3(Q+ 1) ln(d)

(∆min)2
+
π2

3
Q2 +Q

]
∆max, (4.7)

where, amax is defined as max
A∈F

max
i,j

aij. Besides, ∆min = min
RA<R∗

(R∗ −RA) and

∆max = max
RA<R∗

(R∗ −RA) are the minimum and maximum difference to the reward

obtained with perfect knowledge of the users’ preferences, respectively.

Proof. The proof is obtained following Theorem 2 of [132].

4.4 A Constrained Maximum Weighted Matching- based Reinforcement

Learning Approach

Faster Initialization Algorithm (FIA) is presented in this section as an improvement

to the initialization phase of UPL. Subsequently, a heuristic algorithm BPT-K is

proposed for the optimization phase. The initialization phase of UPL, similar to the

one originally presented in [132], has the purpose of observing each of the Q variables

at least once, by selecting random action matrices, before starting the optimization

phase. However, Q grows with the number of producers and consumers. Since it

takes 24 hours to play an action and observe a realization of the random variables

Pij, it would be very inefficient to wait Q days before starting the optimization phase,

which serves as the motivation to design FIA. Additionally, given the NP-hardness

of the optimization problem in Eq. (4.1), the optimization phase of UPL is also NP-

hard. Therefore, a computationally efficient heuristic algorithm, named BPT-K, is

proposed for the optimization phase of UPL to maximize the energy exchange while

exploiting RL to simultaneously learn the user preferences. Finally, it is formally

proved that the heuristic terminates and it is correct, i.e., it always returns a solution

that does not violate the problem constraints. It is also shown that BPT-K has a

polynomial complexity.
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4.4.1 Faster Initialization Algorithm (FIA)

The Faster Initialization Algorithm (FIA) is presented in Alg. 2. Primary objective

of FIA is to minimize the number of days required to play all variables at least once,

in order to meet the requirement of the initialization phase of UPL. Secondarily, the

algorithm tries to maximize the amount of satisfied demand of the users corresponding

to the played actions. To achieve these objectives, the algorithm keeps track of the

already played variables in a binary matrix B, whereby element bij is equal to 1 if

the variable Pij has been played, and zero otherwise. For a given consumer j, each

day the algorithm selects at most K previously unassigned producers (i.e., producers

such that bij = 0), in order to maximize the number of played actions. Additionally,

FIA evenly spreads the demand wj across such producers (i.e., assigns up to wj

K
to

each producer) in order to satisfy the consumer demand. It also excludes variables

that cannot be played because they violate the loss threshold Lmax (line 2).

Algorithm 2: Faster Initialization Algorithm (FIA)
Input : Sets of Producers (P ) and Consumers (C), Producer’s Capacity([ri]|P |),

Consumer’s Demand ([wj ]|C|), [mij ]|P |×|C|, [p̂ij ]|P |×|C|, α
Output: Updated [mij ]|P |×|C| and [p̂ij ]|P |×|C|

1 B = [bij ]|P |×|C| = 0; // Binary Matrix B to keep record of actions played
2 ∀i ∈ P, j ∈ C, if Lij > Lmax, then set bij = 1;
/* Run until all actions are played; J: all-ones matrix */

3 while B ̸= J do
4 A = [aij ]|P |×|C| = 0 ;
5 for j ∈ C do
6 e = max{wj

K , α};
7 while

( ∑
i∈P

aij < 1
)

and
(
∃i | (bij = 0 and (ri ≥ e))

)
do

8 i← Select a producer at random from P s.t. bij = 0 and ri ≥ e;
9 aij =

e
wj

;
10 ri = ri − e;
11 bij = 1; // Update element bij ∈ B
12 end
13 end
14 Select A as actions and update [p̂ij ]|P |×|C| and [mij ]|P |×|C| ;
15 end

The while loop (lines 3− 15) is run until all the elements of B are equal to 1 (i.e.,

B = J|P |,|C|). An iteration of the while loop identifies the variables to play and the
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energy exchanges to take place in that day. The matrix A = [aij]|P |×|C| keeps track

of the fraction of demand satisfied for that day between consumer j and producer i.

An action is played if aij > 0. At each iteration of the while loop, the inner for loop

iterates over the set of consumers C. For each consumer j ∈ C, a random producer

i is selected such that the variable Pij was not previously observed (i.e., bij = 0) and

also producer i has capacity greater than e = max{wj

K
, α} (line 7). The amount of

aij, capacity of the producer ri, and the elements bij are updated accordingly (lines

9−11). At the end of each iteration of the while loop, the actions in A are played and

the observed realizations are updated according to Eqs. (4.5) and (4.6). The while

loop terminates as soon as all variables are observed, and then the optimization phase

begins.

4.4.2 The BiParTite-K Algorithm

Overview

The problem introduced in Eq. (4.1) is an extension of the generalized matching

problem (see Theorem 1), with the additional constraint that consumer-nodes’ degrees

cannot exceed K (see Eq. (4.1c)). Recall that such K-constraint is a practical

requirement for bounded rationality to prevent overwhelming users with a large list

of recommendations [28].

To solve this problem efficiently, inspired by bipartite matching theory, an iterative

algorithm, named BiParTite-K (BPT-K) is proposed. In order to perform the

assignment, BPT-K uses Maximum Weighted Bipartite Matching (MWBM) as a

sub-routine, which can be solved polynomially, for example with the Hopcroft-Karp

algorithm [134] or Edmond’s Algorithm [135, 136]. Since MWBM provides a one-

to-one matching, this would result in significant waste of energy. Therefore, BPT-K

enforces a discretization of energy production capacity and consumption demand into

units of exchangeable energy of size T .

BPT-K implements two views of a bipartite graph of producers and consumers,
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referred to as aggregated and disaggregated graphs. The vertices of the aggregated

graph are the set of producers P and consumers C. In this graph, there exists an

edge between a producer and a consumer if they can potentially exchange energy,

i.e., the loss is less than the threshold Lmax. Conversely, the disaggregated graph

provides a finer grained view based on the notion of unit of exchangeable energy.

Specifically, in this graph each consumer demand and producer capacity is expanded

into a proportionate number of nodes of equivalent size T . Similar to the aggregated

graph, in the disaggregated graph there is an edge between a demand unit of a

consumer and a capacity unit of a producer, if the loss between them is within Lmax.

By applying iteratively MWBM on the disaggregated graph, BPT-K allows producers

to sell to multiple consumers, and consumers to buy from multiple producers (at most

K). This also speeds up the learning rate of user preferences by allowing to probe

more variables each day.

The algorithm fulfills two major tasks, viz. (i) matching demand and consumption

considering the user preference, and (ii) learning such preferences by observing the

user responses to recommendation. As a result, BPT-K combines matching with

reinforcement learning to achieve both tasks. The algorithm takes as input the set of

producers P and consumers C, with respective capacities and demands, and builds

a disaggregated graph G. It returns a matching graph Φout, with nodes P ∪ C and

initially no edges. Subsequently, BPT-K runs the MWBM on G resulting in the

disaggregated bipartite matching graph ΦG. Then, ΦG is used to update Φout without

violating the K-constraint (more details are given in the algorithm description).

Since the proposed algorithm is iterative, this process is repeated until Φout keeps

changing, i.e., the algorithm updates the set of producers and consumers based on

residual capacities and demands and repeats the matching iteratively. Once the

output graph Φout is left unchanged, it means that either the producers’ capacity

and/or the consumers’ demand have already exhausted; or there are no possible
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matching among producers and consumers without violating the K-constraint.

Eventually the algorithm breaks out of the loop and terminates by sending the

recommendations to the consumers according to the matching expressed by Φout.

At the end of the algorithm, the users’ preferences are learned accordingly based on

the observed responses. To this aim, the same approach of UPL is adopted, where

the preferences and total number of observations are updated according to Eqs. (4.5)

and (4.6). Note that, the parameter T can be set as a trade-off between complexity

and efficiency of the energy exchange. A smaller value of T increases the granularity

of the algorithm, thus increasing the amount of exchanged energy. However, such

improvement in performance is at the expense of an increased complexity. In Section

4.5, a sensitivity analysis with respect to the size T is provided. Obviously, T must

be set greater than minimum exchangeable allowed energy α (see Eq. (4.1e)).

Algorithm Description

The pseudocode for the BiParTite-K algorithm (BPT-K) is presented in Alg.

3. The output is the graph Φout, initialized in line 1. The algorithm initializes a

temporary graph Φtemp in line 2 used to verify if Φout has changed. BPT-K is an

iterative algorithm so it utilizes a do − while loop (lines 3 − 24) to run Maximum

Weighted Bipartite Matching (MWBM) in an iterative fashion. As explained in

the previous subsection, inside the do − while loop, the algorithm starts with the

aggregated bipartite graph in order to generate the disaggregated graph, G, based

on exchangeable units of energy of size T . To this aim, it first updates the set of

producers (P ) and consumers (C) to keep only those which have energy capacity and

demand greater than or equal to T (lines 4− 5). The algorithm then discretizes the

production and demand into the units of size T to obtain the sets Pd and Cd (lines

6 − 8), and it builds the disaggregated bipartite graph G using Pd and Cd (line 9).

In line 11 weighted edges are added between pairs of nodes in Pd and Cd considering

the maximum tolerable loss Lmax and the K-constraint (lines 10−14). To keep track

65



Algorithm 3: BiParTite-K (BPT-K)
Input : Sets of Producers (P ) and Consumers (C), Producer’s Capacity([ri]1×|P |),

Consumer’s Demand ([wj ]1×|C|), Unit of Exchangeable Energy (of size T ),
Recommendation Size (K), [mij ]|P |×|C|, [p̂ij ]|P |×|C|, day (d)

Output: K-Recommendations Graph (Φout), Updated [mij ]|P |×|C| and [p̂ij ]|P |×|C|
1 Φout = {P ∪ C,EΦout

= ∅} ;
2 Φtemp = {P ∪ C,EΦtemp = ∅} ;
/* Iterative matching loop */

3 do
4 Remove from P producers with residual capacity less than T ;
5 Remove from C consumers with unsatisfied demand less than T ;

/* Generate disaggregated bipartite graph G */
6 ∀i ∈ P , let Pi be the set of units of exchangeable energy for producer i;
7 ∀j ∈ C, let Cj be the set of units of exchangeable energy for consumer j;
8 Let Pd =

⋃
i∈P

Pi and Cd =
⋃
j∈C

Cj ;

9 Build Bipartite Graph G = {Pd ∪ Cd, EG = ∅} ;
10 for each node u ∈ Pi, v ∈ Cj do
11 if Lij ≤ Lmax and

(
(|(., j)|EΦout

< K) or
(
|(., j)|EΦout

= K and (i, j) ∈ EΦout

))
then

12 Add edge (u, v) to EG with weight, WG(u, v) =

(
T ∗

(
p̂ij +

√
(Q+1) ln d

mij

))
;

13 end
14 end
15 Perform Maximum Weighted Bipartite Matching on G and output graph

ΦG = {Pd ∪ Cd, EΦG
}, where EΦG

⊆ EG ;
16 Φtemp = Φout;

/* Add/update the edge in Φout from ΦG without violating the
K-constraint */

17 Sort edges in EΦG
by decreasing weight;

18 while EΦG
̸= ∅ do

19 Consider next edge ((u, v) ∈ EΦG
s.t. u ∈ Pi, v ∈ Cj

)
;

20 if (i, j) ∈ EΦout
then update the edge weight,

WΦout
(i, j) =WΦout

(i, j) +
∑

u∈Pi
v∈Cj

WG(u, v);

21 else if (|(., j)|EΦout
+ 1 ≤ K) then add edge (i, j) to EΦout

with weight,
WΦout(i, j) =

∑
u∈Pi
v∈Cj

WG(u, v);

22 Remove (u, v) from EΦG
;

23 end
24 while Φout ̸= Φtemp;
25 Produce a recommendation list from Φout and send them to respective consumers;
26 Observe the performed exchanges and update [p̂ij ]|P |×|C| and [mij ]|P |×|C|;
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of the K-constraint, following two conditions are verified. First, for each pair (i, j),

corresponding to producer i and consumer j, an edge is added if either j has degree

less than K, or secondly it has degree exactly K and has already been assigned

to producer i in Φout. In the pseudocode, degree of node j in Φout is denoted by

|(., j)|EΦout
.

Subsequently, the algorithm computes the Maximum Weighted Bipartite Matching

(MWBM) on graph G (line 15) resulting in the graph ΦG. It then sets Φtemp = Φout

and updates Φout given ΦG (lines 18− 23). For this purpose, the algorithm first sorts

the edges in EΦG
by decreasing weight. Then, for each edge (u, v) ∈ EΦG

it updates

the edge in Φout, between the corresponding producer i and consumer j, only if it

does not violate the K-constraint. Then the edge is removed from EΦG
. The while

loop in lines 18 − 23 terminates as soon as EΦG
is empty. If Φout has changed as a

consequence of these updates (line 24), BPT-K performs the next iteration of the

do−while loop. Otherwise, it sends the recommendations based on the output graph

Φout, observes the performed exchanges and updates the estimated preferences p̂ij

and number of times each preferences has been observed mij. The algorithm then

terminates for the corresponding day and is repeated again for the subsequent day

with the new demands and productions based on the latest estimated preferences.

Lemma 1. BPT-K algorithm returns a feasible solution of the optimization problem

in Eq. (4.1).

Proof. To prove the Lemma, it is sufficient to show that the solution provided by BPT-

K does not violate the constraints of the optimization problem Eq. (4.1). Since the

maximum weighted matching is always performed considering the residual capacity

and unsatisfied demand, BPT-K trivially never violates the capacity and demand

constraints in Eqs. (4.1b) and (4.1c). Moreover, by setting the size of the unit

of exchangeable energy T > α, constraint (4.1e) is also satisfied. Finally, the K-

constraint in Eq. (4.1d), requires each consumers to be provided with no more than
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K recommendations. To this purpose, BPT-K either updates the weights of the

existing edges of Φout (line 20) or adds new edges to Φout (line 21). A weight update

clearly does not violate the constraint. Similarly, an edge is added only if a consumer

node j has degree less than K in Φout, thus preventing to violate the K-constraint.

Lemma 2. BPT-K algorithm has a guaranteed termination.

Proof. BPT-K algorithm consists of a do− while loop (lines 3− 24) and other non-

iterative instructions. Since the latter are certain of terminating, the rest focuses on

the termination of the do−while loop. At the end of each iteration of the do−while

loop, the while loop in lines 18− 23 updates the weight of existing edges in Φout (line

20) or adds new edges that do not violate the K-constraint in Φout (line 21). Each

edge update increases the weight of an amount of energy equal to, or larger than, T .

Since producers’ capacities and consumers’ demands are bounded, this update can

occur only a finite amount of times. Similarly, an edge (i, j) is added to Φout only

if it does not violate the K-constraint, i.e. if |(., j)|EΦout
+ 1 ≤ K. Clearly, at most

K × |C| edges can be added. As a result, output graph Φout can be updated only a

finite times, after which the do− while loop terminates.

The proof is concluded by noting that the while loop in lines 18− 23 considers at

each iteration an edge (u, v) ∈ EΦG
, corresponding to a unit of exchangeable energy

assigned between producer i and consumer j. The loop continues until EΦG
̸= ∅.

Since at the end of each iteration the edge (u, v) is removed from EΦG
(line 22), the

while loop also terminates.

By definition, an algorithm is referred to as totally-correct, if it returns a feasible

solution and also terminates. Following theorem proves the correctness of BPT-K on

the basis of Lemmas 1 and 2.

Theorem 3. BPT-K, proposed in Alg. 3, is totally-correct.

68



Proof. Following the statement made in Lemma 1, BPT-K returns a correct solution.

In addition, Lemma 2 guarantees the termination. Therefore, by definition, the BPT-

K algorithm is provably totally-correct.

Theorem 4. Complexity of BPT-K is O
(
min {|Pd|, |Cd|} × (|Pd|+ |Cd|)3

)
.

Proof. The complexity of the algorithm is dominated by the do − while loop (lines

3− 24). Let |Pd| =
⌊ ∑

i∈P
ri

T

⌋
and |Cd| =

⌊ ∑
j∈C

wj

T

⌋
. At each iteration of the do− while

loop, an edge weight is updated or an edge is added to Φout. Lemma 2 shows that

the number of such operations is limited. Specifically, the number of edge updates is

bounded byO (min {|Pd|, |Cd|}) and the number of edges that can be added is bounded

by O (K|C|). Inside the do−while loop there are four main operations: the for loop

(lines 10−14), the maximum weighted matching (line 15), sorting of the edges in EΦG
,

and the while loop (lines 18−23). The for loop has complexity equal to O (|Pd||Cd|).

The maximum weighted matching can be solved with the Edmond’s algorithm with

complexity O
(
(|Pd|+ |Cd|)3

)
[135, 136]. The cardinality of EΦG

is upper bounded

by O (|Pd||Cd|), therefore sorting the edges has complexity O (|Pd||Cd| log (|Pd||Cd|)),

and the while loop has a number of iterations upper bounded by O (|Pd||Cd|). Since

the maximum weighted matching algorithm dominates the operations within the do−

while loop, and K|C| is generally less than min {|Pd|, |Cd|}, the overall complexity of

BPT-K is O
(
min {|Pd|, |Cd|} × (|Pd|+ |Cd|)3

)
.

4.5 Experimental Results

In this section, performance of the proposed approaches is evaluated versus a

state-of-the-art approach, named Zhu, proposed in [35]. First, the experimental

setup is presented, then the Zhu algorithm is described followed by the discussion

on the comparison results. Furthermore, the performance of the FIA algorithm

is investigated and also a sensitivity analysis to relevant parameters of BPT-K is

provided.
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4.5.1 Experimental Setup

Realistic datasets for energy production and consumption are used for experiment.

Real consumption dataset is obtained from [137] that contains daily aggregated energy

consumption data of 53 residential buildings of different types and sizes over the

course of 2014. 16 solar energy producers located in Lexington, Kentucky, USA

are considered. These producers are equipped with Photovoltaic (PV) generation

capabilities. Half producers are equipped with a 8kW power plant, while the other

half with a 4kW power plant. Furthermore, the NREL’s PVWatts Calculator of

the U.S. Department of Energy [138] is used to generate the energy production over

time given the solar irradiance in Lexington and the size of the PV plants. It is

assumed that the amount of demand and production for the next day is predicted

using an Exponentially Weighted Moving-Average (EWMA) with parameter 0.5.

This prediction has been shown to be particularly accurate in [60, 139]. Preference

probabilities are selected uniformly at random from the set {0.1, 0.5, 1}. Additionally,

unless otherwise stated, T is set to 1kWh and K is equal to 5. A sensitivity analysis

of these parameters is also provided. Finally, losses are assigned uniformly at random

from the set {1%, 2%, 3%, 4%}, the maximum tolerable loss is Lmax = 2.5% and

α = 50Wh. UPL and BPT-K implement Gurobi optimizer [140] and NetworkX

python library respectively.

4.5.2 Comparison approach

The proposed algorithms, UPL and BPT-K, are compared to the “Zhu” algorithm

presented in [35]. Zhu matches producers and consumers in order to minimize the

transmission loss. In this method, consumers are sorted in descending order based on

the amount of energy demand. Then, the algorithm follows such order and matches

the consumers’ demand with the available producers by giving precedence to those

that provide the minimum loss. The interested reader is referred to [35] for more

details. To the best of our knowledge, [35] is the closest work in context of the
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proposed system which aims at finding an optimal matching among the producers

and consumers in a localized energy sharing system.

It is to be noted that the Zhu algorithm uses minimization of loss as heuristic for

the best match and does not take into account the consumers’ preferences nor the

maximum sizeK of the recommendation list. To provide a fair comparison, a modified

version of Zhu algorithm is adopted. This modified version replaces the matching

criteria based on loss with the consumers’ preferences to maximize the likelihood that

the recommendation is accepted. Specifically, it follows sorted order of consumers and

matches each consumer j with the producer i that has the highest preference pij and

satisfy the loss threshold Lmax. Additionally, it stops the matching for consumer j as

soon as the number of producers assigned to it reaches K. The modified approach is

denoted as “ZhuP ”. Note that ZhuP only addresses the matching problem but not the

challenge of learning the user preferences. For fairness, it is assumed that ZhuP has

perfect knowledge of such preferences. The experiments compare UPL and BPT-K

to ZhuP .

4.5.3 Performance Evaluation

Four experimental scenarios are considered for performance evaluation of the

proposed P2P energy sharing system. The first scenario compares performance of

the proposed algorithms by scaling the network size. The second scenario focuses on

the cumulative reward of RL over time, that is the cumulative energy transfer. In the

third scenario, the advantages of the Fast Initialization Algorithm (FIA) is compared

to the original initialization of UPL. Finally, the fourth scenario provides sensitivity

analysis to study the impact of K and T on the performance of proposed as well as

comparison approaches.

Experimental Scenario 1. In this scenario UPL, BPT-K, and ZhuP are compared

with respect to efficiency and percentage of satisfied demand. Efficiency is defined

as the ratio of exchanged energy over the optimum value obtained by solving the
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(a) Efficiency (b) Satisfied Demand

Figure 4.2: Efficiency and Satisfied Demand vs. number of consumers (keeping
number of producers constant)

(a) Efficiency (b) Satisfied Demand

Figure 4.3: Efficiency and Satisfied Demand vs. number of consumers (keeping ratio
of consumers-to-producers constant)

optimization problem in Eq. (4.1) optimally, given the perfect knowledge of the user

behavior. The efficiency of each algorithm is calculated every day, and it averages

the value over a period of a year. The percentage of satisfied demand refers to the

amount of consumers’ demand that has been satisfied through exchanged energy, i.e.,

the recommendations sent by the algorithms and accepted by the consumers.

The purpose of this experiment is to determine how these metrics are affected by

the scale of the network. Two possibilities for scaling the network are identified:

(i) increasing the number of consumers while keeping the producers constant, and

(ii) increasing the number of consumers and proportionally increasing the number

of producers. These scenarios are similar, but they present different challenges for
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the proposed algorithms. In the former, the amount of available energy shrinks with

respect to the demand, but the number of matching options only increases linearly.

Conversely, in the latter, the amount of available energy increases with the network

size, but the number of matching options increases quadratically. As a result, the

first scenario is more challenging for the matching algorithm, while the second for the

learning algorithm, as there are more preferences to learn.

Accordingly, the efficiency achieved by the considered approaches in the first

scenario is shown in Fig. 4.2a. ZhuP shows the worst performance among the

considered algorithms, even though it has perfect knowledge of the consumers’

preferences. This is due to the greedy nature of this algorithm, which may lead

to poor performance when some inadequate greedy decisions are taken. Specifically,

to satisfy the demand of a given consumer, ZhuP assigns all possible energy from one

producer before considering the next one. This may prevent to find better solutions

where the demand of a user can be satisfied by multiple producers. On the contrary,

UPL achieves the best performance both in terms of efficiency and satisfied demand.

By exploiting RL and solving the optimization problem on the basis of the current

knowledge, UPL is able to achieve performance close to the optimum (i.e., 100%

efficiency) in all scenarios at the expense of a higher computational complexity. On

the other hand, BPT-K, by means of the iterative matching and RL, is also able to

provide a solution close to the optimum while benefiting from a lower complexity.

Fig. 4.2b shows the percentage of satisfied demand. Since in this case the

number of producers are constant (i.e., constant amount of produced energy), the

satisfied demand decreases by increasing the number of consumers for all approaches.

Nevertheless, UPL and BPT-K significantly outperform ZhuP even though they need

to learn the user preferences through RL. Note that, the satisfied demand under UPL

and BPT-K is around 80% until the number of consumers is less than or equal to 30.

This is due to two reasons: (i) not enough energy is available for all consumers on some
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days over the year depending on weather conditions; and (ii) consumers may reject

some recommendations, which prevents reaching 100% of satisfied demand although

enough energy is available.

In order to further study the scalability of the system, efficiency and satisfied

demand are investigated by varying the number of consumers from 10 to 150 and

proportionally increasing the number of producers from 3 to 45. Note that, since

the dataset used consists of only 53 consumers and 16 producers, an augmented

dataset was created by selecting producers and consumers at random. This results

in an average produced energy which is around 60% of the demand. The results

are shown in Figs. 4.3a and 4.3b. When the number of consumers/producers is

low, some recommendations may include less preferred producers, for lack of better

alternatives. This results in a lower efficiency. Nevertheless, the efficiency rapidly

increases as the scale of the network increases. The efficiency of both UPL and BPT-

K reaches values close to 100% around 50 consumers, and remains almost constant

after that point. This shows the impressive scalability of the proposed solutions.

Conversely, ZhuP is not able to perform well due to its greedy matching strategy and

saturates around 75% only. As a result, our approaches provide a consistent 25%

improvement in efficiency compared to the state-of-the-art solution. The percentage

of satisfied demand is compared in Fig. 4.3b. The satisfied demand increases as the

number of producers and consumers increases. In fact, as the size of the network is

increased, there are more producers from whom a given consumer is willing to buy

with high probability (i.e., preference). The maximum satisfied demand approaches

65% (i.e., the production to demand ratio) with 150 consumers and 45 producers,

as most consumers receive highly preferred recommendations. Also in this case, the

RL-based algorithms, UPL and BPT-K, significantly outperform ZhuP .

Experimental Scenario 2. This scenario studies the widely adopted measure of

RL algorithms, that is the cumulative reward over time. In this case, it corresponds

74



to the cumulative energy exchanged. To this purpose, for each day d, the cumulative

energy exchanged up to that day is calculated, then it is divided by d. Note that,

to better focus on the reward, the results are shown after the initialization phase of

UPL and BPT-K has completed. As a result, day d = 0 corresponds for UPL and

BPT-K to the first day after the end of their respective initialization, which may

have a different length for each algorithm. The length of the initialization phase is

explicitly studied in experimental scenario 3.

Figure 4.4: Plot for cumulative reward
(energy exchange)

Figure 4.5: Percentage of energy losses
over time.

Figure 4.6: Average absolute % error
of preferences learned over
time

Figure 4.7: Number of Days required
for initialization vs. K

As the results presented in Fig. 4.4 show, UPL outperforms all approaches,

demonstrating outstanding performance with negligible gap with respect to the

optimal solution which assumes perfect knowledge of the user preferences. This

results from the ability of UPL to quickly learn the user preferences and by solving the
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optimization problem optimally at each iteration. Once the preferences are sufficiently

learned, UPL and OPT provide the same solution. BPT-K shows a reward that

closely matches the performance of UPL, without requiring the solution of a NP-

Hard problem at each time step. On the contrary, ZhuP clearly exhibits its inability to

provide satisfactory performance due to its greedy matching approach. Overall, both

UPL and BPT-K are within 5% of the optimal solution in less than three months

of learning. Additionally, they provide an average 27% gain in energy transferred

compared to ZhuP . It is worth noting that since realistic energy production data is

obtained from [138], there is a seasonal effect causing the non-monotonic trend of all

approaches in Fig. 4.4. In fact, during the Fall/Winter months there is a decrease in

energy production of solar panels, which implies a decrease in the exchanged energy.

For completeness, Fig. 4.5 illustrates the percentage of energy loss. In these

experiments, there is Lmax = 2.5%. None of the algorithms is specifically targeting

loss as an optimization metric, as long as no more than Lmax energy is lost in each

transaction. As a result, all approaches incur a loss lower than Lmax. Finally, the rate

of learning user preferences under various ratios of produced energy versus demand

is studied. To this purpose, Fig. 4.6 shows the average percentage absolute error in

learning the consumers’ preferences, i.e., the probabilities pij, under UPL. Results for

BPT-K were omitted because similar trends were observed. In these experiment, the

produced energy is given as a percentage (10%, 40%, 70%, and 100%) of the demand,

and corresponding learning error after 10 days, 3 months, and 1 year is observed.

Intuitively, when less energy is produced, less exchanges are possible which results in

a slower learning phase. As expected, the error decreases as the amount of energy

increases, as well as with time. It is worth noting that, even under just 10 days, the

error is below 10% if at least 70% of the required energy is available. Interestingly, the

error never reaches zero, and it tends to stabilize around 5%. This is due to the nature

of reinforcement learning, which prefers exploitation over exploration, once sufficient
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knowledge is acquired. In fact, once the best matches (i.e., those with higher chances

of acceptance) are identified, these are selected more often, in order to maximize the

system performance. As a result, other consumers’ preferences are not learned exactly

but this does not prevent the system from achieving high efficiency.

Experimental Scenario 3. In the third scenario, the performance of the Faster

Initialization Algorithm (FIA) is studied. Both the primary objective, i.e., minimizing

the number of days required to complete the initialization phase, as well as the

secondary objective, which is improving the amount of exchanged energy during the

initialization, are considered. In this scenario, FIA is compared with the initialization

phase of UPL originally proposed in [132]. The goal of the original initialization

is to probe all the variables (here preferences) at least once. However, the UPL

initialization has a fixed duration of |P | × |C| days, due to the for loop in Alg.

1 line 1. For a fair comparison, a modification of this approach is adopted, called

“M-UPL”, wherein the algorithm breaks out of the for loop as soon as the goal of

probing all the variables at least once is met. First the number of days required to

complete the initialization phase is studied by varying the value of K from 1 to 8. It

is also considered the case of K = ∞, corresponding to no limit on the size of the

recommendation list. The number of consumers and producers are constant and equal

to 10 and 16, respectively. As shown in Fig. 4.7, FIA is able to significantly shorten

the initialization time by maximizing the number of probed variables at each iteration,

without violating the K-constraint. Conversely, the original UPL initialization has

a constant initialization time of |P | × |C| = 160 days. Modified version M-UPL

improves the performance of UPL, but it still achieves a termination time which is 7

times higher than FIA on average. This is due to the fact that M-UPL probes single

variable at every iteration, while selecting other variables randomly until all variables

are probed at least once.

Next, the impact of network size with respect to the length of initialization time
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(a) Constant number of producers
(b) Constant ratio of no. of consumers-

to-producers

Figure 4.8: Efficiency of the initialization algorithms vs. number of consumers

is studied. Similar to experimental scenario 1, number of consumers is increased

by keeping number of producers constant and also by increasing the producers

proportionally. These experiments set K = 5. Figs. 4.9a and 4.9b present the

results. In both cases, FIA significantly outperforms UPL and M-UPL (note the log-

scale on the y-axis). Note that the initialization time increases more significantly for

all approaches when number of producers increases with the number of consumers.

This is due to the number of variables that increases linearly when producers are kept

constant, and quadratically when they scale with the number of consumers.

(a) Constant number of producers
(b) Constant ratio of no. of consumer-to-

producer.

Figure 4.9: Number of days required for initialization vs. number of consumers

Finally, the experiment focuses on the secondary objective of FIA, which is the

amount of exchanged energy. To this purpose, the efficiency of FIA, UPL, and M-UPL
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are compared during their respective initialization phases. The efficiency is calculated

as the total amount of exchanged energy by the algorithms, during the initialization

phases, divided by energy exchanged by the optimal solution, with perfect knowledge

of preferences, during the same period. K is fixed at 5 and number of consumers

and producers is increased as before. Results are presented in Figs. 4.8a and 4.8b.

As the figures show FIA, even not targeting energy exchange as primary objective,

significantly outperforms the original UPL and M-UPL.

Figure 4.10: Energy Transferred vs. K. Figure 4.11: Energy Transferred vs. T .

Experimental Scenario 4. The final experimental scenario performs a sensitivity

analysis to investigate the impact of the values K and T on the performance of the

proposed methods and the comparison approaches. First, it focuses on the value of

K. In this experiment, K varies from 1 to 8 and it also includes K = ∞. The

number of consumers and producers are equal to 10 and 16, respectively. Fig. 4.10

illustrates the total energy transferred as a function of K. As observed, UPL and

BPT-K outperform ZhuP for each value of K and perform close to the optimum. The

technique of discretization into unit of exchangeable energy of size T , results in slightly

worse performance of BPT-K compared to UPL. Similar to previous experiments,

ZhuP performs worse than others even with perfect knowledge of users’ preferences.

Numerically, ZhuP saturates at 75% of the optimum value, while UPL and BPT-

K reach 99% and 98%, respectively. This experiment reveals that the proposed
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system aligns well with social-science and behavioral economic theories of bounded

rationality [28]. In fact, there is no noticeable performance improvement for values of

K larger than 5. Therefore, sending a shorter list of recommendations to consumers

is convenient for them to interact with the system, without sacrificing the system

performance. Finally, sensitivity analysis of BPT-K to size of the unit of exchangeable

energy T is presented in Fig. 4.11. The trend of the total energy transferred over

a year, by varying T from 1kWh to 6kWh. It also sets K = 5 and considers 50

consumers and 16 producers. For T = 1kWh, the total energy exchange is close to

the optimal value. Increasing T reduces the algorithm computational complexity (see

Theorem 4), at the expense of a small decrease in performance.

4.6 Concluding Remarks

In this chapter, the problem of exchanging locally-generated energy through

a P2P energy sharing mechanism was studied. Formulated as a Mixed-Integer

Linear Programming (MILP), the problem was proved to be NP-Hard. Unlike the

existing works that mostly overlook or oversimplify the role of human behavior in

P2P energy exchange, a realistic user behavioral model in terms of the consumer

preference, engagement, and bounded rationality is incorporated. To learn the user

preferences, a Reinforcement Learning (RL)-based algorithm called User Preference

Learning (UPL) is proposed. In addition to that, an efficient RL heuristic is also

proposed, called BPT-K, which is based on Maximum Weighted Bipartite Matching

(MWBM). Extensive experimental evaluation, with real energy consumption and

production data, show that the proposed approaches perform close to the optimal

and substantially outperform the comparison method.
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CHAPTER 5. PROSPECT THEORY-INSPIRED P2P ENERGY

TRADING

Figure 5.1: Incorporating User Behavioral Modeling into P2P Energy Trading

Like in any trading market, the monetary incentives form major motivating factor

for ensuring sustainable participation of prosumers in the P2P energy trading market.

However, it requires the prosumers to be actively involved in the trading process

which might cause prosumers to be overwhelmed with the decision-making problem

owing to the bounded rationality. As established in previous chapters, requiring

constant active participation from prosumers might even lead to their possible

abandonment and therefore, failure of implementation of such systems in real setting.

To this end, the prosumers’ decision-making behavior and perceived utility must be

effectively incorporated in the P2P energy trading system to create a prosumer-centric

trading environment that requires little active involvement from their side. This can

be achieved through user behavioral modeling that integrates bounded rationality,

individual preferences and perceived utility of users together as shown in the Fig. 5.1

to duplicate their decision-making as accurately as possible. In this chapter, we devise

mechanisms to automate the process of P2P energy trading that incorporates notion

of Prospect Theory to maximize the user’s perceived utility for trading energy as

well as utilize reinforcement learning frameworks to dynamically update the seller’s
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selling price based on the previous-day sell. The work conducted in this chapter

was published in Proceedings of IEEE Global Communication Conference (IEEE

GLOBECOM) 2022 [47] and in ACM Transactions on Evolutionary Learning and

Optimization 2022 [48].

Figure 5.2: P2P Energy Trading System Overview.

Therefore, to model the user behavioral patterns and perceptions in our P2P energy

trading system, we turn to behavioral economics to formulate a prospect theory-

inspired optimization problem that maximizes the perceived value of energy trading

transactions for individual prosumers in automated environment. This automated

energy trading environment needs to be designed carefully to integrate prosumer’s

energy trading behavior while also maximize their financial incentives for being

involved with the market. It will not only save the user’s involvement time but

will also help in maximizing their perceived benefits in terms of loss/gains through

the use of user behavioral modeling.

To this purpose, we utilize the widely accepted notion in behavioral decision-

making called Prospect Theory (PT) [69]. PT captures the non-rational decision

making of humans in the face of uncertainty, and it provides a mathematical tool to
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quantify the subjective perception loss and gain. Specifically, we propose a PT-based

optimization framework for prosumer-centric P2P energy trading that incorporates

perceived utility into the trading and automates the price updating for sellers using

reinforcement learning. This is presented clearly in Fig. 5.2. The proposed framework

aims at matching energy demand and production between buyers and sellers (step 1

in Fig. 5.2). The objective is to maximize the perceived utility of individual buyers,

by taking into account their intrinsic perception and heterogeneity. We formalize this

as a non-linear and non-convex optimization problem, and prove that it is NP-hard.

Given the non-linear and non-convex nature of the problem on top of being NP-

hard, we further propose a Differential Evolution-based Algorithm for Trading Energy

(DEbATE)to find a solution to the problem in polynomial time (energy allocation,

step 2).

In order to require minimal participation of prosumers, we employ a Reinforcement

Learning (RL) framework, called Pricing mechanism with Q-learning and Risk-

sensitivity (PQR), which is executed in tandem with DEbATE, to automate the

pricing mechanism for sellers (pricing mechanism, step 3). Sellers are not aware of

their competitiveness in the market. Therefore, PQR adjusts the price dynamically

based on the market demand as well as seller’s competitiveness and perceived utility.

PQR learns the optimal selling price for each sellers using PT-based risk-sensitive

RL approach [117]. However, PQR inherits the typical scalability and stability

limitations of a standard tabular approach for the Q-learning function. To avoid such

limitations, we further improve PQR by proposing a Deep Reinforcement Learning

based alternative heuristic, called ProDQN , that uses a PT-based loss function to

accommodate the seller’s perceived utility. The output of the RL algorithms are then

published to the prosumers for the next matching of demand and production. Finally,

the output of the matching is then implemented by the P2P energy system to execute

the physical energy transactions (step 4).
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The proposed techniques address the limitations of previous works by modeling

individual prosumers’ behavior, incorporating perceived utility, and automating the

price updating process for sellers. Employing a differential evolution-based heuristic,

paired with reinforcement learning based pricing mechanisms, allows to efficiently

find a solution to the non-linear and non-convex problem, which is especially critical

for large systems with many prosumers. Additionally, by incorporating PT-based

approaches, the individual subjective perception loss and gain can be quantified,

which is an essential aspect of prosumer-centric P2P energy trading. Finally, through

the use of reinforcement learning, the system can learn from the prosumers’ behavior

and adapt to changes in market conditions, leading to a more efficient and effective

P2P energy trading system.

Major works proposed in this section are:

• Develop a prospect theory inspired optimization framework for P2P energy

trading between prosumers.

• Devise an energy allocation mechanism based on the optimization framework

that maximizes the perceived value of loss and gain for all buyers

• Take seller’s individualized risk attitudes and sensitivity in account to design a

dynamic pricing mechanism through risk-sensitive reinforcement learning.

5.1 System Model and Problem Formulation

The components of the proposed framework for P2P energy trading system are

shown in Fig. 5.3. The systems consists of three distinct components, namely (i)

Prosumers, (ii) Energy allocation, and (iii) Pricing mechanism. We describe the

modeling of the three components in detail in following subsections.

5.1.1 Modeling Energy Allocation

In this subsection, we present the energy allocation mechanism which determines

how to match the buyers’ demand with the sellers’ production, while maximizing
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Figure 5.3: Proposed Framework of P2P Energy Trading.

their individual perception. We model the perceived loss and gain of prosumers using

the prospect theory (PT) value function to capture user perception of gains and losses

as shown in Fig. 5.3. Specifically, consider the excess energy generation of seller

i ∈ S be ri and demand of buyer j ∈ B be wj. Then, let xij ∈ [0, 1] be a variable

representing the fraction of wj that buyer j buys from seller i. Also, let ρgs, ρgb be

the energy selling and purchasing prices from the grid, respectively, ρi be the selling

price of seller i, and ρj is the reference price of buyer j. Prices are expressed as cost

per kWh.

We adopt a modified PT value function to model realistic user perception in an

energy market [69]. The function quantifies the human perceived utility towards gain

and loss based on the degree of deviation from a reference point. In our problem, it

captures the difference between the total actual buying cost for the buyer j i.e. yj and

their desired reference cost ρjwj for buying wj amount of energy at their reference
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price. The utility function is then formulated as

v(yj) =


k+,j(ρjwj − yj)ζ+,j , yj < ρjwj

−k−,j(yj − ρjwj)
ζ−,j , yj ≥ ρjwj

(5.1)

where k+,., k−., ζ+,., ζ−,. are the parameters that control the degree of loss-aversion and

risk-sensitivity. These parameters can be obtained through either adaptive learning

using models presented in chapter 4. Similarly to [113, 141, 142], we assume that

these parameters can be obtained by surveys completed by the prosumers when the

energy trading system is installed in their home, and potentially updated later on with

sporadic feedback to the energy management system. Recent studies have shown that

these parameters are highly heterogeneous and vary from person to person based on

factors like gender and age group [141, 142]. In the equation above, yj is the total

actual cost of buying energy for buyer j that incorporates the total cost of buying

energy from P2P setting as well as the grid – in case the demands are not met locally.

Therefore the term yj is given by

yj =
∑
i∈S

ρixijwj + ρgs(1−
∑
i∈S

xij)wj

Note that, similar to the PT value function in [69], the utility function in Eq. (5.1)

is concave in the gain domain (i.e., yj < ρjwj) while convex in loss domain (i.e.,

yj ≥ ρjwj).

The problem of matching demand and production of heterogeneous prosumers is
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formalized as follows.

maximize f(y) :
∑
j∈B

v(yj) (5.2)

s.t.
∑
j∈B

(1 + lij)xijwj ≤ ri, ∀i (5.2a)

∑
i∈S

xij ≤ 1, ∀j (5.2b)

xij = 0, if lij ≥ lmax, ∀i, j (5.2c)

ρgb ≤ ρi, ρj ≤ ρgs, ∀i (5.2d)

µjzij ≤ xijwj ≤ wjzij, ∀i, j (5.2e)

zij ≥ xij, ∀i, j (5.2f)

xij ∈ [0, 1], zij ∈ {0, 1}, ∀i, j (5.2g)

The problem maximizes the sum of perceived utility for buyers in Eq. (5.2). There

is an energy loss during the physical energy transfer through wires [35], which depends

on the wire-length between i and j and it is directly proportional to the amount

of energy exchanged. We model such loss as a fraction lij ∈ [0, 1] of the energy

exchanged. As a result, the constraint in Eq. (5.2a) prevents the problem from

exceeding the amount of energy being sold by each sellers while incorporating the

losses in electric lines. The constraint in Eq. (5.2b) ensures that the energy demand

for each buyer is not exceeded, while constraint (5.2c) limits the loss between sellers

and buyers to be within the loss threshold lmax. On the other hand, constraint (5.2d)

limits the upper and lower bound for energy price to the selling and buying price of

the grid. Constraint (5.2e) sets the minimum amount µj of an energy transaction

for buyer j, using a binary decision variable zij, that is equal to 1 if xij > 0, and

to 0 otherwise (constraint (5.2f)). The value of µj is generally a system parameter

to prevent impractical solutions containing infinitesimal amounts [45]. Finally, the
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range of operation of the decision variables are defined in (5.2g).

Theorem 5. The optimization problem in Eq. (5.2) is NP-hard.

Proof. We present a reduction from the Generalized Assignment Problem (GAP) [131]

as a proof of NP-hardness of our optimization problem. In a general instance of GAP,

there are n tasks andm processors. Each processor i has a resource budget given by ri.

By assigning task j to processor i, we obtain a profit pij while consuming gij amount

of resources. A task can only be assigned to a single process, and therefore, the goal is

to find the assignment that provides maximum profit given the resource budget of the

processors. The GAP can be formulated as an integer linear programming problem:

maximize
m∑
i=1

n∑
j=1

pijxij (5.3)

s.t.
n∑

j=1

gijxij ≤ ri, ∀i (5.3a)

m∑
i=1

xij = 1, ∀j (5.3b)

xij ∈ {0, 1} ∀i, j (5.3c)

From a general GAP instance, we can create a reduced instance of our problem

as follows. We create a buyer for each task and a seller for each processor. We set

(1+Lij)wj = gij and set the energy production of a seller i to ri. We also set lmax =∞

so that all exchanges are possible (i.e., a task can be assigned to any processor). An

important difference between our reduced problem and the GAP is that the decision

variables xij are continuous instead of discrete. However, infinitesimal exchanges are

not allowed in our system, as they need to be greater than or equal to µj. By setting

µj = wj, the constraint in Eq. (5.2e) forces the decision variable xij to be either 0

or 1, same as binary decision variable zij. Additionally, it also forces the system to

assign a buyer (i.e., a task in the GAP problem) to a single seller.
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We set all the loss-aversion parameters (k+,., k−.) to 1 and the risk-sensitive

parameters (ζ+,., ζ−,.) to 1. We also set ρj = 0 for all sellers in S. In summary,

the objective function becomes linear, i.e.,

∑
j∈B

∑
i∈S

(ρgs − ρi)wjxij −
∑
j∈B

∑
i∈S

ρgswj

The term −
∑

j∈B
∑

i∈S ρgswj is just a constant, and can thus be ignored for the

purpose of the maximization problem. Now, by setting (ρgs − ρi)wj = pij, we have

successfully reduced the objective function to

∑
j∈B

∑
i∈S

pijxij

As a result, the solution of our reduced problem provides the assignment that

maximizes the profit within the constrained processors’ resources. Therefore, our

problem is at least as hard as GAP, and thus it is NP-Hard.

It is to be noted that, in addition to the NP-Hardness, the problem in Eq. (5.2)

is also non-linear and non-convex. There is not any general procedure to solve such

optimization problems dealing with continuous solution sets [143]. Hence, in order

to solve this combinatorial problem of matching demand and supply of energy, we

propose a heuristic based on Differential Evolution [144] which finds a feasible solution

through iterative recombination and improvement of the candidate solutions along

with constraint handling. Adopting this heuristic approach is particularly beneficial

in large systems, where the complexity of the problem would make it impossible to

find the optimal solution in reasonable time. In the next section, we motivate the

need for a dynamic pricing mechanism mechanism, before presenting the differential

evolution heuristic in Section 5.2.
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5.1.2 Modeling Pricing Mechanism

In the proposed P2P energy trading model, the selling price is considered to be

a fixed amount for a given trading period, and it is used as the trading price for

a transaction. However, the reference price ρi of seller i is a personal value which

may under- or over-estimate the competitiveness of market. In order to improve the

sellers’ competitiveness, we implement a dynamic pricing model for sellers as exhibited

in the Fig. 5.3. Note that, to expect sellers to manually adjust the price based on

the performance of the energy trading system (e.g., their revenue) is impractical.

Demanding such active participation could easily be overwhelming, and severely affect

their performance and level of engagement with the system. To avoid such active

participation, we model the adjustment of the price as a Markov Decision Process,

and exploit reinforcement learning to update the selling price at each trading period.

To maximize the sellers’ perceived objectives through prospect theory, we resort to a

risk-sensitive reinforcement learning approaches that forms the basis of the automated

pricing mechanism within our P2P energy trading framework. In the following section

5.2, we present two algorithms based on reinforcement learning that incorporate the

seller’s perceptions on loss and gains to update the prices while automating the process

in order to ensure sustained prosumer participation. First, in subsection subsection

5.2.2, we employ risk-sensitive Q-learning algorithm [117] and then given its efficiency

limitation due to the tabular representation of the Q-function, we also present a Deep

Q-network (DQN) [145] based algorithm in subsection 5.2.3 that proposes a novel loss

function founded on prospect theory value function.

5.2 Solution Approaches and Heuristics

In this section, we describe the Differential Evolution-based Algorithm for Trading

Energy (DEbATE) heuristic (Alg. 4), designed for matching demand and production

according to the problem presented in Section 5.1, the Pricing mechanism with Q-

learning and Risk-sensitivity (PQR), and the Prospect theory-based Deep Q-Network
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(ProDQN), designed to dynamically adjust the sellers’ prices.

5.2.1 DEbATE

Algorithm 4: DEbATE
Input : set of buyers B, sellers S, fitness function f(.), max iterations

Gmax, population size NP , crossover probability CR, differential
weight F

Output: best identified feasible solution x∗

1 Update set of buyers B and sellers S, count = 0;
2 Generate initial population X = {xk| k = 1, . . . , NP};
3 while count < Gmax do
4 for each xk ∈ X do
5 Choose 3 different vectors {xa,xb,xc} ∈ X at random and

R ∼ U(1, |S| × |B|);
6 Create mutated solution x̄k = xk;

/* Mutation and Crossover */
7 for each i ∈ |S|, j ∈ |B| do
8 Select u ∼ U(0, 1) ;
9 if u < CR||(i× j) == R then

10 x̄
(k)
ij = x

(a)
ij + F × (x

(b)
ij − x

(c)
ij );

11 x̄
(k)
ij = min(1,max(0, x̄

(k)
ij ));

12 end
/* Check Constraints */

13 ∀i, j, if lij ≥ lmax then x̄ij = 0;
14 ∀i, if

∑
j(1 + lij)x̄ijwj > ri then x̄ij =

x̄ijri∑
ĵ (̄1+liĵ)x̄iĵwĵ

;

15 ∀j, if
∑

i x̄ij > 1 then x̄ij =
x̄ij∑
î x̄îj

;

/* Compare fitness */
16 if f(x̄k) > f(xk) then X = (X \ {xk}) ∪ {x̄k};
17 end
18 count = count++;
19 end

/* Find the best solution and execute trading */
20 Let x∗ = arg max

xk∈X
f(xk);

21 Execute transactions for each prosumers to x∗ ;

DEbATE is executed at each trading period (e.g., 12 hours) to solve the non-

linear optimization problem presented in Section 5.1. It uses differential evolution

to determine an optimal amount of energy to be traded between prosumers that

maximizes the perceived utility of buyers. DEbATE initially updates the list of
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buyers (B) and sellers (S) based on the expected production and consumption

for the current trading period. These can be predicted accurately with recent

approaches [128, 146]. The differential evolution-based optimization begins on line

2 where an initial population X is generated with population size of NP . An

element xk ∈ X , with k = 1, 2, . . . , NP is a candidate solution vector of variables xij

representing the amount of energy to be traded between the ith seller and jth buyer.

These variables correspond to the decision variables of our optimization problem.

The while−loop (line 3−19) is the differential evolution loop that aims at finding a

solution to the non-linear optimization problem with Eq. (5.2) as the fitness function.

The loop is executed forGmax iterations. At each iteration, for each candidate solution

xk ∈ X , the algorithm creates a mutated solution x̄k. Initially, x̄k = xk. The

mutated solution is subsequently updated through mutation and crossover with 3

random candidates xa,xb,xc ∈ X (line 5). A value R ∈ [1, |S| × |B|] is selected at

random. R will be used in the following for−loop to ensure a minimum mutation.

The for loop in line 7 iterates over the components (dimensions in evolutionary terms)

of x̄k. During each iteration, a value u ∈ [0, 1] is sampled at random as mutation

probability (line 8). Subsequently, a mutation occurs for the component ij of x̄k with

crossover probability CR (line 9). The mutation occurs irrespective of the probability

if (i × j) = R (to ensure at least one minimum mutation). A mutation is executed

by combining the corresponding component of xa, xb, and xc with the differential

weight parameter F ∈ [0, 2] as in line 10. The mutated component x̄
(k)
ij is clipped

to ensure that it falls within [0, 1] as minimum and maximum threshold to satisfy

constraint Eq. (5.2g) in line 11 of the algorithm.

After the mutated solution is finalized, it is checked, and adjusted if needed, to

meet the constraints in Eqs. (5.2a)-(5.2c) of the optimization problem. Specifically,

line 13 ensures that no exchange occurs (i.e., x̄(k)
ij = 0) between users having a loss

higher than lmax. Lines 14−15 ensure that the production of a seller and the demand
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of each buyer are not exceeded, respectively. Finally, in line 16, the fitness function

f(.) of the mutated solution x̄k is compared against the original candidate solution

xk. If f(x̄k) > f(xk), then x̄k replaces xk in the set of candidate solutions X .

At the end of the while loop, DEbATE selects the best solution x∗ in X (line 20)

and executes the transactions accordingly (line 21). In the following Lemma 3, we

show that DEbATE has polynomial time complexity, and hence it is computationally

efficient. The theorem focuses on the asymptotic complexity, a typical mathematical

formulation to characterize the upper-bound of the running-time for sufficiently large

inputs [147].

Lemma 3. The time complexity of the DEbATE algorithm is O(Gmax×NP×|S||B|).

Proof. The complexity is dominated by the while loop (lines 3−19), which is executed

Gmax times. Within this loop, the for−loop (lines 4 − 17) does |X | = NP total

iterations. In each iteration, the inner for−loop (lines 7− 12) iterates over the sets

S and B, and only contains constant operations. Similarly, checking the constraints

(lines 13− 15) requires to iterate over the same sets. Finally, calculating the function

f(.) (line 16) has cost |B|. Overall, the complexity is O(Gmax × NP × (|S||B| +

3|S||B|+ |B|)) = O(Gmax ×NP × |S||B|)

5.2.2 PQR

Algorithm 5: PQR
/* Pricing with Risk-sensitive Q-learning */

1 Collect transaction information for each prosumers from DEbATE (Alg. 4)
for current timestep t;

2 for each i ∈ S do
3 Select an action, a ∈ {+δ,−δ, 0} based on the ϵ-greedy strategy ;
4 s = ρi; snew = s+ a;Ri = snew

∑
j∈B

xijwj;

5 ρi = snew;
6 Update Q(s, a) as in Eq. (5.4) and (5.5);
7 Send information on updated price ρi to seller i;
8 end

93



After determining the solution to the energy allocation problem in DEbATE,

the selling price for sellers is then updated through the Pricing mechanism with

Q-learning and Risk-sensitivity (PQR) algorithm as presented in Alg. 5. In order

to learn the optimal selling price dynamically over time, we model the sellers as

independent learning agents. Note that, to preserve the privacy and avoid the

conflict between prosumers, these agents do not have access to information about

other sellers or buyers. The state space (s) of the Markov Decision Process, in the Q-

learning formulation, consists of the prices between the grid buying/selling ρgb and ρgs,

discretized by a step size, δ, i.e., ρi ∈ {ρgb, ρgb+δ, ρgb+2δ, ..., ρgb+
(ρgs−ρgb

δ
−1
)
δ, ρgs}.

The action space consists of a price increasing action, price decreasing action, and

no change action, i.e. a ∈ {+δ,−δ, 0} where δ is the amount by which price is

increased or decreased. The agent goes to a new state after taking action a which is

referred as snew. Seller i reward function is the total revenue generated at the current

trading period i.e. Ri = (ρi + a)
∑

j∈B xijwj. For updating Q-values, we modify the

approach proposed in [117] by considering the following Q-learning update rule that

includes the PT-based perceived utility of sellers.

Q(s, a)← Q(s, a) + αv(yi) (5.4)

v(yi) =


k+,i(yi)

ζ+,i , yi > 0

−k−,i(−yi)ζ−,i , yi ≤ 0

(5.5)

where, yi = Ri+ γmaxaQ(snew, a)−Q(s, a) is the Temporal Difference (TD) error

of ith seller for current iteration, and v(yi) is transformation of TD error to capture

each seller’s personalized perceived utility on loss. α refers to the learning rate for

updating Q-values in Eq. (5.4).

PQR, as summarized in Alg. 5, initially collects the current trading information
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from DEbATE in line 1. The subsequent for−loop (lines 2− 8) updates the selling

price for each sellers. At each iteration, a seller i ∈ S is considered. For that seller,

the action (whether to increase/decrease the price, or no change) is selected based on

a ϵ-greedy exploration-exploitation strategy [71] (line 3). Specifically, ϵ refers to the

probability of exploration and it is initially set to 1. It is then decreased over time

using an ϵ−decay factor, that is ϵ = decay factor × ϵ. This way, exploitation gains

more importance as the system learns the optimal policy. The algorithm returns an

action a, that is used to update the current state s into the new state snew, and to

update the reward Ri (line 4). Additionally, the Q-value is updated accordingly (line

6) . The updated selling price is then sent to the respective seller i for the next

trading period in line 7.

As discussed in the experimental section, PQR is able to correctly learn the optimal

policy (or sellers’ prices, in our case). However, it needs to be noted that in a P2P

energy trading model, like in most realistic scenarios, the state spaces can be very

large and multidimensional. In fact, since the Q-learning must maintain Q-values

for each state-action pair, even with just three actions, a finely discretized state

space could lead to a huge number of state-action pairs that needs to be stored and

updated continually. This is worsened by increasing the number of agents (sellers).

As a result, PQR may suffer from severe scalability issues, due to its tabular approach

of determining Q-values, as the system grows. Therefore, in the next subsection, we

utilize a widely employed deep neural network-based function approximator that can

be used to predict the Q-values using a learned function given state-action pairs.

5.2.3 ProDQN

In this subsection, we adopt a reinforcement learning approach based on Deep Q-

Network (DQN) [145], for learning the seller’s optimal price, in order to overcome

the scalability limitations of PQR. DQN is a reinforcement learning paradigm

that exploits a deep neural network, called Q-network, as a non-linear function
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Figure 5.4: Overview of the ProDQN approach

approximator. Its parameters (or weights) are denoted by θ, thus the Q-value function

Q(s, a) becomes Q(s, a;θ). Note that, approximating the function through a neural

network allows to not only represent the Q-values in a compressed form compared to

the tabular Q-learning algorithm, but also to generalize over similar states.

We extend DQN to incorporate Prospect Theory elements, in order to devise a

perceived utility-based pricing mechanism. We refer to our heuristic as Prospect

theory-based DQN (ProDQN). An overview of the heuristic is presented in Fig.

5.4. It is important to note that, using a single Q-network for reinforcement learning

may result in instability. This is due to the need of training the neural network

itself while using it as a Q-function approximator. This is known as the issue of

moving target, where the target, i.e. the expected optimal price in our application, is

varying after each training period. DQN solves this problem by utilizing two different

networks. One network is used for learning, while the other one to determine the

target respectively. The first network is the learning network, denoted by Q(s, a;θ),

which is used to take the best action given the current state. Secondly, we have

a target network, denoted by Q̂(s, a;θ−), which is used to determine how close the

output of the learning network is. The main difference between these network is that
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the learning network is updated after every training period while the target network

is updated less frequently. Thanks to these less frequent updates, the target network

is kept relatively stable, and thus the overall learning also becomes also stable.

An overview of ProDQN is shown in Fig. 5.4. ProDQN also employs two Q-

networks – learning and target networks. Similar to PQR, each seller is represented

by an individual ProDQN agent, and these agents do not share any information with

each other to avoid conflicts and preserve privacy. Additionally the state spaces and

action spaces are also the same as considered in PQR. As shown in Fig. 5.4, the

learning network Q is used with parameters θ to predict the current action a, given

the current state s = ρi as input. The action is either to increase (+δ), decrease (−δ),

or no change (item 1). Following this, the action is executed and the consequence of

action taken is observed (i.e. new state snew and new price ρnew, and the resulting

reward (R) is observed (item 2). The transition tuple < s, a,R, snew > is stored in a

Replay Buffer D. A minibatch of transitions [z] of size z is randomly sampled from

D (item 4) and passed to the target network Q̂. The reason behind random sampling

is to avoid bias due to high correlation in subsequent tuples. The target network

returns a target value for each tuple (item 5), which is used to determine the error

(or loss) in learning (item 6) and finally update the learning network parameters θ.

Specifically, for each sample m = {s(m), a(m), R(m), s
(m)
new} in the minibatch [z], the

target value Y (m) is given by

Y (m) = R(m) + γmax
a′

Q̂(s(m)
new, a

′;θ−) (5.6)

The computation of term maxa′ Q̂(s
(m)
new, a′;θ

−) is obtained from a single forward pass

in the target network Q̂ for a given state s(m)
new. According to the original version of

DQN [145], given the target values as in Eq. (5.6), the parameters θ of the learning

network Q(s, a;θ) are updated through stochastic gradient descent by minimizing a
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standard loss function, usually the square loss. Conversely, in our work we propose

a novel loss function in Eq. (5.7) based on PT-value function similar to the one

proposed in Eqs. (5.1) and (5.5). Specifically, given the target value Y (m) of tuple m,

the PT-based loss function L(m) is defined as:

L(m) =


k+,.(Y

(m) −Q(s, a;θ))ζ+,. , Y (m) > Q(s, a;θ)

−k−,.(Q(s, a;θ)− Y (m))ζ−,. , Y (m) ≤ Q(s, a;θ)

(5.7)

Recall that k+,., k−., ζ+,., ζ−,. are the PT parameters that quantify the perceived

utility. After calculating the loss for each sample, the mean loss is determined

by averaging the loss for all samples in the minibatch i.e. L = 1
z

∑
m

L(m). The

Algorithm 6: ProDQN
/* Pricing with Risk-sensitive Deep Q-Network */

1 Collect transaction information for each prosumers from DEbATE (Alg. 4)
for current timestep t;

2 for each i ∈ S do
3 Select an action, a ∈ {+δ,−δ, 0} based on exploration and exploitation ;
4 Observe the new state and reward:

s = ρi; snew = s+ a;Ri = snew
∑
j∈B

xijwj;

5 Store transition (< s, a,R, snew >) in Replay Buffer D;
6 Sample random minibatch of transitions [z] from Replay Buffer D;
7 For each k ∈ [z], set the target values Yi as in Eqs. (5.6);
8 Update θ as in Eq. (5.8) by performing gradient descent on PT-based

loss function L;
9 Soft update Q̂ as in Eq. (5.9);

10 ρi = snew;
11 Send information on updated price ρi to seller i;
12 end

learning network’s parameters are then updated by performing gradient descent step

on network parameters θ, using the newly calculated loss L as follows:

θ ← θ + α.
1

z

∑
m∈[z]

[
(Y (m) −Q(s, a;θ))

]
∇θQ(s, a;θ) (5.8)
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Finally, the parameters θ− of the target network are updated through soft updates.

Specifically, an exponential moving average with parameter τ is used as follows:

θ−
i ← τ ∗ θi + (1− τ) ∗ θ−

i (5.9)

This process is then repeated for all the sellers to adjust their selling price in an

automated manner similar to PQR algorithm (Alg. 5).

To the best of our knowledge, this is the first work using a PT value function-based

loss calculation to update the Q-network parameters. This loss function is specially

suited in our application scenario as it provides a way to capture the perceived utility

of sellers based on the deviation from target values. It is to be noted that, with this

PT-based loss function, the prediction of the Q-network Q(s, a;θ) tends to the target

value (Y ) (and therefore, to optimal Q-function i.e. Q∗(s, a)), transformed by the

perceived utility of sellers as we update the parameters θ.

The system runs the algorithms DEbATE and PQR/ProDQN sequentially at

every trading period. The input ofDEbATE is updated based on the prices calculated

by PQR or ProDQN , while PQR/ProDQN take as input the reward resulting from

the energy transactions executed by DEbATE.

5.3 Experimental Results

In this section, we discuss the experimental setup, the comparison approaches, and

then provide a detailed discussion on performance of both of the proposed solutions

versus the comparisons. In the following discussion, we refer to DEbATE paired

with PQR as DEbATE − PQR, and similarly to DEbATE paired with ProDQN as

DEbATE −DQN in the results.

5.3.1 Experimental Setup

The experimental setup consists of a system with 40 prosumers, split evenly as

buyers and sellers. This is considered a representative number of prosumers in a
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microgrid or set of houses supplied by a single distribution transformer. We use a

realistic dataset for buyer’s energy consumption obtained from [148]. Similarly, we

consider sellers equipped with 4kW rooftop solar located in Lexington, Kentucky,

USA. The energy generated is estimated using NREL’s PVWatts Calculator [149]

given the solar irradiance in Lexington and size of solar panels. Losses are assigned

uniformly at random (UAR) from set {1%, 2%, 3%, 4%} and maximum loss threshold

Lmax = 2.5%, while the minimum amount of energy to be exchanged (µj) is set to

50Wh for each buyers.

We assume that prosumers complete a survey before joining the system to estimate

their individual prospect theory parameters, similar to [113,141,142]. For the purpose

of experimentation, we use realistic prospect theory parameters from [113,141,142].

Specifically, the risk-averting parameter for gains (ζ+) ∈ [0.60, 0.88], the risk-seeking

parameter for losses (ζ−) ∈ [0.52, 1.0], the loss-aversion parameters for gain and loss

(k+), (k−) ∈ [2.10, 2.61] for each individual prosumers. The grid or utility company

generally sells energy at a higher price compared to the price it purchases energy.

Therefore, we set the price at which the grid buys energy to ρgb = $0.06 and the price

at which it sells energy to ρgs = $0.12, based on Kentucky’s average net-metering

rate and energy selling price. With the P2P energy trading paradigm, sellers and

buyers can exploit this gap to sell/buy energy among each other at a more convenient

price than the grid. Therefore, we set grid’s energy selling price as upper bound for

reference price for energy sellers and grid’s buying price as lower bound for reference

price for energy buyers, respectively. Specifically, the reference price for each sellers

is initially randomly sampled from range [0.09, 0.12]. It is then updated using either

PQR or ProDQN at each iteration. The reference price for each buyer is selected

in the range [0.06, 0.10] and considered static for the duration of experiments, which

is 365 days. The parameters for PQR algorithm are set as follows: learning rate

α = 10−4, step size for discretizing state space δ = $0.001, and ϵ−decay is set 0.965.
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ProDQN uses two Q-networks, learning and target network. Each of these consists

of an input and output layer connected by two hidden layers with 64 nodes each.

The input layer consists of a single node for state and output layer consists of three

nodes for three actions. Other hyperparameters are set as follows: learning rate

α = 0.0075, replay buffer size |D| = 1000, minibatch size z = 4, discount factor

γ = 0.8, soft update rate for target network τ = 0.01. These hyperparameters were

chosen manually for best results. Hyperparameter optimization techniques could also

be adopted such as grid search, Bayesian search, and population-based evolutionary

search for further fine-tuning. We developed the P2P energy trading simulation

environment and implemented the algorithms in Python using SciPy and PyTorch

libraries. 1

5.3.2 Comparison Approaches

In order to highlight the efficacy of our proposed approaches DEbATE − PQR

and DEbATE−DQN , we compare their performance against two recently proposed

state-of-the-art approaches. The first approach, referred to as Rule, is proposed in

[34]. Rule allocates energy using a greedy heuristic that assigns cheapest sellers to

buyers. Buyers are selected based on their registration order to the system. A mid-

market pricing strategy is employed, i.e., the final price of a transaction is the mid

value of seller’s and buyer’s asking price.

The second approach has been proposed in [35], to which we refer as Zhu from the

name of the first author. This approach has been proposed to minimize the loss of

the energy transactions. It employs a greedy algorithm to assign the energy among

buyers and sellers. The algorithm considers buyers in decreasing order of demand.

At each iteration, a buyer is selected and assigned to the sellers with the smallest

loss for that buyers, until the demand of the buyer is satisfied. In this approach, the

transaction price is given by the seller’s asking price.

1Scripts for the simulation can be found at this Github link:
https://github.com/ashutoshtmlsna/P2P_energy_trading
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It is worth nothing that, both approaches do not consider the perceived utility of

the buyers and they do not dynamically adjust the price of sellers. As discussed in

the following, our approach matches demand and production by generating a market

in which both the needs and perceptions of buyers and sellers are taken into account.

5.3.3 Results

We consider several experimental scenarios and performance metrics, as discussed

in the following.

Figure 5.5: Normalized objective value vs.
number of iterations for varied
population sizes.

Figure 5.6: Computation time vs.
population sizes.

Figure 5.7: Normalized objective value vs.
number of iterations for varied
network sizes.

Figure 5.8: Computation time vs.
network sizes.

Experimental Scenario 1: We first run two experiments to study the

evolutionary aspects and convergence of DEbATE. Specifically, we want to know
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the impact of the number of generations (Gmax) and population size (NP ) on the

quality of the solution, i.e., on the value of the objective function. We first study

the impact of the population size NP on the value of the objective function of the

optimization problem in Eq. 5.2 and on the computational time. Specifically, we

vary NP from 5 to 25. In this experiments, we consider a system with 5 sellers

and 5 buyers. Fig. 5.5 shows the respective plot averaged over 10 runs. It can

be seen that, as the population size is increased, DEbATE is able to find a better

solution. Additionally, with all the considered population sizes, DEbATE is able to

quickly converge towards a good solution with few iterations. We show in Fig. 5.6

the computational time versus the population size along with error bars. The figure

clearly shows that the computation time grows linearly with the population size. This

is in accordance with the complexity derived in Lemma 3.

We now consider the impact of the number of generations (iterations) Gmax on the

quality of the solution and execution time. We consider different network sizes by

linearly scaling the number of sellers and buyers from |S| = |B| = 5 to |S| = |B| = 20,

and setting NP = 20. Fig. 5.7 shows the normalized objective value as a function of

Gmax. The results show that by setting Gmax = 10, 000 iterations is sufficient for the

algorithm to converge in the considered settings. We plot in Fig. 5.8 the computation

time of DEbATE by increasing the system size along with the error bars. According

to Lemma 3, the computation complexity is proportional to |S| × |B|. As a result,

by increasing both buyers and sellers linearly, we incur in a quadratic increase in the

execution time.

Given the results of the aforementioned experiments, in the following, we select a

trade-off between computation time and quality of the solution. For the remaining

of the experiments, we therefore set the population size NP = 20, since it yields a

solution with similar objective value while requiring 22% less execution time, and

set Gmax = 10, 000. This helps to ensure that the algorithm will generate a quality
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solution.

Figure 5.9: Buyers’ perceived values. Figure 5.10: Sellers’ cumulative reward.

Table 5.1: Statistical Analysis of experimental result in Figs. 5.9 and 5.10
Metric Approach DEbATE-PQR DEbATE-DQN Rule Zhu
Obj. Val Mean -83.182 -97.818 -128.599 -155.312

Std. Deviation 34.738 37.800 60.288 61.983
Reward Mean 197.9 202.3 191.8 215.8

Std. Deviation 79.778 82.963 79.916 90.198

Experimental Scenario 2: In the second experimental scenario, we study the

performance of the considered approaches over time. Two performance metrics are

considered, namely the buyers’ objective value and the sellers’ cumulative reward.

These are represented in Figs. 5.9 and 5.10, respectively, with a moving average of

10 days. In these experiments, we consider 15 buyers and 15 sellers. Note that, the

buyers’ objective values are negative because they are paying higher prices than their

reference purchase price. Therefore, transactions are seen as loss from a prospect

theory perspective. Clearly, DEbATE−PQR and DEbATE−DQN perform better

than Rule in both metrics. The greedy nature of Rule penalizes the quality of

the resulting matching, significantly reducing the buyers’ perceived value while both

our approaches optimize the energy assignments to maximize the buyers perceived

utility. Additionally, our approaches are able to generate higher rewards than Rule

by dynamically learning the prices for sellers. Zhu however performs the worst in
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terms of the buyers’ objective values, but performs the best in terms of cumulative

reward. This is because the energy assignment is driven by loss minimization, not

taking into consideration the buyers’ reference price. This, paired with the trading

price set as the sellers’ asking price, results in a market heavily biased towards sellers,

achieving a very low perceived utility for buyers. We present a statistical analysis of

experimental results in Figs. 5.9 and 5.10 with respect to both mean and standard

deviation in table 5.1. As the table shows, the mean objective value is significantly

higher for DEbATE − PQR and DEbATE −DQN , with respect to the comparison

approaches. This is also paired with a lower standard deviation, which implies more

stable system performance. DEbATE−DQN produces a slightly higher mean reward

and a higher standard deviation. This is due to higher randomness engraved in deep

learning frameworks. In line with our observation from Fig. 5.10, Zhu highly favors

sellers with respect to buyers.

It is worth noting that, the benefits of DEbATE − PQR and DEbATE − DQN

over Rule and Zhu are more prominent from April through October, when the

energy demand and production are higher. Note that, the energy consumption is

higher during summer months due to the higher use of air conditioning equipment.

Similarly, the energy production is higher due to the increased solar radiation in

these months. Comparing DEbATE − PQR and DEbATE −DQN we notice that

ProDQN slightly penalizes buyers (lower utility) in favor of sellers (higher rewards).

This slight imbalance is however compensated by the better scalability of ProDQN .

In general, the sellers’ reward decreases after mid-September for all four approaches,

due to the reduced energy production during winter.

Experimental Scenario 3: We further study the performance over time by

considering the evolution of individual sellers’ prices. We consider a smaller system

of 5 sellers and 5 buyers for ease of representation of the results. Fig. 5.11 shows

the individual prices set by ProDQN algorithm while Fig. 5.12 shows the individual
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Figure 5.11: Individual prices for
ProDQN .

Figure 5.12: Individual prices for PQR.

Figure 5.13: Avg. price comparison for different network sizes between PQR and
ProDQN .

prices by PQR. Both approaches proposed in our system are able to learn and

adjust the price over time to improve the buyers’ perceived value while considering

the sellers’ competitiveness. The competitiveness of a seller is a function of buyers’

reference prices, the seller production, and their location in the system (e.g., loss w.r.t.

buyers). Note that, although both algorithms adjust prices based on the output of

the transactions, which indirectly reflects the sellers’ competitiveness, the evolution of

prices under ProDQN and PQRmay differ. When taken collectively, both algorithms

are able to find a balance between buyers perceived utility and sellers reward. To

support this statement, we show in Fig. 5.13 the average sellers’ prices, after a year
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of execution of the algorithms, with different system sizes. Both approaches converge

towards similar prices, with negligible differences as the system grows.

Experimental Scenario 4: In this scenario we test the scalability of the proposed

approaches with respect to the system size through a year-long aggregated analysis.

Specifically, we increase the system proportionately from |S| = 5 sellers and |B| =

5 buyers to |S| = 20 sellers and |B| = 20 buyers. Figs. (5.14)-(5.15) show the

buyers’ total perceived value and the sellers’ reward, respectively, over a year. By

considering the loss-averse and risk-seeking PT-value functions, DEbATE − PQR

and DEbATE −DQN achieve an increasing advantage as the system size increases

compared to Rule, for both sellers and buyers. Zhu, as previously discussed, creates

a heavily biased market that penalizes buyers and favors sellers. As a numerical

example, DEbATE − PQR achieves as much as 26% increase in buyers’ perceived

value while ensuring 7% profit improvement for sellers compared to Rule. Similarly,

DEbATE−DQN achieves 8% more profit for sellers with almost 23% more in buyer’s

perceived utility.

Figure 5.14: Objective values for buyer
vs. network size.

Figure 5.15: Total rewards for sellers vs.
network size.

5.4 Concluding Remarks

In this chapter, we brought together the concept of perceived utility from behavioral

economics and reinforcement learning into P2P energy trading. Unlike existing
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literature, we propose an automated and dynamic P2P energy trading problem that

maximizes the perceived value for buyers while simultaneously learning the optimal

selling price for sellers. Given the non-linear and non-convex nature of the problem, we

propose a novel differential evolution-based metaheuristic algorithm, calledDEbATE.

DEbATE is paired with a prospect theory enhanced Q-learning algorithm, called

PQR, to adjust the selling price over time. Given the limitations of the tabular

Q − learning approach of PQR, we propose a Deep Q-Network-based algorithm

called Pro − DQN that proposes a novel loss function based on PT value function

to model the seller’s perceived utility. Results show the advantages of the proposed

approaches with respect to a state of the art solution using real energy consumption

and production data.

The work in this chapter shows that integrating concepts from the behavioral

economics and reinforcement learning can lead to more efficient and effective energy

exchange in peer-to-peer (P2P) energy trading systems. It is also supported by the

results showing how the proposed algorithms, i.e., DEbATE, PQR, and Pro−DQN ,

outperform existing solutions in maximizing perceived value for buyers as well as

learning the optimal selling prices for sellers.
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CHAPTER 6. E-UBER: A CROWDSOURCING PLATFORM FOR

ELECTRIC VEHICLE-BASED RIDE- AND ENERGY-SHARING

Figure 6.1: e-Uber crowdsourcing platform overview

The sharing-economy-based business model has recently seen success in the

transportation and accommodation sectors with companies like Uber and Airbnb.

There is growing interest in applying this model to energy systems, with modalities

like peer-to-peer (P2P) Energy Trading, Electric Vehicles (EV)-based Vehicle-to-Grid

(V2G), Vehicle-to-Home (V2H), Vehicle-to-Vehicle (V2V), and Battery Swapping

Technology (BST). In this chapter, we exploit the increasing diffusion of EVs to realize

a crowdsourcing platform called e-Uber that jointly enables ride-sharing and energy-

sharing through V2G and BST. e-Uber exploits spatial crowdsourcing, reinforcement

learning, and reverse auction theory. Specifically, the platform uses reinforcement

learning to understand the drivers’ preferences towards different ride-sharing and

energy-sharing tasks. Based on these preferences, a personalized list is recommended
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to each driver through CMAB-based Algorithm for task Recommendation System

(CARS). Drivers bid on their preferred tasks in their list in a reverse auction fashion.

Then e-Uber solves the task assignment optimization problem that minimizes cost and

guarantees V2G energy requirement. We prove that this problem is NP-hard and

introduce a bipartite matching-inspired heuristic, Bipartite Matching-based Winner

selection (BMW ), that has polynomial time complexity. Results from experiments

using real data from NYC taxi trips and energy consumption show that e-Uber

performs close to the optimum and finds better solutions compared to a state-of-

the-art approach.

6.1 System Model

Table 6.1: List of Notations
St List of all tasks at timeslot t
sj = ⟨zj, cj, dj⟩ jth task represented by type of task (zj), start position (cj),

destination (dj)
Wt List of all workers available at timeslot t
wi = ⟨ci, ei, ri, rmin

i ⟩ ith worker represented by current location (ci), the energy
per unit range (ei), remaining range of the EV (ri) and
minimum range threshold (rmin

i )
Bt List of all the bids received at timeslot t
bij Bid submitted by worker i for task j
αizj Acceptance probability of worker i to the jth task type zj
K Maximum number of tasks to be recommended
λ Proximity distance
Et Amount of energy that must be satisfied through V2G/V2H
q∗ Optimal solution to f(.)/ Winning bids

We assume time to be divided in time slots. At each time slot t, the set of tasks

is referred to as St, which are crowdsourced to the workers. We refer to Wt as the

set of workers at time t. Each task in St is denoted by a tuple sj
def
= ⟨zj, cj, dj⟩ where

zj is the type of task (0−ride-share, 1−battery swapping, and 2−V2G), csj is the

start position and dj is the destination of task. For energy-sharing tasks, although

spatial in nature, start position csj is same as destination dj. We assume the utility

company submits energy tasks as a result of an energy requirement E . This is a
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typical assumption for demand response solutions [20,103,150]. As a result, the total

amount of energy provided by workers through V2G must be at least E . Each worker

in Wt is denoted by a tuple wi
def
= ⟨cwi

, ei, ri, r
min
i ⟩, where ci is the current position of

the EV worker wi which can be different to spatial task location csj , ei is the energy

per unit range value in (kWh/km) that gives information about how much energy

the EV consumes to drive a unit distance, ri is the available range of electrical vehicle

in km given by the remaining energy level in their batteries, and rmin
i is the minimum

energy not to be exceeded after completing the task to ensure sufficient energy for

traveling to a charging location. The energy required to perform task sj by worker

wi is denoted by lij. e-Uber provides that a list of tasks, called recommendation list,

is sent out to each worker. Workers then submit bids to these tasks. The bid bij ∈ B

represents the cost asked by worker wi to perform task sj, where B is the set of all

the bids submitted by workers.

Figure 6.2: Working mechanism of e-Uber

Previous works in crowdsourcing and energy-sharing using EVs has generally

assumed that workers would have complete access to the list of available tasks and
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would pick the best task for them or, conversely, the crowdsourcing platform would

assign tasks to workers regardless of their preference. These assumptions are both

undesirable. On the one hand workers have limited time and ability to go over

potentially a very long list of tasks [45], and on the other hand workers may have

different preferences on the tasks to complete. In this work, we recommend a limited

list of relevant tasks to each worker based on their preferences. We model the

preferences as follows. We denote by αizj ∈ [0, 1] the probability that worker wi

bids for a task of type zj. These are called bidding probabilities. We assume that

these probabilities are unknown and thus need to be learned over time by observing

the workers’ behavior.

6.2 e-Uber: Problem Formulation

Fig. 6.2 summarizes the steps involved in the e-Uber platform. e-Uber collects a list

of tasks St at time t as requested by task-requesters which need to be crowdsourced to

the EV-based workers in Wt (step 1). The platform sends a personalized list of tasks

to the workers based on their preferences (step 2) to which they respond by submitting

bids to the platform for the tasks (step 3). Based on the received bids Bt (step 4),

the platform uses reverse auction based algorithm to determine the winning bids q∗

along with final payment P for winners (step 5). Finally, the worker preferences are

updated based on their feedback for the next time step (step 6). Given the nature of

the considered tasks, worker-task assignment is performed one-to-one.

As described above, the system involves solving two different problems. One is to

recommend a set of tasks which maximizes the likelihood of generating the maximum

number of bids, and thus improving the overall system performance. Another problem

is to select the winning bids for task assignment and determine the final payment to

crowdsource the tasks to the workers. These two problems are discussed below.
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6.2.1 Preference-aware Optimal Task Recommendation Problem

Our objective is to recommend a limited subset of tasks to each workers which

maximizes the likelihood of bidding for these tasks, while avoiding to overwhelm

workers with a list above their cognitive capabilities. We formalize this through the

Preference-aware Optimal Task Recommendation (POTR) problem as follows. In

short, the problem aims at maximizing the overall task bidding probabilities (hereafter

referred interchangeably as preferences) while limiting the size of the recommended

list to K as well as ensuring that each task is recommended to at least ψ workers.

maximize
∑
wi∈W

∑
sj∈S

αizjxij (6.1)

s.t.
∑
sj∈S

xij ≤ K, ∀wi (6.1a)

∑
wi∈W

xij ≥ ψ, ∀sj (6.1b)

∑
sj∈S

g(zj)xij ≥
|V 2G|
|S|

K, ∀wi (6.1c)

lijxij ≤ (ri − rmin
i )ei, ∀wi, sj (6.1d)

xij = 0, if |csj − cwi
| > λ, ∀wi, sj (6.1e)

xij ∈ {0, 1}, ∀wi, sj (6.1f)

g(zj) =


1, if zj = 2

0, otherwise
(6.2)

The objective function in Eq. (6.1) maximizes the sum of individual bidding

probabilities for each worker’s recommended tasks. The binary decision variable xij ∈

{0, 1} is set to 1 if the task sj is included in the list of worker wi. Constraint (6.1a)
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limits the length of each recommendation list to be less than K. In constraint (6.1b),

we ensure that each task is recommended to at least ψ =
⌊
|W|K
|S|

⌋
workers. Also, we

ascertain that a minimum of |V 2G|×K
|S| V2G tasks are also recommended to each workers

in constraint (6.1c). Constraint (6.1d) requires the recommended tasks to consume

no more than certain energy for each EV, ensuring that EV has sufficient energy after

performing tasks to drive to charging location, if required. Finally, constraint (6.1e)

ensures that only the tasks within λ distance from workers are recommended.

It is to be noted that the information on bidding probabilities is difficult to obtain

a priori as it is specific for each worker and include elements of complex human

psychology. Therefore, we assume that the preferences are initially unknown and

are learned by observing the workers’ behavior with respect to the assigned tasks.

Recently, reinforcement learning mechanisms have been used extensively to learn the

optimal policies in the run-time that gradually converge to take optimal actions based

on feedback from the environment. In section 6.3, we present a Combinatorial Multi-

Armed Bandit (CMAB)-based approach [45] that learns the preferences of workers

over time while simultaneously recommending the optimal personalized list of tasks

to them.

6.2.2 Winning Bid Selection and Final Payment Problem

After sending the personalized list of tasks to each worker, e-Uber collects the bids.

Given the collected bids, e-Uber selects winning bids, i.e., the workers performing

the tasks, by solving the Winning Bid Selection (WiBS) problem. This problem

determines the best bids which minimize the total cost from perspective of task

requesters. WiBS can then be formulated a constrained assignment problem as
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follows:

minimize
∑
wi∈W

∑
sj∈S

bijqij (6.3)

s.t.
∑
sj∈S

qij ≤ 1, ∀wi (6.3a)

∑
wi∈W

qij = 1, ∀sj, zj < 2 (6.3b)

∑
wi∈W

qij ≤ 1, ∀sj, zj = 2 (6.3c)

∑
wi∈W

∑
sj∈S

g(zj)lijqij ≥ E , (6.3d)

qij ∈ {0, 1}, ∀wi, sj (6.3e)

The objective function in Eq. (6.3) minimizes the total cost of performing tasks

from the collected bids. qij is the binary decision variable as defined in constraint

(6.3e) that indicates whether a bid bij wins the auction and therefore the task sj is

assigned to worker wi. Constraint (6.3a) ensures that a worker is assigned at most

one task, while (6.3b) allows a ride-sharing and battery swapping tasks (zj < 2) to

be assigned to only one worker. Similarly, constraint (6.3c) ensures that a V2G task

is assigned to at most one worker. Finally, constraint (6.3d), ensures that at least

E amount of energy will be supplied through V2G services. Note that the function

g(zj) = 1 if zj = 2 (V2G task) and zero otherwise.

Following the selection of winning bids by solving the WiBS problem in Eq. (6.3),

the final payment for each winning worker wk assigned with task sj is the second-to-

the-selected bid received for that task. Since with the second price payment rule, the

dominant strategy for all bidders is to bid truthful [151], it ensures rational workers

will provide truthful bids.

Theorem 6. WiBS problem defined in Eq. (6.3) is NP-hard.
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Proof. We provide a reduction from NP-Hard 0-1 min Knapsack (0-1 min-KP)

problem [152]. In this problem, a set n items is provided, each item ai has a value li

and weight bi. The goal is to select the subset of items that incurs minimum weight

and has a value of at least E .

Given a generic instance of min-KP, we construct an instance of our problem as

follows. We only consider V2G tasks (zj = 2). For each item ai of min-KP we create

a pair task-worker (sai , wai). We assume that worker wai only submits one bid, and

they bid for sai for an amount bi (the weight of ai in min-KP). Additionally, the

energy required by wai to perform sai is li (the value of ai in min-KP). Finally, we set

the energy requirement for V2G to E .

Under these assumptions, the decision variable qij of our original problem can be

reduced to qi, since only one workers bid for one task and a task receives a bid only

from one worker. Additionally, constraints (6.3a) and (6.3c) are trivially verified,

since there is only task-worker pair, while constraint (6.3b) does not apply since we

only have V2G tasks.

Solving our reduced problem instance finds the set task-worker pairs that minimize

the sum of bids and meets the energy requirement E . This corresponds (i.e., it can

be translated in polynomial time) to the optimal solution of min-KP, i.e., the set of

items with minimum weight that provide a value at least E . As a result, our problem

is at least as difficult as min-KP, and thus it is NP-Hard.

6.3 e-Uber Solution Approaches

6.3.1 CMAB-based Task Recommendation System

In order to solve the optimization problem in Eq. (6.1), it is necessary to have

beforehand knowledge on the workers preferences. These are generally not known a

priori in realistic settings. Therefore, it becomes necessary to learn these preferences

during run-time, while simultaneously optimizing the task assignment. To this
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purpose, we propose a reinforcement learning approach inspired by the Combinatorial

Multi-Armed Bandit (CMAB) framework [45,132].

Combinatorial Multi-Armed Bandit is a classic reinforcement learning problem that

consists of setup where agents can choose a combination of different choices (i.e.

certain decision-making actions) and observe a combination of linear rewards at each

timestep. The long term objective for the problem is to find a strategy that maximizes

such reward by selecting optimal actions. This strategy, better defined as policy,

needs to be learned based on how the agents choose to interact with the system.

The learning is carried out through exploration vs. exploration trade-off. Since, at

the beginning, the knowledge about how an agent chooses to engage with the system

is not known, the system learns by allowing agent to choose from diverse options

and therefore learning the user interaction accordingly, referred to as exploration.

As the time passes, the system starts gathering information about agent’s behavior

and therefore use that knowledge instead of sending out diverse range of choices,

called exploitation. By balancing this exploration and exploitation mechanism over

the course of time, the system eventually gathers sufficient information on agent’s

behavior and learns optimal strategy for them. In our problem setting, the workers

are the agents who needs to be sent out an optimal set of tasks so as to accumulate

good quality bids from them. Specifically, the objective is to find the best possible

task recommendations (actions) to be sent to each workers (agent) that will result in

higher cumulative preferences for workers (reward).

Therefore in this section, based on this CMAB framework, we design an algorithm

called CMAB-based Algorithm for task Recommendation System (CARS). The pseudo

code of CARS is shown in Alg. (7). CARS recommends the personalized tasks to each

workers based on current estimation of worker preferences towards each task type.

Note that the worker preference is defined as the bidding probability in section 4.2

that a worker will submit a bid for any task based on its type. The algorithm then
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updates and learns these biding probabilities based on the worker’s engagement on

the recommendation through bids. If the worker submits a bid, it is considered to be

a preferred recommendation and opposite, if the worker chooses to ignore by not the

submitting bid. Based on this information, the preference of workers towards each

task type is updated.

Therefore, with F as the overall solution space that consists of all feasible

action matrices, the action matrix A(t) ∈ F corresponds to the optimal set of

recommendation lists for the timestep t. It consists of action values xij ∈ {0, 1},

which is same as the decision variable in POTR problem. Recall that it represents

whether the task sj is in personalized recommendation list of worker wi for timestep

t. Given this action matrix, the preference of worker wi towards each task type zj is

modeled as a random variable ᾱizj whose mean value is αizj and is initially unknown.

The current knowledge until timestep t for these random variables ᾱizj is denoted

by the estimated expected α̂izj . The reward for the platform for selecting the action

matrix A(t) at timestep t, is defined as the sum of the preferences to each workers:

RA(t)(t) =
∑
wi,sj

aij(t)ᾱij(t) (6.4)

Since the distribution of ᾱizj is unknown, the goal of this CMAB-based approach is

to learn the policy, that minimizes the overall regret up to time t. This regret is defined

as the difference between expected reward with perfect knowledge of preferences and

that obtained by the policy over time:

R(t) = tR∗
A(t)(t)− E

[ t∑
t′=1

RA(t′)(t
′)], (6.5)

where R∗
A(t)(t) is the optimal reward obtained with perfect knowledge of the

preference variables. Even though minimizing the regret is a difficult problem, CARS

ensures that the regret is bounded, meaning the non-optimal actions will be picked
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only a limited number of times and eventually the learned policy will converge towards

optimal. We present a modified objective function from UCB1 algorithm to select

the action matrix as follows.

A(t) = argmax
A∈F

∑
wi∈W

∑
sj∈S

aij

(
α̂izj +

√
(Q+ 1) ln t

mizj

)
(6.6)

where Q = |W| × |zj| is the total number of variables and mizj is the number of

observations so far for the variable ᾱizj .

At each timestep t, we solve the POTR problem with CMAB-based objective

function in Eq. (6.6) instead of Eq. (6.1) and same constraints (6.1a)-(6.1f). By

solving this modified problem, the sets of optimal actions (or recommendation lists)

for each workers are selected based on current estimate of preferences until timestep

(t − 1). For this purpose, we keep track of the α̂izj , along with mizj . These two

information are then used to update the current estimation of the variable ᾱizj at

time t based on the worker’s engagement with the recommendation i.e. whether the

worker chooses to submit the bid or not. Needs to be noted that, if the worker chooses

to submit the bid, they must complete the task if assigned.

α̂izj(t) =


α̂izj

(t−1)mizj
(t−1)+αizj

(t)

mizj
(t−1)+1

if 0 < bij <∞,

α̂izj(t− 1) otherwise.
(6.7)

mizj(t) = mizj(t− 1) + 1 (6.8)

We present the CARS algorithm in Alg. 7. CARS begins by collecting information

on workers and task in lines 1− 2. It then sends out personalized recommendation to

each worker by solving the optimization problem with Eq. (6.6) as objective function

and constraints (6.1a)-(6.1f)(lines 3− 4). Then, it collects the bids for recommended

tasks from workers (line 5). Finally, the current knowledge on worker’s bidding
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probabilities are updated according to the Eqs. (6.7) and (6.8) based on how the

workers respond to recommendations (lines 5 − 6). For the update process, the

recommendations that receive a bid from workers are taken as positive reinforcement

and the recommendations that do not receive bids as negative reinforcement. In the

following, we prove that the Alg. 7 has a bounded regret and thus the algorithm

eventually converges to optimal policy in finite time-steps.

Algorithm 7: CMAB-based Algorithm for task Recommendation System
(CARS)
1 ∀wi ∈ Wt, collect the workers info wi =< ci, ei, ri, r

min
i > ;

2 ∀sj ∈ St, collect the tasks sj =< zj , cj , dj >;
/* Solve CMAB-based POTR problem */

3 Select an action A s.t. A(t) = argmax
A∈F

∑
wi

∑
sj

aij

(
α̂izj +

√
(Q+1) ln t

mizj

)
;

4 Send list of recommendations A(t) to the workers;
5 Collect bids Bt from workers based on A(t);
6 Update [α̂izj ]|W|×|zj | and [mij ]|W|×|zj | based on the collected bids using Eqs. (6.7) and

(6.8);

Theorem 7. CARS provides bounded regret given by:

R(t) ≤
[
4a2maxQ

3(Q+ 1) ln(t)

(∆min)2
+
π2

3
Q2 +Q

]
∆max, (6.9)

where, amax is defined as max
A∈F

max
i,j

aij. Besides, ∆min = min
RA<R∗

(R∗ −RA) and

∆max = max
RA<R∗

(R∗ −RA) are the minimum and maximum difference to the reward

obtained with perfect knowledge of the users’ preferences, respectively.

Proof. The proof is obtained following Theorem 2 of [132].

However, as shown in Theorem (6), finding the optimal solution for winner

determination problem (WiBS problem Eqs. (6.3)-(6.3e)) is NP-Hard problem.

Therefore, we devise a bipartite matching-based heuristic for winning bid

determination with polynomial time complexity for worker-task assignment.
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6.3.2 Winning Bid Selection using Weighted Bipartite Matching

The WiBS problem formulation in Eq. (6.3) is an extension of one-to-one weighted

matching. However, this matching has to select minimum weighted edges for task

allocation with energy budget constraints for V2G tasks. Therefore, we hereby

develop a heuristic inspired by bipartite minimum weighted matching which can be

solved in polynomial time using Karp’s algorithm [153]. To satisfy the energy budget

constraint, we employ iterative matching that removes the highest weighted edges

from the previous matching until the budget is met. Simply put, the algorithm runs

the minimum weighted matching and if it does not satisfy the budget constraints,

removes first z highest weighted edges connected to non-V2G tasks from the previous

matching and then runs another round of matching until the feasible solution is found.

This Bipartite Matching-based Winner selection (BMW) algorithm is presented in

Alg. 8. BMW takes set of available workers W , tasks S, and the set of bids B

as input and finds the winning bids with final pay P as the output. In line 1, the

algorithm initializes the output graph Φout, a temporary graph Φtemp for iterative

matching purpose, and P . Then it creates a separate sets for V2G and non-V2G

tasks as sets V and R in line 2 and collects the bids from all workers (line 3). With

the information on bids, BMW generates a bipartite graph G between bipartite sets

of workers W and tasks S, and adds edges between those nodes that have non-zero

bids i.e. worker wi with non-zero bid bij is connected with task sj (lines 4− 7). Now,

it runs a bipartite matching iteratively with while loop in lines 8− 15. Initially, both

of the conditions for while loop are true and therefore the algorithm runs first round

of Minimum Weighted Bipartite Matching on graph G (line 9). It then assigns the

matched graph to the output graph Φout (line 10) and checks if the energy budget for

V2G tasks is satisfied (line 11). If it is met in the first round, it breaks out of the

while loop and determines final payment and task assignment. If it is not met, BMW

removes the first z highest weighted edges in Φout from G that just meet the remaining
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Algorithm 8: Bipartite Matching-based Winner selection (BMW)
Input : Sets of Workers (W) and Spatial Tasks (S), Bids (B)
Output: Winning bids with final pay (P)
/* Initialization */

1 Φout = {W ∪ S, EΦ = ∅}; Φtemp = ∅;P = ∅ ;
/* Generate bipartite graph G */

2 ∀sj ∈ S, if g(zj) = 1 then V ← {sj} else R← {sj};
3 ∀wi ∈ W, collect their respective bids Bi ;
4 Build Bipartite Graph G = {W ∪ S, EG = ∅} ;
5 for each wi ∈ W, sj ∈ S do
6 if bij > 0 then Add edge (wi, sj) to EG with weight, bij ;
7 end
/* Run minimum weighted bipartite matching until termination */

8 while
∑

(wi,sj)∈Eout

g(zj)lij < E or Φtemp ̸= Φout do

9 Eout ←Perform Minimum Weighted Bipartite Matching on G;
10 Output graph Φout = {W ∪ S, Eout}, where Eout ⊆ EG ;

/* Remove edges if V2G energy budget is not met, and run MWBM on reduced
G again */

11 if
∑

(wi,sj)∈Eout

g(zj)lij < E then

12 Z ←Select the first z highest weight edges ∈ Φout and R s.t.( ∑
(wi,sj)∈Eout

g(zj)lij +
∑

(wi,sj)∈Z

lij

)
≥ E ;

13 if Z ̸= ∅ then Remove all edges ∈ Z from G and Φout else Φtemp = Φout;
14 end
15 end
16 q∗ = Eout;

/* Final Payment and Task Assignment */
17 ∀wk ∈ W, Pk ← Second to the selected bid bkj ;
18 Assign the tasks to winning workers along with final price P;
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of energy budget not met (line 12− 13). Then, since both of the conditions are still

true, the algorithm runs another round of matching on reduced graph G. Eventually

the final matching in output graph Φout is used as winning task assignments with

final payment as per the bid (line 16− 18).

Theorem 8. The time complexity of the BMW algorithm is O(|W|.|S|2.log(|S|)).

Proof. The complexity is dominated by the while loop (lines 10 − 17), executed at

max |S| times. It involves running minimum weighted full matching as presented

in [153], which has run time of O(|W|.|S|.log(|S|)). Therefore, the overall complexity

of the BMW is O(|W|.|S|2.log(|S|)).

6.4 Experiment

In this section, we present the experimental details for the proposed system,

comparison approaches and detailed study of performance of the algorithms.

6.4.1 Experimental Setup

Our experimental setup consists of modeling workers, tasks and the simulation

platform. In case of workers, we gathered the publicly available data on 54 different

EV models on battery size, range, charging power and charging speed, and formulated

an individual profile for each EV in concern. Similarly for ride-sharing tasks, the high

volume taxi trip data of New York City (NYC) from the year of 2013 [154] was used.

The V2G tasks were generated from the 15 minutes energy consumption data from

25 NYC residences from PecanStreet [148]. In absence of real dataset on battery

swapping tasks, half of the ride-sharing tasks were extracted as the battery swapping

tasks, given their similar profile with batteries transported instead of passengers.

These tasks are spatial, therefore, we collect the information on locations, distance,

and time required to complete the tasks.

Furthermore, the simulation platform, e-Uber for crowdsourcing is developed using

Python and Gurobi, NetworkX, and PyTorch libraries. We consider a reverse auction

123



period resolution of 15 minutes which corresponds to the standard set by grid for

energy trading. This means that every 15 minutes the e-Uber algorithm will gather

the tasks, push the personalized list of tasks to workers, collect the bids and assign the

tasks to EV workers that minimizes the overall cost for the task requesters. We set the

search radius for the tasks λ = 10 km and the maximum length of recommendation

list K = 5. The energy budget for each 15 minutes time period was considered to

be total of all 25 V2G tasks available. The user preferences were sampled uniformly

from the set {0.1, 0.4, 0.5, 0.7, 0.9, 1.0}. The energy, time and location of the EVs are

tracked and updated accordingly so as to simulate their real-world trip behavior. If

the battery level of the cars fall below minimum level, they are considered for the

charging for the next time-step.

For comparison approach, we use the task-centric winner selection algorithm as

presented in [123] and refer it as BG for baseline greedy. This approach neither

considers user-preference in the problem-setting nor it considers the personalized

recommendation system. So for comparison purpose, we augment this method

with perfect knowledge-based recommendation system that pushes K best tasks as

recommendation to each workers. Then we implement the algorithm as presented

in [123] that sorts the bids from lowest to highest for each tasks and assigns them one

by one. Note that this approach may not guarantee a complete matching between

workers and tasks as the tasks that are processed towards the end may not have any

workers left to choose from because of limited number of bids and greedy selection

approach. We use this BG as our baseline and compare the performance of our

algorithms CARS and BMW along with their perfect knowledge variation PK

which has the perfect knowledge on the worker preferences and thus do not involve

learning, and OPT optimal solution to WiBS problem. The ride-share dataset in

concern consists of actual ride-fare for specific car. However, we require bids from

each vehicle for recommended tasks and a realistic model for bid generation is quite
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difficult to obtain. Therefore we trained a Deep Neural Network with existing dataset

for determining the ride fare of the given ride-sharing tasks, the details of which is

presented in the following.

6.4.2 Results

Figure 6.3: Training Loss % Figure 6.4: Bid Prediction test accuracy

Bid Generation DNN Model

We used 11 months of taxi data to train and test the DNN model with 80-20 train-

test split. The DNN model consisted of 3 hidden layers of sizes (132, 132, 64). We

employed ReLU activation function as well as one-hot encoding for the input features,

and set the learning rate to 0.0001. The training was carried out for 3 epochs with

7974 training batches and batch size of 64. Consequently, the average training loss

curve presented in Fig. 6.3, shows that the loss percentage reduces to ∼ 2.5% after

∼ 12, 000 training iteration. On testing dataset, the bid generation DNN model,

generated highly accurate fare prediction with 96.45% R2−score. This can also be

observed in Fig. 6.4 which presents a plot of sample of prediction fares and actual

fares to show testing accuracy.

This DNN model was then deployed in conjunction with the e-Uber to simulate

the bidding action by each workers for each recommended tasks in the personalized

list. In case of V2G tasks, the energy to be supplied by the EV was converted into

its distance equivalent and fed into the DNN model along with other input features
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to get the bids.

Experimental Observations

Figure 6.5: Snapshot of obj. values & matches vs. time

1. Performance over time – Total Cost and # of Tasks: In the first

experimental scenario, we observe the performance of algorithms as a snapshot of

objective values over 24 hours (i.e. 24× 4 = 96 timeslots). We present the objective

values from midnight to next midnight as a lineplot in Fig. 6.5 and cumulative bar

plots of objective values (Fig. 6.6) and total tasks completed (Fig. 6.7) over a day.

Although all the proposed approaches start from the same initial state (except for

knowledge on preference), these algorithms may have different successive states since

the solution is affected by the matching in previous timeslot, availability of specific

workers for next round, and the distance travelled by these workers for previous

assignment (or next assignment). Therefore, we employ cumulative objective values

and cumulative tasks completed as the metric for a fair comparison of the approaches

in Fig. 6.6. This cumulative objective value reflects the overall quality of task

assignment made so far based on the total objective values to achieve the requirement

while the cumulative tasks completed present the total number of matches made by

the respective approach until the end of that timeslot.
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Figure 6.6: Cumulative obj. values Figure 6.7: Cumulative tasks

As seen in the lineplot Fig. 6.5 and barplot Fig. 6.6, the solution generated

by baseline greedy approach BG is the minimum one as it assigns task based

on respective cheapest bid available but it doesn’t meet the maximum number of

matching possible unlike other approaches as shown in Fig.6.7. Therefore, BG mostly

violates the V2G requirement, meaning it generates infeasible solutions and hence

fails for this problem setting. The PK − OPT produces the best result since it

involves solving the POTR and WiBS problem optimally with perfect knowledge of

the worker preferences. Following it, is the optimal solution OPT paired with our

proposed learning framework for e-Uber, CARS, which performs close to optimal

in terms of both objective values and number of tasks completed. Although this

approach CARS − OPT finds optimal solution, it does not have initial knowledge

on preferences. Therefore, it generates sub-optimal recommendation list which then

affects the solution to WiBS problem and hence, the overall performance. However,

even with online learning framework employed, it produces similar results to the

PK−OPT . Also we observe similar pattern with PK−BMW and CARS−BMW

since they both rely on bipartite matching-based approach to find feasible solution.

Since PK−BMW sends the optimal recommendation to workers for collecting bids,

it therefore has higher overall performance compared to CARS−BMW which learns
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the preferences over time. The gaps between best performing PK −OPT and worst

performing CARS −BMW however is less than $150 which amounts to a price hike

of ∼ $3/task in the worst case with an average 50 tasks for a timeslot as in our case.

We observe the cumulative objective values grow almost linearly for all approaches

and as expected, the performance observed was better for PK − OPT followed by

CARS − OPT and then PK − BMW and finally CARS − BMW . However, the

gap in cumulative objective value increased for the bipartite heuristic compared to

optimal due to its sub-optimal performance. Note that the baseline BG generates

less cumulative objective value but it fails to generate maximal matching as seen in

Fig. 6.7. The number of tasks completed by the proposed approaches exceed 850

more than the BG in the span 24 hours.

Figure 6.8: Avg. Price/task vs. Task(%) Figure 6.9: Avg. price/task vs. V2G (%)

2. Average final price per task and scaling: In this experiment, we track the

average final price per task while scaling the available tasks from 32% to 64% and

then at 100%. For scaling the tasks, we increase the number of each type of tasks

proportionally. The result is plotted in Fig. 6.8. As the system scales, the average

final price per task for all approaches rises since the overall cost for the system also

increases with the tasks. However, it is also observed that CARS − BMW and

BMW − PK suffer more as we scale the system. The margin between these and

optimal approaches grows drastically up to ∼ $2. This can be attributed mainly to
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the increased complexity of the problem as number of tasks is increased and hence the

bipartite matching-based heuristic finds less efficient solution compared to optimal.

The optimal solutions however have nominal increase in their average price per task

(∼ $10) even with scaling compared to rest.

We also study the effect of scaling V2G tasks to the average final price per task in

Fig. 6.9. We observed similar trend to above but with noticeable gap between optimal

and heuristic approaches when only 32% of V2G tasks are available. This results from

the sub-optimal performance owing to less number of V2G tasks compared to rest

and hence unequal rate of learning the preferences.

Figure 6.10: Mean Absolute Error vs. time

3. Learning accuracy for preferences – MAE: To study the quality of proposed

CMAB-based learning algorithm CARS in conjunction with optimal and BMW , we

use the Mean Absolute Error (MAE) of the learned preferences over time and present

them in Fig. 6.10. Both approaches use same learning algorithm but the solution

to WiBS problem differs and thus affects the learning performance. However, this

difference is very negligible. Initially, the MAE is 0.28 and then rapidly decreases

129



to less than 0.05 for both approaches by 250 timesteps. The difference in learning

efficacy between CARS − OPT and CARS − BMW reduces over the time and is

almost same by 250 timesteps as seen in the graph. Since by 500 timesteps the

system has garnered sufficient knowledge on workers preferences, MAE falls to 0.03

reflecting the efficacy of proposed CMAB-based preference learning. Furthermore,

we present a cumulative reward plot in Fig. 6.11 that also shows the plots of both

learning approaches converge after 200 timesteps.

Figure 6.11: Cumulative reward plot Figure 6.12: Obj. values/matching vs. K

4. Dependency with K: In this experiment, we discuss on the dependency of the

performance of our proposed approach with recommendation length K, as presented

in Fig. 6.12. Increasing the number of recommendation K means that the chance of

receiving more bids with good quality from same number of workers at the same time

increases. This in turn helps to find better solutions which reduce overall cost of the

system. This is also verified from the observation in plot of Fig. 6.12. As we increase

K, the objective values per task over a day’s period reduces for all four approaches.

Although the perfect and optimal optimal methods do not have significant difference

in their performance with varied K, the effect is more pronounced in case of bipartite

matching based PK−BMW and CARS−BMW where the learning of preferences is

benefited by the increased number of bids to choose from with increasing K. However,

it needs to be noted that pushing 10 recommends at each timestep can be very
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intractable for workers and therefore, keeping the length of recommendation list as

small as possible is desired.

6.5 Conclusion

e-Uber is a promising crowdsourcing platform for improving the efficiency and

sustainability of ride-sharing and energy-sharing services through the use of EVs.

It uses reverse auction mechanism to assign spatial tasks to EV drivers based

on their preferences, battery level, and other realistic constraints like minimum

energy requirement for grid and one-to-one assignment. To optimize the task

recommendation process, the platform incorporates user behavioral models including

worker preferences and bounded rationality. However, as these preferences are not

known a priori, e-Uber uses reinforcement learning framework called combinatorial

multi-armed bandit for learning the preferences at the runtime based on their

feedback. We propose the CARS algorithm that finds optimal solution to both

the POTR and WiBS problem. Since the WiBS problem is NP-hard, we propose

another bipartite matching-based heuristic, called BMW that finds feasible solution

to the winner selection while meeting the minimum V2G energy requirement.

Experimental results and simulations demonstrate the effectiveness of e-Uber’s

approaches, which outperform the baseline algorithm by serving more than 850 tasks

within 24 hours of simulation. On top of that, the baseline often fails to find a feasible

solution, rendering it inapplicable in this problem setting.
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CHAPTER 7. CONCLUSION AND FURTHER RESEARCH

Given the increasing prosumer involvement in energy exchange process and

limitations of existing energy market for utilizing excess energy at distribution side in

recent years, this dissertation proposed an alternative modality of prosumer-centric

P2P energy market. In this dissertation, a detailed discussion is presented on how such

a localized energy exchange among prosumers provides a better way to address the

problem at local level while also providing the prosumers with a platform to financially

benefit from. Additionally, through the in-depth study of existing literature it was

established that this market modality can prove beneficial to all the stakeholders in

the energy market in long term. From the monetary incentives for local prosumers

to minimizing the infrastructure cost and energy losses in transmission lines that

is highly significant in existing power system architecture from the grid operators’s

perspective, the proposed P2P modality aims to benefit everyone involved in such

energy market. Therefore, P2P energy trading market has a potential to transform

the energy landscape towards a decentralized and open platform that allows energy

exchanges among all the stakeholders with a profitable energy trading modality.

However, this modality also requires sustained participation from prosumers side,

which might be overwhelming for prosumers owing to their limited time and cognitive

capabilities. Through exhaustive literature review, we found that there is a lack of

practical and realistic studies that could accommodate the behavior and perceptions

of prosumers to accurately reflect their risk-sensitivity, loss-aversion character and

preferences in a less demanding and flexible energy trading environment. Therefore,

to address this problem, prosumer-centric framework was developed for the P2P

trading system that is expected to be user convenient and less demanding of their

active participation, through the incorporation of user behavioral modeling into the

problem. For that reason, this work focused on developing a reliable and realistic
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P2P energy trading mechanism that maximizes the local energy consumption among

prosumers with due consideration to prosumers’ preferences, energy trading behavior

and perceived utility. With incorporation of user behavioral modeling and learning

of this model through minimal active involvement from prosumers, the automated

trading environment succeeded in reflecting the individual optimal trading behavior

for all prosumers in the P2P energy trading setting.

7.1 Main Contribution

In chapter 4, a P2P energy exchange mechanism has been proposed that learns

the user preference through daily interaction with prosumers. It also considers the

bounded rationality in problem formulation that prevents the user from getting

overwhelmed with the recommendations. Two algorithms for determining the

energy allocation between prosumers is proposed that adopts reinforcement learning

approach to simultaneously learn the user preference while finding the best match

between sellers and buyers on the basis of their current estimate on preferences.

Similarly, moving a step forward, chapter 5 includes monetary incentives into

the problem and presents fully automated mechanism to carry out energy trading

between local prosumers in a P2P modality. The perceived utility of prosumers

are captured through the use of novel-prize winning behavioral economics notion

called prospect theory into the energy allocation framework between prosumers. A

population-based metaheuristic algorithm is proposed to solve this non-linear energy

allocation problem. A fully automated pricing mechanism for the P2P energy trading

is proposed that dynamically updates the individual seller’s selling price based on the

feedback on the sold quantity of energy and profit made. Two novel reinforcement

learning algorithms are proposed that take inspiration from standard Q-learning

and Deep Q-Network approach by incorporating the risk-sensitivity and loss-aversion

behavior to the RL framework.

In chapter 6, we propose a crowdsourcing mechanism that jointly enables ride- and
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energy-sharing to provide a multifaceted solution to existing problems on efficiency

and sustainability of transportation, energy management, and cost-effective demand

response using EVs. e-Uber is the first work in that direction to the best of

our knowledge. It works in three decision stages: calculate a personalized task

recommendation for each EV worker, collect bids from workers, reverse auction-

based winning bids selection for completing both ride-sharing and energy-sharing

tasks. We propose a preference-aware optimal task recommendation system, and the

reinforcement learning mechanism based on the work presented in chapter 4 to learn

worker’s bidding probabilities. It solves the problem of task recommendation and

updates the worker preferences based on their interaction with the recommendation.

The reverse auction process is formalized for bidding and the winning bids are

determined through an NP-hard optimization framework, and propose a bipartite

matching-based heuristic for the problem.

To summarize, this dissertation has established that the P2P energy trading allows

flexible and efficient way for individuals and small business with energy generation

capabilities to sell excess energy directly to other consumers and generate revenue.

In the context of P2P energy trading, as shown by the result and discussion in

this dissertation, user behavioral modeling is significant to predict and influence

how individuals will participate in the P2P market, and also to develop strategies

for optimizing and sustaining their participation. It has the potential to increase

the efficiency and sustainability of electricity markets while also providing newer

opportunities and alternatives for retail and shared economy in changing energy

landscape.

7.2 Further Research

In the following section, we shed light on some of the limitations of the works

presented in this dissertation and future avenues for further research. It should be

noted that the problem of devising a realistic, automated and decentralized P2P
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energy trading market is quite challenging and this dissertation is just a nudge in

that direction. Accommodating these limitations and adapting to the future need

of changing energy market could be extensions or improvements to the framework

presented in this dissertation or completely new approach to achieve localized energy

exchange in a decentralized way.

7.2.1 Modeling complex dependencies of user behavioral parameters

The user behavior is subjective and qualitative trait that is guided by human

psychology. The assumptions in quantifying these user behavioral parameters could

have multilateral dependencies than what is apparent. For example, user preferences

in P2P energy market setting could be shaped by sources of energy, trading price,

proximity and many more. Similarly the degree of risk-sensitivity and loss-aversion

considered in prospect theory model could differ by multitude of factors and scenarios

including age, gender, way of living, and context. On top of that, user behavior is

dynamic and capturing time-dependency into the model is necessary evil. Thus, in

devising the P2P market models, these complex and inter-weaved dependencies of

human behavior has to be modeled into the system in a way that does not cross the

ethical boundaries. This will definitely improve the efficacy and efficiency of intelligent

systems in P2P trading markets in general including energy market. Therefore,

considering a more complex model for user behavior that reflects the irrational and

variable nature of human decision in a holistic manner would be an interesting research

direction for the future.

7.2.2 Fully decentralized energy allocation

It needs to be noted that although the works presented in this dissertation is “peer-

to-peer" in terms of general mechanism and framework, the energy allocation solutions

proposed is approached in centralized way. In order to render it fully decentralized,

the work in this dissertation can be extended through a decentralized protocol to

generate consensus in allocating energy between sellers and buyers in an iterative
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way. The protocol should also consider the combinatorial nature of problem setting

and should not demand active participation of prosumers for sustainability of energy

market. Of course this brings a range of other economic, strategic and policy-making

problems that could interestingly be researched further through the lenses of different

stakeholders in the market.

7.2.3 Reward functions for RL frameworks

In reinforcement learning, the reward signal and function plays a pivotal role in

overall learning process which acts as a quantitative feedback to the agent on the

actions taken and therefore learn the best policy to adopt over long term. The

reward functions considered in the RL frameworks in chapters 4 and 5 could be

insufficient when implemented in real world and therefore room for improvement

always exist in that regards and specially for deep reinforcement learning frameworks

which can overshoot towards completely wrong trajectory. As an example a better

reward function that also incorporates other features like excess energy generation

and energy demand for next timestep, and battery energy storage level could guide

the RL agent towards improved learning. Hence, determining the reward signals and

functions that allow agents to converge faster towards the optimal policy is obviously

an immediate next step to extend the works in this dissertation.

7.2.4 Including energy storage and electric vehicles in P2P

P2P energy trading will be incomplete without including energy storage systems

into concern. It could range from standard chemical battery packs to flywheel or

compressed air energy storage to fuel cells like hydrogen. More flexible and mobile

energy storage solution however can be powered through EVs that provide us with

several novel possibilities to solve demand response and energy-sharing paradigms

including Vehicle-2-Grid (V2G), Vehicle-2-House (V2H), and Vehicle-2-Vehicle (V2V)

among others. In chapter 6, we discussed in detail about how the EVs can be realized

in a P2P energy trading setting. Future research could focus on implementing and

136



evaluating e-Uber in real-world settings. This includes the assessment of the impact

of different task recommendation and decision prediction algorithms, as well as the

integration of new features such as real-time traffic and energy data and dynamic

pricing. By exploring these areas, e-Uber has the potential to significantly improve

the efficiency and sustainability of ride-sharing and energy-sharing services through

the use of EVs. As a stand-out alternative medium of transportation in immediate

future, EVs could be a pivotal enabler to bring the whole P2P energy market modality

into accepted reality and therefore further research in this direction would not only

be sensible but also appropriate and timely.

7.2.5 Blockchain technology for practical implementation

Implementation of such decentralized energy trading modalities in real world

setting could lead to numerous privacy concerns and safety issues of the participants.

Therefore, a proper way to address this privacy concern must accompany the practical

implementation. This is where the blockchain technology could play a facilitating

role to enable P2P energy trading in future. Privacy concerns can be easily addressed

through the use of blockchain in addition to providing a secure trading platform for

participating prosumers in P2P trading. Therefore, augmenting the decentralized

P2P energy trading mechanism with blockchain technology would provide a secure

and privacy-preserving platform to conduct financial transactions, which serves as the

future research scope.

137



BIBLIOGRAPHY

[1] Y. Parag and B. Sovacool, “Electricity market design for the prosumer era,”
Nature Energy, vol. 1, p. 16032, March 2016.

[2] “International energy agency.” https://www.iea.org/reports/electricity-
information-overview/electricity-production.

[3] “Energy information administration.” https://www.eia.gov.

[4] “Renewable energy capacity highlights.” https://www.irena.org/publications/
2022/Apr/Renewable-Capacity-Statistics-2022.

[5] J. Johnson, J. Flicker, A. Castillo, C. Hansen, M. El-Khatib, D. Schoenwald,
M. Smith, R. Graves, J. Henry, et al., “Design and implementation of a secure
virtual power plant,” Sandia Technical Report, 2017.

[6] O. Palizban, K. Kauhaniemi, and J. M. Guerrero, “Microgrids in active network
management—part i: Hierarchical control, energy storage, virtual power plants,
and market participation,” Renewable and Sustainable Energy Reviews, vol. 36,
pp. 428–439, 2014.

[7] O. Jogunola, A. Ikpehai, K. Anoh, B. Adebisi, M. Hammoudeh, S.-Y. Son, and
G. Harris, “State-of-the-art and prospects for peer-to-peer transaction-based
energy system,” Energies, vol. 10, no. 12, p. 2106, 2017.

[8] K. Wang, X. Hu, H. Li, P. Li, D. Zeng, and S. Guo, “A survey on energy
internet communications for sustainability,” IEEE Transactions on Sustainable
Computing, vol. 2, pp. 231–254, July 2017.

[9] W. Strielkowski, Social Impacts of Smart Grids: The Future of Smart Grids
and Energy Market Design. Elsevier, 2019.

[10] M. Nasimifar, V. Vahidinasab, and M. S. Ghazizadeh, “A peer-to-peer
electricity marketplace for simultaneous congestion management and power loss
reduction,” in 2019 Smart Grid Conference (SGC), pp. 1–6, IEEE, 2019.

[11] “Freeing the grid: Best and worst practices in state
netmetering policies and interconnection procedure,” 2009.
http://www.newenergychoices.org/uploads/FreeingTheGrid2009.pdf.

[12] T. Zhu, A. Mishra, D. Irwin, N. Sharma, P. Shenoy, and D. Towsley, “The case
for efficient renewable energy management in smart homes,” in Proceedings of
the Third ACM Workshop on Embedded Sensing Systems for Energy-Efficiency
in Buildings, pp. 67–72, ACM, 2011.

[13] D. Kalathil, C. Wu, K. Poolla, and P. Varaiya, “The sharing economy for the
electricity storage,” IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 556–
567, 2017.

138



[14] W. Tushar, T. K. Saha, C. Yuen, D. Smith, and H. V. Poor, “Peer-to-peer
trading in electricity networks: An overview,” IEEE Transactions on Smart
Grid, vol. 11, no. 4, pp. 3185–3200, 2020.

[15] W. Tushar, T. K. Saha, C. Yuen, P. Liddell, R. Bean, and H. V. Poor, “Peer-
to-peer energy trading with sustainable user participation: A game theoretic
approach,” IEEE Access, vol. 6, pp. 62932–62943, 2018.

[16] W. Saad, A. L. Glass, N. B. Mandayam, and H. V. Poor, “Toward a consumer-
centric grid: A behavioral perspective,” Proceedings of the IEEE, vol. 104, no. 4,
pp. 865–882, 2016.

[17] G. El Rahi, W. Saad, A. Glass, N. B. Mandayam, and H. V. Poor, “Prospect
theory for prosumer-centric energy trading in the smart grid,” in 2016 IEEE
Power & Energy Society Innovative Smart Grid Technologies Conference
(ISGT), pp. 1–5, IEEE, 2016.

[18] U.S. Department of Energy, “The smart grid: An introduction,” tech. rep., U.S.
Department of Energy, November 2008.

[19] M. H. Rehmani, M. Reisslein, A. Rachedi, M. Erol-Kantarci, and
M. Radenkovic, “Integrating renewable energy resources into the smart grid:
Recent developments in information and communication technologies,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 7, pp. 2814–2825, 2018.

[20] S. Ciavarella, J.-Y. Joo, and S. Silvestri, “Managing contingencies in smart
grids via the internet of things,” IEEE Transactions on Smart Grid, vol. 7,
no. 4, pp. 2134–2141, 2016.

[21] “Brooklyn micorgrid.” https://www.brooklyn.energy.

[22] “Vandebron.” https://vandebron.nl.

[23] “Piclo energy.” https://piclo.energy.

[24] N. Liu, X. Yu, C. Wang, C. Li, L. Ma, and J. Lei, “Energy-sharing model with
price-based demand response for microgrids of peer-to-peer prosumers,” IEEE
Transactions on Power Systems, vol. 32, pp. 3569–3583, Sep. 2017.

[25] S. Mullainathan and R. H. Thaler, “Behavioral economics,” 2000.

[26] H. A. Simon, Models of man; social and rational. Wiley, 1957.

[27] D. Kahneman, “Maps of bounded rationality: Psychology for behavioral
economics,” American Econ. Rev., vol. 93, no. 5, pp. 1449–1475, 2003.

[28] G. Gigerenzer and R. Selten, Bounded rationality: The adaptive toolbox. MIT
press, 2002.

139



[29] A. Szollosi and B. R. Newell, “People as intuitive scientists: Reconsidering
statistical explanations of decision making,” Trends in Cognitive Sciences, 2020.

[30] P. E. Earl, “Bounded rationality in the digital age,” in Minds, Models and
Milieux, pp. 253–271, Springer, 2016.

[31] D. E. Agosto, “Bounded rationality and satisficing in young people’s web-based
decision making,” Journal of the American society for Information Science and
Technology, vol. 53, no. 1, pp. 16–27, 2002.

[32] A. Krajnović, D. Sikirić, and J. Bosna, “Digital marketing and behavioral
economics,” CroDiM: International Journal of Marketing Science, vol. 1, no. 1,
pp. 33–46, 2018.

[33] W. Tushar, C. Yuen, H. Mohsenian-Rad, T. Saha, H. V. Poor, and K. L. Wood,
“Transforming energy networks via peer-to-peer energy trading: The potential
of game-theoretic approaches,” IEEE Signal Processing Magazine, vol. 35, no. 4,
pp. 90–111, 2018.

[34] M. I. Azim, S. Pourmousavi, W. Tushar, and T. K. Saha, “Feasibility study of
financial p2p energy trading in a grid-tied power network,” in 2019 IEEE Power
& Energy Society General Meeting (PESGM), pp. 1–5, IEEE, 2019.

[35] T. Zhu, Z. Huang, A. Sharma, J. Su, D. Irwin, A. Mishra, D. Menasche, and
P. Shenoy, “Sharing renewable energy in smart microgrids,” in 2013 ACM/IEEE
International Conference on Cyber-Physical Systems (ICCPS), pp. 219–228,
April 2013.

[36] A. Paudel, L. Sampath, J. Yang, and H. B. Gooi, “Peer-to-peer energy trading
in smart grid considering power losses and network fees,” IEEE Transactions
on Smart Grid, vol. 11, no. 6, pp. 4727–4737, 2020.

[37] A. Hariharasudan, I. Otola, and Y. Bilan, “Reactive power optimization and
price management in microgrid enabled with blockchain,” Energies, vol. 13,
no. 23, p. 6179, 2020.

[38] Y. Liu, C. Sun, A. Paudel, Y. Gao, Y. Li, H. B. Gooi, and J. Zhu, “Fully
decentralized p2p energy trading in active distribution networks with voltage
regulation,” IEEE Transactions on Smart Grid, 2022.

[39] W. Tushar, T. K. Saha, C. Yuen, T. Morstyn, H. V. Poor, R. Bean, et al.,
“Grid influenced peer-to-peer energy trading,” IEEE Transactions on Smart
Grid, vol. 11, no. 2, pp. 1407–1418, 2019.

[40] A. R. Khamesi and S. Silvestri, “Reverse auction-based demand response
program: A truthful mutually beneficial mechanism,” in 2020 IEEE 17th
International Conference on Mobile Ad Hoc and Sensor Systems (MASS),
pp. 427–436, IEEE, 2020.

140



[41] A. D. Rathnayaka, V. M. Potdar, O. Hussain, and T. Dillon, “Identifying
prosumer’s energy sharing behaviours for forming optimal prosumer-
communities,” in 2011 International Conference on Cloud and Service
Computing, pp. 199–206, IEEE, 2011.

[42] G. El Rahi, S. R. Etesami, W. Saad, N. B. Mandayam, and H. V. Poor,
“Managing price uncertainty in prosumer-centric energy trading: A prospect-
theoretic stackelberg game approach,” IEEE Transactions on Smart Grid,
vol. 10, no. 1, pp. 702–713, 2017.

[43] Y. Wang, L. Zhang, Q. Ding, and K. Zhang, “Prospect theory-based optimal
bidding model of a prosumer in the power market,” IEEE Access, vol. 8,
pp. 137063–137073, 2020.

[44] Y. Yao, C. Gao, T. Chen, J. Yang, and S. Chen, “Distributed electric energy
trading model and strategy analysis based on prospect theory,” International
Journal of Electrical Power & Energy Systems, vol. 131, p. 106865, 2021.

[45] A. Timilsina, A. R. Khamesi, V. Agate, and S. Silvestri, “A reinforcement
learning approach for user preference-aware energy sharing systems,” IEEE
Transactions on Green Communications and Networking, 2021.

[46] A. Timilsina, “P2p energy trading in a smart residential environment with
user behavioral modeling,” in 2023 IEEE International Conference on Pervasive
Computing and Communications Workshops and other Affiliated Events, IEEE,
2023.

[47] A. Timilsina and S. Silvestri, “Prospect theory-inspired automated p2p energy
trading with q-learning-based dynamic pricing,” in GLOBECOM 2022-2022
IEEE Global Communications Conference, pp. 4836–4841, IEEE, 2022.

[48] A. Timilsina and S. Silvestri, “P2p energy trading through prospect theory,
differential evolution, and reinforcement learning,” ACM Transactions on
Evolutionary Learning and Optimization, 2023.

[49] R. Alden, A. Timilsina, S. Silvestri, and D. M. Ionel, “V2g optimization for
dispatchable residential load operation and minimal utility cost,” in 2023 IEEE
International Transportation Electrification Conference, IEEE, 2023.

[50] A. Timilsina and S. Silvestri, “e-Uber : A crowdsourcing platform for electric
vehicle-based ride-and energy-sharing,” arXiv preprint arXiv:2304.04753, 2023.

[51] M. Moretti, S. N. Djomo, H. Azadi, K. May, K. De Vos, S. Van Passel, and
N. Witters, “A systematic review of environmental and economic impacts of
smart grids,” Renewable and Sustainable Energy Reviews, vol. 68, pp. 888–898,
2017.

141



[52] M. Shurrab, S. Singh, H. Otrok, R. Mizouni, V. Khadkikar, and H. Zeineldin,
“An efficient vehicle-to-vehicle (v2v) energy sharing framework,” IEEE Internet
of Things Journal, vol. 9, no. 7, pp. 5315–5328, 2021.

[53] M. R. Sarker, H. Pandžić, and M. A. Ortega-Vazquez, “Optimal operation
and services scheduling for an electric vehicle battery swapping station,” IEEE
transactions on power systems, vol. 30, no. 2, pp. 901–910, 2014.

[54] T. Ackermann, G. Andersson, and L. Söder, “Distributed generation: a
definition,” Electric Power Systems Research, vol. 57, no. 3, 2001.

[55] P. Asmus, “Microgrids, virtual power plants and our distributed energy future,”
The Electricity Journal, vol. 23, no. 10, pp. 72–82, 2010.

[56] M. Vasirani, R. Kota, R. L. Cavalcante, S. Ossowski, and N. R. Jennings, “An
agent-based approach to virtual power plants of wind power generators and
electric vehicles,” IEEE Transactions on Smart Grid, vol. 4, no. 3, pp. 1314–
1322, 2013.

[57] S. Hadayeghparast, A. S. Farsangi, and H. A. Shayanfar, “Day-ahead stochastic
multi-objective economic/emission operational scheduling of a large scale virtual
power plant,” Energy, vol. 172, pp. 630–646, 2019.

[58] S. Lakshminarayana, T. Q. S. Quek, and H. V. Poor, “Cooperation and storage
tradeoffs in power grids with renewable energy resources,” IEEE Journal on
Selected Areas in Communications, vol. 32, pp. 1386–1397, July 2014.

[59] M. M. Esfahani, A. Hariri, and O. A. Mohammed, “A multiagent-based game-
theoretic and optimization approach for market operation of multimicrogrid
systems,” IEEE Transactions on Industrial Informatics, vol. 15, pp. 280–292,
Jan 2019.

[60] V. Agate, A. R. Khamesi, S. Silvestri, and S. Gaglio, “Enabling peer-to-peer
user-preference-aware energy sharing through reinforcement learning,” in ICC
2020-2020 IEEE International Conference on Communications (ICC), pp. 1–7,
IEEE, 2020.

[61] E. A. Soto, L. B. Bosman, E. Wollega, and W. D. Leon-Salas, “Peer-to-peer
energy trading: A review of the literature,” Applied Energy, vol. 283, p. 116268,
2021.

[62] E. Mengelkamp, J. Gärttner, K. Rock, S. Kessler, L. Orsini, and C. Weinhardt,
“Designing microgrid energy markets: A case study: The brooklyn microgrid,”
Applied Energy, vol. 210, pp. 870–880, 2018.

[63] Z. Li, J. Kang, R. Yu, D. Ye, Q. Deng, and Y. Zhang, “Consortium blockchain
for secure energy trading in industrial internet of things,” IEEE transactions on
industrial informatics, vol. 14, no. 8, pp. 3690–3700, 2017.

142



[64] J. Kang, R. Yu, X. Huang, S. Maharjan, Y. Zhang, and E. Hossain, “Enabling
localized peer-to-peer electricity trading among plug-in hybrid electric vehicles
using consortium blockchains,” IEEE Transactions on Industrial Informatics,
vol. 13, no. 6, pp. 3154–3164, 2017.

[65] T. Morstyn, A. Teytelboym, and M. D. McCulloch, “Bilateral contract networks
for peer-to-peer energy trading,” IEEE Transactions on Smart Grid, vol. 10,
no. 2, pp. 2026–2035, 2018.

[66] L. Boratto and E. Vargiu, “Data-driven user behavioral modeling: from real-
world behavior to knowledge, algorithms, and systems,” Journal of Intelligent
Information Systems, vol. 54, no. 1, pp. 1–4, 2020.

[67] S. Angeletou, M. Rowe, and H. Alani, “Modelling and analysis of user behaviour
in online communities,” in International semantic web conference, pp. 35–50,
Springer, 2011.

[68] I. Zukerman and D. W. Albrecht, “Predictive statistical models for user
modeling,” User Modeling and User-Adapted Interaction, vol. 11, no. 1, pp. 5–
18, 2001.

[69] D. Kahneman and A. Tversky, “Prospect theory: An analysis of decision under
risk,” in Handbook of the fundamentals of financial decision making: Part I,
pp. 99–127, World Scientific, 2013.

[70] N. Wilkinson and M. Klaes, An introduction to behavioral economics.
Macmillan International Higher Education, 2017.

[71] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[72] V. François-Lavet, P. Henderson, et al., “An introduction to deep reinforcement
learning,” arXiv preprint arXiv:1811.12560, 2018.

[73] F. Restuccia, P. Ferraro, T. S. Sanders, S. Silvestri, S. K. Das, and G. L. Re,
“First: A framework for optimizing information quality in mobile crowdsensing
systems,” ACM Transactions on Sensor Networks (TOSN), vol. 15, no. 1, pp. 1–
35, 2018.

[74] F. Restuccia, P. Ferraro, S. Silvestri, S. K. Das, and G. L. Re, “Incentme:
Effective mechanism design to stimulate crowdsensing participants with
uncertain mobility,” IEEE Transactions on Mobile Computing, vol. 18, no. 7,
pp. 1571–1584, 2018.

[75] W. Ai, T. Deng, and W. Qi, “Crowdsourcing electrified mobility for omni-
sharing distributed energy resources,” in AI and Analytics for Smart Cities and
Service Systems, pp. 365–382, Springer, 2021.

143



[76] M. Z. Oskouei, B. Mohammadi-Ivatloo, M. Abapour, M. Shafiee, and A. Anvari-
Moghaddam, “Privacy-preserving mechanism for collaborative operation of
high-renewable power systems and industrial energy hubs,” Applied Energy,
vol. 283, p. 116338, 2021.

[77] H. Khaloie, M. Mollahassani-pour, and A. Anvari-Moghaddam, “Optimal
behavior of a hybrid power producer in day-ahead and intraday markets: A
bi-objective cvar-based approach,” IEEE Trans. on Sustainable Energy, 2020.

[78] A. Anvari-Moghaddam, A. Rahimi-Kian, M. S. Mirian, and J. M. Guerrero,
“A multi-agent based energy management solution for integrated buildings and
microgrid system,” Applied Energy, vol. 203, p. 41, 2017.

[79] N. Bazmohammadi, A. Tahsiri, A. Anvari-Moghaddam, and J. M. Guerrero,
“Stochastic predictive control of multi-microgrid systems,” IEEE Transactions
on Industry Applications, vol. 55, no. 5, pp. 5311–5319, 2019.

[80] M. Daneshvar, B. Mohammadi-Ivatloo, S. Asadi, A. Anvari-Moghaddam,
M. Rasouli, M. Abapour, and G. B. Gharehpetian, “Chance-constrained models
for transactive energy management of interconnected microgrid clusters,”
Journal of Cleaner Production, 2020.

[81] M. Daneshvar, B. Mohammadi-Ivatloo, K. Zare, S. Asadi, and A. Anvari-
Moghaddam, “A novel operational model for interconnected microgrids
participation in transactive energy market: A hybrid igdt/stochastic approach,”
IEEE Transactions on Indust. Inform., 2020.

[82] F. Plewnia, “The energy system and the sharing economy: Interfaces and
overlaps and what to learn from them,” Energies, vol. 12, no. 3, p. 339, 2019.

[83] S. Bahrami, M. H. Amini, M. Shafie-Khah, and J. P. Catalao, “A decentralized
renewable generation management and demand response in power distribution
networks,” IEEE Transactions on Sustainable Energy, vol. 9, no. 4, pp. 1783–
1797, 2018.

[84] K. A. Melendez, V. Subramanian, T. K. Das, and C. Kwon, “Empowering
end-use consumers of electricity to aggregate for demand-side participation,”
Applied Energy, vol. 248, pp. 372–382, 2019.

[85] B. A. Bhatti and R. Broadwater, “Energy trading in the distribution system
using a non-model based game theoretic approach,” Applied Energy, vol. 253,
p. 113532, 2019.

[86] J. Guerrero, A. C. Chapman, and G. Verbič, “Decentralized p2p energy trading
under network constraints in a low-voltage network,” IEEE Transactions on
Smart Grid, vol. 10, no. 5, pp. 5163–5173, 2018.

144



[87] K. Chen, J. Lin, and Y. Song, “Trading strategy optimization for a prosumer in
continuous double auction-based peer-to-peer market: A prediction-integration
model,” Applied energy, vol. 242, pp. 1121–1133, 2019.

[88] H. Liu, Y. Zhang, S. Zheng, and Y. Li, “Electric vehicle power trading
mechanism based on blockchain and smart contract in v2g network,” IEEE
Access, vol. 7, pp. 160546–160558, 2019.

[89] C. Long, J. Wu, Y. Zhou, and N. Jenkins, “Peer-to-peer energy sharing through
a two-stage aggregated battery control in a community microgrid,” Applied
energy, vol. 226, pp. 261–276, 2018.

[90] S. Nguyen, W. Peng, P. Sokolowski, D. Alahakoon, and X. Yu, “Optimizing
rooftop photovoltaic distributed generation with battery storage for peer-to-
peer energy trading,” Applied Energy, vol. 228, pp. 2567–2580, 2018.

[91] T. Baroche, P. Pinson, R. L. G. Latimier, and H. B. Ahmed, “Exogenous cost
allocation in peer-to-peer electricity markets,” IEEE Transactions on Power
Systems, vol. 34, no. 4, pp. 2553–2564, 2019.

[92] S. Wang, A. F. Taha, J. Wang, K. Kvaternik, and A. Hahn, “Energy
crowdsourcing and peer-to-peer energy trading in blockchain-enabled smart
grids,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 49,
no. 8, pp. 1612–1623, 2019.

[93] C. Zhang, J. Wu, Y. Zhou, M. Cheng, and C. Long, “Peer-to-peer energy trading
in a microgrid,” Applied Energy, vol. 220, pp. 1–12, 2018.

[94] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decentralized
Business Review, p. 21260, 2008.

[95] O. Utility, “A glimpse into the future of britain’s energy economy,” White Pap,
pp. 1–25, 2016.

[96] S. Silvestri, D. A. Baker, and V. Dolce, “Integration of social behavioral
modeling for energy optimization in smart environments,” in ACM Social Sense,
pp. 97–97, 2017.

[97] J. Kleinberg, J. Ludwig, S. Mullainathan, and A. Rambachan, “Algorithmic
fairness,” in AEA Papers and Proceedings, vol. 108, pp. 22–27, 2018.

[98] S. Barocas and A. D. Selbst, “Big data’s disparate impact,” Calif. L. Rev.,
vol. 104, p. 671, 2016.

[99] S. Wendel, Designing for behavior change: Applying psychology and behavioral
economics. O’Reilly Media, 2020.

[100] A. R. Khamesi, S. Silvestri, D. A. Baker, and A. D. Paola, “Perceived-value-
driven optimization of energy consumption in smart homes,” ACM Transactions
on Internet of Things, vol. 1, no. 2, pp. 1–26, 2020.

145



[101] E. Shin, A. R. Khamesi, Z. Bahr, S. Silvestri, and D. A. Baker, “A user-centered
active learning approach for appliance recognition,” in 2020 IEEE International
Conference on Smart Computing (SMARTCOMP), pp. 208–213, IEEE, 2020.

[102] T. F. E. R. Commission, “Reports on demand response & advanced metering,”
tech. rep., The Federal Energy Regulatory Commission, December 2015.

[103] V. Dolce, C. Jackson, S. Silvestri, D. Baker, and A. De Paola, “Social-
behavioral aware optimization of energy consumption in smart homes,” in 2018
14th International Conference on Distributed Computing in Sensor Systems
(DCOSS), pp. 163–172, IEEE, 2018.

[104] W. Tushar, T. K. Saha, C. Yuen, T. Morstyn, M. D. McCulloch, H. V. Poor, and
K. L. Wood, “A motivational game-theoretic approach for peer-to-peer energy
trading in the smart grid,” Applied energy, vol. 243, pp. 10–20, 2019.

[105] W. Tushar, T. K. Saha, C. Yuen, M. I. Azim, T. Morstyn, H. V. Poor, D. Niyato,
and R. Bean, “A coalition formation game framework for peer-to-peer energy
trading,” Applied Energy, vol. 261, p. 114436, 2020.

[106] S. Dorahaki, M. Rashidinejad, S. F. F. Ardestani, A. Abdollahi, and M. R.
Salehizadeh, “A peer-to-peer energy trading market model based on time-driven
prospect theory in a smart and sustainable energy community,” Sustainable
Energy, Grids and Networks, vol. 28, p. 100542, 2021.

[107] L. Xiao, N. B. Mandayam, and H. V. Poor, “Prospect theoretic analysis of
energy exchange among microgrids,” IEEE Transactions on Smart Grid, vol. 6,
no. 1, pp. 63–72, 2014.

[108] K. Jhala, B. Natarajan, and A. Pahwa, “Prospect theory based active consumer
behavior under variable electricity pricing,” IEEE Transactions on Smart Grid,
pp. 1–1, 2018.

[109] Y. Wang, W. Saad, N. B. Mandayam, and H. V. Poor, “Load shifting in the
smart grid: To participate or not?,” IEEE Transactions on Smart Grid, vol. 7,
no. 6, pp. 2604–2614, 2015.

[110] Y. Xia, Q. Xu, Y. Huang, Y. Liu, and F. Li, “Preserving privacy in nested
peer-to-peer energy trading in networked microgrids considering incomplete
rationality,” IEEE Transactions on Smart Grid, vol. 14, no. 1, pp. 606–622,
2022.

[111] D. Contu, E. Strazzera, and S. Mourato, “Modeling individual preferences for
energy sources: The case of iv generation nuclear energy in italy,” Ecological
Economics, vol. 127, pp. 37–58, 2016.

[112] E. Ropuszyńska-Surma and M. Węglarz, “Profiling end user of renewable energy
sources among residential consumers in poland,” Sustainability, vol. 10, no. 12,
p. 4452, 2018.

146



[113] C. R. Fox and R. A. Poldrack, “Prospect theory and the brain,” in
Neuroeconomics, pp. 145–173, London,UK: Elsevier, 2009.

[114] A. Ghasemi, A. Shojaeighadikolaei, K. Jones, M. Hashemi, A. G. Bardas,
and R. Ahmadi, “A multi-agent deep reinforcement learning approach for a
distributed energy marketplace in smart grids,” in 2020 IEEE International
Conference on Communications, Control, and Computing Technologies for
Smart Grids (SmartGridComm), pp. 1–6, IEEE, 2020.

[115] R. Leo, R. Milton, and A. Kaviya, “Multi agent reinforcement learning
based distributed optimization of solar microgrid,” in 2014 IEEE International
Conference on Computational Intelligence and Computing Research, pp. 1–7,
IEEE, 2014.

[116] O. Mihatsch and R. Neuneier, “Risk-sensitive reinforcement learning,” Machine
learning, vol. 49, no. 2, pp. 267–290, 2002.

[117] Y. Shen, M. J. Tobia, T. Sommer, and K. Obermayer, “Risk-sensitive
reinforcement learning,” Neural computation, vol. 26, no. 7, pp. 1298–1328,
2014.

[118] Y. Zhao, K. Zheng, H. Yin, G. Liu, J. Fang, and X. Zhou, “Preference-aware
task assignment in spatial crowdsourcing: from individuals to groups,” IEEE
Transactions on Knowledge and Data Engineering, vol. 34, no. 7, pp. 3461–3477,
2020.

[119] S. Sodagari, “Trends for mobile iot crowdsourcing privacy and security in the
big data era,” IEEE Transactions on Technology and Society, vol. 3, no. 3,
pp. 199–225, 2022.

[120] H. Jin, L. Su, B. Ding, K. Nahrstedt, and N. Borisov, “Enabling privacy-
preserving incentives for mobile crowd sensing systems,” in 2016 IEEE 36th
International Conference on Distributed Computing Systems (ICDCS), pp. 344–
353, IEEE, 2016.

[121] Y. Xing, L. Wang, Z. Li, and Y. Zhan, “Multi-attribute crowdsourcing task
assignment with stability and satisfactory,” IEEE Access, vol. 7, pp. 133351–
133361, 2019.

[122] M. Xiao, K. Ma, A. Liu, H. Zhao, Z. Li, K. Zheng, and X. Zhou, “Sra:
Secure reverse auction for task assignment in spatial crowdsourcing,” IEEE
Transactions on Knowledge and Data Engineering, vol. 32, no. 4, pp. 782–796,
2019.

[123] Y. Liu, X. Xu, J. Pan, J. Zhang, and G. Zhao, “A truthful auction mechanism for
mobile crowd sensing with budget constraint,” IEEE Access, vol. 7, pp. 43933–
43947, 2019.

147



[124] H. Hong, X. Li, D. He, Y. Zhang, and M. Wang, “Crowdsourcing incentives
for multi-hop urban parcel delivery network,” IEEE Access, vol. 7, pp. 26268–
26277, 2019.

[125] Y. Wang, J. Jiang, and T. Mu, “Context-aware and energy-driven route
optimization for fully electric vehicles via crowdsourcing,” IEEE Transactions
on Intelligent Transportation Systems, vol. 14, no. 3, pp. 1331–1345, 2013.

[126] Y. He and C. Csiszár, “Model for crowdsourced parcel delivery embedded into
mobility as a service based on autonomous electric vehicles,” Energies, vol. 14,
no. 11, p. 3042, 2021.

[127] A. Yassine, M. S. Hossain, G. Muhammad, and M. Guizani, “Cloudlet-based
intelligent auctioning agents for truthful autonomous electric vehicles energy
crowdsourcing,” IEEE Transactions on Vehicular Technology, vol. 69, no. 5,
pp. 5457–5466, 2020.

[128] W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu, and Y. Zhang, “Short-term
residential load forecasting based on lstm recurrent neural network,” IEEE
Transactions on Smart Grid, vol. 10, no. 1, pp. 841–851, 2017.

[129] P. E. Greenwood and M. S. Nikulin, A guide to chi-squared testing, vol. 280.
John Wiley & Sons, 1996.

[130] D. Hull, “Using statistical testing in the evaluation of retrieval experiments,”
in Proceedings of 16th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 329–338, 1993.

[131] L. Fleischer, M. X. Goemans, V. S. Mirrokni, and M. Sviridenko, “Tight
approximation algorithms for maximum general assignment problems,” in
Proceedings of 17th ACM-SIAM symposium on Discrete algorithm, pp. 611–
620, Society for Industrial and Applied Mathematics, 2006.

[132] Y. Gai, B. Krishnamachari, and R. Jain, “Combinatorial network optimization
with unknown variables: Multi-armed bandits with linear rewards and
individual observations,” IEEE/ACM Transactions on Networking, vol. 20,
pp. 1466–1478, Oct 2012.

[133] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, no. 2-3, pp. 235–256,
2002.

[134] J. E. Hopcroft and R. M. Karp, “An nˆ5/2 algorithm for maximum matchings
in bipartite graphs,” SIAM Journal on Computing, vol. 2, no. 4, pp. 225–231,
1973.

[135] J. Edmonds, “Maximum matching and a polyhedron with 0, 1-vertices,” Journal
of Research of the National Bureau of Standards B, vol. 69, no. 125-130, pp. 55–
56, 1965.

148



[136] Z. Galil, “Efficient algorithms for finding maximum matching in graphs,” ACM
Computing Surveys (CSUR), vol. 18, no. 1, pp. 23–38, 1986.

[137] “Pecan street inc..” https://www.pecanstreet.org.

[138] “Solar Resource Data.” https://pvwatts.nrel.gov/pvwatts.php.

[139] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava, “Power management
in energy harvesting sensor networks,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 6, no. 4, p. 32, 2007.

[140] L. Gurobi Optimization, “Gurobi optimizer reference manual,” 2020.
https://www.gurobi.com.

[141] M. O. Rieger, M. Wang, and T. Hens, “Estimating cumulative prospect theory
parameters from an international survey,” Theory and Decision, vol. 82, no. 4,
pp. 567–596, 2017.

[142] V. Baláž, V. Bačová, E. Drobná, K. Dudeková, and K. Adamík, “Testing
prospect theory parameters,” Ekonomicky časopis, vol. 61, pp. 655–671, 2013.

[143] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear programming: theory
and algorithms. John Wiley & Sons, 2013.

[144] R. Storn and K. Price, “Differential evolution–a simple and efficient heuristic
for global optimization over continuous spaces,” Journal of global optimization,
vol. 11, no. 4, pp. 341–359, 1997.

[145] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-
level control through deep reinforcement learning,” nature, vol. 518, no. 7540,
pp. 529–533, 2015.

[146] E. Casella, E. Sudduth, and S. Silvestri, “Dissecting the problem of individual
home power consumption prediction using machine learning,” in 2022 IEEE
International Conference on Smart Computing (SMARTCOMP), (Finland),
pp. 156–158, IEEE, 2022.

[147] T. H. Cormen, Introduction to algorithms. MIT press, 2009.

[148] P. S. Inc., 2019.

[149] NREL, “Solar resource data,” 2019.

[150] E. Casella, A. R. Khamesi, S. Silvestri, D. A. Baker, and S. K. Das, “Hvac
power conservation through reverse auctions and machine learning,” in 2022
IEEE International Conference on Pervasive Computing and Communications
(PerCom), pp. 89–100, IEEE, 2022.

149



[151] A. A. Lazar and N. Semret, “The progressive second price auction mechanism
for network resource sharing,” in 8th International Symposium on Dynamic
Games, Maastricht, The Netherlands, 1998.

[152] J. Csirik, “Heuristics for the 0-1 min-knapsack problem,” Acta Cybernetica,
vol. 10, no. 1-2, pp. 15–20, 1991.

[153] R. M. Karp, “An algorithm to solve the m× n assignment problem in expected
time o (mn log n),” Networks, vol. 10, no. 2, pp. 143–152, 1980.

[154] C. of New York Taxi and L. Commission, “New york city taxi and limousine
commission (tlc) trip record data of the year 2013,” 2019.

150



VITA

Ashutosh Timilsina
Education

• Ph.D. in Computer Science from the University of Kentucky. Expected
Gradution May, 2023.

• B.E. in Electrical Engineering from the Tribhuvan University, Institute of
Engineering, Pulchowk Campus. December, 2016.

Professional Experience
• August 2019 to May 2023: Graduate Research Assistant at Cyber Physical

Systems Lab (under Dr. Simone Silvestri), University of Kentucky, Lexington,
USA.

• April 2019 to August 2019: Electrical Engineer at the Nilgiri Khola Hydropower
Company Ltd.

• May 2017 to May 2019: Electrical Engineer at the Mandu Hydropower Ltd.

• Dec. 2016 to May 2018: Technical Officer at the H.I.F. Renewable Energy Ltd.

Research Interests
User Behavioral Modeling, eCommerce, Mathematical Optimization, Artificial

Intelligence, Machine Learning, Reinforcement Learning, Blockchain
Technical Skills

• Languages: Python, C/C++, MATLAB, SQL

• Libraries: Gurobi, NetworkX, PyTorch, Keras, TensorFlow, MPI, OpenMP

• Software: LaTex, AutoCAD, KiCAD, SolidWorks, PVSyst

Scholastic and Professional Honors
• Outstanding Student Paper Award – Winner, Deptartment of Computer Science

(2022)

• Member of the Year Award – Winner, GSACS, University of Kentucky (2022)

• Recipient of four Student Travel Grants for attending ACM NanoCom, IEEE
GLOBECOM, IEEE PerCom, IEEE TPEC

• Top 5 poster award at 6th Annual Commonwealth Computational Summit,
University of Kentucky 2022

• Recipient of UKY GSC Student Conference Award (2022)

• LOCUS 2015: Electrical Project Competition - Winner (2015)

• LOCUS 2014: Electrical Project Competition – Appreciation (2014)

• Outstanding High School Student (2012)

151



Publications
• “e-Uber: A Crowdsourcing Platform for Electric Vehicle-based Ride- and

Energy-sharing" (Under Review), A. Timilsina and S. Silvestri, 2023.

• “V2G Optimization for Dispatchable Residential Load Operation and Minimal
Utility Cost", R. Alden, A. Timilsina, S.Silvestri, D.Ionel, 2023 IEEE ITEC,
Michigan, 2023.

• “P2P Energy Trading in a Smart Residential Environment with User Behavioral
Modeling", A. Timilsina, 2023 PerCom PhD Forum, Georgia, 2023.

• “P2P Energy Trading through Prospect Theory, Differential Evolution, and
Reinforcement Learning", A. Timilsina and S. Silvestri, 2023

• “Prospect Theory-inspired Automated P2P Energy Trading with Q-learning-
based Dynamic Pricing", A. Timilsina and S. Silvestri, IEEE Globecom, Rio de
Janeiro, Brazil, 2022

• “A Reinforcement Learning Approach for User Preference-aware Energy Sharing
Systems", A. Timilsina et al, IEEE Transactions on Green Communication &
Networks, 2021

• “Comparative Analysis of Cell Balancing Topologies in Battery Management
Systems", A. Timilsina et al, IoE Graduate Conference Summer, Kathmandu,
Nepal, 2019

• “Technical Design of a Grid-Connected Photovoltaic System and Its Challenges
in Nepalese Power Scenario", A. Timilsina and B. Paudyal, IEEE ICPS, Pune,
India, 2017

• “A Novel Approach for Wireless Power Transfer using Magnetic Resonant
Method", A. Timilsina et al, OKRP Conference, Kathmandu, Nepal, 2016

Leadership & Volunteering Experiences
• Peer Reviewer for over 18 articles and journal papers

• October 2022: International Conference on Network Protocols (ICNP’22) -
Volunteer

• May 2022 – May 2023: University of Kentucky Graduate Student Congress –
Representative

152


	Peer-to-Peer Energy Trading in Smart Residential Environment with User Behavioral Modeling
	Recommended Citation

	Title page
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Prosumption and Need for Alternative Energy Market
	Peer-to-peer (P2P) Energy Trading

	Objectives of This Dissertation
	Dissertation Structure

	General Overview of Peer-to-Peer Energy Trading, User behavioral modeling, Reinforcement Learning, and Crowdsourcing
	Distributed Energy Resources, Smart Grid and Their Integration
	Localized Energy Exchange and P2P Energy Trading
	Components of P2P Energy Trading
	Possible Market Structures for P2P Energy Trading

	User Behavioral Modeling and Behavioral Economics
	Reinforcement Learning
	Spatial Crowdsourcing and Use of Electric Vehicles for Crowdsourcing-based Energy Sharing

	A Detailed Literature Review on P2P Energy Trading and User behavioral modeling
	P2P Energy Trading
	Technical Approaches Employed for P2P Energy Trading
	Real-world Implementations of P2P Energy Trading
	User Behavioral Modeling and Behavioral Economics in Context of Energy Trading
	User Perception in Energy Sharing Systems
	Prospect Theory in P2P Energy Trading

	Reinforcement Learning in Energy Trading
	EV-based Crowdsourcing for Energy Sharing
	Limitations in Existing Literature and Motivation

	A Reinforcement Learning Approach for User Preference-aware P2P Energy Sharing
	System Model and Assumptions
	Problem Formulation
	A Reinforcement Learning Approach for User Preference Learning
	A Constrained Maximum Weighted Matching- based Reinforcement Learning Approach
	Faster Initialization Algorithm (FIA)
	The BiParTite-K Algorithm

	Experimental Results
	Experimental Setup
	Comparison approach
	Performance Evaluation

	Concluding Remarks

	Prospect Theory-Inspired P2P Energy Trading
	System Model and Problem Formulation
	Modeling Energy Allocation
	Modeling Pricing Mechanism

	Solution Approaches and Heuristics
	DEbATE
	PQR
	ProDQN

	Experimental Results
	Experimental Setup
	Comparison Approaches
	Results

	Concluding Remarks

	e-Uber: A Crowdsourcing Platform for Electric Vehicle-based Ride- and Energy-sharing
	System Model
	e-Uber: Problem Formulation
	Preference-aware Optimal Task Recommendation Problem
	Winning Bid Selection and Final Payment Problem

	e-Uber Solution Approaches
	CMAB-based Task Recommendation System
	Winning Bid Selection using Weighted Bipartite Matching

	Experiment
	Experimental Setup
	Results

	Conclusion

	Conclusion and Further Research
	Main Contribution
	Further Research
	Modeling complex dependencies of user behavioral parameters
	Fully decentralized energy allocation
	Reward functions for RL frameworks
	Including energy storage and electric vehicles in P2P
	Blockchain technology for practical implementation


	Bibliography
	Vita

