Impact of a Proposed Reservoir on Local Land Values

Digital Object Identifier: https://doi.org/10.13023/kwrri.rr.51

Philip Drucker
University of Kentucky

Charles R. Smith
University of Kentucky

Allen C. Turner
University of Kentucky

Click here to let us know how access to this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/kwrri_reports

Part of the Anthropology Commons, Place and Environment Commons, Rural Sociology Commons, and the Water Resource Management Commons

Repository Citation
Drucker, Philip; Smith, Charles R.; and Turner, Allen C., "Impact of a Proposed Reservoir on Local Land Values" (1972). KWRRI Research Reports. 144.
https://uknowledge.uky.edu/kwrri_reports/144

This Report is brought to you for free and open access by the Kentucky Water Resources Research Institute at UKnowledge. It has been accepted for inclusion in KWRRI Research Reports by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
IMPACT OF A PROPOSED RESERVOIR ON LOCAL LAND VALUES

Philip Drucker, Ph. D.
Principal Investigator

Charles R. Smith, M. A.
Allen C. Turner, M. A.
Graduate Student Research Assistants

Project Number A-031-KY (Completion Report)
Agreement Number 14-31-0001-3217 (Fy 1971)
Period of Project: 1 July 1970 - 30 June 1971

University of Kentucky Water Resources Institute
Lexington, Kentucky

The work on which this report is based was supported in part by funds provided by the Office of Water Resources Research, United States Department of the Interior, as authorized under the Water Resources Research Act of 1964.

July 1972
ABSTRACT

This project was designed to study the impact of private pre-construction land acquisition in a Central Kentucky area in which a flood-control dam and reservoir impoundment is planned. The research design was built around use of anthropological concepts and research techniques. By these means it was possible to analyze the perceived values of land to traditionalist residents, among which social and economic security concepts are paramount. Recent land purchases, locally believed to have been made chiefly by "outsiders," (urbanites from nearby Louisville), at prices out of line in terms of local agricultural worth, has been extremely unsettling, contributing to the anxiety pattern typical of persons facing dislocation and their sympathizers. The newly developing pattern of land purchase, with values related to residential convenience, and access to the urban center, rather than to traditional agricultural values, has been accepted by a certain segment of the local population who appear to be trying to take advantage of the urban economic opportunities while retaining at least part of the rural value system and continuing to participate in rural society and rurally esteemed activities.

KEYWORDS: Cultural attitudes, cultural values, social impact, social change, anxiety patterns, anthropological analysis
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF MAPS</td>
<td>v</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Project Objectives</td>
<td>1</td>
</tr>
<tr>
<td>Methodology</td>
<td>2</td>
</tr>
<tr>
<td>History of Proposed Taylorsville Dam</td>
<td>7</td>
</tr>
<tr>
<td>Characteristics of the Study Area</td>
<td>9</td>
</tr>
<tr>
<td>ANTHROPOLOGICAL APPRAISAL OF DAM IMPACT</td>
<td>15</td>
</tr>
<tr>
<td>Perceptions of the Farmer and His Land</td>
<td>15</td>
</tr>
<tr>
<td>PLATES 1 to 10: The Rural Lifeway</td>
<td>25-34</td>
</tr>
<tr>
<td>Perceptions of Land/Soil Values</td>
<td>35</td>
</tr>
<tr>
<td>The Closed Community</td>
<td>42</td>
</tr>
<tr>
<td>Anticipations of Change</td>
<td>44</td>
</tr>
<tr>
<td>STATISTICAL APPRAISAL OF LAND SALES</td>
<td>51</td>
</tr>
<tr>
<td>Definitions</td>
<td>51</td>
</tr>
<tr>
<td>Impact of the Proposed Taylorsville Reservoir</td>
<td>56</td>
</tr>
<tr>
<td>Summary</td>
<td>69</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>71</td>
</tr>
<tr>
<td>TABLES</td>
<td>73-80</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>81</td>
</tr>
<tr>
<td>MAPS</td>
<td>83-94</td>
</tr>
<tr>
<td>APPENDIX "A"</td>
<td>95</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Annualized Land Sale Data</td>
<td>73</td>
</tr>
<tr>
<td>II</td>
<td>Spearmans Rank Order Correlation Coefficient Matrix for Selected Land Purchasing Variables</td>
<td>78</td>
</tr>
<tr>
<td>III</td>
<td>The Structure of Spencer County Land Price</td>
<td>79</td>
</tr>
<tr>
<td>IV</td>
<td>Comparison of Baseline and Impact Periods</td>
<td>80</td>
</tr>
</tbody>
</table>
LIST OF MAPS

<table>
<thead>
<tr>
<th>Map</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>General Map</td>
<td>83</td>
</tr>
<tr>
<td>2</td>
<td>Spencer County Principal Highways and Proposed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reservoir Area</td>
<td>84</td>
</tr>
<tr>
<td>3</td>
<td>1962 Land Sale Locations</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>1963 Land Sale Locations</td>
<td>86</td>
</tr>
<tr>
<td>5</td>
<td>1964 Land Sale Locations</td>
<td>87</td>
</tr>
<tr>
<td>6</td>
<td>1965 Land Sale Locations</td>
<td>88</td>
</tr>
<tr>
<td>7</td>
<td>1966 Land Sale Locations</td>
<td>89</td>
</tr>
<tr>
<td>8</td>
<td>1967 Land Sale Locations</td>
<td>90</td>
</tr>
<tr>
<td>9</td>
<td>1968 Land Sale Locations</td>
<td>91</td>
</tr>
<tr>
<td>10</td>
<td>1969 Land Sale Locations</td>
<td>92</td>
</tr>
<tr>
<td>11</td>
<td>1970 Land Sale Locations</td>
<td>93</td>
</tr>
<tr>
<td>12</td>
<td>Spencer County: Negative Residual Area</td>
<td>94</td>
</tr>
</tbody>
</table>
INTRODUCTION

Project Objectives

This project (A-031-KY) is one of a series designed to study through anthropological research techniques and application of anthropological concepts, the impact of a major stream control device and the formation of a reservoir behind it on the local community. The previous phases of the program of which this is a part: Phase 1 and Phase 2 (OWRR Project A-022-KY, and B-014-KY) were aimed at establishing social and cultural baselines in and adjacent to three proposed Kentucky reservoir areas, one of which was the proposed Taylorsville reservoir which is the locale of the present study (Map 1). This study is the first of the present program to make an investigation of the direct impact resulting from the proposed dam construction. It also affords the opportunity to utilize previously collected baseline data to define the direction and extent of the resultant change. The direct impact consisted in land acquisition in the Taylorsville Reservoir area. Interestingly enough this first impact situation preceded in time the beginning of formal land acquisition by the U. S. Army Corps of Engineers for the United States Government. It was produced by the appearance of private individuals buying tracts in the reservoir area in general. Some of these tracts appeared to have been selected for construction of homes in a suburban surrounding; others, it was believed, were made with investment or speculation in mind. We knew before beginning the study that these purchases appeared to be causing a certain stress and tension among some of the local residents. In other words we proposed a hypothesis that changes were occurring in the pattern of land buying, particularly in the motivation for purchase of land in the reservoir area, and that these changes would
produce other changes in concepts of land values and have other effects on the regional subculture.

A secondary objective, but one also considered important, was that of giving effective training in the anthropological approach to water resources research to the graduate assistants, who are pre-doctoral students in anthropology. It is the considered opinion of the Principal Investigator that the social sciences have much to contribute to, and are inadequately represented in water resources research. In fact, his position is that all the well-designed studies in chemico-physical, earth, and life science areas of water resources are of little consequence if the effects of ensuing changes of attempts to modify water systems on human resources are not given adequate consideration.

Methodology

Two major research procedures were utilized in order to achieve our goal of defining the impact of the new pattern of land purchases. One of these was that of utilizing standard anthropological techniques of interviewing in both structured and unstructured types of interviews as wide a spectrum as possible of local residents, that is to say of varied social classes, economic activities and so on, to determine their concepts of land and land values and their anticipations of the effects of the reservoir. These data were supplemented with observations, and documented as much as possible with various local records including newspaper accounts of relevant incidents. We already had a photographic record of many local activities, land use patterns, house types, and so on in the region which had been obtained during the previous baseline studies. However, many additions were made to the photographic record during the present study. The other procedure consisted in analyzing data derived from records of actual land transactions over a specified time span statistically. From this latter material a mathematical model of land is constructed.
The anthropological approach is essentially that of cognitive anthropology. We were interested in determining with the perceptions of local residents of their own subculture and the aspects of their value system relative to land. Their concepts of effects, existing and anticipated, of the reservoir were also of course recorded in as full detail as possible. The technique of gathering data on local values and perceptions relied heavily on the concept of participant-observation. Successful use of this technique depends on whether the researcher is placed in an understandable position in the community by members of that community, and whether he is able to establish rapport with a wide sampling of community residents. The Taylorsville Reservoir area has been studied in the past several years quite intensively not only by anthropologists connected with the baseline studies but also by sociologists and biologists, and so members of the community are accustomed to researchers, and many more thoughtful people of the study area are themselves interested in the results of the researchers. Establishment of rapport by anthropologists from the University of Kentucky began with initial contact with the study area in October 1968 when two researchers began frequent data gathering. During the summer of 1969 one of the junior authors of the present report resided with his family in the community. During the fall of 1969 and the spring of 1970 frequent short visits were made to the area in order to gather additional data and to maintain contact with the residents.

The junior authors of this report carried out the field investigations under supervision of the Principal Investigator. For the major field season they resided in Taylorsville to establish their participant-observer roles, working out of that center into the rural areas. Contacts were established with as many residents as possible of the area to be inundated, as well as with a large number of both rural and town (Taylorsville) residents outside the proposed pool area, thus deliberately including a broad spectrum of occupations (farmers, part-time farmers, businessmen, employees, persons
in local government), and social classes. During the academic year trips to the study area were made from Lexington. Analysis of the data was similarly carried out under the supervision of the Principal Investigator. It should be mentioned that Turner made a special contribution based on his knowledge of statistics in the treatment of land sales data; Smith assisted in recording and collation of these materials. Both Research Assistants prepared topical written reports on the data, reports which were utilized by the Principal Investigator in the preparation of the present report, although he re-interpreted certain materials and derived somewhat different conclusions therefrom than had his junior colleagues. For the validity of the conclusions therefore the senior author alone is responsible. Nonetheless, this study is in a very real sense a team effort, in which two very able graduate students underwent a learning experience in social science research on water resource problems.

Initial contact with residents of the study area consisted of informal interviews following a pre-memorized schedule designed to determine local perceptions of land values before and after the reservoir idea was initiated, and to determine as well perceptions of social and cultural consequences of the reservoir. Formal questionnaires were not employed in this study. It was discovered early in the field work that some previous researchers had administered quite lengthy questionnaires to many local residents. Because several informants gleefully acknowledged having given spurious answers to questions in the questionnaires considered too personal or irrelevant, it was decided the informal interview would be more suitable. Captious and deliberately incorrect answers to queries are less likely in a face-to-face situation established in the pattern of friendship than in the impersonal situation of responding to long meddlesome questionnaires routinely administered. The open-minded interviews dealt with what the persons interviewed considered important and worthy of consideration rather than what the researchers as outsiders preconceived to be pertinent. The anthropological holistic approach permitted the collection of much data which were not explicitly related to the
reservoir but which enabled us to understand the general outlines of the rural subculture more fully. In addition to the individual interviews the investigators attended, as frequently as possible, ongoing discussions that occurred in general stores, in the fields, on front porches, and after church services which are the traditional gathering places at which information is exchanged and commented on. From these "group interviews" the kinds of questions and responses considered appropriate and acceptable to participants were learned. This made it possible for the researchers to adopt an interview model which incorporated the style of data transmission locally used and which made it possible to elicit more valid responses than would have been possible with a research design based on itemized questionnaires. Use of photography as a research tool in this type of investigation has already been mentioned. When duplicate prints were given to subjects not only was rapport increased but frequently comments on the pictures gave new leads to culturally conditioned attitudes.

There is one additional matter concerning the foregoing materials that must be spelled out. The information, comments, and opinions given by our friendly informants were under no circumstances of the sort that might be construed as sensitive. Nevertheless informants' rights to anonymity have been rigorously respected. For this reason their statements and views have been reduced to generalizations, eschewing the anecdotal items that used to give a homespun reality to the older ethnographies but which could be used by the well-informed to identify persons, either speakers or participants in the incident. It must be understood that all generalizations concerning concepts and values of local society were documented by case histories and specific examples, but such detail has been carefully suppressed to protect informants' rights of privacy.

The research design anticipated that one area of impact of the proposed reservoir would be reflected in actual land sales: that sharp changes in the pattern of land purchasing could be attributed to the reservoir.
Using such data requires the establishment of certain spatial and temporal parameters so as to limit the scope of the study to manageable yet meaningful bounds. For the study of actual land sales the spatial limits were set as including Spencer County alone. This was done for both theoretical and pragmatic considerations. While a multi-county approach might have provided the most information from a regional geographic viewpoint, Spencer County, which includes a major portion of the reservoir area, is a social as well as political unit. Individuals and organizations communicate more frequently and more consistently within its borders than they do with individuals and organizations in adjacent counties. This does not mean that people of Spencer County are isolated or parochial. On the contrary they do extend many social and economic relationships far beyond the county. But it is with the county that they identify and within it bring their activities to a focus. We assume, therefore, that the ideas regarding land and its uses and values are more frequently communicated and hence are more uniformly shared within this political unit than they are across its borders. In addition, of course, for practical purposes the land purchasing records are deposited in a single place—the County Courthouse. It was possible within the time available to make a thorough study of lands sales over a designated time span. (One portion of Spencer County was excluded from this study of land sales records: the city of Taylorsville. This was done because primary concern is with the impact of the reservoir on rural land purchasing rather than that occurring within the city in connection with city lots.) As a result, the total areal unit investigated in connection with land sales: Spencer County, is slightly less extensive than the total reservoir area considered in the other phase of investigation (Map 2). The time span of the land transactions studied was that between January 1, 1962 and June 30, 1970. Although greater time depth might have been useful for establishing earlier land buying patterns it was found that this 8 1/2 year period was adequate. It includes the 3 years prior to the public hearing held by the Corps of Engineers in Taylorsville.
(January 5, 1965) and 5 1/2 years after, and wholly precedes the time during which the Corps of Engineers began their land-ownership survey preparatory to purchasing of reservoir lands. We thus have a time span during which land in the basin was in its final open market and maximally affected by the reservoir plans.

History of Proposed Taylorsville Dam

The detailed history of the various proposals for flood relief in the Salt River Basin is given in Appendix "A" of this report. Only a brief summary will be given here. According to the Corps of Engineers, "flooding along the Salt River occurs almost every year and often several times in a year. The maximum headwater flood along the Salt River and most of its tributaries was the occurrence of March 1964. Other headwater floods occurred in January 1937, March 1939, March 1945, February 1948, and May 1961. The maximum stage attained in the downstream reach of the study area was in January 1937 as a result of the Ohio River backwater. These floods caused extensive tangible damages, delayed transportation movements, and disrupted economic activity of the basin." (House Doc. 502, 1966, p. 23). As is made clear in other sections of the report just quoted the major floods of the Salt River just cited were obviously not the only ones that have occurred. They were, however, the only major floods whose height and volume was accurately recorded by gaging stations, and the later ones were carefully investigated to determine the extent of damage after the flood waters had receded. Maximum damage occurred, of course, in the bottom lands of the Salt River in both Spencer and Bullitt Counties. The cities of Taylorsville, and farther downstream, Shepherdsville, were seriously affected as were in many cases farm lands in the flood plains. In 1948 an earthen levee was completed which protected Taylorsville from flood damage. This protective device had been designed and recommended by the Corps of Engineers in 1943 and its construction was supervised by that organization. At that time construction of reservoirs to
control flood damage in the Salt River Basin was not considered practicable. It was not until about 1960 that strong public sentiment came to be developed particularly in Taylorsville and Shepherdsville in favor of a reservoir. Conferences were held with officers of the Corps of Engineers of the Louisville District and public meetings were held in the towns to discuss the matter. Finally, in January of 1965 representatives of the Corps of Engineers held a public meeting at Taylorsville to report that studies have been made as to the feasibility of construction of the reservoir for flood control in the Salt River Basin and to elicit local reaction to this plan. The Corps operates under the principle that local support is necessary before making a formal request for congressional approval of the project. It is reported that the majority of local persons attending the meeting favored the project. Eventually congressional approval was attained although funds were not appropriated for actual construction. The lengthy delay between formal authorization of the dam project and actual beginning of activity, other than various studies of the sort carried out by the Corps of Engineers as necessary preliminaries to any project, has made some people skeptical of the fact that the dam actually will be built. Many persons are apparently not aware that such delays are not uncommon prior to actual beginning of construction of a project of this scope. In the present fiscal year (1972) funds were made available to the Corps presumably for the beginning of acquisition dam site, spillway, access roads and etc. As early as 1964, however, acquisition of land in the reservoir area by private individuals had begun. It was known to many local residents that at least some of these individuals buying land in the reservoir area were not local residents: they included various persons from the nearby urban center of Louisville. It was therefore believed, as will be discussed in more detail later on, that this marked the beginning of a major "invasion" of the reservoir area by urbanites.
Characteristics of the Study Area

Geographic Characteristics. The reservoir area, situated roughly 25 miles southeast of Louisville, Kentucky and 60 miles west of Lexington, Kentucky, includes a variety of terrain types the most common of which consists of the so-called "Outer Bluegrass" portions of the area and other parts of which comprise the "Knobs." The Salt River Valley itself is rather narrow and deeply cut from the headwaters down to the vicinity of Taylorsville. The flood plain is quite narrow averaging perhaps 400 ft. in width. From Taylorsville for twenty river miles or so downstream the valley widens considerably to a maximum of about 4,000 feet according to the Corps of Engineers report. Below this point the overflow area again narrows to about the locality of Shepherdsville in Bullitt County. The reservoir area proper is served by two state highways that intersect as Taylorsville, the county seat of Spencer County, and a connecting network of county roads that provide access to Taylorsville for rural residents. Taylorsville has a population of 950 persons. The remainder of Spencer County's 5,000 person population is essentially rural. In Anderson County the population in and adjacent to the proposed reservoir is somewhat sparser. The river valley there is also rather narrow with the plain limited to a thin strip between steeply rising sides of the valley. Within the limits imposed by physiography the rural culture patterns of Anderson County are essentially the same as those of Spencer County downriver.

The region within which the proposed reservoir will be situated has been primarily agricultural since early white settlement. It has always been an area of small farms, not of large plantations as in the Central Bluegrass. To offset the disadvantage of the non-navigability of Salt River in the day when rivers were the principal routes of communication and commerce there was the proximity of the study area to the riverine commercial center of Louisville. It is recounted that tobacco has a long history as the major cash crop, and was accompanied by a more diversified farming pattern than
obtains at present. Recent decades have seen a trend toward specialization, with tobacco still an important crop but cultivated by new intensive techniques, the introduction of mechanization, and most recently, with the improved road system, the introduction of Grade A dairying. These innovations brought a new prosperity to the region. Spencer County, our sample area, has in recent years consistently rated very high among counties of the Commonwealth of Kentucky in per capita income from agriculture. Small wonder that agricultural pursuits are viewed as prestigious by the inhabitants of the study area.

Social organization. To interpret the perceived effects of the proposed reservoir and of the reservoir-related private land transactions, it is necessary to review the local patterns of social organization and the values associated with them. A series of significant concepts concerning land and its worth are functionally related to certain aspects of social organization.

The basic unit as in so many parts of the world, rural or urban, is of course the nuclear family: man, wife and children. Sometimes this unit may be extended over an additional generation. That is to say a married son or sons or a married daughter or daughters may be included in the unit with their spouses and children. The extension of the normal nuclear unit by the addition of married offspring with children often means that the land owner is preparing to phase himself out of the operation of the farm toward retirement and intends turning the operation over to his respective heir or heirs.

A larger family unit is a bilateral extended one including relatives reckoned over several generations of kinship. This kind of family unit is often simply referred to locally as a "family" or by use of a surname, the "so-and-so family." In its constitution there is a certain amount of freedom of choice since, as said, descent is reckoned through either male or female line. Both congeniality and opportunity have a great deal to do with one's choice of which such family he prefers to associate himself with. If, for example, a young man learns that he has an opportunity to acquire land in the vicinity
of his father-in-law's farm he may choose to do so. These bilateral families have a very definite tendency to be localized, so that in a certain locality many of the farm families will be related. There are, of course, many relatives who have left the farm to go to urban centers to seek employment in commerce or industry, but such people often return on special occasions, such as holidays, birthdays, and certain life crises such as marriages and deaths. In several localities one finds several such families which still in their own concept retain their individuality but which have intermarried a great deal, and if the same pattern of life continued would eventually be recognized as one rather large bilateral family unit.

Another social unit is that comprised by the congregations of the rural churches. Many of the churches are spoken of as "family churches:" most of the members of that particular congregation belong to one of the bilateral families just described. This social pattern of course strengthens the bonds of the bilateral extended family considerably. It is worth noting that due to the bilaterality of these families a list of congregation membership would show such a variety of surnames that the basic kinship structure would not be obvious.

In a sense the county itself is in local perception something of a social unit. People consider themselves Spencerian Countians or Anderson Countians and so on. They feel that they have more interaction with fellow residents in the particular county than with those of other counties, although in the case of residents who live close to the county line with access routes in either direction this may not be so markedly the case. But residents of Spencer County do, for example, tend to do a great deal of their shopping in Taylorsville. Of course, they have to conduct most of their legal business at the County Courthouse, and they also frequently have kinsmen in this community center.

The local society cannot properly be classified as a stratified one, although differentiated statuses do exist. Various factors are involved in
designating status. The estimated net worth previously mentioned, farming competence, including capacity for hard work as well as ability at planning, seniority in family line, and so on, come into consideration in defining relative status. In addition, in certain instances, management-labor relationships are significant.

Formerly, wage labor, usually paid by the day, was highly important, especially at busy seasons on the farms such as planting and harvest. This wage labor was derived from both local and transient sources. However, there are no persons who work as day laborers on the farms anymore, nor have there been for some years. Such people have gone to urban centers to obtain more steady employment. Another type of worker is known locally as the "renter." This is a rather vague term because it covers at least two classes of persons. First there are lessees, that is individuals who contract the use of a farm for which they agree to pay cash rent, then take over the farm and run it as if it were their own during the period of the contract. The second class is the tenant who operates the farm on shares. This is usually done under the direct supervision of the landowner. That is say, it is the landowner who decides which fields will be planted in corn or hay, and so on. It is worth mentioning that the term "sharecropper" is not used locally. It is considered highly despective. The 1970 census reports for Kentucky are not yet available so we do not have any precise figures on number of tenants in relation to landowners in the study area, but it is certain that there is fairly large number. This is because many of the more prosperous land owners actually own several farms of various sizes. Such a man lives on his "homeplace" near his relatives and long-time neighbors, and finds a tenant to work one or more of the other places on shares. If the tracts are sizable there may be a tenant on each, or one or more may be leased for a fixed period. Another cause of the frequency of tenancy is the retirement of a farmer who has no heirs or had none interested in taking over the farming operation. Such a person, if he cannot or will not sell his land, may lease it, or find a tenant who will sharecrop.
The picture is further complicated by the fact that occasionally a landowner may make an agreement corresponding to that of a tenant, that is to operate some one else's farm on a share basis, in addition to operating his own farm. Such an arrangement creates an exception to the rule of thumb that, in terms of status and local perceptions of it, a landowner is considered to be quite a cut above a tenant. However, there is considerable variation. As a matter of fact an industrious and competent young man with limited cash resources may begin his working life as a tenant, and, at least so it is believed locally, may in time accumulate sufficient savings to be able to buy a farm of his own. Tenants are rated just as farmers are by their competence. Some are known to be highly competent and responsible, and such men are frequently given special concessions by the landowner for whom they work. The special concession may involve the loan of a milch cow or a brood sow or a special percentage of the cash proceeds of the dairying. It is said that usually, on a farm run on shares, the tenant provides the labor and gets about half the proceeds of the sales, while the landowner supplies house, machinery, seed, and fertilizer, and receives the other half of the derived income. This division of course applies to the major cash crop, tobacco, and/or to the proceeds of the dairying operation. Ancillary crops like the hay and silage necessary for the dairying operation are not divided. As indicated above, a landowner may offer special benefits to a tenant who he considers reliable and capable; landowner-tenant agreements vary a good deal even in the amount of the final division of cash proceeds.

Tenants who are mediocre in capability may be retained for some time on a farm simply because the landowner has no other way to keep the farm in operation. Irresponsible or incapable tenants are soon gotten rid of. In some cases men of local origin may work as tenants and may actually be related to the landowner for whom they work. This, of course, creates an additional special relationship, and modifies slightly the standard evaluation of status. In broadest terms it may be said that ordinarily the landowner is
perceived as holding considerably higher status than his tenant or tenants.

In some cases, at least, a tenant participates in work exchange—the "trading work" pattern—at planting and harvest time with his neighbors. In one instance in which such an assistance was actually observed (the occasion was hay baling), the man was related to the landowner affinally. This particular tenant was generally recognized as an industrious, highly capable farmer.

One particular fact distinguishes the study area from parts of the Central Blue Grass Region. This is that there are neither Black landowners nor tenants anywhere in the study area. A few Blacks in Spencer County reside in Taylorsville and work in various establishments there. There are reported to be a rather larger number in the more industrialized town of Lawrenceburg in Anderson County.
Perceptions of the farmer and his land. Since the days of pioneer settlement of the region, land prices have been derived from the interaction of a complex series of variables which include such things as the economic trends on the regional and national level. However, one of the most important of these determining factors has been the set of cultural values associated with the use of land. This is to say that perceptions of certain kinds of land use as meritorious, beneficial, and worthy of approval have been highly significant in determining land worth. In order to understand the local land evaluation system the best place to start is to review the perceived role of the farmer and the patterns of social organization related thereto.

In the study area, farming is perceived as a prestigious occupation. This statement can be modified or better, clarified, by specifying that not only is farming considered an important and useful activity but that successful farming leads to prestige in the social system. This concept is held not only by farmers themselves but as well by the people of the local commercial center of Taylorsville. These latter folk whose livelihood is derived from various service functions to farmers realize that they are dependent on the production of the farms of the region and therefore they allocate a high value to farming as an economic activity, and more importantly to farming as a way of life. It is generally recognized that in this modern day in which the small farm is economically viable only when the farmer has a high degree of competence, the modern small farmer needs a variety of skills to survive economically. He must be a good businessman as well as a good agronomist. He must have the knowledge necessary to manage his land, his crops, his livestock efficiently. He must be able to improve his base, the land itself, by the improvements he adds to it. The
improvements in this sense refer to all the structures and developments, from fencing, barns and other structures that he puts upon it, to farm ponds, access roads within the terrain, and all such additions that may be required to facilitate the efficient use of the land. These improvements add to the value of the land. (The concept of improvements as representing a quite separate set of values from the land itself as proposed in a recent publication (Williams and Daniel, 1969, pp. 12, 21), may have certain utility in relation to highly specialized economic concepts but in broad terms is completely unrealistic.)

The study area has been and still is an area where agriculture is considered the most important activity. This concept is demonstrated clearly by a variety of local patterns, one of which, for example, can be pointed to in the local business hours. During the summer, commercial enterprises in the town of Taylorsville remain open until 9:00 p.m. or so in the evening to give farmers the opportunity to make purchases after they have completed their day's work on the farm. Even the local governmental system recognizes the importance of farming in the local scene. The County Courthouse is open on Saturdays to give farmers their opportunity to carry out any legal activities. Saturday is in this region the farmer's day to come to town for major shopping and to carry out any other business activities he finds necessary.

In brief, we have here a situation in which the symbiotic relationship between the town and the country is clearly recognized. The townsfolk who depend upon the commerce that derives from agricultural production are aware of the rural values and go to some trouble to facilitate commerce with their farmer neighbors. The agriculturists, on the other hand, depend on these services made available to them by the people of the town, and realize that they do. The rural values of successful land management are recognized by both groups.
An interesting point here is that the size of the farm in terms of sheer acreage is not the really significant factor to people of the study area in appraising the farmer as successful and competent and the farm as valuable. It is recognized that successful management of a large farm require greater competence than successful management of smaller acreage, but the point of approval is good, competent, efficient management whatever the farm size.

It is generally considered in the region that a 60 acre farm is the minimum size that will serve to provide a living for a family. There are, however, a few farms as small as 50 acres and even smaller that are considered successful operations. Their owners are recipients of esteem and the general evaluation is that the per acre value of these farms is high. In these cases the farms emphasize a diversified production and subsistence production. Crops are diversified, various kinds of livestock (though in small quantities) are kept, and large gardens, whose produce is preserved for winter use, are characteristic of such small farms. Small numbers of poultry, hogs and milch cows provide not only household products but often small surpluses for cash sales. A well cultivated tobacco base is another source of necessary cash income.

As stated, such farms are considered successful operations; the land is considered to be valuable. The owners are rated locally as competent farmers, although from a broader point of view one might say that they clearly demonstrate that their aspirations are limited.

The prestige of being a competent farmer and the derived recognition of greater than average value of the land is not at all an empty honor. In addition to placing the farmer in an enviable status in the local community his credit rating is improved and in the ordinary course of events his farm, if he should choose to sell it, will be rated at substantially higher than average value.

Some literature on peasant societies in various parts of the world makes much of the peculiar close bond between peasant farmer and his land. Sometimes that is depicted as a semi-mystical relationship. The farmers of
our study area are by no manner of means "peasants." Most of them are highly sophisticated individuals but they, too, have a very special feeling for their land. They speak of enjoying working on the soil, picking it up, appraising its friability by squeezing it between their fingers, of liking to see it "fold out" neatly behind the plow. There is, however, no mystique about their affinity for the land. They are able to explain quite clearly and rationally a series of perceptions concerning their land that explain their feeling for it. Most informants including many townspeople are fully cognizant of these standard perceptions.

One of the first attitudes toward the land is that a farmer sees his land as the hub, geographically speaking, of the set of networks of social ties which place him in his community, defining his relationship to the other members of it. First of all, of course, the farm is the center of activity for the nuclear family, or occasionally an extended family consisting of more than two generations, parents and one or more married sons and/or daughters with their spouses and offspring. The farm is thus home--locally the expression "homeplace" is customary, where the family lives and where it carries out many of its activities. Almost all members of the family except the very elderly or the very young participate in many of the farming activities some of which are shown in Plates 1 to 10. Specialization of labor along sex and age lines is not very sharply marked. Adult men, of course, handle heavier tasks while women and girls take care of household chores, but in addition women often take an active part in tending the household garden in which vegetable produces is grown to be preserved for winter use. However, males often help in weeding the garden and assist in its care. Incidentally, occasionally women also assist in the fields, especially in planting and harvesting tobacco. Children assist according to age. Boys progress from simpler to more difficult and heavier tasks as they grow, and thus progress through the total range of local farming technique by the time they attain young adulthood. It might be noted here that this home training
is augmented by vocational agriculture courses in the local high school. Girls as well often assist in the fields during busy seasons. They, however, take home economics courses in high school rather than the agricultural training.

The farm is also the center of other aspects of social life. One social network may be referred to as the close neighborhood. One's neighbors are important to the farmer. He not only occasionally visits with his neighbors socially, but work groups are frequently formed by groups of neighbors, especially for labor-intensive tasks which must be completed rapidly like filling a silo, baling hay, and harvesting and readying of tobacco for market. Neighbors assist one another, in turn, in a system known locally—as elsewhere in rural North America—as "trading work." This group activity used to be much more essential before mechanization but it is still in vogue. Nowadays, group effort if not absolutely essential is still efficient, and the social aspects of the occasion are highly valued. This pattern of "trading work" is widespread. It can be found nearly the world over among agriculturists, and it always carries with it this social connotation: the appreciation of the opportunity to work with others in a pleasant congenial group. There is a reason for this. A great deal of farm work is lonely work. To understand this, one only need picture one man plowing or cultivating, around and around, in a large field all day long. Group effort is regarded as pleasant as well as efficient. The "trading work" pattern creates strong bonds of friendship between neighbors, and the relationship with such people is highly important. There are strong affective ties with one's neighbors in the study region. It might be pointed out as well that neighborly assistance is not only expected, but almost invariably delivered in times of crisis, in cases of accidents, illness, fire, and flood. Each person's "homeplace" is, to him, manifestly the hub of this social unit of neighborliness. Naturally not all neighbors are congenial. Others may be for a time, then may fall out, and so on. But the idealized concept is that of an association in a very close friendly spirit, and freely given mutual aid. Neighbors are considered.
next to kin in the scale of effective relationships. As a matter of fact frequently persons are in both categories—both neighbors and kin. And the ties with neighbors who are kin are expectedly especially close.

One's land, one's "homeplace," is a part, though not the focus, of another network, that of a church congregation. As stated most rural churches in the region are known as "family churches," for their congregations consist of a majority of members of one or more of the typical bilateral extended families. Those who are not kin are usually neighbors. A congregation thus tends to be geographically defined; most of the kin-group members and their non-kin neighbors live close together. Members of a congregation share in many church-related activities, not the least important of which are the long socializing, information-exchanging sessions in the churchyard after services when the weather is pleasant. Under such circumstances the affective bonds between kin and between neighbors are reinforced.

A wider more loosely structured social network into which one's farm is tied is found in those areas where examples of the old-fashioned country store still survive. This wider neighborhood provides personnel who use the store as a sort of men's clubhouse to socialize and exchange information, sometimes to make arrangements to give assistance, and occasionally for business arrangements involving buying and selling of animals, equipment, or of rental of equipment.

Thus his land, to a farmer in the study area, is more than just a piece of soil that can be used to nurture seed and pasture grasses that can be exploited to provide a livelihood. It is the geographical hub of various important social linkages.

There are other attitude patterns associated with farming and with the land itself. One of these is that of independence. The land-owning farmer sees himself as "his own boss," not a hireling subject to orders of another. This situation is perceived as highly desirable and is frankly
spoken of as outweighing recognized disadvantages of the farmer’s life: the long hours, heavy labor, bad weather, fighting through complexities of decision-making in connection with farm management and the newer operational problems of conforming to so many bureaucratic regulations such as those of soil bank, tobacco bases and so on. The farmer’s sense of independence is highly important to him.

Another perception of his land is that it represents security to the farmer in time of stress and old age. The farm can serve as collateral for a loan in time of emergency. Here, of course, is where the improvements come in. The more extensive the improvements, the better the farm, the greater the farmer’s competence as locally recognized, the larger the loan and the more readily it can be obtained. One informant related that he had obtained loans on his farm to obtain capital to assist his sons to buy their own farms, commenting with no little pride that he was able to do this because in his working lifetime he had developed a rundown tract into a prosperous efficient operation. Similarly, as he grows old the farmer expects his land to provide for him. If he has a son or sometimes a son-in-law to take over the operation of the farm he gradually lets him (or them if the farm is large and there are two or more heirs), assume his share of the workload, taking on a patriarchal role. Such a procedure obviously requires a farm productivity related to level of aspirations of living standards adequate to support the two or more nuclear families involved. If there is or are no direct heirs, or they cannot devote time to the parental land, the elderly farmer has other options: finding tenants on a share-cropping basis, making a share-cropping arrangement with someone with another farm base, leasing part or most of the land. The generally accepted concept is that with his own (rent-free) housing, some small scale subsistence activities such as gardening and so on, the income from his share of farm production (rent) (supplemented by Social Security if necessary) will provide a modest but adequate retirement.
Another option is, of course, sale of the land. Local farmers are quite aware of the continuing trend of the increase of farm land price which is a part of the general inflationary pattern of our total economy. The difference between costs years back and current sale price is perceived as an important profit derived from a career of making a living from cultivating the land. (Economists would object vigorously to considering the inflationary component of the modern price as "profit," but here we are concerned with local perceptions only.) One informant now retired noted that the farm land purchased in 1949 for $4,750 gave him a profit of $16,250 over and above that derived from normal operations when he sold it 19 years later for $21,000. Thus it is considered that such a profit, or long-term capital gain, plus sale of equipment and livestock, combined with savings and Social Security will contribute measurably in providing for retirement security.

One concept of land value or land use that has been and is absent among the farmers in our study area is that of recreational values of land. Many local farmers hunt on their own lands and on those of neighbors, fish in Salt River and its tributaries and in their man-made stocked ponds. Nevertheless, the concept that the pleasures of hunting and fishing, and the flavorsome dishes deriving from those activities, relate to land-worth is foreign to local thought patterns. No farm is rated as worth a little more than nearby tracts of otherwise similar qualities because year after year it is the habitat of 3 or 4 coveys of quail. One might speculate that one factor in this negative correlation of such activities with private property is the fact that game and fish (except for fish in stocked ponds) are legally State property, controlled through licensing, definition of hunting seasons, limits, etc. The emphasis on recreational values in Corps of Engineers news releases has had little effect on local concepts; such appraisals relate to the proposed lake, not to the land as such. As will be shown, during the study period local land purchase for residential purposes developed a pattern that demonstrated lack of interest in recreational activities considered so
important by promoters of the reservoir plan. However, as this report is being written, a year and a half after the cut-off date of the statistical sample, observation suggests a more reservoir-oriented purchasing pattern. We hope to define the new developments in perception of land value-factors in the near future.

As in most areas of the rural United States over the years there has been a considerable out-migration from the study area. Where there are several sons in the family one may buy out the shares of the others and continue to operate the "homeplace." His siblings tend to move to urban Louisville or some more distant urban center, obtaining jobs in industry. In other cases the pattern has developed according to which persons who own land take industrial jobs in Louisville, commuting while continuing to live on the home farm. In some cases this is because the lands, or at least parts remaining of the old "homeplace," are marginal. In other cases it is because the higher aspirations of these people can be satisfied only by the money they receive as wages in industry. They may, of course, lease part of the home acreage or most of it. In many cases however a substantial portion of the "homeplace" is managed by the commuting owner himself. He may work on weekends or in evenings after his return from his job to the city. It is very interesting that many of these part-time farmers cling very strongly to certain traditional regional practices such as making of sorghum molasses, hog killing in the fall and the like, all tasks that are carried out as group activities in which relatives and neighbors are invited to participate and on completion of the operation are given a share of results. Sorghum molasses, for example, in one case which was carefully observed and documented was produced by a large group of people, neighbors, and relatives, as a group effort. Subsequently a great deal of the resulting syrup was given away to participants and also to friends elsewhere, for example, in the city. It was not made as a commercial venture, that is to say, to be sold. These people are among those who also participate in the County Fair (Plate 7), and who
collect items of past years—old farm machinery, odds and ends of harness, horse collars, hames and other momentos of the oldtime farming life.

Thus it should be clear that the farmer's ties to his land are based on a variety of concepts which he believes are valid and logical justifications. He sees the farm as an entity that relates him socially to his community. It is tied into the network of his various social relationships. He also sees it as economically important and as his principal measure of security. He sees the traditions of the farming way of life as values which he intends to preserve insofar as he can. Even in cases where he cannot live the complete farm-based life (or does not choose to preferring to commute to an industrial job in the urban center), he goes to great lengths, often at loss of time and money, to preserve at least some of these traditions associated with farming in the region.
B. SALT RIVER BOTTOM

PLATE 1 RESERVOIR AREA, SALT RIVER BOTTOM
PLATE 2 FARM HOUSES IN RESERVOIR AREA
- 26 -
PLATE 3 FARM HOUSES IN RESERVOIR AREA
PLATE 4 VAN BUREN: TO BE INUNDATED
PLATE 5 TOBACCO IS THE MONEY CROP
A. Cattle Judging

B. Cake and Dressmaking Competition

C. Horse Pull

D. Tractor Pull

PLATE 7 COUNTY FAIR ACTIVITIES
B. Country Store

PLATE 9 RURAL MEETING PLACES
A. In Front of County Court House

B. "County Homecoming" Activities: Square Dance

C. Saturday Afternoon

D. A Local "Western" Band

PLATE 10 FARMERS IN TOWN
Perceptions of Land/Soil Values

The Soil Conservation Service of the United States Department of Agriculture has maintained an office in Taylorsville for many years. Personnel from the office has studied and classified the soils of the local soil district, have mapped and have made studies of individual farms. These studies provide the scientific base for soil bank and other conservation programs, and for individual studies of farms which are arranged with the landowners in question. However, it would appear that few of the local farmers understand the classification system either in its overall pattern of land classification or in the details of factors on which this classification is based. The perceptions of land worth in the study area are based upon an entirely different system of categories from those of the pedologists.

The local perceptions of utility of land are based on two sets of variables. The first usually cited by informants, suggesting that it is considered to be the more important set, relates to topography. Land is classified in four categories: bottom land, rolling hill land, ridge land, and hillside land. The values in terms of utility of each of these categories has changed considerably within recent times, in part because of certain innovations in agricultural techniques which have occurred since World War II. One major change of course relates to the process of substitution of mechanically-powered for animal-powered agricultural equipment.

Bottom land, that is the alluvial deposits in the main river valley and in the valley bottoms of the lower courses of some of the larger tributaries of Salt River, is at the present time considered the best agricultural land in the study area. It is highly prized and ordinarily highly priced in comparison to other local categories of farmlands. Most informants noted that prior to the change mentioned in the preceding paragraph bottom land was viewed of as of low value by local farmers. It was not considered to be suitable for agriculture. It was not even considered to be arable. The chief use it had
in part times was for pasture. The reasons given for its former low value were the problem of flooding and the perceived low fertility of the tightly compacted heavy soil. Reliable informants report that horse-drawn plows could not penetrate the compact bottom land soil sufficiently so that crops could have adequate rooting capacity. The whole picture changed when tractor plowing became prevalent. The possibility of plowing much deeper made the bottom lands available and made them highly desirable for cultivation. The flood problem of course remains. However, the weather pattern causes the floods to occur chiefly in late winter or early spring. Major floods that can completely wipe out planted crops are uncommon. One farmer suggested that even if he lost a crop once every three years to floods he could still make more money cultivating the bottom lands than by cultivating lands of lesser fertility. In point of actual fact crop-destroying floods do not occur with anywhere near that frequency according to the flood data collected by the Corps of Engineers.

Some informants distinguished between two types of bottomlands. One type, the preferred one, is the so-called "made-earth" lands, which really means lands which are still subject to aggradation. Of course, all the bottom lands in the region are aggradation products but it appears that changes in the recent historical period of runoff patterns due to deforestation of the adjacent slopes have caused degradation or surface erosion to set in, in certain places. Such tracts are more common above the proposed dam site area than below it. Below the dam site area the flood plain is consistently of the "made-earth" type.

Another land type category recognized locally is the so-called "rolling hill land." This is the most common type in the entire study area and was considered for a long time as the best farming land of all. Nowadays it has been relegated to second place in comparison with the bottom lands. The rolling hill land consists of the level, nearly level, and slightly hilly surfaces of the old peneplain which has been dissected by the Salt River and
its tributaries. The term refers to the undissected old surfaces of the peneplain. These lands are essentially a part of the so-called Outer Blue Grass Area of Central Kentucky. They have long been recognized as of moderate fertility and arability, although they are less fertile than the lands of the Central Blue Grass area. Rolling hill land is utilized for planting tobacco, corn, and hay. It is also used for pasture. The perceived value of this land has been enhanced like that of the bottom lands since the introduction of mechanized agricultural techniques. The reasons are not the same but related. The rolling hill land is suitable for the most part for cultivation by tractors. Only in limited areas are the slopes of its "hills" steep enough so that mechanized operations are difficult or dangerous. One of the major advantages of this type of land in the local view is that it is of course completely free of danger by flooding. This was considered as an important factor in its value in pre-mechanized times and continues to be regarded as of importance today.

The category of land locally known as "ridge land" is essentially the same as the adjacent rolling hill land. The point of distinction consists in the fact that the ridge land consists of long narrow surfaces of the original peneplain which have been isolated or partially isolated by the stream-cutting activity that forms the deeply cut drainage system. Ridge lands have been and are presently used for cultivation of hay, for pasturage and infrequently for tobacco growing. The modern pattern of intensively fertilized tobacco of course means that soil quality is less important than formerly. Corn is not planted on the ridge land, although it would probably do as well there as it does on the so-called rolling hill land. This ridge land is, like the rolling hill land, suitable for mechanized cultivation. In some instances there are strips of ridge land which are inaccessible for mechanized equipment or very difficult of access. Such tracts are included with the hillside land as "scrub."
The fourth topographical category of land in the local view consists of the lower slopes of the valleys along the river and its major tributaries which are referred to as "hillside land." In reality these tracts are partially stabilized erosion products from the breakdown of the upper margins of the valleys, that is to say, from the erosion from the peniplain. Such tracts were formerly prepared for cultivation by chopping down, drying, and burning off the vegetational cover consisting of small trees and brush. "Grubbing out" stumps, that is laboriously digging and prying them out of the ground with shovel, mattock and crowbar, was the way local farmers spent all of their available working time in fall and winter months when the weather was not too severe. Many man/days of hard labor went into the preparation of each acre thus prepared for the plow. It is little wonder that arable tracts created in this way were highly esteemed even though they did not last very long. Erosion and weed damage made them useless for farming after a few years despite the "grubbing." After cleaning, the land was plowed horizontally, not around its circumference as "lands" on level ground are normally plowed. A field of this sort could be cropped only two years or so and then the yield declined sharply because the soil nutrients had been depleted. Meanwhile, of course, the farmer had had time to prepare another plot of hillside land for planting. Modern informants insist that although in by gone days the hillside lands were considered productive, by modern standards they produced low crop-yields. The tobacco plants, they report, were short and small-leaved. Corn grew short and produced small ears. Nowadays no one cultivates the hillsides. Various reasons are offered to explain this shift in agronomic methods. The soil resources have been heavily depleted, they say, and in addition agricultural agents and conservationists have been warning the farmers for a considerable period about the dangers of plowing hillsides because of resultant erosion. Even more important, perhaps, in producing the shift has been the introduction of mechanization. Tractors cannot be used safely even on moderately steep
slopes. The topheavy apparatuses tip over easily, and the operator hemmed in by the high hind wheels, the various foot pedals and handlevers, can almost never save himself by jumping clear when one of the machines topples over. In many rural areas in this country newspapers report year in and year out numbers of cases of fatal accidents resulting from attempts to plow land that was steeper than the equilibrium of the machine could stand.

Nowadays the hillside land is classed into two rough categories. There are some cleared hillsides that can be used for pasturage. Since dairying is now such an important economic activity in the reservoir area, open hillsides along with some of the ridges and some of the rolling hill land are used for pasture. Presumably such tracts are kept open and suitable for grazing by regular systematic clearing of shrubs and tree seedlings by means of brush hooks. Other tracts have grown up in a dense second growth of small trees and bushes and such acres are referred to as "scrub" land. Scrub land is considered a liability by the farmer because of its lack of utility. It cannot be used either for cultivation or grazing. Yet the growth that it supports has no economic utility either. In a few cases scattered stands of cedar have grown up which some farmers have discovered can be utilized: either cut for fence posts or cut and sold for the same purpose. Cedar fence posts have a considerable demand in the region because of their rot-resistant qualities.

The second set of values according to which land worth is estimated consists of a series of appraisals of characteristics of the soil itself. These soil quality factors are based on megascopic examination of the soil, not on refined laboratory methods or minute comparisons with precisely defined standards. Nonetheless local farmers are convinced they can at a glance or touch recognize good soils, distinguishing them from poor soils.

The first characteristic of the soil and one that is regarded by local farmers as highly important is the robustness of the plant growth it supports. If the land is in crops it is the quality of the plantings that is appraised. Land
that is in fallow is judged on the basis of the weed growth it supports. This pragmatic appraisal obviously does not take into consideration the highly variable and generally greater tolerance of "weeds" to soil variety.

A second important factor is the color of the soil. The color is appraised without recourse to any standard color guide. The local idea is that the blacker the soil the better it is. Light colored soils are considered to indicate high clay content and to be heavier and therefore less desirable for agricultural purposes.

The depth of the topsoil is another important consideration. The deeper it is the better the land quality. Farmers judge this at times while watching the tract under consideration being plowed. If the plowshare is partly exposed it is shallow, or as they say, "if you see the plowshare shining in the sun you know the dirt is thin." Reference is of course to the old fashioned animal-drawn plow which no one uses any more. However, farmers say they can make the same sort of judgment when observing the type of plow drawn by a farm tractor.

Soil texture is regarded important. Soil should be friable and yet have some internal consistency to be rated a good soil by local standards. That is to say, it should have a little sand, enough to make it loose and light, and a little clay but not enough to make soil heavy and sticky. The desideratum is apparently a kind of soil that approaches rather closely the soil scientist's category of "loam."

Many soils in this region on the so-called rolling hills and the ridges have a certain amount of finely divided limestone fragments mixed with them. If the quantity of stone is considerable and if, as well, the fragments tend to be rather larger than ordinary gravel the soil is rated as poor by local standards.

It may be noted that these categories recognized by local farmers are similar in a general way to some of the criteria utilized by soil scientists. The difference of course is that they are megascopic and tactile, not based on
laboratory distinctions and carefully defined gradings. The total pattern in a sense is the opposite of scientific soil classification. That is to say, in soil science the specific characteristic of the soil texture, color, acidity, etc. are primary in defining a soil type while the topographic aspects are secondary as far as soil classification goes, although of course in rating the value of the utility of land for agricultural purposes the topographic situation is given consideration. Soil acidity (pH) and similar factors are not considered by farmers although simple do-it-yourself soil testing kits are on the market and are used by farmers in some U.S. regions. It is interesting to note that although most farmers must know that different characteristics differently determined are used by the Soil Conservation Service, representatives of which they have been in contact with for many years, they do not use these categories in appraising the value of soils. Yet like the Soil Conservation Service, the rating they assign to the land on the basis of these traditional perceptions are essentially basically agricultural. Other factors such as "view," recreational potential, highway access and so on, of the land are not taken into consideration in rating land in the reservoir area as good or poor. The modern lucrative Grade A dairying system is possible only because of the development in recent years of an excellent network of all-weather roads. The point of course is that a good highway system is necessary in order that the trucks may pick up the milk from the milk tanks regularly. Local farmers however do not regard this road accessibility as directly related to land values; at least they do not mention it in this connection. They are quite aware of the fact that the dairying system is dependent on road accessibility and they speak of the road network in connection with dairying. In a later section it will be shown that highway accessibility is obviously an important factor in selection and evaluation of sites for residential (non-farming) sites. The traditional farming pattern, however, does not take this factor into account directly in appraising land values according to the traditional agricultural pattern of the reservoir area.
To assess adequately the local perceptions of probable effects of the reservoir on the local community we must review the value system referent to the social patterns. To do this we shall synthesize the preceding data and draw as well on the baseline materials (Smith, 1970).

The Closed Community

The reservoir area is inhabited by a closed socially highly integrated community, or it may be seen as composed of a series of socially integrated closed sub-communities closely tied to each other. That is to say, depending on the specific problem, one may consider the area in terms of the total proposed water impoundment area plus its surrounding region, or one may break this down into political units such as Spencer and Anderson Counties. Here for example, one may note differences. Town and rural areas are much more closely integrated in Spencer County than in Anderson County where some industrialization of the latter's county seat has injected new factors into the social structure. Less agricultural land in total acreage will be inundated in Anderson County. Indeed in the more rugged Anderson County terrain agriculture is of less overall importance. But in the farming portions, those to be inundated by the proposed reservoir and those adjacent, the same social and cultural patterns and value systems prevail as in the county downstream.

Another possible splinterizing of the reservoir area would involve considering as separate units the persons who will be displaced when the reservoir is impounded, those of the valley bottom lands below the dam, the segment of population on the nonflooding high peneplain surface (the "rolling hills"), and the residents of the most affected town, Taylorsville. Any such subset of the total community can be shown to be distinguishable by some variation in attitudes and values relating to the proposed reservoir. But from the broad point of view these subdivisions are united by the closed community concept which unties members to each other while distinguishing them from outsiders.
This does not mean that outsiders have never moved into the reservoir area. It does mean that for such persons to be accepted in the community they must share in the other major patterns of approved values. This indicates that the value system is not completely local but rather is common in most rural areas of Kentucky and even those of adjacent states. Basically these values accent a preference for the traditional rural way of social life. "Social" is the keyword here. Major technologic change has been accepted in stride. Witness for example the conversion from animal traction to mechanical traction in field agriculture, the shift to the lucrative but laborious Grade A dairying, the adoption of modern intensive cultivation of tobacco. These were major changes involving acquisition of new skills and reorganization of work habits and work routines. Similarly farmers who can afford them have acquired various modern household gadgets as well - TV, air conditioning and the like. To keep abreast of modern technology is to be "modern," "progressive." Changes in social values on the contrary are disapproved. Some of the more important aspects of the value system with social implications may be listed: 1) farming is perceived as a difficult but honorable occupation; 2) the successful farmer is expected to combine the following esteemed qualities: industriousness, business acumen, thriftyness, sobriety, cooperativeness with friends and kin; 3) emphasis on "cooperativeness" reflects the high values set on close friendly interpersonal relationships not only on occasions of sociability but in business dealings as well. The institution of "trading work" revolves about the same attitude toward cooperation. 4) By persistence and even resuscitation of "old fashioned" activities involving group effort (hog killing, sorghum syrup making, county fairs, horse pulls, tractor pulls, sessions at the county store, and etc.) the cooperation theme is repeated. Participation in and esteem of these activities can be viewed as deliberate attempts to preserve values outmoded in some other rural U.S. regions. High value placed on kinship
ties throughout the network of the bilateral extended family is another important aspect of the social system; 5) lack of interest in attracting outsiders is demonstrated by statements of informants to the effect that community leaders in Taylorsville have on several occasions effectively squelched the interests of several industrial organizations in siting a factory in or adjacent to Taylorsville. There is a certain vagueness to these statements as to just what industrial organization and when, that gives a folkloristic flavor to the accounts but the seal of public approval is always evident in the telling. Informants clearly disapprove of attempts to court industry that would bring in large numbers of non-local blue collar and white collar urban personnel into the community. Unemployment is not a local problem. An additional item indicating lack of interest in attracting outsiders to the region is the fact that there is not a hotel, motel, boarding house, or rooming house in Taylorsville. (There are a few rooms in private homes, etc., available to those who qualify as friends.) Of course propinquity to Louisville would put limits on the expansion on the hostelry business. Nonetheless many small communities near urban centers have enterprises that squeak out a living for their owners, or supplement income from other sources, by catering to transients. Not in Taylorsville, however.

Anticipations of Change

In 1964 when considerable favorable publicity and enthusiastic support was given to the proposal to build the dam, in news media locally and in Louisville, and again after the public meeting in January 1965 when the Corps of Engineers announced that authorization to construct the dam would be requested, a number of purchases of tracts of land were made by non-local persons. Some of those persons were said to be "doctors and lawyers from Louisville." Although in actual fact not many such purchases were made, and for the most part they did not involve large amounts of acreage, their effect
on local residents was very great. To many people of the study area these events reinforced presentiments of a vast invasion by urbanites that will turn the area into a Louisville suburb, in addition to the influx of temporary visitors who come to enjoy recreational facilities of the proposed lake. (The Louisville and local press constantly emphasized the desirability of the project because of the convenience for Louisville residents of the resulting lake for recreational and residential purposes.) There were and are a number of persons, both rural and townsfolk, in addition to those who will lose some or all of their land to the reservoir, who opposed the project. Their perceptions of the threat of urban invasion were and are essentially as follows:

1. Speculative and residential land buying by "outsiders" will raise land prices in the entire region. This will increase hardships and economic loss to persons who will be displaced by the reservoir. That is to say, opponents of the reservoir believe that the dislocated persons will have to settle for their condemned lands for prices based on agricultural value and thus will not receive enough money to buy comparable local tracts at the new "residential prices."

2. This effect is expected to create special difficulties for the owners of small farms at or near the minimum viable size. Such people, it is predicted, will not only have to move away from the region but will be put out of farming altogether.

3. Even without the expected inflation of land prices there would not be enough farm land locally available for all the relocatees, so consequently many persons will have to leave the region.

4. The resultant breakup of so many close interpersonal relationships of kin groups, of church congregations (including both kin and friends), and of associations based on friendship is viewed as a serious loss that will lead to maximum social disorganization.
5. A great influx of "undesirables" from the urban center is predicted. It is believed such people will create numerous law enforcement problems.

6. Some opine darkly that Taylorsville, hemmed in by its levee and not able to expand, will be converted by the "undesirables" into a sort of slum.

7. Some persons fear that the new residents will soon become numerous enough to make the country "go wet" (i.e., legalize sale of alcoholic beverages), a change regarded as disastrous by local citizens.

8. The damage to the Spencer County tax structure because of loss of reservoir-occupied lands (which become Federal property not taxable by local political entities), will have serious repercussions on such programs as the school system, law enforcement, and road maintenance. (It is foreseen that Anderson County will be affected, but less severely.)

In other words opponents of the reservoir predict a dire future in which all the traditional values will go by the board. In some of their arguments emotional reactions are easier to recognize than pure logic (the mechanisms whereby Taylorsville will become a "slum" are never explicitly explained).

Proponents of the reservoir foresee a quite different set of results:

1. They stress that buyers of residential plots are said to be chiefly "doctors and lawyers from Louisville," that is to say, upper middle-class, educated, well-to-do, presumably well-mannered people;

2. This new population and the water recreational visitors will bring a great new prosperity to the region especially to the commercial sector. (There is a certain mystique operating here. Just what kinds of sales and services will figure in this financial bloom is never specified.);

3. Potential problems can be handled by rational planning. Deterioration of residential and commercial areas can be forestalled by proper zoning (there is a combined City and County Planning and Zoning
Commission working on this question). Fiscal problems of both county and town governments likewise can be resolved by planning. Revenue loss from the removal from the rolls of inundated lands can be compensated for by revised assessments on the new residential property, etc.

It must be noted that although as presented here the two sets of perceptions seem to counter each other neatly they are actually never presented or argued in frank open consultation. They are too affect-laden. Partisans of each view ordinarily discuss the foregoing points and similar ones only with persons known to be sympathetic to the discussant's viewpoint.

It is of interest to note that the perceptions of impact of the reservoir by opponents of the dam and by those in favor emphasize impact of new residents from the metropolitan area. Minor emphasis was put on mass tourism: the people who will drive over from Louisville for swimming, boating, fishing, etc. to return home the same day. A few opponents of the dam did refer to "irresponsible people" who will scatter trash "all along the roadsides" and elsewhere, and who will "wander around on private land, leaving gates open," and so on. It may be predicted that transient visits will probably have a formidable effect from the local point of view. At a recent (March 1972) meeting of representatives of Corps of Engineers officials with local citizens, it was stated that the Corps estimates that there will probably be nearly 4 million person/days of transient visits per year.

Actual Social Disorganization

As just noted, it is recognized locally that there is no possible compromise between the pro and con positions regarding the advisability of constructing the dam and that arguments lead to conflict. Circulation of the anti-dam petition after announcement by the Corps of Engineers of the intent to obtain authorization to build the structure is said to have resulted in a number of bitter conflicts between kinsman and between longtime friends. Anti-dam people maintain that the limited number of signatures to the petition
against dam construction was due to the fact that many persons who opposed the dam in principle refused to sign because they foresaw and feared such unpleasantries. This opposition group, a minority though possibly a substantial one, damned in advance as opposing "Progress," was never able to organize to the point of effectiveness in swaying majority opinion.

In addition to such breakdowns in personal relationships, which, be it noted, resemble the urbanite land purchases in being relatively few in number but heavy in impact, opponents of the dam and especially those who will have to relocate view the impending construction as the result of machinations by Taylorsville businessmen aided and abetted by certain Louisville groups. The Taylorsville merchants are perceived as having put personal advantage over community welfare. A few persons of this opinion consequently no longer do their major shopping in Taylorsville, going to the trouble of traveling farther to the more distant centers of Lawrenceburg or Shepherdsville instead. This is yet another instance of breakdown of social relationships.

Animosity to the Corps of Engineers is frequently displayed. This takes the form of acrid criticism of Corps personnel engaged in preparatory studies ("All they do is run up and down the hillsides tying colored plastic ribbons ("surveyors' 'flags') to sticks"), and for example suggesting that the Corp of Engineers-built earth dam will probably burst, drowning the entire valley below including Taylorsville. Specific mention of the town obviously expresses the socially disruptive growing animosity among those to be dislocated (and their sympathizers) toward those whom they see as beneficiaries of the project which is to cost the dislocates so dear. The attitude vis-a-vis the Corps of Engineers does not in itself contribute to the disorganization of the local society but it is an expression of an anxiety syndrome concerned with developments of the dam construction program. A plethora of rumors are bandied about: "Construction is about to begin."
will not start until about 1980." "A farm classified as a homestead merits a special bonus over and above final settlement price." "This homestead bonus will apply only to sales by landowners over 65." "The whole thing about homesteads is a myth." "A State Park will be created entirely enclosing the reservoir." "The Park will condemn all land within a mile of the reservoir." "There will be no State Park." Another widespread set of rumors revolves about the Corps of Engineers land appraisers and their procedures and attitudes. The tensions created by the rumor factory are unsettling in the extreme. In part this anxiety stems from the long period between official authorization of the dam (1965), and the beginning of actual construction ($2.8 million requested, but not at this writing appropriated for fiscal 1973).

The many disturbing rumors are obviously symptomatic of the high level of anxiety created by the prolonged uncertainty following authorization but not funding of the project. This anxiety pattern is the major social cost of the proposed reservoir prior to the actual taking of the lands and the expulsion of the inhabitants of the pool area. A recent sociological survey of this study area and a similar one in Ohio cites numerous sources that suggest that mental illness frequently can derive from the forced migration situation (Ludtke and Burdge, 1970). To our knowledge this extreme effect has not been produced in the study area as yet. However, the distress caused by the anxieties is clearly observable in the breakdown of kinship and friendship relations between those who perceive themselves as victims of the situation and those whom they perceive as beneficiaries.

The earlier study just cited (op. cit.) is concerned with the residential plans of persons to be displaced by the reservoir. Our data indicate clearly that a quite untenable assumption is involved here: the crux of the situation is that in the majority of cases the prospective displaced persons have no plans (firm plans as opposed to wishful thinking and daydreams), nor can they make any. It is useless for them to incur expenses searching for a tract of equivalent productivity to that which is to be taken.
from them because they do not have the capital to enter into a contract to purchase, nor do they know when they may have it. They do not know how much capital to expect from the forced sale of their property because they cannot know what the Corps of Engineers' announced intent to purchase at "fair market value" really means in dollars and cents. Some of the prospective displaced persons believe that by taking the case to court they might obtain a better price, but they know also that litigation can drag on for years and meanwhile they would have no source of income. Because of the doubts as to eventual cash value, the lands they counted on as their base of economic security have a greatly reduced value as collateral for loans to purchase replacement tracts. Thus these people can do no effective planning, but can only wait to see what will happen to them. And the tensions grow.
STATISTICAL APPRAISAL OF LAND SALES

Definitions

The research design anticipated that one area of impact of the proposed reservoir would be reflected in actual land sales. Sharp changes in the pattern of land purchasing could be attributed to the reservoir. Using such data requires the establishment of spatial and temporal parameters so as to delimit the scope of the study to manageable yet meaningful bounds.

The spatial limits. The decision to limit this aspect of the study to land purchasing within Spencer County involved both theoretical and pragmatic considerations. There should, ideally, be no compromise between these issues and we feel that for this report they coincide adequately.

A rather obvious working hypothesis is that the impact of a reservoir would be greatest in the area immediately adjacent to it and lessen concentrically with distance from it. We hypothesized, along with many Spencer Countians, that this might be the case, and that the impact of the planned reservoir would extend throughout the county and beyond. The problem then becomes one of establishing the outer limits of the study area.

The assumption that the political and social units are largely the same resolves to some extent the more pragmatic matter of limitations imposed by expense, personnel availability and time allotted to the study. Since the land purchasing records of this group are deposited in a single location, the County Courthouse, the task of generating data was considerably simplified.

From this unit we made one exclusion - as previously stated - sales of lots within the city of Taylorsville. This was done because our primary concern is with the impact of the reservoir on rural land purchasing rather than that occurring within the city. The spatial unit under investigation is,
with the exclusion of Taylorsville proper, the area within Spencer County.

The time span. All land transactions studied occurred between January 1, 1962 and June 30, 1970. This eight and one half year period was found to be adequate. It includes the three years prior to the public hearing held by the Army Engineers in Taylorsville (January 5, 1965) and five and one half years after, and wholly precedes the beginning of the land ownership survey by the Corps of Engineers preparatory to their purchase of pool area lands. We thus have a time span during which land in the basin was in its final open market, maximally affected by the reservoir plans.

Sample selection and data description. The sample was taken from the public records of land sold in Spencer County in the time span described. The primary source document for this study was the publicly recorded "Deed of Conveyance," which usually provides information on the size and location of property, the names and addresses of the parties to the transaction, the name of the previous owner, the dates of the present and previous sales, the acreage, and the price paid for the land.

Since our concern was with rural farm land exchanged at fair market prices, we excluded from the sample all records of right-of-way, quitclaim, and intrafamily transactions as well as records on city lots. In addition we excluded those transactions on which the price paid could not be accurately determined, those, for example, listed in the records as being transferred for "One dollar plus other valuable considerations." One further editing of the sample was the removal of those transactions on which the acreage was not given.

The information on the deeds was abstracted onto 5" x 8" cards. Location data were, with aid of local expertise, drawn on USGS topographical sheets. Most of the properties were located without difficulty. The final sample covered 297 transactions. Their locations are shown by year on Maps 3-11.
With the aid of these cadastral maps we were able to generate additional data including the distance of the parcels from the reservoir site and from Taylorsville, the slope of the land, the principle soil associations, and other factors assumed as possibly affecting price. Since the USGS maps, some of them 10 to 15 years old, were not accurate in terms of location and quality of roads appropriate corrections were made.

Data organization. The body of data described above was organized according to categories considered to be objective aspects of land purchasing. These categories include land price, sales volume, property location, and land use. A persistent configuration of these elements indicates a land purchasing pattern.

Land price, the most complex of these four elements, articulates a number of quantifiable variables reflecting traditional concepts of agricultural land value and those indicating change toward views consistent with the speculation, suburbanization and general economic growth anticipated by many Spencer Countians. Because of this complexity, the structure of land price is defined by a regression model. Certain features of this model bear on the organization of the data for the other three categories.

Because the model includes time as a factor it is intrinsically a change or process model. As such it is used as the principle indicator of change in the pattern of land purchasing. Secondly, because the model includes variables related to both agricultural and non-agricultural values it serves as an indicator of the direction of change.

It must be noted that of the several categories referred to above that of land use is not directly reported in the data source, but rather is inferred from parcel size. Discontinuities in the distribution of parcel size in our sample appeared at approximately the same points suggested by our interview material. The usage categories include: residential (1 acre or less), residential-recreational (1 to 20 acres), mixed agricultural and residential-recreational (21 to 50 acres), and agricultural (over 50 acres).
Additional data not directly implicated in land purchasing patterns per se include the frequency of coverage the reservoir has received in the local newspaper -- the Spencer Magnet and the frequency of purchasing by non-residents of Spencer County.

In Table 1, the data on land purchasing frequencies, locations, average prices, usages, and news coverage are shown in tabular form ranked according to annual incidence, magnitude or percentage as appropriate. These rankings are the bases for the ordinal correlations (Spearman's rho) appearing in Table 2.

Regression analysis. We chose multiple regression to describe the structure of land price in Spencer County. Multiple regression relates a set of variables through an equation of the form:

\[Y = a + b_1 X_1 + b_2 X_2 + \ldots + b_n X_n \]

where \(Y \) is the dependent variable; \(X_1, X_2, \ldots, X_n \) are the independent variables; \(a \) is the regression constant and \(b_1, b_2, \ldots, b_n \) are the regression coefficients to be determined for the corresponding independent variables.

Multiple regression is the method of choice for this analysis because it can provide a model which is both descriptive and predictive. As a descriptive model it is superior to simple correlation analysis because the variance in the dependent variable is more adequately explained if the independent variables are considered in concert rather than as they act alone. As a predictive model it states the difference between computed and actual values of the dependent variable for each observation. The difference between the actual value and the predicted value is called the "residual."

The size of the residuals in any regression model varies from very small in the case of accurate prediction to relatively large in those cases where the predicted value is quite different from the actual value. The
residuals have positive values in overestimated cases and negative values if the predicted value of the dependent variable is underestimated.

The utility of the residuals for this analysis lies in the possibility that there may be patterns of regularities in their spatial, temporal, or other distribution indicating operation of factors not considered in the regression model. For example, large residuals found in the reservoir area may indicate that the factors which characterize variation in land price in the county at large are not operant in that area and that additional factors should be sought to explain the variation in land price in the reservoir vicinity. The matter of what constitutes a "large" residual is arbitrary. There are no established objective criteria to distinguish between "large" and "small" residuals. Appropriate class intervals in the range of residual values may be established and plotted on maps of the study area. If there is a spatial pattern in the degree to which the regression equation fits the actual structure of land values in the universe sampled, this variation should become evident.

The resultant residual zones may then be subjected to more intensive field analysis to explain their consistent non-conformity with the remainder of the study area.

Several kinds of residuals could be employed. One suitable for our purposes is the "relative residual" (Thomas, 1968), which is the ratio of the deviation of the predicted value of the dependent variable (Yₚ) from the actual value (Y) to the standard error of estimate (S.E.) (the average amount the computed value of the dependent variable differs from the actual value) or:

\[
\frac{(Y - Y_p)}{S.E.}
\]

The general range of this quantity is \(\pm 3.0 \text{ S.E.}\) (Thomas, op. cit.) which makes it convenient to establish regular class intervals. The number of class intervals and their size depends on the accuracy of the regression equation and the kinds of information the analyst wished to convey.
Impact of the Proposed Taylorsville Reservoir

Environmental perception and land price. In the previous section of this report we discussed the social and cultural context of land ownership. One of the means by which such ownership is transferred from one party to another, i.e., through the exchange of land for money, will be dealt with. It is assumed that the parties to a land sale enter into agreement of a free will and that have evaluated the land for its intrinsic worth as best they understand that worth.

By excluding intrafamily transactions, both "sales" and inheritance, we are excluding one of the more frequent methods by which land-title is transferred locally and in so doing, bias the data in favor of reporting land acquisition by non-residents of Spencer County. Even so, of the 297 transactions included in our sample, 196 or approximately 66 percent of the parcels have been purchased by local people. Stated another way, the average annual number of purchases by non-residents is 11.9 per year while Spencer Countians purchased an average of 24 parcels per year. Table 1 shows that this proportion is fairly stable on an annual basis with the exceptions of 1966 and 1967 when local purchasers accounted for nearly 80 percent of the sales and in 1968 when only 14 percent were locally acquired.

The structure of land price. A regression model was constructed which employed a number of variables considered to be partial determinants of land price. Some of these variables derive directly from our field interviews while others are constructs derived from the data available in the public records.

The model describes the structure of land price during the eight and one-half years covered in our sample. From the residuals from regressions, that is, those unpredictedly low priced transactions which occurred within a relatively restricted time span and spatial limits, we were able to define the areas and times at which the reservoir impact resulted in specific changes in land purchasing patterns.
Land price variables. The variables used in constructing the model of land price structure and rationale for their inclusion are as follows:

\[Y = \text{Price per acre} \]

The dependent variable, price per acre, is taken to be the number of dollars expended for a given parcel of land divided by the number of acres in that parcel. As the dependent variable its variation will be explained in terms of its covariation with the independent variables described below which will be designated "X1" through "X13."

Xi -- Duration of Previous Holding

This variable refers to the length of time the parcel is held under one ownership and is operationalized as the number of months between the date of latest sale and the date of the previous sale. As an indicator of speculation it is postulated that parcels of land held for a relatively short duration are likely not to have been purchased for purposes of exploiting the agricultural potential but rather as short term investments.

The relationship between the duration of previous holding and the price per acre is stated as:

Proposition 1: Rural land prices vary inversely with the duration of holding.

X2 -- Index of Kentucky Farm Values

The farm value index is a measure of the percentum change in average per acre farm values including both land and improvements from the base year 1950. The index is updated each March and November by the U.S. Department of Agriculture and is presented in each issue of "Farm Real Estate Developments."

The utility of this index is two fold. In the first place it serves as a control for the rate of inflation in the state as it includes both the change in the value of the dollar and the change in the value of land.
In the second place the index of farm values provides an internal comparative control since the values are given for each state. Because of this land values in the study area are, in effect, compared with land values in the state at large.

The relationship between the Index of Kentucky Farm Values and the Price per Acre is stated as:

Proposition II: Rural land prices vary directly with the Index of Kentucky Farm Values.

X3 -- Distance to Taylorsville

The distance to Taylorsville is the distance in road miles from the parcel to the center of Taylorsville. This variable can be satisfactorily measured to the nearest tenth mile on USGS topographical maps. The fact that Taylorsville is the central business district of the county suggests:

Proposition III: Rural land prices vary inversely with the distance from Taylorsville.

X4 -- Distance to Reservoir Site

The distance to the reservoir site is taken as the distance in road miles from the parcel to the nearest point on the 600 foot contour line which approximates the reservoir. This likewise can be determined to the nearest tenth mile according to USGS topographical maps.

The anticipated relationship between proximity to the reservoir and land price may be stated as:

Proposition IV: Rural land prices vary inversely with distance from the reservoir site.

X5 -- Parcel size

This refers to the amount of property transferred. This information is recorded on the public deed of conveyance in varying degrees of accuracy. For our study this variable will be operationally defined as the number of acres stated on public record.

The size of the purchased parcel is an indicator of the intensity of utilization. Small lots are generally reserved for residential utilization.
while large parcels are more likely to be used for agricultural purposes. A few large purchases may be intended for subdivision but the suitability for such usage requires certain other characteristics in order to make such a venture profitable.

Other factors significant to the relationship between price and acreage include the probability that the smaller the size of the parcel the more likely it is to have been selected on the basis of particular desirable features such as view, highway frontage, accessibility to water or other such characteristics which would increase its suitability for residential, commercial or other similar intense usages. At the same time large properties are more likely to have larger portions of unusable or minimally productive land which would have the tendency to reduce the average price per acre. The relationship between acreage and price is stated as:

Proposition V: Rural land prices vary inversely with parcel size.

X6 -- Stream Index

The stream index is a variable whose value is based on the length and number of streams of various sizes or "orders" on or bordering a property. The stream order is calculated according to the method of Horton (1945), in which a first-order stream is one which receives no tributaries, a second-order stream is formed by the confluence of two first-order streams and can receive any number of additional first-order streams. A third-order stream is formed by the confluence of two second-order tributaries, etc.

For each parcel of land in the sample a Stream Index value was computed as the sum of the products derived from multiplying the number of feet of frontage of each stream on or bordering the property by the appropriate stream order value(s) and normalized acreage. In cases where streams cut through the property the frontage is taken as twice the length of the owned segment of stream, as frontage is on both its banks. The formula is:
\[
SI = \sum_{i=m}^{m+n} (F, S) A^{-1}
\]

where

- \(SI \) = Stream Index
- \(F \) = Feet of stream frontage
- \(S \) = Stream order
- \(A \) = Acres

The rationale for inclusion of this index as a variable rests on the field observation that the size and quantity of streams is important in determining land usage and hence land value. Streams are valued as sources of water for stock watering, irrigation, and other agricultural needs.

Streams also have a limited recreational value. In a few instances small streams have been dammed and the resultant "lakes" stocked and opened to the paying public for recreational fishing.

The relationship between streams and land value is stated as:

Proposition VI: Rural land prices vary directly with the Stream Index

X7 -- Road Index

The Road Index is intended to indicate accessibility and development potential and is based on the surface quality and length of roads on and bordering a property. The surface quality of the road on which a property fronts is important in terms of access to market, access to the proposed reservoir and for the provision and utilities and services (see also Vidich and Bensman 1958: 155-156). The length of roads on and bordering a property are important determinants of the development potential of the property; if there is a relatively large road frontage the property can be more conveniently subdivided into residential and commercial lots than if additional roads should have to be built.
For purposes of quantitative analysis the surface quality and load characteristics of the roads are divided into four categories with heavy duty permanent-surface roads being assigned a value of 4, medium duty permanent-surface roads a value of 3, light duty permanent-surface a value of 2 and gravel or dirt roads a value of 1.

The Road Index is computed as the sum of the products derived from multiplying the number of feet of frontage of each road on or bordering the property by the appropriate road surface quality value(s) and normalized for acreage. The formula is:

\[
RI = \sum_{i=m}^{m+n} (F \times R)_i A^{-1}
\]

where
- \(RI\) = Road Index
- \(F\) = Feet of road frontage
- \(R\) = Road quality value
- \(A\) = Acres

This variable is related to land value through:

Proposition VII: Rural land prices vary directly with the value of the Road Index

X8 -- Slope

Slope is operationalized as the altitude gradient which is most characteristic of the property as revealed by examination of the horizontal distance between contour lines on USGS topographical maps. It is measured as the change in elevation per 100 feet of horizontal distance. To increase the accuracy the measurements were taken over a 1000 foot distance and divided by ten.

For agricultural purposes level land is preferred not only for drainage and fertility (as in the bottoms), but also for matters of safety. Mechanized farming requires relatively level land for safe operation of equipment.
The proposed relationship between slope and land value is stated as:

Proposition VIII: Rural land values vary inversely with increase of the slope of the land.

X10 to X13

Four additional variables were proposed for investigation: X10: Soil Zone (as defined by the Soil Conservation Service); X11: Barns per acre; X12: Houses per acre; X13: Ponds per acre. The Soil Conservation Service defines 5 soil associations within Spencer County. These are rated in rank order from best to poorest. Maps of their county-wide distributions are available as guides for evaluating agricultural lands. The other three items are ones which are often mentioned in advertisements of farms for sale in the local newspaper. Hence it seemed possible that these structures were evaluated by both buyers and sellers in working out a free market agreement to transfer title.

Multiple Regression. The above propositions were pretested by constructing scatterplots of the distribution of points for the dependent variable against each of the thirteen dependent variables. These scatterplots were observed for linearity and the degree and direction of covariation.

Four variables were immediately rejected and did not enter the regression equation. These include "Soil Zone" (X10), "Barns per acre" (X11), "Houses per Acre" (X12), and "Ponds per Acre" (X13). The first of these did not adequately correlate with land price because the classification into five ordinal categories does not reflect the actual criteria employed by land buyers. This suggests the alternate hypothesis that the price of land is dependent on the perceived "folk-rational" qualities of land described earlier as "bottom, rolling hill, ridge, and hillside" (see pp.). The other three variables also showed a random distribution with land price. The reason is obvious: the data were inaccurate because we were unable to account
for interim changes in houses, barns, and ponds not recorded on the 15- to 20-year old U.S.G.S. maps. During that time a number of houses, barns and ponds have been constructed and others razed.

A fifth variable, "Distance to Reservoir Site" (X4) showed no apparent correlation with land price. Because we were confident of the accuracy of the measurement of this variable we could not reject it on that account. The relative insignificance of this variable indicates that the impact of the reservoir was not radial, that is it did not result in any price differential on the basis of linear distance from all points on the proposed reservoir site. We retained this variable for inclusion in the model of land price because it provided a partial control for the distance function of the reservoir and would thus serve to further highlight the residuals from regression.

The next step was to adjust certain of the variables for curvilinearity. The adjustments were based on hand-drawn approximations of curves which better fit the data. Three variables were so treated including the dependent variable "Price per Acre" (Y), "Duration of Previous Holding" (X1) and "Number of Acres" (X5). The rectification of these variables was accomplished by making transformations in the data according to the characteristics of the curves shown in the scattergrams thusly:

\[
Y \rightarrow \log Y \\
X_1 \rightarrow \frac{1}{X_1} \\
X_5 \rightarrow X_5
\]

The resultant curvilinear model of land price in Spencer County is thus of the form

\[
\log Y = a + b_1 \left(\frac{1}{X_1}\right) + b_2 X_2 + b_3 X_3 + b_4 X_4 + \\
b_5 (X_5) + b_6 X_6 + b_7 X_7 + b_8 X_8 + b_9 X_9
\]
Values for the regression coefficients are shown in Table 3.

Locational Aspects of the Impact

Riverine land purchasing. Because there was no apparent association between the distance to the reservoir site and the price of land we sought other ways in which the spatial impact of the reservoir might be characterized. For this we turn to the land price model specifically in terms of the residuals. By locating the residuals on maps of Spencer County as they occurred by year we were able to discern two areas and times at which the price for land was unpredictedly low. These areas are characterized by relative residuals of less than -1.0 S. E. and are shown on Map 12. Above the dam the residuals appeared in 1964 thus marking the initial impact of the reservoir on land prices in the dam site vicinity. On the basis of this fact we designated the years 1962 and 1963 as the "Baseline" period and the following years, 1964 through mid-1970 as the "Impact" Period.

The second set of spatially associated residuals appeared below the dam site in 1965. We will examine each of these sets of residuals in closer detail specifically as regards the differences between land values in each area during the Baseline and Impact Periods.

Above the dam site. One of the earlier and in some ways most striking series of reservoir-connected land transactions in the Salt River drainage occurred above the probable dam site, within the proposed maximum pool area. "Within" as used here means all lands upstream of the probable dam site and below the 600 foot (above sea level) contour line (various minor improvements in dam design by the Corps of Engineer have altered this pool level slightly, but the 600 foot line serves adequately for present purposes. The normal 300 foot horizontal and/or 5 foot vertical buffer zone increases the area somewhat.) This is an area of rather rugged terrain with a narrow floodplain flanked by narrow strips of moderate slope which verge
rapidly into very steep agriculturally useless slopes that rise to the surface of the dissected peneplain. The alluvial bottomlands properly cultivated yield good crops, the gentler slopes, often heavily eroded by former improper cultivation methods provide flood-safe locations for farm houses and outbuildings and as well some pasturage. During the Baseline Period this land was involved in only 7.5% of cash-transfers of land in the county, while during the Impact Period 18.9% of such transactions were in this area (Table 4). In 1964, the year in which first evidence of change from normal buying patterns occurred, 9 sales, 23.3% of those in the county in that year were made. In 1965 there was a number of sales of the same type.

We had hypothesized that the public meeting in January 1965 at which the Corps of Engineers formally presented the case for the dam to reservoir area citizens, attempted to assess local public opinion on the project, and announced intention of seeking authorization for construction, would provide a time marker for the beginning of the Impact Period. The novel purchase pattern in the pool area made it necessary to review possible sources of fore-knowledge. These were found in a series of newspaper articles, in both local and Louisville papers, that stated in no uncertain terms that it was highly probable that the "long anticipated" Salt River Dam would be build in Spencer County above Taylorsville. We did not have the facilities to check on coverage of this topic in other news media, but it seems reasonable to assume that some mention of the proposed dam was made there too. In any case, it seems clear that communications media provided the stimulus for early interest in land transfers.

The 1964-1965 price pattern differed from any that we have anticipated: instead of an increase there was a decrease from an average $166.00 per acre during the Baseline Period to an average $146.00 per acre. Size of the average purchase more than doubled: from 52.8 acres to 111.6 acres; cash value of the transactions nearly doubled from an average $8,759.00
to $16,319.00. It is true of course that numerically the sample is small, but it is very sharply defined. In addition 45% of these purchases were made by non-residents of Spencer County. The pattern clearly suggests opportunistic speculative buying/panic selling, and on that basis is an obvious product of the proposed reservoir.

Informants report that in some cases of these early Impact transactions, arrangements were made whereby the seller remained on the land in a "tenant" (share-cropping) status. Theoretically advantages accrue to both parties, chiefly of course to the buyer, who has no interest in farming himself, but who receives some profits over and above costs of seed, fertilizer, taxes, etc., and as well has a certain amount of maintenance of "improvements" (fencing, house, outbuildings, etc.) at no cost or at little cost. The seller receives half his former income for the same work as before, but has a base from which to search for a new location, with a limited amount of capital with which to enter into a transaction to buy a smaller or inferior less productive tract.

Below the dam site. Below the dam site the flood plain of the Salt River widens rapidly. There is much more arable ground per river mile than in the narrow valley upstream. This has been an area of intensive agronomic activity since adoption of mechanized operations made possible tilling of the heavy but fertile bottomland soils. It is also an area subject to flood damage. The converging flood-waters of Salt River and Brashears Creek can inundate thousands of acres with a thin sheet of water. Such floods of course cause negligible damage to agriculture unless they occur during the cropping season (of the recorded "major" floods (House Doc. 502, 1966, p. 23, et passim), only one, that of May 1961 interfered significantly with plowing and planting), or with pasture (cattle will not feed on forage coated with sediments left by floodwaters). Nonetheless, some flood damage occasionally occurred and the potential for major damage was always present.
Land in this highly productive locale did not change hands often during the Baseline Period, except for routine intrafamilial transfers. The first recorded transfer in the time period covered by the present study occurred in 1965, and was followed by 15 additional transactions in which per-acre price tended upward to an average of $197.00.

Of the 16 total sales, only 3 were to non-residents of the county. It seems certain that all these purchases represented capital investments for agricultural purposes. The proposed dam is perceived as enhancing the land's worth, which accounts for the trend toward price increase. Some informants believed, apparently quite incorrectly, that irrigation water from the reservoir will be available in this area below the dam (no such use is mentioned in the Corps of Engineers' description of the project, and heavy draw-down during the cropping season would appear to conflict with the Corps' program of recreational development).

The Spencer County pattern is typified by a set of transactions in which a large farm was purchased at a per acre price of rather more than the normal agricultural rate. The buyer of that land soon sold some small residential plots fronting on the highway for sums that reportedly totaled nearly a third of his cost of the entire tract, retaining ample farm land.

Comparison of the Baseline and Impact Period transactions for land adjacent to highways reveals that the average number of acres sold during the Baseline Period was 69.9 while an average of only 46.9 acres was sold during the Impact Period. This was accompanied by an increase in average per acre prices from $172 to $296 per acre.

1966 and 1967 were not only the most outstanding years in terms of the purchase of smaller parcels along highways but were also the years in which local interest in such parcels was highest. We cannot derive this land purchasing pattern from the land price model as a direct product of reservoir impact. However, it can be related to the reservoir by reference to the correlation matrix in Table 2. The high degree of correlation between
highway associated purchasing and the number of newspaper articles regarding the reservoir which appeared in the local newspaper, \(r_s = .809 \) suggests that an increase in purchasing of land along highways is a direct response to public accounts of the progress of the reservoir plans, and the frequent emphasis on the convenience of residence in the county for those who work in Louisville, the proposed highway improvements that will reduce commuting time, and so on. Other significant relationships with the number of newspaper articles regarding the reservoir include the price per acre \(r_s = .867 \), percent of sales in the western sector of the county \(r_s = .642 \), and the percent of sales in the one to twenty acres size class \(r_s = .752 \). Newspaper coverage was, by contrast, not observed to covary significantly with the purchase of land of other size or locational classifications nor do the newspaper articles increase or decrease in frequency with time.

It would appear that potential residential land buyers were stimulated to action by the optimism related in the news. Content analysis of these articles did not indicate that they reported real changes in the status of the reservoir only. Many of them related the activities of the Taylorsville Chamber of Commerce "Reservoir Research Committee" as it sought information from the U. S. Army Corps of Engineers or from Congressmen regarding the progress of the reservoir plans.

The point is that although not all newspaper articles covered actual changes in the official status of the project, the reported interest of local leaders kept the public aware of the fact that there was a reservoir in the offing and that the project was regarded with optimism by those who, in the course of pursuing information on it, demonstrated their interest in the project to the residential land-buying public.

Examination of newspapers around the time of the January 1965 public hearing shows that various persons in public life expressed approbation of the proposed reservoir. Requests for funds, reports of funds granted or reports of changing priorities which might effect Spencer County provided most
of the fare on this topic for readers in 1966 and 1967, the years in which non-farm purchasing was at its highest.

With these more definite steps being taken and reported, the value of land for residential purposes was enhanced. Many of these buyers felt that residentially sized parcels would become increasingly expensive and difficult to acquire. Some buyers are life-long residents of Spencer County; others are returnees from urban environments who left the home territory for higher paying jobs but whose environmental orientation, social organizational values and general sphere of awareness focuses on Spencer County where they have become increasingly confident of the community as a desirable place to live.

The most pervasive pattern of land buying in Spencer County does not occur in any distinguishable spatial association with the reservoir site. Rather it occurs throughout the county along permanently surfaced roads and involves the purchasing of small residentially suitable sites. More frequently these sites are located in the western sector of the county and are purchased by local residents as well as by speculators, subdividers, or newcomers to the area. Relationship of this pattern to the proposed reservoir exists, but is indirect: it derives from the highly publicized accessibility of Spencer County residential sites to Louisville, and the recent improvement of the highway system, especially the straightening and widening of State Highway 55/155 (to Louisville) in adjacent Jefferson County, which has been done partly to improve accessibility of the intended lake.

Inspection of the model in Table 3 shows the most significant determinants of land price to be the "Road Index" and the "Parcel Size." This suggest the criteria employed in the purchase of residentially suitable parcels dominates the overall land buying pattern in Spencer County.

Summary

Through intensive analysis of land sales over an 8 1/2 year period
in our sample area (Spencer County), three alterations in land purchasing appeared, all attributable directly or indirectly to the reservoir.

The first consisted in the purchases of land above the probable damsite beginning in 1964. The fact that nearly half the buyers were non-local, had no interest in engaging in agriculture, specifically suggest speculative buying. The sellers' perceptions of landworth in terms of agricultural utility obviously had been affected by the publicity in favor of the dam, consequently they sold it cheap.

The second aspect of the impact resulted in an enhancement of land value below the planned dam site where the anticipated protection from flooding has apparently reduced perception of the element of risk thereby permitting the more intensive utilization of this land for traditionally oriented agricultural enterprise. Because it is perceived as more desirable this land has continually increased in value as the dam and reservoir became more probable.

This response is predictable in the context of the value-orientations of landownership and successful property resource management expressed among rural Spencer Countians.

The third, and most pervasive change in land values has occurred among the increasing number of Spencer Countians who view commuting as an acceptable alternative to farming. The accelerated purchasing of residentially suitable parcels of land along the highways has no reservoir-oriented focus but is most clearly associated with the western sector of the county in the direction of Louisville and urban employment. Because the number of non-resident purchasers was not significant the response is seen to occur within the existing pattern of indigenous suburbanization rather than being a matter of urban population pressure. The reservoir-related emphasis in news media on desirability of residential sites for commuters intended for potential buyers from Louisville, seems to have found a receptive audience among Spencer Countians. Because the choice of residential land is diverse
and is not associated with commercial "subdivision," the suburbanization of
Spencer County does not resemble the "suburban sprawl" of neighboring
counties.

CONCLUSIONS

Methodology. The application of both anthropological concepts such as those
of social organization, value systems, culture change process, etc., and of
anthropological research techniques to the study of the problems of impact
on the local community of impending construction of a stream control device
proved successful. By use of these concepts and research methods it was
possible to define lifeway standards and values typical of those people of
the study area most likely to be affected by the reservoir. It is noteworthy
as well that the anthropological data were also significant to the statistical
analysis of land sales, providing sound bases for interpretation of certain
facts (relationship between size of tract and land use is a simple example).
The statistical model, thus evaluated, demonstrated that perceptions of land
values have already begun to vary: although some persons cling to
traditional standards, others are accepting or partially accepting new value
orientations. In fine, the main research tools - concepts and techniques of
anthropology, used as well to control the statistical model - have clearly
been efficacious.

Findings. The results of the present study can readily be summarized. Most
adult residents of the study area are firmly committed to the bucolic values
associated with the ethic of an earlier day (values on hard work, independence,
self-reliance and like qualities of the small farmer), a value system seem
as validated by the prosperity of recent decades (Grade A dairying; $60 to
$70 per cwt. tobacco, etc.). The high level of anxieties produced among such
traditionally oriented persons by the uncertainties as to foreseen and supposed
drastic changes in lifeway emerges as a major cost of the stream-control
device. Actual and potential social stress and disorganization resulting from
conflicting interests of potential beneficiaries and those to be dislocated (and their sympathizers), is another cost, and is one which can be expected to increase. In addition, however, there is a small but significant group of local residents who are adapting to the new situation. These are the people who are acquiring residential properties along routes of easy access to the urban center, to exploit urban job opportunities rather than the traditional farm economy. One may view these persons as those who are trying to work out a compromise solution: participating in what they have come to see as the greater security of wage work while retaining their social ties and participating marginally at least in some tradition rural activities. As has been shown, this change pattern is an indirect result of the proposed dam.
<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Sales</th>
<th>Recency</th>
<th>Rank</th>
<th>Number Newspaper Articles (A)</th>
<th>Rank</th>
<th>Average Price Per Acre (C)</th>
<th>Rank</th>
<th>Number Sales above Dam Site (D)</th>
<th>Percent of Years Total</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1962</td>
<td>27</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>3</td>
<td>8.5</td>
<td>151</td>
<td>9</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>1963</td>
<td>20</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>3</td>
<td>8.5</td>
<td>276</td>
<td>8</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>1964</td>
<td>45</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>3</td>
<td>3</td>
<td>343</td>
<td>7</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>1965</td>
<td>43</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>6.5</td>
<td>387</td>
<td>6</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>1966</td>
<td>30</td>
<td>4</td>
<td>4</td>
<td>13</td>
<td>1</td>
<td>6.5</td>
<td>618</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1967</td>
<td>31</td>
<td>4</td>
<td>4</td>
<td>11</td>
<td>2</td>
<td></td>
<td>762</td>
<td>1</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>1968</td>
<td>27</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>457</td>
<td>4</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>1969</td>
<td>48</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4.5</td>
<td></td>
<td>544</td>
<td>3</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>1970*</td>
<td>26</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>6.5</td>
<td>3</td>
<td>359</td>
<td>5</td>
<td>3</td>
<td>12</td>
</tr>
</tbody>
</table>

N = 297

*First half-year for 1970.
TABLE I (Continued)

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Sales below Dam Site</th>
<th>Percent of Years Total (E)</th>
<th>Rank</th>
<th>Number Sales on Highway</th>
<th>Percent of years Total (F)</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1962</td>
<td>0</td>
<td>0</td>
<td>7.5</td>
<td>8</td>
<td>30</td>
<td>9</td>
</tr>
<tr>
<td>1963</td>
<td>0</td>
<td>0</td>
<td>7.5</td>
<td>8</td>
<td>40</td>
<td>8</td>
</tr>
<tr>
<td>1964</td>
<td>0</td>
<td>0</td>
<td>7.5</td>
<td>21</td>
<td>47</td>
<td>5</td>
</tr>
<tr>
<td>1965</td>
<td>6</td>
<td>14</td>
<td>1</td>
<td>19</td>
<td>44</td>
<td>6.5</td>
</tr>
<tr>
<td>1966</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>22</td>
<td>73</td>
<td>1</td>
</tr>
<tr>
<td>1967</td>
<td>0</td>
<td>0</td>
<td>7.5</td>
<td>22</td>
<td>71</td>
<td>2</td>
</tr>
<tr>
<td>1968</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>12</td>
<td>44</td>
<td>6.5</td>
</tr>
<tr>
<td>1969</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>29</td>
<td>60</td>
<td>4</td>
</tr>
<tr>
<td>1970*</td>
<td>2</td>
<td>8</td>
<td>3</td>
<td>16</td>
<td>62</td>
<td>3</td>
</tr>
</tbody>
</table>

N 16 5 157 53

* First half-year for 1970.
<table>
<thead>
<tr>
<th>Year</th>
<th>Sales in Western Sector of County</th>
<th>Purchases by Local Residents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number (G)</td>
<td>Percent of Years Total</td>
</tr>
<tr>
<td>1962</td>
<td>13</td>
<td>48</td>
</tr>
<tr>
<td>1963</td>
<td>12</td>
<td>60</td>
</tr>
<tr>
<td>1964</td>
<td>23</td>
<td>51</td>
</tr>
<tr>
<td>1965</td>
<td>25</td>
<td>58</td>
</tr>
<tr>
<td>1966</td>
<td>22</td>
<td>73</td>
</tr>
<tr>
<td>1967</td>
<td>21</td>
<td>68</td>
</tr>
<tr>
<td>1968</td>
<td>12</td>
<td>44</td>
</tr>
<tr>
<td>1969</td>
<td>25</td>
<td>52</td>
</tr>
<tr>
<td>1970*</td>
<td>11</td>
<td>42</td>
</tr>
</tbody>
</table>

N = 164, 196

*First half-year for 1970.
<table>
<thead>
<tr>
<th>Year</th>
<th>Sales of One Acre or Less</th>
<th>Sales of 1-20 Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Percent of Years Total (I)</td>
</tr>
<tr>
<td>1962</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1963</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>1964</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>1965</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>1966</td>
<td>9</td>
<td>30</td>
</tr>
<tr>
<td>1967</td>
<td>7</td>
<td>23</td>
</tr>
<tr>
<td>1968</td>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td>1969</td>
<td>13</td>
<td>27</td>
</tr>
<tr>
<td>1970*</td>
<td>8</td>
<td>31</td>
</tr>
<tr>
<td>N</td>
<td>55</td>
<td></td>
</tr>
</tbody>
</table>

*First half-year for 1970.
<table>
<thead>
<tr>
<th>Year</th>
<th>Sales of 21–50 acres</th>
<th></th>
<th></th>
<th>Sales of over 50 acres</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>Percent of Years Total (K)</td>
<td>Rank</td>
<td>Number</td>
<td>Percent of Years Total (L)</td>
<td>Rank</td>
</tr>
<tr>
<td>1962</td>
<td>1</td>
<td>4</td>
<td>6.5</td>
<td>18</td>
<td>67</td>
<td>1</td>
</tr>
<tr>
<td>1963</td>
<td>6</td>
<td>30</td>
<td>1</td>
<td>8</td>
<td>40</td>
<td>5</td>
</tr>
<tr>
<td>1964</td>
<td>2</td>
<td>4</td>
<td>6.5</td>
<td>26</td>
<td>58</td>
<td>3</td>
</tr>
<tr>
<td>1965</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>26</td>
<td>60</td>
<td>2</td>
</tr>
<tr>
<td>1966</td>
<td>1</td>
<td>3</td>
<td>8</td>
<td>11</td>
<td>37</td>
<td>7</td>
</tr>
<tr>
<td>1967</td>
<td>3</td>
<td>10</td>
<td>4</td>
<td>9</td>
<td>29</td>
<td>9</td>
</tr>
<tr>
<td>1968</td>
<td>2</td>
<td>7</td>
<td>5</td>
<td>13</td>
<td>48</td>
<td>4</td>
</tr>
<tr>
<td>1969</td>
<td>8</td>
<td>17</td>
<td>3</td>
<td>17</td>
<td>35</td>
<td>8</td>
</tr>
<tr>
<td>1970*</td>
<td>5</td>
<td>19</td>
<td>2</td>
<td>10</td>
<td>38</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>29</td>
<td></td>
<td></td>
<td>138</td>
<td></td>
</tr>
</tbody>
</table>

*First half-year for 1970.
TABLE II - SPEARMAN'S RANK ORDER CORRELATION COEFFICIENT MATRIX FOR SELECTED LAND PURCHASING VARIABLES (BASED ON DATA IN TABLE I)

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>.366</td>
<td>.788*</td>
<td>.545</td>
<td>.519</td>
<td>.054</td>
<td>.519</td>
<td>.079</td>
<td>.683</td>
<td>.545</td>
<td>.545</td>
<td>-115</td>
</tr>
<tr>
<td>B</td>
<td>.366</td>
<td>.867*</td>
<td>.181</td>
<td>.357</td>
<td>.703</td>
<td>.730</td>
<td>.642</td>
<td>.451</td>
<td>.545</td>
<td>.545</td>
<td>-001</td>
</tr>
<tr>
<td>C</td>
<td>.545</td>
<td>.181</td>
<td>.467</td>
<td>.467</td>
<td>.467</td>
<td>.809*</td>
<td>.564</td>
<td>.597</td>
<td>.597</td>
<td>.597</td>
<td>.106</td>
</tr>
<tr>
<td>D</td>
<td>.519</td>
<td>.357</td>
<td>.519</td>
<td>.519</td>
<td>.519</td>
<td>.809*</td>
<td>.564</td>
<td>.597</td>
<td>.597</td>
<td>.597</td>
<td>.106</td>
</tr>
<tr>
<td>E</td>
<td>.079</td>
<td>.703</td>
<td>.467</td>
<td>.363</td>
<td>.363</td>
<td>.100</td>
<td>.085</td>
<td>.181</td>
<td>.181</td>
<td>.181</td>
<td>-.042</td>
</tr>
<tr>
<td>F</td>
<td>.642</td>
<td>.642</td>
<td>.564</td>
<td>.564</td>
<td>.564</td>
<td>.100</td>
<td>.545</td>
<td>.597</td>
<td>.597</td>
<td>.597</td>
<td>-.251</td>
</tr>
<tr>
<td>G</td>
<td>.683</td>
<td>.451</td>
<td>.597</td>
<td>.597</td>
<td>.597</td>
<td>.100</td>
<td>.006</td>
<td>.739</td>
<td>.739</td>
<td>.739</td>
<td>-.251</td>
</tr>
<tr>
<td>H</td>
<td>.079*</td>
<td>.545</td>
<td>.806*</td>
<td>.806*</td>
<td>.806*</td>
<td>.900*</td>
<td>.461</td>
<td>.461</td>
<td>.461</td>
<td>.461</td>
<td>-.251</td>
</tr>
<tr>
<td>I</td>
<td>.545</td>
<td>.545</td>
<td>.806*</td>
<td>.806*</td>
<td>.806*</td>
<td>.900*</td>
<td>.461</td>
<td>.461</td>
<td>.461</td>
<td>.461</td>
<td>-.251</td>
</tr>
<tr>
<td>J</td>
<td>.054</td>
<td>.752</td>
<td>.503</td>
<td>.503</td>
<td>.503</td>
<td>.421</td>
<td>.685</td>
<td>.318</td>
<td>.318</td>
<td>.318</td>
<td>-.042</td>
</tr>
<tr>
<td>K</td>
<td>.519</td>
<td>.519</td>
<td>.519</td>
<td>.519</td>
<td>.519</td>
<td>.421</td>
<td>.685</td>
<td>.318</td>
<td>.318</td>
<td>.318</td>
<td>-.042</td>
</tr>
</tbody>
</table>

* = significant at .01 level
** = significant at .05 level

A = Recency of Year
B = Number of Newspaper Articles Regarding Reservoir
C = Average Land Price per Acre
D = Percent of Sales Above Dam Site
E = Percent of Sales Below Dam Site
F = Percent of Sales on Highways
G = Percent of Sales in Western Sector of County
H = Percent of Purchases by Local Residents
I = Percent of Sales 1 acre or less
J = Percent of Sales 1-20 Acres
K = Percent of Sales 21-50 Acres
L = Percent of Sales Over 50 Acres
TABLE III - THE STRUCTURE OF SPENCER COUNTY LAND PRICE

<table>
<thead>
<tr>
<th></th>
<th>Regression Coefficient (b)</th>
<th>Simple Correlation With log Price Per Acre (Y')</th>
</tr>
</thead>
<tbody>
<tr>
<td>XI' 1/ Duration of Holding</td>
<td>0.1644</td>
<td>+.108</td>
</tr>
<tr>
<td>X2 Index of Ky. Farm Values</td>
<td>-0.0086</td>
<td>+.266</td>
</tr>
<tr>
<td>X3 Distance to Taylorsville</td>
<td>-0.0190</td>
<td>-.209</td>
</tr>
<tr>
<td>X4 Distance to Reservoir Site</td>
<td>-0.0017</td>
<td>+.062</td>
</tr>
<tr>
<td>X5' Parcel Size</td>
<td>-0.0491</td>
<td>-.668</td>
</tr>
<tr>
<td>X6 Stream Index</td>
<td>-0.0001</td>
<td>+.182</td>
</tr>
<tr>
<td>X7 Road Index</td>
<td>0.0003</td>
<td>+.556</td>
</tr>
<tr>
<td>X8 Slope</td>
<td>-0.0174</td>
<td>-.276</td>
</tr>
<tr>
<td>X9 Date of Sale</td>
<td>0.0091</td>
<td>+.272</td>
</tr>
</tbody>
</table>

Total F = 42.46
Standard Error of Y' = 0.3723

\[R^2 = .598 \]
TABLE IV - COMPARISON OF BASELINE AND IMPACT PERIODS

Sales Volume by Location of Purchase

<table>
<thead>
<tr>
<th>Period</th>
<th>Number of Sales</th>
<th>Percent of Total</th>
<th>Number of Acres</th>
<th>Percent of Total</th>
<th>Number of Dollars</th>
<th>Percent of Total</th>
<th>Average Acres per Sale</th>
<th>Average Dollars per Sale</th>
<th>Average Dollars per Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASELINE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total for County</td>
<td>47</td>
<td>2,827</td>
<td>514,482</td>
<td>60.1</td>
<td>10,946</td>
<td>182</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Above Dam</td>
<td>4</td>
<td>8.5</td>
<td>211</td>
<td>7.5</td>
<td>35,035</td>
<td>6.8</td>
<td>52.3</td>
<td>8,759</td>
<td>166</td>
</tr>
<tr>
<td>Below Dam</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>On Highways</td>
<td>16</td>
<td>31.9</td>
<td>1.11</td>
<td>39.5</td>
<td>191,870</td>
<td>37.3</td>
<td>69.9</td>
<td>11,992</td>
<td>172</td>
</tr>
<tr>
<td>IMPACT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total for County</td>
<td>250</td>
<td>18,857</td>
<td>8,642,574</td>
<td>75.4</td>
<td>34,570</td>
<td>458</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Above Dam</td>
<td>32</td>
<td>12.8</td>
<td>3,572</td>
<td>18.9</td>
<td>522,197</td>
<td>6.0</td>
<td>111.6</td>
<td>16,319</td>
<td>146</td>
</tr>
<tr>
<td>Below Dam</td>
<td>16</td>
<td>6.4</td>
<td>1,815</td>
<td>9.6</td>
<td>358,155</td>
<td>4.1</td>
<td>113.4</td>
<td>22,385</td>
<td>197</td>
</tr>
<tr>
<td>On Highways</td>
<td>145</td>
<td>58.0</td>
<td>6,801</td>
<td>36.1</td>
<td>2,014,994</td>
<td>23.3</td>
<td>46.9</td>
<td>13,896</td>
<td>296</td>
</tr>
</tbody>
</table>
BIBLIOGRAPHY

Horton, R. G.

Ludtke, R. L. and R. J. Burdge
1970 Evaluation of the Social Impact of Reservoir Construction on Residential Plans of Displaced Persons ... (etc.) University of Kentucky, Water Resources Institute, Lexington, Kentucky.

Prebble, Billy R.

Smith, Charles R.

Thomas, Edwin N.

United States Congress. House of Representatives
Vidich, Arthur J. and Joseph Bensman

Williams, D. C., Jr. and Donnie L. Daniel

1969 The Impact of Reservoirs on Land Values: A Case Study. State College, Mississippi: Water Resources Research Institute, Mississippi State University.
GENERAL MAP
TAYLORSVILLE RESERVOIR
AREA
SALT RIVER BASIN, KENTUCKY

SCALE

0 3 6 9
MILES

——— = COUNTY BOUNDARY
Map 12 Spencer County: Negative Residual Area
APPENDIX "A"

History of the Salt River Reservoir Project

Historically, the Salt River basin has been known for its flooding and the resultant damage to personal and public property in the bottom lands in Spencer and Bullitt Counties. A content analysis of the Spencer Magnet, the county newspaper (with "circulation near saturation") clearly reflects the extent of such damages inasmuch as some flooding has occurred virtually every year. The United States Army Corps of Engineers has been concerned with this flooding problem for many years.

It was not until 1940 that residents recognized that something should and, in fact, could be done, to protect at least the City of Taylorsville from the hazards of flooding. Eight years later the levee now surrounding Taylorsville was constructed by the Army Engineers and to this date flood waters have been kept in abeyance, although on several occasions it was necessary to use sandbags and water pumps to keep flood water out of town.

Residents report that in those early years there was some talk about a reservoir, but the Army Engineers rejected the idea on the basis of anticipated excessive cost and opted instead to construct the levee for more immediate local relief. From the completion of the levee in 1948 until 1960 there were few references to the choice of a reservoir as an alternative to flooding.

In November of 1960 the Spencer Magnet (November 17, 1960) reported the meeting of the local Chamber of Commerce at which the possibility of a "dam up the Salt River" was discussed. At this meeting a special committee was appointed to investigate the feasibility of such a project.

During 1961 the local Chamber of Commerce reportedly increased its interest in construction of a flood-control reservoir in the county. Representatives from the U.S. Army Corps of Engineers (Louisville District) came to
discuss the project with those county residents. Later in the year the first funds were released by the U.S. Congress for the purpose of beginning a feasibility survey of the project (Spencer Magnet: November 18, 1961).

In January of 1962 a meeting was held in Shepherdsville (the county seat of Bullitt County which also has flooding problems) to discuss the "nature and extent" of the proposed federal project. This hearing, as reported by the Spencer Magnet (January 4, 1962), was the result of an order received by the District Corps of Engineers in Louisville, Kentucky, to make a survey of the Salt River watershed.

Following this meeting, and at the request of the Corps of Engineers, a petition was circulated in the Salt River Basin by Chamber of Commerce members to obtain signatures and notations of flood damage that residents had suffered in previous years. The petition needed "as many signatures as possible by those who will benefit from the flood control project ...

Authoritative sources said that these preliminary reports would influence to a great extent future action on the flood-control measures being considered" (Spencer Magnet: March 15, 1962). The petition was circulated in March of 1962.

There was no further public announcement made regarding the reservoir until July of 1962. It was then that the Corps of Engineers released a report stating that a survey had been in progress the past two years and that of six dam sites being considered, two were favored - one on the Salt River east of Taylorsville and one on the Rolling Fork River south of Lebanon, Kentucky (Spencer Magnet: July 11, 1963).

In September of 1963, Spencer County businessmen began actively promoting the project. Meetings were held with officials of the Corps of Engineers at which the Corps representatives informed them that it would be 1966 before the survey could be completed and that nothing could be done until that time. The following week the headlines in the Spencer Magnet (September 19, 1963) read: "Dam Site on Salt River Seems Certain: Will
Cover 3,500 Acres at High Level." It was in this report that the first mention of recreational benefits for Louisville citizens was made.

In April of 1964, renewed interest began to form as the Corps of Engineers indicated that the Taylorsville Reservoir was listed as "top priority" (Spencer Magnet: April 2, 1964). In June of that year additional survey funds were released which brought the total survey funds to $91,000.00 (Spencer Magnet: June 4, 1964).

In December of 1964, a public hearing was called by the Corps of Engineers to, as stated in the Spencer Magnet (December 10, 1964), "...give and accept reports." A more specific site had been selected which was located three miles above Taylorsville and would impound from 5,000 to 7,000 acres, depending on the precise location and height of the dam. The purpose of this meeting was to inform the public of the results of the two-year survey and to hear comments regarding the reservoir from interested citizens.

Later in that month a local businessman discussed the economic potential for the county if the reservoir was constructed, and at this meeting of the Chamber of Commerce, which lasted approximately four hours, needed business and social adjustments to the dam were discussed. Flooding had, by that time, become a secondary interest, and the fact that "the (economic) potential of the Taylorsville Reservoir is fantastic" and that "outside interests are constantly inquiring and purchasing property" became of primary concern (Spencer Magnet: December 17, 1964). A prediction was made during the meeting that "there will be water in the dam by 1967."

In January of 1965, the U.S. Army Corps of Engineers held a public hearing concerning the proposed Taylorsville Reservoir in Taylorsville, Kentucky. This is the stage at which the Corps of Engineers attempted to elicit local-level reaction to the plan to construct the reservoir. The Corps, operating under the principle that local support is necessary for the final push for Congressional approval of the project, employs such public hearings to indicate the intensity of local support.
According to the *Spencer Magnet* (January 7, 1965), account of this hearing which some 1300 citizens reportedly attended, the Corps of Engineers' representatives showed color slides of other reservoir projects in Kentucky and told of the economic benefits that accrued to those areas resulting from reservoir construction. As reported in this newspaper article, these officials were said to have "...erased doubt of the feasibility of the project" while also "...emphasizing the economic value and tremendous benefits which would result from the water impoundment" (ibid).

Following the presentation made by the Corps of Engineers' representative, speakers both for and against the reservoir were allowed to air their viewpoints to those gathered. The amount of vocal opposition, however, was reported as small and "...the tiniest objection seemed absurd, with no basis in fact," while the "...very small opposition faded during a hearing which continued for nearly three hours." (ibid.) On the other hand, those in favor of the reservoir were definitely in the majority and "rousing applause exploded in the gym as speaker after speaker, representing thousands of citizens, endorsed the reservoir." The Corps of Engineers officials "...soon learned that the dam could not be built quickly enough for 'the people involved'" (ibid.).

In addition to the local citizens present were a representative from a neighboring county who spoke of flood loss in his county, a representative from the Louisville Chamber of Commerce who said that his organization sends a "hearty endorsement," and a representative from the Red Cross who "cited facts and figures of water devastation which staggers the imagination" (ibid.).

Following this significant meeting, which set the atmosphere in the county for one of optimism of speedy construction of the reservoir, came additional funds for survey work on the project, and a meeting of the Rotary Club which featured another Corps of Engineers' representative who spoke of the Salt River Reservoir as having "...one of the highest potentials of any
dam in Kentucky," and who challenged the citizens in the county to begin planning for the reservoir impact. Again the emphasis was on the economic impact of the reservoir and the "millions of dollars to be saved through flood control" (Spencer Magnet: April 1, 1965).

In February of 1966, the Army Corps of Engineers submitted a favorable report to the U.S. Congress on the Salt River project and recommended construction. The size of the reservoir was set at this time as impounding 14,000 acres and costing near $25 million. Later in that year when the progress on the project seemed to be slowing down, three Spencer County Chamber of Commerce representatives traveled to Washington, D.C., "...to discuss and clarify" the project with their congressmen. The spokesman of the trio stated: "The people here, particularly those in the Salt River area, are living in an atmosphere of uncertainty. Most people have accepted the project, but those who will be directly affected, including myself, need to make adjustments" (Spencer Magnet: September 8, 1966). This feeling of dissatisfaction undoubtedly is related to the nearly five years of positive response from most individuals and agencies concerned with the project with little evidence that their efforts would be followed through by actual construction. The basic assumption these individuals were operating under at that time was that the project could be stopped at any moment until the Congress had appropriated actual construction funds. Moreover, it was obvious at that time that the earlier mentioned prediction "that water would be in the dam by 1967" was not to become a reality.

In October of 1966, in a telegram from a congressman, the news that the Congress had approved the reservoir led to the headlines in the Spencer Magnet (October 27, 1966) which read: "At Last! Taylorsville Reservoir Soon to Become a Reality." The following month President Johnson signed the omnibus bill which included the Taylorsville Reservoir project.
The following year, 1967, was focused on securing funds for the advanced engineering and design work which is necessary before construction money may be sought. In July the House of Representatives approved $100,000 for such purposes, and it was not until later October that the Senate stamped its approval for the funds. In the meantime a Democratic nominee for Governor of Kentucky used the "Taylorsville Lake" and the "modernization of state highway Kentucky 155 and 55 from Louisville to Taylorsville" as a campaign pledge. One part of the pledge stated: "I will... push with all might for building of the Taylorsville Lake on the Salt River, and will create a State Park on it. This will be the largest lake near to the people in Jefferson County, and the best opportunity to build a fine state park to serve them. It will mean great things for Taylorsville and Spencer County" (Spencer Magnet: September 14, 1967).

A similar picture is seen during 1968 when the year was spent seeking approval for additional engineering and design funds. In June the House Committee on Appropriations reduced the requested $200,000 to $190,000. Other than this, news for 1968 was scanty; however, the improvement of Kentucky highway 155-55 was discussed at a public hearing at which one of the primary reasons for re-building was cited as "...a better route to the Taylorsville Reservoir when it is completed." The estimated costs of this project was set at $5 million (Spencer Magnet: November 21, 1968).

In 1969 there was again little information in the local newspaper regarding the reservoir project. The two most significant notes focused on the final Senate approval of $236,000 for completion of advanced engineering and design. In addition to this, the Spencer Magnet (September 11, 1969) reported that the cost of the proposed reservoir had increased from "...an original estimate of $24 million to $40 million."

On June 11, 1970, a $390,000 appropriation for construction was approved for the Taylorsville Reservoir. The release of actual construction funds is considered locally to be a significant turning point in reservoir construction.
construction since "...once construction has begun the project is no longer in the category where it can be delayed or set aside except in extreme emergency cases" (Spencer Magnet: June 11, 1970).

Later in 1970, however, these construction funds were "frozen" by President Nixon. During the summer of 1971, $300,000 of the originally approved $390,000 appropriation was released for the construction of the reservoir.

In Spencer County the first phase of land acquisition began in late 1970 with the hiring by the Corps of Engineers of a private firm to conduct a title search and to establish property boundaries. Actual land acquisition, however, has not yet begun at this writing (March 1972).