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Background
Inhibitors of the epidermal growth factor receptor (EGFR) were 
introduced as a targeted therapy because some non–small cell 
lung cancers (NSCLC) were demonstrated to be dependent on 
the EGFR oncogene for growth and proliferation.1 Furthermore, 
it was observed that cells and tumors with KRAS activating 
mutations were inherently resistant to treatment with EGFR 
inhibitors (EGFRI).2,3 KRAS-activation mutations (eg, codons 
12, 13, and 61) are the most common mutations in lung adeno-
carcinomas and are observed in 25% to 40% of cases, but cur-
rently, there are no therapeutic interventions available to target 
KRAS.4,5 Pharmacological agents thought to inhibit KRAS 
include farnesyltransferase inhibitors that impede the necessary 
association of KRAS with the cell membrane, but these agents 
failed in clinical studies.6 Antisense oligonucleotides and engi-
neered microRNA (miRNA) have been explored as an alternative 
method for targeting mutant KRAS without disrupting the 
expression of nonmutant KRAS with some success in preclinical 
testing.6,7 To overcome the inability to successfully target mutant 
KRAS in a clinical setting, many investigators seek to inhibit one 
or more downstream pathways influenced by KRAS activation.8

Our group previously identified 2 gene expression signa-
tures of response to the EGFRI, erlotinib, collected under the 
hypothesis that patients without EGFR-activating mutations 
may also derive benefit from treatment with EGFRI. Patients 
with those tumors might be identified by particular gene 
expression phenotypes and treated with EGFRI.9,10 While this 
hypothesis was validated using retrospective analysis of gene 
expression data from colorectal cancers, even more striking 
were the observations made from bioinformatics analysis of the 
gene expression signatures.10 Genes from the miRNA signa-
ture not only predicted response to EGFRI but also intersected 
the transforming growth factor beta (TGFβ) signaling cascade 
as found using pathway enrichment of miRNA targets.9 These 
data suggested that response to EGFRI may be influenced by 
activation of TGFβ signaling, and inhibition of this pathway 
could sensitize EGFRI-resistant tumor cells to erlotinib.9 
However, other groups have tested these hypotheses in clinical 
studies and have been largely unsuccessful in improving 
response in EGFRI-resistant cancers with concurrent inhibi-
tion of TGFβ signaling. Lack of improved response may be 
due to the competing pro- and antitumorigenic activities along 
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the TGFβ axis,11,12 but efforts to target aberrant TGFβ signal-
ing are ongoing.13 It was this observation that led us to try new 
molecular interaction network search approaches over pathway 
enrichment analyses, which might reveal specific proteins that 
could be therapeutically targeted in EGFRI-resistant/KRAS-
active NSCLC.

We employed a statistical interaction detection method 
combined with a molecular interaction network analysis to 
uncover potential novel interactions between the 2 messenger 
RNA (mRNA) and miRNA signatures. Other groups have 
demonstrated that pairing expression levels of RNA species in 
specific disease states may lead to an improved understanding of 
the disease.14,15 This was followed by structured interrogation to 
uncover enzymatic activities that might intersect and regulate 
multiple signaling cascades in NSCLC cells. In this report, we 
describe identification and characterization of casein kinase 2 
(CK2) using the bioinformatics process as a potential target. 
Casein kinase 2 is a multisubunit kinase that can contribute to 
tumorigenesis when subunit expression is altered. Casein kinase 
2 exists mainly as a tetrameric holoenzyme consisting of any 
combination of 2 α or α′ subunits and 2 β subunits, but it has 
been suggested that the α and α′ subunits have monomeric 
kinase activity as well.16,17 Moreover, CK2 was shown to be an 
upstream regulator of AKT/PI3K/mTOR, NFκβ, and JAK/
STAT signaling cascades irrespective of the receptor tyrosine 
kinases shown to activate them.18 As stated above, EGFRI 
resistance can result from alterations in parallel signaling path-
ways, including the PI3K/AKT/mTOR and JAK/STAT.19 
Therefore, we postulated that inhibition of CK2 might repre-
sent a treatment alternative for NSCLC that are resistant to 
EGFRI. This strategy may provide some NSCLC patients an 
additional opportunity for therapeutic intervention.

Methods
Cell culture and western blotting

A549, H460, and H1650 (NSCLC) cell lines were purchased 
from ATCC. PC9 cells (NSCLC) were a gift from Eric Haura, 
MD (Moffitt Cancer Center, Tampa, FL). Cells were cultured 
in RPMI 1640 (Life Technologies) supplemented with 10% 
fetal bovine serum (FBS; USA Scientific), 4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid (HEPES), glucose, and pyru-
vate and maintained in a humidified incubator at 37°C in 5% 
CO2 unless otherwise specified. For analysis of protein content 
by western blot, 3 × 104 cells were plated into a 6-well dish and 
allowed to adhere in RPMI 1640 containing 10% FBS for 
48 hours. Following the adherence period, cells were treated 
with the concentrations of the CK2 inhibitor, CX-4945 
(Silmitasertib; Cayman Chemical), or the MEK1/2 inhibitor, 
AZD6244 (Selumetinib; AstraZeneca), in RPMI 1640 con-
taining 1% FBS for the treatment durations indicated. Both 
adherent and nonadherent cells from each sample were col-
lected for total protein. Ten percent of total cell extracts were 
loaded. Cleaved poly(ADP-ribose) polymerase (PARP) and 
α-tubulin antibodies were purchased from Cell Signaling.

Cell viability assay

Cells were plated at 3 × 103 cells/well in a 96-well plate and 
allowed to adhere in RPMI 1640 containing 10% FBS for 
36 hours. After 36 hours, CX-4945 and AZD6244 were added 
in the final concentrations indicated in RPMI 1640 containing 
1% FBS. Drug treatment persisted for 72 hours. After 72 hours, 
resazurin was added (100 µM final concentration) to each well, 
and the plates were gently rocked for 1 minute and then incu-
bated for 3 hours prior to reading. Each plate was read for fluo-
rescence at excitation, 560 nm, and emission, 590 nm, 
wavelengths using a SpectraMax M5 and corresponding 
SpectraMax X5 software (SpectraMax). Cellular response to 
treatment was determined by subtracting signal from corre-
sponding empty wells and then normalized to corresponding 
untreated cells. Determination of additive or synergistic 
responses between CX-4945 and AZD6244 was performed 
using the CompuSyn software.20 Combination index (CI) val-
ues from the CompuSyn analysis were then used to build heat 
maps. Three biological replicates of all viability assays were 
performed and were assessed for outliers using a Dixon Q-test. 
Data were analyzed using Prism Version 7.00 (GraphPad).

Generation of miRNA and mRNA expression 
datasets

Messenger RNA and miRNA expression levels were measured in 
growing NSCLC cell lines using Affymetrix U133 2.0 microar-
rays (GSE31625) and TaqMan cards from Applied Biosystems 
(ABI), respectively, using previously published data.9,10 We evalu-
ated interactions among the 1495 mRNA genes10 and 23 
miRNA9 that are significantly perturbed in erlotinib-sensitive 
compared with erlotinib-resistant NSCLC cells using a Feasible 
Solution Algorithm (FSA), as described in the following.

The FSA statistical methodology and interaction 
network analysis

The FSA was used to identify 2-way statistically significant 
interactions using the expression data. There is no attempt to 
derive or infer the direction of these potential interactions. We 
included 1495 mRNA that demonstrated higher expression, 
representing ~800 probeset identifiers (probeID), in the erlo-
tinib-resistant cell lines. We enumerated the possible solutions 
with interacting miRNA (n = 23), regardless of direction of 
expression relative to the mRNA (http://CRAN.R-project.
org/package=rFSA).21

We examined the 100 probeIDs with the highest potential 
of representing a solution (Supplementary Table 1) for further 
biological evaluation by overlaying onto a molecular interaction 
network provided by STRING.22 Using the miRNA-mRNA 
interactions found by the FSA, the Affymetrix probeIDs were 
converted to Ensembl IDs. Files specific to human proteins 
were downloaded from the STRING database v 10.0 for fur-
ther processing.22 Specifically, the Bioconductor v3.0 package23 

http://CRAN.R-project.org/package=rFSA
http://CRAN.R-project.org/package=rFSA
https://journals.sagepub.com/doi/suppl/10.1177/1176935119843507
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for Affymetrix(R) HGU133-plus2 chips (hgu133plus2.db 
v3.0.0) was used to translate Affymetrix (R) probeIDs to gene 
identifiers (symbols, gene names, Entrez IDs, and ENSEMBL 
Proteins) in R v3.3.2 (2016). From ENSEMBL protein IDs, 
the species ID 9606 was added to provide STRING protein 
IDs. The full set of STRING protein-protein interactions 
(PPI) and indirect associations were filtered to those with an 
“experimental” evidence score greater than 400. From this sub-
set, the interactions with the original set of genes and their 
interactors (those genes within one edge or interaction) were 
extracted from the database (full list of initial genes extracted in 
Supplementary Table 2). We were interested in interactions 
G1-X-G2, where G1 and G2 are from our list of proteins and 
X can be any protein that connects G1 to G2 (full list of genes 
comprising the expanded network in Supplementary Table 3). 
For each interaction, only a record that there was an interaction 
between the 2 proteins was kept with no information on the 
number of evidences or the score of the interaction. Within this 
“induced” network (ie, derived subnetwork), communities of 
genes (Supplementary Table 7) were identified using the clus-
ter_walktrap function in igraph 1.0.1.24,25

Availability of data

All codes for network generation and enrichment analysis and 
supplemental files are available for download from figshare at: 
https://figshare.com/s/7e50e9ab2a66b5041451.

Results
A combinatorial analysis of the miRNA and 
mRNA signatures of EGFRI resistance identif ies 
a network of perturbed gene expression related to 
EGFRI resistance

We hypothesized that mRNA and miRNA gene expression 
data from NSCLC cell lines could be used to identify novel 
targets for therapy in lung cancer patients resistant to EGFRI. 
We previously identified 2 independent gene expression sig-
natures of response to EGFRI using a panel of NSCLC cell 
lines demonstrating differential resistance to EGFR inhibi-
tion as measured by a cell death assay.9 The signatures were 
culled from a larger set of differentially regulated mRNA and 
miRNA. Using the larger lists of perturbed gene expressions 
(1495 mRNA and 23 miRNA), we sought to identify new 
potential targets for therapy using statistically significant 
pairs of mRNA and miRNA analyzed with FSA 
(Supplementary Table 1). FSA first evaluates expression lev-
els of random combinations of mRNA and miRNA pairs and 
then exchanges the miRNA component to maximize interac-
tion significance with respect to a model of interaction. The 
algorithm eventually arrives at optimal pairings. Importantly, 
the pairings are based on expression level similarities, not 
transient hydrogen bonding of complementary bases that 
would indicate miRNA targeting of the associated mRNA. 
Each significant mRNA-miRNA pair was filtered based on 

higher mRNA expression in the EGFRI-resistant cell lines to 
find targetable gene products within the context of EGFRI-
resistant tumors. Given this outcome, we hypothesized that 
ideal, new druggable targets for EGFRI-resistant NSCLC 
may depend on protein interactions with the EGFR signaling 
network. To investigate this hypothesis, we used the mRNA-
derived gene list identified by FSA as optimal protein-coding 
genes to find additional proteins that physically interact with 
both the candidate(s) and EGFR.

The 100 mRNA probe IDs with the highest significance 
(low Prob > F, Supplementary Table 1) were identified by 
FSA. These 100 probes were translated into 85 Ensembl 
IDs that demonstrated matches in the STRING v10 net-
work of PPIs.22 To broaden the network, we included EGFR 
as a node to triangulate the interactions around EGFRI 
resistance. We carried out the protein network expansion 
analysis, using the scenario G1-X-G2 wherein G1 and G2 
were proteins from the original list of 85 Ensembl IDs, 
while X could be any new protein entity. The “induced” net-
work contained 81 of the 85 original proteins (Supplementary 
Table 3). However, 304 additional nodes were found (for a 
total of 385 proteins) that fit in the G1-X-G2 network 
(Supplementary Table 3).

To identify candidate drug targets from the network for fur-
ther study, we retained proteins that with the greatest number 
of edges within the induced network and possessed an enzy-
matic activity that could be inhibited with an existing pharma-
cological agent (Figure 1; genes listed in Table 1). We then 
selected several proteins with potential as therapeutic targets to 
be evaluated in NSCLC cells (Figure 2D).

CK2 inhibition reduces viability in KRAS-active 
NSCLC

From the bioinformatics search of perturbed mRNA expres-
sion in KRAS-active cells, we found that CK2 may be a novel 
target in EGFRI-resistant NSCLC harboring KRAS-
activation mutations. To investigate whether modulation of 
CK2 activity impacts viability of KRAS-active cells, we per-
formed a viability assay with the CK2 small molecule inhibi-
tor, CX-4945. These experiments demonstrated decreased 
viability of KRAS-active NSCLC cells in the presence of 
CX-4945. Specifically, in A549 and H460 cells, we observed 
approximately 50% cell viability compared with untreated cells 
after 72 hours of treatment with 30 µM CX-4945 (Figure 2A). 
We also sought to test the activity of CX-4945 in another 
genetic context. To do this, we treated 2 different EGFRI-
sensitive cell lines, H1650 and PC9. In H1650 cells, viability 
also decreased by approximately 50% after 72 hours of treat-
ment with CX-4945 (Figure 2B). In PC9 cells, the maximal 
response to 72 hours of treatment with 30 µM of CX-4945 
was approximately 75% to 80%. Because treatment with 
CX-4945 as a single agent was not sufficient to completely 
impair cell viability in either cell line population, we next 

https://journals.sagepub.com/doi/suppl/10.1177/1176935119843507
https://journals.sagepub.com/doi/suppl/10.1177/1176935119843507
https://journals.sagepub.com/doi/suppl/10.1177/1176935119843507
https://journals.sagepub.com/doi/suppl/10.1177/1176935119843507
https://figshare.com/s/7e50e9ab2a66b5041451
https://journals.sagepub.com/doi/suppl/10.1177/1176935119843507
https://journals.sagepub.com/doi/suppl/10.1177/1176935119843507
https://journals.sagepub.com/doi/suppl/10.1177/1176935119843507
https://journals.sagepub.com/doi/suppl/10.1177/1176935119843507
https://journals.sagepub.com/doi/suppl/10.1177/1176935119843507
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aimed to identify a second target within, or related to, the net-
work containing CK2 that might have additive activity.

Inhibition of CK2 and the EGFR-RAS-MAPK 
cascade displays synergy in apoptotic induction in 
KRAS-active cell lines

Using the induced network members (n = 366) that are within 
one edge of CK2 (CK2α/CK2α′ [CSNK2A1/CSNK2A2]), 

we asked whether any member of the KRAS-MAPK cascade 
was included in the induced network (Supplementary Table 4). 
Unexpectedly, CK2α and CK2α′ do not directly interact with 
any of the members of the EGFR-RAS-MAPK signaling cas-
cade (Supplementary Table 4). Specifically, all members of the 
EGFR-RAS-MAPK signaling cascade identified by FSA 
(HRAS, KRAS, NRAS, MAPK1, RAF1) were 2 edges from 
CK2α/CK2α′ (Supplementary Table 5). To focus selection  
of a secondary target that might inhibit the activity of the 

Figure 1.  The G1-X-G2-induced network contains proteins involved in EGFRI resistance. The network of protein-protein interactions was simplified into 

communities of related proteins using the cluster_walktrap function in igraph. Putative community activities were determined by manual data mining and 

literature search. (A) Complete network of communities. (B) Magnification of central communities with putative actions and known EGFRI resistance 

mechanisms highlighted. EGFRI indicates epidermal growth factor receptor inhibitor.

https://journals.sagepub.com/doi/suppl/10.1177/1176935119843507
https://journals.sagepub.com/doi/suppl/10.1177/1176935119843507
https://journals.sagepub.com/doi/suppl/10.1177/1176935119843507
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EGFR-MAPK-ERK pathway without targeting the EGFR 
receptor, we consulted the literature. Resistance to the CK2 
inhibitor, CX-4945, has been demonstrated in head and neck 
cancers and was shown to be overcome by MEK inhibition.26 
Importantly, CK2α/CK2α′ are in separate network communi-
ties from other members of the RAS-MAPK pathway 
(Supplementary Table 7). These data suggest that CK2 func-
tions independent of the MAPK-ERK cascade and combined 
inhibition may lead to increased cell death in KRAS-active 
NSCLC. We then evaluated whether KRAS-active, EGFRI-
resistant cells demonstrated decreased viability when treated 
with a combination of CK2 and MEK inhibition when com-
pared with CK2 inhibition alone.26,27

We first escalated the concentration of the CK2 inhibi-
tor, CX-4945, in combination with a constant concentration 
of the MEK inhibitor, AZD6244. We observed induction of 
apoptosis in A549 and H460 cells by western blot analysis 
using cleaved PARP as an apoptotic marker (Figure 3). Both 
KRAS-active cell lines examined demonstrated elevated 
levels of cleaved PARP at the higher concentrations of 
CX-4945.

Next, we screened A549 and H460 cells to determine 
whether treatment with a combination of CX-4945 and 
AZD6244 resulted in a synergistic response in a cell viability 
assay (Figure 4). Moderate synergistic activity was observed 
between the CX-4945 and the AZD6244 inhibitors at a con-
centration of 3 μM and above in both KRAS-active cell lines 
(Figure 4; upper left quadrant).

Collectively, these data demonstrate that an intentional 
approach of coupling the biological phenotypes of drug sensi-
tivity and gene expression levels using bioinformatics analysis 
focused on integrating potential and known molecular interac-
tions can uncover relevant interactions among genes that can 
be used to select novel protein targets for therapeutic modula-
tion to overcome resistance to EGFRI in NSCLC.

Discussion
Patients who have lung tumors harboring KRAS activation or 
other EGFRI-resistance mutations have few therapeutic 
options targeting these genes or signaling cascades once failing 
front line cytotoxic treatment. Newer options are emerging for 
patients with mutations within EGFR (eg, Osimertinib), but 
new drug targets and treatment strategies are paramount for 
lung cancer patients with other, non-EGFR mutations. The 
goal of this study was to leverage existing gene expression signa-
tures linked by disease and drug response phenotypes and to use 
a combination of statistical and computational methods to 
identify interacting pairs of mRNA:miRNA that then yield rel-
evant PPIs.22 The prior work of Ma and colleagues in addition 
to other groups have indicated that pairing expression levels of 
RNA species in specific disease states may lead to an improved 
understanding of the disease.14,15 We used the Feasible Solutions 
Algorithm to identify statistically interacting pairs of mRNA 
and miRNA linking KRAS activation and EGFRI response  
to seed the generation of an induced molecular interaction  
network that would generate potential pharmacologically 

Table 1.  Induced network members that interact directly with CK2α or CK2α′ and have available pharmacological inhibitors.

Symbol Gene name Type

AKT1 v-akt murine thymoma viral oncogene homolog 1 Induced

CDK1 Cyclin-dependent kinase 1 Induced

CSNK2A1 Casein kinase 2, alpha 1 polypeptide Induced

CSNK2A2 Casein kinase 2, alpha prime polypeptide Induced

CTNNB1 Catenin (cadherin-associated protein), beta 1, 88 kDa Induced

HDAC1 Histone deacetylase 1 Induced

HSP90AA1 Heat shock protein 90 kDa alpha (cytosolic), class A member 1 Induced

HSP90AB1 Heat shock protein 90 kDa alpha (cytosolic), class B member 1 Induced

HSP90B1 Heat shock protein 90 kDa beta (Grp94), member 1 Induced

PSMA3 Proteasome subunit alpha 3 Induced

PSMA4 Proteasome subunit alpha 4 Induced

PTEN Phosphatase and tensin homolog Input

SIRT1 Sirtuin 1 Induced

SRC SRC proto-oncogene, non-receptor tyrosine kinase Induced

Table members are from the complete network of 385 proteins that interact with CK2α or CK2α′ within one edge (Supplementary Table II-4, Appendix II). Abridged table 
members below represent those for which both pharmacological inhibitors exist and have at least entered Phase I clinical trials.

https://journals.sagepub.com/doi/suppl/10.1177/1176935119843507
https://journals.sagepub.com/doi/suppl/10.1177/1176935119843507
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actionable targets linking these 2 molecular phenotypes. We 
focused on the protein-coding genes as drug targets, rather than 
the miRNA partner of the pair. The limitation of FSA in this 
experiment is that not all pharmacologically actionable proteins 
that contribute to tumorigenesis are captured because we 
required that the genes of interest be upregulated in KRAS-
active cells or tumors. To allow for additional protein targets, we 
included proteins in a G1-X-G2 relationship with a protein in 
the original network (G1 and G2).28 Our logic in doing so was 
that we would expect that proteins/enzymatic functions that 
joined multiple signaling cascades providing a linchpin, of sorts, 
would be captured.

We then identified many proteins previously shown to have 
a role in EGFRI resistance in NSCLC (Communities 2 and 4, 
Supplementary Table 7) and a number of novel putative targets 
(Supplementary Table 7). By expanding the initial network, we 
found CSNK2A1 and CSNK2A2, which encode the kinase 
subunits of protein kinase CK2 (also known as CK2). Casein 

kinase 2 has been described as a protein that can modulate the 
activities of many proteins in both EGFRI-resistant and -sen-
sitive NSCLC, notably including nuclear factor κΒ (NFκ-β) 
and PI3K/AKT.29 Moreover, no oncogenic mutations have 
been found in CK2 kinase subunits, but deregulation of the 
activity of this kinase by other mechanisms might contribute to 
the oncogenic process.30

EGFRI-resistant, KRAS-active NSCLC cells were found 
to be moderately sensitive to CK2 inhibition (Figure 2A). In 
comparison, we found that PC9 cells, which harbor an 
EGFR-activating deletion mutation, were resistant to 
CX-4945. Interestingly, H1650 cells, which contain an 
EGFR-activating mutation but display intermediate sensitiv-
ity to EGFRI, responded to CX-4945-like KRAS-active 
A549 and H460 cells (Figure 2B). H1650 cells also contain a 
PTEN mutation, and CK2 was identified as a possible target 
for overcoming PTEN-null mutations, potentially explaining 
this observation.31

CELL LINE
EGFRI  
Resistance 
Status

EGFR  
Mutation 
Status

KRAS  
Mutation 
Status

PI3K/AKT 
Mutations 
Status

A549 Resistant WT G12S (Active) WT

H460 Resistant WT Q61H 
(Active)

PIK3CA 
E545K (Null)

H1650 Intermediate Exon 19 Del 
(Activating) WT PTEN Null 

(Activating)

PC9 Sensitive
Exon 19 Dele-
tion (Activat-
ing)

WT WT

Figure 2.  NSCLC cells resistant to EGFRI are most responsive to CK2 inhibition. Viability assays were performed on NSCLC treated with CX-4945 (A) 

KRAS-active, EGFRI-resistant NSCLC (A549 and H460 cells) treated with CX-4945. (B) EGFR-sensitive H1650 cells and PC9 cells. Values are log-

transformed (n = 3). (C) Tabular depiction the EGFRI resistance and mutational statuses of each NSCLC analyzed.

https://journals.sagepub.com/doi/suppl/10.1177/1176935119843507
https://journals.sagepub.com/doi/suppl/10.1177/1176935119843507


Gober et al	 7

Because none of the cell lines tested were exquisitely sensi-
tive to single-agent CK2 inhibition, regardless of EGFRI sen-
sitivity, we suspected that our original hypothesis that a single 
protein that was upregulated in EGFRI-resistant cells and 
intersected the EGFR signaling cascade was short-sighted. To 
address this concern, we looked for a second target that, when 
inhibited, would reduce viability when combined with inhibi-
tion of CK2. The KRAS-activation mutation drives RAS-
MAPK signaling, but we observed in the induced network that 
not all of the RAS-MAPK signaling cascade members were 
represented or directly connected to CK2 as we might expect. It 
is also possible that the RAS-MAPK cascade operates parallel 
to CK2 activity and that combining CK2 inhibition with a 
MAPK pathway inhibitor may overcome compensatory viabil-
ity signaling. This hypothesis was also founded with the knowl-
edge that MEK inhibition has been used to overcome CX-4945 
resistance in head and neck cancers.26 Furthermore, our lab and 
others previously demonstrated that inhibition of MEK, 

concurrently with EGFR inhibition, reduces viability in 
NSCLC with EGFR T790M.27,32 In experiments presented 
here, we showed that treatment of KRAS-active NSCLC with 
AZD6244 and CX-4945 increased markers of apoptosis in a 
dose- and time-dependent manner. Combination of CK2 and 
MEK inhibition was moderately synergistic and with further 
validation may represent a novel approach for the treatment of 
EGFRI-resistant, KRAS-active NSCLC. We plan to validate 
this observation by assessing viability in a panel of genomically 
diverse NSCLC cells treated with the combination to deter-
mine whether these observations are consistent in other KRAS-
active, or parallel-pathway, mutant NSCLC cells. A limitation 
of this study is limited screening of cells lines with PTEN, 
PIK3CA, or BRAF mutations, which may have further illumi-
nated mechanism of action.

Our approach used existing genomic and drug response data 
from NSCLC cell line models to identify and screen new drug 
targets with novel approaches that combine statistical and 
graph-computational methods. These methods can be applied 
to other model systems and allows for disease- or genetic-spe-
cific drug discovery. Using gene expression phenotypes of a spe-
cific oncogenic driver mutation in NSCLC, we developed a 
strategy that bypasses the presence of single, activating muta-
tions in EGFR and KRAS as primary therapeutic targets and 
focuses on downstream proteins that integrate multiple signal-
ing cascades and may represent a novel therapeutic approach for 
treating a variety of NSCLC tumors. We continue to evaluate 
additional candidates that lie downstream of KRAS and EGFR 
in NSCLC.

Conclusions
In many clinical settings, cancer can become a chronic disease 
with existing therapeutic interventions. In others, new thera-
pies and therapeutic strategies that elicit durable benefit are 
needed for optimal patient care and management of emerging 
resistant diseases. We have demonstrated that gene expression 
signatures descriptive of specific tumor phenotypes can be used 
to identify candidate targets for new therapeutics or co- 
therapeutic methodologies. By combining an FSA statistical 
interaction detection method with an induced subgraph crea-
tion method using known molecular interactions from 
STRING, we derived a network of proteins based on perturbed 
gene expression in EGFRI-resistant NSCLC. From this net-
work, we identified and tested CK2α/CK2α′ as a therapeutic 
target for the treatment of EGFRI-resistant NSCLC. Casein 
kinase 2 inhibition alone did not substantially decrease cell 
viability. The induced target network suggests that RAS-
MAPK signaling and CK2 activity could function exclusively 
of one another, which directed us to examine the impact of 
combinatorial CK2 and MEK inhibition. We believe that the 
combination of MEK and CK2 inhibition could have impor-
tant implications for the treatment of KRAS-active NSCLC 
and has potential as an alternative therapy for EGFRI-resistant 

Figure 3.  Treatment with CX-4945 and MEK1 inhibitor, AZD6244, 

induces cleaved PARP in KRAS-active NSCLC. (A) A549 cells and (B) 

H460 cells. Cells were treated as described, and adherent and 

nonadherent cells were harvested for total protein. Cell death was 

measured by western blot analysis using the apoptotic marker, cleaved 

PARP. Phosphorylated and total MEK and CK2a were also measured. 

α-tubulin loading control is representative.
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tumors following further validation in a genomically diverse 
panel of NSCLC cell lines. We also seek to improve this novel 
pipeline for drug discovery by automating a process that uses 
gene expression signature as inputs and objectively leverages 
bioinformatics filtering of prospective targets to minimize wet 
lab validation.
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