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ABSTRACT OF THESIS  

 

 

 

 

MAGNETO-OPTICAL PROPERTIES 

OF THIN PERMALLOY FILMS: 

A STUDY OF THE MAGNETO-OPTICAL GENERATION  

OF LIGHT CARRYING ANGULAR MOMENTUM 

 

Magneto-optical materials such as permalloy can be used to create artificial spin-

ice (ASI) lattices with antiferromagnetic ordering. Magneto-optical materials used 

to create diffraction lattices are known to exhibit magnetic scattering at the half-

order Bragg peak while in the ground state. The significant drawbacks of studying 

the magneto-optical generation of OAM using x-rays are cost, time, and access to 

proper equipment. In this work, it is shown that the possibility of studying OAM 

and magneto-optical materials in the spectrum of visible light at or around 2 eV is 

viable. Using spectroscopic ellipsometry it is possible to detect a change in the 

magnetization of thin permalloy films with thicknesses between 5 and 20 nm. 

Patterns consistent with OAM were found at 1.95 eV using a square lattice with a 

4𝜋 radial phase shift in the antiferromagnetic ground state. Evidence of magnetic 

scattering at the half-order Bragg peak using 1.95 eV was also found.  

  

KEYWORDS: Orbital Angular Momentum, OAM, Magneto-Optical Kerr Effect,  

Magnetic Scattering, Permalloy, Artificial Spin-Ice 
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Chapter 1: Introduction 

The study of magneto-optics began in the late 1800’s, when John Kerr discovered 

the magneto-optical Kerr effect (MOKE) and Woldemar Voight discovered the Voigt 

effect. [1] The MOKE was studied in permalloy (Py) throughout the 20th century after its 

invention by Gustav Elmen between 1913 and 1916. [2] Modern research is investigating 

the magneto-optical generation of light carrying orbital angular momentum (OAM). 

Researchers are currently using x-rays to study OAM. This work hypothesizes that x-ray 

wavelengths of light are not required, and that the possibility exists to study this 

phenomenon using visible wavelengths of light (370 to 1000 nm). 

 

1.1 Current Research 

Current research is being performed by X. M. Chen et al. in order to study the 

effects of square lattice antiferromagnetic (AF) artificial spin-ice (ASI) structures on light 

with a wavelength of 500 eV (~2.48 nm). [3] The 500 eV light used in the experiments 

carried out by Chen is generated using a synchrotron. The square lattice structures are 

created using magneto-optical materials such as Py. The segments of the square lattice 

(see figure 1.1) make up the artificial spin-ice of the structure. In the AF ground state, the 

AF lattice is twice the structural lattice of the pattern. [3] The difference in the AF lattice 

period is responsible for magnetic scattering of 500 eV light incident on the samples. [4] 

When the square lattice structure is magnetized in plane the ASI structure changes 

in response to magnetization. [4] Figure 1.2 shows a 3 nm thick Py lattice magnetized in 

plane and imaged using photoemission electron microscopy. [3] The effects of 



2 

 

magnetization on the sample can be seen in figure 1.2 with respect to the bright and dark 

segments of the pattern. 

 

 

Figure 1.1: This figure shows a cartoon of a square artificial spin-ice structure in the 

antiferromagnetic ground state. [3] The antiferromagnetic lattice spacing is twice that of 

the structural lattice spacing. Figure courtesy of J. T. Hastings, X. M. Chen, et al. [3] 

 

 

Figure 1.2: This figure shows a square artificial spin-ice structure magnetized in plane 

imaged using photoemission electron microscopy. [3] The dark and bright artificial spin-

ice segments show the magnetization of the structure. Figure courtesy of J. T. Hastings, 

X. M. Chen, et al. [3] 
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Forked diffraction gratings are known to impart OAM on light in the x-ray 

spectrum (100 eV to 100 keV). [4] X. M. Chen et al. have combined forked diffraction 

gratings with square lattice antiferromagnetic artificial spin-ice structures in order to 

created two-dimensional diffraction gratings such as the one shown in figure 1.3. The 

study of these patterns using x-rays has yielded results consistent with both OAM and 

magnetic scattering due to the magneto-optical properties of Py. [3, 4] Magnetizing the 

two-dimensional forked diffraction patterns changes the AF state of the ASI, resulting in 

the manipulation of any OAM present in the half-order Bragg peak. [4] Positive OAM 

results from the pattern in figure 1.3 can be seen in figure 1.4. 

 

 

Figure 1.3: This figure shows a “square lattice with a 4𝜋 radial phase shift in the 

antiferromagnetic ground state,” X. M. Chen et al. [3] The same pattern was used in the 

experiments carried out in this work. Figure courtesy of J. T. Hastings, X. M. Chen, et al. 

[3] 
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Figure 1.4: This figure shows the structural Bragg peaks at 500 eV (~2.48 nm). [3] The 

pattern was taken off of the Fe L-edge resonance. [4] The bright rings with a center null 

show evidence of OAM using x-ray wavelengths. Figure courtesy of J. T. Hastings, X. M. 

Chen, et al. [3] 

 

1.2 Brief Conceptualization of Thesis 

This work aims to shift some of the study of the magneto-optical generation of 

light carrying OAM from the x-ray spectrum to the visible spectrum of light. By using 

visible light, it may be possible to study this phenomenon in a standard lab rather than in 

a specialized lab using a synchrotron to provide an x-ray beam. This shift will provide 

multiple benefits to the researcher including reduced cost, more time in the laboratory 

with the sample, improving the ease of finding OAM diffraction patterns with the naked 

eye, and direct access to the sample while imaging.  
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 A vortex beam is created when imparting OAM to light. A vortex beam rotates 

about the axis of propagation as shown in figure 1.5. [5, 6] The rotation of light about its 

axis of propagation causes destructive interference in the center of the beam. [6] The 

optical vortex is caused by the null created in the center of the beam. [6] A vortex beam 

takes the form of a bright ring of light with a center null when projected onto a flat 

surface. [4, 5, 6]  

 

 

 

Figure 1.5: An example of the vector field of a vortex beam rotating about the axis of 

propagation when viewed parallel to the axis of propagation. In this figure the axis of 

propagation is perpendicular to the xy plane at the origin. The arrows represent the 

direction of the vector field at each point. The color represents the intensity of the light 

generated by the beam. The blue arrows represent where the null will be present due to 

destructive interference. The orange and yellow arrows represent where the bright ring 

will be due to constructive interference. 

x 

 

 

 

 

        y 
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It is known from previous work by X. M. Chen et al. that two-dimensional forked 

diffraction gratings generate intensity patterns consistent with OAM in the 500 -700 eV 

range. [3, 4] This work aims to determine the validity of creating a vortex beam in the 

visible spectrum of light using a two-dimensional square lattice with a 4𝜋 radial phase 

shift in the antiferromagnetic ground state such as the one shown in figure 1.3. [3] 

Imaging a pattern caused by a vortex beam diffracted from this structure will show that it 

is possible to create intensity patterns consistent with OAM in the visible spectrum of 

light.  

 Magnetic scattering is present in diffraction from magneto-optical materials such 

as Py. It is hypothesized that due to magnetic scattering, a magnetic half-order Bragg 

peak should be present when visible light is incident on a sample such as that shown in 

figure 1.3. It is also hypothesized that the manipulation of the half-order Bragg peak 

should be possible in visible light when the ASI structure is magnetized. If the half-order 

Bragg peak is observed, then magnetizing the structure is expected to result in the 

absence of the half-order diffraction pattern.  

 Additional hypotheses investigated in this work include the expected presence of 

the OAM ring pattern in the half-order peak, and the change in the half-order peak with 

time due to thermal fluctuations and demagnetization. These can only be investigated if 

the previous hypotheses are proved valid.   

 

1.3 Chapter Overview 

 This work contains five chapters. The first chapter is the current chapter, the 

introduction. The introduction briefly describes current research leading up to this work, 



7 

 

orbital angular momentum, and other relevant background information. The introduction 

also includes the conceptualization of this thesis and the hypotheses investigated by this 

work. 

 Chapter 2 describes the experimental methods used to conduct the research 

described in this work. These methods include sputtering, XRR, ellipsometry, spin-

coating, electron beam lithography, and an optical bench setup. Each method is described 

in sufficient detail to inform the unfamiliar reader with enough information to understand 

the methods used at a basic level.  

Chapter 3 provides a detailed description of the experimental procedures used. 

Each experiment, material, and all equipment used are provided in Chapter 3. This 

chapter is written so that each experiment should be repeatable from the information 

provided. The experimental parameters investigated are listed in the end of Chapter 3 in 

section 3.3. 

 Chapter 4 includes the results, analysis, and discussions pertaining to the data 

acquired using the procedures outlined in Chapter 3. The results attained from the 

parameters investigated in section 3.3 are each described in detail in Chapter 4. The 

results from Chapter 4 will be used to draw conclusions based on this work in Chapter 5.     
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Chapter 2: Experimental Methods 

 

2.1 Introduction 

 This chapter discusses the methods used in each of the experiments performed. A 

brief description of each method will be discussed. The equipment used in each 

experimental method is also outlined in the following sections.  

 

2.2 Sputtering Overview 

Sputtering was performed with an AJA International ACT 1800 sputtering 

machine located in the Center for Advanced Materials (CAM) at the University of 

Kentucky, and a Hummer Turbo Sputtering System located in the Center for Nanoscale 

Science and Engineering (CeNSE) at the University of Kentucky. An ionization 

sputtering method was used to deposit thin Py films with an Al capping layer onto Si 

substrates. These sputtering machines use a vacuum chamber with Ar plasma at room 

temperature. 

 Sputtering is made possible by igniting a gas such as Ar to create plasma inside of 

a vacuum chamber. Ions from the plasma are accelerated into a target material such as Py 

or Al. Accelerated ions erode the target material, causing particles of the material to 

detach and travel through the vacuum until contacting a barrier. A thin film can be 

formed by placing a substrate such as Si in the path of the ejected particles of the target 

material. In order to deposit a thin film of uniform thickness, the substrate can be rotated 

in the vacuum chamber during the sputtering process. [7]  
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In order to minimize the time between the deposition of Py and Al, confocal 

sputtering was used for non-patterned samples. Confocal sputtering uses multiple 

sputtering sources aimed at a common focal point in order to deposit multiple layers 

while minimizing contaminants. [7] A direct sputtering method was used for patterned 

samples. Direct sputtering uses one sputtering source aimed directly at the substrate.  

Figure 2.1 shows a cross section example by layer of the sputtered samples used 

in this work. The layers include a Si substrate with a SiO2 oxidation layer, a Py (NiFe) 

thin film, and Al2O3 capping layer.  

 

 

Figure 2.1: Cross section example of samples with Py (NiFe) and Al2O3 deposition. 

Figure not to scale. 

 

2.3 XRR Overview 

 A Brunker D8 Advance Plus was used for the x-ray reflectometry (XRR) 

measurements in this experiment. X-ray reflectometry works by placing a sample on a 

stage, emitting x-rays through a slit at an angle incident to the sample, and then detecting 
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the intensity of the reflected x-rays. [8] Material thickness can be determined by 

measuring the intensity of the reflected x-rays in a range of angles and plotting the 

relationship on a semi-log plot. [8] 

The thickness of a sample is calculated using Bragg’s Law (eqn. 2.1). The semi-

log plot results in a graph with multiple peaks and troughs. The change in the angle 

between two peaks can be represented as the angle 𝜃. In the software used for this 

experiment, the x-axis was represented as 2𝜃, which had to be divided by 2 before using 

it in Bragg’s Law. 

Bragg’s Law was solved for thickness as shown in equation 2.2, where d is the 

thickness of the Py layer, 𝜆 is the wavelength, n is refractive index, and 𝜃 is the angle 

determined graphically.  

 

2𝑑𝑠𝑖𝑛𝜃 = 𝑛𝜆    eqn. 2.1 

 

        𝑑 =
𝑛𝜆

2𝑠𝑖𝑛𝜃
     eqn. 2.2 

 

The graphical data was fit to a model of each sample in Leptos 7 modeling 

software to show an estimated Py thickness. The models used a Si substrate model with a 

SiO2 oxidation layer, and a Py layer. The true Py thickness was calculated using the 

average value of equation 2.2 for each peak-to-peak region of the graph using 

experimental data. 
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2.4 Ellipsometry Overview 

Ellipsometry data was gathered using J.A. Woollam M-2000 and Gaertner L117 

ellipsometers located in the Center for Nanoscale Science and Engineering (CeNSE) at 

the University of Kentucky, and a VASE ellipsometer located in the Micro Nano 

Technology Center at the University of Louisville. Spectroscopic ellipsometry was used 

to acquire data on each sample. Variations of isotropic, anisotropic, and Mueller matrix 

scan types were used to acquire specific data. 

An ellipsometer measures the changes in polarization of the light reflected off of a 

substrate or sample. [9] The polarization state is measured by the Ψ and Δ parameters, 

where Ψ represents an amplitude ratio, and Δ represents the phase difference between s 

and p polarized light. [9, 10, 11] The Ψ and Δ data obtained by the ellipsometer can be 

used to calculate the optical properties (n and k), estimate thickness, and to determine 

other material properties of a sample. [10]  

 Figure 2.2 shows an example of linearly polarized light reflected off of a sample. 

[12] The reflected light undergoes both an amplitude and phase change. [12] As seen in 

the figure, s and p polarized light can be represented by the s and p planes. When the s 

and p phases change, the direction of polarization is changed. The ellipsometer measures 

the phase difference between the reflected s and p polarized light as Δ. 
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Figure 2.2: This figure shows the s and p planes of polarized light. Figure courtesy of 

J.A. Woollam Co. [12] 

 

2.5 Spin-coating Overview 

In order to perform electron beam lithography on a sample, the sample must first 

go through a process called “spin-coating”. Spin-coating includes placing a clean 

substrate into a device called a spin coater. The spin-coater holds the sample in place via 

a vacuum pump. A resist such as PMMA is coated onto the substrate. The spin-coater 

then spins the substrate at a high velocity. The thickness of the desired resist depends on 

the RPM of the spin-coater. The process of spin-coating results in a resist of desired 

thickness on the substrate. 

 

2.6 Electron Beam Lithography Overview  

 Electron beam lithography (EBL) was performed using a Raith EBL in the Center 

for Nanoscale Science and Engineering (CeNSE) at the University of Kentucky. 
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Additional patterned samples were provided from Argonne National Laboratory when the 

Raith EBL at CeNSE was undergoing maintenance.  

 Electron beam lithography works by inserting a substrate coated with a resist 

material such as PMMA into a vacuum chamber. A pattern is uploaded into the EBL 

software. Dose, dwell time, and beam current are set with respect to the desired results. 

The EBL then “prints” the pattern by using a highly focused electron beam to bombard 

the resist material with electrons. [13] The electron exposure modifies the solubility of 

the resist material. [13] 

 Once the sample has been “printed” by the EBL, it is inserted into a developing 

solution. The developing solution dissolves the exposed resist, leaving the desired pattern 

in the resist material. The sample can then undergo a metal deposition in a process such 

as sputtering. The deposited material will adhere to the resist, and the substrate. The 

sample is then placed in a solution to dissolve the remaining resist material in a process 

called “lift-off.” After lift-off, the remaining metal deposition will be in the form of the 

desired pattern. Figures 2.3 and 2.4 show a cartoon of this process, as well as a developed 

sample from this experiment.  
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Figure 2.3: This figure shows a cross section of a sample undergoing the EBL procedure. 

A) First the substrate undergoes spin-coating to obtain a 100nm PMMA layer. B) The 

sample is then placed into the EBL, where the desired pattern is printed onto the sample. 

Once removed from the EBL, the pattern is developed and the PMMA in the developed 

area is removed. C) The sample undergoes Py (NiFe) and Al deposition through a 

process such as sputtering. The Al will oxidize and form Al2O3. D) The remaining PMMA 

is removed. The Py and Al depositions remain in the developed area. The result is a 

deposition that is in the form of the desired pattern. Figures are not to scale. 
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Figure 2.4: This figure shows a sample after the EBL and development procedures. The 

right side of the figure shows the PMMA resist with the developed pattern. The left side of 

the figure shows the substrate with Py and Al deposition post lift-off. 

 

2.7 Using an Optical Bench Set-up to Detect OAM and Half-order Diffraction 

 A Thorlabs TLS001-635 635 nm laser and a Point Grey GS3 camera were set up 

on an optical bench. The camera was connected to Spinnaker SDK software to capture 

the diffracted image. The laser was focused onto a patterned sample using a 200mm focal 

length lens. The diffracted light was captured by the camera in order to look for orbital 

angular momentum (OAM). The bench set-up is shown in figure 2.5. 

In order to detect the half-order Bragg peak, the estimated angle was calculated by 

solving the grating equation (eqn. 2.3) for the angle of diffraction (eqn. 2.4). The camera 

was rotated to the estimated angle and adjusted accordingly to look for the diffracted light 

pattern. 
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𝑛𝜆 = 𝑑(𝑠𝑖𝑛𝜃𝑖 + 𝑠𝑖𝑛𝜃𝑑)     eqn. 2.3 

 

𝜃𝑑 = 𝑠𝑖𝑛−1 (
𝑛𝜆

𝑑
− 𝑠𝑖𝑛𝜃𝑖)     eqn. 2.4 

 

 In equations 2.3 and 2.4 n is the diffraction order, 𝜆 is the wavelength, d is the 

distance between elements in the pattern, 𝜃𝑖 is the angle of incidence, and 𝜃𝑑 is the angle 

of diffraction.  

 

 

Figure 2.5: This figure shows the optical bench set up consisting of the laser, focusing 

lens, sample, and camera. Figure not to scale. 
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Chapter 3: Experimental Procedure 

 

3.1 Introduction 

The procedures used in each part of this research are outlined in this chapter. 

Substrate and Py material models were created for use in experiments. The thickness and 

optical parameters of samples were determined by fitting material models to experimental 

data. These models were also used to compare the magneto-optical effects of Py on 

visible light.   

 After establishing the optical properties of the materials used in this research, the 

effects of magnetization on the magneto-optical properties of Py on visible light were 

investigated. Thin Py films were magnetized and the phase differences of polarized 

visible light reflected off of samples pre and post magnetization were measured. The 

Voigt parameter (Q) and the permittivity matrix for Py were investigated using 

experimental data.  

 Py OAM patterns were created on Si substrates using electron beam lithography. 

A laser was pointed at the Py patterns in order to produce diffraction patterns. The 

diffraction patterns were imaged using a photodetector camera. Diffraction patterns 

indicating orbital angular momentum were studied. The half order diffraction patterns 

were investigated. 

 

3.2 General Procedure 

 First, an experimentally based substrate model was created in order to maintain 

consistent, accurate, and reliable sample models for use in both ellipsometry and x-ray 
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reflectometry experiments. A 0.525 mm Si (100) wafer was used as a base substrate. Si 

oxidizes and forms a SiO2 layer when exposed to oxygen. Si and SiO2 must be accounted 

for in order to create an accurate substrate model.  

 The substrate was divided into multiple 1 cm2 samples. Three of the divided 

samples were randomly selected. The thickness of the SiO2 layer was measured using a 

J.A. Woollam M-2000 ellipsometer located in the Center for Nanoscale Science and 

Engineering (CeNSE) at the University of Kentucky. 

 A spectroscopic scan was performed on each of the three random samples. These 

samples are referred to as samples 1, 2 and 3. The SiO2 measurements of each sample can 

be found in table 3.1. The average SiO2 thickness of these samples was calculated as 

2.076 nm with a variance of 0.015 nm. The error was given by the VASE software.  

 

Table 3.1: Thickness measurements of SiO2 used to create a substrate model. Note: The 

values reported in tables are rounded to three significant figures. Therefore, some 

numbers in tables may appear slightly different that the numbers used to create 

experimental models. 

 Estimated Si 

thickness (mm) 

Measured SiO2 

thickness (nm) 

Error 

(nm) 

Sample 1 0.525 2.22 0.00255 

Sample 2 0.525 2.01 0.00243 

Sample 3 0.525 2.00 0.00249 

Average 0.525 2.08 0.00249 

Variance 0 0.015 3.6E-9 

 

 

The substrate model was created using VASE modeling software which contained 

layer models for both Si and SiO2. The thickness of the Si model layer was fixed to 0.525 
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mm. Due to light absorption in Si, a 0.525 mm wafer can be considered semi-infinite with 

regard to its optical parameters. In the VASE modeling software there is no change in the 

Si layer model with a thickness greater than 10−3 nm. Because the Si substrate exceeded 

10−3 nm, using 0.525 mm was sufficient for use in the Si layer model without measuring 

the exact thickness.  

 A fixed 2.076 nm SiO2 layer was overlaid on a fixed 0.525 mm Si layer. The 

composite substrate model was saved for future use. While the exact SiO2 thickness may 

vary for each sample, the model is reasonable because the 0.015 nm variance does not 

create a significant change in the optical properties of the model. 

Next, three Si substrates were sputtered with Py in an AJA International ACT 

1800 sputtering machine. These samples are referred to as samples 4, 5, and 6. The 

sputtering conditions for each sample were identical and are listed in table 3.2.  

 

Table 3.2: Sputtering conditions of samples 4, 5, and 6. 

 Height 

(mm) 

Rotation Time 

(s) 

Pressure 

(mTorr) 

Power 

(W) 

Strike 5 On 120 5 30 

Pre-sputter 5 On 120 3 30 

Deposition 5 On 900 3 30 

 

 

 The VASE modeling software used with the J.A. Woollam M-2000 ellipsometer 

did not contain a Py model that sufficiently matched the optical characteristics of the Py 

used. In order to create a new material model in VASE, the thickness of the sample 

material must be known. The deposition rate of Py in the sputtering machine was not 

known, so an alternate method was needed to determine the thickness of the Py samples.  
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X-ray reflectometry was used to measure the thickness of the samples 4, 5, and 6. 

The first sample was placed onto the stage of the x-ray reflectometer. A 0.1 mm Cu filter 

was inserted in front of the x-ray emitter. The stage was positioned so that half of the x-

rays from the emitter collided with the sample at 𝜃 = 0°, where 0° is in the sample plane. 

After reflecting from the sample, the x-rays passed through a 0.1 mm slit before entering 

a detector. The intensity was measured between 0° and 2.5° with respect to the sample 

plane.  

The intensity was plotted with respect to 2𝜃, where 2𝜃 is twice the angle at which 

the intensity was measured. Figure 3.1 shows the semi-log plot of x-ray intensity vs. 2𝜃 

along with various parameters of the XRR scan of sample 6. The thicknesses of the 

samples were calculated using Bragg’s Law (eqn. 2.2) as discussed in Section 2.3 of 

Chapter 2. The Py deposition rate was then calculated in order to accurately deposit 

known film thicknesses in future experiments.   
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Figure 3.1: Sample 6 thickness measurements and semi-log plot using XRR. 

 

 After measuring the Py sample thicknesses, it was possible to create a Py material 

model in the VASE software. Sample 4 was spectroscopically scanned by the M-2000 

ellipsometer from 45 to 85 degrees to gather Ψ and Δ experimental data. The 

experimentally created substrate model was used for the sample 4 substrate model. A Py 

dummy layer was placed on top of the substrate model. The thickness of the Py dummy 

layer was fixed based on the measured thickness from the x-ray reflectometry 

experiment. The Lorentz Oscillator parameters of the Py dummy layer were allowed to 

vary and were fit to the experimental data. The optical properties, n and k, were then 

calculated from the Lorentz Oscillator parameters within VASE. This procedure was 

repeated for samples 5 and 6. The average n and k values of samples 4, 5, and 6 were 

used to create an optical model for Py in VASE. 
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Four new substrates were sputtered with Al in the AJA International ACT 1800 

sputtering machine. These samples are referred to as samples 7, 8, 9, and 10. The 

sputtering conditions for each sample were identical with the exception of time and are 

listed in table 3.3. 

 

Table 3.3: Sputtering conditions of samples 7, 8, 9, and 10. 

 Height 

(mm) 

Rotation Time 

(s) 

Pressure 

(mTorr) 

Power 

(W) 

Strike 5 On 120 5 30 

Pre-sputter 5 On 120 0.5 30 

Deposition 5 On Varies 0.5 30 

 

 

The thickness of the sputtered Al and Al2O3 in each sample was measured using 

the M-2000 ellipsometer and the VASE modeling software. Sample 7 was placed on the 

stage of the ellipsometer. A spectroscopic scan from 45 to 85 degrees was performed. 

The VASE modeling software contained layer models for both Al and Al2O3. The Al2O3 

layer is necessary due to the rapid oxidation of the thin Al layer. The Al2O3 model layer 

was overlaid on the Al model layer. The resulting composite layer was overlaid on the 

experimentally based substrate model.  

Estimates of the Al and Al2O3 thicknesses were entered into the VASE model. 

The thicknesses of the Si and SiO2 substrate were fixed, and the Al and Al2O3 thicknesses 

were allowed to vary. A normal fit was performed in order to fit the optical properties of 

the model to the experimental data. The resulting fit showed the estimated thickness 

measurements of Al and Al2O3 for sample 7. This procedure was repeated for samples 8, 
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9, and 10. The Al deposition rate was then calculated in order to accurately deposit 

known film thicknesses in future experiments.   

 Based on the calculated deposition rates of Py and Al, Py films of approximately 

20, 10, and 5 nm with a 3 nm Al capping layer were deposited onto three new substrates. 

These samples are referred to as samples 11, 12, and 13 respectively, and the deposition 

conditions of these samples and thickness measurements can be found in table 3.4. 
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Table 3.4: Sputtering deposition conditions and thickness measurements of samples 11, 

12, and 13. Note: The Al deposition thickness measured in the table consisted of entirely 

Al2O3 due to the complete oxidation of the Al layer.  

 Height 

(mm) 

Rotation Time 

(s) 

Pressure 

(mTorr) 

Power 

(W) 

Estimated 

Thickness 

(nm) 

Measured 

Thickness 

(nm) 

Sample 11        

Py Strike 5 On 120 5 30 - - 

Py Pre-

sputter 

5 On 120 3 30 - - 

Py 

Deposition 

5 On 880 3 30 20.0 20.8 

Al Strike 5 On 120 5 30 - - 

Al Pre-

sputter 

5 On 120 0.5 30 - - 

Al 

Deposition 

5 On 125 0.5 30 3.00 1.42 

        

Sample 12        

I 5 On 120 5 30 - - 

Py Pre-

sputter 

5 On 120 3 30 - - 

Py 

Deposition 

5 On 440 3 30 10.0 11.5 

Al Strike 5 On 120 5 30 - - 

Al Pre-

sputter 

5 On 120 0.5 30 - - 

Al 

Deposition 

5 On 125 0.5 30 3.00 1.56 

        

Sample 13        

Py Strike 5 On 120 5 30 - - 

Py Pre-

sputter 

5 On 120 3 30 - - 

Py 

Deposition 

5 On 220 3 30 4.99 6.59 

Al Strike 5 On 120 5 30 - - 

Al Pre-

sputter 

5 On 120 0.5 30 - - 

Al 

Deposition 

5 On 125 0.5 30 3.00 1.58 
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In order to verify the calculated deposition rates and the Py material model in 

VASE, the thicknesses of samples 11, 12, and 13 were measured using the M-2000 

ellipsometer. Sample 11 was measured using a spectroscopic scan to gather experimental 

data. A model was constructed in VASE using the experimentally created substrate 

model, a Py layer, an Al layer, and an Al2O3 layer. The thickness estimates of each layer 

(listed in table 3.4) were entered into the model, with an estimated Al layer of 0 nm and 

Al2O3 layer of 3 nm for each model. The Al layer was estimated to be 0 nm because full 

oxidation of the thin Al layer was expected. The substrate thickness was fixed and the Py, 

Al, and Al2O3 thicknesses were allowed to vary. A normal fit was performed, fitting the 

optical properties of the model to the experimental data. This procedure was repeated for 

samples 12 and 13. The thickness measurements for each layer were reasonable based on 

the calculated deposition times. The Py layers were within 2 nm of estimated values, 

which is sufficient for the parameters studied.  

The next step was to study the magneto-optical effects of Py. This was done by 

magnetizing samples 4, 5, 6, 11, 12, and 13 using a Danfysik 854T electromagnet in the 

Chemistry Physics building at the University of Kentucky. The samples were placed in an 

orientation so that the north and south poles were known. The samples were magnetized 

in plane using a magnetic field of 0.29 ± 0.02 T. The samples were left in the field for 5 

minutes each in order for them to become magnetically saturated.  

 Samples 4, 5, 6, 11, 12, and 13 were scanned in a north-south orientation, then in 

a south-north orientation using an anisotropic spectroscopic scan with the M-2000 

ellipsometer in order to study the ∆ parameter. The samples showed interesting data 

characteristics in the ∆ parameter immediately after magnetization, but upon performing 
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subsequent scans these data characteristics were not repeatable. According to Colonel 

Wm. T. McLymen, 78-Py has a saturation of 0.75 T. [2] The Py used was 80-Py, which 

should have a similar saturation point.  

 To account for the higher than expected saturation point, the samples were placed 

in a magnetic field of 0.80 ± 0.01 T to become magnetically saturated. In order to sustain 

magnetization in an 80-Py sample, saturation at 0.75 T must be achieved. 

 After re-magnetizing samples 4, 5, 6, 11, 12, and 13 the ∆ parameter was 

examined in the previous way by rescanning the samples using the M-2000 ellipsometer. 

The change in polarization due to magnetization was studied by using a Gaertner L117 

ellipsometer located in CeNSE at the University of Kentucky. The ellipsometer was used 

to look for polarization extinction and maximums in order to determine Ψ and Δ, which 

are calculated using equations 3.1 and 3.2. In equations 3.1 and 3.2 A1 and A2 are the 

analyzer angles at extinction, and P1 and P2 are the polarizer angles at extinction. 

 

 

Ψ =
180°−(𝐴2−𝐴1)

2
    eqn. 3.1 

  

∆= 360° − (𝑃1 + 𝑃2)    eqn. 3.2 

 

 The Gaertner L117 ellipsometer used a 632.8 nm HeNe laser incident to the 

sample at 70°. The laser passed through a polarizer before reflecting off of the sample. 

The reflected light passed through an analyzer before the intensity of the beam was 

displayed on a scale with no units. The polarizer and analyzer were manually adjusted to 
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find the lowest possible intensity, called extinction. The angle of the polarizer and 

analyzer at extinction were recorded as A1 and P1. 

 After recording A1 and P1, the polarizer was rotated to P1 + 90°, and the analyzer 

was rotated to 180° - A1. The polarizer and analyzer were once again adjusted in order to 

find extinction. The angle of the polarizer and analyzer were recorded as A2 and P2. The 

maximum values were found by setting the polarizer and analyzer to 45°, and manually 

adjusting the analyzer to find the maximum intensity.  

 After studying the magneto-optical effects of non-patterned samples, patterned 

samples were created using electron beam lithography (EBL). The first step in creating a 

patterned sample is to clean the substrate, and spin-coat a resist material onto the sample.  

A high resolution polymethyl methacrylate (PMMA) resist was used for the 

patterned samples. Si substrates were cleaned using acetone, IPA, and distilled water 

before being dried with nitrogen and being placed on a hotplate. Once dry, the substrates 

were placed into a spin-coater (one at a time) and centered so that the process would 

create an even resist layer. PMMA resist was placed over the entirety of each substrate in 

order to provide the most even coating possible. The substrates were spun at 4000 rpm in 

order to create a resist thickness of approximately 100 nm. The substrates were then 

placed on a hotplate with a temperature of 322 K for a one-minute post bake.  

A Raith EBL was used to create patterned samples in this experiment. The pattern 

printed using EBL can be seen in figure 3.2. A Si substrate with PMMA resist was loaded 

into the EBL vacuum chamber. The beam characteristics were adjusted, which included 

modifying the beam dose, beam current, dwell time, stigmation, and accelerating voltage. 
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A detailed breakdown of the beam characteristics and adjustments is outlined in section 

3.3.5.  

 

 

Figure 3.2: The diffraction pattern printed onto the samples using EBL. Note: The 

elements of this pattern are nanoscale and are not clearly represented in full detail in the 

figure. 

 

In order to determine the optimal beam current and dwell times, 11 patterns with 

different beam doses and accelerating voltages were printed onto multiple substrates. The 

optimal electron beam parameters were determined by examining each pattern after 

development. All samples were developed using a MIBK/IPA 1:3 chemical bath for 1 

minute. 

 After determining the optimal electron beam parameters and accelerating voltage, 

a new sample, referred to as sample 17, was printed with two copies of the pattern. 

Sample 17 was developed before being sputtered with Py and Al using a Hummer Turbo 
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Sputtering System. The deposition conditions of the patterned sample 17 are shown in 

table 3.5. The Hummer Turbo Sputtering System was used on the patterned samples 

because it uses a direct sputtering method. Direct sputtering is a sputtering method where 

the target is pointed directly at the sample. Confocal sputtering was used in the non-

patterned samples to reduce contaminants. Confocal sputtering points the target at an 

angle to the sample and can produce undesirable results in patterned samples as shown in 

figures 3.3 and 3.4. Py and Al can build up on the “walls” of the PMMA because 

confocal sputtering deposition takes place at an angle. 

 In order to determine the Py and Al thickness of patterned sample 17, an 

additional Si substrate was sputtered at the time of deposition. The deposition thickness 

of sample 17 was determined by measuring the thickness of the additional substrate using 

the M-2000 ellipsometer. The thickness measurements can be found in table 3.5. 

 

 

Figure 3.3: This figure shows a sample where the metals adhered to the sides of the 

PMMA during sputtering deposition, resulting in an undesirable outcome. 
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Figure 3.4: Cross section of a sample from EBL procedure. A) When sputtering the 

developed sample, Py and Al2O3 adhered to the sides of the remaining PMMA Layer. B) 

When remaining PMMA is removed, sidewalls remain on the sample. This is undesirable 

and can affect the diffraction pattern. Figures are not to scale. 

 

Table 3.5: Deposition conditions of sample 17. 

 Height 

(mm) 

Rotation Time 

(s) 

Pressure 

(mTorr) 

Power 

(W) 

Estimated 

Thickness 

(nm) 

Measured 

Thickness 

(nm) 

Py Strike 5 Off 120 3.65 90 - - 

Py Pre-

sputter 

5 Off 120 3.65 90 - - 

Py 

Deposition 

5 Off 1580 3.65 90 10.3 8.93 

        

Al Strike 5 Off 120 4.49 90 - - 

Al Pre-

sputter 

5 Off 120 4.49 90 - - 

Al 

Deposition 

5 Off 270 4.49 90 3 2.65 
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After deposition, sample 17 was soaked in an A Thinner bath until all of the 

PMMA achieved lift-off and only the Py and Al pattern was left on the substrate. The 

sample was cleaned using IPA and distilled water before being dried on a hotplate at 322 

K. 

A Thorlabs TLS001-635 635 nm laser was set up on an optical bench. A 200 mm 

focusing lens was placed 15 cm from the laser. Sample 17 was placed on a vertical mount 

20 cm from the focusing lens. The optical bench setup is shown in figure 2.5, not to scale. 

The sample was rotated so that the incident beam would hit the sample at approximately 

45°. The angle normal to the sample plane was considered as 0°. The sample was then 

manually adjusted until the incident beam completely covered the entire OAM pattern. 

The incident beam was considered to cover the entire pattern when the reflected beam 

produced a pattern of concentric dark and bright rings (figure 3.5). 

 

 

Figure 3.5: This figure shows the reflected pattern from a 635 nm laser incident to the 

patterned sample at 45°. 
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Using equation 2.4, the first-order Bragg peak was expected at 16.3° because the 

lattice periodicity of the diffraction pattern was measured as 642.85 ± 0.6 nm. The Point 

Grey GS3 camera was placed at 16.3° to capture the diffraction pattern. The Point Grey 

camera was placed as close to the sample as possible in order to capture the entire 

diffraction pattern. The exposure time of the camera was set to continuous, and the 

intensity of the laser was reduced to capture the highest quality image possible of the 

diffraction pattern.  

After capturing images of the first-order Bragg peak, the half-order Bragg peak 

was examined. The half-order Bragg peak was expected at -12.31° using equation 2.4. 

The Point Grey GS3 camera was placed at -12.31° to capture the half-order diffraction 

pattern. The Point Grey camera was manually adjusted to produce the highest quality 

image capture by placing it as close to the sample as possible. The exposure time of the 

camera was then set to continuous to capture the highest quality image of the diffraction 

pattern.  

 The patterned samples created at the University of Kentucky contained 

imperfections due to errors with the z-stage controller in the EBL, as well as sputtering. 

After collecting data from sample 17, patterned samples could no longer be produced at 

the University of Kentucky because of ongoing maintenance on the Raith EBL. The 

pattern was sent to Argonne National Laboratory, which produced a sample (referred to 

as sample 18) without the imperfections due to the z-stage controller and sputtering.  

According to the manufacturer of the sample at Argonne National Laboratory, the 

OAM diffraction patterns on sample 18 consists of 3 nm of Py, and 2 nm of Al2O3. The 

sample was created using a similar Raith EBL. The metal layers on sample 18 were 
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deposited using an electron beam evaporator. An electron beam evaporator heats a target 

metal to a high temperature inside a vacuum until target metal evaporates. The 

evaporated metal, such as Py, then adheres to the substrate and transitions back to a solid 

state. This method can provide very precise results in patterned samples.  

Sample 18 contained 9 OAM patterns, and a 10th annealing control pattern. A 

similar optical bench setup was used for sample 18, with the addition of a Proscope 3 

microscope, a rotating base under the sample stage, a computer-controllable rotating 

camera stage, and an aperture for the laser. The sample stage with x, y, and z control was 

centered over the rotating camera stage. The sample stage was mounted on a rotating 

base with a Vernier scale so that the angle of incidence could be precisely adjusted. A 

microscope was set up in order to identify which of the 10 patterns were being imaged at 

any time. The microscope was mounted so that it could be easily rotated away from the 

sample. The camera was mounted on a rotating stage centered underneath the sample. 

The camera stage was controlled with a computer to place the camera at precise angles. 

An aperture was added to ensure that the beam covered the entire pattern. A re-creation 

of this optical bench setup can be seen in figure 3.6. The sample was placed on a rotating 

platform with an axis of rotation perpendicular to the sample plane when installed on the 

stage.  
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Figure 3.6: A re-creation of the optical bench setup for sample 18. A) The microscope 

used to view the sample and align the laser with the patterns. B) The microscope is 

rotated away from the sample and the camera is positioned via the stage controller. 

 

Sample 18 was rotated so that the incident beam would hit the sample at 60°. The 

angle normal to the sample plane was considered as 0°. The microscope was adjusted so 

that all 10 OAM patterns on the sample were visible. The sample was then adjusted using 

the stage controllers until the incident beam completely covered the first OAM pattern. 

The incident beam was considered to cover the entire pattern when the diffraction pattern 

was symmetrical. 

Using equation 2.4, the first-order Bragg peak was expected at 6.78° because the 

lattice periodicity of the diffraction patterns of sample 18 were measured at 645.25 ± 0.3 

nm. The Point Grey GS3 camera was rotated to 6.78° to capture the diffraction pattern. 

The exposure time of the camera was then set to continuous, and the intensity of the laser 

was reduced to capture a high-quality image of the diffraction pattern. This process was 

repeated for all 10 patterns on the sample, then repeated with the sample rotated 

90o about the axis perpendicular to the sample plane. Each pattern was imaged again with 

the addition of the aperture, which was used to ensure that the incident beam covered the 
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entire pattern. The aperture opening was set to a 1.8 mm diameter. After imaging each 

pattern with the aperture, a polarized was added to the optical set up in order to 

investigate the polarization dependence of the pattern. Figure 3.7 shows all 10 of the 

diffraction patterns printed onto sample 18.  

 

 

Figure 3.7: The 9 OAM diffraction patterns (1-9) and the annealing control pattern (10) 

of sample 18. 

 

 After capturing images of the first-order Bragg peaks, the half-order diffraction 

was examined. The half-order Bragg peak was expected at -21.96° using equation 2.4. 

The aperture was set to a 1.8 mm diameter. The Point Grey GS3 camera was rotated to -

21.96° to capture the half-order diffraction. The exposure time of the camera was then set 
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to continuous to capture the highest quality image of the diffraction pattern. While 

investigating the half-order diffraction, an off-axis diffraction pattern was observed at the 

diffraction angle rotated 90° about the sample plane. This image was captured using the 

Point Grey GS3 camera. The half-order diffraction was also investigated after rotating the 

sample 90o about the axis perpendicular to the sample plane. 

 Sample 18 was magnetized using a small permanent magnet to reorder the 

magnetic structure of the Py. The disappearance of the half-order diffraction was 

expected and was investigated by looking for a difference in the light detected by the 

Point Grey GS3 camera at     -21.96°. The effect of magnetization on the off-axis 

diffraction pattern was also investigated. The sample was then heated at 403 K to 

demagnetize the magnetic structure. The half-order diffraction was expected to return and 

was investigated using the Point Grey GS3 camera in the same fashion. 

 

3.3 Experimental Parameters Investigated 

 

3.3.1 Optical Parameters (n and k) of Permalloy 

 The optical parameters of Py are essential in determining the permittivity matrix 

and the sample thickness of Py. VASE modeling software did not contain a sufficient 

optical model for Py, so the optical parameters had to be determined experimentally. 

Investigating the optical properties of Py within a large range of wavelengths (370 to 

1000 nm) helps to ensure the correct modeling of the material. Finding the optical 

parameters is also beneficial because using an ellipsometer to measure thickness is more 

cost effective and time efficient than using XRR. 
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3.3.2 Deposition Rates of Permalloy and Aluminum  

The deposition rates of Py and Al needed to be determined because the AJA 

International confocal sputtering system did not have a mechanism to estimate deposition 

thickness. Deposition time had to be calculated from experimental results in order to 

accurately create samples with specific thicknesses. The deposition rates in the Hummer 

Turbo sputtering system did not have to be calculated because it uses a quartz crystal 

mechanism to estimate deposition thickness.  

 

3.3.3 Voigt Parameter of Permalloy 

 Because Py is a magneto-optical material, the effects of magnetization should be 

identifiable using the polarization characteristics of light. These characteristics can be 

described quantitatively using the Voigt parameter. The Voigt parameter is essential in 

determining the magneto-optical portion of the permittivity matrix of Py described in 

Sections 3.3.4 and 4.4. The Voigt parameter was investigated by examining the Kerr 

rotation and ellipticity of light reflected from Py samples.  

 

3.3.4 Permittivity Matrix of Permalloy 

 In order to give quantitative meaning to the magneto-optical parameters of Py, it 

is necessary to identify the value of each element of the permittivity matrix. The 

permittivity matrix can be calculated using the Voigt parameter and the optical 

parameters (n and k) of Py  
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3.3.5 EBL Beam Dose and Accelerating Voltage 

 The beam dose of the EBL was investigated because it significantly affected the 

shape and size of each element in the patterned samples. Studying the beam dose was 

necessary to produce high quality samples. Beam dose is described in equation 3.3. [15] 

 

   𝐵𝑒𝑎𝑚 𝑑𝑜𝑠𝑒 =  
𝐵𝑒𝑎𝑚 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑥 𝐷𝑤𝑒𝑙𝑙 𝑇𝑖𝑚𝑒

𝑆𝑡𝑒𝑝 𝑆𝑖𝑧𝑒
  eqn. 3.3 

 

 Beam current is the current of the electron beam, dwell time is time the beam is 

concentrated in one area, and step size is the distance between successive areas in which 

the beam is incident. The beam dose was manipulated by changing the beam current 

within a range of 0.1378 nA to 0.2755 nA. Dwell time and step size were calculated by 

the EBL software so that a beam current of 0.2755 nA resulted in a beam dose of 110
𝜇𝐶

𝑐𝑚2 

when using a 10 kV accelerating voltage, and a beam dose of 330
𝜇𝐶

𝑐𝑚2 when using a 30 

kV accelerating voltage. 

 The accelerating voltage of the EBL was investigated because it affects how 

electrons interact with the PMMA. Accelerating voltages of 10 kV and 30 kV were 

studied. Table 3.6 shows the combinations of beam dose, beam current, and accelerating 

voltages which were investigated. A beam current of 0.2755 nA is considered 100% 

beam current. 
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Table 3.6: Combinations of beam dose and accelerating voltage investigated using a 

0.2755 nA beam current. 

Percent of Maximum 

Beam Dose   

(%) 

Accelerating Voltage 

(kV) 

Beam Dose 

(
𝝁𝑪

𝒄𝒎𝟐) 

 

100 10 110 

95 10 104.5 

90 10 99 

85 10 93.5 

80 10 88 

75 10 82.5 

70 10 77 

65 10 71.5 

60 10 66 

50 10 55 

   

100 30 330 

70 30 231 

 

 

3.3.6 Orbital Angular Momentum (OAM) 

 Orbital angular momentum was investigated in the diffraction patterns of samples 

17 and 18 to determine if the patterns imparted orbital angular momentum on visible 

light. The investigation of OAM was used to show the validity of the hypothesis 

presented in Chapter 1. 

 

3.3.7 Magneto-Optical Properties of Permalloy 

 The half-order Bragg peak was investigated to show that the Py did indeed show 

magneto-optical properties. The behavior of the half-order diffraction under 

magnetization and demagnetization was compared.   
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Chapter 4: Results, Analysis, and Discussion 

 

4.1 Optical Parameters of Permalloy 

 Three samples consisting of a thin Py film on a Si substrate were scanned using 

the M-2000 ellipsometer. A dummy layer was created for each sample and the optical (n 

and k) properties of the Py film were fit to this layer. The optical parameters from each 

sample were imported into MATLAB where they were averaged and plotted as shown in 

figure 4.1. These optical properties were then used to calculate the diagonal elements of 

the permittivity matrix and to create an optical layer model for Py in VASE. 

 

 

Figure 4.1: The experimentally determined complex n (real) and k (imaginary) optical 

parameters of Py. 
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4.2 Deposition Rates of Permalloy and Aluminum 

The deposition rates of Py were calculated by using the average thickness 

measurements from XRR and dividing them by the deposition time. The average Py 

thickness was 20.4 nm. The time for each deposition was 900 s. The calculated average 

deposition rate was 0.022 nm/s. The deposition time of a sputter deposition is 

proportional to the thickness of the deposition considering the plasma conditions remain 

constant for the entire deposition. [16] Using this deposition rate, specific Py film 

thicknesses can be deposited in future experiments. The measured thicknesses and 

calculated deposition rate can be found in table 4.1. 

 

Table 4.1: This table shows the measured Py thickness of each sample, deposition times, 

and calculated deposition rates. It also shows the average sample thickness and 

deposition rate. 

 Py thickness 

(nm) 

Deposition 

Time (s) 

Deposition 

rate (nm/s) 

Sample 4 20.9 900 0.023 

Sample 5 20.0 900 0.022 

Sample 6 20.4 900 0.022 

Average 20.4  0.022 

Standard Deviation 0.432  0.001 

 

 

Table 4.2 shows the separate Al and Al2O3 measurements with the deposition 

rates of each Al sample. The measured values for Al deposition in experiments result in 

an average deposition rate of 0.024 nm/s. Specific Al film thicknesses can be deposited in 

future experiments using this deposition rate. It should be noted that the total thickness of 

the Al and Al2O3 layers were used to calculate deposition rates. While this may differ 
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slightly from the actual deposition rate of Al, it is sufficient for the purpose of 

determining capping layer thickness. Excluding samples 7, 8, 9, and 10, each aluminum 

film deposition will be approximately 3 nm. At a 3 nm thickness the Al layer is expected 

to fully oxidize into Al2O3. In addition, the Al and Al2O3 layer in the experiments 

performed was only used to prevent the oxidation of the Py layer and does not affect the 

magneto-optical properties of the samples. Therefore, it is not imperative that the 

thickness of this layer be exact nor for full oxidation of Al to occur. 

 

Table 4.2: This table shows the measured Al and Al2O3 thicknesses of each sample, 

deposition times, and calculated deposition rates. It also shows the average sample 

thickness and deposition rate. 

 Al 

thickness 

(nm) 

Al2O3 

thickness 

(nm) 

Total 

thickness 

(nm) 

Deposition 

Time (s) 

Deposition 

rate (nm/s) 

Sample 7 22.0 8.16 30.1 1200 0.025 

Sample 8 9.54 3.80 13.3 507 0.026 

Sample 9 8.18 2.59 10.8 507 0.021 

Sample 10 8.20 2.63 10.8 507 0.021 

Average       0.024 

Standard  

Deviation 

       0.003 

 

 

4.3 Voigt Parameter of Permalloy 

 The Voigt parameter was unable to be positively identified due to limitations with 

the equipment available for this experiment. The Kerr rotation, Faraday rotation, or the 

Kerr amplitudes must be identified in order to calculate the Voigt parameter. [17, 18] The 

Faraday rotation is the change in polarization due to transmission through a medium, 
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while the Kerr rotation is the change in polarization due to reflection off of a medium. 

[19] The M-2000, VASE, and Gaertner L117 ellipsometers are unable to measure the 

Kerr rotation or the Faraday rotation. Ellipsometers equipped to measure the Kerr 

rotation, or MOKE, utilize a polarizer and analyzer that rotate to find the Kerr rotation for 

each wavelength during a spectroscopic scan. [17] 

 Hubert and Schäfer describe a method to calculate the Kerr rotation using 

equations 4.1 – 4.3. [19] This method was attempted in order to calculate the Kerr 

rotation of the magnetized samples.   

 

𝐴𝑁 = −𝑅𝑃 cos(𝜑𝑃) sin (𝛼𝑠) + 𝑅𝑠 sin(𝜑𝑃) cos (𝛼𝑠)  eqn. 4.1 

 

       𝐴𝐾 = 𝑅𝐾
𝑝𝑜𝑙 cos(𝛼𝑠 − 𝜑𝑃) 𝑚𝑝𝑜𝑙 + 𝑅𝐾

𝑙𝑜𝑛 cos(𝛼𝑠 + 𝜑𝑃) 𝑚𝑙𝑜𝑛  eqn. 4.2 

      +𝑅𝐾
𝑡𝑟𝑎 cos(𝜑𝑃) sin (𝛼𝑠)𝑚𝑡𝑟𝑎  

 

     𝜑𝐾 =
𝐴𝐾

𝐴𝑁
⁄     eqn. 4.3 

 

 In equation 4.1, 𝐴𝑁 represents the total signal amplitude relative to the incident 

amplitude of the light reflected from a magneto-optical material. [19] The reflection 

coefficients, 𝑅𝑃 and 𝑅𝑠, represent the reflection components of the amplitude parallel and 

perpendicular to the plane of incidence. [19] 𝑅𝑃 and 𝑅𝑠 are derived from the Fresnel 

equations for parallel and perpendicularly polarized light. [20] It should be noted that for 

reflectance (R) and transmittance (T), R + T = 1. 𝑅𝑃, 𝑅𝑠, 𝑇𝑃 , and 𝑇𝑠 are the reflection and 
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transmission coefficients, and it is not always true that 𝑅𝑃 + 𝑇𝑃 = 1, or that 𝑅𝑠 + 𝑇𝑠 = 1. 

[20] The angles of the polarizer and analyzer are given by 𝜑𝑃 and 𝛼𝑠 respectively. [19]  

 In equation 4.2, 𝐴𝐾 represents the effective Kerr amplitude of the light reflected 

from a magneto-optical material. [19] The Kerr amplitudes for the polar, longitudinal and 

transverse cases are represented by 𝑅𝐾
𝑝𝑜𝑙 , 𝑅𝐾

𝑙𝑜𝑛, and 𝑅𝐾
𝑡𝑟𝑎 respectively. [19] The 

magnetization components for the polar, longitudinal, and transverse cases are 

represented by 𝑚𝑝𝑜𝑙 , 𝑚𝑙𝑜𝑛, and 𝑚𝑡𝑟𝑎 respectively. [19] The samples magnetized in this 

experiment were magnetized longitudinally to the point of saturation. The magnetization 

components in this case become: 𝑚𝑝𝑜𝑙 = 0 , 

 𝑚𝑙𝑜𝑛 = 1, and 𝑚𝑡𝑟𝑎 = 0. Therefore, equation 4.2 simplifies to 𝐴𝐾 = 𝑅𝐾
𝑙𝑜𝑛 cos(𝛼𝑠 + 𝜑𝑃). 

The Kerr rotation is given by 𝜑𝐾 in equation 4.3. 

 The Kerr rotation was examined by using the change in polarization measured by 

the Gaertner L117 ellipsometer, and the reflection and transmission coefficients 

measured by the M-2000 ellipsometer. The Gaertner ellipsometer was constrained to a 

wavelength of 632.8 nm so the only data considered from the M-2000 ellipsometer was 

from a 632.8 nm wavelength. 𝐴𝑁 was successfully calculated for multiple samples. 𝐴𝐾  

was not successfully calculated because of the inability of either ellipsometer to measure 

𝑅𝐾
𝑙𝑜𝑛. The longitudinal Kerr amplitude (𝑅𝐾

𝑙𝑜𝑛) can be calculated from equation 4.4, which 

is dependent on the Voigt parameter, Q. [19] 

  

𝑅𝐾
𝑙𝑜𝑛 =

𝑖𝑄𝑠𝑖𝑛𝜃0

4𝑐𝑜𝑠𝜃0𝑐𝑜𝑠𝜃1
𝑇𝑠𝑇𝑝   eqn. 4.4 
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The transmission coefficients, 𝑇𝑝 and 𝑇𝑠, represent the transmission components 

of the amplitude parallel and perpendicular to the plane of incidence. [19] The angle of 

incidence, 𝜃0, was set to 70o in this experiment. The complex angle of incidence, 𝜃1, is 

calculated from Snell’s Law, 𝑛0𝑠𝑖𝑛𝜃0 = 𝑛1𝑠𝑖𝑛𝜃1. [19] In this experiment, 𝑛0 = 1 (the 

refractive index of air), and  

𝑛1 = 𝑛 + 𝑖𝑘 (the complex refractive index of permalloy determined in Section 4.1). 

Rearranging Snell’s Law to find 𝜃1 yields equation 4.5. 

 

𝜃1 = 𝑠𝑖𝑛−1 (
sin𝜃0

𝑛+𝑖𝑘
)    eqn. 4.5 

 

 Solving equations 4.1 - 4.5 for the Voigt parameter with a longitudinally 

magnetically saturated sample yielded equations 4.6 and 4.7. One could calculate the 

Voigt parameter of the samples used in this experiment with an ellipsometer that 

measures the Kerr rotation (eqn. 4.6) or the Kerr amplitude (eqn. 4.7). Unfortunately, the 

ellipsometers used in this experiment could not measure the Kerr rotation, Kerr 

amplitude, or the transmission coefficients at 70o incidence. A VASE ellipsometer located 

in the Micro Nano Technology Center at the University of Louisville was used in an 

attempt to measure the Kerr rotation and Kerr amplitude, but it also lacked the 

functionality required to measure these parameters. Table 4.3 list the measured values at 

632.8 nm for two of the samples in this experiment.  

  

𝑄 =  
4𝑖𝜑𝐾(𝑅𝑃 cos 𝜑𝑃 sin 𝛼𝑠−𝑅𝑠sin𝜑𝑃cos𝛼𝑠) 𝑐𝑜𝑠𝜃0𝑐𝑜𝑠(𝑠𝑖𝑛−1(

sin𝜃0
𝑛+𝑖𝑘

))

𝑠𝑖𝑛𝜃0𝑇𝑠𝑇𝑃
 eqn. 4.6 
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𝑄 =  
−4𝑖 𝑅𝐾

𝑙𝑜𝑛𝑐𝑜𝑠𝜃0𝑐𝑜𝑠(𝑠𝑖𝑛−1(
sin𝜃0
𝑛+𝑖𝑘

))

𝑠𝑖𝑛𝜃0𝑇𝑠𝑇𝑃
   eqn. 4.7 

 

Table 4.3: Parameters measured for calculating the Voigt parameter at 632.8 nm. Note: 

RK
lon, TP, Ts, and φK are missing in the table because they were unable to be measured 

using the equipment available. The N to S orientation expresses a sample where the 

incident beam originates on the north pole of magnetization, and the reflected beam 

crosses the south pole of magnetization. In other words, the polarizer is by the north pole 

of the sample, and the analyzer is by on the south pole of the sample. 

 Orientation 𝐑𝐏 𝐑𝐬 𝛗𝐏 

(o) 

𝛂𝐬 

(o) 

n k 𝛉𝟎 

(o) 

Sample 4 N to S 0.308 1.38 71.5 22.7 2.40 3.96 70 

 S to N 0.479 1.81 71.4 22.8 2.40 3.96 70 

Sample 6 N to S 0.538 1.84 71.2 28.5 2.40 3.96 70 

 S to N 0.561 1.89 71.1 28.4 2.40 3.96 70 

 

 The Voigt parameter was also investigated using a magneto-optical material 

model in the VASE software with the M-2000 ellipsometer. The model in VASE fits the 

Q parameter (Voigt parameter) to an equation input by the user. A quadratic fitting 

equation using wavelength as the variable was used for the real and imaginary parts of 

the Voigt parameter. After multiple failed attempts to fit the Voigt parameter, J.A. 

Woollam was contacted for guidance. The representative from J. A. Woollam advised 

that the ellipsometers used lacked the sensitivity and precision to measure and fit the 

Voigt parameter.  

Although the Voigt parameter was unable to be described quantitatively, the 

effects of magnetization are evident in the ∆ parameter. The change in the ∆ parameter 
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due to magnetization shows that the magneto-optical effects of Py can be measured using 

visible light. [18, 19] Figure 4.2 shows the isotropic component of the delta parameter 

(ΔE) for sample 6 before and after the magnetic saturation of the sample. The figure also 

shows the difference of the N-S orientation and S-N orientation measurements of the 

(ΔE) parameter. Figure 4.3 shows the ps and sp components (Δps and Δsp) of the ∆ 

parameter for sample 6 before and after the magnetic saturation of the sample. The figure 

also shows the difference of the N-S orientation and S-N orientation measurements of the 

ps and sp components of the Δ parameter. Similar results were found in the other 

magnetically saturated samples: 4, 5, 11, 12, and 13. 
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Figure 4.2: The experimentally measured isotropic delta parameter (𝛥𝐸) of sample 6. 

The top graph shows the sample measured pre-magnetization (𝛥𝐸,𝑝𝑟𝑒), in a N-S 

orientation post-magnetization (𝛥𝐸,𝑁𝑆), and in a S-N orientation post-magnetization 

(𝛥𝐸,𝑆𝑁). The bottom graph shows the change in the isotropic delta parameter in various 

configurations.  
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Figure 4.3: The experimentally measured anisotropic delta parameters  (𝛥𝑝𝑠) and (𝛥𝑠𝑝) 

of sample 6. The top graph shows the (𝛥𝑝𝑠) parameter of the sample measured pre-

magnetization (𝛥𝑝𝑠,𝑝𝑟𝑒), in a N-S orientation post-magnetization (𝛥𝑝𝑠,𝑁𝑆), and in a S-N 

orientation post-magnetization (𝛥𝑝𝑠,𝑆𝑁).. The middle graph shows the (𝛥𝑠𝑝) parameter of 

the sample measured pre-magnetization (𝛥𝑠𝑝,𝑝𝑟𝑒), in a N-S orientation post-

magnetization (𝛥𝑠𝑝,𝑁𝑆), and in a S-N orientation post-magnetization (𝛥𝑠𝑝,𝑆𝑁). The 

bottom graph shows the differences in N-S and S-N orientations of  (𝛥𝑝𝑠) and (𝛥𝑠𝑝) 

parameters. 
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4.4 Permittivity Matrix of Permalloy 

 After determining the complex optical properties n and k, and the Voigt parameter 

Q, one can calculate the permittivity matrix of Py shown in equation 4.8. [17, 18, 19] 

 

𝜀 = [

𝜀𝑥𝑥 0 0
0 𝜀𝑥𝑥 0
0 0 𝜀𝑥𝑥

] + 𝑖𝑄 [

0 𝑀𝑧 −𝑀𝑦

−𝑀𝑧 0 𝑀𝑥

𝑀𝑦 −𝑀𝑥 0
]         eqn. 4.8 

 

 In equation 4.8, 𝜀 represents the permittivity matrix, 𝜀𝑥𝑥 are the field independent 

elements (independent of magnetization), Q is the Voigt parameter, and 𝑀𝑥,𝑦,𝑧 are 

components of the relative magnetization vector. [17] If a sample is magnetically 

saturated normal to the surface plane, M = (0, 0, 1). [17] Likewise, if a sample is 

magnetically saturated in plane, M = (1, 1, 0). 

The Voigt parameter and the index of refraction contain both real and imaginary 

parts, where 𝑄 = 𝑄𝑟 + 𝑖𝑄𝑖 , and 𝑁 = 𝑛 + 𝑖𝑘. [21] The index of refraction is obtained by 

taking the square of the field independent relativity: 𝑁 = √𝜀𝑥𝑥. [19] Furthermore, the 

permittivity matrix can be expressed as in equation 4.9 by calculating the off-diagonal 

tensor elements as 𝜀𝑖𝑗 = 𝑖𝑄𝑀𝑘, where 𝑖, 𝑗, 𝑘 = 𝑥, 𝑦, 𝑧. [17] When a sample is 

magnetically saturated normal to the surface plane, equation 4.9 simplifies to equation 

4.10. 

 

                                           𝜀 = [−

𝜀𝑥𝑥 𝜀𝑥𝑦 −𝜀𝑥𝑧

𝜀𝑥𝑦 𝜀𝑥𝑥 𝜀𝑦𝑧

𝜀𝑥𝑧 −𝜀𝑦𝑧 𝜀𝑥𝑥

]                         eqn. 4.9 
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                                              𝜀 = [−

𝜀𝑥𝑥 𝜀𝑥𝑦 0

𝜀𝑥𝑦 𝜀𝑥𝑥 0

0 0 𝜀𝑥𝑥

]                           eqn. 4.10 

 

 To calculate 𝜀𝑥𝑥, n and k values were used from the Py model. These values were 

obtained through calculations based on experimental data from the Py material used in 

the experiments outlined in Chapter 3. It should be noted that n and k are wavelength 

dependent. Equations 4.11 – 4.13 were used to calculate 𝜀𝑥𝑥. The real and imaginary 

parts of 𝜀𝑥𝑥 can be seen in figure 4.4. 𝜀𝑖𝑗 was unable to be calculated for any i and j 

combination due to the inability to quantify the Voigt parameter. 

 

𝜀𝑥𝑥 = (𝑛 + 𝑖𝑘)2 = 𝑛2 − 𝑘2 + 𝑖2𝑛𝑘  eqn. 4.11 

 

𝜀1 = 𝑛2 − 𝑘2    eqn. 4.12 

 

𝜀2 = 𝑖2𝑛𝑘    eqn. 4.13 
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Figure 4.4: This figure shows the real and imaginary parts of the field independent 

elements of the permittivity matrix, 𝜀𝑥𝑥. 

 

4.5 Effect of Beam Dose and Accelerating Voltage.  

 The beam dose and accelerating voltage were found to have a large effect on the 

PMMA, and the overall integrity of the final pattern. The initial accelerating voltage was 

set to 10 kV and was found to produce a poor-quality pattern with a high beam dose (see 

figure 4.5 A). The poor-quality pattern is due to the way an EBL works. Electrons are 

accelerated through an electric field, determined by an accelerating voltage, into the 

PMMA. The electrons then collide with the PMMA molecules and spread due to forward 

scattering. [13] The scattering of the electrons exposes the PMMA, changing its 

molecular chemistry. [13]  
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 Electrons travel slower when using a lower accelerating voltage than they do 

when using a high accelerating voltage. The reduced speed increases the susceptibility of 

the electrons to experience collisions with PMMA molecules and other electrons. [13] 

The increased amount of collisions at lower accelerating voltages cause the electrons to 

spread out as they travel through the PMMA. Electrons experience forward scattering at 

higher accelerating voltages as well but experience a lower number of collisions due to 

increased velocity resulting in a smaller spread of the electron beam. This result of this 

process is illustrated in figure 4.6.  

 The degree of the “spread” of electrons when using a 10 kV beam dose was so 

significant that it caused the pattern in the PMMA to fall apart, as seen in figure 4.5 A. In 

one sample (referred to as sample 16), nine patterns were created using varying beam 

doses and a 10 kV accelerating voltage. Upon examination of the patterns created on 

sample 16, the electron beam did not expose the complete pattern in some cases and 

caused the pattern to experience damage caused by the forward scattering of electrons in 

other cases. 

 The forward scattering of electrons when using a 30 kV accelerating voltage was 

significantly lower than when using 10 kV. In one sample (referred to as sample 17), two 

patterns were created using different beam doses and a 30 kV accelerating voltage. Both 

patterns were successfully created in the PMMA. Figure 4.5 B shows an example of the 

successful pattern using a 30 kV accelerating voltage where the PMMA maintained 

adhesion with the substrate.  
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Figure 4.5: A.) The pattern created in the PMMA with a beam dose of 100% (percentage 

referenced in section 3.3.5 and table 3.6) with an accelerating voltage of 10 kV. B.) The 

pattern created in the PMMA with a beam dose of 70% with an accelerating voltage of 

30 kV. Note: these images were taken with different scanning electron microscopes. The 

brightness of the PMMA is due to the microscopes used, not the beam dose. 
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Figure 4.6: The accelerating voltage affects the forward scattering of electrons, changing 

the exposed area in the PMMA. A 10 kV accelerating voltage causes the electron beam to 

spread out more as it gets deeper within the PMMA layer than a 30 kV accelerating 

voltage. This is due to the speed of the electrons as they collide with the PMMA. Note: 

this cartoon is based on the experimental findings of Mohammad Ali Mohammad et al. 

[13] 

 

 The beam dose affects the shape of the pattern printed into the PMMA. Figure 4.7 

shows the patterns printed on sample 17 at 70% and 100% beam doses with a 30 kV 

accelerating voltage. The 70% dose yields a more uniform and symmetrical pattern. The 

higher dose yielded a less uniform and symmetrical pattern due to the increased exposure 

in the PMMA. The 70% beam dose at 30 kV was chosen as the most accurate beam dose 

for the creation of OAM patterns. It should be noted that the patterns in figure 4.7 are 

skewed due to errors in the z- stage controller in the Raith EBL. The circle-like shapes as 

seen in figure 4.7 are meant to be horizontal ellipses, akin to the vertical ellipses in the 
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pattern. Figure 4.8 shows the final pattern created using a 70% beam dose at 30 kV on 

sample 17. 

 

 

Figure 4.7: A.) This image shows PMMA that was created using a 70% beam dose at 30 

kV. B.) This image shows PMMA that was printed using a 100% beam dose at 30 kV. 

Note: The circles printed should be horizontal ellipses, akin to the vertical ellipses in the 

pattern. 
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Figure 4.8: The complete pattern created using a 70% beam dose at 30 kV. 

 

4.6 Orbital Angular Momentum 

The presence of orbital angular momentum (OAM) was investigated using a 635 

nm laser incident on patterned samples. The last sample (sample 17) fabricated at the 

University of Kentucky was imperfect but was the best sample produced using the Raith 

EBL. The imperfections in sample 17 are shown in figure 4.9. Sample 17 was not 

expected to produce any viable results. Interestingly, sample 17 yielded three possible, 

yet unverifiable, instances of OAM. Figures 4.10 and 4.11 show diffraction patterns that 

point to the possible presence of OAM in the first-order diffraction Bragg peak from 

sample 17.  

 Diffraction patterns 1 and 2 in figure 4.10 are the most promising results from 

sample 17. Diffraction pattern 1 resembles a horseshoe, or an incomplete ring. This 

pattern is similar to those found in experiments by Chen at Lawrence Berkley National 
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Laboratory, using x-ray diffraction. [3] Diffraction pattern 2 appears as a ring of bright 

light with a dark center and a bright tail. Diffraction pattern 2 resembles a “Q” shape 

more than the expected “O” shape. Diffraction pattern 2 shows the expected ring of light 

with a dark center. Diffraction pattern 3 in figure 4.11 was also promising, resembling an 

elongated “O”. Diffraction pattern 3 is not the brightest peak in the diffraction pattern, 

which produces doubt that it is caused by OAM. Overall, the results from sample 17 are 

very interesting but inconclusive.  

 

 

Figure 4.9: The imperfect pattern in sample 17. 
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Figure 4.10: This figure shows two of the patterns seen in the first order diffraction of the 

sample with imperfections. A.) The diffraction patterns without overexposure. B.) The 

diffraction patterns with high exposure to better show features. C.) The diffraction 

patterns’ possible OAM. 

 

 

Figure 4.11: This figure shows one of the patterns seen in the first order diffraction of the 

sample with imperfections. A.) The diffraction pattern without overexposure. B.) The 

diffraction pattern’s possible OAM. C.) The relative location of pattern 3 with patterns 1 

and 2. 

 

 Sample 18 showed strong evidence of OAM. The images of the diffraction 

patterns from each OAM pattern on sample 18 without an aperture can be seen in figure 

4.12. Diffraction patterns 1-9 resulted in a shape similar to the number “8” with two 

nulls. Pattern 10 was a standard diffraction pattern and was expected to produce a bright 

circle with no null, which was observed. Khajavi et al. obtained similar results when 
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performing an experiment on vortex beam superposition with modes 𝑙 = −1, and 𝑙 =

−2. [22] It was noted that while imaging the patterns in figure 4.12, the laser was not 

centered in the focusing lens. It is possible, though unlikely, that the single mode optical 

cable used in the experiment was damaged. In this case, the cable could have carried light 

in the sheath, resulting in a superposition. 

 

 

Figure 4.12: This figure shows the diffraction pattern from each OAM diffraction pattern 

on sample 18 before an aperture was added to the laser. Figure 3.7 shows the location of 

each pattern on the sample.  

 

 The shape of the diffraction patterns produced from sample 18 were extremely 

sensitive when centering the laser beam. The laser was centered by moving the sample 

stage with x, y, and z micrometers. Moving the stage more than 2 or 3 𝜇𝑚 produced a 

significant change in the diffraction pattern. It was hypothesized that the beam was too 

small to cover an entire pattern. A 1.8 mm aperture was added behind the focusing lens in 

order to spread the beam over an entire pattern. After adding the aperture, the shapes of 

the diffraction patterns were less sensitive to small movements of the sample stage.  
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 The diffraction patterns were re-imaged after adding the aperture and centering 

the laser in the focusing lens. The results can be seen in figure 4.13. The resulting 

patterns resemble a non-canonical edge dislocation OAM pattern as described by Molina-

Terriza. [23] Examining the pattern closely revealed two nulls inside of a bright ring. The 

patterns were reimaged a second time with the aperture and were overexposed with a 

high contrast.  These images are shown in figure 4.14. The overexposed images resemble 

more typical OAM patterns. [23] The overexposed images were taken to better visualize 

the bright ring in each diffraction pattern. It should be noted that there are still two nulls 

present in the overexposed images. 

  

 

Figure 4.13: This figure shows the diffraction pattern from each OAM diffraction pattern 

on sample 18 after an aperture was added to the laser. Figure 3.7 shows the location of 

each pattern on the sample.  
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Figure 4.14: This figure shows the diffraction pattern from each OAM diffraction pattern 

on sample 18 after an aperture was added to the laser. The patterns in this figure were 

overexposed and imaged with a high contrast. Figure 3.7 shows the location of each 

pattern on the sample.  

 

 A simulation was performed in order to determine the expected diffraction pattern 

for each OAM pattern. A SEM image of OAM pattern 1 was imported into MATLAB. 

The pattern was binarized, which is a process that converts each pixel of the image to 

black or white based on a threshold. The binarization was set so that the background of 

the image was black, and the OAM pattern was white. The complement of the image was 

then taken so that the OAM pattern was black on a white background. The Fourier 

Transform of this image was taken in order to show the diffraction pattern at normal 

incidence. The simulation was repeated for OAM patterns 2-10. Each step of the 

simulation process is shown in figures 4.15—4.18. Figure 4.19 shows the first and 

second-order Bragg peaks of pattern 7 on sample 18. All patterns produced similar results 

when simulated. It should be noted that the patterns produced by the simulation are at an 
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incidence of 0o, and the experiment was performed with an incidence of 60o. This may 

cause the simulated patterns to vary slightly from what is actually expected.  

 

 

Figure 4.15: The complete SEM image of pattern 7 from sample 18. Note: The elements 

of this pattern are nanoscale and are not clearly represented in full detail in the figure. 
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Figure 4.16: The binarized OAM pattern. Note: The elements of this pattern are 

nanoscale and are not clearly represented in full detail in the figure. 
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Figure 4.17: The compliment of the binarized image. Note: The elements of this pattern 

are nanoscale and are not clearly represented in full detail in the figure. 
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Figure 4.18: The Fourier Transform of the complimented image. The n = (-5, -4, -2, -1, 

1, 2, 4, 5) order diffraction patterns appear as two bright rings with a null in the center 

of each ring.   
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Figure 4.19: A close up of the first and second-order double-ring diffraction pattern 

simulated from pattern 7. From left to right: n = (-2, -1, 0, -1, 2), where n is the order of 

the Bragg peak.. Note: A high contrast and red filter were added to the image to make the 

pattern easier to see. 

 

 By examining all of the evidence gathered, the simplest explanation is that the 

patterns on sample 18 imparted OAM on visible light. The diffraction patterns observed 

resemble OAM patterns found by Khajavi et al. and described by Molina-Terriza. [22, 

23]. A center null was present with a bright ring. The OAM patterns were consistent with 

the simulated results using a Fourier transform of the patterns, which were designed to 

impart OAM. The Fourier transform results produced pairs of rings, which was more 

complicated than expected but consistent with experimental results. More study should be 

performed to verify these results, such as holography.  

 

4.7 Magneto-Optical Properties of Permalloy 

 The half-order Bragg peak was investigated using samples 17 and 18. Sample 17 

did not display evidence of magnetic scattering in the half-order peak. This is likely due 

to the imperfect nature of the sample (see figure 4.9). Sample 18 provided interesting 
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results. Each of the 10 OAM patterns on sample 18 were imaged at the half-order peak. 

Figure 4.20 shows the images taken where the half-order peak was expected.  

 

 

Figure 4.20: The half-order peak of patterns 1-10 on sample 18 show evidence of 

magnetic scattering. Note: The top left corner of some images shows an artifact due to 

dust on the camera. Patterns 4, 5, 6, 7 and 8 were found to have been damaged from dust 

and debris when viewed in a SEM after this experiment. 

 

Each of the 10 OAM patterns showed evidence of magnetic scattering, but the 

amount of scattering present and the structure of the scattering varied greatly between 

patterns. Patterns 4, 5, 6, 7, and 8 were found to have been damaged from dust and debris 

when viewed in a SEM after this experiment. When scattering similar to that in figure 

4.20 was observed, sample 18 was heated to 403 K in order to reorder the magnetic 

domains. It was hypothesized that the sample had been magnetized while in the SEM, 

and that reordering the magnetic domains would cause the half-order diffraction peak to 

show an OAM diffraction pattern such as those shown in figures 4.12-4.14. This was not 

observed.  
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The magnetic scattering was difficult to distinguish from regular scattering on the 

sample. In order to verify that the scattering was due to the magneto-optical effects of Py, 

the sample was magnetized normal to the sample plane. It was hypothesized that 

magnetizing the sample would reorder the magnetic domains of the sample and that the 

magnetic scattering in the half-order Bragg peak would no longer be visible once 

magnetized. This was not observed.  

Interestingly, the magnetic scattering in the half order peak changed post-

magnetization. This was most noticeable in patterns 3, 4, and 6. In order to determine the 

cause of the change, the Point Grey GS3 camera was set to record a video. The sample 

was once again magnetized normal to the sample plane. The camera recorded the half-

order peak of pattern 4 for 20 seconds after the magnetization had been removed.  

The magnetic scattering changed immediately upon magnetization. Over a period 

of 2 seconds, the magnetic scattering was observed to change over time. This was 

repeated multiple times while recording pattern 4 and observed each time. This effect was 

also recorded using patterns 2, 3, 6, and 7 where it was also observed. Figure 4.21 shows 

multiple images of pattern 3 in 0.25 second increments post-magnetization to illustrate 

the change in the magnetic scattering over time. Figure 4.22 shows multiple images of 

pattern 4 in 0.25 second increments post-magnetization to illustrate the change in the 

magnetic scattering over time.  
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Figure 4.21: The change in the magnetic scattering from pattern 3 on sample 18 over 2 

seconds after removing magnetization. The frame marked “A” shows the magnetic 

scattering pre-magnetization. The frame marked “B” is blank to show a clear separation 

between pre and post-magnetization. Note: The contrast and brightness were adjusted to 

better show the features of the magnetic scattering. 
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Figure 4.22: The change in the magnetic scattering from pattern 4 on sample 18 over 2 

seconds after removing magnetization. The frame marked “A” shows the magnetic 

scattering pre-magnetization. The frame marked “B” is blank to show a clear separation 

between pre and post-magnetization. 

 

The magnet used to magnetize the sample when observing the half-order peak had 

B field of much less than the 0.75 T required to magnetically saturate Py. It is possible 

that the reordering of the diffraction patterns during magnetization and the subsequent 

change in the patterns over time post-magnetization could be due to the pattern quickly 

losing magnetization and returning to the antiferromagnetic ground state. It is also 

possible that the sample was thermally active enough that the magnetization changed the 

ASI, but thermal fluctuations were just right to return the sample to an antiferromagnetic 
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ground state. The possibility that the change in the diffraction pattern is due to a 

mechanical process, such as the magnet pulling steel springs in the stage, cannot be ruled 

out. The change in the magnetic scattering at the half-order Bragg peak requires more 

investigation to reach any conclusions.  
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Chapter 5: Conclusions 

 

5.1 Future Work 

 This work provides a foundation for additional study considering the magneto-

optical effects of Py on the orbital angular momentum of light. The continuation of this 

research should include the determination of the Voigt parameter by using ellipsometers 

designed to measure the MOKE. The Voigt parameter should be used with the index of 

refraction and extinction coefficient presented in this work to determine the complete 

permittivity matrix of thin Py. The magneto-optical contributions to diffraction, such as 

that in the half-order Bragg peak, can be modeled once the complete permittivity matrix 

of Py has been determined.  

 The presence of OAM should be definitively confirmed. This can be done using a 

process such as holography. The complicated multi-null patterns should also be 

investigated in order to determine the cause of the double-ring shapes seen in this 

experiment.  

 The half-order Bragg peak should be examined more closely. It is possible that 

using a higher intensity laser or more sensitive camera will result in the positive image 

with and OAM structure in the half-order diffraction. The fluctuations of the magnetic 

scattering in this experiment due to possible mechanical processes should be confirmed 

or ruled out.  
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5.2 Conclusions 

 In conclusion, the normal part of the permittivity matrix of Py was successfully 

calculated from the index of refraction and the extinction coefficient measured using 

spectroscopic ellipsometry. The magneto-optical part of the permittivity matrix was not 

successfully calculated due to insufficient measurements to accurately calculate the Voigt 

parameter. However, change in the field-dependent permittivity could be detected by the 

magnetic-optical effects identified in the  parameter of the s and p cross polarizations of 

non-patterned Py samples. Magnetic scattering at the half-order diffraction peak was 

observed and showed possible signs of change in the ASI state when magnetized.  

 The successful creation of patterns consistent with those from a vortex beam in 

the visible spectrum using a two-dimensional forked magneto-optical diffraction grating 

was observed. This observation also shows that forked diffraction gratings using square 

lattice sections generate patterns consistent with OAM. Using forked diffraction gratings 

with square lattice sections also produces an off-axis diffraction pattern rotated 90o about 

the sample plane from the incident beam.   

After performing more investigation, the shift of the study of the magneto-optical 

generation of light carrying OAM from the x-ray spectrum to the visible spectrum of light 

might one day be possible. By using visible light, it is possible to study this phenomenon 

in a standard lab rather than in a specialized lab using a synchrotron to provide an x-ray 

beam. This will provide reduced cost, more time in the laboratory with the sample, 

improve the ease of finding OAM diffraction patterns with the naked eye, and direct 

access to the sample while imaging. Additional benefits of using the visible light 

spectrum include studying OAM and magneto-optical effects at shorter timescales using 
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fast pulse lasers and detectors. [4] Long-term potential includes the fabrication of fast 

OAM Py modulators for visible light. [4] 
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