Determined Soil Texture by Feel

Edwin L. Ritchey
University of Kentucky, edwin.ritchey@uky.edu

Joshua M. McGrath
University of Kentucky, josh.mcgrath@uky.edu

David Gehring
Natural Resources Conservation Services

Click here to let us know how access to this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/anr_reports

Part of the [Agriculture Commons](https://uknowledge.uky.edu/agriculture_commons) and the [Environmental Sciences Commons](https://uknowledge.uky.edu/environmental_sciences_commons)

Repository Citation

Ritchey, Edwin L.; McGrath, Joshua M.; and Gehring, David, "Determining Soil Texture by Feel" (2015). *Agriculture and Natural Resources Publications*. 139.

https://uknowledge.uky.edu/anr_reports/139

This Report is brought to you for free and open access by the Cooperative Extension Service at UKnowledge. It has been accepted for inclusion in Agriculture and Natural Resources Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Determining Soil Texture by Feel

Edwin Ritchey and Josh McGrath, Plant and Soil Sciences; and David Gehring, Natural Resource Conservation Services

What is soil texture?

Soil texture refers to the proportion of sand, silt, and clay in a soil. Texture influences almost every aspect of soil use, both in agricultural and engineering applications, and even how natural ecosystems function. Many scientists consider soil texture the most important soil property as it can influence soil/water relationships, gas exchange, and plant nutrition. Accurately determining soil texture in a lab requires time and money; therefore, it is often necessary to estimate soil texture in the field by feel, which can be very accurate if done correctly.

What gives soil its texture?

The three building blocks of soil—sand, silt, and clay—feel very different and lend different properties to a soil. Although the three types of soil particles are differentiated by their size (Table 1), which is a physical property, the relative amount of each of these components has a large influence on the physical, chemical, and biological properties of a soil. The pore spaces between soil particles are largely responsible for the amount of water a soil can hold. Finer soil textures have greater surface area, smaller soil pores, and slower water infiltration into the soil profile.

• **Sand** is the largest soil particle, measuring 0.05 to 2 mm in diameter, and can be seen by the naked eye. Sand feels gritty to the touch and holds very little water.

• **Silt** is the medium-sized component of soil, measuring 0.002 to 0.05 mm in diameter. Dry silt particles feel like flour or baby powder. When wet, silt will feel smooth. Silt only holds a moderate amount of water.

• **Clay** is the smallest particle in the soil, measuring less than 0.002 mm in diameter, and can only be seen with powerful microscopes. The largest clay particle is 25 times smaller than the largest silt particle and a thousand times smaller than the largest sand particle. Clay will feel sticky when wet and hard and brittle when dry. Clay can hold much more water than sand or silt. In most soils, clay content increases with depth.

How are soil textures classified?

Soils are divided into three broad texture groups—coarse-textured soils, medium-textured soils, and fine-textured soils (Figure 1). A **coarse-textured** or sandy soil has 70 to 100 percent sand-sized particles. Because of the strong properties clay exhibits, a soil only needs to have 35 to 40 percent clay-sized particles to be considered **fine-textured** or clayey. Finally, the **medium-textured** soils or loams have a more even distribution between clay and sand particles.

The United States Department of Agriculture (USDA) soil texture triangle (Figure 1) is used to divide soils into 12 distinct classes based on their particle size distribution, or the relative amount of sand, silt, and clay in the soil. In the laboratory, we would first determine the
relative amount of sand, silt, and clay particles in a soil sample as a percent of the sample’s weight, follow the arrows from each side to where they intersect, and identify what texture class the soil belongs to. For example, if we determined that a soil had 30 percent sand, 40 percent silt, and 30 percent clay, it would be called a clay loam. However, we can also estimate soil texture by feel fairly accurately with practice.

Using soil texture in the field

Once the soil texture is determined in the field, general characteristics of a soil can be predicted with reasonable accuracy, which helps identify proper management practices to use. A coarse-textured soil would have low water holding capacity, high water infiltration rates, high potential for leaching, low nutrient retention, and should respond well to supplemental irrigation. In contrast, fine-textured soils will remain wet longer than medium- or coarse-textured soils, have slow water infiltration rates, high potential for denitrification, and high nutrient retention. The medium-texture soils, such as loams, silt loams, or clay loams, have a good balance of sand, silt, and clay. Medium-textured soils generally are very productive soils that allow for sufficient water infiltration without excessive drainage and have good water holding capacity and nutrient retention. Most soils can be used to produce crops or forage, if managed properly. Accurate determination of the soil texture allows for proper management practices to be used to maximize the potential soil productivity.

References

Photos by Edwin Ritchey

How do I estimate texture by feel?

Three simple steps along with the flow chart in Figure 2 will help you to determine soil texture by feel.
Figure 2. Flow chart to determine soil texture by feel

Start with a small handful of soil (about the size of a golf ball).

- Add water slowly, mixing as you go, until the soil reaches a smooth, plastic consistency, like putty.
- Form the soil into a ball and squeeze.
 - Does the ball fall apart? **YES**
 - Is the soil too wet? **NO**
 - Is the soil too dry? **NO**
 - Sand
 - **NO**
 - Add more dry soil, mix thoroughly.
 - Add more water, mix thoroughly.
 - Does the soil feel gritty? **YES**
 - Silt
 - Does the soil feel gritty? **NO**
 - Loamy sand
 - Does the soil feel gritty? **EQUALLY**
 - Sandy loam
 - Sandy clay loam
 - Does the soil feel gritty? **SMOOTH**
 - Silt loam
 - Clay loam
 - Clay
 - Silty clay

- Squeeze the ball between your thumb and forefinger to form a ribbon until it breaks from its own weight.
 - How long is the ribbon before it breaks?
 - No ribbon forms
 - Less than 1 inch
 - Excessively wet a small pinch of soil and rub it against your palm.
 - Does the soil feel gritty? **YES**
 - Sandy loam
 - Does the soil feel gritty? **EQUALLY**
 - Loam
 - Does the soil feel gritty? **SMOOTH**
 - Silt loam
 - Sandy clay loam
 - 1 - 2 inches
 - Excessively wet a small pinch of soil and rub it against your palm.
 - Does the soil feel gritty? **YES**
 - Clay loam
 - Does the soil feel gritty? **EQUALLY**
 - Clay
 - Does the soil feel gritty? **SMOOTH**
 - Silty clay
 - 2 inches or longer
 - Excessively wet a small pinch of soil and rub it against your palm.
 - Does the soil feel gritty? **YES**
 - Silty clay
 - Does the soil feel gritty? **EQUALLY**
 - Sandy clay
 - Does the soil feel gritty? **SMOOTH**
 - Clay

Mention or display of a trademark, proprietary product or firm in text or figures does not constitute an endorsement and does not imply approval to the exclusion of other suitable products or firms.