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Abstract

The sweetpotato whitefly Bemisia tabaci is a highly destructive agricultural and ornamental crop pest. It damages host
plants through both phloem feeding and vectoring plant pathogens. Introductions of B. tabaci are difficult to quarantine
and eradicate because of its high reproductive rates, broad host plant range, and insecticide resistance. A total of 791 Gb of
raw DNA sequence from whole genome shotgun sequencing, and 13 BAC pooling libraries were generated by Illumina
sequencing using different combinations of mate-pair and pair-end libraries. Assembly gave a final genome with a scaffold
N50 of 437 kb, and a total length of 658 Mb. Annotation of repetitive elements and coding regions resulted in 265.0 Mb TEs
(40.3%) and 20 786 protein-coding genes with putative gene family expansions, respectively. Phylogenetic analysis based on
orthologs across 14 arthropod taxa suggested that MED/Q is clustered into a hemipteran clade containing A. pisum and is a
sister lineage to a clade containing both R. prolixus and N. lugens. Genome completeness, as estimated using the CEGMA and
Benchmarking Universal Single-Copy Orthologs pipelines, reached 96% and 79%. These MED/Q genomic resources lay a
foundation for future ‘pan-genomic’ comparisons of invasive vs. noninvasive, invasive vs. invasive, and native vs. exotic
Bemisia, which, in return, will open up new avenues of investigation into whitefly biology, evolution, and management.

Keywords: Whitefly Bemisia tabaci; Genomics; Assembly; Annotation

Introduction
Samples and libraries construction

As a globally invasive species, the phloem-feeding whitefly
Bemisia tabaci (Genn.; hereafter ‘Bemisia’) has been found on all
continents except Antarctica [1,2]. Taxonomically, B. tabaci is
considered a species complex that contains several morpholog-
ically indistinguishable but genetically distinct ‘cryptic species’
[2–7]. The Bemisia Middle East-Asia Minor 1 (MEAM1, or ‘B’)
cryptic species is highly invasive and has emerged as a ma-
jor pest in the United States, Caribbean Basin, Latin America,
Middle East [1], and East Asia [8]. Similarly, the invasive Bemisia
Mediterranean (MED, or ‘Q’) cryptic species has been introduced
into several geographic locations and has become established
throughout China [9,10]. Despite substantial research and the re-
cently published whitefly B. tabaci MEAM1/B genome [11], how-
ever, the genetic or genomic basis of MED/Q remains obscure.

The MED/Q B. tabaci adult whitefly females (2n) and males
(1n) were initially collected from infested field-grown cucumber
plants in Beijing, China during 2011 and used to establish a labo-
ratory colony (MED/Q) at the Institute of Vegetable and Flowers,
Chinese Academy of Agriculture Science by transferring adult
males and females to caged pepper plants (10–12 leaf stage). Re-
sults of mtCOI gene PCR-RFLP assays [12] and direct DNA se-
quencing followed by phylogenetic evaluation against reference
sequences [13] both confirmed that the Bemisia in the MED/Q
colony belonged to the Q1 haplotype group, or western Mediter-
ranean region clade (data not shown).

The MED/Q whitefly colony was used as the source initial
short shotgun Illumina sequencing. Adult whiteflies fed using
Parafilm membrane sachets containing a 25% sucrose solution
for 48 hours prior to collection of ∼5000 male and female adults
(∼50:50). Sampleswere immediately frozen in liquid nitrogen for
3 hours prior to transfer to a −80◦C freezer. This genomic DNA
was used to construct Illumina TruSeq paired end (PE) sequenc-
ing libraries (170-, 250-, 300-, 500-, and 800-bp insert sizes) and
mate pair (MP) libraries (2, 5, 10, 20, and 40 kb in size) accord-
ing to the manufacturer’s instructions. Additionally, two Illu-
mina PE sequencing libraries (∼500-bp and 800-bp inserts) were

constructed from whole genome amplification (WGA) reactions
carried out on genomic DNA isolated from two adultmalewhite-
flies. We also constructed 13 BAC libraries with pooling of clones
and Illumina library construction according to the manufac-
turer’s instructions.

Genome sequencing and assembly

All libraries were sequenced on an Illumina Hiseq 2000 using
100-bp reads from both fragment ends, and raw data processed
and assembled as shown (Supplemental Table S1; Supplemental
Fig. S1). Briefly, a series of filtering steps was performed on the
raw reads to filter out the following: (1) reads with >10% Ns,
>40% low-quality bases, >10 bp overlapping with adapter
sequences, allowing no more than 3-bp mismatches; (2) paired-
end reads that overlapped >10 bp between two ends, with
insert size >200-bp libraries; and (3) duplicated reads generated
by PCR amplification during the construction of the large-insert
library. Filtered reads were used for K-mer determination
within subsequent assembly steps. The frequency of each
K-mer was calculated from the genome-sequence reads. K-mer
frequencies along the sequence depth gradient follow a Poisson
distribution in a given data set except for a high proportion at
low frequency due to sequencing errors, as K-mers that contain
such sequencing errors may be orphans among all splitting
K-mers. The genome size, G, was estimated as G =
K num/K depth, where K num is the total number of K-
mers and K depth is the maximal frequency. Initial contigs were
assembled from filtered 500- and 800-bp insert-size WGA PE
libraries using SOAPdenovo. The sequencing reads obtained for
2-k to 40-kb MP libraries were used to connect the contigs and
to generate the scaffolds as described by Li et al. (2010) [14] with
a K-mer size of 65.

Individual BAC pools were assembled independently using
SOAPdenovo and the whole genome shotgun reads from PE and
MP libraries were used to fill gaps in the BAC scaffolds. After
sequencing, the raw reads were filtered as described above. In
addition, reads representing contamination by Escherichia coli or
the plasmid vector were filtered. The pooled reads were sepa-
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Table 1: Statistics comparison of genome assembly and annotation between MED/Q and MEAM1/B

MED/Qa MEAM1/Bb

Sequencing summary Scaffoldc Contigc Scaffoldc Contigc

Total number 4954 29 618 19 761 52 036
Total length of (bp) 658 272 463 638 061 971 615 029 878 599 923 598
Gap number (bp) 19 828 575 0 14 380 491 0
Average length (bp) 132 877 21 543 31 123 11 529
N50 length (bp) 436 791 44 366 3 232 964 29 918
N90 length (bp) 111 835 11 504 381 346 6117
Maximum length (bp) 2 857 362 362 835 11 178 615 269 706
Minimum length (bp) 501 500 500 500
GC content (%) 39.46 39.46 39.64 39.64
TEs proportion (%) 265 Mb (0.40) 269 Mb (0.44)
CEGMA evaluation (%) 96 100
BUSCO evaluation 78 96.8
Gene number 20 786 15 664
Average gene length (bp) 10 065 22 762
Average CDS length (bp) 1952 1470
Average exon per gene 6 6
Average exon length (bp) 351 234
Average intron length (bp) 1776 3125
Annotation gene (%) 79.97 81
Assemble software SOAPdenovo Platanus

aFrom this study.
bFrom the published MEAM1/B genome [11].
cOnly contigs and scaffolds �500 bp were included in the genome assembly.

rated according to the BAC-reads index, and each BAC was as-
sembled using a combination of “hierarchical assembly” and “de
Bruijn graph assembly.” First, the reads linked to each BAC were
assembled using SOAPdenovo [14], with various combinations of
parameters with a K-mer range from 27 to 63 and a step size of 6.
The assembly with the longest scaffold N50 was defined as the
“best” for each BAC. The resulting BACs were mapped with the
large shotgun MP read data to optimize the assembly for each
BAC.

The final draft assembly was produced by integrating se-
quences that overlapped among the scaffolds independently as-
sembled from genome shotgun and BAC reads, and in doing so
eliminated the redundant scaffolds using the following steps.
To integrate the two assemblies, the software Rabbit [15] was
applied to identify any relationship between scaffolds, to con-
nect the overlapping regions that shared at least 90% similarity,
and to remove redundancy based on a 17-mer frequency. Finally,
SSPACE [16] was used to construct super-scaffolds containing
800-bp to 40-kb whole genome sequence (WGS) reads, and the
170- to 800-bp genome shotgun read data were used to fill the
gaps using GapCloser [14]. Postassembly processing included re-
moval of contaminating bacterial and viral DNA sequences by
aligning all assembled sequences to the genome sequences of
viruses and bacteria, obtained fromprevious local BLASTn align-
ments and by NCBI upload filter. Aligned sequences that shared
>90% identity and were >200 bp in size were filtered from the fi-
nal assembly. The assembled sequences that were covered by at
least one expressed sequence tag (EST) sequence were retained.
Process read data were mapped to the draft MED/Q genome us-
ing SOAPaligner software and read counts were made from .bam
files and the average depth was computed from all bases in the
window. The relation graph of base pair percentages, and each
given sequencing depth along the genome, was obtained.

Using genomicDNA from theMED/Q colony, a total of 20WGS
shotgun sequencing librarieswas generated (18 pooledmale and
female PE and MP libraries, and two haploid male-derived WGA

PE libraries), from which sequences were generated on an Illu-
mina Hiseq2500 platform. Library sequencing produced a total
of 428.2 Gb or an approximate 594.7-fold genome coverage as-
suming a 0.72-Gbp genome size (based on 17-mer analysis). For
the 10 short-insert PE libraries, there were a total of 229.4 Gb
(100-bp or 150-bp read length, approximately 318.6-fold genome
coverage). Sequencing the eight large-insert (>1 kb) MP libraries
produced 80.3 Gb of reads (49 bp read length, 111.5-fold coverage)
for use in scaffold construction (Supplemental Table S1). The two
male WGA libraries produced a total of 118.5 Gb of data (Sup-
plemental Table S1) or approximately 164.6-fold genome cov-
erage. Sequencing of 13 BAC pools generated 362.6 Gbp of raw
data (288.4 Gbp processed data; results not shown). The subse-
quent assembly of this sequence data using our pipeline (Sup-
plemental Fig. S1) generated a 658-Mbp draft genome assembly
for MED/Q consistent with recent flow cytometry estimates [17].
The mean read depth across 10-kb windows indicated that all
genome regions were highly represented within the read data,
with <1.5% having a depth of <10× (remaining data not shown).

Through statistical comparison of genome assembly and an-
notation between MED/Q and MEAM1/B (Table 1), we found the
draft genome of MED/Q consisted of a genome size of 658 Mb
with contig N50 size 44 kb, while MEAM1/B assembly was 615
Mb with contig N50 of 30 kb. They have similar G+C con-
tent of about 39%, while higher TEs existed in MEAM1/B (44%)
thanMED/Q (40%). After combining several annotationmethods,
20 748 genes were predicted in MED/Q, whereas 15 664 genes in
MEAM1/B, and about 80% of both two gene sets were supported
by several public functional databases.

Annotation of repetitive elements

Repetitive elements were searched for and identified using Rep-
base [18] implemented in TRF software [19], and a de novo ap-
proach implemented in Piler [20]. For the Repbase-based method,
two software programs named RepeatMasker [21] and RepeatPro-

Downloaded from https://academic.oup.com/gigascience/article-abstract/6/5/1/3071703
by University of Kentucky Libraries user
on 03 May 2018



4 Xie et al.

teinMask were used to identify repetitive sequences. In the de
novo approach, Piler-DF-1.0 [20], RepeatScout-1.0.5 [22], and LTR-
FINDER-1.0.5 [23] were used to build de novo repeat libraries from
the genome sequences. Finally, the repeated sequences were
searched for and classified using the RepeatMasker software.
Homology-based annotation of MED/Q repetitive elements was
queried against Repbase v.20.05 [18] with RepeatMasker [21]. We
found a total of 265.0 Mb TEs, or 40.3% of the MED/Q genome
size. This was about 10% higher than the repeat contents of
Acyrthosiphon pisum and Rhodnius prolixus, but similar to that
of Nilaparvata lugens (39.8%) (Supplemental Table S2). This sug-
gests that long terminal repeat (LTR) (18.5%) are more abun-
dant and contain more nucleotides than all other TE classes.
This proliferation of LTR retrotransposons has been found in
only one other Hemipteran genome, that of N. lugens (12.29%).
The MED/Q genome also contains the high proportion of the
DNA-transposon TEs (12.92%) found in other fully described
Hemipteran genomes. As with both N. lugens (0.5%) and R. pro-
lixus (0.01%), the MED/Q genome also appears devoid of short
interspersed nuclear elements (0.96 %). These other Hemipteran
genomes also contain a small amount of long interspersed nu-
clear elements (A. pisum: 2.6%; MED/Q: 3.18%; R. prolixus: 3.2%),
butN. lugens (12.84%). This suggests that MED/Q-specific TEs, es-
pecially the LTRs, have evolved relatively recently and contribute
to the large number of gene sets.

Annotation of coding regions

Initial evaluation of the gene coverage rate in the draft MED/Q
genome assembly was assessed by comparing against 248 core
eukaryotic genes obtained using CEGMA 2.4 [24] and Bench-
marking Universal Single-Copy Orthologs (BUSCO) [25]. Addi-
tionally, 105 067 B. tabaci transcript sequences, ESTs, of >200 bp
were used as BLASTn queries against the assembled genome
to estimate the representation (cutoff E-value ≥ 10−40). Protein-
coding gene de novopredictions usingGENEWISE [26] and ab initio
gene predictions using GENSCAN [27] and AUGUSTUS [28] were
made in combination with 13.7 Gbp of transcriptome (RNA-Seq)
data including published MED/Q B. tabaci body, guts, and sali-
vary glands [29–31] and additional, previously unpublished data
from females and males [32], to obtain consensus gene sets us-
ing GLEAN [33].

For homolog-based prediction, protein sequences from nine
species (A. pisum, A. mellifera, D. melanogaster, R. prolixus, Z.
nevadensis, A. gambiae, B. mori, P. humanus, and T. castaneum)
were aligned with the MED/Q genome scaffolds using TblastN
(E-value <1e-5). Target sequences were used to search for accu-
rate gene structures implementing the GeneWise software [26].
For the RNA-Seq datasets, the transcriptome reads were first
aligned against the genome using TopHat [33] to identify can-
didate exon regions. Then, the Cufflinks software [34] was used
to assemble the aligned reads into transcripts, and the open
reading frames were predicted to obtain reliable transcripts us-
ing a Hidden Markov Model-based training parameter. Finally,
GLEAN [33] was used to integrate the predicted genes with the
de novo, homologous, and RNAseq data to produce the final
gene set. The functional annotation of genes was performed us-
ing BLASTP alignment to KEGG [35], SwissProt, and TrEMBL [36]
databases. Motifs and domains were determined by InterProScan
[37] and protein database searches against ProDom, PRINTS,
Pfam, SMART, PANTHER, and PROSITE.

Preliminary evaluation of transcribed regions within the
draft MED/Q genome assembly coverage found that ∼95.2% of
B. tabaci ESTs > 200 bp were present, with 90 652 ESTs show-

ing ≥90% length coverage on one scaffold (Supplemental Table
S7). This alignment encompassed 92.9% of nucleotides within
the EST dataset. Analogously, 229 (96%) of the 248 sequences in
the CEGMA gene set and 79% complete and fragmented BUS-
COs were present in the MED/Q genome assembly (remaining
data not shown). The final GLEAN gene models predicted a ref-
erence gene set of 20 786 protein-coding genes, a consensus
result derived from de novo, orthology, and evidence (RNA-seq)-
based prediction methods (Supplemental Table S3) and inte-
grated into GLEAN genemodels (Supplemental Table S4). Among
the GLEAN gene models, 16 622 (79.97%) received functional
gene annotations using the various databases queried in our
analysis pipeline (Supplemental Table S5).

Prediction of gene orthology

Twelve insect species including B. tabaci (Genn.) (Genna-
dius, 1889) (Hemiptera: Aleyrodidae), Acyrthosiphon pisum
(Harris, 1776) (Hemiptera: Aphididae), Rhodnius prolixus (Stal,
1859) (Hemiptera: Triatominae), Nilaparvata lugens (Stål, 1854)
(Hemiptera: Delphacidae), Pediculus humanus (Linnaeus, 1758)
(Phthiraptera: Pediculidae), Apis mellifera (Linnaeus, 1758)
(Hymenoptera, Apidae), Nasonia vitripennis (Ashmead, 1904)
(Hymenoptera, Pteromalidae), Tribolium castaneum (Herbst,
1797) (Coleoptera, Tenebrionidae), Anopheles gambiae (Giles,
1902) (Diptera, Culicidae), Drosophila melanogaster (Meigen,
1830) (Diptera, Drosophilidae), Bombyx mori (Linnaeus, 1758)
(Lepidoptera, Bombycidae) and Danaus plexippus (Kluk, 1802)
(Lepidoptera, Nymphalidae), and two divergent arthropods,
Daphnia pulex (Müller, 1785) (O. Cladocera, Daphniidae) and
Tetranychus urticae (C. L. Koch, 1836) (O. Arachnida, Tetrany-
chidae), were used to predict orthologs and to reconstruct the
phylogenetic tree. Gene families were identified using TreeFam
[38,39], and single-copy gene families were assembled to recon-
struct phylogenetic relationships. Coding sequences of each
single-copy family were concatenated to form one super gene
group for each species. All of the nucleotides at codon position
2 of these concatenated genes were extracted to construct the
phylogenetic tree by PhyML [40], with a gamma distribution
across sites and an HKY85 substitution model. The same set of
sequences at codon position 2 was used to estimate divergence
times among lineages. The fossil calibrations were set with two
previous node data [41,42]. The PAML mcmctree program (v.4.5)
[43,44] was used to compute split times using the approximate
likelihood calculation algorithm. The software Tracer (v.1.5.0)
was utilized to examine the extent of convergence for two
independent runs.

Phylogenetic analysis based on orthologs across 14 arthro-
pod taxa (Supplemental Table S6) suggested that MED/Q is clus-
tered into a hemipteran clade containing A. pisum and is a sis-
ter lineage to a clade containing both R. prolixus and N. lugens
(Fig. 1A). The range of species-specific genes within the four
hemipteran genomes ranged from 38% to 60%, with higher val-
ues for the three phloem-feeding specialists. This led us to in-
vestigate interspecific changes in the number and diversity of
gene familymembers (orthologs and paralogs) within this group
of Hemiptera (Fig. 1C; Supplemental Fig. S2).

In summary, we report the first genome sequencing, assem-
bly, and annotation of the MEQ/Q B. tabaci. This genome assem-
bly will provide a valuable resource for studying climatic and
host plant adaptations, invasive-invasive and native-exotic in-
teractions, insecticide resistance, vector competence, and its re-
lationships with bacterial endosymbionts.
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Figure 1: Phylogenetic relationships and genomic comparisons between Bemisia tabaci and other insect species (A) Phylogenetic relationships of B. tabaci (BEMTA) to
insects and other arthropods based on single-copy orthologous genes present in their complete genomes. The following 12 insect species were used for this analy-
sis: Acyrthosiphon pisum (ACYPI), Anopheles gambiae (ANOGA), Apis mellifera (APIME), BEMTA, Bombyx mori (BOMMO), Danaus plexippus (DANPL), Drosophila melanogaster

(DROME), Nasonia vitripennis (NASVI), Nilaparvata lugens (NILLU), Pediculus humanus (PEDHU), Rhodnius prolixus (RHOPR), and Tribolium castaneum (TRICA). The two arthro-

pods Daphnia pulex (DAPPU) and Tetranychus urticae (TETUR) were used as outgroup taxa. Branch lengths represent divergence times estimated for the second codon
position of 308 single-copy genes, using PhyML with a gamma distribution across sites and a HKY85 substitution model. The branch supports were inferred based
on the approximate likelihood ratio test (aLRT). Gene orthology was determined by comparing the genomes of these 14 arthropod species. The use of 1:1:1 refers

to single-copy gene orthologs found across all 14 lineages. The use of N:N:N refers to multi-copy gene paralogs found across the 14 lineages. Diptera, Hemiptera,
Hymenoptera, Lepidoptera, and Insecta refer to taxon-specific genes present only in the particular lineage. SD indicates species-specific duplicated genes, and ND
indicates species-specific unclustered genes. (B) Image of adult MED/Q. (C) A Venn diagram showing the orthologous groups shared among the hemipteran genomes
of A. pisum, B. tabaci, N. lugens, and R. prolixus. Our analysis found 3341 gene families common to all four hemipteran genomes, and 2921 common to the genomes of

the six vascular (blood and phloem) feeders.

Availability of supporting data

This whole genome shotgun project has been deposited at
DDBJ/EMBL/GenBank under the accession LIED00000000. The
version described in this paper is version LIED01000000 accessi-
ble at NCBI. Further data, including annotation files and assem-
bled transcripts, are available in the GigaScience GigaDB reposi-
tory [32].

Additional files

Figure S1. Schematic illustration of the assembly pipeline for
MED/Q genome based on the combined assemblies from WGS
and BACs.

Table S1. Statistics of the whole genome sequencing data.
Table S2. Repeat Masker analysis in four hemiptera species.
Table S3. Evidenced use within GLEAN MED/Q protein-coding
genes.
Table S4. Summary of GLEAN gene models.
Table S5. Functional annotation of the MED/Q genome.
Table S6. Orthologous gene comparison among genomes of 14
arthropod species.
Table S7. Quality control of assembled genome.
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Mapping Approach; EST: Express sequence tag; HMW: high
molecular weight; MED/Q: Mediterranean Bemisia tabaci Q;
mtCOI: mitochondria cytochrome oxidase I; TEs: transposable
elements; WGA: whole-genome amplified; WGS: whole genome
shotgun.
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