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ABSTRACT OF THESIS 

THE EFFECT OF ENDOPHYTE-INFECTED TALL FESCUE SEED CONSUMPTION 

ON GUT AND SATIETY HORMONES RELATED TO INTAKE REGULATION IN 

HOLSTEIN STEERS

Cattle consuming endophyte-infected tall fescue (E+) typically experience a 

syndrome termed fescue toxicosis which is thought to be caused by ergot alkaloids 

produced by the endophyte. The most abundant alkaloid, and considered the most likely 

cause of the syndrome, is ergovaline (ERV). During fescue toxicosis, a decrease in ADG 

is observed which is likely due to the decrease in DMI commonly observed in animals 

consuming E+ compared to animals consuming non-endophyte-infected tall fescue (E-). 

However, the cause of the decrease in intake is not well elucidated. Many physiological 

responses control feed intake including, but not limited to, physical, neural, metabolic, 

and hormonal factors. The present study focused on investigating the impact of E+ 

consumption on hormonal factors related to intake regulation as well as investigating the 

effects on nonesterified fatty acid (NEFA) and -hydroxybutyrate (BHB). Twelve 

growing Holsteins steers were assigned to one of three treatments (n=4 per treatment): 0 

ppm ERV, 1.8 ppm ERV, and 2.7 ppm ERV. Animals were adapted to the treatment diets 

for 7 days followed by a 7-day treatment period.Cattle were catheterized to facilitate 

blood sampling. Blood samples (25mL) were collected every 20 minutes for 8 hours, 

beginning 1-hour before feeding, on day 7 of the treatment period. Samples were 

centrifuged for 30 minutes at 5000 x g at 4 C, and plasma was aliquoted for hormone, 

NEFA, and BHB analysis. DMI intake decreased linearly (p<0.0001) with increasing 

intake of ERV. Plasma insulin and leptin concentrations both displayed a quadratic 

response. Plasma active ghrelin exhibited a linear response (p=0.0431) where 

concentrations decreased as ERV concentration increased. NEFA concentrations 

produced a significant treatment x time interaction (p<0.0001). BHB concentrations 

exhibited a quadratic response where concentrations were lowest for the 2.7 ppm ERV 

treatment (p=0.0286). Glucose concentrations were shown to increase linearly with 

increasing ERV intake (p=0.0456). These results indicate that consumption of E+ 

decreases intake which may be possible through alteration of hormones related to intake 

regulation and potentially alter postabsorptive metabolism.  
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CHAPTER 1.  INTRODUCTION 

 

Tall fescue, or Lolium arundinaceum, is a cool-season perennial grass that is 

commonly utilized in the southeast United States and became widely popular after 

“Kentucky 31” was released in the 1940s (Paterson et al., 1995; Ball et al., 1991). 

Unfortunately, this forage has resulted in negative performance characteristics as well as 

negative health issues for grazing livestock. Animals consuming tall fescue are at risk for 

a syndrome called fescue toxicosis. This is a result of consumption of the toxic endophyte 

(Epichloë coenophiala )which produces ergot alkaloids, the primary cause of the 

disorder. Negative impacts observed following consumption of tall fescue are decreased 

average daily gain (ADG) accompanied by a decrease in dry matter intake (DMI) as well 

as vasoconstriction and hyperthermia (Paterson et al., 1995; Rhodes et al., 1991, Aiken et 

al., 2007).  

The characteristic decrease in DMI has been considered to be the cause of the 

decreased ADG following evaluation of effects of consumption of tall fescue on foregut 

blood flow, digestion and metabolism, and ruminal DM contents (Klotz, 2017), and thus, 

a large contributor to the economic losses associated with fescue toxicosis. Therefore, 

one of the next steps in fescue toxicosis research is to determine the cause of the 

decreased DMI.   

 This study focused on examining three essential hormones related to intake 

regulation, insulin, leptin, and ghrelin as well as investigating potential changes in 

postabsorptive metabolism. Insulin is a hypoglycemic hormone produced by the  cells 

of the islet of Langerhans in the pancreas and has the important role of maintaining 
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glucose concentrations in the blood as well as being essential for the regulation of 

metabolic function (Browning and Thompson, 2002; Wilcox, 2005). Excess insulin 

concentrations in the blood have been associated with a decrease in intake (Porte and 

Woods, 1981; Deetz and Wangness, 1981). Through regulation in the form of negative 

feedback, insulin can induce a hypophagic effect on the animal. Cattle undergoing heat 

stress conditions have exhibited increases in insulin concentrations although DMI is 

decreased (Baumgard and Rhodes, 2013a) which may alert to changes in postabsorptive 

metabolism particularly a shift from lipid mobilization to carbohydrate metabolism. Non-

esterified fatty acids (NEFA) and ß-hydroxybutyrate (BHB) play an important role in 

lipid mobilization, and thus, may provide evidence for changes in this process.  

Leptin is a peptide secreted by adipose tissue and plays an important role in the 

regulation of whole-body energy metabolism (Nkruman et al., 2005). The mechanism by 

which leptin acts in appetite regulation occurs mainly in the hypothalamus through 

interactions with the arcuate nucleus (ARC). Here, leptin can stimulate the release of 

appetite-stimulating or inhibiting neuropeptides which aid in the regulation of intake 

(Ahima et al., 1999).   

Ghrelin is a gut peptide produced from endocrine cells in the gastrointestinal tract 

and is known to stimulate appetite (Sakata and Sakai, 2010). In plasma, ghrelin is present 

in an active and an inactive form. The active form is acylated and can stimulate growth 

hormone release by binding to the necessary receptor (Kojimia and Kangawa, 2002). 

Additionally, active ghrelin has been positively associated with DMI in cattle (Foote et 

al., 2014).  
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 Analysis of insulin, leptin, and active ghrelin, though not the only hormones 

related to intake regulation, may serve as an important step in evaluating the effects of 

endophyte-infected tall fescue consumption on intake regulation, and analyzing NEFA 

and BHB may provide insight on postabsorptive metabolism changes. Therefore, the 

objective of this study was to investigate changes in gut and satiety hormones related to 

intake regulation through analysis of insulin, leptin, and active ghrelin concentrations, 

and to examine potential changes in postabsorptive metabolism following consumption of 

endophyte-infected tall fescue seed. 
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CHAPTER 2. LITERATURE REVIEW 

History of Tall Fescue 

 

Tall fescue (Lolium arundinaceum) is a widely abundant forage in the United 

States and is a commonly utilized cool-season perennial grass in the southeast (Paterson 

et al., 1995). This versatile grass became popular in the 1940s following the release of 

“Kentucky 31” and was subsequently planted throughout the 1940s and ’50s. As this 

grass became a staple in livestock production, negative aspects began to be noticed. 

Producers noticed tall fescue was not as palatable as other cool-season grasses, and they 

witnessed inconsistencies in cattle performance. Additionally, health issues such as 

fescue foot, fat necrosis, and fescue toxicosis, also known as summer slump, were 

observed (Ball et al., 1991).  

During the 1970s the endophyte was discovered which was determined to be the 

cause of the negative animal health issues. Researchers for the USDA were able to 

associate an endophytic fungus with decreased ADG in beef cattle which was confirmed 

by scientists at Auburn University. Two important practical characteristics were also 

discovered. Scientists discovered that the endophyte acted in a symbiotic relationship 

with the plant and did not seem to affect the plant’s appearance or growth. Furthermore, 

they found that the endophyte also resided in the seed portion of the plant (Ball et al., 

1991).  



5 

 

Fescue Toxicosis  

Overview 

 Fescue toxicosis is a complication associated with the consumption of endophyte-

infected tall fescue. Typically, it leads to inhibition of animal production through a 

decrease in intake and ADG (Thompson and Stuedemann, 1993). Cattle experiencing 

fescue toxicosis present a myriad of symptoms including, but not limited to, increases in 

rectal temperature, excess salivation, increase in respiratory rate, lameness, rough hair 

coat, and decreased grazing time (Strickland et al., 2011). Tall fescue inhabits around 14 

million hectares in the United States (Casler and Kallenbach, 2007) and is one of the 

most costly animal health-related issues for the grazing livestock industry (Strickland et 

al., 2011) with around $2 billion lost to the beef industry in the US annually (Kallenbach, 

2015). 

Causative Agent 

 Much research has been directed at determining the causative agent(s) of fescue 

toxicosis. Of that research, much has been done investigating ergot alkaloids as a primary 

cause of the disorder.  Ergot alkaloids are produced by the endophyte (Epichloë 

coenophiala) present in endophyte-infected tall fescue. Unfortunately, the specific 

mechanisms of action of these alkaloids are ill-defined.  

 Ergot alkaloids can be divided into two main classes, ergopeptines and ergolines, 

and they likely work in conjunction with one another, either additively or coactively, to 

elicit fescue toxicosis symptoms (Foote, 2013). These alkaloids produce varied effects on 

biological processes which seem to be independent of the dosage of the alkaloids and 
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more so related to the structure of the alkaloids. While the exact structures of the ergot 

alkaloids are not identical, they do typically share a characteristic tetracyclic ergoline 

ring. The characteristic ring allows the ergot alkaloids to bind to various receptors due to 

the structural similarity they share with norepinephrine, dopamine, and serotonin. 

Additionally, the structural similarity allows ergot alkaloids to acts as agonists, partial 

agonists, or antagonists at the receptors of the neurotransmitters (Pertz and Eich, 1999).   

 

Impact on Animal Performance 

 Negative impacts on DMI and ADG are characteristic of fescue toxicosis in cattle 

and have significant economic importance for producers. The decrease in gain is likely 

due to the decrease in intake (Klotz, 2015). Research has shown that cattle consuming 

endophyte-infected tall fescue consume less dry matter than cattle fed noninfected tall 

fescue (Beers and Piper, 1987; Paterson et al., 1995; Matthews et al., 2005). Additionally, 

it has been shown that not only is intake decreased, but a decrease in ADG is observed as 

well (Schmidt et al., 1983; Paterson et al., 1995). The decrease in ADG in cattle 

consuming endophyte-infected tall fescue can range from 30-100% of cattle consuming 

nonendophyte-infected tall fescue (Paterson et al., 1995).   

 Aside from a decrease in DMI and ADG, cattle impacted by fescue toxicosis also 

undergo vasoconstriction and hyperthermia. Vasoconstriction in cattle can result in 

serious health problems such as gangrenous ergotism as well as affect nutrient 

availability and uptake.  Gangrenous ergotism is caused by blood vessel dysfunction 

which has been attributed to ergot alkaloid consumption (Rhodes et al., 1991; Aiken et 

al., 2007). Additionally, this disorder can lead to issues with bovine extremities including 
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tissue necrosis of the tail, ears, and hooves (Klotz, 2015). Vasoconstriction of the right 

ruminal artery and vein are also symptoms of fescue toxicosis. Ergot alkaloids have been 

found to constrict both the right ruminal artery and vein, and this can alter blood supply 

and drainage from the foregut as well as compromise the absorption of nutrients and 

fermentative end products (Foote et al., 2011).  

Hyperthermia also presents as an issue in cattle consuming endophyte-infected 

tall fescue, but it is arduous to distinguish between heat stress and ergot alkaloid 

consumption (Klotz, 2015). Cattle undergoing fescue toxicosis cannot regulate body 

temperature effectively (Spiers et al., 2012), and these animals can exhibit negative 

effects on the cardiovascular system which can exacerbate the hyperthermia (Browning Jr 

and Leite-Browning, 1997; Eisemann et al., 2014).  

 

Intake Regulation 

Physical Factors Regulating Intake 

Physical constraints on voluntary intake in ruminants are largely a function of fill 

capacity and volume, and typically involve increased gastrointestinal distension that 

results in the decreased intake. These constraints are closely associated with diet 

composition with complications arising when feeding high forage diets. In ruminants 

consuming high forage diets, DMI is decreased with  decreased flow of digesta through 

the gastrointestinal tract resulting in distension which in turn, causes a decrease in DMI 

(Allen, 1996). Grovum (1979) found that when water-filled balloons were inserted into 

the rumen, reticulum, and abomasum of sheep consuming alfalfa pellets increased 
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distension resulting in decreased intake which provides evidence that gut fill and 

distension can impact intake.  

Neutral detergent fiber (NDF) includes the cell wall fraction present in a 

particular feedstuff which includes lignin, cellulose, and hemicellulose. NDF is 

commonly referred to as the best single chemical predictor of DMI as it stays in the 

rumen longer with less rapid fermentation and contributes to the filling effect in the 

rumen. Particularly, the indigestible fraction which is not available for microbial use and 

relies on passage to escape the rumen which results in a larger retention time that 

contributes to decreased intake (Poppi et al., 1981b, a). In sheep fed a wide range of 

roughage materials, cell wall constituent intakes were not different, and thus, provided 

evidence that DMI can be highly related to NDF (Van Soest, 1965).  

Passage rate can also influence intake. Typically, fractional passage rate increases 

as DMI increases (Riewe and Lippke, 1970). Additionally, intake and retention time of 

the reticulorumen are inversely related  (Allen, 1996) which means that as retention time 

is increased, passage rate is decreased resulting in decreased intake.  

 

Neural Factors Regulating Intake  

 Neural regulation of intake encompasses communication within the central 

nervous system (CNS) to mount an appropriate intake response to afferent peripheral 

signals.  The hypothalamus, which is a primary control center of intake in the neuronal 

system, receives afferent signals and responds by sending an appropriate efferent signal 

to modify food intake through a variety of neuronal pathways.  Within the hypothalamus, 
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there are interconnecting nuclei that have orexigenic or anorexigenic functions and work 

in concert to aid in the formation of the necessary intake response.  The nuclei have the 

capability for metabolic sensing to help maintain overall energy balance. The arcuate 

(ARC), paraventricular, ventromedial and dorsomedial nuclei and the lateral 

hypothalamic area represent the interconnecting nuclei present in the hypothalamus 

(Simpson et al., 2009).  

The nucleus tractus solitarii (NTS), located in the caudal brainstem, serves as a 

key commencing point for vagal afferent nerve signals from the periphery. It also aids in 

the mitigation of integration of multiple signals. These peripheral signals originate from 

the GIT, nutrient chemicals, and gut peptides and aid in negative feedback control of 

intake (Schwartz, 2006). Additionally, the NTS is responsible for the integration of these 

signals (D'Agostino et al., 2016).   

 The ARC, located at the site of the incomplete blood-brain barrier, is the primary 

hypothalamic area involved in regulating intake and contains neuropeptide Y, agouti-

related protein, cocaine and amphetamine-related transcript, and pro-opiomelanocortin 

which are commonly referred to as “first-order” neurons (Valassi et al., 2008). 

Neuropeptide Y and agouti-related protein are known to increase food intake whereas 

cocaine and amphetamine-related transcript and pro-opiomelanocortin decrease intake 

(Simpson et al., 2009).  Additionally, projections from the ARC allow the axons of these 

neurons to interact with other areas of the hypothalamus containing “second-order” 

neurons, such as the paraventricular nucleus and lateral hypothalamic area. The 

paraventricular nucleus contains the anorexigenic substances thyrotropic-releasing 

hormone and corticotropin-releasing hormone, and the lateral hypothalamic area contains 
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primarily orexins and melanin-concentrating hormone. Signals related to adiposity and 

satiety control which peptides are released to inhibit intake. When adiposity signals are 

high, primarily in the form of circulating leptin and insulin, the signals are delivered from 

the peripheral tissues, mainly via the NTS, and anorexigenic peptides are released. In 

contrast, when adiposity signals are low in the peripheral tissues, orexigenic peptides will 

be released to stimulate intake (Valassi et al., 2008).  

Metabolic Factors Regulating Intake 

 Metabolic feedback for regulating intake occurs primarily through nutrient-

sensing via the CNS. As described above, various portions of the hypothalamus 

participate in receiving and sending signals to properly adjust feeding behavior and 

energy expenditure as well as to optimize glucose utilization and production. 

Carbohydrates, proteins, and lipids are the primary macronutrients involved in regulating 

feed intake which will be further explored below.  

Carbohydrates 

 In ruminants, the majority of dietary carbohydrates are metabolized in the rumen 

to volatile fatty acids (VFA) following the breakdown of glucose monomers to pyruvate. 

The primary VFAs produced include acetate, butyrate, and propionate. Acetate and 

butyrate are commonly associated with fatty acid synthesis whereas propionate is most 

commonly associated with the production of glucose. Research has provided evidence 

that these VFAs have the potential to modulate intake. Acetate, propionate, and butyrate 

have all been shown to decrease intake following injection into the rumen (Montgomery 

et al., 1963). Intraruminal infusion of VFA in sheep consuming either high or low forage 
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diets has been shown to decrease digestible energy intake (Bhattacharya and Alulu, 

1975). Although acetate, propionate, and butyrate have all been seen to decrease intake in 

ruminants, research suggests that propionate is a more potent regulator of intake over 

acetate and butyrate (Phillipson, 1970; Anil and Forbes, 1988). Additionally, research 

into the impact of propionate on intake concluded that after intraruminal infusion of 

propionate, energy intake and DMI were decreased with the degree of decrease 

increasing as propionate concentration increased (Oba and Allen, 2003b). This impact of 

propionate on intake is likely due to the increased glucose production associated with the 

increase.  

Research also suggests that amounts of rapidly degraded starch available to the 

animal can affect intake. Notably, the effects of increased starch can cause digestive 

issues such as ruminal acidosis which will ultimately decrease intake, so it is important to 

ensure the cause of decreased intake is attributed appropriately.  The addition of more 

rapidly fermenting starch typically results in decreased intake (Allen et al., 2009). A 

decrease in intake was observed as ruminally degraded starch, as a % of DM, increased in 

lactating cows (Oliveira et al., 1995; Knowlton et al., 1998). However, research suggests 

that using high concentrate diets can alter feed intake without causing digestive upsets. In 

lactating dairy cows fed high-corn rations, the increase in fermentable starch caused a 

decrease in meal size % and a decrease in overall intake (Oba and Allen, 2003a). In 

feedlot cattle, intake may be regulated by metabolic signals, such as ruminally degraded 

starch, as opposed to gut fill (Allen et al., 2009). Steers fed an all concentrate diet had a 

lower DMI compared to steers fed diets containing roughages (Shain et al., 1999), and 
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similar results were reported in steers fed increasing amounts of roughages in the diet 

where DMI was decreased linearly (Gill et al., 1981). 

Lipids 

 Lipids are provided to the ruminant through de novo synthesis, feedstuffs, and 

dietary supplements. Fatty acids are considered the most important lipid fraction in 

ruminants and are regarded as high-energy substrates with the potential to impact intake. 

These fatty acids can be oxidized which involves the breakdown of fatty acids into acetyl 

CoA units which can ultimately be used to generate energy and are thought to serve as a 

post-absorptive satiety signal. Increases in fatty acid oxidation have been shown to cause 

a hypophagic intake response whereas data suggests inhibition of fatty acid oxidation 

stimulated intake (Allen et al., 2009). In cows postruminally infused with vegetable oil 

containing a mixture of various fatty acids with long-chain fatty acids (LCFA) 

constituting the majority, DMI was significantly decreased (Benson et al., 2001). 

Similarly, cows fed high-fat diets with increasing amounts of LCFA exhibited decreased 

DMI (Choi and Palmquist, 1996).  

Nonesterified fatty acids (NEFA) are also known to cause hypophagia in ruminant 

animals (Allen, 2000). Endogenously, NEFA are a major source of fatty acids oxidized in 

the liver (Emery et al., 1992), and supplementing fat increased NEFA in lactating cows 

which was followed by decreased intake (Choi et al., 1997). Overall, fatty acids are 

capable of serving as a satiety signal for ruminant animals and inducing a hypophagic 

response.  

Protein 



13 

 

 Metabolism of dietary protein can result in high-energy substrates that have the 

ability to influence intake. Dietary protein has two major fates upon entry to the rumen: 

degradation or escape through the reticulo-omasal orifice where it will be metabolized in 

the small intestine. In the rumen, dietary protein can be broken down into small peptides 

and amino acids ultimately to form ammonia and microbial crude protein, which is the 

primary source of amino acids in the ruminant. Protein that escapes the rumen will be 

utilized in the small intestine where amino acids are formed and subsequently absorbed. 

Absorbed amino acids will be used for various processes including tissue synthesis and 

glucose synthesis (Stern et al., 1994).  

Amounts of dietary protein can influence voluntary intake in animals, and 

increasing amounts of protein are typically associated with increases in intake. Research 

suggests that crude protein has a positive effect on DMI in lactating cows (Roffler et al., 

1986), and increasing amounts of supplemented protein resulted in increased intake of 

lambs (Cheema et al., 1991). Rumen degradable protein (RDP) provided to the animal is 

also positively associated with intake in ruminants which at least partly explains the 

associated positive effect with crude protein and supplemented protein. In feedlot steers 

consuming increased amounts of RDP, DMI tended to be increased (Wagner et al., 2010), 

and similar results were observed in cows (Köster et al., 1994). However, as demands 

were met, the increase in DMI plateaued (Köster et al., 1994) which indicates that there 

may be a maximum threshold for the effect of RDP on intake. Although positive effects 

on DMI were observed with dietary protein, abomasal and duodenal infusion of protein 

has resulted in little to no effect on DMI in cows (Clark et al., 1977; Dhiman et al., 1993) 

which indicates that postruminal supply of protein may not influence intake. Dietary 



14 

 

protein can induce a hyperphagic response in ruminants and is likely associated with the 

amount of RDP supplied to the animal. This likely results because RDP provides the 

main source of amino acids in ruminants (microbial crude protein) and increases can 

result in increased amounts of high energy substrates.  

Hormonal Factors Regulating Intake 

  Many hormones are involved in intake regulation.  See Table 1 for a partial list; 

however, for this review, we will be focusing on insulin, leptin, and ghrelin.   

Insulin 

 Insulin is a primary hormone involved in intake regulation and is important for 

the regulation of metabolic function (Browning and Thompson, 2002).  It is a 

hypoglycemic peptide hormone that is released from the B cells of the islet of Langerhans 

located in the pancreas and functions to maintain normal blood glucose concentrations 

(Wilcox, 2005). Insulin achieves maintenance of blood glucose primarily by increasing 

glucose uptake in peripheral tissues (Woods et al., 2006) and has been regarded as a 

potential peripheral feedback signal for intake regulation.  

 Increased blood glucose concentrations promote insulin release into the blood. 

This hypoglycemic effect is most commonly associated with increases in intake 

(Brockman, 1978), but research suggests that insulin can induce a hypophagic effect as 

well. In animals with cerebrospinal fluid infusions of insulin, intake was decreased (Porte 

and Woods, 1981), and similar results were observed in wethers administered insulin 

through the jugular vein (Deetz and Wangsness, 1981). When excess insulin is present in 

the bloodstream, such as animals with excess amounts of adipose tissue, it can enter the 
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brain through insulin-receptor facilitated transport and result in negative feedback 

(Woods et al., 2006). This negative feedback will induce hypophagia in the animal 

causing decreases in voluntary intake.   

Leptin 

 Leptin is a peptide mainly present and secreted by adipose tissue. It is associated 

with various biological mechanisms such as body weight, feed intake, energy 

expenditure, reproduction, and immune functions. This hormone also has a major role in 

regulating whole-body energy metabolism (Nkrumah et al., 2005) and is directly 

proportional to the amount of body fat which allows it to be reflective of long-term 

energy storage status (Park and Ahima, 2015).  

 By binding to specific leptin receptors found in the CNS, leptin can employ 

various effects. Negative feedback can be initiated through binding to receptors and 

initiating signaling pathways. Additionally, intake can be regulated by leptin as it 

interacts with the ARC. Upon interaction, the synthesis of pro-opiomelanocortin and 

cocaine-and-amphetamine-regulated transcript are activated while the synthesis of agouti-

related protein and neuropeptide Y are inhibited. These functions are reversed when 

leptin concentrations decrease to stimulate feed intake (Ahima et al., 1999). Although 

research investigating the direct effects of leptin on intake in ruminants is limiting, mice 

models have been paramount in determining possible effects on intake. When mice of the 

ob/ob genetic line were injected with leptin, feed intake was reduced (Campfield et al., 

1995).  Intracerebroventricular injections of leptin in mice have been shown to decrease 

intake (Stephens et al., 1995) with similar results being seen in mice induced with 
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hyperleptinemia via gene therapy (Chen et al., 1996). Leptin is involved in many 

biological processes and likely plays a major role in intake regulation.   

Ghrelin 

 Ghrelin is an orexigenic peptide known to stimulate intake and is mainly secreted 

from the endocrine cells located in the gastrointestinal mucosa (Sakata and Sakai, 2010). 

It is involved in the short-term regulation of food intake in addition to involvement in 

long-term regulation of body weight (Castaneda et al., 2010). Ghrelin is an important 

regulator for nutrient sensing, meal initiation, appetite, and it also can stimulate growth 

hormone release (Pradhan et al., 2013).   

Upon secretion into the plasma, ghrelin is found in two forms: acylated (active) or 

unacylated (inactive). The acylated form of ghrelin can stimulate the release of growth 

hormone by binding to the growth hormone secretagogue receptor (Kojima and 

Kangawa, 2002; Asakawa et al., 2005).  

The role of ghrelin in nutrient sensing and DMI has been investigated in cattle. In 

steers injected with either bovine ghrelin or saline, steers injected with bovine ghrelin 

spent more time feeding and tended to have a greater DMI than those injected with saline. 

Subsequently, in steers who were fed or fasted, fed steers had elevated plasma ghrelin 

concentrations pre-feeding compared to fasted steers (Wertz-Lutz et al., 2006).  In cattle 

participating in a finishing study, DMI was found to be positively associated with active 

ghrelin concentrations (Foote et al., 2014).  The results of these studies suggest that 

ghrelin concentrations, when increased, stimulate DMI and confirm that ghrelin, 

particularly active ghrelin, is a key component of the intake regulation system.  
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 Ghrelin is known as an appetite-stimulating hormone, and before meal initiation, 

plasma ghrelin concentrations are increased and subsequently fall after a meal (Sato et 

al., 2012). While the specific mechanisms for ghrelin regulation have yet to be 

elucidated, it most likely has some interaction with the CNS.  Ghrelin-containing neurons 

are located in the ARC and can send signals to neuropeptide Y and agouti-related protein-

expressing neurons to stimulate the release of orexigenic peptides (Abdalla, 2015). 

Additionally, ghrelin receptors have been found on vagal afferent neurons in rats which 

may indicate that transmission occurs from the gastrointestinal tract to the brain via the 

vagus nerve (Date, 2012). Although much is not yet known about the specific 

mechanisms involved in the regulation of ghrelin, it is likely regulated by communication 

of the gastrointestinal tract with the CNS with feeding playing a major role as well.   

Fescue Toxicosis and Intake Regulation 

 Fescue toxicosis is known to decrease DMI as well as ADG. After an evaluation 

of the effects of fescue toxicosis on foregut blood flow, digestion and metabolism, and 

ruminal DM contents, it has been concluded a likely cause of the decrease in gain is due 

to the characteristic decrease in intake (Klotz, 2017). Therefore, the importance of 

understanding the cause of the decrease in intake is vital to potentially improving animal 

gain. Gastrointestinal fill and distention can lead to decreased DMI (Allen, 1996), and 

therefore, has the potential to play a role in the reduction of DMI in animals consuming 

endophyte-infected tall fescue. Steers consuming endophyte-infected tall fescue had 

higher ruminal DM contents (Foote et al., 2013; Koontz et al., 2013; Ahn et al., 2020). 

Additionally, ruminal contractions were found to decrease in frequency and amplitude in 

endophyte-infected fescue consuming steers (Ahn et al., 2020). Although gastrointestinal 
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distention due to an increase in ruminal DM contents likely plays a role in altering intake, 

there is potential that fescue toxicosis may elicit changes to the animal’s intake regulation 

systems through modification of hormone secretion.  

Hormones Related to Intake Regulation 

 Limited research regarding hormones related to intake regulation has focused on 

insulin, glucagon, and triiodothyronine with brief regard to leptin. In cows injected with 

ergotamine, a commercially available ergot alkaloid, plasma was used to analyze insulin, 

glucagon, and triiodothyronine concentrations. Upon analysis, insulin was found to 

decrease while glucagon and triiodothyronine were found to increase (Browning et al., 

2000). A subsequent study using the same experimental approach in steers found similar 

results with insulin being decreased with an increase in glucagon (Browning and 

Thompson, 2002). Results for both insulin and glucagon are consistent with their roles in 

maintaining metabolic function and may impact intake. Triiodothyronine is a thyroid 

hormone involved with assisting metabolic processes and nutrient utilization (Browning 

et al., 2000). The increase in triiodothyronine may indicate an increase in basal metabolic 

rate resulting in increased maintenance requirements signifying potential nutritional 

stress associated with fescue toxicosis (Hurley et al., 1980; Huszenicza et al., 2002).  

Research concerning the response of leptin to fescue toxicosis has been met with 

inconsistent results. A study involving cows and ewes consuming endophyte-infected tall 

fescue determined that serum leptin concentrations were decreased in cows during the 

first trial but remained unchanged during the second. Additionally, ewes showed no 

change in leptin concentrations (Burke et al., 2006). The inconsistency in these results 

makes a conclusion difficult; however, leptin is an important hormone involved in intake 
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regulation and could potentially be affected by fescue toxicosis. At this point, no studies 

regarding effects of fescue toxicosis on ghrelin concentrations have been published, but 

the impact of ghrelin on intake regulation establishes the possibility that it may be 

impacted by fescue toxicosis.  

Research regarding the impact of fescue toxicosis on hormones related to intake 

regulation is severely lacking. The existing research has focused on insulin, glucagon, 

and thyroid hormones with some emphasis on leptin. However, the limited amount of 

research investigating potential effects on key hormones related to intake regulation 

leaves little possibility of forming a reliable conclusion.  Many important hormones exist 

that play a role in intake regulation, and research evaluating the effect of fescue toxicosis 

on each of these hormones will be vital to determine the impact of fescue toxicosis on 

intake regulation.   

Conclusion 

Tall fescue remains a widely utilized forage in much of the United States. Fescue 

toxicosis is known to limit performance in animals mainly through a decrease in ADG 

which results from a decrease in DMI. This makes investigating the potential causes 

behind the decrease in DMI incredibly important to understanding how the effects of 

fescue toxicosis can be mitigated. Intake can be regulated through a myriad of ways 

involving physical, neural, metabolic, and hormonal regulation. Insulin, leptin, and 

ghrelin all have a role in intake regulation, and thus, may serve as an important 

investigative step in elucidating the mechanisms by which fescue toxicosis decreases 

intake.  
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Table 2.1. Partial list of hormones and peptides related to intake regulation.  

Increase Intake Decrease Intake 

B-Endorphin Anorectin 

Dynorphin Amylin 

Ghrelin CCK 8 and 33 

Growth hormone-releasing hormone Dopamine 

Neuropeptide Y Estrogen 

Melanin-concentrating hormone Glucagon 

Melanocyte stimulating hormone Glucagon-like-peptide 1 

Opiods Insulin 

Orexin A and B Leptin 

Progesterone  Somatostatin 

Peptide YY Thyrotropin-Releasing Hormone 
 

 

Adapted from: (Ingvartsen and Andersen, 2000; Sakata and Sakai, 2010).  
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CHAPTER 3. THE EFFECT OF ENDOPHYTE-INFECTED TALL FESCUE SEED 

CONSUMPTION ON GUT AND SATIETY HORMONES RELATED TO INTAKE 

REGULATION IN HOLSTEIN STEERS 

Introduction 

 Fescue toxicosis is a consequence of the consumption of endophyte-infected tall 

fescue that is infested with the fungal endophyte Epichloë coenophiala which produces 

ergot alkaloids, the causative agent (Strickland et al., 2011). Of these alkaloids, 

ergovaline is the major alkaloid produced and is thought to be the main cause of the 

toxicity (Lyons et al., 1986; Klotz et al., 2007). The syndrome results in decreased animal 

growth characterized by a decrease in ADG likely through the characteristic decreased 

intake (Klotz, 2015).  Additionally, fescue toxicosis has been attributed to economic 

losses to the beef industry of up to $2 billion annually (Kallenbach et al., 2015).  

 The specific mechanisms by which fescue toxicosis decreases intake have not 

been well elucidated. One potential mechanism is that various hormones related to the 

physiological regulation of intake may be involved in the observed decrease in intake. 

Many hormones are involved in intake regulation, but the focus of this experiment will be 

leptin, insulin, and active ghrelin.  

Leptin is an adipokine that is present in adipose tissue and is responsible for the 

regulation of many biological functions such as body weight and energy expenditure 

(Nkrumah et al., 2005). Intake can be regulated by leptin through its interactions with the 

ARC where the appetite-stimulating, neuropeptide Y and agouti-related protein, or the 

appetite inhibiting, POMC and CART neuropeptides can be released and further interact 

with the hypothalamus and central nervous system. Research evaluating the role of leptin 

in fescue toxicosis is limited and inconsistent. In mature cows and ewes, serum leptin 
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concentrations of cows consuming the endophyte-infected tall fescue were decreased in 

comparison to those receiving the non-endophyte infected tall fescue. However, in a 

second experiment in the same study, leptin concentrations were found to be similar 

among both groups of animals (Burke et al., 2006).  

Insulin is a hormone that is commonly associated with the regulation of metabolic 

function (Browning and Thompson, 2002) and is released from B cells of the islet of 

Langerhans in the pancreas (Wilcox, 2005). Insulin would be expected to decrease during 

fescue toxicosis due to the decrease in intake. Cows that were exposed to an ergotamine 

challenge as a model of fescue toxicosis had decreased insulin concentrations; however, 

intakes were not reported (Browning et al., 2000).  Although little research has been 

completed examining insulin in relation to fescue toxicosis and intake, insulin response 

has been documented in heat-stressed cattle. In cattle undergoing heat stress, insulin 

concentrations were increased although intake was decreased which may signify a shift in 

postabsorptive metabolism, most specifically lipid mobilization  (Baumgard and Rhodes, 

2013a). NEFA and  BHB are key metabolites for lipid mobilization and may serve as 

signals for changes in this process. Glucose, an important energy source for ruminant 

tissues, is provided to the animal primarily via gluconeogenic pathways utilizing 

propionate, amino acids, glycerol, and lactate (Church, 1993).  

Ghrelin is an appetite-stimulating hormone produced from endocrine cells located 

in the gastrointestinal tract (Sakata and Sakai, 2010). Two forms of ghrelin exist in 

plasma, the acylated, or active, form and the unacylated, or inactive, form. The active 

form can stimulate growth hormone release by binding to the growth hormone 

secretagogue receptor (Kojima and Kangawa, 2002). Exogenous administration of 
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ghrelin has resulted in increases in intake (Nakazato et al., 2001; Wren et al., 2001) 

which confirms its role in the stimulation of feed intake.   

The hypothesis of this study was that consumption of endophyte-infected tall 

fescue seed would result in changes of circulating insulin, leptin, and active ghrelin 

concentrations as well as eliciting changes in markers for postabsorptive metabolism. 

Therefore, the objective of this study was to investigate potential changes in insulin, 

leptin, and active ghrelin concentrations after consumption of endophyte-infected tall 

fescue seed as a model to induce fescue toxicosis, and to investigate potential changes in 

postabsorptive metabolism by analyzing NEFA, BHB, and glucose.  

Materials and Methods 

All procedures involved in this experiment were approved by the University of Kentucky 

Institutional Animal Care and Use Committee. Research was conducted at the University 

of Kentucky C. Oran Little Research Center, Beef Unit, located in Versailles, KY.  

Animals and Experimental Design 

 12 Holstein steers (initial BW 260  16.0 kg) were used in a 21 day randomized 

complete-block design experiment consisting of a 4 day environmental adaption and a 17 

day treatment period. Animals were fed varying amounts of endophyte-infected (E+) or 

non-endophyte-infected (E-) fescue seed. Animals were stratified by body weight and 

randomly assigned to 1 of 3 dietary treatments (n=4 per treatment) in two blocks 

(sampling day). Steers were housed indoors in individual stalls and had free-choice 

access to water and were adapted to the environment for 4 days before treatment. For this 

experiment, summer conditions were mimicked by maintaining a 16:8 h light:dark cycle 



24 

 

and cycling the room from above thermoneutral (~26.7-32.2C) during the light period to 

thermoneutral (~ 21.1C) during the dark. Treatments were a total dietary 

ergovaline/ergovalinine (ERV) concentration of 0 ppm, a total dietary ERV concentration 

of 1.8 ppm, and a total dietary ERV concentration of 2.7 ppm. Percentages of E- and E+ 

seed were fed to balance seed intake across treatments (Table 3.1). 

Feeding and Treatment Diets 

During the adaption period, a silage-based basal diet was offered to all animals with a 

standard supplement added. For the duration of the experiment, animals were given ad 

libitum access to all diets.  

Both the E+ seed (KY31 Tall Fescue, Shawneetown Feed and Seed, Jackson, MO) 

and the E- seed (KY32 Bull Fescue, Caudill Seed, Louisville, KY) were ground through a 

3mm screen in a hammer mill before inclusion in the diet. The E+ seed was tested for 

ERV and its stereoisomer, ergovalinine concentrations as described previously (Ji et al., 

2014). 

Orts were collected at 600 with animals being fed at 700 each morning. To ensure 

ad libitum access to basal and treatment diets, amounts fed were adjusted daily to achieve 

an excess of 10-20% orts. To calculate daily DMI, 250 g samples were collected from 

orts and dried at 55C in a forced-air oven overnight. DMI from days 7-14 were used for 

analysis. 
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Blood Sampling 

 Due to the volume and frequency of blood collection required for sampling, steers 

were randomly assigned to 1 of 2 blocks, with one block sampled on d 16 and the 

remaining block sampled on d 17.  To facilitate blood collection, indwelling jugular 

catheters (Medical Instruments for Animals, DayCath, 14 gauge, 5.25 inches) were 

placed the evening before sampling. Briefly, hair was clipped from the area of the neck 

over the jugular vein and scrubbed with betadine. The catheter was inserted with the 

extension line (Medical Instruments for Animals, #8573M) attached immediately 

following insertion. Heparinized saline was used to lock the extension line to ensure 

patency. The catheter and extension line was secured using Braunamid sutures placed 

cutaneously.  Following securing of the catheter, the neck was wrapped (Rural365 Self 

Adhesive Bandage Vet Wrap), and a hernia belt (F.L.A. Orthopedics Inc. Universal).  

 On days 16 and 17, blood samples were collected every 20 minutes beginning 1 

hour before feeding (600). Steers were tied in the stall for the duration of the sampling 

period with free access to water and feed. A 25mL sample was collected into a 

heparinized syringe at each time interval. At the time of sampling, a 7-8 mL waste 

syringe was drawn to ensure no heparinized saline was present in the blood sample. The 

sample was collected with subsequent flushing of the extension line and catheter with 5-

10mL of heparinized saline. Samples were transferred to a 50mL conical tube and placed 

on ice immediately. Plasma samples were collected by centrifuging the collected blood at 

5000 x g for 30 min at 4C. Following centrifugation, samples were divided into 1mL 

aliquots and stored at -80C until hormone analysis.  
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Hormone and Metabolite Analyses 

 Plasma samples were analyzed for insulin using a radioimmunoassay kit (MP 

Biomedicals, Porcine Insulin #PI-12K) that has been validated for bovine insulin and had 

a mean inter- and intra-assay CV of 4.1% and 2.9%, respectively. Leptin samples were 

analyzed via a commercial RIA kit (Multi-Species Leptin, EMD Millipore Corporation, 

St. Charles, MO) and had a mean inter- and intra-assay CV of 3.2% and 6.7%, 

respectively. Plasma aliquots for active ghrelin determination had 10 𝜇𝐿 

phenylmethylsulfonyl fluoride (PMSF; Sigma Lot# BCBQ7649V) and 50 𝜇𝐿 of 1 N 

hydrochloric acid added to protect the acyl group.  To prepare the PMSF solution, 0.05g 

of PMSF was added to 50 mL of 100% methanol. Aprotinin solution was prepared by 

incorporating aprotinin (LEE Biosolutions, Cat No: 125-10, Lot: W144576, Activity: 4.5 

TIU/mL) at its solubility level (2mg/mL) with ethylenediaminetetraacetic acid. To 

achieve a desired activity of 0.6 TIU/mL, 67 𝜇L of aprotinin solution was added to 1mL 

of plasma.  Active ghrelin samples were analyzed using a commercial RIA kit (MP 

Biomedicals, Ghrelin (Active), #GHRA-88HK) and had a mean inter- and intra-assay CV 

of 2.8% and 2.0%, respectively.  

Samples drawn at each hour interval (600, 700, etc.) were used for NEFA and 

BHB analysis. NEFA (Dole and Meinertz, 1960) and BHB (Koch and Feldbruegge, 

1987) samples were analyzed using a Konelab Analyzer with a CV of 1.22% and 1.16%, 

respectively. Hourly samples were also used for glucose concentration determination. 

Plasma glucose concentrations were analyzed using a YSI 2700 SELECT Biochemistry 

Analyzer and had a CV of 0.78 %.  
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Statistical Analysis 

 The normality of the residuals was first tested using the UNIVARIATE procedure 

in SAS 9.4 (SAS Inst. Inc., Cary, NC). All data met normality assumptions. The 

experimental unit for all data was animal, and block was included as a random effect in 

all analyses. The DMI data were analyzed using the MIXED procedure in SAS with the 

effects of treatment, day of treatment period, and the resulting interaction being included 

as fixed effects. All hormones and metabolites were analyzed using the MIXED 

procedure in SAS including the fixed effects of treatment, collection time, and the 

interaction. Collection time was also included as a repeated measure. Orthogonal 

contrasts for treatment were analyzed to determine linear and quadratic relationships of 

ERV intake. Given that treatments were not evenly spaced, coefficients for contrasts were 

determined using PROC IML in SAS. Differences between treatments were assessed 

using the DIFF option in SAS to determine significant interactions.  Effects were 

considered significant when p ≤ 0.05 and considered a tendency when 0.05 < p ≤ 0.10.  

Results  

 As expected with increased consumption of ERV, DMI decreased linearly 

(p<0.0001) as the dietary ERV concentration increased. However, there were no day or 

treatment-by-day interactions. Increasing the dietary concentration of ERV caused insulin 

to be greatest at the highest dietary ERV concentrations; however, insulin was similar for 

the control and low ERV diets (quadratic p<0.0001).   Conversely, leptin increased at the 

low dietary ERV concentration before decreasing at the high concentration (quadratic 

p<0.0001). No significant time or treatment-by-time interactions occurred for either 
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insulin or leptin (Figures 3.1 and 3.2). Active ghrelin had a significant linear response 

where active ghrelin concentrations decreased as ERV concentration increased (Table 

3.3).  For NEFA, steers consuming the lowest ERV concentration had the highest NEFA 

concentration. A significant treatment-by-time interaction was observed for NEFA as 

well. One hour prior to feeding (-60 min), the 1.8 ppm ERV treatment had the greatest 

NEFA concentration. At the time of feeding (0 min), both the 1.8 ppm ERV and 2.7 ppm 

ERV treatments had higher NEFA concentrations than the 0 ppm ERV treatment. 300 

minutes post-feeding, the 2.7 ppm ERV treatment had a higher NEFA concentration than 

the 0 ppm ERV treatment, and 360 minutes post-feeding, the 2.7 ppm ERV treatment had 

a higher NEFA concentration than both the 0 and 1.8 ppm ERV treatments (Figure 3.4). 

A quadratic response was observed for BHB concentrations (Table 3.2), and 

concentrations were lowest for steers consuming the highest ERV concentrations (Figure 

3.5). A significant linear response was observed for glucose where as ERV 

concentrations increased, glucose concentrations also increased (Table 3.2; Figure 3.6) 

Discussion 

DMI 

 Endophyte-infected tall fescue consumption is known to reduce intake in cattle. In 

steers ruminally-dosed with endophyte-infected tall fescue seed, DMI was shown to 

decrease (Koontz et al., 2012). Similarly, steers being ruminally-dosed with endophyte-

infected tall fescue seed at ERV dosages of 0, 5,10, 15, or 20 µg/kg BW exhibited 

decreased DMI when the ERV reached 15 or 20 µg/kg BW (Ahn et al., 2019).  Baldwin 

et al. (2016) conducted a study utilizing lactating cows consuming endophyte-infected 

tall fescue seed in the diet to provide 7.7-9.9 µg/kg BW ERV per day and observed 
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dramatic decreases in DMI. In the present study, steers consuming the 1.8 ppm and 2.7 

ppm treatments consumed an average of 46 µg/kg BW and 59 µg/kg BW of ERV, 

respectively. When comparing the relationships between DMI and ERV intake from each 

study (Figure 3.6), intake for steers in the present study decreased by 0.01387 percent for 

each µg of ERV consumed compared to Ahn et al. (2019) where intake was decreased by 

0.00915 percent for each µg of ERV and Baldwin et al. (2016) where cows had a 

reduction of 0.1254 percent per µg ERV consumed.   

 The ERV intake during the present study was higher than typical for previous fescue 

toxicosis studies. The high ERV concentration in the seed used in the present study, 9.33 

ppm, the method of seed inclusion (incorporated into a high corn silage diet as opposed to 

ruminal dosing), and the ad libitum intake by the animals likely contributed to the higher 

than average ERV consumption. Nonetheless, the higher ERV intake did not result in 

decreases in DMI more than that of previous studies. This could be due to a variety of 

reasons including differences in diet, differences in dosing, and physiological state of the 

animal. Steers dosed with ERV in Ahn et al. (2019) consumed a diet of alfalfa cubes 

while steers in the present study consumed a diet mainly consisting of corn silage. Steers 

in the present study were provided endophyte-infected tall fescue seed as a proportion of 

the diet while those in Ahn et al. (2019) were dosed ruminally. When ruminally-dosing, 

cattle consume an exact amount of ERV; however, since steers in the present study were 

permitted to consume feed ad libitum, there was no method to guarantee a specific ERV 

intake which may explain the differences in reduction of DMI.  

 The calculated ERV consumption of the present study is under the assumption that the 

steers consumed an exact proportion of seed. During the study, it was noticed that steers, 
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among all treatments, did sort seed from the total mixed ration resulting in excess seed in 

the refusals, but no samples were collected for ERV analysis. Thus, it is likely that the 

calculated ERV consumption is an overestimation.  

 Although steers in this study consumed more ERV than previous studies, no abnormal 

consequences were observed, and intake did not decrease anymore drastically than 

previous studies. However, it is apparent that endophyte-infected tall fescue consumption 

decreases DMI and is a proponent to production losses associated with endophyte-

infected tall fescue consumption.  

Insulin and Glucose 

 The presence of increased insulin concentrations are generally associated with 

decreases in feed intake. In wethers administered insulin via the jugular vein, feed intake 

decreased (Deetz and Wangsness, 1981).  Mice subjected to ventricular administration of 

exogenous insulin also exhibited a decrease in intake (Air et al., 2002). Presently, animals 

consuming the 2.7 ppm treatment experienced the highest concentrations of insulin even 

though they had the greatest reduction in DMI. Interestingly, a similar response is 

observed in animals experiencing heat stress. Although nutrient intake is decreased 

during periods of heat stress, insulin concentrations are increased which may be the result 

of a shift towards carbohydrate metabolism and away from lipid mobilization (Baumgard 

and Rhoads Jr, 2013a). NEFA and BHB are good indicators of postabsorptive 

metabolism changes due to their involvement in the lipid mobilization process which is 

why we chose to further this study by including these metabolites in our analysis. This 

study did not evaluate the effects of heat stress. However, physiological responses 

associated with heat stress are very similar to those of cattle experiencing fescue 
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toxicosis, and environmental temperature was elevated during the study. Cattle 

experiencing heat stress or fescue toxicosis commonly have increased body temperature, 

increased respiratory rate, and increases in salivation (Strickland et al., 2011; Dash et al., 

2016).  Although the present study did not measure physiological responses, steers 

consuming the highest ERV concentration appeared to have excess salivation and more 

labored breathing compared to those consuming the lower concentration of ERV and the 

control group. The similarity of responses between heat stress and fescue toxicosis may 

provide an avenue for further research particularly when analyzing effects on 

postabsorptive metabolism.  Additionally, the similar insulin concentration-response 

coupled with reduced DMI may warrant more detailed research on postabsorptive 

metabolism after consumption of endophyte-infected tall fescue seed, specifically when 

consuming ERV at this magnitude.   

 Glucose is a primary energy source for various tissues in the ruminant and is mainly 

provided to the animal by gluconeogenic pathways. Propionate, amino acids, glycerol, 

and lactate can all be precursors to glucose synthesis with propionate being the most 

important (Church, 1993). Insulin promotes uptake of glucose into peripheral tissues and 

is considered a major regulator of glucose homeostasis (Brockman, 1978; Sasaki, 2002). 

The present study demonstrated a linear relationship between ERV concentration and 

glucose concentration where as ERV concentration increased, glucose concentration also 

increased. Previous studies have demonstrated no significant changes in glucose 

concentration with endophyte-infected tall fescue consumption (Oliver et al, 2000; 

Eisemann et al., 2020) which is conflicting with the results of the present study. This may 

be due to differences in ERV amounts. Oliver et al. (2000) conducted a grazing study 



32 

 

where specific ERV concentrations were not recorded, and Eisemann et al. (2020) had an 

average intake of 7.5 µg/kg BW which was much lower than the present study.  

 Typically, gluconeogenesis is greatest after consumption of a meal, and propionate 

available for gluconeogenesis is directly related to the amount of diet consumed (Church, 

1993). However, the 0 ppm ERV treatment, which had the highest DMI, had the lowest 

glucose concentrations. The present study did not evaluate VFA concentrations, but it is 

possible that other gluconeogenic substrates may have contributed to the increasing 

glucose concentrations for the 1.8 and 2.7 ppm ERV treatments. This study did not 

evaluate changes in gluconeogenic substrates, but this may be an avenue to research 

further particularly by investigating changes in propionate in response to higher ERV 

concentrations.  

 Insulin stimulates uptake of glucose into peripheral tissues and inhibits 

gluconeogenesis (Church, 1993). In the present study, the 2.7 ppm ERV treatment had 

the highest insulin concentration coupled with the highest glucose concentration which 

was unexpected considering insulin typically promotes glucose uptake into peripheral 

tissues resulting in a higher insulin and lower glucose concentrations. This may indicate 

the occurrence of insulin resistance which is described as occurring when normal 

concentrations of insulin do not produce a normal biologic response (Kahn, 1978). 

Although insulin’s ability to stimulate glucose uptake is less in a ruminant than a 

nonruminant (Sasaki, 1990), steers fed the 0 ppm ERV treatment did have the lowest 

glucose concentration along with the second highest insulin concentration which may 

indicate an increased responsiveness to insulin for the 0 ppm ERV treatment compared to 

the 2.7 ppm ERV treatment. Additionally, steers in the 1.8 ppm ERV treatment group had 
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the lowest insulin concentration and the second highest glucose concentration which is an 

expected response. This may indicate that responsiveness to insulin may be related, either 

directly or indirectly, to concentration of ERV in the diet. Further research should include 

providing a wider range of ERV concentrations in the diet to better describe the 

relationship between ERV and response to insulin.  

Non-esterified fatty acids and -hydroxybutyrate 

 To investigate potential changes to postabsorptive metabolism in the present study, 

NEFA and BHB concentrations were analyzed. NEFA are important metabolic fuel and 

are released during times of increased energy demands through lipolysis of triglycerides 

by hormone sensitive lipase which is stimulated by various hormones, like glucagon, and 

inhibited by insulin (eClinpath, Cornell University). In the present study, there was a 

significant treatment-by-time interaction for NEFA concentrations. 60 min prior to 

feeding, 1.8 ppm ERV treatment had the highest NEFA concentration. At the time of 

feeding, 0 ppm ERV treatment had the lowest NEFA concentrations. At 300 min post-

feeding, 2.7 ppm ERV treatment had a greater NEFA concentration than the 0 ppm ERV 

treatment, and a similar patter occurred at 360 min post-feeding where 2.7 ppm ERV 

treatment had the highest NEFA concentration overall. Upon comparison to insulin 

concentrations at these time points, the 2.7 ppm ERV treatment had the highest insulin 

concentrations for all time points excluding at the time of feeding. As stated previously, 

NEFA concentrations are typically lower when insulin concentrations are increased; 

however, that pattern is not consistently observed in the results of this study. This may 

signify a change in postabsorptive metabolism and result in changes in NEFA 

concentrations.  
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 BHB is a ketone that, in ruminants, is produced from metabolism of NEFA and 

volatile fatty acids, mainly butyrate (eClinpath, Cornell University). In the present study, 

the 2.7 ppm ERV treatment had the lowest BHB concentration combined with the lowest 

DMI. Though VFAs were not measured in this study, it is possible that the decrease in 

DMI resulted in a decrease in butyrate production resulting in decreased BHB. At various 

time points, NEFA concentrations were increased; however, BHB was consistently lower 

for the 2.7 ppm ERV treatment across all time points. BHB would be expected to be 

increased with the increased NEFA concentrations, but this is not what is described in the 

present study. It is possible that this is due primarily to a potential decrease in butyrate 

production, but that cannot be concluded due to butyrate not being measured. This does, 

however, provide an avenue for further research into this area.  

Leptin  

 Increased leptin concentrations have been associated with decreases in DMI. In ob/ob 

mice, which are leptin deficient, subjected to leptin injections, DMI was decreased 

(Campfield et al., 1995). An additional study using mice undergoing hyperleptinemia via 

gene therapy had similar results in which the mice experience a decrease in intake (Chen 

et al., 1996). The steers consuming the low level of ERV had decreased intakes and 

increased leptin.  However, the 2.7 ppm ERV steers had the lowest leptin concentration 

even though their DMI was also the least. This may suggest a direct effect of ergots on 

leptin as the response was potentially uncoupled from intake.  However, steers in the 

present study were given ad libitum access to treatment diets which makes it difficult to 

truly know if the response of leptin was unrelated to intake. Further research involving 

restriction of intake is necessary to determine the exact relationship of leptin 
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concentrations in response to ERV intake. In a similar study involving mature cows fed 

endophyte-infected tall fescue, leptin concentrations were decreased for those exposed to 

the toxic fescue. However, a second experiment of that same study reported no changes 

in leptin concentrations (Burke et al., 2006). Although increased leptin is usually 

correlated with decreased intake, leptin also has a larger role in long-term intake than 

short-term. The steers in this study were only fed their respective treatment for 17 days, 

and therefore, may not have been exposed to the toxic endophyte long enough to exhibit 

increases in leptin. Additionally, the results from Burke et al. (2006) may suggest that if 

leptin is impacted, it may not follow its typical behaviors. The results in the present 

experiment suggest that at low ERV intakes that leptin may be associated with intake but 

at high concentrations there may be a direct inhibition.  Furthermore, there is potential for 

ergot alkaloids to significantly impact adipose tissue in the animal.  

 McLean et al. (2020) described a study investigating the effects of a synthetic ergot 

alkaloid, bromocriptine, on gene expression related to mesenteric adipose. Steers injected 

with bromocriptine had more differentially expressed genes in the mesenteric adipose 

tissue than those injected with saline. A downregulation for genes related to enzymes, 

transporters, ion channel, cytokines, and immune responses was observed with 

upregulation of genes related to enzyme activity. The pathways most affected by 

bromocriptine were inflammation, the immune response, and lipid metabolism. The 

present study investigated changes in leptin concentrations. Leptin is an important 

adipokine produced in adipose tissue, and McLean et al. (2020) demonstrated that 

bromocriptine, which mimics the binding effects of ERV, greatly impacts the gene 

expression in mesenteric adipose tissue. These findings suggest that ERV may cause 
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significant changes to adipose tissue and maybe a partial mechanism by which intake is 

decreased following consumption of ERV. Further research is warranted to further 

elucidate the mechanism by which leptin concentrations are affected upon consumption 

of ERV and to further investigate changes in adipose tissue in ruminants.    

Active Ghrelin  

 Active ghrelin concentrations, when increased, are typically known to stimulate intake. 

In mice undergoing intracerebroventricular injection of acylated ghrelin, feed intake was 

increased (Nakazato et al., 2001). Similarly, steers injected with bovine ghrelin spent 

more time feeding along with tending to have higher intakes (Wertz-Lutz et al., 2006). In 

this study, no treatment effects were observed. It has been shown that ghrelin stimulates 

appetite, and as DMI intake of steers in the present study decreased with increasing ERV 

concentrations, active ghrelin concentrations also decreased. This may provide evidence 

that active ghrelin concentrations are related to ERV consumption as well as    . However, 

future research should include total ghrelin analyses to determine if there is a change in 

active ghrelin alone, or if total ghrelin concentrations also change with increasing ERV 

concentrations. It is also possible that active ghrelin concentrations are more so related to 

intake as opposed to ERV consumption. 

Conclusion 

This study investigated the effects of endophyte-infected tall fescue seed 

consumption and the resulting ERV consumption on DMI and hormones related to intake 

regulation. DMI decreased with increasing amounts of ERV in the diet which was 

expected. Insulin concentrations were lowest for animals consuming the 1.8 ppm ERV 

diet with no reduction observed in steers consuming the 2.7 ppm ERV treatment, and 
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leptin concentrations were decreased for those consuming the 2.7 ppm ERV diet and 

increased at 1.8 ppm ERV. Active ghrelin concentrations decreased with increasing ERV 

concentration. NEFA concentrations were highest for the 1.8 ppm ERV treatment, and 

BHB concentrations were lowest for steers consuming the 2.7 ppm ERV treatment. 

Additionally, glucose concentrations increased linearly with increasing ERV 

concentrations. These results indicate a possible effect on hormones associated with 

intake regulation as well as a possible effect on postabsorptive metabolism following 

consumption of ERV. More research is warranted to fully investigate the effect 

endophyte-infected tall fescue consumption has on hormones related to intake regulation 

as well as effects on metabolites related to postabsorptive metabolism, and this may 

prove an avenue to elucidate the mechanisms by which endophyte-infected tall fescue 

alters feed intake. Further research should include intake control as the present involved 

allowing ad libitum access to feed which may have confounded variables of this study 

and investigate changes in VFA concentrations with high ERV concentrations. 
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Table 3.1. Experimental diets for steers consuming endophyte-infected tall fescue 

seed providing dosages of 0, 1.8, and 2.7ppm total ergovaline (ERV)  

 

 Basal Diet 0 ppm ERV 1.8 ppm ERV  2.7 ppm ERV 

Ingredient % of diet DM 

Corn Silage 86.7 57.7 57.7 57.7 

Soybean meal 10.2 10.2 10.2 10.2 

Ground corn 1.28 1.28 1.28 1.28 

Limestone 0.97 0.97 0.97 0.97 

Mineral Mix1 0.67 0.67 0.67 0.67 

A,D,E Premix2 0.03 0.03 0.03 0.03 

Fat 0.13 0.13 0.13 0.13 

Deccox (6%; 12.36 g Dq/kg) 0.02 0.02 0.02 0.02 

E+ Seed 0 0 19.3 29 

E- Seed 0 29 9.7 0 

Mineral Mix1 contents: 92.7% salt, 0.02% cobalt sulfate, 0.7% copper sulfate, 0.13% iodine, 0.2% 

selenium, 1.55% zinc sulfate, 3.0% iron sulfate, and 1.7% manganese sulfate.  

A,D,E Premix2: 1,818,182IU/kg Vitamin A, 363,636 IU/kg Vitamin D3, 227 IU/kg Vitamin E  

The E+ seed was determined to contain 9.33 ppm of ergovaline and ergovalinine, combined. 
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Table 3.2. Least square mean estimates for dry matter intake (DMI), insulin, leptin, 

active ghrelin, β-hydroxybutyrate (BHB), and glucose following consumption of 

endophyte-infected tall fescue seed with dosages of 0, 1.8, and 2.7 ppm total 

ergovaline (ERV).  

 Treatments           P Values 

Variable 0 ppm  1.8 ppm 2.7 ppm SEM1 Linear Quadratic 

DMI, kg 7.81 6.56 5.77 0.247 <0.0001 0.6744 

Insulin, ng/mL 0.232 0.205 0.310 0.0382 <0.0001 <0.0001 

Leptin, ng/mL 7.449 10.710    4.882 1.864 0.0006 <0.0001 

Active Ghrelin, pg/mL 79.285 73.084 67.564 19.130 0.0471 0.7701 

BHB, mmol/L 0.3313 0.3312 0.2487 0.0197 0.0117 0.0286 

Glucose, mmol/L 4.568 5.132 5.222 0.2625 0.0456 0.1317 

SEM1: Standard Error of the Mean, n=4 steers per treatment 
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Figure 3.1. Plasma Insulin concentrations following consumption of endophyte-

infected tall fescue seed with dosages of 0, 1.8, and 2.7 ppm total ergovaline (ERV) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time: p=0.9912 

TrtxTime: p=0.9629 
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Figure 3.2. Plasma leptin concentrations following consumption of endophyte-

infected tall fescue seed with dosages of 0, 1.8, and 2.7 ppm total ergovaline (ERV) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time: p=0.999 

TRTxtime: p=0.996 
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Figure 3.3. Plasma active ghrelin concentrations following consumption of 

endophyte-infected tall fescue seed with dosages of 0, 1.8, and 2.7 ppm total 

ergovaline (ERV) 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Time: p=0.1373 

TRTxtime: p=0.9718 
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Figure 3.4. Plasma non-esterified fatty acid (NEFA) concentrations following 

consumption of endophyte-infected tall fescue seed with dosages of 0, 1.8, and 2.7 

ppm total ergovaline (ERV) 

 

 

 

 

 

 

 

 

 

 

 
*: significant difference between 0 and 1.8 ppm ERV treatments (p<0.05) 

**: significant difference between 0 and 2.7 ppm ERV treatments (p<0.05) 

***: significant difference between 1.8 and 2.7 ppm ERV treatments (p<0.05) 
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Figure 3.5 Plasma β-hydroxybutyrate (BHB) concentrations following consumption 

of endophyte-infected tall fescue seed with dosages of 0, 1.8, and 2.7 ppm total 

ergovaline (ERV) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time: p= 0.9989 

TRT*Time: p= 0.9928 
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Figure 3.6. Plasma Glucose concentrations following consumption of endophyte-

infected tall fescue seed with dosages of 0, 1.8, and 2.7 ppm total ergovaline (ERV) 
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TRT*Time: p= 0.8477 
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Figure 3.7 DMI data comparisons of present study to Ahn et al. (2019) and Baldwin 

et al. (2016)  
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CHAPTER 4. SUMMARY AND CONCLUSIONS 

 

 The symbiotic relationship between tall fescue, Lolium arundinaceum, and the 

endophyte  Epichloë coenophiala increases stress tolerance for the forage and aids in 

resistance to unfavorable conditions (Bacon, 1993).  Consumption of this forage causes a 

syndrome called fescue toxicosis that results in multiple negative consequences. 

Production losses are often observed after consumption of tall fescue and costs associated 

with those losses exceed $2 billion annually (Kallenbach, 2015). Ergot alkaloids are 

produced by the endophyte and considered to be the causative agent of fescue toxicosis, 

and since ergovaline (ERV) is produced in the most abundance within the plant, it is 

regarded as the primary toxicant (Lyons et al., 1986).   

Production losses experienced during fescue toxicosis include decreased ADG, as well 

as reduced DMI (Thompson and Stuedemann, 1993; Paterson et al., 1995). The decrease 

in ADG is likely a result of the DMI reduction (Klotz, 2015) which makes elucidating the 

cause of the reduce DMI important. Multiple factors are involved in intake regulation 

including physical, neural, metabolic, and hormonal factors. This study focused on 

hormonal factors related to intake by analyzing changes in insulin, leptin, and active 

ghrelin concentrations following consumption of endophyte-infected tall fescue seed as 

well as investigated potential effect on postabsorptive metabolism through the analysis of 

NEFA and BHB.  

As hypothesized, DMI was decreased in the present study for steers consuming 1.8 and 

2.7 ppm ERV. Insulin is hypophagic when administered exogenously (Deetz and 
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Wangsness, 1981; Air et al., 2002), and this occurred in the 2.7 ppm ERV treatment. The 

1.8 ppm ERV did not exhibit this same pattern and had decreased insulin concentrations 

compared to control. Glucose concentrations were also analyzed in the present study 

where glucose increased linearly with increasing ERV concentration. Concentrations of 

glucose were highest for the 2.7 ppm ERV treatment which also had the highest insulin 

concentration. This may signify potential insulin resistance given circulating glucose 

concentrations are remaining elevated despite elevated insulin concentrations. 

Additionally, it is possible that more gluconeogenic precursors, such as propionate, are 

available resulting in increased glucose concentrations. Further research into this area 

should also include evaluation of VFA concentrations to better describe the glucose 

response in relation to ERV concentration.   

Similar insulin responses as seen in the present study have also been observed in cattle 

experiencing heat stress where insulin concentrations remained elevated despite a 

reduction in DMI (Baumgard and Rhoads Jr, 2013b). Cattle experiencing both fescue 

toxicosis and heat stress often exhibit similar symptoms such as hyperthermia, increased 

respiratory rate, and increased salivation along with the decrease in DMI (Strickland et 

al., 2011; Dash et al., 2016). Baumgard and Rhodes (2013a) suggested that in heat-

stressed animals the increased insulin concentration may suggest a change in 

postabsorptive metabolism, specifically lipid mobilization. In the present study, we 

analyzed NEFA and BHB to examine the possible effect on postabsorptive metabolism. 

NEFA concentrations were highest for the 1.8 ppm treatment one hour prior to feeding 

and was highest for the 1.8 ppm ERV treatment compared to the 0 ppm treatment at the 

time of feeding. The 2.7 ppm ERV treatment was also higher than that of the 0 ppm 
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treatment at the time of feeding as well as at 300 minutes post-feeding. Also, the 2.7 ppm 

ERV treatment had the highest NEFA concentration 360 minutes post-feeding. At 300 

and 360 minutes post-feeding, the increased NEFA concentrations paired with increased 

insulin concentrations. This was surprising given that NEFA is usually decreased with 

increased insulin. The 2.7 ppm ERV steers had the lowest BHB concentrations overall, 

including at time points where NEFA concentrations were highest for the 2.7 ppm ERV 

treatment. This was unexpected since increases in NEFA are generally associated with 

increases in BHB, but this could be the result of decreased ruminal butyrate production. 

These results coupled with the insulin results suggest a potential change in postabsorptive 

metabolism, and this provides an additional area to further research concerning changes 

in VFA concentrations with high ERV concentrations.   

Leptin concentrations were highest for the 1.8 ppm ERV treatment with no increase 

being observed for the 2.7 ppm ERV treatment. Increased leptin concentrations have been 

associated with intake inhibition (Campfield et al., 1995; Chen et al., 1996). The increase 

in leptin concentrations for the 1.8 ppm ERV treatment was expected; however, the lack 

of increase in leptin concentrations for the 2.7 ppm ERV treatment was an unexpected 

result. This may indicate that when ERV concentrations are low, leptin concentrations are 

modulated, but at high ERV concentrations, a direct inhibition effect may be present. 

Ghrelin, while known to stimulate intake, increased linearly with increasing ERV 

concentrations in the present study. This suggests that active ghrelin may be associated 

with ERV concentrations, but further research is needed to separate the effects of ERV 

from those of DMI.  
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Moving forward, continued research examining the effects of endophyte-infected tall 

fescue consumption, and ERV concentration, on hormones related to DMI, is warranted 

to continue to elucidate the mechanisms by which DMI is reduced during consumption. 

Additional research should also include investigating changes in VFA concentrations in 

response to high ERV intakes. The present study has provided insight on potential 

hormonal changes related to intake regulation. Expansion on the current study may be 

beneficial to include other hormones and peptides related to intake regulation as well as 

to further investigate the changes seen for leptin and insulin concentrations. Specifically, 

analyzing peptides such as neuropeptide Y and agouti-related protein may be valuable 

given their important role in central nervous system intake regulation. Examining 

changes in hormones such as glucagon and thyroid hormones may also provide an 

important next step in determining how consumption of endophyte-infected tall fescue 

affects intake regulation. Additional research should include restriction of intake to better 

separate the effects of intake and ERV concentration on variables.   
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