
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Electrical and
Computer Engineering Electrical and Computer Engineering

2019

WELD PENETRATION IDENTIFICATION BASED ON WELD PENETRATION IDENTIFICATION BASED ON

CONVOLUTIONAL NEURAL NETWORK CONVOLUTIONAL NEURAL NETWORK

Chao Li
University of Kentucky, cli284@uky.edu
Digital Object Identifier: https://doi.org/10.13023/etd.2019.003

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Li, Chao, "WELD PENETRATION IDENTIFICATION BASED ON CONVOLUTIONAL NEURAL NETWORK"
(2019). Theses and Dissertations--Electrical and Computer Engineering. 133.
https://uknowledge.uky.edu/ece_etds/133

This Doctoral Dissertation is brought to you for free and open access by the Electrical and Computer Engineering at
UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Electrical and Computer Engineering
by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

https://uknowledge.uky.edu/
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece_etds
https://uknowledge.uky.edu/ece
https://uky.az1.qualtrics.com/jfe/form/SV_0lgcRp2YIfAbzvw
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Chao Li, Student

Dr. Yuming Zhang, Major Professor

Dr. Aaron Cramer, Director of Graduate Studies

WELD PENETRATION IDENTIFICATION BASED ON
CONVOLUTIONAL NEURAL NETWORK

DISSERTATION

A dissertation submitted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy in the
College of Engineering

at the University of Kentucky

By
Chao Li

Lexington, Kentucky
Director: Dr. Yuming Zhang, Professor of Electrical and Computer Engineering

Lexington, Kentucky
2018

Copyright ○c Chao Li 2018

ABSTRACT OF DISSERTATION

WELD PENETRATION IDENTIFICATION BASED ON CONVOLUTIONAL NEURAL NETWORK

Weld joint penetration determination is the key factor in welding process control area.
Not only has it directly affected the weld joint mechanical properties, like fatigue for
example. It also requires much of human intelligence, which either complex modeling or
rich of welding experience. Therefore, weld penetration status identification has become
the obstacle for intelligent welding system. In this dissertation, an innovative method has
been proposed to detect the weld joint penetration status using machine-learning
algorithms.
A GTAW welding system is firstly built. Project a dot-structured laser pattern onto the
weld pool surface during welding process, the reflected laser pattern is captured which
contains all the information about the penetration status. An experienced welder is able
to determine weld penetration status just based on the reflected laser pattern. However,
it is difficult to characterize the images to extract key information that used to determine
penetration status. To overcome the challenges in finding right features and accurately
processing images to extract key features using conventional machine vision algorithms,
we propose using convolutional neural network (CNN) to automatically extract key
features and determine penetration status.
Data-label pairs are needed to train a CNN. Therefore, an image acquiring system is
designed to collect reflected laser pattern and the image of work-piece backside. Data
augmentation is performed to enlarge the training data size, which resulting in 270,000
training data, 45,000 validation data and 45,000 test data. A six-layer convolutional neural
network (CNN) has been designed and trained using a revised mini-batch gradient descent
optimizer. Final test accuracy is 90.7% and using a voting mechanism based on three
consequent images further improve the prediction accuracy.

KEY WORDS: Gas tungsten arc welding (GTAW), computer vision, weld penetration,
machine learning, convolutional neural network (CNN)

Chao Li

Nov 29, 2018

WELD PENETRATION IDENTIFICATION BASED ON
CONVOLUTIONAL NEURAL NETWORK

By
Chao Li

Yuming Zhang, Ph.D.
Director of Dissertation

Aaron Cramer, Ph.D.

Director of Graduate Studies

Nov 29, 2018
Date

iii

Acknowledgements

I would firstly thank to my advisor Dr. Yuming Zhang for his invaluable guidance,

encouragement and instructions. In addition, I thank to my co-advisor Dr. Michael T.

Johnson and Dr. Qiang Ye, Dr. Dan Inoel for their great support in my study in University

of Kentucky. I want to thank all of my colleagues in the welding lab: Wenhua Jiao, Qiyue

Wang for their great helpful suggestions in my work.

In addition, I want to thanks to my parents for their endless love and support throughout

my life.

iv

Contents

Acknowledgements .. iii

List of Tables... vi

List of Figures .. vii

Chapter 1 Introduction .. 1

1.1 Background ... 1

1.2 Objective and Approach .. 3

1.3 Dissertation Outline ... 5

Chapter 2 Literature Review .. 9

2.1 Full penetration and partial penetration .. 9

2.2 Welding process sensing .. 10

2.2.1 Pool Oscillation method .. 10

2.2.2 Infrared-based sensing method .. 11

2.2.3 Ultrasonic-based sensing method ... 12

2.2.4 Computer vision-based sensing method ... 12

Chapter 3 Welding process system sensing design .. 15

3.1 GTAW welding system ... 15

3.2 Image acquiring system ... 19

3.3 Observation results .. 21

Chapter 4 Data pre-processing .. 23

4.1 Reflected laser pattern image processing .. 23

4.2 Backside image processing .. 27

4.3 Summary ... 31

Chapter 5 Convolutional neural network ... 33

5.1 Introduction .. 33

5.2 Basic components .. 36

5.2.1 Convolutional layers ... 37

5.2.2 Pooling layers ... 45

5.2.3 Fully connected layers .. 48

5.2.4 Regression layers .. 51

v

5.3 Architecture of CNN ... 54

5.3.1 Basic rules for setting a CNN ... 54

5.3.2 Architecture details .. 56

5.4 Summary ... 61

Chapter 6 Data augmentation ... 62

6.1 Necessity for doing data augmentation ... 62

6.2 Data augmentation methods ... 63

6.2.1 Affine transformation ... 63

6.2.2 Generative Adversarial Nets (GANs).. 65

6.3 Summary ... 67

Chapter 7 Training a CNN .. 70

7.1 Loss function ... 70

7.2 Optimizer... 72

7.2.1 Mini-batch gradient descent ... 73

7.2.2 Adaptive moment estimation ... 77

7.3 Initialization ... 78

7.4 Learning rate annealing and early stopping ... 79

7.5 Batch Normalization .. 82

7.6 Summary ... 84

Chapter 8 Results .. 85

8.1 Preliminary results ... 85

8.2 Voting mechanism and control .. 87

Chapter 9 Conclusion and future work .. 89

Reference: ... 90

VITA... 96

vi

List of Tables

Table 1 Weld penetration status with labels .. 30

Table 2 Data with corresponding labels ... 32

Table 3 Different kernels generate different results .. 43

Table 4 Different neuron settings performance ... 58

Table 5 Parameters in each layer ... 61

Table 6 Data size after data augmentation .. 69

vii

List of Figures

Figure 1. 1 GTAW welding process ... 2
Figure 1. 2 Organization of dissertation ... 6
Figure 2. 1 Weld joint penetration (a) partial penetration (b) full penetration 10
Figure 2. 2 On-line weld pool edge detection system ... 13
Figure 2. 3 Weld pool reconstruct by width, length and convexity 14
Figure 3. 1 GTAW welding system using UR5 ... 16
Figure 3. 2 UR5 carrying a high-speed camera ... 17
Figure 3. 3 Motion control device .. 18
Figure 3. 4 GTAW welding system.. 18
Figure 3. 5 High-speed camera (left) and standard camera (right) 20
Figure 3. 6 GTAW welding system with sensing system ... 20
Figure 3. 7 Welding current used in experiments ... 21
Figure 3. 8 Typical captured images: (a) high-speed camera (b) standard camera 22
Figure 4. 1 Weld pool surface images under six stages .. 23
Figure 4. 2 A diagram shows the steps of bilinear interpolation 24
Figure 4. 3 The theory of bilinear interpolation[28] ... 25
Figure 4. 4 Backside images of weld pool under six stages ... 27
Figure 4. 5 Backside weld pool width 𝑏 .. 28
Figure 4. 6 Calculate width for an irregular shape .. 28
Figure 4. 7 Weld penetration status identification process .. 29
Figure 5. 1 A simplified visual cortex system[29] .. 33
Figure 5. 2 Fukushima’s network[31] ... 34
Figure 5. 3 The architecture of LeNet-5[13] ... 35
Figure 5. 4 The architecture of AlexNet[7] ... 36
Figure 5. 5 Illustration of the 2D convolutional operation .. 38
Figure 5. 6 Zero padding .. 39
Figure 5. 7 Original padding ... 40
Figure 5. 8 Cycle padding: on the left, top left and top there are three same images next
to the original image, so the cycle padding is like this. ... 40
Figure 5. 9 A typical input image for CNN .. 41
Figure 5. 10 Illustration of 2D atrous convolution when 𝑟 = 2. 42
Figure 5. 11 Mean-pooling ... 45
Figure 5. 12 Max-pooling ... 46
Figure 5. 13 Stochastic-pooling .. 47
Figure 5. 14 A fully connected layer network ... 48
Figure 5. 15 Perceptron ... 49
Figure 5. 16 Left tanh: 𝑦𝑡𝑎𝑛ℎ = 	𝑒𝑥 − 𝑒 − 𝑥𝑒𝑥 + 𝑒 − 𝑥 ; right ReLU: 𝑦𝑟𝑒𝑙𝑢 = max		(0, 𝑥).
 .. 50
Figure 5. 17 Logistic function 11 + 𝑒 − 𝑥... 52
Figure 5. 18 The architecture of VGG[66] ... 57
Figure 5. 19 The architecture of GoogLeNet[8] .. 57

viii

Figure 5. 20 The architecture of CNN used in our research .. 58
Figure 5. 21 Multiply process in fully connected layer.. 60
Figure 6. 1 Typical affine transformations: (a). original image (b). shift (c). horizontal flip
(d). vertical flip (e). rotation- 90 degree, (f). rotation-180 degree 64
Figure 6. 2 The process of scale jittering .. 65
Figure 6. 3 Generated different bedrooms[58] .. 66
Figure 6. 4 Generated different flowers[72] .. 66
Figure 6. 5 Generate zebra from horse[73] .. 67
Figure 6. 6 Data augmentation (a) original image, (b) rotated image, (c) scaled image, (d)
rotated and scaled image. ... 68
Figure 7. 1 A three-layer BP network ... 73
Figure 7. 2 Global minimum and local minimum[85].. 75
Figure 7. 3 Different learning rates affect the training process[59] 80
Figure 7. 4 Learning rate annealing in our training process .. 81
Figure 7. 5 Overfitting decreased the generalization ability[96] 82
Figure 8. 1 Training results... 85
Figure 8. 2 The training error, validation error and test error during training process 86
Figure 8. 3 Weld process control based on CNN .. 88

1

Chapter 1 Introduction

1.1 Background

Gas tungsten arc welding (GATW) and gas metal arc welding are the two prevalent

welding processes in industrial manufacturing. The theory behind them is similar,

generating heat by using electric arc between the electrode and the work-piece. In GTAW,

a non-consumable tungsten is used as electrode to emit electrons, which established

stable arc with work-piece. The work-piece being welded forms a liquid weld pool by the

heat of the arc and joints. The two pieces of the work-piece are welded together after

cooling. An optional filler metal maybe used, if necessary. During the welding process, an

inert gas, argon for example covers the weld pool surface protecting it from

contamination. This process is illustrated in Figure 1.1. Unlike GTAW, gas metal arc

welding (GMAW) uses a consumable electrode wire, consistently generating weld droplet

into the arc zone. After the droplet solidification, the work-piece are jointed together.

2

 Figure 1. 1 GTAW welding process

GTAW is commonly used in critical cases including pressure vessels, aerospace, etc. due

to its stability and high-quality weld joints produced. In these cases, the degree of

penetration status is an important criterion to judge weld joint integrity and affects

mechanical properties especially fatigue properties and service life of weld structure.

Therefore, an experienced welder is crucial since he/she is able to appraise penetration

status of backside and make adjustments (weld current, weld speed, etc.) based on the

observation of weld pool surface during welding. However, manually welding requires the

welder to keep concentrating for long time during welding. Health issues including high

stress, dry eyes, etc. become obvious and that dramatically affects welder’s reaction time,

concentration time resulting in weld quality degrade.

3

On the other hand, welding robots are designed to weld long time consistently without

quality issue. In addition, unlike human, weld robots can be placed and perform well

under harsh environments such as high temperature, strong arc light. However, current

welding robots are lack of intelligence: the movement of the robots are pre-programmed,

the welding parameters are pre-set, even the position of the weld-piece is strictly limited

under small variation. Even some weld robots are equipped with sensing equipment like

camera, the degree of weld penetration cannot be precisely determined. What is worse,

the sensing equipment are highly cost and hard to be setup, which means the flexibility

of welding robots is degraded with sensing equipment. Therefore, a welding system that

determines weld penetration status automatically is urgent needed in current

manufacturing industry.

1.2 Objective and Approach

As discussed in last section, human being is able to make adjustments during welding,

which is very important for critical parts, but the weld quality degrades along the time.

Welding robot ensures the weld quality but only good for simple tasks with no

complicated adjustments needed in welding process. The purpose of this research is to

propose a welding system that combines human’s intelligence and robot’s consistency,

which means automatically determine the weld penetration status during welding

process, step closer to intelligent manufacturing. To endow the weld robot with human

being’s intelligence, we propose to use machine learning algorithms especially

convolutional neural network (CNN). Therefore, the objectives of this study are:

4

1. To build an GTAW welding system to run welding process fast and consistently;

2. To establish an image acquiring system to collect data about the weld penetration

status during welding process. Transfer the human being’s knowledge into a

format that weld robots are able to recognize;

3. To design and train a convolutional neural network using collected data, precisely

predict weld penetration status offline;

4. To apply the trained convolutional neural network into the welding system. Build

an online control mechanism using CNN, precisely determine penetration status

during welding process.

The biggest challenge is to “teach” a weld robot to justify different weld penetration

status. Conventional methods try to solve this by finding certain key features that directly

related to the weld penetration status. This process contains but not limited to creating

complex models, numerous mathematical operations, etc. In summary, using human’s

intelligence to simplify welding process into several key features that easily to be tracked

by welding robots. However, no such model has been designed so far and the prediction

accuracy is not good enough. Another way is to improve sensing method, such as using

infrared cameras[1-3], ultrasonic sensing[4, 5], X-ray[6]. However, besides the high cost

on equipment, the welding robots equipped by equipment will lost their flexibility and

harsh environment endurance. As a sub-method of machine learning, convolutional

neural network has achieved impressive performance in computer vision area, including

classification[7, 8], segmentation[9-11],etc. Recall that an experienced welder is able to

determine penetration status by observing weld pool surface. Inspired by animal’s visual

5

cortex[12], a well-trained CNN has the ability to determine penetration status. The next

challenge is letting the welding robot “see” the weld pool like human. We use two

cameras to capture both the weld pool surface and the backside of the weld pool. The

images of the backside are used as labels when we train the convolutional neural network.

The creating label process is crucial since we transferred human knowledge into a format

that the CNN understands. We will discuss in next chapters. Another challenge is about

the data size. Current machine learning learners share the same dataset, like MINST[13],

Caltech-256[14], ImageNet[15] etc. However, no dataset contains the weld images we

need. Therefore, we need to create our own dataset. Collect all data by welding seems

impossible since a typical dataset contains more than 10,000 samples (MINIST contains

70,000 samples, Caltech-256 contains 30,607 samples, ImageNet contains over 14 million

samples). Therefore, data augmentation is needed to create enough data.

1.3 Dissertation Outline

In this dissertation, an intelligent welding system that automatically collect data,

determine penetration status, control welding process is developed. The main research

approach and results are discussed in the following chapters. The dissertation is organized

as follows.

6

Figure 1. 2 Organization of dissertation

Chapter 1: Introduction

The background and motivation of this dissertation is discussed, as well as the objective

of this study.

Chapter 2: Literature Review

In this chapter, the conventional sensing methods are discussed, including pool oscillation,

infrared, ultrasonic, acoustic emission, and vision-based sensing method.

Chapter 3 Welding process system sensing design

7

A GTAW welding system is built and a machine vision-based sensing system is designed

based on that welding system, which includes two cameras, a dot matrix laser pattern,

and a screen. A dot matrix structured laser is projected onto the weld pool surface,

showing the changes of the weld pool during welding process. On the other side, the

reflected laser is collected by a screen, which is placed, on the exact reflected path. A

high-speed camera is used to capture the images on the screen. At the same time, another

camera is capturing the backside of the weld pool. The image pairs between surface and

backside of weld pool have been collected.

Chapter 4 Data pre-processing

Images of both weld pool surface and weld pool backside are captured in last chapter.

Before these images are sent to train the neural network, pre-processing needs to be

done. Different weld penetration status are identified using human’s knowledge. Human

being’s knowledge are transforming into the way computer understands. Data-label pairs

are established.

Chapter 5 Convolutional neural networks

The prevalent machine learning method in computer vision area, convolutional neural

network is discussed in this chapter. Four basic components: convolutional layer, pooling

layer, neural network and regression layer are presented in theory. A six-layer CNN is

designed to learn weld penetration status. Details of the architecture including neuron

numbers in each layer, number of parameters are discussed.

Chapter 6 Data augmentation

8

Even weld over 300 times, the data size is far smaller than training this six-layer CNN

needed. It is impossible to run over 10,000 welding process to collect enough data. Data

augmentation is performed to enlarge data size, resulting in 270,000 training set, 45,000

validation set and 45,000 test data.

Chapter 7 Training a convolutional neural network

Different optimizers (mini-batch gradient descent and Adam) are discussed. Learning rate

annealing is performed to get more accurate result. Early stopping ensures the training

efficiency. Finally, batch normalization is added as a way of pre-processing, decrease the

over-fitting risk.

Chapter 8 Results

Preliminary results are showed and discussed in this chapter. Further propose a voting

method based on three continuous images improve the predict accuracy. Apply the

trained CNN to control real welding process.

Chapter 9 Conclusion and future work

The main finding and contributions are concluded and the future work to improve this

method is discussed.

9

Chapter 2 Literature Review

Welding process has been widely applied in current industry manufacturing, including

automotive assembly, aircraft production, micro-electric components, etc. Big batch

manufacturing is not the trend right now; small batch, personalized manufacturing

requires innovative intelligent welding system. However, the extreme brightness of the

arc light makes sensing the weld process hard. Direct way of sensing is to observe the

backside of the weld pool, but work piece position makes it even harder. Therefore, huge

methods have been proposed to sense the welding process, including pool oscillation,

infrared-based method, ultrasonic-based method and computer vision-based method. In

this chapter, all of them will be discussed.

2.1 Full penetration and partial penetration

As discussed, GTAW has been widely used in industrial manufacturing especially in critical

cases. In these critical cases, the weld joint penetration status is the most important

criterion. Typically, there are three-penetration status: partial penetration, full

penetration and over penetration. Moreover, at the beginning of welding there exist a

status, no penetration at all. Since partial penetration and full penetration are desired in

real industry welding, researchers have paid much attention on distinguishing them.

Figure 2.1 shows partial penetration and full penetration.

10

Figure 2. 1 Weld joint penetration (a) partial penetration (b) full penetration

Under full penetration, shown in figure (b) in 2.2, the weld bead reached the backside of

the weld joint, causing the work-piece completely weld together. Welding joints

mechanical properties like fatigue property are better than partial penetration. But

achieving full penetration is much harder than partial penetration. Precisely control of the

welding process are required: making sure no partial penetration or over penetration.

Partial penetration on the other hand, is easily to achieve. So, for less critical part, paritial

penetration is preferred.

2.2 Welding process sensing

Sensing welding process is the basic of weld process control, the information it collected

directly determine the complexity of control methods. As discussed, the invisible of the

weld pool backside makes it hard to sensing weld process. In this chapter, we will discuss

these sensing methods.

2.2.1 Pool Oscillation method

Track back to 1972, Kotecki et al. [16] firstly found the oscillation phenomena of the weld

pool (diameter of weld pool is correlate with the natural frequency) by doing stationary

11

GTA welding process. Following researchers like Richardson et al[17]. proposed the

natural frequency is strongly dependent on the inverse of the square root of pool mass.

However, these pioneering works have poor accuracy and cannot been applied in moving

welding process. Later, the abrupt transition of the weld pool’s natural oscillation

frequency from partial penetration to full penetration has been found and applied to

monitor and control the weld joint penetration by Xiao and Ouden [18, 19]. The finding

that natural oscillation frequency in partial penetration is much higher than that in full

penetration pave the way for the following researchers. K. Andersen et al[20]. proposed

a closed-loop feedback welding control system by implementing synchronous weld pool

pulsing method. B.Y.B.Yudodibroto[21] et al. further discussed the weld pool oscillation

method successfully applied GTAW with cold filler wire addition. However, the accuracy

of the oscillation methods are affected by the moving speed of the welding robot. In

addition, the work-piece surface need to be carefully cleaned in case the dirt or oxide

causing natural frequency changes. Therefore, the application of pool oscillation sensing

methods is under small range.

2.2.2 Infrared-based sensing method

The infrared-based sensing uses thermal sensor for example infrared camera to track the

weld pool properties, like penetration status, weld bead width, etc. during welding. Chen

et al. [1-3] proposed that the depth of welding joint penetration was determined by

construct the thermal distribution of the weld pool surface based on the infrared thermal

images that are captured by the infrared camera. The infrared has been widely used, but

12

the infrared sensors are expensive. What is worse, the accuracy of sensing directly

affected by the environment, like lighting conditions.

2.2.3 Ultrasonic-based sensing method

The ultrasonic wave is project to the find the boundaries between the liquid weld pool

and the work-piece[4, 5]. The ultrasonic wave transmission speed is different in different

materials; therefore, by calculating the time reflected ultrasonic wave is received, the

depth of weld penetration is determined. However, to accurately measure the depth, the

work-piece material need to be uniform and contains low percentage of impurity. In

addition, the surface of work-piece must be clean and even to ensure effective coupling.

Although non-contact ultrasonic-based sensing has been proposed, such as laser

ultrasonic[22] to remedy contact ultrasonic-based sensing, these systems requires special

calibration and not easy to be applied in industry.

2.2.4 Computer vision-based sensing method

Computer vision-based sensing has been widely used since its cheap cost, easy to setup

and relatively acceptable accuracy. Unlike the methods discussed before, computer

vision-based method cannot provide information directly relate to weld pool penetration

status. Extra steps like weld pool reconstruction are needed. A typical vison sensing

system uses one or multiple cameras to capture the weld pool surface during welding

process. For some cases, like tube welding, the backside of the weld pool is hard to

capture. Optional optical filters are needed to filter the strong arc light. The images of the

13

weld pool surface contain enough information to reconstruct a 2D or 3D weld pool.

R.Kovacevic et al. [23] propose an on-line welding pool edge detection sensing system,

show in figure 2.2.

Figure 2. 2 On-line weld pool edge detection system

The camera is capturing the weld pool surface each time the laser is paused to avoid

strong arc light affecting the captured images. The welding process is controlled by an

adaptive method. Another research that is done by University of Kentucky proposed to

reconstruct weld pool using computer vision-based sensing [24-26]. Project the dot-

matrix structured laser pattern onto the welding pool, on the other side, a screen is placed

on the path of reflected pattern to collect the reflected pattern. Details in figure 2.3. An

iterative algorithm has been designed that only based on the width, length, convexity

extracting from the reflected pattern.

14

Figure 2. 3 Weld pool reconstruct by width, length and convexity

The computer vision-based is widely used in current industry due to its cheap cost and

simple setup. However, extra work are needed including complex modeling process,

mathematical operations. Researchers have been trying to find better algorithms to

extract the key features that related with the weld penetration status.

15

Chapter 3 Welding process system sensing design

As discussed, numerous sensing methods have been proposed to accurately monitor the

welding process. The information sensing methods provided directly affects the control

algorithm. A good sensing system should have at least three properties: accuracy, fast

response and robustness. Accuracy means the sensing system provide correct

information about the welding process, which is the basic requirement for a sensing

system. Welding process is a dynamic process, which means precise control requires real-

time information. Therefore, the response time of the sensing system must be short.

What is more, the sensing system should be able to be applied in various cases. Taking

much time to set up a sensing system but only be applied to some particular cases is

useless.

In this chapter, we propose a computer vision-based sensing method to collect welding

process information. An experienced welder is able to determine weld penetration based

on his/her observation, our sensing system plays the role of eyes for the intelligent

welding system.

3.1 GTAW welding system

All the GTAW welding experiments are done in the lab at the University of Kentucky. The

welding system contains welding torch, power supply, workstation, work piece. Inert gas

is also used. A robot arm UR5 is firstly used in our system, shown in figure 3.1.

16

Figure 3. 1 GTAW welding system using UR5

The welding torch is attached to the robot arm and perpendicular to the work-piece.

During welding process, the welding torch along the robot arm UR5 travels to

continuously welding. Power supply and inert gas are not showed in this figure. UR5 has

four joints and be able to carry up to 11lbs programmable robot, which makes it perfect

for welding. However, when adding image acquiring system (two cameras) on that robot,

the jitters of cameras are so dramatically which causes the unclearness of the captured

images. The specific of the cameras will be discussed in next section. The reason of jitters

is not the weight of the cameras, but the object distance. We use a high-speed camera

(Point Grey GZL-CL-22C5M-C) to capture the weld pool surface image. However, the

minimum distance that camera can capture clear image is 400mm. Therefore, that

camera must be set 400mm away the welding torch. In addition, the relative position of

high-speed camera and welding torch must be unchanged in order to capture the weld

pool surface. Therefore, the high-speed camera deployed like figure 3.2. In this way, when

the robot is moving, the camera shakes obviously.

17

Figure 3. 2 UR5 carrying a high-speed camera

Therefore, we improved the welding system. Instead of using the programmable robot

UR5, we added a motion control device (figure 3.3) onto the workstation. The motion

control device is programmable and controls the workstation to move. During the welding

process, the work-piece moves along the workstation as programmed. The welding torch

and two cameras are set at the specific location where during welding process remains

unchanged. The power supply is Miller PM200 DC, which is able to output direct current

up to 200 Ampere. Figure 3.4 shows the welding system.

18

Figure 3. 3 Motion control device

Figure 3. 4 GTAW welding system

19

3.2 Image acquiring system

Two cameras including one high-speed, one standard, a laser with optical head and an

image screen forms the image acquiring system. As discussed, the sensing system is

designed to capture the information of welding process and the weld pool surface

contains enough information about the penetration status. To collect data for the

convolutional neural network, we use two cameras to capture images about welding

process: the images from high-speed camera are used for data the images from the

standard camera are used for label. To obviously show the changes of weld pool, we

project a 19 by 19 dot-matrix structured laser pattern onto the weld pool surface during

welding. The wavelength of that laser is 650nm, therefore, a camera equipped with a

650nm center-wavelength band-pass optical filter catches the entire laser pattern

without disturbance of other light source. A screen is placed on the path of the reflected

laser pattern. Instead of directly capture the weld pool surface, the camera captures the

reflected pattern on the screen. In this way, further reduces the strong arc light

disturbance. The high-speed camera we use in our experiments is Point Grey GZL-CL-

22C5M-C. To accurately track the welding process, the frame rate is set to be maximum:

1000fps. This high-speed camera is equipped with a 650 nm center-wavelength band-pass

optical filter, precisely capturing the reflected laser pattern on the screen. Another

camera (Point Grey FL-3-FW-0251C) is used to capture the backside of the weld pool.

Unlike the weld pool surface, the backside of the weld pool changes less significantly, so

that camera is set 30fps. The whole system is shown in 3.6.

20

Figure 3. 5 High-speed camera (left) and standard camera (right)

Figure 3. 6 GTAW welding system with sensing system

Camera 1 refers to the high-speed camera, camera 2 refers to the standard camera. The

structured laser is placed 50mm away from the welding torch with 30 degree by

horizontal. The screen is placed 50mm away from the welding torch with same degree as

structured laser. The high-speed camera pointing out the screen capturing the reflected

laser pattern while the standard camera points on the backside of the weld pool during

welding.

21

3.3 Observation results

During the whole experiments, the material of the work-piece is 0.125-inch thickness 304

stainless steel. The welding current is pulsed with 60 Ampere as peak current and 20

Ampere as base current. Every cycle, use peak current weld 47 milliseconds and base

current for 3 milliseconds, shown in figure 3.7.

Figure 3. 7 Welding current used in experiments

Compared with continuous one level direct current, the pulsed welding current uses less

energy, improves mechanical properties[27]. What is more, during the 3ms base current,

the arc light is dramatically weak, the captured images are clearer. The capture speed for

high-speed camera is 1000 fps and 30 fps for standard camera. Instead of tracking all the

time, both two cameras taking images during the base current. Therefore, under base

current period, the high-speed camera captures three images while the standard capture

22

one image at the same time. During the peak current, the strong arc light makes the

captured image hard to distinguish, and welding process is a dynamic process, there is no

need to track every 1ms. The typical captured images are shown in figure 3.8.

Figure 3. 8 Typical captured images: (a) high-speed camera (b) standard camera

In figure 3.8 (a) is captured by the high-speed camera. As discussed, a 19 by 19 dot-matrix

laser pattern is projected onto the weld pool surface, which generates the reflected laser

pattern. Based on reflection rule, the dots close to the laser generator will on the top of

the reflected image, but this makes no sense, all the information about the weld pool

surface have been included in that reflected image. (b) is captured by camera 2 in figure

3.5. At each beginning of the base current (20 Ampere), this camera captures one image

as corresponding image of the weld pool surface at that time.

Therefore, the GTAW welding process sensing system has been established, it welds,

collects data automatically. In the next chapter, we will discuss the methods used to

process these images.

23

Chapter 4 Data pre-processing

The sensing system endows the vision ability for the welding system. However, for an

intelligent welding system, only watching the welding process is not enough. As discussed,

the convolutional neural network will endow the learning ability for the welding system.

Unfortunately, the captured images by these two cameras are not enough as dataset to

train the convolutional neural network. Therefore, in this chapter, we will discuss the data

pre-processing methods.

4.1 Reflected laser pattern image processing

In our experiments, the welding process is divided into six stages. Figure 4.1 shows the

typical images of these stages.

Figure 4. 1 Weld pool surface images under six stages

An experienced welder is able to determine penetration status only by observing the weld

pool surface. Therefore, these images contain enough information, and be as training

24

data for convolutional neural network. Nevertheless, for hardware side, we need to do

sampling process. The images from high-speed camera are 384 pixels in width and 288

pixels in height. Even we use the best graphic card at that time GTX 1080 with 8 GB

memory, the image size is too big. Therefore, the image size must be reduced.

To avoid image distortion, the width-height ratio is kept with 48 pixels in width and 36

pixels in height. The method we use to resize is the bilinear interpolation. Bilinear

interpolation is a widely used sampling method in image processing area. It is simple,

running fast and achieves good performance. The theory is the same as linear

interpolation. Figure 4.2 shows the process of bilinear interpolation.

Figure 4. 2 A diagram shows the steps of bilinear interpolation

25

As shown in the figure 4.2, the pixel 𝑃(𝑥, 𝑦) in the destination image is what we want.

Firstly, mapping 𝑃(𝑥, 𝑦) back to the source image:𝑃;(𝑥, 𝑦). Then, use the nearby four

pixels ((𝑥<, 𝑦<),(𝑥< + 1, 𝑦<), (𝑥<, 𝑦< + 1), (𝑥< + 1, 𝑦< + 1)) to represent the𝑃;(𝑥, 𝑦). The

bilinear interpolation is the linear interpolation works in two directions. Figure 4.3 shows

the detail how the bilinear interpolation works.

Figure 4. 3 The theory of bilinear interpolation[28]

For the point 𝑃(𝑥, 𝑦) four nearby points are: 𝑄<<, 𝑄><, 𝑄>>, 𝑎𝑛𝑑	𝑄<>. Firstly in 𝑥 direction,

do the linear interpolation. We use a function 𝑓 to represent the pixel value of

position(𝑥, 𝑦).

𝑓(𝑅<) ≈ 	
CDEC
CDECF

∗ 𝑓(𝑄<<) +	
CECF
CDECF

∗ 𝑓(𝑄><) (4.1)

𝑓(𝑅>) ≈ 	
CDEC
CDECF

∗ 𝑓(𝑄<>) +	
CECF
CDECF

∗ 𝑓(𝑄>>) (4.2)

Where𝑅< = (𝑥, 𝑦<), 𝑅> = (𝑥, 𝑦>).

Then, in 𝑦 direction, do the linear interpolation.

 𝑓(𝑃) ≈ 	 HDEH
HDEHF

∗ 𝑓(𝑅<) +	
HEHF
HDEHF

∗ 𝑓(𝑅>) (4.3)

26

Therefore, we got	𝑓(𝑃):

𝑓(𝑃) ≈
𝑓(𝑄<<)

(𝑥> − 𝑥<)(𝑦> − 𝑦<)
∗ (𝑥> − 𝑥)(𝑦> − 𝑦) +

𝑓(𝑄><)
(𝑥> − 𝑥<)(𝑦> − 𝑦<)

∗ (𝑥 − 𝑥<)(𝑦> − 𝑦)	

										+
𝑓(𝑄<>)

(𝑥> − 𝑥<)(𝑦> − 𝑦<)
∗ (𝑥> − 𝑥)(𝑦 − 𝑦<) +

𝑓(𝑄>>)
(𝑥> − 𝑥<)(𝑦> − 𝑦<)

∗ (𝑥 − 𝑥<)(𝑦 − 𝑦<)

Equation 4.4: Four nearby points represents one particular point

The same results if we linear interpolate 𝑦 direction first. In this way, the 384-pixel width,

288-pixel height images are resized to 48-pixel width, 36-pixel height, further used as the

data for training a convolutional neural network.

We use bilinear interpolation to do the down-sampling operation. It is unavoidable that

some details in the source image are lost, but as we say, an experienced welder is able to

determine penetration status based on his/her observation. Human’s eyes are far more

advanced than any cameras in market, but when a welder wear the protection helmet,

he/she cannot see much clear images of the weld pool surface under the strong arc light.

Therefore, the resized smaller images contain enough information that correlated with

weld penetration status. Following training convolutional neural networks proves that is

right.

Besides bilinear interpolation, many other interpolations have been applied in image

processing area. For example, unlike bilinear interpolation nearest interpolation chooses

the nearest point pixel value as the destination value, while bicubic interpolation takes

27

the weight sum of nearby sixteen points as the destination value. The bilinear

interpolation balances the running time and the accuracy, which fits most for our research.

4.2 Backside image processing

As discussed, the welding process is divide into six stages; figure 4.4 shows the typical

images of these stages:

Figure 4. 4 Backside images of weld pool under six stages

In industry manufacturing, partial penetration and full penetration status are desired. The

degree of welding penetration states are usually characterized as the width 𝑏, shown in

figure 4.5[24, 25].

28

Figure 4. 5 Backside weld pool width 𝑏

For partial penetration, the width	𝑏	equals to zero, non-zero for full penetration. However,

for irregular shape, it is not easy to find out the length. For the image we captured from

the backside of weld pool, it is an oval shape, see figure 4.6.

Figure 4. 6 Calculate width for an irregular shape

Traditional way is to measure the maximum length and the minimum length of this

irregular shape. The width can roughly be the average of maximum and minimum.

However, this process requires additional time to find the maximum and minimum length,

which is not good for real-time control of welding process. Therefore, we proposed to use

29

the area to evaluate the penetration status of the weld pool. The process is shown in

figure 4.7.

Figure 4. 7 Weld penetration status identification process

Firstly, the region of interest (ROI) is selected around the light area which reflecting the

welding penetration status. Binary operation with threshold 110 is performed to filter out

light pixels that comes from the lighting, or unmelted base metal. The pixels that larger

than 110 is considered as the welded bead. We welded over 300 times, the lighting

conditions and cameras’ settings are remaining the same. Essential experiments have

been done, like weld for 1 seconds, 1.5 seconds, 2 seconds, 2.5 seconds, to set the

threshold to 110. When the threshold is too small, even the weld joint is not penetrated

at all, there still light some dots on figure 4.7(c) due to lighting, or the reflection of the

metal. While when the threshold is too big, the beginning of the welding process is

dismissed. In addition, the bigger threshold causes the area small, which makes us hard

30

to distinguish the partial penetration and full penetration. Finally, according to the

accumulated number of pixels kept, we got the area. Based on the area, different weld

penetration status are identified.

Table 1 Weld penetration status with labels

Area (pixels) Label

650-950 0

950-1350 1

1350-1650 2

1650-1950 3

1950-2250 4

2250-2500 5

The beginning of the welding process is not considered in our research, due to partial and

full penetration is what we want. For welding process physical meaning, we can roughly

say the label 0 through 2 stands for partial penetration and label 3 through 5 stands for

full penetration.

 The reason we set six labels is that we want to more precisely control the welding process.

Even the weld joint is under partial or full penetration, the degree of weld pool is different.

For example, some critical parts needs full penetration, and then we weld until label 5.

For some less critical parts, partial penetration label 3 works. Even label 0 works for saving

31

welding time and consuming less power. Another reason we set six labels is for the voting

mechanism to improving the prediction accuracy. The voting method will discuss in the

chapter 8.

4.3 Summary

In this chapter, we discuss the methods we use to process the images captured using two

cameras. The raw images cannot be directly sent to the convolutional neural networks to

do the training mainly because these images have not been processed by human, or we

can say have not been added the human’s intelligence. Chapter 3 endows the welding

system vision ability. Chapter 5 through 7 endows learning ability to the welding. In this

chapter, we transforming the human’s intelligence into a format that a machine

understands. We divided the welding process into six stages, and based on the

experiments’ results we determine the penetration status and give the different stages

different labels. The labeling method that is more exact is to find an experienced welder.

When he/she welded, he/she identified the welding process based on his/her experience

and his/her intelligence. Unfortunately, with so many experiments to do it is extremely

hard to find an experienced welder to do that. Therefore, after data pre-processing step,

we have the data and corresponding labels to train a convolutional neural network. Table

2 summaries the data and label currently we have.

32

Table 2 Data with corresponding labels

Weld pool surface Weld pool backside Label Size

0 457

1 495

2 540

3 570

4 626

5 862

33

Chapter 5 Convolutional neural network

5.1 Introduction

The convolutional neural networks are designed to mimic the animal’s vision system.

Track back to 1968[12], a study of monkey’s visual cortex shows that different lateral

geniculate nucleus (LGNs) are responsible to different stimulations, shown in figure 5.1.

Figure 5. 1 A simplified visual cortex system[29]

The retina and the very first LGNs responsible to the light dots, then simple cells being

activated encountered with edges or other stimulation. Complex cells and hyper-complex

cells further processing. In 1981[30, 31], Fukushima proposed the term “neocognitron”

and firstly create a network to represent the human’s vision cortex system.

34

Figure 5. 2 Fukushima’s network[31]

This network can be seen as the prototype of current convolutional neural networks

(CNNs). In his network, two cells are included: simple cells and complex cells. For simple

cells, they receive one plane of the previous step, while for complex cells; they receive

multiple plans from previous step. Therefore, as network going deeper, the reception

field keeps enlarging. Many ideas in that network like systematic filter, ReLU activation

function, average pooling and sparse connection are still widely used in modern CNNs.

However, the weights and bias in this network cannot be changed, and it is based on

Winner Take All (WTA) unsupervised learning algorithm. The practical use of that network

is limited.

The breakthrough occurs on the 1985, DE Rumelhart, GE Hinton et al.[32, 33] proposed

the Back Propagation (BP) algorithm. The convolutional operation is redefined by using

weights sharing method. The parameters in a network reduced significantly, making

training a network applicable. Based on BP, LeCun et al.[13] proposed the first modern

CNN. The architecture is shown in figure 5.3.

35

Figure 5. 3 The architecture of LeNet-5[13]

LeNet-5 contains seven layers, with two convolutional layer, two pooling layers, two fully

connection layers and a Euclidean radial basis function (RBF) layer as the final output layer.

The input is a hand-written digit number 0 through 9. The first layer is convolutional layer

C1 with six neurons, which generates six feature maps. The second layer is subsampling

layer S2. This CNN uses max-pooling method. The third layer C3 is also a convolutional

layer with 16 neurons following a max-pooling layer S4 as well. Partial connections are

between the C1 S2 and C3 S4 to decrease the calculation burden. The last layers are fully

connected layers and Euclidean radial basis function (RBF) layer that outputs the

predicted number. LeNet-5 achieves 0.95% test error on MNIST dataset and has been

successfully commercial used.

However, despite its impressive performance on MNIST dataset, the LeNet-5 did not get

much attention. The computation time is too much on that age and what is worse; the

support vector machine (SVM) achieves close or even better results.

Until 2012, A.Krizhevsky et al.[7] won the ILSVRC-2012 competition with 15.3% top 5 test

error, more than ten percentage than second, the CNNs becomes a hot topic again. The

architecture of AlexNet is shown in figure 5.4.

36

Figure 5. 4 The architecture of AlexNet[7]

The CNNs are getting deeper resulting much more parameters in a CNN; therefore,

Dropout has been proposed to control the overfitting. Data augmentation is used to

enlarge the dataset to give the robustness for the CNN. Re-using ReLU activation function

is due to the hardness of converging when using traditional activation functions like Tanh,

Sigmoid. Another boost is the hardware, especially the GPU accelerating running speed.

Inspired by the AlexNet, deeper CNNs have been proposed to improve the performance

of CNNs such as R-CNN[9, 34, 35], ZF Net[36], VGGNet[37], GAN[38], GoogLeNet[8] etc.

ResNet[11] achieves top 5 error 3.57%, better than human being’s 5.1% error rate. So far,

convolutional neural networks (CNNs) have become the prevalent method in computer

vision area. In the next part, we will discuss the basic components that construct a

convolutional neural network.

5.2 Basic components

Recently convolutional neural networks (CNNs) have become deeper and deeper, the

ResNet has reached over 1,000 layers. Nevertheless, the basic components of CNNs are

37

the same: a CNN contains multiple convolutional layers, some pooling layers, fully

connected layers, and regression layers. Some CNNs have other special layers but not all

the CNNs have.

5.2.1 Convolutional layers

Convolution layers are designed to process gird like topology 2D data like images. Multiple

small patches are in the convolutional layers which we call them feature maps[39]. The

number of these feature maps are dependent on the number of neurons we set. Two

important properties: local connections and weights sharing makes convolutional layers

powerful in processing image. Firstly, we discuss the convolutional operation.

In signal and processing area, convolutional operation is widely used. By convolutional

operation, the signal in time domain is transferred into frequency domain signal, which

we call the Fourier Transform[40], see equation 5.1.

 𝑓(𝑠) = 	∫ 𝑓(𝑡)𝑒E>KLMN𝑑𝑡O
EO (5.1)

Fourier Transform (FT) is a kind of the one dimension (1D) convolutional operation. For

1D data like audio, language, the FT is essential to do processing like designing low-pass

filter, etc. The general format of 1D convolutional operation can be written in equation

5.2.

𝑓(𝑡) ∗∗ 𝑔(𝑡) = 	∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏O
EO (5.2)

Where ∗∗ denotes convolution

The two dimension (2D) convolutional operation is quite the same as 1D convolutional, a

2D filter matrix called Kernel is replacing the 𝑔(𝑡) in the equation 5.2. Like equation 5.2,

38

the kernel firstly flip over 180 degree then multiply with the source. Equation 5.3 shows

the 2D convolutional operation.

 𝑆S(𝑖, 𝑗, 𝑘) = ∑ 𝐼SE<(𝑖 + 𝑚, 𝑗 + 𝑛)𝐾[S(𝑚, 𝑛)\,] (5.3)

Where 𝑆S is the calculated value after convolutional layers where 	𝑖	, 𝑗 indicates the

position; 𝐼S is 𝑙th layer; 𝐾[S is the 𝑘th kernel used in 𝑙th layer.

Below in figure 5.5 shows how 2D convolutional operation works.

Figure 5. 5 Illustration of the 2D convolutional operation

A 3 by 3 kernel is designed to show how 2D convolutional operation works. This kernel

has no actual meaning, and the weights in this kernel are set randomly. The left table

represents a patch of a picture with numbers mean the pixels value on each position. The

area in blue is used for convolution. Therefore, the results is	8 ∗ 1 + 1 ∗ 2 + 4 ∗ 3 + 7 ∗

4 + 2 ∗ 5 + 7 ∗ 6 + 6 ∗ 7 + 3 ∗ 8 + 6 ∗ 9 = 222, the position in the output should be the

same as the input.

39

As we can see, the 2D convolutional operation needs many multiply operation and add

operation. Actually, it needs four double-loop. Therefore, the size of the kernel is usually

3 by 3 or 5 by 5, for larger kernel size, the running time becomes large. The kernel needs

to be 2𝑁 + 1 by 2𝑁 + 1 size with the center is (𝑁	, 𝑁) and radius is	𝑁.

A problem occurs when kernel meets the boundaries. The 2D convolutional operation

take the sum of the around specific position. Therefore, what if we want to calculate the

left top position. Some of the nine points around that point are missing. Typically, four

ways to deal with this boundary problem: zero padding, original padding, cycle padding

and no padding. Zero padding puts zeros beyond the boundaries, while the original

padding puts the very last number to expand the image. Cycle padding is a little complex,

treat the same images are next to that image, the beyond the boundaries, put the exact

same values on that image. Figure 5.6, 5.7 and 5.8 illustrate these three padding methods.

Figure 5. 6 Zero padding

40

Figure 5. 7 Original padding

Figure 5. 8 Cycle padding: on the left, top left and top there are three same images next
to the original image, so the cycle padding is like this.

No padding will decrease the size of the input. Take a 3 by 3 kernel for example; the very

left, right, top and bottom cannot get output values because there are no enough

surrounding pixels near them. So a 𝑚 by 𝑛 input image, taking convolutional operation

with a 3 by 3 kernel using no padding method. The size of the output image is 𝑚 − 2

by 	𝑛 − 2 . In general, a 𝑚 by 𝑛 input image convolves with a 𝑘 by 𝑘 kernel with no

padding, the size of the output image is 𝑚− 𝑘 + 1 by	𝑛 − 𝑘 + 1.

41

In our research, we use no padding method in convolutional operation. Recall the image

we used as the input for CNN, shown in figure 5.9.

Figure 5. 9 A typical input image for CNN

The reflected laser pattern, which correlated with the weld pool surface, is located on the

center of the image. All other areas are black with pixel value equals to zero. Zero padding

and original padding works the same in our images, both put zeros beyond the boundaries.

Only the center of the image is useful for us, the decrease part causing by no padding is

just the useless part, which good for decreasing calculation burden.

Along with CNN has become the prevalent method in computer vision area. Many

researchers proposed different methods to improve its performance. Atrous

Convolution[11] is proposed to enlarge the reception field in deep convolutional neural

networks. Unlike the traditional convolutional operation that performs in one-step,

atrous convolution performs convolutional operation in every other 𝑟 position. The

convolution equation is shown in equation 5.4.

𝑆S(𝑖, 𝑗, 𝑘) = ∑ 𝐼SE<(𝑖 + r𝑚, 𝑗 + r𝑛)𝐾[S(𝑚, 𝑛)\,] (5.4)

42

Where rate parameter 𝑟 corresponding to the stride length. 𝑟 = 1	means the standard

convolution. By setting the rate parameter larger than 1, the reception field enlarged.

Figure 5.10 shows how atrous convolution works when	𝑟 = 2.

Figure 5. 10 Illustration of 2D atrous convolution when 𝑟 = 2.

Compare with standard convolutional operation in figure 5.5. All the pixels in the input

image are involved in the atrous convolution, we call it reception field enlarged. At the

same time, although the kernel size is larger (5 by 5 compare 3 by 3), the parameters in

the kernel remains the same. Using standard convolutional operation to get the same

reception field, we need a 5 by 5 kernel with 25 parameters. Therefore, atrous

convolution is useful in very deep CNNs to deal with subsampling causes smaller reception

field. However, our designed CNN is relatively shallow (six layers), we use standard

convolutional operation instead.

It is clear that 1D convolutional operation is used to design specific filters like low-pass,

band-pass, and high-pass etc. 2D convolutional operation can even do more. Different

kernels gives us different results such as blurring, sharpening, embossing, and more. Table

three shows different kernels applied in the same image.

43

Table 3 Different kernels generate different results

Original

Edge detection g
−1 −1 −1
−1 8 −1
−1 −1 −1

h

Sharpen g
0 −1 0
−1 5 −1
0 −1 0

h

44

Blur
1
9
g
1 1 1
1 1 1
1 1 1

h

Therefore, in the CNN, each neuron generates one feature map, in other way the

parameters in one feature map are the same. This is called weight sharing, which

significantly decreases the parameters in the convolutional neural network. Different

neurons generates different feature maps, for our research, we use 75 neurons in the first

convolutional layer, which generates 75 different feature maps.

One of the primary task in training a CNN is to find the best weights for these kernels.

Traditional image processing methods design these kernels by human; this requires

complex modeling and calculation. For example, the researchers want to find an edge of

a specific part in an image. The kernel needs to be designed to ignore all the other edges

in the same image but except for that edge, which means the edge detection we seen in

the table cannot be directly used. Back to our research, we want to know the penetration

status based on the weld pool surface. The difficulty of that the key features are still

unclear so far. We cannot say some edges or some positions that directly related with

penetration status. That makes weld penetration status sensing hard and not accuracy as

we expected. In CNN on the other hand, it is much better than traditional methods. We

need not to know the exact key features in advance but let the CNN to extract the key

45

features that related to penetration status itself. The training process will be discussed in

next chapters.

5.2.2 Pooling layers

Another part of a CNN is the pooling layers. The pooling layers are always following the

convolutional layers. The convolutional operation including multiply and add operations,

these operations are linear operation. However, the combination of linear operation is

also linear operation. Therefore, the pooling layer is along with the activation function to

add the nonlinear factor into the CNN. Three kinds of pooling methods are used in current

CNNs: mean-pooling, max-pooling and stochastic-pooling.

Mean-pooling takes the average of a small patch usually 2 by 2 as the output of that area,

shown in figure 5.11.

Figure 5. 11 Mean-pooling

Therefore, after mean-pooling, the image is largely smaller, from 4 by 4 to 2 by 2. The

parameters in the CNN are significantly decreased. However, two main issues about

mean-pooling. The output value is not always the integer. Even if we can make it to

integer, that integer makes no sense. For example, for a 2 by 2 small patch, there are four

46

colors, red, yellow, grey and blue. We wish to pick one color to represent this small 2 by

2 patch. After mean-pooling, we got an orange color, a color even not shown in that small

patch. By doing mean-pooling we are not removing details but removing all but creating

a new picture. Another issue is related to the first one: the performance. Using mean-

pooling layers is worse than same architecture but using max-pooling layer, so current

CNNs use max-pooling operation as pooling layer [7, 39, 41-45].

Max-pooling does the same way as mean-pooling but outputs the max value of that small

patch, shown in figure 5.12.

Figure 5. 12 Max-pooling

Like mean-pooling, the max-pooling operation decrease the input image size by half one

side, thus significantly decreasing the number of parameters a CNN has. The less

parameters further reducing the risk of overfitting. In addition, the max-pooling keeps the

most significant feature in a small area like 2 by 2, removes irrelevant details. Therefore,

the max-pooling is a way to reorganize the features. More importantly, the max-pooling

is used to endow the CNN the ability of the invariance to the image transformation such

as rotate, shift, shrink, etc. [44-46]. Therefore, the CNN is more robustness to disturbance

47

like noise. As discussed, the performance of max-pooling is better than the mean-pooling,

which makes the max-pooling method the most widely used as the pooling layer.

The max-pooling takes the maximum number as output, for a 2 by 2 area, three values

are dismissed, as the area becomes larger, more values will be dismissed: doing max-

pooling for 5 by 5, 24 values dismissing. To solve this problem, stochastic-pooling is

proposed.

Unlike max-pooling just dismisses the smaller values, the stochastic-pooling gives each

value a probability of being picking as output based on their value[47].

Figure 5. 13 Stochastic-pooling

In each of the pooling area, first calculate its probability using equation 5.5.

 𝑝L = 	
jk

∑ jllmn
 (5.5)

Next, based their probabilities, choose one value as the output. The max-pooling can be

treat as the special version, where the maximum value with 1 probability others have 0.

In stochastic-pooling, the smaller values have a chance to be the output, which for some

cases gives us better results[47].

48

The pooling methods we discuss so far have no overlapping area. There is another type

of pooling called overlapping pooling. The theory is simple: the pooling area we set covers

part of the nearby pooling area. By increasing the calculation burden, more details are

collected. A. Krizhevsky et al[7] proposed that by using overlapping max-pooling, the top-

5 error decreases 0.3%. Recently, spatial pyramid pooling[48] is proposed to transform

any size of the feature maps into the same dimension. Despite these new pooling

methods are proposed to improve the CNN’s performance. Our research chooses the

max-pooling operation as pooling layer.

5.2.3 Fully connected layers

The fully connected layers usually follow the convolutional layers and max-pooling layers.

Using the convolutional layers and the max-pooling layers we have mapped the features

into the specific hidden multi-dimension space, the fully connected layers are used to

map the learned distributed-feature representations into the space where labels are.

Fully connected layers are the basic component of standard neural networks.

Figure 5. 14 A fully connected layer network

49

A typical fully connected layer network is shown in figure 5.14. The circle in the figure

stands for the neuron, all the neurons in each layer are connected with all the previous

and next layer’s neurons, the neurons in the same layer are not connected[49, 50].

The neurons are designed to mimic human’s neurons. Before we actually discuss the

neurons, we need to know about the perception. In 1958, F Rosenblatt[51] proposed the

perceptron.

Figure 5. 15 Perceptron

The input of the perceptron is binary number 0 or 1, which corresponding to activated or

not activated. Weights (𝑤<, 𝑤>, 𝑤p, …𝑤[) are used to measure the importance of each

input. Calculate each input with its weights then compare with 𝜃 (the threshold) gives the

output. Given the input 𝑥<, 𝑥>, …	𝑥[the output of the neuron is

 s0									𝑖𝑓	
∑ (𝑤L𝑥L + 𝑏L) ≤ 	𝜃L∈[

1									𝑖𝑓	 ∑ (𝑤L𝑥L + 𝑏L) > 	𝜃L∈[
 (5.6)

The perceptron describes how human beings make decisions[51]. However, for more

complicated cases, a simple perceptron is not enough: perceptron has only two status 0

and 1, cannot reflect small changes on the input. To deal with this problem, an activation

50

function 𝑓(𝑤, 𝑏) is used, where 𝑤 means the weights and 𝑏 means the bias. Therefore,

the output of the neural given input 𝑥<, 𝑥>, …	𝑥[is𝑓(𝑤L𝑥L + 𝑏L). The activation function

can be sigmoid[52], tanh[53], ReLU[39], etc. Among these activation functions, the tanh

and ReLU are most widely used in current CNNs, shown in figure 5.16.

Figure 5. 16 Left tanh: 𝑦Mj]w = 	
xyExzy

xy{xzy
 ; right ReLU: 𝑦|xS} = max		(0, 𝑥).

Both of these functions are non-linear and both of them output 0 given 0 input. The

difference is obvious, the range of tanh is (−1	, 1) while the ReLU is able to output larger

than 1. The squash-like tanh results in the saturation risk, which means if the weights or

bias are big enough, no matter how small the input, the output of tanh function is always

1. In addition, ReLU has the better performance [54-56] and faster converge[7]. In our

research, we use ReLU as activation function, and at the same time, we use tanh

activation function for compare.

The activation is not only used in fully connected layers, in convolutional layers and max-

pooling layers, activation is used after the convolutional operation or max-pooling

operation.

51

The reason for using fully connected layers is to combine all the features convolutional

layer learned, and to learn non-linear combinations of these features. In the fully

connected layer, the position information is dismissed, since all the features are

transformed into one-dimension. The learned CNN has robustness for position variance,

which means it is able to detect a cat in an image regardless the cat is on the top left or

right corner. However, for segmentation task, which requires detection and position

information, fully connected layers cannot be used. Another issue about fully connected

layer is the parameters it has. The parameters of fully connected layers can take up to 90%

of the whole CNNs, which will show in next part. Resulting longer running time and high

risk of over fitting. Therefore, global average pooling (GAP) is proposed and achieves good

results[10, 57, 58] such as ResNet[11], GoogLeNet[8]. However, our research goal is

classification not segmentation, thus we keep fully connected layers as high reasoning

method.

5.2.4 Regression layers

The final layer of the CNN are the regression layer or classification layer depending the

output is continuous number or the group number. In chapter 4, we have created the

data and corresponding labels. There are six labels in our research; therefore, a

classification layer is the choice. In our research, softmax regression is classifier in the final

layer, which is a special kind of the binary logistic regression (LR) classifier. Even we call it

regression layer, it is a multiple class classifier. Therefore, we will discuss the binary

logistic regression first.

52

The binary logistic regression uses a logistic function to make a prediction 0 or 1 for the

given variable. The logistic function is Sigmoid, shown in figure 5.17.

Figure 5. 17 Logistic function <
<{xzy

The logistic function output is between 0 and 1, which can be treated as a probability.

Therefore, the probability of 1 given a input 𝑥L is

𝑃(𝑦L = 1|𝑥L;𝑤) = 	
<

<{���	(E�∗Ck)
 (5.7)

Therefore, given a dataset contains N data, the likelihood function is:

∏ [𝑃(�
L�< 𝑌 = 1|𝑥L; 𝑤)]Hk[1 − 𝑃(𝑌 = 1|𝑥L;𝑤)]<EHk (5.8)

Then, we get the minimum negative log likelihood as the loss function:

 𝑚𝑖𝑛�						𝐿 = −𝑙𝑜𝑔∏ [𝑃(�
L�< 𝑌 = 1|𝑥L; 𝑤)]Hk[1 − 𝑃(𝑌 = 1|𝑥L;𝑤)]<EHk (5.9)

						= −��𝑦L𝑙𝑜𝑔𝑃(𝑌 = 1|𝑥L;𝑤) + (1 − 𝑦L) log�1 − 𝑃(𝑌 = 1|𝑥L;𝑤)��
�

L�<

																																						= −�[𝑦L(𝑤 ∗ 𝑥L) − 𝑙𝑜𝑔(1 + 𝑒𝑥𝑝(𝑤 ∗ 𝑥L))]
�

L�<

53

Thus this loss function is the calculate the sum, in case too much number, we take the

average of that sum. The loss function is

 𝐿 = −�[𝑦L(𝑤 ∗ 𝑥L) − log(1 + exp(𝑤 ∗ 𝑥L))]
�

L�<

(5.10)

Using the gradient descent (GD) algorithm, which we will discuss in chapter 7, the

parameters 𝑤 can be calculated. Thus, based on equation (5.7), the probability of 1 is

calculated.

The binary logistic regression distinguishes two class every time. For our research, which

has six classes need to be classified, five times binary logistic regression will work.

However, better choice is softmax regression. Unlike logistic regression, the softmax

regression is designed to deal with multiple labels classification[59]. The softmax function

is shown in equation 5.11.

 𝑓L(𝑦) = 	
���	(Hk)

∑ ���	(Hk)l
 (5.11)

Where 𝑘	is the number of labels.

Similarity, given input 𝑥L and parameters	𝑤, the probability of outputs label 𝑗 (𝑦L = 𝑗) is

 𝑃(𝑦L = 𝑗|𝑥L;𝑤) =
exp	(𝑤� ∗ 𝑥L)

∑ exp	(𝑤] ∗ 𝑥L)[
]�<

 (5.12)

Therefore, like binary logistic regression, the likelihood function is

 ∏ ∏ (���	(��∗Ck)
∑ ���	(l
��F ��∗Ck)

)<[Hk�<][
��<

�
L�< (5.13)

The loss function can be defined like:

54

𝑚𝑖𝑛�				𝐿(𝑤) = 	−

1
𝑁��[1[𝑦L = 1]𝑙𝑜𝑔

exp�𝑤� ∗ 𝑥L�
∑ exp	(𝑤] ∗ 𝑥L)[
]�<

]
[

��<

�

L�<

 (5.14)

Then, use the gradient descent (GD) algorithm to calculate the parameters	𝑤. Therefore,

for a given input	𝑥L, the softmax regression layer outputs all the probabilities of all the

labels 	𝑃(𝑦L = 𝑗|𝑥L;𝑤) , then choose the label with maximum probability as the final

output.

5.3 Architecture of CNN

In the last section, the basic components that construct the CNN are discussed. However,

how many convolutional layers are needed, how the convolutional layers are connected

to the max-pooling layer, where to put fully connected layers, these questions are still

unclear. In this section, we will discuss the architecture of CNN.

5.3.1 Basic rules for setting a CNN

The convolutional neural network is designed to mimic human’s visual system. However,

there are billions of neurons in human being’s brain. Even in current hardware, the billions

of neurons are so enormous, and it is extremely hard to implement. Therefore,

researchers step back to design different architectures for different cases.

It is believed that a neural network with only one hidden layer can approximate any

continuous function as long as the hidden layer has enough neurons [60-62]. Therefore,

the reason for going deeper is reducing the parameters networks have[59, 63]. In

55

convolutional layers, as discussed, one feature map sharing the same parameters:

weights and bias of one neuron. In addition, for max-pooling layer, the input image size

is reduced by one out of fourth. Using a shallow for example one hidden to approximate

a function takes exponential number of that represented by deep rectifier network[64].

Another reason for using multiple layers is that it has more generalizing ability, the

learned weights and bias are smaller, the functions are more smooth[59, 63]. Using

multiple layer, we can say that we divide a complex problem into several small problems,

each layer corresponding one small problem. The learning process can be easier than that

using shallow network. Take CNN for example, the convolutional layer collects key

features, the max-pooling further reorganizing these key feature, then convolutional

collect higher-level features, the following max-pooling do the same job, after several

cycles, the input image are transferred into a set of features, then using hidden layer or

global average pooling to do higher reasoning, outputs the final result. This process is

more reasonable than using hundreds or even thousands of neurons to do the job in one

shallow network. Even though some researcher questioning the deeper and deeper

neural network[65], the deeper neural networks actually achieves better results. The

ResNet[11] with more than 100 layers outperforms human being in some cases.

The deeper neural networks actually cause the overfitting problem, but the overfitting

problem is even worse in shallow networks. Therefore, it is better to use methods like

regulation, dropout[7] to control the overfitting, not use shallow network because the

concern of overfitting.

56

Therefore, based on the complexity of the task, choosing a slightly larger and deeper

neural network is much better using a smaller neural network.

5.3.2 Architecture details

Our task is to identify the penetration status using CNN. There are six labels corresponding

different penetration status. Before setting our architecture, we will discuss some

classical CNNs’ architectures.

In chapter 5, we have discussed two CNNs: LeNet and AlexNet. LeNet[13] has seven layers

including two convolutional layers, two max-pooling layers, two hidden layers and one

Euclidean radial basis function. It achieves over 99% identification accuracy on MNIST

dataset with ten labels. AlexNet[7] contains 13 layers with five convolutional layers, five

max-pooling layers, three fully connected layers. It won the ILSVRC-2012 competition

with 15.3% top-5 test error based on the famous ImageNet dataset, which has 1,000

labels. Later in the year of 2014, VGG has been proposed, further reduce the top-5 to 7.3%

[8, 37]. VGG has 5 convolutional layers, 5 max-pooling layers, three fully connected layers

with a softmax layer to output the result. The architecture is shown in figure 5.18.

57

Figure 5. 18 The architecture of VGG[66]

A year later, GoogLeNet further reduce the top-5 error to 6.7% with 22 convolutional

layers, 4 max-pooling layers, one average pooling layer, one fully connected layer and

softmax layer to give the result. Shown in figure 5.19.

Figure 5. 19 The architecture of GoogLeNet[8]

ResNet[11] has 151 convolutional layers which has the state of art 3.57% top-5 error on

the ImageNet, outperform human being’s 5.1% top-5 error.

It is clear that for ImageNet with 1,000 labels the deeper network gives better results.

Back to our research, comparing with these architectures, we design a six-layer

58

convolutional neural network with two convolutional layers, two max-pooling layers, one

fully connected layer and a softmax regression as logistic regression layer.

Figure 5. 20 The architecture of CNN used in our research

Input is the image we captured using high-speed camera, size is 48 width by 36 height.

The first layer is convolutional layer with 75 neurons to make sure collect enough

information for further use. Kernel size is 5 by 5. Convolutional operation is standard with

no padding. Therefore, after convolution the size is 44 (= 48 − 5 + 1) by 32 (= 36 − 5 +

1). Each neuron generates one feature map, thus, there are 75 feature maps. Different

neuron settings have been tested on the same dataset. See table 4.

Table 4 Different neuron settings performance

Neuron numbers in Conv layers: (first, second) Validation error in the same dataset

(300,200) 22.35 %

(75,50) 22.467%

(60,40) 24.367%

Original neurons are 300 for the first convolutional layer, 200 for the second convolutional

layer. It achieves the best performance, 0.117% less validation error than (75, 50) setting,

and 2.017% less than that of (60, 40). However, the cost is longer running time. Our goal

59

is real-time control welding process, which requires fast response. Therefore, for practical

view, we prefer 75 neurons as first convolutional layer, 50 neurons as second

convolutional layers which balancing the accuracy and the running time. Therefore, for

the first convolutional layer, the parameter number that needs to be learned is 1950 (=

(5 ∗ 5 + 1) ∗ 75).

Following the convolutional layer is the max-pooling layers. A 2 by 2 max-pooling

operation performed, reducing the data into 22 width by 16 height. As discussed, max-

pooling largely decreases the parameters and endows robustness for position variation.

The parameters number that need to be learned is 150 (=(1 + 1) ∗ 75).

Batch normalization is performed after the max-pooling layer. Batch normalization is used

as re-distribute the input data, which can be treated as a way of pre-processing. The batch

normalization will discuss in chapter 7. Rectified Linear Unit (ReLU) is the activation

function, which gives 0.492% less validation error on the same dataset (20.875%

validation error minus 21.367% validation error).

The second convolutional layer and the second max-pooling do the exact same process.

The kernel size is 5 by 5, no padding for the convolutional operation. Max-pooling area is

2 by 2. Batch normalization has been performed, activation function is ReLU. After the

second max-pooling layer, the size is further reduced to 9 width by 6 height. The

parameters that need to be learned in the second convolutional layer is 93800 (=

(75 ∗ 5 ∗ 5 + 1) ∗ 50)). The second max-pooling layer need to learn 100 (= (1 + 1) ∗ 50)

parameters.

60

Fully connected layer is used to do high reasoning work. As discussed, the position

information is dismissed by convert the second max-pooling output into a vector.

Therefore, the input size is 2700 by 1 matrix, shown in figure 5.21.

⎣
⎢
⎢
⎢
⎡
𝑤<,< 𝑤<,> ⋯ 𝑤<,>��� 𝑤<,> ¡¡
𝑤>,< 𝑤>,> ⋯ 𝑤>,>��� 𝑤>,> ¡¡
⋮ ⋮ ⋱ ⋮ ⋮

𝑤¤��,< 𝑤¤��,> ⋯ 𝑤¤��,>��� 𝑤¤��,> ¡¡
𝑤¥¡¡,< 𝑤¥¡¡,> ⋯ 𝑤¥¡¡,>��� 𝑤¥¡¡,> ¡¡⎦

⎥
⎥
⎥
⎤
∗

⎣
⎢
⎢
⎢
⎡
𝑥<
𝑥>
⋮

𝑥>���
𝑥> ¡¡⎦

⎥
⎥
⎥
⎤
+

⎣
⎢
⎢
⎢
⎡
𝑏<
𝑏>
⋮

𝑏¤��
𝑏¥¡¡⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝑦<
𝑦>
⋮

𝑦¤��
𝑦¥¡¡⎦

⎥
⎥
⎥
⎤

Figure 5. 21 Multiply process in fully connected layer

Therefore, the parameter number that is need to be learned is 1,350,500 (= 2700 ∗

500 + 500)), as discussed, the parameters of fully connected layer take up to 93.337%

of all the parameters so far.

The final layer is a logistic layer, using a softmax regression to calculate the probability of

each label’s, then outputs the maximum one as the label. Softmax regression gives every

sample the probabilities of each labels:	���	(H©)∑ Hlª
l�©

, 	���	(HF)∑ Hlª
l�©

, ���	(HD)∑ Hlª
l�©

, ���	(H«)∑ Hlª
l�©

, ���	(H¬)∑ Hlª
l�©

, ���	(Hª)∑ Hlª
l�©

.

Outputs the label with the maximum probability. The parameter number needs to be

learned is 3006 (= 500 ∗ 6 + 6). Table 5 summarize number of parameters in each layer.

61

Table 5 Parameters in each layer

Layer Number of parameters

Convolutional-1 (5×5+1)×75 = 1950

Pooling-1 (1+1) ×75=150

Convolutional-2 (75×5×5+1)×50 = 93800

Pooling-2 (1+1) ×50 = 100

Fully-connected 2700×500 + 500 = 1,350,500

softmax regression 500×6 + 6 = 3006

Total 1,449,506

5.4 Summary

In this chapter, we discussed the history of convolutional neural network (CNN), the basic

components that construct a CNN including convolutional layer, pooling layer, fully

connected layer and softmax regression layer. Classical architecture of CNNs such as

LeNet, AlexNet, VGG, GoogLeNet are discussed. Then, proposed our six-layer CNN, discuss

the parameters that need to be learned. Before we discuss the training method, we will

discuss the data augmentation in next chapter.

62

Chapter 6 Data augmentation

In last chapter, we have discussed the parameters we need to learned for our six-layer

CNN. A total of 1,449,506 parameters in our CNN, but the dataset size so far is only 3,550

so far, which is not enough to train the CNN. Therefore, the data augmentation is

performed in our research.

6.1 Necessity for doing data augmentation

Recent CNNs take the data augmentation as a way to control the overfitting[67], such as

AlexNet[7], VGG[37], GoogLeNet[8], ResNet[11]. On the other hand, training neural

networks based on small dataset resulting serious overfitting, a little change like position,

sizes will decrease the accuracy. Pinto et al.[68] designed a V-1 like model with limited

images to train. Results shows the performance degrease when variations are added into

the test set. As discussed, LeNet is training based on the MNIST dataset which contains

60,000 training samples and 10,000 test samples[13]. Caltech-256[14] contains 30,607

samples. In addition, most CNNs are based on the ImageNet[15] dataset, which contains

21,841 synsets with over 14 million samples so far. Therefore, 3,550 samples is far below

the requirement to train a six-layer CNN, which contains 1,449,506 parameters. Data

augmentation is needed in our research.

63

6.2 Data augmentation methods

Many data augmentation methods have been proposed and been proved effective in

certain cases. In summary, data augmentation methods can be concluded into two ways:

one is affine transformation the other one is Generative Adversarial Nets (GANs).

6.2.1 Affine transformation

The affine transformation takes the form:

 𝑦 = 𝑤 ∗ 𝑥 + 𝑏
(6.1)

Based on this equation, the processing methods includes shift, horizontal or vertical flip,

rotation or reflection. Figure 6.1 summarize these transformations.

64

Figure 6. 1 Typical affine transformations: (a). original image (b). shift (c). horizontal flip
(d). vertical flip (e). rotation- 90 degree, (f). rotation-180 degree

These methods enlarge the dataset fast and easy, but for some cases, some of them are

not appropriate. For example, the trained CNN is about face detection, the 180 degree

rotation cannot been used since no need to recognize a face in that direction. The next

common methods is scale jittering[11, 37]. The crop size is fixed 𝑛	by	𝑛, for example VGG

use 224 by 224. The input image is isotopically scaled. The shorter side (width or height)

is chosen as the training scale	𝑆. 𝑆 is randomly chosen in the range of (𝑚𝑖𝑛,max), where

65

𝑚𝑖𝑛 must be greater or equal to the cropping size	𝑛. Finally randomly crop a 𝑛	by 𝑛 area

from the scaled image. Figure 6.2 shows the whole process.

Figure 6. 2 The process of scale jittering

Another method is scale aspect ratio augmentation[8]. Unlike the scale jittering method

which keeps the input width-height ratio. The ratio in scale aspect ratio changes in a range

of [p
¤
, ¤
p
] to generate more images.

For colored images, color jittering and PCA jittering can also be applied to do data

augmentation. All the images in our research is grey mode, these methods are

inappropriate and we will not discuss them.

6.2.2 Generative Adversarial Nets (GANs)

Another widely used way of data augmentation is Generative Adversarial Nets (GANs).

Unlike the affine transformations, GANs[38, 69] actually generates new images. It

achieves impressive results in image translating[58, 70], representation learning[58, 71],

etc. A Discriminator[38] (D) is proposed to estimate the reality of the generated images

that generated by the generator (G), the loss function is defined as adversarial loss which

66

forces the generated images are different from the real images. Training process is based

on back propagation (BP), but always update one (G or D) at the same keep the other

unchanged. Figure 6.3 to 6.5 shows some images generated from the GANs.

Figure 6. 3 Generated different bedrooms[58]

Figure 6. 4 Generated different flowers[72]

67

Figure 6. 5 Generate zebra from horse[73]

6.3 Summary

The affine transformation and generative adversarial nets (GANs) are the two methods

doing data augmentation, both of them achieve impressive results. In our research, an

experienced welder is able to determine the weld penetration status form different

position and under different view. Therefore, affine methods including shift, rotation and

resizing are used as the data augmentation method. To ensure the entire reflected

pattern is kept after the affine transformation, we firstly select the region of interest (ROI).

Experiment results shows the shift operation results in part of the ROI missing. As

discussed, all the images are in grey scale, the color augmentation and PCA jittering are

not useful. In addition, GANs performance on our grey scale images are not well. Figure

6.6 summarizes the data augmentation methods we use in our research.

68

Figure 6. 6 Data augmentation (a) original image, (b) rotated image, (c) scaled image, (d)
rotated and scaled image.

In table 6, we summarized the data size before and after data augmentation.

69

Table 6 Data size after data augmentation

Label Number of raw images Number of images after augmentation

0 457 59,868

1 495 64,846

2 540 70,696

3 570 74,101

4 626 70,739

5 862 87,063

To make sure the training results of the neural networks are convincing, the training

dataset, validation set and test set must be completely different. Since if the test set is

the images that used to training, we cannot tell this neural network has actually learned

or just remember all the images. Therefore, when creating the test set, we randomly pick

one image from each of the six labels and do not put them back. Do this cycle for 7,500

times, we create a test set that contains 45,000 images. Same thing with validation set

and training set. Therefore, we create a training set, which contains 270,000 images, a

validation set, which contains 45,000 images and a test set, which contains 45,000 images.

70

Chapter 7 Training a CNN

In the previous chapters, we have designed a six-layer CNN, created three independent

dataset: training data, validation set and test set. In this chapter, we will discuss how to

train a convolutional neural network (CNN). The loss function is firstly discussed; the

optimization methods including mini-batch gradient descent and Adam are compared.

Learning tricks like learning rate annealing and early stopping are used in our training

process. Finally, we will discuss the batch normalization, which controls the overfitting.

7.1 Loss function

Loss function needs to be firstly define in the training process, since the loss function

evaluates the degree of consistency between the results got from the CNN and the ground

truth table[59]. Many loss functions have been proposed, such as gold standard[74],

hinge loss[75], log loss including cross entropy error[76, 77], squared loss[78] and

exponential loss[79].

The gold standard loss is also called 0-1 loss; it is used to record the times that prediction

result match the truth, see equation 7.1.

 𝐿(𝑦, 𝑓(𝑥)) = 	 s0				𝑖𝑓	𝑦 = 𝑓(𝑥)
1				𝑖𝑓	𝑦 ≠ 𝑓(𝑥) (7.1)

Where 𝑦 is the true label and 𝑓(𝑥) is the predict label. In our research, the softmax

regression gives the probabilities of the six labels (0 to 5) given an input. The maximum is

picked as the predict label, when calculating the validation error and test error, the 0-1

71

loss is used. For a mini batch (600 in our research), each time we match the real label, we

add 1 to the sum	𝑆. Therefore, the validation/test error is defined in equation 7.2.

 𝐸𝑟𝑟𝑜𝑟 = 1 −
𝑆
𝑁 (7.2)

Where	𝑆 is the sum, 𝑁 is the mini-batch size.

The hinge loss function is widely used in support vector machine (SVM)[75]. For a

classification problem, define 𝑦 is the prediction value, not the label, 𝑡 is either 0 or 1. The

hinge loss function is defined:

 𝐿(𝑦) = max	(0, 1 − 𝑡 ∗ 𝑦) (7.3)

Where in SVM, 𝑦 = 𝑤 ∗ 𝑥 + 𝑏.

The support vector machine achieves impressive results in classification[80-82], but the

deep convolutional neural network outperform by the accuracy[7] and the running

speed[83]. Therefore, in our research, we use the convolutional neural networks to do

the classification.

Log loss function is discussed in the regression layer part. The loss function for softmax

regression is

 𝑚𝑖𝑛�				𝐿(𝑤) = 	−
1
𝑁��[1[𝑦L = 1]𝑙𝑜𝑔

exp�𝑤� ∗ 𝑥L�
∑ exp	(𝑤] ∗ 𝑥L)[
]�<

]
[

��<

�

L�<

 (7.4)

Where the equation 7.4 is the same as equation 5.14

In some cases, the regularization term is added to the loss function to control the

overfitting. L-2 norm regularization is most used which can be written in equation 7.5[59].

72

 𝜆� (𝑤[)>
[∈°

 (7.5)

Where 𝜆 is the penalty factor, controls the degree regularization.

Thus, the loss function can be written

𝑚𝑖𝑛�				𝐿(𝑤) = 	−
1
𝑁��[1[𝑦L = 1]𝑙𝑜𝑔

exp�𝑤� ∗ 𝑥L�
∑ exp	(𝑤] ∗ 𝑥L)[
]�<

]
[

��<

�

L�<

+ 𝜆� (𝑤[)>
[∈°

(7.6)

Calculating the minimum, the sum of the parameters should be minimized, which six.

Avoiding the situation like one large parameters along with many zeros. The training

results are smoother and have more generalization ability.

In our research, batch normalization is applied to control the overfitting, thus the details

of the overfitting will not be discussed.

7.2 Optimizer

The goal of the training process is to minimize the loss function, in physical meaning, to

make the predict results the same as the true label. Rumelhart et al [33] proposed the

error BackPropagation (BP) algorithm to train a three layers neural network. Currently,

BP algorithm has become the most common algorithms to train a neural network. Mini-

batch gradient descent and Adaptive moment estimation (Adam) are both based on the

BP algorithm.

73

7.2.1 Mini-batch gradient descent

As discussed, the mini-batch gradient descent is based on the BP algorithm. Therefore,

we discuss the BP algorithm first. The BP algorithm is to change the parameters (weights,

bias) according to the input samples, to make the output close the desire truth. In

summary, the training process can be divide into two parts: feedforward pass and

backpropagation pass. Figure 7.1 shows a three layers BP neural networks[84].

Figure 7. 1 A three-layer BP network

74

This neural network contains three layers: input layer, hidden layer and the output layer.

Input layer has ℎ neurons, hidden layer has 𝑘 neurons and the output layer contains 𝑙

neurons. Given the input data 	𝐷: (𝑥<, 𝑦<), (𝑥>, 𝑦>),… (𝑥],𝑦]), 𝑥L ∈ 𝑅w, 𝑦L ∈ 𝑅S . The

weights between the input layer neuron 𝑖 and hidden layer neuron ℎ is indicated by𝑣Lw,

and 𝑤w� means the weights between the hidden layer neuron	ℎ and the output layer

neuron	𝑗. The threshold of the output is written as 𝜃� for neuron 𝑗 and 𝛾� for neuron 𝑗 in

the hidden layer. The activation function shown is sigmoid function, and can be other

types of activation function.

Therefore, in the feedforward pass, initialize the parameters (weights, bias) for each layer,

gives an input	(𝑥[, 𝑦[), outputs the results	𝑦µ[= (𝑦µ<[, 𝑦µ>[,…	𝑦µS[).

 𝑦µ�[= 𝑓(ℎL¶ − 𝜃�) (7.7)

Therefore, the square error is defined as:

 𝐸[= 	
1
2�(𝑦µ�[− 𝑦�[)>

S

��<

 (7.8)

If the error is acceptable, the parameters need not to be optimized. The training process

is end. However, when the error is not desirable, the backpropagation pass works. BP

algorithm optimizing the parameters (weights and bias) based the error defined in

equation 7.8. Two methods are typically used in optimizing, one is gradient descent the

other is least square. Both of them take derivative to find the minimum of the loss

function. However, the least square is non-iterative and trying to find the global minimum.

The gradient descent is iterative and after several iterations, find the local minimum.

75

Figure 7. 2 Global minimum and local minimum[85]

In our research, the mini-batch gradient descent is used, the following steps are based on

the gradient descent method.

For the 𝑡Mw neuron in the hidden layer, the input of it is

𝛼w =�𝑣Lw

w

L�<

∗ 𝑥L

Similar way the input of the 𝑗Mw neuron in the output layer is

𝛽� = 	�𝑤w� ∗ ℎw

[

w�<

For a given learning rate	𝜂, we have

 ∆𝑤w� = 	−𝜂
𝜕𝐸[
𝜕𝑤w�

 (7.9)

Based on the chain-rule[86], we have

𝜕𝐸[
𝜕𝑤w�

=
𝜕𝐸[
𝜕𝑦µ�[

∗
𝜕𝑦µ�[

𝜕𝛽�
∗
𝜕𝛽�
𝜕𝑤w�

 (7.10)

From the definition of	𝛽�, we have

76

𝜕𝛽�
𝜕𝑤w�

= 	ℎw (7.11)

Therefore, based on equation 7.8 and 7.7, we have

		𝑔� = −
𝜕𝐸[
𝜕𝑦µ�[

∗
𝜕𝑦µ�[

𝜕𝛽�

	= −�𝑦µ�[− 𝑦�[�𝑓;�𝛽� − 𝜃��

Where for Sigmoid function, 𝑓;(𝑥) = 𝑓(𝑥)�1− 𝑓(𝑥)�

Apply equation 7.12 and 7.11 into the equation 7.10 and 7.9, we have

 ∆𝑤w� = 	𝜂𝑔�ℎw (7.13)

Similarly, we have

 ∆𝜃� = −	𝜂𝑔� (7.14)

 ∆𝑣Lw = 𝜂𝑒w𝑥L (7.15)

 ∆𝛾w = −𝜂𝑒w (7.16)

Where 𝑒w =
¼½l
¼w¾

∗ ¼w¾
¼¿¾

𝑒w =
𝜕𝐸[
𝜕ℎw

∗
𝜕ℎw
𝜕𝛼w

= −�
𝜕𝐸[
𝜕𝛽�

∗
𝜕𝛽�
𝜕ℎw

𝑓;(𝛼w − 𝛾w)
S

��<

=�𝑤w�𝑔�𝑓′(
S

��<

𝛼w − 𝛾w)

 	= ℎw(1 − ℎw)�𝑤w�𝑔�

S

��<

 (7.17)

 			= 𝑦µ�[(1 − 𝑦µ�[)(𝑦�[− 𝑦µ�[) (7.12)

77

Next, do iteration process based on these update equations until reach the optimum. The

process above shows the way using one sample to do the gradient descent. Based on how

many samples are used in gradient descent, three methods are defined. Batch gradient

descent uses the whole data to do the gradient descent. Each iteration the whole data

are used to calculate the gradient makes it most accurate [87]. However, when the

dataset is too large, the speed will be slow. On the other hand, stochastic gradient descent

uses only one sample each time to calculate the gradient, but the accuracy is not good.

Mini-batch gradient descent uses a small batch (for example 600 in our research) to

calculate the gradient each time. It balances the accuracy and the speed, and becomes

most common used [7, 9-11, 15, 35, 37, 43, 56]. Therefore, the loss function can be

written as equation 7.18

 𝐸 = 	
1
2𝑁�(𝑦µ] − 𝑦])>

�

]�<

 (7.18)

Where 𝑁 is the mini-batch number, 600 in our research. In addition, to increase the

convergence speed and escape the saddle point, the momentum term is added in our

mini-batch gradient descent[59].

7.2.2 Adaptive moment estimation

Besides the mini-batch gradient descent, adaptive moment estimation (Adam) is another

important optimizer. Adam combines the advantages of two methods: AdaGrad[88] and

RMSProp[89], for each iteration, the learning rate is bounded in a certain range[90]. It

calculated the gradient’s first moment estimate and second moment estimate to adjust

78

each parameter’s learning rate	𝜂. The details will not be discussed in our research, readers

can refer the paper[90]. Equation 7.19 to 7.23 shows the updating rule for the parameters.

 𝑚M = 𝛽<𝑚ME< + (1 − 𝛽<)𝑔M (7.19)

 𝑣M = 𝛽>𝑣ME< + (1 − 𝛽>)𝑔M> (7.20)

 𝑚ÁM = 	
𝑚M

1 − 𝛽<M
 (7.21)

 𝑣µM =
𝑣M

1 − 𝛽>M
 (7.22)

 𝜃M = 𝜃ME< − 	𝛼
𝑚ÁM

Â𝑣µM + 𝜖
 (7.23)

Where 𝑔M is the gradient respect to the parameters, 𝑚M is the first moment estimate,

and	𝑚¡ = 0, 𝑣M is the second moment estimate and 𝑣¡ = 0. By default,	𝛼 = 0.001, 𝛽< =

0.9, 𝛽>=0.999 and 𝜖 = 10EÄ.

The revised Adam has been proposed and achieves good performance, like AdaMax and

Nadam[87], but will not be discussed in our research.

The performance in our research is slightly worse than the revised mini-batch gradient

descent (22.750% validation error compared to 22.083% validation error in the dataset),

but the convergence speed is much faster. For performance view, we use the revised

mini-batch gradient descent, and the details will show in next part.

7.3 Initialization

The activation function used in our research is Rectified Linear Unit (ReLU), cause it

converges faster[7] and has better performance[54, 56]. Therefore, the initialization

process based on the ReLU activation function. Initialization set the starting point of the

79

training process, a bad initialization results in sticking on saddle point[91], much longer

training time, etc. The Gaussian distribution initialization is widely used in current neural

networks. Recall that smooth functions have more generalization ability. In our research,

zero mean and 0.01 variance Gaussian distribution for weights, bias set to 0 is firstly tried.

The validation error is 22.083%. Xavier initialization[92, 93] is another widely used

initialization method. Unlike the Gaussian distribution initialization, the size of the

previous layer is considered. The bias are kept 0 while the weights are initialization as

equation 7.24.

 𝑤L�	~𝑈[−
1
√𝑛

,
1
√𝑛
] (7.24)

Where 𝑈 means uniform distribution and 𝑛 is the size of last layer.

However, the Xavier initialization is not fit for nonlinear activation functions like ReLU[55].

Therefore, the revised Xavier initialization[55] is proposed to deal with nonlinear

activation functions and to solve the hard convergence for very deep neural networks.

Revised Xavier initialization use a Gaussian distribution with zero mean and Â2/𝑛L

standard deviation. Where 𝑛L denotes the input dimension of the layer. However, in our

six-layer CNN, the revised Xavier initialization ends with a saddle point. Further reduce

the revised initialization by 0.1, validation error is 22.483% validation error, which is

worse than the Gaussian distribution initialization.

7.4 Learning rate annealing and early stopping

The learning rate set the step size each time updating the parameters. Too much learning

rate hinder the training process or even converge to a fake minimum while small learning

80

rate makes training process extremely slow to converge, see figure 7.3. However, for a

training process choosing an appropriate learning rate can be difficult. A better way is to

use learning rate annealing method.

Figure 7. 3 Different learning rates affect the training process[59]

Learning rate annealing firstly set a slightly bigger learning rate to make sure fast

convergence in the beginning of the training process. Then decaying the learning rage

based on time or on the number of epochs[94]. In [95], an adaptive learning rate method

(ADADELTA) has been proposed. The learning rate is calculated based on the L2 norm of

all the gradients of previous, which makes the learning rate larger when the gradient

smaller. However, the initial learning rate for ADADELTA is critical. Therefore, in our

research, step decay is used where the initial learning rate is set to 0.01, and when the

validation error stops decreasing for three consecutive epochs, decrease the learning rate

by 0.5. Figure 7.4 shows the learning rate annealing in our training process.

81

Figure 7. 4 Learning rate annealing in our training process

As discussed, the mini-batch gradient descent is an iteration process. Traditional way to

control the end of an iteration process is to set a tolerate threshold, when the error is

below this threshold, the iteration process stops. However, for CNN, that threshold is hard

to determine, which means the epoch number is critical. The training process terminates

without reach to the optimum when the epoch number is set too small. On the other

hand, too big epoch number causes the training process taking much time. To solve this

dilemma, we use set a big epoch number to make sure training process will not terminates

before reaching the optimum but at the same apply the early stop mechanism. The

training process will terminates when the validation error stops decreasing for ten

consequent epochs.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

3 7 12 16 20 25 29 34 38 43 47 52 56 60 65 69 74 78 83 87 92 96 10
0

10
5

10
9

11
4

11
8

12
3

12
7

13
2

le
ar

ni
ng

 ra
te

 %

number of epochs

Learning rate annealing during training process

82

7.5 Batch Normalization

In our defined loss function, the L2 norm regularization is not added to control the

overfitting. The overfitting should be avoided since at that time, the trained neural

network matches too closely to training data even the noise or bad samples are

considered. Although the loss function is minimized, the generalization ability is

decreased.

Figure 7. 5 Overfitting decreased the generalization ability[96]

The dropout[7] and batch normalization[97] are the two widely used methods controlling

the overfitting. Dropout adds a probability that determine each neuron work or not work.

For one neuron view, the dropout forces it to work with different neurons each time,

decreasing the combination between the neurons and increasing the generalization

ability[98]. However, in our research, we use the batch normalization as the way

controlling the overfitting. In the training process, the parameters (weights and bias) need

to be update to minimize the loss function. However, the updates of parameters from all

83

the previous layers affect the distribution of the input of next layer. Sergey Ioffe and

Christian Szegedy [97] defined this distribution change as internal covariate shift[99].

Batch normalization is proposed to deal with the internal covariate shift. As a way of

Principal Components Analysis (PCA), whitening is widely used for data preprocessing[100,

101], but whitening requires much computation. So in batch normalization, the authors a

close way to whitening preprocessing method.

For each dimension of the input[97]

 𝑥µ[= 	
𝑥[− 𝐸(𝑥[)
Â𝑉𝑎𝑟(𝑥[)

 (7.25)

Where the mean 𝐸 and variance 𝑉𝑎𝑟 are calculate based on the mini-batch data.

However, by doing this, the features learned from last layer are distorted, thus two

learnable parameters are used to restore the features. For each activation	𝑥[,	𝛾[𝑎𝑛𝑑		𝛽[,

we have

 𝑦[= 	𝛾[∗	𝑥µ[+	𝛽[(7.26)

Where 𝛾[and 𝛽[are learned during training process.

In this way, BN layer forces the unordered distribution into an ordered distribution, which

we need to learn.

Besides controlling the overfitting, BN layer speeds up the completely training process,

and is able to save a bad initialization to some extent.

84

7.6 Summary

In this chapter, the training method used in our research has been discussed. For the

performance view, we use mini-batch gradient descent with learning rate annealing. The

initialization is from the Gaussian distribution with zero mean and 0.01 variance. The

training process terminates when the validation error stop decreasing for ten

consequently periods. Batch normalization is used to control overfitting.

85

Chapter 8 Results

In this chapter, we will discuss the results of our trained CNN. The plot of training error,

validation error and test error are given. The six-layer CNN give us 90.83% prediction

accuracy about the identification of weld penetration. A voting mechanism has been

proposed based on three consequent images, which increase the prediction accuracy to

over 97%.

8.1 Preliminary results

All the training work is based on the GTX1080 GPU. After 134 epochs, the training process

terminates with best validation error is 9.053%, and the test error 9.169%. Shown in figure

8.1.

Figure 8. 1 Training results

86

Figure 8.2 shows the training error, validation error and test error during the training

process.

The training error is 0.195%, so the training process makes the prediction very close to

the truth.

The gap between the training error and test error is neither too large nor too small which

indicates the overfitting is acceptable. Remember that validation set and test set are

different, the validation error and test error is close also shows this trained CNN performs

close on two different data set, showing that the overfitting is not serious.

Figure 8. 2 The training error, validation error and test error during training process

87

8.2 Voting mechanism and control

As discussed in chapter 3, each low current period, and the high-speed camera capture

three consequent images. Welding process is a dynamic process, the wrong prediction

happens only between close labels, which means the true label is 3, but the CNN gives us

2 or 4, the possibility it gives 0 can be dismissed. Therefore, a voting mechanism based on

three images has been proposed to further increase the prediction accuracy. There are

two cases when voting:

1. At least two images output the same label, then output that label as the final label;

2. All the three images output different labels. At that time we do not use any of

them, wait for next cycle.

For one image, the prediction accuracy is 90.83%, so based on the voting mechanism, the

prediction accuracy is

0.9083p + 3 ∗ 0.9083> ∗ (1 − 0.9083) = 0.9763 = 97.63%

However, these three images are not independent, the prediction accuracy is improved

after voting, but cannot get 97.63%.

The control system in our research can be designed in figure 8.3.

88

Figure 8. 3 Weld process control based on CNN

89

Chapter 9 Conclusion and future work

In our research, we propose an innovative approach identify weld penetration status

using convolutional neural network (CNN). A sensing system, which collect both weld pool

surface and backside of the weld pool, has been built to generate train data. Label

preserving data augmentation including rotation, scale has been done to create over

360,000 data. A six-layer CNN has been designed and trained based on augmented

dataset. Final test accuracy rate of the proposed CNN model is 90.83% and the accuracy

rate can be further improved by using a voting mechanism, which is regarded to be good

enough in practical industrial welding manufacturing.

The control system has been designed like figure 8.3. However, the hardware limitation

stopped us. The computer in the control part is equipped with an AMD A6-3650 2.6 GHz

CPU. Running our trained CNN takes over 300 milliseconds, which is too long for real

welding control. Running on a GPU is much faster, an eight-layer CNN gets results in 1.2

milliseconds on a GPU[10]. However, the control computer has been collected with two

data collection cards, no room to install a GPU. In future, the welding sensing and control

system will be established with a GPU.

90

Reference:
[1] W. Chen and B. Chin, "Monitoring joint penetration using infrared sensing

techniques," Welding Journal, vol. 69, pp. 181s-185s, 1990.
[2] S. Nagarajan, W. Chen, and B. Chin, "Infrared sensing for adaptive arc welding,"

Welding Journal, vol. 68, pp. 462-466, 1989.
[3] S. Nagarajan, P. Banerjee, W. Chen, and B. A. Chin, "Control of the welding process

using infrared sensors," IEEE Transactions on Robotics and Automation, vol. 8, pp.
86-93, 1992.

[4] N. Carlson and J. Johnson, "Ultrasonic sensing of weld pool penetration," Welding
Journal (Miami);(USA), vol. 67, 1988.

[5] D. Hardt and J. Katz, "Ultrasonic measurement of weld penetration," Welding
Journal, vol. 63, pp. 273s-281s, 1984.

[6] A. Aendenroomer and G. Den Ouden, "Weld pool oscillation as a tool for
penetration sensing during pulsed GTA welding," WELDING JOURNAL-NEW YORK-,
vol. 77, pp. 181-s, 1998.

[7] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep
convolutional neural networks," in Advances in neural information processing
systems, 2012, pp. 1097-1105.

[8] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, et al., "Going deeper
with convolutions," in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2015, pp. 1-9.

[9] R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for
accurate object detection and semantic segmentation," in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2014, pp. 580-587.

[10] J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic
segmentation," in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2015, pp. 3431-3440.

[11] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, "Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution,
and fully connected crfs," arXiv preprint arXiv:1606.00915, 2016.

[12] D. H. Hubel and T. N. Wiesel, "Receptive fields, binocular interaction and
functional architecture in the cat's visual cortex," The Journal of physiology, vol.
160, pp. 106-154, 1962.

[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to
document recognition," Proceedings of the IEEE, vol. 86, pp. 2278-2324, 1998.

[14] G. Griffin, A. Holub, and P. Perona, "Caltech-256 object category dataset," 2007.
[15] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, "Imagenet: A large-scale

hierarchical image database," in Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, 2009, pp. 248-255.

[16] D. Kotecki, D. Cheever, and D. Howden, "Mechanism of ripple formation during
weld solidification," WELD J, vol. 51, p. 368, 1972.

[17] R. Renwick and R. Richardson, "Experimental investigation of GTA weld pool
oscillations," WELDING J., vol. 62, p. 29, 1983.

91

[18] Y. H. Xiao and G. D. Ouden, "A study of GTA weld pool oscillation," Welding Journal,
vol. 69, p. 289, 1990.

[19] Y. H. Xiao and G. D. Ouden, "Weld pool oscillation during GTA welding of mild
steel," Welding Journal, vol. 72, pp. 428-s, 1993.

[20] K. Andersen, G. E. Cook, R. J. Barnett, and A. M. Strauss, "Synchronous weld pool
oscillation for monitoring and control," IEEE Transactions on Industry Applications,
vol. 33, pp. 464-471, 1997.

[21] B. Yudodibroto, M. Hermans, Y. Hirata, and G. den Ouden, "Influence of filler wire
addition on weld pool oscillation during gas tungsten arc welding," Science and
technology of welding and joining, vol. 9, pp. 163-168, 2004.

[22] P. A. Kotidis, J. F. Cunningham, P. F. Gozewski, C. Borsody, D. E. Klimek, and J. A.
Woodroffe, "Laser ultrasonics-based material analysis system and method using
matched filter processing," ed: Google Patents, 1997.

[23] R. Kovacevic, Y. Zhang, and S. Ruan, "Sensing and control of weld pool geometry
for automated GTA welding," Journal of Engineering for Industry, vol. 117, pp. 210-
222, 1995.

[24] W. Zhang, "Machine-human Cooperative Control of Welding Process," 2014.
[25] W. Zhang, Y. Liu, X. Wang, and Y. Zhang, "Characterization of three-dimensional

weld pool surface in GTAW," Welding Journal, vol. 91, pp. 195s-203s, 2012.
[26] H. S. Song and Y. M. Zhang, "Three-dimensional reconstruction of specular surface

for a gas tungsten arc weld pool," Measurement Science and Technology, vol. 18,
p. 3751, 2007.

[27] T. S. Kumar, V. Balasubramanian, and M. Sanavullah, "Influences of pulsed current
tungsten inert gas welding parameters on the tensile properties of AA 6061
aluminium alloy," Materials & design, vol. 28, pp. 2080-2092, 2007.

[28] Wikipedia. Bilinear interpolation.
[29] M.-v. s. e. h. v. s. u. F.-b. p. processing. (2010). System Stimulus.
[30] K. Fukushima, "Neocognitron--a self-organizing neural network model for a

mechanism of pattern recognition unaffected by shift in position," NHK 放送科学
基礎研究所報告, pp. p106-115, 1981.

[31] K. Fukushima, "Neural network model for a mechanism of pattern recognition
unaffected by shift in position-Neocognitron," IEICE Technical Report, A, vol. 62,
pp. 658-665, 1979.

[32] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning internal representations
by error propagation," California Univ San Diego La Jolla Inst for Cognitive
Science1985.

[33] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations by
back-propagating errors," nature, vol. 323, p. 533, 1986.

[34] R. Girshick, "Fast r-cnn," in Proceedings of the IEEE international conference on
computer vision, 2015, pp. 1440-1448.

[35] S. Ren, K. He, R. Girshick, and J. Sun, "Faster r-cnn: Towards real-time object
detection with region proposal networks," in Advances in neural information
processing systems, 2015, pp. 91-99.

92

[36] M. D. Zeiler and R. Fergus, "Visualizing and understanding convolutional
networks," in European conference on computer vision, 2014, pp. 818-833.

[37] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale
image recognition," arXiv preprint arXiv:1409.1556, 2014.

[38] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, et al.,
"Generative adversarial nets," in Advances in neural information processing
systems, 2014, pp. 2672-2680.

[39] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, pp. 436-444,
2015.

[40] R. N. Bracewell and R. N. Bracewell, The Fourier transform and its applications vol.
31999: McGraw-Hill New York, 1986.

[41] P. Y. Simard, D. Steinkraus, and J. C. Platt, "Best practices for convolutional neural
networks applied to visual document analysis," in ICDAR, 2003, pp. 958-962.

[42] J. Bouvrie, "Notes on convolutional neural networks," 2006.
[43] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, et al., "Deep neural

networks for acoustic modeling in speech recognition: The shared views of four
research groups," IEEE Signal Processing Magazine, vol. 29, pp. 82-97, 2012.

[44] Y.-L. Boureau, J. Ponce, and Y. LeCun, "A theoretical analysis of feature pooling in
visual recognition," in Proceedings of the 27th international conference on
machine learning (ICML-10), 2010, pp. 111-118.

[45] Y.-L. Boureau, F. Bach, Y. LeCun, and J. Ponce, "Learning mid-level features for
recognition," 2010.

[46] L. Fei-Fei, R. Fergus, and P. Perona, "Learning generative visual models from few
training examples: An incremental bayesian approach tested on 101 object
categories," Computer vision and Image understanding, vol. 106, pp. 59-70, 2007.

[47] M. D. Zeiler and R. Fergus, "Stochastic pooling for regularization of deep
convolutional neural networks," arXiv preprint arXiv:1301.3557, 2013.

[48] K. He, X. Zhang, S. Ren, and J. Sun, "Spatial pyramid pooling in deep convolutional
networks for visual recognition," in European conference on computer vision, 2014,
pp. 346-361.

[49] A. Zell, Simulation neuronaler netze vol. 1: Addison-Wesley Bonn, 1994.
[50] M. T. Hagan, H. B. Demuth, M. H. Beale, and O. De Jesús, Neural network design

vol. 20: Pws Pub. Boston, 1996.
[51] F. Rosenblatt, "The perceptron: a probabilistic model for information storage and

organization in the brain," Psychological review, vol. 65, p. 386, 1958.
[52] K.-I. Funahashi, "On the approximate realization of continuous mappings by neural

networks," Neural networks, vol. 2, pp. 183-192, 1989.
[53] J. Schmidhuber, "Deep learning in neural networks: An overview," Neural

networks, vol. 61, pp. 85-117, 2015.
[54] A. L. Maas, A. Y. Hannun, and A. Y. Ng, "Rectifier nonlinearities improve neural

network acoustic models," in Proc. ICML, 2013.
[55] K. He, X. Zhang, S. Ren, and J. Sun, "Delving deep into rectifiers: Surpassing human-

level performance on imagenet classification," in Proceedings of the IEEE
international conference on computer vision, 2015, pp. 1026-1034.

93

[56] X. Glorot, A. Bordes, and Y. Bengio, "Deep sparse rectifier neural networks," in
Proceedings of the fourteenth international conference on artificial intelligence
and statistics, 2011, pp. 315-323.

[57] M. Lin, Q. Chen, and S. Yan, "Network in network," arXiv preprint arXiv:1312.4400,
2013.

[58] A. Radford, L. Metz, and S. Chintala, "Unsupervised representation learning with
deep convolutional generative adversarial networks," arXiv preprint
arXiv:1511.06434, 2015.

[59] A. Karpathy, "Cs231n: Convolutional neural networks for visual recognition,"
Neural networks, vol. 1, 2016.

[60] K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are
universal approximators," Neural networks, vol. 2, pp. 359-366, 1989.

[61] K. Hornik, "Approximation capabilities of multilayer feedforward networks,"
Neural networks, vol. 4, pp. 251-257, 1991.

[62] G. Cybenko, "Approximation by superpositions of a sigmoidal function,"
Mathematics of control, signals and systems, vol. 2, pp. 303-314, 1989.

[63] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning vol. 1: MIT press
Cambridge, 2016.

[64] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio, "On the number of linear regions
of deep neural networks," in Advances in neural information processing systems,
2014, pp. 2924-2932.

[65] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio, "Fitnets:
Hints for thin deep nets," arXiv preprint arXiv:1412.6550, 2014.

[66] leonardblier. (2016). A BRIEF REPORT OF THE HEURITECH DEEP LEARNING
MEETUP #5.

[67] S. C. Wong, A. Gatt, V. Stamatescu, and M. D. McDonnell, "Understanding data
augmentation for classification: when to warp?," arXiv preprint arXiv:1609.08764,
2016.

[68] N. Pinto, D. D. Cox, and J. J. DiCarlo, "Why is real-world visual object recognition
hard?," PLoS computational biology, vol. 4, p. e27, 2008.

[69] J. Zhao, M. Mathieu, and Y. LeCun, "Energy-based generative adversarial
network," arXiv preprint arXiv:1609.03126, 2016.

[70] E. L. Denton, S. Chintala, and R. Fergus, "Deep generative image models using a￼
laplacian pyramid of adversarial networks," in Advances in neural information
processing systems, 2015, pp. 1486-1494.

[71] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen,
"Improved techniques for training gans," in Advances in Neural Information
Processing Systems, 2016, pp. 2234-2242.

[72] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee, "Generative
adversarial text to image synthesis," arXiv preprint arXiv:1605.05396, 2016.

[73] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, "Unpaired image-to-image translation
using cycle-consistent adversarial networks," arXiv preprint, 2017.

[74] V. Vapnik, Statistical learning theory. 1998 vol. 3: Wiley, New York, 1998.

94

[75] M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf, "Support vector
machines," IEEE Intelligent Systems and their applications, vol. 13, pp. 18-28, 1998.

[76] D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied logistic regression vol.
398: John Wiley & Sons, 2013.

[77] H. Akaike, "Information theory and an extension of the maximum likelihood
principle," in Selected papers of hirotugu akaike, ed: Springer, 1998, pp. 199-213.

[78] W. S. Lee, P. L. Bartlett, and R. C. Williamson, "The importance of convexity in
learning with squared loss," IEEE Transactions on Information Theory, vol. 44, pp.
1974-1980, 1998.

[79] H. Masnadi-Shirazi and N. Vasconcelos, "On the design of loss functions for
classification: theory, robustness to outliers, and savageboost," in Advances in
neural information processing systems, 2009, pp. 1049-1056.

[80] J. A. Suykens and J. Vandewalle, "Least squares support vector machine
classifiers," Neural processing letters, vol. 9, pp. 293-300, 1999.

[81] T. Joachims, "Text categorization with support vector machines: Learning with
many relevant features," in European conference on machine learning, 1998, pp.
137-142.

[82] S. Tong and D. Koller, "Support vector machine active learning with applications
to text classification," Journal of machine learning research, vol. 2, pp. 45-66, 2001.

[83] C.-W. Hsu and C.-J. Lin, "A comparison of methods for multiclass support vector
machines," IEEE transactions on Neural Networks, vol. 13, pp. 415-425, 2002.

[84] 周志华, 机器学习: Qing hua da xue chu ban she, 2016.
[85] Wikipedia. Maxima and minima.
[86] S. Hilger, "Analysis on measure chains—a unified approach to continuous and

discrete calculus," Results in Mathematics, vol. 18, pp. 18-56, 1990.
[87] S. Ruder, "An overview of gradient descent optimization algorithms," arXiv

preprint arXiv:1609.04747, 2016.
[88] J. Duchi, E. Hazan, and Y. Singer, "Adaptive subgradient methods for online

learning and stochastic optimization," Journal of Machine Learning Research, vol.
12, pp. 2121-2159, 2011.

[89] T. Tieleman and G. Hinton, "Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude," COURSERA: Neural networks for machine
learning, vol. 4, pp. 26-31, 2012.

[90] D. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv preprint
arXiv:1412.6980, 2014.

[91] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio,
"Identifying and attacking the saddle point problem in high-dimensional non-
convex optimization," in Advances in neural information processing systems, 2014,
pp. 2933-2941.

[92] X. Glorot and Y. Bengio, "Understanding the difficulty of training deep feedforward
neural networks," in Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, 2010, pp. 249-256.

95

[93] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, et al., "Caffe:
Convolutional architecture for fast feature embedding," in Proceedings of the
22nd ACM international conference on Multimedia, 2014, pp. 675-678.

[94] C. Darken, J. Chang, and J. Moody, "Learning rate schedules for faster stochastic
gradient search," in Neural Networks for Signal Processing [1992] II., Proceedings
of the 1992 IEEE-SP Workshop, 1992, pp. 3-12.

[95] M. D. Zeiler, "ADADELTA: an adaptive learning rate method," arXiv preprint
arXiv:1212.5701, 2012.

[96] Wikipedia. Overfitting.
[97] S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training

by reducing internal covariate shift," in International Conference on Machine
Learning, 2015, pp. 448-456.

[98] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
"Dropout: a simple way to prevent neural networks from overfitting," Journal of
machine learning research, vol. 15, pp. 1929-1958, 2014.

[99] H. Shimodaira, "Improving predictive inference under covariate shift by weighting
the log-likelihood function," Journal of statistical planning and inference, vol. 90,
pp. 227-244, 2000.

[100] A. Hyvärinen, J. Hurri, and P. O. Hoyer, "Principal components and whitening," in
Natural Image Statistics, ed: Springer, 2009, pp. 93-130.

[101] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, "Efficient backprop," in Neural
networks: Tricks of the trade, ed: Springer, 2012, pp. 9-48.

96

VITA

Chao Li

EDUCATION

Master of Science in Electrical and Computer Engineering at Ohio State University (OSU),

August 2013 – December 2014.

Bachelor of Engineering in Electrical Engineering at Beijing Jiaotong University (BJTU),

August 2009 – July 2013.

PUBLICATIONS

Machine Learning Based Detection of Weld Joint Penetration from Weld Pool Reflection

Images – IEEE Transactions on Automation Science and Engineering (Revised and

submitted)

A tutorial for deep learning applied in manufacturing area – (in progress)

	WELD PENETRATION IDENTIFICATION BASED ON CONVOLUTIONAL NEURAL NETWORK
	Recommended Citation

	WELD PENETRATION IDENTIFICATION BASED ONCONVOLUTIONAL NEURAL NETWORK
	ABSTRACT OF DISSERTATION
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Chapter 1 Introduction
	1.1 Background
	1.2 Objective and Approach
	1.3 Dissertation Outline

	Chapter 2 Literature Review
	2.1 Full penetration and partial penetration
	2.2 Welding process sensing
	2.2.1 Pool Oscillation method
	2.2.2 Infrared-based sensing method
	2.2.3 Ultrasonic-based sensing method
	2.2.4 Computer vision-based sensing method

	Chapter 3 Welding process system sensing design
	3.1 GTAW welding system
	3.2 Image acquiring system
	3.3 Observation results

	Chapter 4 Data pre-processing
	4.1 Reflected laser pattern image processing
	4.2 Backside image processing
	4.3 Summary

	Chapter 5 Convolutional neural network
	5.1 Introduction
	5.2 Basic components
	5.2.1 Convolutional layers
	5.2.2 Pooling layers
	5.2.3 Fully connected layers
	5.2.4 Regression layers

	5.3 Architecture of CNN
	5.3.1 Basic rules for setting a CNN
	5.3.2 Architecture details

	5.4 Summary

	Chapter 6 Data augmentation
	6.1 Necessity for doing data augmentation
	6.2 Data augmentation methods
	6.2.1 Affine transformation
	6.2.2 Generative Adversarial Nets (GANs)

	6.3 Summary

	Chapter 7 Training a CNN
	7.1 Loss function
	7.2 Optimizer
	7.2.1 Mini-batch gradient descent
	7.2.2 Adaptive moment estimation

	7.3 Initialization
	7.4 Learning rate annealing and early stopping
	7.5 Batch Normalization
	7.6 Summary

	Chapter 8 Results
	8.1 Preliminary results
	8.2 Voting mechanism and control

	Chapter 9 Conclusion and future work
	Reference
	VITA

