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ABSTRACT OF DISSERTATION 

 

 

 

WELD PENETRATION IDENTIFICATION BASED ON CONVOLUTIONAL NEURAL NETWORK 

 

Weld joint penetration determination is the key factor in welding process control area. 
Not only has it directly affected the weld joint mechanical properties, like fatigue for 
example. It also requires much of human intelligence, which either complex modeling or 
rich of welding experience. Therefore, weld penetration status identification has become 
the obstacle for intelligent welding system. In this dissertation, an innovative method has 
been proposed to detect the weld joint penetration status using machine-learning 
algorithms.  
A GTAW welding system is firstly built. Project a dot-structured laser pattern onto the 
weld pool surface during welding process, the reflected laser pattern is captured which 
contains all the information about the penetration status. An experienced welder is able 
to determine weld penetration status just based on the reflected laser pattern. However, 
it is difficult to characterize the images to extract key information that used to determine 
penetration status. To overcome the challenges in finding right features and accurately 
processing images to extract key features using conventional machine vision algorithms, 
we propose using convolutional neural network (CNN) to automatically extract key 
features and determine penetration status.  
Data-label pairs are needed to train a CNN. Therefore, an image acquiring system is 
designed to collect reflected laser pattern and the image of work-piece backside. Data 
augmentation is performed to enlarge the training data size, which resulting in 270,000 
training data, 45,000 validation data and 45,000 test data. A six-layer convolutional neural 
network (CNN) has been designed and trained using a revised mini-batch gradient descent 
optimizer. Final test accuracy is 90.7% and using a voting mechanism based on three 
consequent images further improve the prediction accuracy.  
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Chapter 1 Introduction 

 

1.1 Background 
 

Gas tungsten arc welding (GATW) and gas metal arc welding are the two prevalent 

welding processes in industrial manufacturing. The theory behind them is similar, 

generating heat by using electric arc between the electrode and the work-piece. In GTAW, 

a non-consumable tungsten is used as electrode to emit electrons, which established 

stable arc with work-piece. The work-piece being welded forms a liquid weld pool by the 

heat of the arc and joints. The two pieces of the work-piece are welded together after 

cooling. An optional filler metal maybe used, if necessary. During the welding process, an 

inert gas, argon for example covers the weld pool surface protecting it from 

contamination. This process is illustrated in Figure 1.1. Unlike GTAW, gas metal arc 

welding (GMAW) uses a consumable electrode wire, consistently generating weld droplet 

into the arc zone. After the droplet solidification, the work-piece are jointed together.  
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 Figure 1. 1 GTAW welding process 

GTAW is commonly used in critical cases including pressure vessels, aerospace, etc. due 

to its stability and high-quality weld joints produced. In these cases, the degree of 

penetration status is an important criterion to judge weld joint integrity and affects 

mechanical properties especially fatigue properties and service life of weld structure. 

Therefore, an experienced welder is crucial since he/she is able to appraise penetration 

status of backside and make adjustments (weld current, weld speed, etc.) based on the 

observation of weld pool surface during welding. However, manually welding requires the 

welder to keep concentrating for long time during welding. Health issues including high 

stress, dry eyes, etc. become obvious and that dramatically affects welder’s reaction time, 

concentration time resulting in weld quality degrade.  
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On the other hand, welding robots are designed to weld long time consistently without 

quality issue. In addition, unlike human, weld robots can be placed and perform well 

under harsh environments such as high temperature, strong arc light. However, current 

welding robots are lack of intelligence: the movement of the robots are pre-programmed, 

the welding parameters are pre-set, even the position of the weld-piece is strictly limited 

under small variation. Even some weld robots are equipped with sensing equipment like 

camera, the degree of weld penetration cannot be precisely determined. What is worse, 

the sensing equipment are highly cost and hard to be setup, which means the flexibility 

of welding robots is degraded with sensing equipment. Therefore, a welding system that 

determines weld penetration status automatically is urgent needed in current 

manufacturing industry. 

1.2 Objective and Approach 
 

As discussed in last section, human being is able to make adjustments during welding, 

which is very important for critical parts, but the weld quality degrades along the time. 

Welding robot ensures the weld quality but only good for simple tasks with no 

complicated adjustments needed in welding process. The purpose of this research is to 

propose a welding system that combines human’s intelligence and robot’s consistency, 

which means automatically determine the weld penetration status during welding 

process, step closer to intelligent manufacturing. To endow the weld robot with human 

being’s intelligence, we propose to use machine learning algorithms especially 

convolutional neural network (CNN).  Therefore, the objectives of this study are:  
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1. To build an GTAW welding system to run welding process fast and consistently; 

2. To establish an image acquiring system to collect data about the weld penetration 

status during welding process. Transfer the human being’s knowledge into a 

format that weld robots are able to recognize; 

3. To design and train a convolutional neural network using collected data, precisely 

predict weld penetration status offline; 

4. To apply the trained convolutional neural network into the welding system. Build 

an online control mechanism using CNN, precisely determine penetration status 

during welding process. 

The biggest challenge is to “teach” a weld robot to justify different weld penetration 

status. Conventional methods try to solve this by finding certain key features that directly 

related to the weld penetration status. This process contains but not limited to creating 

complex models, numerous mathematical operations, etc. In summary, using human’s 

intelligence to simplify welding process into several key features that easily to be tracked 

by welding robots. However, no such model has been designed  so far and the prediction 

accuracy is not good enough. Another way is to improve sensing method, such as using 

infrared cameras[1-3], ultrasonic sensing[4, 5], X-ray[6]. However, besides the high cost 

on equipment, the welding robots equipped by equipment will lost their flexibility and 

harsh environment endurance. As a sub-method of machine learning, convolutional 

neural network has achieved impressive performance in computer vision area, including 

classification[7, 8], segmentation[9-11],etc. Recall that an experienced welder is able to 

determine penetration status by observing weld pool surface. Inspired by animal’s visual 
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cortex[12], a well-trained CNN has the ability to determine penetration status. The next 

challenge is letting the welding robot “see” the weld pool like human. We use two 

cameras to capture both the weld pool surface and the backside of the weld pool. The 

images of the backside are used as labels when we train the convolutional neural network. 

The creating label process is crucial since we transferred human knowledge into a format 

that the CNN understands. We will discuss in next chapters. Another challenge is about 

the data size. Current machine learning learners share the same dataset, like MINST[13], 

Caltech-256[14], ImageNet[15] etc. However, no dataset contains the weld images we 

need. Therefore, we need to create our own dataset. Collect all data by welding seems 

impossible since a typical dataset contains more than 10,000 samples (MINIST contains 

70,000 samples, Caltech-256 contains 30,607 samples, ImageNet contains over 14 million 

samples). Therefore, data augmentation is needed to create enough data. 

1.3 Dissertation Outline 
 

In this dissertation, an intelligent welding system that automatically collect data, 

determine penetration status, control welding process is developed. The main research 

approach and results are discussed in the following chapters. The dissertation is organized 

as follows. 
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Figure 1. 2 Organization of dissertation 

Chapter 1: Introduction  

The background and motivation of this dissertation is discussed, as well as the objective 

of this study. 

Chapter 2: Literature Review 

In this chapter, the conventional sensing methods are discussed, including pool oscillation, 

infrared, ultrasonic, acoustic emission, and vision-based sensing method. 

Chapter 3 Welding process system sensing design 
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A GTAW welding system is built and a machine vision-based sensing system is designed 

based on that welding system, which includes two cameras, a dot matrix laser pattern, 

and a screen. A dot matrix structured laser is projected onto the weld pool surface, 

showing the changes of the weld pool during welding process. On the other side, the 

reflected laser is collected by a screen, which is placed, on the exact reflected path. A 

high-speed camera is used to capture the images on the screen. At the same time, another 

camera is capturing the backside of the weld pool. The image pairs between surface and 

backside of weld pool have been collected. 

Chapter 4 Data pre-processing 

Images of both weld pool surface and weld pool backside are captured in last chapter. 

Before these images are sent to train the neural network, pre-processing needs to be 

done. Different weld penetration status are identified using human’s knowledge. Human 

being’s knowledge are transforming into the way computer understands. Data-label pairs 

are established.  

Chapter 5 Convolutional neural networks 

The prevalent machine learning method in computer vision area, convolutional neural 

network is discussed in this chapter. Four basic components: convolutional layer, pooling 

layer, neural network and regression layer are presented in theory. A six-layer CNN is 

designed to learn weld penetration status. Details of the architecture including neuron 

numbers in each layer, number of parameters are discussed. 

Chapter 6 Data augmentation 
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Even weld over 300 times, the data size is far smaller than training this six-layer CNN 

needed. It is impossible to run over 10,000 welding process to collect enough data. Data 

augmentation is performed to enlarge data size, resulting in 270,000 training set, 45,000 

validation set and 45,000 test data.  

Chapter 7 Training a convolutional neural network 

Different optimizers (mini-batch gradient descent and Adam) are discussed. Learning rate 

annealing is performed to get more accurate result. Early stopping ensures the training 

efficiency. Finally, batch normalization is added as a way of pre-processing, decrease the 

over-fitting risk. 

Chapter 8 Results 

Preliminary results are showed and discussed in this chapter. Further propose a voting 

method based on three continuous images improve the predict accuracy. Apply the 

trained CNN to control real welding process. 

Chapter 9 Conclusion and future work 

The main finding and contributions are concluded and the future work to improve this 

method is discussed. 
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Chapter 2 Literature Review 
 
 

Welding process has been widely applied in current industry manufacturing, including 

automotive assembly, aircraft production, micro-electric components, etc. Big batch 

manufacturing is not the trend right now; small batch, personalized manufacturing 

requires innovative intelligent welding system.  However, the extreme brightness of the 

arc light makes sensing the weld process hard. Direct way of sensing is to observe the 

backside of the weld pool, but work piece position makes it even harder. Therefore, huge 

methods have been proposed to sense the welding process, including pool oscillation, 

infrared-based method, ultrasonic-based method and computer vision-based method. In 

this chapter, all of them will be discussed.  

2.1 Full penetration and partial penetration 
 

As discussed, GTAW has been widely used in industrial manufacturing especially in critical 

cases. In these critical cases, the weld joint penetration status is the most important 

criterion. Typically, there are three-penetration status: partial penetration, full 

penetration and over penetration. Moreover, at the beginning of welding there exist a 

status, no penetration at all. Since partial penetration and full penetration are desired in 

real industry welding, researchers have paid much attention on distinguishing them. 

Figure 2.1 shows partial penetration and full penetration.  



10 
 

 

Figure 2. 1 Weld joint penetration (a) partial penetration (b) full penetration 

Under full penetration, shown in figure (b) in 2.2, the weld bead reached the backside of 

the weld joint, causing the work-piece completely weld together. Welding joints 

mechanical properties like fatigue property are better than partial penetration. But 

achieving full penetration is much harder than partial penetration. Precisely control of the 

welding process are required: making sure no partial penetration or over penetration. 

Partial penetration on the other hand, is easily to achieve. So, for less critical part, paritial 

penetration is preferred.  

2.2 Welding process sensing  
 

Sensing welding process is the basic of weld process control, the information it collected 

directly determine the complexity of control methods. As discussed, the invisible of the 

weld pool backside makes it hard to sensing weld process. In this chapter, we will discuss 

these sensing methods. 

2.2.1 Pool Oscillation method 
 
Track back to 1972, Kotecki et al. [16] firstly found the oscillation phenomena of the weld 

pool (diameter of weld pool is correlate with the natural frequency) by doing stationary 
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GTA welding process. Following researchers like Richardson et al[17]. proposed the 

natural frequency is strongly dependent on the inverse of the square root of pool mass. 

However, these pioneering works have poor accuracy and cannot been applied in moving 

welding process. Later, the abrupt transition of the weld pool’s natural oscillation 

frequency from partial penetration to full penetration has been found and applied to 

monitor and control the weld joint penetration by Xiao and Ouden [18, 19].  The finding 

that natural oscillation frequency in partial penetration is much higher than that in full 

penetration pave the way for the following researchers. K. Andersen et al[20]. proposed 

a closed-loop feedback welding control system by implementing synchronous weld pool 

pulsing method. B.Y.B.Yudodibroto[21] et al. further discussed the weld pool oscillation 

method successfully applied GTAW with cold filler wire addition. However, the accuracy 

of the oscillation methods are affected by the moving speed of the welding robot. In 

addition, the work-piece surface need to be carefully cleaned in case the dirt or oxide 

causing natural frequency changes. Therefore, the application of pool oscillation sensing 

methods is under small range.  

2.2.2 Infrared-based sensing method  
 

The infrared-based sensing uses thermal sensor for example infrared camera to track the 

weld pool properties, like penetration status, weld bead width, etc. during welding. Chen 

et al. [1-3] proposed that the depth of welding joint penetration was determined by 

construct the thermal distribution of the weld pool surface based on the infrared thermal 

images that are captured by the infrared camera. The infrared has been widely used, but 
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the infrared sensors are expensive. What is worse, the accuracy of sensing directly 

affected by the environment, like lighting conditions. 

2.2.3 Ultrasonic-based sensing method 
 

The ultrasonic wave is project to the find the boundaries between the liquid weld pool 

and the work-piece[4, 5]. The ultrasonic wave transmission speed is different in different 

materials; therefore, by calculating the time reflected ultrasonic wave is received, the 

depth of weld penetration is determined. However, to accurately measure the depth, the 

work-piece material need to be uniform and contains low percentage of impurity. In 

addition, the surface of work-piece must be clean and even to ensure effective coupling. 

Although non-contact ultrasonic-based sensing has been proposed, such as laser 

ultrasonic[22] to remedy contact ultrasonic-based sensing, these systems requires special 

calibration and not easy to be applied in industry. 

2.2.4 Computer vision-based sensing method 
 

Computer vision-based sensing has been widely used since its cheap cost, easy to setup 

and relatively acceptable accuracy. Unlike the methods discussed before, computer 

vision-based method cannot provide information directly relate to weld pool penetration 

status. Extra steps like weld pool reconstruction are needed. A typical vison sensing 

system uses one or multiple cameras to capture the weld pool surface during welding 

process. For some cases, like tube welding, the backside of the weld pool is hard to 

capture. Optional optical filters are needed to filter the strong arc light. The images of the 
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weld pool surface contain enough information to reconstruct a 2D or 3D weld pool. 

R.Kovacevic et al. [23] propose an on-line welding pool edge detection sensing system, 

show in figure 2.2.  

 
Figure 2. 2 On-line weld pool edge detection system 

The camera is capturing the weld pool surface each time the laser is paused to avoid 

strong arc light affecting the captured images. The welding process is controlled by an 

adaptive method. Another research that is done by University of Kentucky proposed to 

reconstruct weld pool using computer vision-based sensing [24-26]. Project the dot-

matrix structured laser pattern onto the welding pool, on the other side, a screen is placed 

on the path of reflected pattern to collect the reflected pattern. Details in figure 2.3. An 

iterative algorithm has been designed that only based on the width, length, convexity 

extracting from the reflected pattern.  
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Figure 2. 3 Weld pool reconstruct by width, length and convexity 

The computer vision-based is widely used in current industry due to its cheap cost and 

simple setup. However, extra work are needed including complex modeling process, 

mathematical operations. Researchers have been trying to find better algorithms to 

extract the key features that related with the weld penetration status. 
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Chapter 3 Welding process system sensing design 
 

As discussed, numerous sensing methods have been proposed to accurately monitor the 

welding process. The information sensing methods provided directly affects the control 

algorithm. A good sensing system should have at least three properties: accuracy, fast 

response and robustness. Accuracy means the sensing system provide correct 

information about the welding process, which is the basic requirement for a sensing 

system. Welding process is a dynamic process, which means precise control requires real-

time information. Therefore, the response time of the sensing system must be short. 

What is more, the sensing system should be able to be applied in various cases. Taking 

much time to set up a sensing system but only be applied to some particular cases is 

useless.  

In this chapter, we propose a computer vision-based sensing method to collect welding 

process information. An experienced welder is able to determine weld penetration based 

on his/her observation, our sensing system plays the role of eyes for the intelligent 

welding system. 

3.1 GTAW welding system 
 

All the GTAW welding experiments are done in the lab at the University of Kentucky. The 

welding system contains welding torch, power supply, workstation, work piece. Inert gas 

is also used. A robot arm UR5 is firstly used in our system, shown in figure 3.1.  
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Figure 3. 1 GTAW welding system using UR5 

The welding torch is attached to the robot arm and perpendicular to the work-piece. 

During welding process, the welding torch along the robot arm UR5 travels to 

continuously welding. Power supply and inert gas are not showed in this figure. UR5 has 

four joints and be able to carry up to 11lbs programmable robot, which makes it perfect 

for welding. However, when adding image acquiring system (two cameras) on that robot, 

the jitters of cameras are so dramatically which causes the unclearness of the captured 

images. The specific of the cameras will be discussed in next section. The reason of jitters 

is not the weight of the cameras, but the object distance. We use a high-speed camera 

(Point Grey GZL-CL-22C5M-C) to capture the weld pool surface image. However, the 

minimum distance that camera can capture clear image is 400mm. Therefore, that 

camera must be set 400mm away the welding torch. In addition, the relative position of 

high-speed camera and welding torch must be unchanged in order to capture the weld 

pool surface. Therefore, the high-speed camera deployed like figure 3.2. In this way, when 

the robot is moving, the camera shakes obviously. 
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Figure 3. 2 UR5 carrying a high-speed camera 

Therefore, we improved the welding system. Instead of using the programmable robot 

UR5, we added a motion control device (figure 3.3) onto the workstation. The motion 

control device is programmable and controls the workstation to move. During the welding 

process, the work-piece moves along the workstation as programmed. The welding torch 

and two cameras are set at the specific location where during welding process remains 

unchanged. The power supply is Miller PM200 DC, which is able to output direct current 

up to 200 Ampere. Figure 3.4 shows the welding system.  
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Figure 3. 3 Motion control device 

 

Figure 3. 4 GTAW welding system 
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3.2 Image acquiring system 
 

Two cameras including one high-speed, one standard, a laser with optical head and an 

image screen forms the image acquiring system. As discussed, the sensing system is 

designed to capture the information of welding process and the weld pool surface 

contains enough information about the penetration status. To collect data for the 

convolutional neural network, we use two cameras to capture images about welding 

process: the images from high-speed camera are used for data the images from the 

standard camera are used for label. To obviously show the changes of weld pool, we 

project a 19 by 19 dot-matrix structured laser pattern onto the weld pool surface during 

welding. The wavelength of that laser is 650nm, therefore, a camera equipped with a 

650nm center-wavelength band-pass optical filter catches the entire laser pattern 

without disturbance of other light source. A screen is placed on the path of the reflected 

laser pattern. Instead of directly capture the weld pool surface, the camera captures the 

reflected pattern on the screen. In this way, further reduces the strong arc light 

disturbance. The high-speed camera we use in our experiments is Point Grey GZL-CL-

22C5M-C. To accurately track the welding process, the frame rate is set to be maximum: 

1000fps. This high-speed camera is equipped with a 650 nm center-wavelength band-pass 

optical filter, precisely capturing the reflected laser pattern on the screen. Another 

camera (Point Grey FL-3-FW-0251C) is used to capture the backside of the weld pool. 

Unlike the weld pool surface, the backside of the weld pool changes less significantly, so 

that camera is set 30fps. The whole system is shown in 3.6. 
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Figure 3. 5 High-speed camera (left) and standard camera (right) 

 

Figure 3. 6 GTAW welding system with sensing system 

Camera 1 refers to the high-speed camera, camera 2 refers to the standard camera. The 

structured laser is placed 50mm away from the welding torch with 30 degree by 

horizontal. The screen is placed 50mm away from the welding torch with same degree as 

structured laser. The high-speed camera pointing out the screen capturing the reflected 

laser pattern while the standard camera points on the backside of the weld pool during 

welding. 
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3.3 Observation results  
 

During the whole experiments, the material of the work-piece is 0.125-inch thickness 304 

stainless steel. The welding current is pulsed with 60 Ampere as peak current and 20 

Ampere as base current. Every cycle, use peak current weld 47 milliseconds and base 

current for 3 milliseconds, shown in figure 3.7.  

 

Figure 3. 7 Welding current used in experiments 

Compared with continuous one level direct current, the pulsed welding current uses less 

energy, improves mechanical properties[27]. What is more, during the 3ms base current, 

the arc light is dramatically weak, the captured images are clearer. The capture speed for 

high-speed camera is 1000 fps and 30 fps for standard camera. Instead of tracking all the 

time, both two cameras taking images during the base current. Therefore, under base 

current period, the high-speed camera captures three images while the standard capture 
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one image at the same time. During the peak current, the strong arc light makes the 

captured image hard to distinguish, and welding process is a dynamic process, there is no 

need to track every 1ms. The typical captured images are shown in figure 3.8. 

 

Figure 3. 8 Typical captured images: (a) high-speed camera (b) standard camera 

In figure 3.8 (a) is captured by the high-speed camera. As discussed, a 19 by 19 dot-matrix 

laser pattern is projected onto the weld pool surface, which generates the reflected laser 

pattern. Based on reflection rule, the dots close to the laser generator will on the top of 

the reflected image, but this makes no sense, all the information about the weld pool 

surface have been included in that reflected image. (b) is captured by camera 2 in figure 

3.5. At each beginning of the base current (20 Ampere), this camera captures one image 

as corresponding image of the weld pool surface at that time.  

Therefore, the GTAW welding process sensing system has been established, it welds, 

collects data automatically. In the next chapter, we will discuss the methods used to 

process these images. 
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Chapter 4 Data pre-processing 
 

The sensing system endows the vision ability for the welding system. However, for an 

intelligent welding system, only watching the welding process is not enough. As discussed, 

the convolutional neural network will endow the learning ability for the welding system. 

Unfortunately, the captured images by these two cameras are not enough as dataset to 

train the convolutional neural network. Therefore, in this chapter, we will discuss the data 

pre-processing methods. 

4.1 Reflected laser pattern image processing 
 

In our experiments, the welding process is divided into six stages. Figure 4.1 shows the 

typical images of these stages.  

                     

 

                     

Figure 4. 1 Weld pool surface images under six stages 

An experienced welder is able to determine penetration status only by observing the weld 

pool surface. Therefore, these images contain enough information, and be as training 
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data for convolutional neural network. Nevertheless, for hardware side, we need to do 

sampling process. The images from high-speed camera are 384 pixels in width and 288 

pixels in height. Even we use the best graphic card at that time GTX 1080 with 8 GB 

memory, the image size is too big. Therefore, the image size must be reduced.  

To avoid image distortion, the width-height ratio is kept with 48 pixels in width and 36 

pixels in height. The method we use to resize is the bilinear interpolation. Bilinear 

interpolation is a widely used sampling method in image processing area. It is simple, 

running fast and achieves good performance. The theory is the same as linear 

interpolation. Figure 4.2 shows the process of bilinear interpolation.  

 
 

Figure 4. 2 A diagram shows the steps of bilinear interpolation 
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As shown in the figure 4.2, the pixel 𝑃(𝑥, 𝑦) in the destination image is what we want. 

Firstly, mapping 𝑃(𝑥, 𝑦) back to the source image:𝑃;(𝑥, 𝑦). Then, use the nearby four 

pixels ((𝑥<, 𝑦<),(𝑥< + 1, 𝑦<), (𝑥<, 𝑦< + 1), (𝑥< + 1, 𝑦< + 1)) to represent the𝑃;(𝑥, 𝑦). The 

bilinear interpolation is the linear interpolation works in two directions. Figure 4.3 shows 

the detail how the bilinear interpolation works. 

 

Figure 4. 3 The theory of bilinear interpolation[28] 

For the point 𝑃(𝑥, 𝑦) four nearby points are: 𝑄<<, 𝑄><, 𝑄>>, 𝑎𝑛𝑑	𝑄<>. Firstly in 𝑥 direction, 

do the linear interpolation. We use a function 𝑓  to represent the pixel value of 

position(𝑥, 𝑦).   

 

𝑓(𝑅<) ≈ 	
CDEC
CDECF

∗ 𝑓(𝑄<<) +	
CECF
CDECF

∗ 𝑓(𝑄><) (4.1) 

𝑓(𝑅>) ≈ 	
CDEC
CDECF

∗ 𝑓(𝑄<>) +	
CECF
CDECF

∗ 𝑓(𝑄>>) (4.2) 

Where𝑅< = (𝑥, 𝑦<), 𝑅> = (𝑥, 𝑦>).  

Then, in 𝑦 direction, do the linear interpolation.  

 

    𝑓(𝑃) ≈ 	 HDEH
HDEHF

∗ 𝑓(𝑅<) +	
HEHF
HDEHF

∗ 𝑓(𝑅>)                         (4.3) 
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Therefore, we got	𝑓(𝑃): 

 

𝑓(𝑃) ≈
𝑓(𝑄<<)

(𝑥> − 𝑥<)(𝑦> − 𝑦<)
∗ (𝑥> − 𝑥)(𝑦> − 𝑦) +

𝑓(𝑄><)
(𝑥> − 𝑥<)(𝑦> − 𝑦<)

∗ (𝑥 − 𝑥<)(𝑦> − 𝑦)	

										+
𝑓(𝑄<>)

(𝑥> − 𝑥<)(𝑦> − 𝑦<)
∗ (𝑥> − 𝑥)(𝑦 − 𝑦<) +

𝑓(𝑄>>)
(𝑥> − 𝑥<)(𝑦> − 𝑦<)

∗ (𝑥 − 𝑥<)(𝑦 − 𝑦<) 

Equation 4.4: Four nearby points represents one particular point 

The same results if we linear interpolate 𝑦 direction first. In this way, the 384-pixel width, 

288-pixel height images are resized to 48-pixel width, 36-pixel height, further used as the 

data for training a convolutional neural network.  

We use bilinear interpolation to do the down-sampling operation. It is unavoidable that 

some details in the source image are lost, but as we say, an experienced welder is able to 

determine penetration status based on his/her observation. Human’s eyes are far more 

advanced than any cameras in market, but when a welder wear the protection helmet, 

he/she cannot see much clear images of the weld pool surface under the strong arc light. 

Therefore, the resized smaller images contain enough information that correlated with 

weld penetration status. Following training convolutional neural networks proves that is 

right.   

Besides bilinear interpolation, many other interpolations have been applied in image 

processing area. For example, unlike bilinear interpolation nearest interpolation chooses 

the nearest point pixel value as the destination value, while bicubic interpolation takes 
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the weight sum of nearby sixteen points as the destination value. The bilinear 

interpolation balances the running time and the accuracy, which fits most for our research.  

 

4.2 Backside image processing 
 

As discussed, the welding process is divide into six stages; figure 4.4 shows the typical 

images of these stages:  

                     

                     

Figure 4. 4 Backside images of weld pool under six stages 

In industry manufacturing, partial penetration and full penetration status are desired. The 

degree of welding penetration states are usually characterized as the width 𝑏, shown in 

figure 4.5[24, 25]. 
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Figure 4. 5 Backside weld pool width 𝑏 

For partial penetration, the width	𝑏	equals to zero, non-zero for full penetration. However, 

for irregular shape, it is not easy to find out the length. For the image we captured from 

the backside of weld pool, it is an oval shape, see figure 4.6. 

 

Figure 4. 6 Calculate width for an irregular shape 

Traditional way is to measure the maximum length and the minimum length of this 

irregular shape. The width can roughly be the average of maximum and minimum. 

However, this process requires additional time to find the maximum and minimum length, 

which is not good for real-time control of welding process. Therefore, we proposed to use 
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the area to evaluate the penetration status of the weld pool. The process is shown in 

figure 4.7.  

 

 

 
Figure 4. 7 Weld penetration status identification process 

Firstly, the region of interest (ROI) is selected around the light area which reflecting the 

welding penetration status. Binary operation with threshold 110 is performed to filter out 

light pixels that comes from the lighting, or unmelted base metal. The pixels that larger 

than 110 is considered as the welded bead. We welded over 300 times, the lighting 

conditions and cameras’ settings are remaining the same. Essential experiments have 

been done, like weld for 1 seconds, 1.5 seconds, 2 seconds, 2.5 seconds, to set the 

threshold to 110. When the threshold is too small, even the weld joint is not penetrated 

at all, there still light some dots on figure 4.7(c) due to lighting, or the reflection of the 

metal. While when the threshold is too big, the beginning of the welding process is 

dismissed. In addition, the bigger threshold causes the area small, which makes us hard 
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to distinguish the partial penetration and full penetration. Finally, according to the 

accumulated number of pixels kept, we got the area. Based on the area, different weld 

penetration status are identified.  

 

 

Table 1 Weld penetration status with labels 

Area (pixels) Label 

650-950 0 

950-1350 1 

1350-1650 2 

1650-1950 3 

1950-2250 4 

2250-2500 5 

 

The beginning of the welding process is not considered in our research, due to partial and 

full penetration is what we want. For welding process physical meaning, we can roughly 

say the label 0 through 2 stands for partial penetration and label 3 through 5 stands for 

full penetration.  

 The reason we set six labels is that we want to more precisely control the welding process. 

Even the weld joint is under partial or full penetration, the degree of weld pool is different. 

For example, some critical parts needs full penetration, and then we weld until label 5. 

For some less critical parts, partial penetration label 3 works. Even label 0 works for saving 
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welding time and consuming less power. Another reason we set six labels is for the voting 

mechanism to improving the prediction accuracy. The voting method will discuss in the 

chapter 8.  

4.3 Summary 
 

In this chapter, we discuss the methods we use to process the images captured using two 

cameras. The raw images cannot be directly sent to the convolutional neural networks to 

do the training mainly because these images have not been processed by human, or we 

can say have not been added the human’s intelligence. Chapter 3 endows the welding 

system vision ability. Chapter 5 through 7 endows learning ability to the welding. In this 

chapter, we transforming the human’s intelligence into a format that a machine 

understands. We divided the welding process into six stages, and based on the 

experiments’ results we determine the penetration status and give the different stages 

different labels. The labeling method that is more exact is to find an experienced welder. 

When he/she welded, he/she identified the welding process based on his/her experience 

and his/her intelligence. Unfortunately, with so many experiments to do it is extremely 

hard to find an experienced welder to do that. Therefore, after data pre-processing step, 

we have the data and corresponding labels to train a convolutional neural network. Table 

2 summaries the data and label currently we have.  

 

 

 



32 
 

 

 

 

Table 2 Data with corresponding labels 

Weld pool surface Weld pool backside Label Size 

  

0 457 

  

1 495 

  

2 540 

  

3 570 

  

4 626 

  

5 862 
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Chapter 5 Convolutional neural network 

 

5.1 Introduction 
 

The convolutional neural networks are designed to mimic the animal’s vision system. 

Track back to 1968[12], a study of monkey’s visual cortex shows that different lateral 

geniculate nucleus (LGNs) are responsible to different stimulations, shown in figure 5.1.  

 

Figure 5. 1 A simplified visual cortex system[29] 

The retina and the very first LGNs responsible to the light dots, then simple cells being 

activated encountered with edges or other stimulation. Complex cells and hyper-complex 

cells further processing. In 1981[30, 31], Fukushima proposed the term “neocognitron” 

and firstly create a network to represent the human’s vision cortex system.  
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Figure 5. 2 Fukushima’s network[31] 

This network can be seen as the prototype of current convolutional neural networks 

(CNNs).  In his network, two cells are included: simple cells and complex cells. For simple 

cells, they receive one plane of the previous step, while for complex cells; they receive 

multiple plans from previous step. Therefore, as network going deeper, the reception 

field keeps enlarging. Many ideas in that network like systematic filter, ReLU activation 

function, average pooling and sparse connection are still widely used in modern CNNs. 

However, the weights and bias in this network cannot be changed, and it is based on 

Winner Take All (WTA) unsupervised learning algorithm. The practical use of that network 

is limited.  

The breakthrough occurs on the 1985, DE Rumelhart, GE Hinton et al.[32, 33] proposed 

the Back Propagation (BP) algorithm. The convolutional operation is redefined by using 

weights sharing method. The parameters in a network reduced significantly, making 

training a network applicable. Based on BP, LeCun et al.[13] proposed the first modern 

CNN. The architecture is shown in figure 5.3.  
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Figure 5. 3 The architecture of LeNet-5[13] 

LeNet-5 contains seven layers, with two convolutional layer, two pooling layers, two fully 

connection layers and a Euclidean radial basis function (RBF) layer as the final output layer. 

The input is a hand-written digit number 0 through 9. The first layer is convolutional layer 

C1 with six neurons, which generates six feature maps. The second layer is subsampling 

layer S2. This CNN uses max-pooling method. The third layer C3 is also a convolutional 

layer with 16 neurons following a max-pooling layer S4 as well. Partial connections are 

between the C1 S2 and C3 S4 to decrease the calculation burden. The last layers are fully 

connected layers and Euclidean radial basis function (RBF) layer that outputs the 

predicted number. LeNet-5 achieves 0.95% test error on MNIST dataset and has been 

successfully commercial used.  

However, despite its impressive performance on MNIST dataset, the LeNet-5 did not get 

much attention. The computation time is too much on that age and what is worse; the 

support vector machine (SVM) achieves close or even better results.  

Until 2012, A.Krizhevsky et al.[7] won the ILSVRC-2012 competition with 15.3% top 5 test 

error, more than ten percentage than second, the CNNs becomes a hot topic again. The 

architecture of AlexNet is shown in figure 5.4.  
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Figure 5. 4 The architecture of AlexNet[7] 

The CNNs are getting deeper resulting much more parameters in a CNN; therefore, 

Dropout has been proposed to control the overfitting. Data augmentation is used to 

enlarge the dataset to give the robustness for the CNN. Re-using ReLU activation function 

is due to the hardness of converging when using traditional activation functions like Tanh, 

Sigmoid. Another boost is the hardware, especially the GPU accelerating running speed.   

Inspired by the AlexNet, deeper CNNs have been proposed to improve the performance 

of CNNs such as R-CNN[9, 34, 35], ZF Net[36], VGGNet[37], GAN[38], GoogLeNet[8] etc. 

ResNet[11] achieves top 5 error 3.57%, better than human being’s 5.1% error rate. So far, 

convolutional neural networks (CNNs) have become the prevalent method in computer 

vision area. In the next part, we will discuss the basic components that construct a 

convolutional neural network.  

5.2 Basic components 
 

Recently convolutional neural networks (CNNs) have become deeper and deeper, the 

ResNet has reached over 1,000 layers. Nevertheless, the basic components of CNNs are 
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the same: a CNN contains multiple convolutional layers, some pooling layers, fully 

connected layers, and regression layers. Some CNNs have other special layers but not all 

the CNNs have.  

5.2.1 Convolutional layers 
 

Convolution layers are designed to process gird like topology 2D data like images. Multiple 

small patches are in the convolutional layers which we call them feature maps[39]. The 

number of these feature maps are dependent on the number of neurons we set. Two 

important properties: local connections and weights sharing makes convolutional layers 

powerful in processing image. Firstly, we discuss the convolutional operation.  

In signal and processing area, convolutional operation is widely used. By convolutional 

operation, the signal in time domain is transferred into frequency domain signal, which 

we call the Fourier Transform[40], see equation 5.1.    

                     𝑓(𝑠) = 	∫ 𝑓(𝑡)𝑒E>KLMN𝑑𝑡O
EO                                   (5.1) 

Fourier Transform (FT) is a kind of the one dimension (1D) convolutional operation. For 

1D data like audio, language, the FT is essential to do processing like designing low-pass 

filter, etc. The general format of 1D convolutional operation can be written in equation 

5.2. 

𝑓(𝑡) ∗∗ 𝑔(𝑡) = 	∫ 𝑓(𝜏)𝑔(𝑡 − 𝜏)𝑑𝜏O
EO  (5.2) 

Where ∗∗ denotes convolution 

The two dimension (2D) convolutional operation is quite the same as 1D convolutional, a 

2D filter matrix called Kernel is replacing the 𝑔(𝑡) in the equation 5.2. Like equation 5.2, 
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the kernel firstly flip over 180 degree then multiply with the source. Equation 5.3 shows 

the 2D convolutional operation.  

 

                                     𝑆S(𝑖, 𝑗, 𝑘) = ∑ 𝐼SE<(𝑖 + 𝑚, 𝑗 + 𝑛)𝐾[S(𝑚, 𝑛)\,]   (5.3) 

Where 𝑆S  is the calculated value after convolutional layers where 	𝑖	, 𝑗  indicates the 

position; 𝐼S is 𝑙th layer; 𝐾[S  is the 𝑘th kernel used in 𝑙th layer. 

Below in figure 5.5 shows how 2D convolutional operation works.  

 

Figure 5. 5 Illustration of the 2D convolutional operation 

A 3 by 3 kernel is designed to show how 2D convolutional operation works. This kernel 

has no actual meaning, and the weights in this kernel are set randomly. The left table 

represents a patch of a picture with numbers mean the pixels value on each position. The 

area in blue is used for convolution. Therefore, the results is	8 ∗ 1 + 1 ∗ 2 + 4 ∗ 3 + 7 ∗

4 + 2 ∗ 5 + 7 ∗ 6 + 6 ∗ 7 + 3 ∗ 8 + 6 ∗ 9 = 222, the position in the output should be the 

same as the input.  
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As we can see, the 2D convolutional operation needs many multiply operation and add 

operation. Actually, it needs four double-loop. Therefore, the size of the kernel is usually 

3 by 3 or 5 by 5, for larger kernel size, the running time becomes large. The kernel needs 

to be 2𝑁 + 1 by 2𝑁 + 1  size with the center is (𝑁	, 𝑁) and radius is	𝑁.  

A problem occurs when kernel meets the boundaries. The 2D convolutional operation 

take the sum of the around specific position. Therefore, what if we want to calculate the 

left top position. Some of the nine points around that point are missing. Typically, four 

ways to deal with this boundary problem: zero padding, original padding, cycle padding 

and no padding. Zero padding puts zeros beyond the boundaries, while the original 

padding puts the very last number to expand the image. Cycle padding is a little complex, 

treat the same images are next to that image, the beyond the boundaries, put the exact 

same values on that image. Figure 5.6, 5.7 and 5.8 illustrate these three padding methods.  

 

Figure 5. 6 Zero padding 
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Figure 5. 7 Original padding 

 

Figure 5. 8 Cycle padding: on the left, top left and top there are three same images next 
to the original image, so the cycle padding is like this. 

No padding will decrease the size of the input. Take a 3 by 3 kernel for example; the very 

left, right, top and bottom cannot get output values because there are no enough 

surrounding pixels near them. So a 𝑚 by 𝑛 input image, taking convolutional operation 

with a 3 by 3 kernel using no padding method. The size of the output image is 𝑚 − 2 

by 	𝑛 − 2 . In general, a 𝑚  by 𝑛  input image convolves with a  𝑘  by 𝑘  kernel with no 

padding, the size of the output image is 𝑚− 𝑘 + 1 by	𝑛 − 𝑘 + 1.  
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In our research, we use no padding method in convolutional operation. Recall the image 

we used as the input for CNN, shown in figure 5.9.  

 

Figure 5. 9 A typical input image for CNN 

The reflected laser pattern, which correlated with the weld pool surface, is located on the 

center of the image. All other areas are black with pixel value equals to zero. Zero padding 

and original padding works the same in our images, both put zeros beyond the boundaries. 

Only the center of the image is useful for us, the decrease part causing by no padding is 

just the useless part, which good for decreasing calculation burden.  

Along with CNN has become the prevalent method in computer vision area. Many 

researchers proposed different methods to improve its performance. Atrous 

Convolution[11] is proposed to enlarge the reception field in deep convolutional neural 

networks. Unlike the traditional convolutional operation that performs in one-step, 

atrous convolution performs convolutional operation in every other 𝑟  position. The 

convolution equation is shown in equation 5.4. 

𝑆S(𝑖, 𝑗, 𝑘) = ∑ 𝐼SE<(𝑖 + r𝑚, 𝑗 + r𝑛)𝐾[S(𝑚, 𝑛)\,]   (5.4) 
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Where rate parameter 𝑟 corresponding to the stride length. 𝑟 = 1	means the standard 

convolution. By setting the rate parameter larger than 1, the reception field enlarged. 

Figure 5.10 shows how atrous convolution works when	𝑟 = 2. 

 

Figure 5. 10 Illustration of 2D atrous convolution when 𝑟 = 2. 

Compare with standard convolutional operation in figure 5.5. All the pixels in the input 

image are involved in the atrous convolution, we call it reception field enlarged. At the 

same time, although the kernel size is larger (5 by 5 compare 3 by 3), the parameters in 

the kernel remains the same. Using standard convolutional operation to get the same 

reception field, we need a 5 by 5 kernel with 25 parameters. Therefore, atrous 

convolution is useful in very deep CNNs to deal with subsampling causes smaller reception 

field. However, our designed CNN is relatively shallow (six layers), we use standard 

convolutional operation instead.  

It is clear that 1D convolutional operation is used to design specific filters like low-pass, 

band-pass, and high-pass etc. 2D convolutional operation can even do more. Different 

kernels gives us different results such as blurring, sharpening, embossing, and more. Table 

three shows different kernels applied in the same image.  
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Table 3 Different kernels generate different results 

Original  

 

Edge detection g
−1 −1 −1
−1 8 −1
−1 −1 −1

h 

 

Sharpen g
0 −1 0
−1 5 −1
0 −1 0

h 
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Blur 
1
9
g
1 1 1
1 1 1
1 1 1

h 

 

 

Therefore, in the CNN, each neuron generates one feature map, in other way the 

parameters in one feature map are the same. This is called weight sharing, which 

significantly decreases the parameters in the convolutional neural network. Different 

neurons generates different feature maps, for our research, we use 75 neurons in the first 

convolutional layer, which generates 75 different feature maps.  

One of the primary task in training a CNN is to find the best weights for these kernels. 

Traditional image processing methods design these kernels by human; this requires 

complex modeling and calculation. For example, the researchers want to find an edge of 

a specific part in an image. The kernel needs to be designed to ignore all the other edges 

in the same image but except for that edge, which means the edge detection we seen in 

the table cannot be directly used. Back to our research, we want to know the penetration 

status based on the weld pool surface. The difficulty of that the key features are still 

unclear so far. We cannot say some edges or some positions that directly related with 

penetration status. That makes weld penetration status sensing hard and not accuracy as 

we expected. In CNN on the other hand, it is much better than traditional methods. We 

need not to know the exact key features in advance but let the CNN to extract the key 
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features that related to penetration status itself. The training process will be discussed in 

next chapters.  

5.2.2 Pooling layers 
 

Another part of a CNN is the pooling layers. The pooling layers are always following the 

convolutional layers. The convolutional operation including multiply and add operations, 

these operations are linear operation. However, the combination of linear operation is 

also linear operation. Therefore, the pooling layer is along with the activation function to 

add the nonlinear factor into the CNN. Three kinds of pooling methods are used in current 

CNNs: mean-pooling, max-pooling and stochastic-pooling.  

Mean-pooling takes the average of a small patch usually 2 by 2 as the output of that area, 

shown in figure 5.11.  

 

Figure 5. 11 Mean-pooling 

Therefore, after mean-pooling, the image is largely smaller, from 4 by 4 to 2 by 2. The 

parameters in the CNN are significantly decreased. However, two main issues about 

mean-pooling. The output value is not always the integer. Even if we can make it to 

integer, that integer makes no sense. For example, for a 2 by 2 small patch, there are four 
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colors, red, yellow, grey and blue. We wish to pick one color to represent this small 2 by 

2 patch. After mean-pooling, we got an orange color, a color even not shown in that small 

patch. By doing mean-pooling we are not removing details but removing all but creating 

a new picture. Another issue is related to the first one: the performance. Using mean-

pooling layers is worse than same architecture but using max-pooling layer, so current 

CNNs use max-pooling operation as pooling layer [7, 39, 41-45].  

Max-pooling does the same way as mean-pooling but outputs the max value of that small 

patch, shown in figure 5.12. 

 

Figure 5. 12 Max-pooling 

Like mean-pooling, the max-pooling operation decrease the input image size by half one 

side, thus significantly decreasing the number of parameters a CNN has. The less 

parameters further reducing the risk of overfitting. In addition, the max-pooling keeps the 

most significant feature in a small area like 2 by 2, removes irrelevant details. Therefore, 

the max-pooling is a way to reorganize the features. More importantly, the max-pooling 

is used to endow the CNN the ability of the invariance to the image transformation such 

as rotate, shift, shrink, etc. [44-46]. Therefore, the CNN is more robustness to disturbance 
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like noise. As discussed, the performance of max-pooling is better than the mean-pooling, 

which makes the max-pooling method the most widely used as the pooling layer.  

The max-pooling takes the maximum number as output, for a 2 by 2 area, three values 

are dismissed, as the area becomes larger, more values will be dismissed: doing max-

pooling for 5 by 5, 24 values dismissing. To solve this problem, stochastic-pooling is 

proposed.  

Unlike max-pooling just dismisses the smaller values, the stochastic-pooling gives each 

value a probability of being picking as output based on their value[47].  

 

Figure 5. 13 Stochastic-pooling  

In each of the pooling area, first calculate its probability using equation 5.5. 

     𝑝L = 	
jk

∑ jllmn
    (5.5) 

Next, based their probabilities, choose one value as the output. The max-pooling can be 

treat as the special version, where the maximum value with 1 probability others have 0. 

In stochastic-pooling, the smaller values have a chance to be the output, which for some 

cases gives us better results[47].  
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The pooling methods we discuss so far have no overlapping area. There is another type 

of pooling called overlapping pooling. The theory is simple: the pooling area we set covers 

part of the nearby pooling area. By increasing the calculation burden, more details are 

collected. A. Krizhevsky et al[7] proposed that by using overlapping max-pooling, the top-

5 error decreases 0.3%. Recently, spatial pyramid pooling[48] is proposed to transform 

any size of the feature maps into the same dimension. Despite these new pooling 

methods are proposed to improve the CNN’s performance. Our research chooses the 

max-pooling operation as pooling layer.  

5.2.3 Fully connected layers  
 

The fully connected layers usually follow the convolutional layers and max-pooling layers. 

Using the convolutional layers and the max-pooling layers we have mapped the features 

into the specific hidden multi-dimension space, the fully connected layers are used to 

map the learned distributed-feature representations into the space where labels are. 

Fully connected layers are the basic component of standard neural networks.   

 

Figure 5. 14 A fully connected layer network 
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A typical fully connected layer network is shown in figure 5.14. The circle in the figure 

stands for the neuron, all the neurons in each layer are connected with all the previous 

and next layer’s neurons, the neurons in the same layer are not connected[49, 50].  

The neurons are designed to mimic human’s neurons. Before we actually discuss the 

neurons, we need to know about the perception. In 1958, F Rosenblatt[51] proposed the 

perceptron.  

 

Figure 5. 15 Perceptron 

The input of the perceptron is binary number 0 or 1, which corresponding to activated or 

not activated. Weights (𝑤<, 𝑤>, 𝑤p, …𝑤[) are used to measure the importance of each 

input. Calculate each input with its weights then compare with 𝜃 (the threshold) gives the 

output. Given the input 𝑥<, 𝑥>, …	𝑥[ the output of the neuron is  

                  s0									𝑖𝑓	
∑ (𝑤L𝑥L + 𝑏L) ≤ 	𝜃L∈[ 	

1									𝑖𝑓	 ∑ (𝑤L𝑥L + 𝑏L) > 	𝜃L∈[
       (5.6) 

The perceptron describes how human beings make decisions[51]. However, for more 

complicated cases, a simple perceptron is not enough: perceptron has only two status 0 

and 1, cannot reflect small changes on the input. To deal with this problem, an activation 
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function 𝑓(𝑤, 𝑏) is used, where 𝑤 means the weights and 𝑏 means the bias. Therefore, 

the output of the neural given input 𝑥<, 𝑥>, …	𝑥[ is𝑓(𝑤L𝑥L + 𝑏L). The activation function 

can be sigmoid[52], tanh[53], ReLU[39], etc. Among these activation functions, the tanh 

and ReLU are most widely used in current CNNs, shown in figure 5.16. 

          

Figure 5. 16 Left tanh: 𝑦Mj]w = 	
xyExzy

xy{xzy
 ; right ReLU: 𝑦|xS} = max		(0, 𝑥). 

Both of these functions are non-linear and both of them output 0 given 0 input. The 

difference is obvious, the range of tanh is (−1	, 1) while the ReLU is able to output larger 

than 1. The squash-like tanh results in the saturation risk, which means if the weights or 

bias are big enough, no matter how small the input, the output of tanh function is always 

1. In addition, ReLU has the better performance [54-56] and faster converge[7]. In our 

research, we use ReLU as activation function, and at the same time, we use tanh 

activation function for compare.  

The activation is not only used in fully connected layers, in convolutional layers and max-

pooling layers, activation is used after the convolutional operation or max-pooling 

operation.  
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The reason for using fully connected layers is to combine all the features convolutional 

layer learned, and to learn non-linear combinations of these features. In the fully 

connected layer, the position information is dismissed, since all the features are 

transformed into one-dimension. The learned CNN has robustness for position variance, 

which means it is able to detect a cat in an image regardless the cat is on the top left or 

right corner. However, for segmentation task, which requires detection and position 

information, fully connected layers cannot be used. Another issue about fully connected 

layer is the parameters it has. The parameters of fully connected layers can take up to 90% 

of the whole CNNs, which will show in next part. Resulting longer running time and high 

risk of over fitting. Therefore, global average pooling (GAP) is proposed and achieves good 

results[10, 57, 58] such as ResNet[11], GoogLeNet[8]. However, our research goal is 

classification not segmentation, thus we keep fully connected layers as high reasoning 

method.  

5.2.4 Regression layers  
 

The final layer of the CNN are the regression layer or classification layer depending the 

output is continuous number or the group number. In chapter 4, we have created the 

data and corresponding labels. There are six labels in our research; therefore, a 

classification layer is the choice. In our research, softmax regression is classifier in the final 

layer, which is a special kind of the binary logistic regression (LR) classifier. Even we call it 

regression layer, it is a multiple class classifier. Therefore, we will discuss the binary 

logistic regression first.  
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The binary logistic regression uses a logistic function to make a prediction 0 or 1 for the 

given variable. The logistic function is Sigmoid, shown in figure 5.17. 

 

Figure 5. 17 Logistic function <
<{xzy

 

The logistic function output is between 0 and 1, which can be treated as a probability. 

Therefore, the probability of 1 given a input 𝑥L is 

𝑃(𝑦L = 1|𝑥L;𝑤) = 	
<

<{���	(E�∗Ck)
 (5.7) 

Therefore, given a dataset contains N data, the likelihood function is: 

∏ [𝑃(�
L�< 𝑌 = 1|𝑥L; 𝑤)]Hk[1 − 𝑃(𝑌 = 1|𝑥L;𝑤)]<EHk  (5.8) 

Then, we get the minimum negative log likelihood as the loss function: 

                 𝑚𝑖𝑛�						𝐿 = −𝑙𝑜𝑔∏ [𝑃(�
L�< 𝑌 = 1|𝑥L; 𝑤)]Hk[1 − 𝑃(𝑌 = 1|𝑥L;𝑤)]<EHk     (5.9) 

						= −��𝑦L𝑙𝑜𝑔𝑃(𝑌 = 1|𝑥L;𝑤) + (1 − 𝑦L) log�1 − 𝑃(𝑌 = 1|𝑥L;𝑤)��
�

L�<

 

																																						= −�[𝑦L(𝑤 ∗ 𝑥L) − 𝑙𝑜𝑔(1 + 𝑒𝑥𝑝(𝑤 ∗ 𝑥L))]
�

L�<
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Thus this loss function is the calculate the sum, in case too much number, we take the 

average of that sum. The loss function is  

 

 𝐿 = −�[𝑦L(𝑤 ∗ 𝑥L) − log(1 + exp(𝑤 ∗ 𝑥L))]
�

L�<

 
                    

(5.10) 

 

Using the gradient descent (GD) algorithm, which we will discuss in chapter 7, the 

parameters 𝑤 can be calculated. Thus, based on equation (5.7), the probability of 1 is 

calculated.  

The binary logistic regression distinguishes two class every time. For our research, which 

has six classes need to be classified, five times binary logistic regression will work. 

However, better choice is softmax regression. Unlike logistic regression, the softmax 

regression is designed to deal with multiple labels classification[59]. The softmax function 

is shown in equation 5.11. 

 𝑓L(𝑦) = 	
���	(Hk)

∑ ���	(Hk)l
       (5.11) 

Where 𝑘	is the number of labels. 

Similarity, given input 𝑥L and parameters	𝑤, the probability of outputs label 𝑗  (𝑦L = 𝑗) is  

 𝑃(𝑦L = 𝑗|𝑥L;𝑤) =
exp	(𝑤� ∗ 𝑥L)

∑ exp	(𝑤] ∗ 𝑥L)[
]�<

 (5.12) 

Therefore, like binary logistic regression, the likelihood function is  

 ∏ ∏ ( ���	(��∗Ck)
∑ ���	(l
��F ��∗Ck)

)<[Hk�<][
��<

�
L�<   (5.13) 

The loss function can be defined like:  
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𝑚𝑖𝑛�				𝐿(𝑤) = 	−

1
𝑁��[1[𝑦L = 1]𝑙𝑜𝑔

exp�𝑤� ∗ 𝑥L�
∑ exp	(𝑤] ∗ 𝑥L)[
]�<

]
[

��<

�

L�<

 (5.14) 

 

Then, use the gradient descent (GD) algorithm to calculate the parameters	𝑤. Therefore, 

for a given input	𝑥L, the softmax regression layer outputs all the probabilities of all the 

labels 	𝑃(𝑦L = 𝑗|𝑥L;𝑤) , then choose the label with maximum probability as the final 

output.  

5.3 Architecture of CNN 
 

In the last section, the basic components that construct the CNN are discussed. However, 

how many convolutional layers are needed, how the convolutional layers are connected 

to the max-pooling layer, where to put fully connected layers, these questions are still 

unclear. In this section, we will discuss the architecture of CNN.  

5.3.1 Basic rules for setting a CNN 
 

The convolutional neural network is designed to mimic human’s visual system. However, 

there are billions of neurons in human being’s brain. Even in current hardware, the billions 

of neurons are so enormous, and it is extremely hard to implement. Therefore, 

researchers step back to design different architectures for different cases.  

It is believed that a neural network with only one hidden layer can approximate any 

continuous function as long as the hidden layer has enough neurons [60-62]. Therefore, 

the reason for going deeper is reducing the parameters networks have[59, 63]. In 
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convolutional layers, as discussed, one feature map sharing the same parameters: 

weights and bias of one neuron. In addition, for max-pooling layer, the input image size 

is reduced by one out of fourth. Using a shallow for example one hidden to approximate 

a function takes exponential number of that represented by deep rectifier network[64].  

Another reason for using multiple layers is that it has more generalizing ability, the 

learned weights and bias are smaller, the functions are more smooth[59, 63]. Using 

multiple layer, we can say that we divide a complex problem into several small problems, 

each layer corresponding one small problem. The learning process can be easier than that 

using shallow network. Take CNN for example, the convolutional layer collects key 

features, the max-pooling further reorganizing these key feature, then convolutional 

collect higher-level features, the following max-pooling do the same job, after several 

cycles, the input image are transferred into a set of features, then using hidden layer or 

global average pooling to do higher reasoning, outputs the final result. This process is 

more reasonable than using hundreds or even thousands of neurons to do the job in one 

shallow network. Even though some researcher questioning the deeper and deeper 

neural network[65], the deeper neural networks actually achieves better results. The 

ResNet[11] with more than 100 layers outperforms human being in some cases. 

The deeper neural networks actually cause the overfitting problem, but the overfitting 

problem is even worse in shallow networks. Therefore, it is better to use methods like 

regulation, dropout[7] to control the overfitting, not use shallow network because the 

concern of overfitting.  
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Therefore, based on the complexity of the task, choosing a slightly larger and deeper 

neural network is much better using a smaller neural network. 

5.3.2 Architecture details 
 

Our task is to identify the penetration status using CNN. There are six labels corresponding 

different penetration status. Before setting our architecture, we will discuss some 

classical CNNs’ architectures.  

In chapter 5, we have discussed two CNNs: LeNet and AlexNet. LeNet[13] has seven layers 

including two convolutional layers, two max-pooling layers, two hidden layers and one 

Euclidean radial basis function. It achieves over 99% identification accuracy on MNIST 

dataset with ten labels. AlexNet[7] contains 13 layers with five convolutional layers, five 

max-pooling layers, three fully connected layers. It won the ILSVRC-2012 competition 

with 15.3% top-5 test error based on the famous ImageNet dataset, which has 1,000 

labels. Later in the year of 2014, VGG has been proposed, further reduce the top-5 to 7.3% 

[8, 37]. VGG has 5 convolutional layers, 5 max-pooling layers, three fully connected layers 

with a softmax layer to output the result. The architecture is shown in figure 5.18.  
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Figure 5. 18 The architecture of VGG[66] 

A year later, GoogLeNet further reduce the top-5 error to 6.7% with 22 convolutional 

layers, 4 max-pooling layers, one average pooling layer, one fully connected layer and 

softmax layer to give the result. Shown in figure 5.19. 

 

Figure 5. 19 The architecture of GoogLeNet[8] 

ResNet[11] has 151 convolutional layers which has the state of art 3.57% top-5 error on 

the ImageNet, outperform human being’s 5.1% top-5 error.  

It is clear that for ImageNet with 1,000 labels the deeper network gives better results. 

Back to our research, comparing with these architectures, we design a six-layer 
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convolutional neural network with two convolutional layers, two max-pooling layers, one 

fully connected layer and a softmax regression as logistic regression layer.  

 

Figure 5. 20 The architecture of CNN used in our research 

Input is the image we captured using high-speed camera, size is 48 width by 36 height. 

The first layer is convolutional layer with 75 neurons to make sure collect enough 

information for further use. Kernel size is 5 by 5. Convolutional operation is standard with 

no padding. Therefore, after convolution the size is 44 (= 48 − 5 + 1) by 32 (= 36 − 5 +

1). Each neuron generates one feature map, thus, there are 75 feature maps. Different 

neuron settings have been tested on the same dataset. See table 4.  

Table 4 Different neuron settings performance 

Neuron numbers in Conv layers: (first, second) Validation error in the same dataset 

(300,200) 22.35 % 

(75,50) 22.467% 

(60,40) 24.367% 

 

Original neurons are 300 for the first convolutional layer, 200 for the second convolutional 

layer. It achieves the best performance, 0.117% less validation error than (75, 50) setting, 

and 2.017% less than that of (60, 40). However, the cost is longer running time. Our goal 
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is real-time control welding process, which requires fast response. Therefore, for practical 

view, we prefer 75 neurons as first convolutional layer, 50 neurons as second 

convolutional layers which balancing the accuracy and the running time. Therefore, for 

the first convolutional layer, the parameter number that needs to be learned is 1950 (	=

(	5 ∗ 5 + 1) ∗ 75	).  

Following the convolutional layer is the max-pooling layers. A 2 by 2 max-pooling 

operation performed, reducing the data into 22 width by 16 height. As discussed, max-

pooling largely decreases the parameters and endows robustness for position variation. 

The parameters number that need to be learned is 150 (=(1 + 1) ∗ 75	). 

Batch normalization is performed after the max-pooling layer. Batch normalization is used 

as re-distribute the input data, which can be treated as a way of pre-processing. The batch 

normalization will discuss in chapter 7. Rectified Linear Unit (ReLU) is the activation 

function, which gives 0.492% less validation error on the same dataset (20.875% 

validation error minus 21.367% validation error).  

The second convolutional layer and the second max-pooling do the exact same process. 

The kernel size is 5 by 5, no padding for the convolutional operation. Max-pooling area is 

2 by 2. Batch normalization has been performed, activation function is ReLU. After the 

second max-pooling layer, the size is further reduced to 9 width by 6 height. The 

parameters that need to be learned in the second convolutional layer is 93800 (=

(75 ∗ 5 ∗ 5 + 1) ∗ 50	)). The second max-pooling layer need to learn 100 (= (1 + 1) ∗ 50) 

parameters.  
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Fully connected layer is used to do high reasoning work. As discussed, the position 

information is dismissed by convert the second max-pooling output into a vector. 

Therefore, the input size is 2700 by 1 matrix, shown in figure 5.21.  
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Figure 5. 21 Multiply process in fully connected layer 

Therefore, the parameter number that is need to be learned is 1,350,500 (= 2700 ∗

500 + 500)), as discussed, the parameters of fully connected layer take up to 93.337% 

of all the parameters so far.  

The final layer is a logistic layer, using a softmax regression to calculate the probability of 

each label’s, then outputs the maximum one as the label. Softmax regression gives every 

sample the probabilities of each labels:	���	(H©)∑ Hlª
l�©

, 	���	(HF)∑ Hlª
l�©

, ���	(HD)∑ Hlª
l�©

, ���	(H«)∑ Hlª
l�©

, ���	(H¬)∑ Hlª
l�©

, ���	(Hª)∑ Hlª
l�©

. 

Outputs the label with the maximum probability. The parameter number needs to be 

learned is 3006 (= 500 ∗ 6 + 6). Table 5 summarize number of parameters in each layer. 
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Table 5 Parameters in each layer 

Layer Number of parameters 

Convolutional-1 (5×5+1)×75 = 1950 

Pooling-1 (1+1) ×75=150 

Convolutional-2 (75×5×5+1)×50 = 93800 

Pooling-2 (1+1) ×50 = 100 

Fully-connected 2700×500 + 500 = 1,350,500 

softmax regression 500×6 + 6 = 3006 

Total 1,449,506 

 

5.4 Summary 
 

In this chapter, we discussed the history of convolutional neural network (CNN), the basic 

components that construct a CNN including convolutional layer, pooling layer, fully 

connected layer and softmax regression layer. Classical architecture of CNNs such as 

LeNet, AlexNet, VGG, GoogLeNet are discussed. Then, proposed our six-layer CNN, discuss 

the parameters that need to be learned. Before we discuss the training method, we will 

discuss the data augmentation in next chapter.  
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Chapter 6 Data augmentation 
 

In last chapter, we have discussed the parameters we need to learned for our six-layer 

CNN. A total of 1,449,506 parameters in our CNN, but the dataset size so far is only 3,550 

so far, which is not enough to train the CNN. Therefore, the data augmentation is 

performed in our research.  

6.1 Necessity for doing data augmentation 
 

Recent CNNs take the data augmentation as a way to control the overfitting[67], such as  

AlexNet[7], VGG[37], GoogLeNet[8], ResNet[11]. On the other hand, training neural 

networks based on small dataset resulting serious overfitting, a little change like position, 

sizes will decrease the accuracy. Pinto et al.[68] designed a V-1 like model with limited 

images to train. Results shows the performance degrease when variations are added into 

the test set. As discussed, LeNet is training based on the MNIST dataset which contains 

60,000 training samples and 10,000 test samples[13]. Caltech-256[14] contains 30,607 

samples. In addition, most CNNs are based on the ImageNet[15] dataset, which contains 

21,841 synsets with over 14 million samples so far. Therefore, 3,550 samples is far below 

the requirement to train a six-layer CNN, which contains 1,449,506 parameters. Data 

augmentation is needed in our research. 
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6.2 Data augmentation methods 
 

Many data augmentation methods have been proposed and been proved effective in 

certain cases. In summary, data augmentation methods can be concluded into two ways: 

one is affine transformation the other one is Generative Adversarial Nets (GANs). 

6.2.1 Affine transformation 
 

The affine transformation takes the form: 

 𝑦 = 𝑤 ∗ 𝑥 + 𝑏 
(6.1) 

 

Based on this equation, the processing methods includes shift, horizontal or vertical flip, 

rotation or reflection. Figure 6.1 summarize these transformations.  
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Figure 6. 1 Typical affine transformations: (a). original image (b). shift (c). horizontal flip 
(d). vertical flip (e). rotation- 90 degree, (f). rotation-180 degree 

These methods enlarge the dataset fast and easy, but for some cases, some of them are 

not appropriate. For example, the trained CNN is about face detection, the 180 degree 

rotation cannot been used since no need to recognize a face in that direction. The next 

common methods is scale jittering[11, 37]. The crop size is fixed 𝑛	by	𝑛, for example VGG 

use 224 by 224. The input image is isotopically scaled. The shorter side (width or height) 

is chosen as the training scale	𝑆. 𝑆 is randomly chosen in the range of (𝑚𝑖𝑛,max), where 
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𝑚𝑖𝑛 must be greater or equal to the cropping size	𝑛. Finally randomly crop a 𝑛	by 𝑛 area 

from the scaled image. Figure 6.2 shows the whole process.  

 

Figure 6. 2 The process of scale jittering 

Another method is scale aspect ratio augmentation[8]. Unlike the scale jittering method 

which keeps the input width-height ratio. The ratio in scale aspect ratio changes in a range 

of [p
¤
, ¤
p
	] to generate more images.  

For colored images, color jittering and PCA jittering can also be applied to do data 

augmentation. All the images in our research is grey mode, these methods are 

inappropriate and we will not discuss them.  

6.2.2 Generative Adversarial Nets (GANs) 
 

Another widely used way of data augmentation is Generative Adversarial Nets (GANs). 

Unlike the affine transformations, GANs[38, 69] actually generates new images. It 

achieves impressive results in image translating[58, 70], representation learning[58, 71], 

etc. A Discriminator[38] (D) is proposed to estimate the reality of the generated images 

that generated by the generator (G), the loss function is defined as adversarial loss which 
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forces the generated images are different from the real images. Training process is based 

on back propagation (BP), but always update one (G or D) at the same keep the other 

unchanged. Figure 6.3 to 6.5 shows some images generated from the GANs. 

 

Figure 6. 3 Generated different bedrooms[58] 

 

 

Figure 6. 4 Generated different flowers[72]  
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Figure 6. 5 Generate zebra from horse[73] 

 

6.3 Summary 
 

The affine transformation and generative adversarial nets (GANs) are the two methods 

doing data augmentation, both of them achieve impressive results. In our research, an 

experienced welder is able to determine the weld penetration status form different 

position and under different view. Therefore, affine methods including shift, rotation and 

resizing are used as the data augmentation method. To ensure the entire reflected 

pattern is kept after the affine transformation, we firstly select the region of interest (ROI). 

Experiment results shows the shift operation results in part of the ROI missing. As 

discussed, all the images are in grey scale, the color augmentation and PCA jittering are 

not useful. In addition, GANs performance on our grey scale images are not well. Figure 

6.6 summarizes the data augmentation methods we use in our research. 
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Figure 6. 6 Data augmentation (a) original image, (b) rotated image, (c) scaled image, (d) 
rotated and scaled image. 

In table 6, we summarized the data size before and after data augmentation. 
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Table 6 Data size after data augmentation 

Label Number of raw images Number of images after augmentation 

0 457 59,868 

1 495 64,846 

2 540 70,696 

3 570 74,101 

4 626 70,739 

5 862 87,063 

 

To make sure the training results of the neural networks are convincing, the training 

dataset, validation set and test set must be completely different. Since if the test set is 

the images that used to training, we cannot tell this neural network has actually learned 

or just remember all the images. Therefore, when creating the test set, we randomly pick 

one image from each of the six labels and do not put them back. Do this cycle for 7,500 

times, we create a test set that contains 45,000 images. Same thing with validation set 

and training set. Therefore, we create a training set, which contains 270,000 images, a 

validation set, which contains 45,000 images and a test set, which contains 45,000 images. 
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Chapter 7 Training a CNN 
 

In the previous chapters, we have designed a six-layer CNN, created three independent 

dataset: training data, validation set and test set. In this chapter, we will discuss how to 

train a convolutional neural network (CNN). The loss function is firstly discussed; the 

optimization methods including mini-batch gradient descent and Adam are compared. 

Learning tricks like learning rate annealing and early stopping are used in our training 

process. Finally, we will discuss the batch normalization, which controls the overfitting. 

7.1 Loss function 
 

Loss function needs to be firstly define in the training process, since the loss function 

evaluates the degree of consistency between the results got from the CNN and the ground 

truth table[59]. Many loss functions have been proposed, such as gold standard[74], 

hinge loss[75], log loss including cross entropy error[76, 77], squared loss[78] and 

exponential loss[79].  

The gold standard loss is also called 0-1 loss; it is used to record the times that prediction 

result match the truth, see equation 7.1.  

 𝐿(𝑦, 𝑓(𝑥)) = 	 s0				𝑖𝑓	𝑦 = 𝑓(𝑥)
1				𝑖𝑓	𝑦 ≠ 𝑓(𝑥) (7.1) 

Where 𝑦  is the true label and 𝑓(𝑥) is the predict label. In our research, the softmax 

regression gives the probabilities of the six labels (0 to 5) given an input. The maximum is 

picked as the predict label, when calculating the validation error and test error, the 0-1 
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loss is used. For a mini batch (600 in our research), each time we match the real label, we 

add 1 to the sum	𝑆. Therefore, the validation/test error is defined in equation 7.2. 

 

 𝐸𝑟𝑟𝑜𝑟 = 1 −
𝑆
𝑁 (7.2) 

Where	𝑆 is the sum, 𝑁 is the mini-batch size. 

The hinge loss function is widely used in support vector machine (SVM)[75]. For a 

classification problem, define 𝑦 is the prediction value, not the label, 𝑡 is either 0 or 1. The 

hinge loss function is defined:  

 𝐿(𝑦) = max	(0, 1 − 𝑡 ∗ 𝑦) (7.3) 

Where in SVM, 𝑦 = 𝑤 ∗ 𝑥 + 𝑏. 

The support vector machine achieves impressive results in classification[80-82], but the 

deep convolutional neural network outperform by the accuracy[7] and the running 

speed[83]. Therefore, in our research, we use the convolutional neural networks to do 

the classification. 

Log loss function is discussed in the regression layer part. The loss function for softmax 

regression is 

 𝑚𝑖𝑛�				𝐿(𝑤) = 	−
1
𝑁��[1[𝑦L = 1]𝑙𝑜𝑔

exp�𝑤� ∗ 𝑥L�
∑ exp	(𝑤] ∗ 𝑥L)[
]�<

]
[

��<

�

L�<

 (7.4) 

Where the equation 7.4 is the same as equation 5.14 

In some cases, the regularization term is added to the loss function to control the 

overfitting. L-2 norm regularization is most used which can be written in equation 7.5[59]. 
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 𝜆� (𝑤[)>
[∈°

 (7.5) 

Where 𝜆 is the penalty factor, controls the degree regularization.  

Thus, the loss function can be written 

 

 

𝑚𝑖𝑛�				𝐿(𝑤) = 	−
1
𝑁��[1[𝑦L = 1]𝑙𝑜𝑔

exp�𝑤� ∗ 𝑥L�
∑ exp	(𝑤] ∗ 𝑥L)[
]�<

]
[

��<

�

L�<

+ 𝜆� (𝑤[)>
[∈°

 

(7.6) 

 

Calculating the minimum, the sum of the parameters should be minimized, which six. 

Avoiding the situation like one large parameters along with many zeros. The training 

results are smoother and have more generalization ability. 

In our research, batch normalization is applied to control the overfitting, thus the details 

of the overfitting will not be discussed.  

7.2 Optimizer 
 

The goal of the training process is to minimize the loss function, in physical meaning, to 

make the predict results the same as the true label. Rumelhart et al [33] proposed the 

error BackPropagation (BP) algorithm to train a three layers neural network. Currently, 

BP algorithm has become the most common algorithms to train a neural network. Mini-

batch gradient descent and Adaptive moment estimation (Adam) are both based on the 

BP algorithm.  
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7.2.1 Mini-batch gradient descent  
 

As discussed, the mini-batch gradient descent is based on the BP algorithm. Therefore, 

we discuss the BP algorithm first. The BP algorithm is to change the parameters (weights, 

bias) according to the input samples, to make the output close the desire truth. In 

summary, the training process can be divide into two parts: feedforward pass and 

backpropagation pass. Figure 7.1 shows a three layers BP neural networks[84].  

 

Figure 7. 1 A three-layer BP network 
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This neural network contains three layers: input layer, hidden layer and the output layer. 

Input layer has ℎ neurons, hidden layer has 𝑘 neurons and the output layer contains 𝑙 

neurons. Given the input data 	𝐷: (𝑥<, 𝑦<), (𝑥>, 𝑦>),… (𝑥],𝑦]), 𝑥L ∈ 𝑅w, 𝑦L ∈ 𝑅S . The 

weights between the input layer neuron 𝑖 and hidden layer neuron ℎ is indicated by𝑣Lw, 

and 𝑤w�  means the weights between the hidden layer neuron	ℎ and the output layer 

neuron	𝑗.  The threshold of the output is written as 𝜃�  for neuron 𝑗 and 𝛾�  for neuron 𝑗 in 

the hidden layer. The activation function shown is sigmoid function, and can be other 

types of activation function.  

Therefore, in the feedforward pass, initialize the parameters (weights, bias) for each layer, 

gives an input	(𝑥[, 𝑦[), outputs the results	𝑦µ[ = (𝑦µ<[, 𝑦µ>[,…	𝑦µS[).  

 𝑦µ�[ = 𝑓(ℎL¶ − 𝜃�) (7.7) 

Therefore, the square error is defined as: 

 𝐸[ = 	
1
2�(𝑦µ�[ − 𝑦�[)>

S

��<

 (7.8) 

If the error is acceptable, the parameters need not to be optimized. The training process 

is end. However, when the error is not desirable, the backpropagation pass works. BP 

algorithm optimizing the parameters (weights and bias) based the error defined in 

equation 7.8. Two methods are typically used in optimizing, one is gradient descent the 

other is least square. Both of them take derivative to find the minimum of the loss 

function. However, the least square is non-iterative and trying to find the global minimum. 

The gradient descent is iterative and after several iterations, find the local minimum.  
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Figure 7. 2 Global minimum and local minimum[85] 

In our research, the mini-batch gradient descent is used, the following steps are based on 

the gradient descent method.  

For the 𝑡Mw  neuron in the hidden layer, the input of it is  

𝛼w =�𝑣Lw

w

L�<

∗ 𝑥L 

Similar way the input of the 𝑗Mw  neuron in the output layer is  

𝛽� = 	�𝑤w� ∗ ℎw

[

w�<

 

For a given learning rate	𝜂, we have  

 ∆𝑤w� = 	−𝜂
𝜕𝐸[
𝜕𝑤w�

 (7.9) 

Based on the chain-rule[86], we have  

 
𝜕𝐸[
𝜕𝑤w�

=
𝜕𝐸[
𝜕𝑦µ�[

∗
𝜕𝑦µ�[

𝜕𝛽�
∗
𝜕𝛽�
𝜕𝑤w�

 (7.10) 

From the definition of	𝛽�, we have  
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𝜕𝛽�
𝜕𝑤w�

= 	ℎw (7.11) 

Therefore, based on equation 7.8 and 7.7, we have  

		𝑔� = −
𝜕𝐸[
𝜕𝑦µ�[

∗
𝜕𝑦µ�[

𝜕𝛽�
 

	= −�𝑦µ�[ − 𝑦�[�𝑓;�𝛽� − 𝜃�� 

Where for Sigmoid function, 𝑓;(𝑥) = 𝑓(𝑥)�1− 𝑓(𝑥)� 

Apply equation 7.12 and 7.11 into the equation 7.10 and 7.9, we have  

 ∆𝑤w� = 	𝜂𝑔�ℎw (7.13) 

Similarly, we have  

 ∆𝜃� = −	𝜂𝑔�  (7.14) 

 ∆𝑣Lw = 𝜂𝑒w𝑥L (7.15) 

 ∆𝛾w = −𝜂𝑒w (7.16) 

Where 𝑒w =
¼½l
¼w¾

∗ ¼w¾
¼¿¾

 

𝑒w =
𝜕𝐸[
𝜕ℎw

∗
𝜕ℎw
𝜕𝛼w

= −�
𝜕𝐸[
𝜕𝛽�

∗
𝜕𝛽�
𝜕ℎw

𝑓;(𝛼w − 𝛾w)
S

��<

 

=�𝑤w�𝑔�𝑓′(
S

��<

𝛼w − 𝛾w) 

 	= ℎw(1 − ℎw)�𝑤w�𝑔�

S

��<

  (7.17) 

 			= 𝑦µ�[(1 − 𝑦µ�[)(𝑦�[ − 𝑦µ�[) (7.12) 



77 
 

Next, do iteration process based on these update equations until reach the optimum. The 

process above shows the way using one sample to do the gradient descent. Based on how 

many samples are used in gradient descent, three methods are defined. Batch gradient 

descent uses the whole data to do the gradient descent. Each iteration the whole data 

are used to calculate the gradient makes it most accurate [87]. However, when the 

dataset is too large, the speed will be slow. On the other hand, stochastic gradient descent 

uses only one sample each time to calculate the gradient, but the accuracy is not good. 

Mini-batch gradient descent uses a small batch (for example 600 in our research) to 

calculate the gradient each time. It balances the accuracy and the speed, and becomes 

most common used [7, 9-11, 15, 35, 37, 43, 56]. Therefore, the loss function can be 

written as equation 7.18 

 𝐸 = 	
1
2𝑁�(𝑦µ] − 𝑦])>

�

]�<

 (7.18) 

Where 𝑁  is the mini-batch number, 600 in our research. In addition, to increase the 

convergence speed and escape the saddle point, the momentum term is added in our 

mini-batch gradient descent[59]. 

7.2.2 Adaptive moment estimation   
 

Besides the mini-batch gradient descent, adaptive moment estimation (Adam) is another 

important optimizer. Adam combines the advantages of two methods: AdaGrad[88] and 

RMSProp[89], for each iteration, the learning rate is bounded in a certain range[90]. It 

calculated the gradient’s first moment estimate and second moment estimate to adjust 
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each parameter’s learning rate	𝜂. The details will not be discussed in our research, readers 

can refer the paper[90]. Equation 7.19 to 7.23 shows the updating rule for the parameters. 

 𝑚M = 𝛽<𝑚ME< + (1 − 𝛽<)𝑔M (7.19) 

 𝑣M = 𝛽>𝑣ME< + (1 − 𝛽>)𝑔M> (7.20) 

 𝑚ÁM = 	
𝑚M

1 − 𝛽<M
 (7.21) 

 𝑣µM =
𝑣M

1 − 𝛽>M
 (7.22) 

 𝜃M = 𝜃ME< − 	𝛼
𝑚ÁM

Â𝑣µM + 𝜖
 (7.23) 

Where 𝑔M  is the gradient respect to the parameters, 𝑚M  is the first moment estimate, 

and	𝑚¡ = 0, 𝑣M is the second moment estimate and 𝑣¡ = 0. By default,	𝛼 = 0.001, 𝛽< =

0.9, 𝛽>=0.999 and 𝜖 = 10EÄ.  

The revised Adam has been proposed and achieves good performance, like AdaMax and 

Nadam[87], but will not be discussed in our research.  

The performance in our research is slightly worse than the revised mini-batch gradient 

descent (22.750% validation error compared to 22.083% validation error in the dataset), 

but the convergence speed is much faster. For performance view, we use the revised 

mini-batch gradient descent, and the details will show in next part. 

7.3 Initialization 
 

The activation function used in our research is Rectified Linear Unit (ReLU), cause it 

converges faster[7] and has better performance[54, 56]. Therefore, the initialization 

process based on the ReLU activation function. Initialization set the starting point of the 
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training process, a bad initialization results in sticking on saddle point[91], much longer 

training time, etc. The Gaussian distribution initialization is widely used in current neural 

networks. Recall that smooth functions have more generalization ability. In our research, 

zero mean and 0.01 variance Gaussian distribution for weights, bias set to 0 is firstly tried. 

The validation error is 22.083%. Xavier initialization[92, 93] is another widely used 

initialization method. Unlike the Gaussian distribution initialization, the size of the 

previous layer is considered. The bias are kept 0 while the weights are initialization as 

equation 7.24. 

 𝑤L�	~𝑈[−
1
√𝑛

,
1
√𝑛
] (7.24) 

Where 𝑈 means uniform distribution and 𝑛 is the size of last layer. 

However, the Xavier initialization is not fit for nonlinear activation functions like ReLU[55]. 

Therefore, the revised Xavier initialization[55] is proposed to deal with nonlinear 

activation functions and to solve the hard convergence for very deep neural networks. 

Revised Xavier initialization use a Gaussian distribution with zero mean and Â2/𝑛L 

standard deviation. Where 𝑛L denotes the input dimension of the layer. However, in our 

six-layer CNN, the revised Xavier initialization ends with a saddle point. Further reduce 

the revised initialization by 0.1, validation error is 22.483% validation error, which is 

worse than the Gaussian distribution initialization.  

7.4 Learning rate annealing and early stopping 
 
The learning rate set the step size each time updating the parameters. Too much learning 

rate hinder the training process or even converge to a fake minimum while small learning 
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rate makes training process extremely slow to converge, see figure 7.3. However, for a 

training process choosing an appropriate learning rate can be difficult. A better way is to 

use learning rate annealing method.   

 
Figure 7. 3 Different learning rates affect the training process[59] 

Learning rate annealing firstly set a slightly bigger learning rate to make sure fast 

convergence in the beginning of the training process. Then decaying the learning rage 

based on time or on the number of epochs[94].  In [95], an adaptive learning rate method 

(ADADELTA) has been proposed. The learning rate is calculated based on the L2 norm of 

all the gradients of previous, which makes the learning rate larger when the gradient 

smaller. However, the initial learning rate for ADADELTA is critical. Therefore, in our 

research, step decay is used where the initial learning rate is set to 0.01, and when the 

validation error stops decreasing for three consecutive epochs, decrease the learning rate 

by 0.5. Figure 7.4 shows the learning rate annealing in our training process.  
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Figure 7. 4 Learning rate annealing in our training process 

As discussed, the mini-batch gradient descent is an iteration process. Traditional way to 

control the end of an iteration process is to set a tolerate threshold, when the error is 

below this threshold, the iteration process stops. However, for CNN, that threshold is hard 

to determine, which means the epoch number is critical. The training process terminates 

without reach to the optimum when the epoch number is set too small. On the other 

hand, too big epoch number causes the training process taking much time. To solve this 

dilemma, we use set a big epoch number to make sure training process will not terminates 

before reaching the optimum but at the same apply the early stop mechanism. The 

training process will terminates when the validation error stops decreasing for ten 

consequent epochs.     
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7.5 Batch Normalization 
 
 
In our defined loss function, the L2 norm regularization is not added to control the 

overfitting. The overfitting should be avoided since at that time, the trained neural 

network matches too closely to training data even the noise or bad samples are 

considered. Although the loss function is minimized, the generalization ability is 

decreased.  

 
Figure 7. 5 Overfitting decreased the generalization ability[96] 

The dropout[7] and batch normalization[97] are the two widely used methods controlling 

the overfitting. Dropout adds a probability that determine each neuron work or not work. 

For one neuron view, the dropout forces it to work with different neurons each time, 

decreasing the combination between the neurons and increasing the generalization 

ability[98]. However, in our research, we use the batch normalization as the way 

controlling the overfitting. In the training process, the parameters (weights and bias) need 

to be update to minimize the loss function. However, the updates of parameters from all 
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the previous layers affect the distribution of the input of next layer. Sergey Ioffe and 

Christian Szegedy [97] defined this distribution change as internal covariate shift[99]. 

Batch normalization is proposed to deal with the internal covariate shift. As a way of 

Principal Components Analysis (PCA), whitening is widely used for data preprocessing[100, 

101], but whitening requires much computation. So in batch normalization, the authors a 

close way to whitening preprocessing method. 

For each dimension of the input[97]  

 

 𝑥µ[ = 	
𝑥[ − 𝐸(𝑥[)
Â𝑉𝑎𝑟(𝑥[)

 (7.25) 

Where the mean 𝐸 and variance 𝑉𝑎𝑟 are calculate based on the mini-batch data.  

However, by doing this, the features learned from last layer are distorted, thus two 

learnable parameters are used to restore the features. For each activation	𝑥[,	𝛾[𝑎𝑛𝑑		𝛽[, 

we have  

 𝑦[ = 	𝛾[ ∗	𝑥µ[ +	𝛽[  (7.26) 

Where 𝛾[  and 𝛽[ are learned during training process. 

In this way, BN layer forces the unordered distribution into an ordered distribution, which 

we need to learn.  

Besides controlling the overfitting, BN layer speeds up the completely training process, 

and is able to save a bad initialization to some extent.  
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7.6 Summary 
 

In this chapter, the training method used in our research has been discussed. For the 

performance view, we use mini-batch gradient descent with learning rate annealing. The 

initialization is from the Gaussian distribution with zero mean and 0.01 variance. The 

training process terminates when the validation error stop decreasing for ten 

consequently periods. Batch normalization is used to control overfitting.  
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Chapter 8 Results 
 

In this chapter, we will discuss the results of our trained CNN. The plot of training error, 

validation error and test error are given. The six-layer CNN give us 90.83% prediction 

accuracy about the identification of weld penetration. A voting mechanism has been 

proposed based on three consequent images, which increase the prediction accuracy to 

over 97%.  

8.1 Preliminary results 
 

All the training work is based on the GTX1080 GPU. After 134 epochs, the training process 

terminates with best validation error is 9.053%, and the test error 9.169%. Shown in figure 

8.1. 

 

Figure 8. 1 Training results 
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Figure 8.2 shows the training error, validation error and test error during the training 

process.  

The training error is 0.195%, so the training process makes the prediction very close to 

the truth.  

The gap between the training error and test error is neither too large nor too small which 

indicates the overfitting is acceptable. Remember that validation set and test set are 

different, the validation error and test error is close also shows this trained CNN performs 

close on two different data set, showing that the overfitting is not serious. 

 

Figure 8. 2 The training error, validation error and test error during training process 
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8.2 Voting mechanism and control 
 

As discussed in chapter 3, each low current period, and the high-speed camera capture 

three consequent images. Welding process is a dynamic process, the wrong prediction 

happens only between close labels, which means the true label is 3, but the CNN gives us 

2 or 4, the possibility it gives 0 can be dismissed. Therefore, a voting mechanism based on 

three images has been proposed to further increase the prediction accuracy. There are 

two cases when voting: 

1. At least two images output the same label, then output that label as the final label; 

2. All the three images output different labels. At that time we do not use any of 

them, wait for next cycle.  

For one image, the prediction accuracy is 90.83%, so based on the voting mechanism, the 

prediction accuracy is  

0.9083p + 3 ∗ 0.9083> ∗ (1 − 0.9083) = 0.9763 = 97.63% 

However, these three images are not independent, the prediction accuracy is improved 

after voting, but cannot get 97.63%.  

The control system in our research can be designed in figure 8.3. 
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Figure 8. 3 Weld process control based on CNN 
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Chapter 9 Conclusion and future work 
 

In our research, we propose an innovative approach identify weld penetration status 

using convolutional neural network (CNN). A sensing system, which collect both weld pool 

surface and backside of the weld pool, has been built to generate train data. Label 

preserving data augmentation including rotation, scale has been done to create over 

360,000 data. A six-layer CNN has been designed and trained based on augmented 

dataset. Final test accuracy rate of the proposed CNN model is 90.83% and the accuracy 

rate can be further improved by using a voting mechanism, which is regarded to be good 

enough in practical industrial welding manufacturing.  

The control system has been designed like figure 8.3. However, the hardware limitation 

stopped us. The computer in the control part is equipped with an AMD A6-3650 2.6 GHz 

CPU. Running our trained CNN takes over 300 milliseconds, which is too long for real 

welding control. Running on a GPU is much faster, an eight-layer CNN gets results in 1.2 

milliseconds on a GPU[10]. However, the control computer has been collected with two 

data collection cards, no room to install a GPU. In future, the welding sensing and control 

system will be established with a GPU.  
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