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FIGURE 3 | Effects of soil salinity and seed morph on length of key life history stages (mean ± 1 SE) of F1 (filial generation 1, see Figure 2) plants of the two
populations of Suaeda corniculata. Different letters above bars indicate significant differences (P < 0.05) in length of life span and different letters within bars
significant differences (P < 0.05) in length of seedling stage, vegetative period, and reproductive period. Uppercase letters indicate differences across all salinity
levels in the same seed morph and lowercase letters differences between seed morphs for the same salinity level. BrP, plants from brown seeds; BlP, plants from
black seeds. Addition of salt was begun after the seedlings had established, and data for seedling stage were collected under 0 mol·L−1 NaCl.

FIGURE 4 | Effects of soil salinity and seed morph on biomass allocation (mean ± 1 SE) of F1 (filial generation 1) plants of the two populations of Suaeda corniculata.
Different letters above bars indicate significant differences (P < 0.05) in total biomass and different letters in bars significant differences (P < 0.05) in vegetative or
reproductive biomass. Uppercase letters indicate differences across all salinity levels in the same seed morph and lowercase letters differences between seed
morphs for the same salinity level. BrP, plants from brown seeds; BlP, plants from black seeds.

Stress can cause a shift in the proportion of biomass allocated to
vegetative and reproductive components (Lu et al., 2012). These
plastic responses in life history traits to stress can be interpreted
as to be adaptive because they increase the seed production
component of fitness (Primack and Kang, 2005; Lu et al., 2016).

Studies have shown that growth conditions of the mother
plant can alter the proportion of different seed morphs
produced by an individual plant (reviewed in Baskin and
Baskin, 2014), but the results are inconsistent. For example, seed
morph ratio was not changed by growth of maternal plants

of Suaeda aralocaspica (Amaranthaceae) in different salinities
(Wang et al., 2012), whereas high salt stress increased the
proportion of (non-dormant) brown seeds of Chenopodium
album (Amaranthaceae) (Yao et al., 2010) and of Suaeda
salsa (Amaranthaceae) (Wang et al., 2015). In our study, the
proportion of brown seeds increased with increased salinity levels
in the two populations of S. corniculata, thus agreeing with the
results of Yao et al. (2010) and Wang et al. (2015). Because they
germinate to high percentages in a wide range of salinities, brown
seeds of Amaranthaceae species have been considered to be more
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FIGURE 5 | Effects of soil salinity and F1 (filial generation 1) seed morph on brown seed proportion (mean ± 1 SE) produced by F1 experimental plants of Suaeda
corniculata. Different uppercase letters indicate differences (P < 0.05) in brown seed proportion across all salinity levels in the same seed morph and lowercase
letters differences (P < 0.05) in brown seed proportion between seed morphs for the same salinity level. BrP, plants from brown seeds; BlP, plants from black seeds.

FIGURE 6 | Germination percentage (mean ± 1 SE) of fresh F2 (filial generation 2, see Figure 2) dimorphic seeds produced by F1 (filial generation 1) experimental
plants of Suaeda corniculata. Different uppercase letters indicate differences (P < 0.05) across all salinity levels in the same seed morph and different lowercase
letters differences (P < 0.05) between seed morphs for the same maternal salinity level. BrP, plants from brown seeds; BlP, plants from black seeds.

fit than black seeds in harsh saline habitats (Khan et al., 2001;
Song et al., 2008; Yao et al., 2010; Wang et al., 2015). However,
Cao et al. (2012) showed that brown seeds of S. corniculata lost
viability easily after exposure to salt stress, whereas black seeds

did not. Thus, the ecological significance of brown versus black
seeds is highly complex and should not be determined only
by germination percentage. Since brown seeds are larger and
growth of seedlings derived from them is faster than for black
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seeds, seedlings may benefit from more resources stored in large
brown seeds (Grieve and Francois, 1992; Jakobsson and Eriksson,
2000; Easton and Kleindorfer, 2009), which would then lead to
faster establishment. Thus, brown seed cohorts may benefit from
exploiting temporarily favorable conditions, for example high soil
moisture (and thus lower salinity) after rainfall. In which case,
they may establish populations rapidly in saline habitats. On the
other hand, black seeds of S. corniculata cannot germinate at high
salinity, but they can form a persistent seed bank, which enables
them to persist in the habitat should the entire population die
before reproducing in a particular year. Black seed cohorts mainly
germinate in the summer rainy season (Cao et al., 2012), and
consequently they may be exposed to less harsh conditions for
establishment than brown seed cohorts.

Variation in morph ratio and seed size has been found
among populations of diaspore-heteromorphic species. For the
annual halophyte, Suaeda salsa (Amaranthaceae), brown/black
seed ratio and 100-seed mass were significantly higher in the
intertidal zone (4.5 and 3.3 g·kg−1, Na+ and Cl−, respectively)
than in an inland saline habitat (2.4 and 2.0 g·kg−1, Na+
and Cl−, respectively) (Song et al., 2008). The proportion of
brown seeds and reserve mass (embryo plus perisperm) of
black seeds of Chenopodium album were higher in populations
on flat ground than that of a population growing on a slope
(Yao et al., 2010). However, whether these differences between
populations were due to genetics (G), environment (E) or G x
E interactions was not determined. We conducted a common
environment experiment in which F1 plants were grown from
F1 seeds under different salinity levels to distinguish possible
genetic differentiation between populations and to demonstrate
phenotypic plastic response to different salt concentrations. For
S. corniculata, the field investigation and common environment
experiments revealed that the differences between populations
were significant in both morph ratio and seed size, as well as
high salinity increased brown seed proportion but had limited
impact on seed size. Quinn and Colosi (1977) suggested that
one generation of seed production under the same conditions
is required to demonstrate that differences in germination
are genetically based. However, we used F1 plants for testing
post-germination life history traits, and thus the possibility exists
that differences among the traits could have been due to some
carryover effects on plants grown from F1 seeds (Whittle et al.,
2009; Herman et al., 2012; Yang et al., 2015b).

Seed dimorphism in S. corniculata may be a bet-hedging
strategy since the offspring have two distinct life histories to cope
with a variable environment (Venable, 1985a; Simons, 2011). As
such, then, it seems that population persistence is more likely for
plants producing both brown and black seeds than it would be
for them producing either one or the other seed morph. However,

to document bet-hedging and thus to understand the ecological
consequences of production of dimorphic seeds, a comparative
life history/demographic analysis of each of the two morphs is
required (Venable, 1985a,b; Venable and Levin, 1985). It must be
shown that the two morphs maximize the geometric mean of the
number of offspring (Ro, a measure of fitness) across generations
(Simons, 2011) in order to prove that the seed heteromorphism
in S. corniculata is a bet-hedging strategy.

CONCLUSION

According to the field investigation and common environment
experiments, phenotypic differences between S. corniculata
populations are genetically based. Adverse effects of salinity
stress are alleviated by the ability of plants to allocate a high
proportion of resources to reproduction. Morph production
and germination behavior of dimorphic seeds are influenced
by the level of soil salinity, suggesting that soil salinity plays
an ecologically important role in population regeneration of
S. corniculata in the natural habitat.
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