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Caloric restriction (CR) has been shown to extend longevity and protect brain function

in aging. However, the effects of CR in young adult mice remain largely unexplored.

In addition to the fundamental, long-term changes, recent studies demonstrate that

CR has a significant impact on transient, postprandial metabolic flexibility and turnover

compared to control groups. The goal of this study was to identify the brain metabolic

changes at a transient (2 h) and steady (6 h) postprandial state in youngmice (5–6months

of age) fed with CR or ad libitum (AL; free eating). Using metabolomics profiling, we

show that CR mice had significantly higher levels of neurotransmitters (e.g., glutamate,

N-acetylglutamate), neuronal integrity markers (e.g., NAA and NAAG), essential fatty

acids (e.g., DHA and DPA), and biochemicals associated carnitine metabolism (related

to reduced oxidative stress and inflammation) in the cerebral cortex and hippocampus

at 2-h. These biochemicals remained at high levels at the 6-h postprandial time-point.

The AL mice did not show the similar increases in essential fatty acid and carnitine

metabolism until the 6-h time-point, and failed to show increases in neurotransmitters

and neuronal integrity markers at any time-point. On the other hand, metabolites related

to glucose utilization—glycolysis and pentose phosphate pathway (PPP)—were low in

the CR mice throughout the 6-h period and significantly increased at the 6-h time-point

in the AL mice. Our findings suggest that CR induces distinct postprandial responses in

metabolites that are essential to maintain brain functions. CRmice produced higher levels

of essential brain metabolites in a shorter period after a meal and sustained the levels for

an extended period, while maintaining a lower level of glucose utilization. These early brain

metabolism changes in the CRmice might play a critical role for neuroprotection in aging.

Understanding the interplay between dietary intervention and postprandial metabolic

responses from an early age may have profound implications for impeding brain aging

and reducing risk for neurodegenerative disorders.

Keywords: caloric restriction, postprandial brain metabolism, metabolomics, neurotransmitters, aging,

neurodegeneration, metabolic plasticity
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INTRODUCTION

Caloric restriction (CR), without malnutrition, has been
demonstrated repeatedly to extend lifespan in various species
(1). A large body of evidence shows that CR protects brain
functions with age, preserves memory in older adults and aging
mice, and that CR-treated animals had lower incidence of
age-related neurodegenerative disorders, including Alzheimer’s
disease (2, 3). In particular, the protective mechanism of CR in
aging has been suggested to be associated with preservation of
neuronal activity, brain metabolic and vascular functions, white
matter integrity (WMI), and mitigation of oxidative stress and
neuroinflammation (4–10).

The impacts of CR on brain function at an early age are
largely unexplored, however. We were interested to know if CR
also made significant effects in young adult mice that might be
associated with the neuroprotection seen with aging, including
metabolites related to neurotransmitters, WMI, glycolysis, and
inflammation. Further, the metabolic changes induced by
CR may also be postprandial time-dependent. Recent studies
demonstrated that individuals with CR had significant differences
in transient, postprandial metabolic flexibility, and turnover
compared to the control groups (11–13). Therefore, in addition
to the fundamental, long-term changes, it will also be important
to identify the energy production at different postprandial stages.

In this study, our goal was to identify the brain metabolic
changes at transient (2 h) and steady (6 h) postprandial states
between young mice fed with CR or ad libitum (AL; free eating).
We used metabolomics profiling to determine the levels of
metabolites of interest. We focused on the brain regions that are
highly associated with cognitive functions in rodents, including
cerebral cortex and hippocampus. We hypothesized that CR
may have significant effects on postprandial brain metabolism in
young mice.

MATERIALS AND METHODS

Animals
We obtained male C57BL/6N mice from the National Institute
of Aging (NIA) Caloric Restriction Colony with groups of young
adult mice (5–6 months of age) (14) fed with either AL or CR
diet (N = 14 for each group). The 40% CR was administrated
to the animals by week 16 and the diet was continued over the
lifetime. The vitamin-fortified NIH-31 (NIH-31 fortified) diet fed
to CR mice provided 60% of the calories and additional vitamins
supplement consumed by ad libitum mice. After arriving at our
facilities, mice were housed individually (1 mouse per cage) in
a specific pathogen-free facility. The CR mice were fed a pellet
of the CR diet between 7 a.m. and 9 a.m. everyday. The mice
were situated for 3–4 weeks before sending for brain extracts.
All experimental procedures were performed according to NIH
guidelines and approved by the Institutional Animal Care and
Use Committee (IACUC) at the University of Kentucky (UK).

Metabolomics Profiling
Brain tissue from the cerebral cortex and hippocampus was
extracted and homogenized for metabolic profiling. Half of the

group (N = 7) was subjected under 2-h and the other half under
6-h postprandial brain tissue collection. Brain samples were
sent to Metabolon Inc. for biochemical profiling and statistical
analysis. Metabolon’s standard solvent extraction method was
used to prepare the samples, which were then equally split for
analysis via liquid chromatography/mass spectrometry (LC/MS)
or gas chromatography/mass spectrometry (GC/MS) using their
standard protocol (15).

Mass Spectrometry Analysis
Non-targeted UPLC-MS/MS and GC-MS analyses were
performed at Metabolon, Inc. The UPLC/MS/MS portion of
the platform incorporates a Waters Acquity UPLC system
and a Thermo-Finnegan LTQ mass spectrometer, including
an electrospray ionization (ESI) source and linear ion-trap
(LIT) mass analyzer. Aliquots of the vacuum-dried sample were
reconstituted, one each in acidic or basic LC-compatible solvents
containing 8 or more injection standards at fixed concentrations
(to both ensure injection and chromatographic consistency).
Extracts were loaded onto columns (Waters UPLC BEH C18-2.1
× 100mm, 1.7µm) and gradient-eluted with water and 95%
methanol containing 0.1% formic acid (acidic extracts) or
6.5mM ammonium bicarbonate (basic extracts). The instrument
was set to scan 99–1,000 m/z and alternated between MS and
MS/MS scans.

Samples destined for analysis by GC-MS were dried under
vacuum desiccation for a minimum of 18 h prior to being
derivatized using bis(trimethylsilyl)trifluoroacetamide (BSTFA)
as described (16). Derivatized samples were separated on a 5%
phenyldimethyl silicone column with helium as carrier gas and a
temperature ramp from 60◦ to 340◦C within a 17-min period. All
samples were analyzed on a Thermo-Finnigan Trace DSQ fast-
scanning single-quadrupole MS operated at unit mass resolving
power with electron impact ionization and a 50–750 atomic mass
unit scan range. The instrument is tuned and calibrated for mass
resolution and mass accuracy daily.

Compound Identification, Quantification, and

Data Curation
Metabolites were identified by automated comparison of the ion
features in the experimental samples to a reference library of
chemical standard entries that included retention time,molecular
weight (m/z), preferred adducts, and in-source fragments as
well as associated MS spectra and curated by visual inspection
for quality control using software developed at Metabolon
(17). Identification of known chemical entities was based on
comparison to metabolomic library entries of more than 2,800
commercially-available purified standards. Subsequent QC and
curation processes were utilized to ensure accurate, consistent
identification and to minimize system artifacts, mis-assignments,
and background noise. Library matches for each compound
were verified for each sample. Peaks were quantified using area
under the curve. Raw area counts for each metabolite in each
sample were normalized to correct for variation resulting from
instrument inter-day tuning differences by the median value
for each run-day, therefore setting the medians to 1.0 for each
run. This preserved variation between samples, but allowed
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metabolites of widely different raw peak areas to be compared on
a similar graphical scale.

Bioinformatics
The LIMS system encompasses sample accessioning, preparation,
instrument analysis and reporting, and advanced data analysis.
Additional informatics components include data extraction
into a relational database and peak-identification software;
proprietary data processing tools for QC and compound
identification; and a collection of interpretation and visualization
tools for use by data analysts. The hardware and software systems
are built on a web-service platform utilizing Microsoft .NET
technologies, which run on high-performance application servers
and fiber-channel storage arrays in clusters to provide active
failover and load balancing.

Data Analysis
Log transformations and imputation of missing values with the
minimum observed values for each metabolite was performed.
Welch’s two-tailed t-test to was used to identify biochemicals that
were significantly different between groups. Levels of statistical
significance were reached when p < 0.05.

RESULTS

Table 1 summarizes the category and function of the metabolites
that we found significantly different between the CR and
AL mice. At the 2-h postprandial time-point, CR mice
had significantly higher levels in neurotransmitters, neuronal
integrity markers, essential fatty acids, and biochemicals
associated with carnitine metabolism compared to the AL mice
(Table 2, column 1; CR vs. AL at 2-h). As for neurotransmitters,
the CR mice had significantly higher levels of glutamate,
N-acetylglutamate, glycine, and serine (18, 19). Glutamate is
an excitatory neurotransmitter and associated with cognitive
function (20); glycine and serine (a precursor of glycine)
are inhibitory neurotransmitters (21). Glycine is also anti-
inflammatory, cytoprotective, and immunomodulating (20).

N-acetyl-aspartate (NAA) and N-acetyl-aspartyl-glutamate
(NAAG) were also found significantly higher in the CR mice at
the 2-h time-point. NAA and NAAG have been used as markers
for neuronal integrity as they are most abundant in neurons and
are also used as an index of neuron quantity (19); the reduction of
these two metabolites have been associated with brain aging and
neurodegenerative disorders (22).

CRmice also showed higher levels in dihomolinoleate (20:3n3
or n6), docosapentaenoate (n3 DPA; 22:5n3), docosapentaenoate
(n6 DPA; 22:5n6), and docosahexaenoate (DHA; 22:6n3) at the
2-h time-point. These are omega-3, polyunsaturated fatty acids
(23). DHA helps with cell membrane structure, assists in normal
growth and development, and participates in key pathways of the
immune system (24). DPA is often considered the third most
prevalent omega-3 fatty acid found in fish oil, following DHA
and EPA (eicosapentaenoate) (25). Carnitine-related metabolites,
such as carnitine, palmitoylcarnitine, stearoylcarnitine, and
oleoylcarnitine were also higher in the CRmice (26). As carnitine
participates in the transport of long-chain fatty acids into the

TABLE 1 | Global list of biochemicals mentioned and their roles.

Roles Biochemical References

Neurotransmitters and

neuronal integrity

markers

Glutamate (18–22)

Glycine

Serine

N-Acetylglutamate (NAG)

N-Acetylaspartate (NAA)

N-Acetylaspartyl-glutamate (NAAG)

Essential fatty acids Dihomolinolenate (20:3n3 or n6) (23–25)

Docosapentaenoate (n6 DPA; 22:5n6)

Docosapentaenoate (n3 DPA; 22:5n3)

Docosahexaenoate (DHA; 22:6n3)

Carnitine-related

metabolites

Carnitine (26, 27)

Palmitoylcarnitine

Stearoylcarnitine

Oleoylcarnitine

Glucose metabolism

and pentose

phosphate pathway

Glucose (28)

Glucose-6-Phosphate

Fructose-6-Phosphate

Lactate

Alanine

Isobar: Ribulose-5-Phosphate,

Xyulose-5-phosphate

mitochondrial matrix, an increase in these metabolites might
indicate facilitation in this transport function and reduced
oxidative stress (27).

Interestingly a similar pattern of metabolite increases were
not found in the AL mice until the 6-h postprandial time-
point (Table 2, column 2; AL, 6-h vs. 2-h). Moreover, some of
the metabolites, though increased, did not reached significance,
such as glutamate, N-acetylglutamate, NAA, NAAG. The results
suggest that AL mice may not be as effective in producing these
metabolites after a meal, especially those related to improving
neuronal integrity.

We further examined the metabolic profile between CR
and AL mice at 6-h time-point. At this stage, no significant
differences were found in the levels of neurotransmitters,
essential fatty acids and glycolytic intermediates between the
two groups, except dihomolinolenate (20:3n3 or n6) and
docosapentaenoate (n3 DPA; 22:5n3) (Table 2, column 3; CR
vs. AL at 6-h). As these metabolites had an early rise (at
2-h) in the CR group and were followed by the AL group
at 6-h, the results indicated that CR mice might have been
able to maintain high levels of these metabolites over the 4-h
postprandial period.

On the other hand, we found that CR mice had maintained
stable levels of glycolytic metabolites over the postprandial period
(Table 3). Specifically, glucose-6-phosphate (G6P), fructose-6-
phosphate, and lactate stayed constant in the CR mice, whereas
they significantly increased at 6-h in the AL mice; glucose was
also higher in AL mice at 6-h compared to 2-h, but did not
reach significance. A similar pattern was found with alanine, an
amino acid produced from pyruvate (a product of glycolysis), as
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TABLE 2 | Changes in postprandial brain metabolism between CR and AL mice.

Pathway Biochemical Column 1 Column 2 Column 3

2 h Fold

change

2 h 6 h Fold

change

6 Hour Fold

change

CR AL CR p-value AL AL 6 h p-value CR AL CR p-value

AL 2 h AL

Neurotransmitters

and neuronal

metabolites

Glutamate 1.07± 0.092 0.921 ± 0.113 1.16 0.002 0.921 ± 0.113 1.01 ± 0.087 1.1 0.056 1.01 ± 0.068 1.01 ± 0.087 1 0.972

N-acetylglutamate 1.12 ± 0.087 0.911 ± 0.224 1.23 0.005 0.911 ± 0.224 0.997 ± 0.048 1.09 0.137 0.977 ± 0.118 0.997 ± 0.048 0.98 0.754

Glycine 0.987 ± 0.125 0.828 ± 0.219 1.19 0.037 0.828 ± 0.219 1.02 ± 0.120 1.23 0.021 0.943 ± 0.097 1.02 ± 0.120 0.92 0.444

Serine 1.05 ± 0.082 0.852 ± 0.201 1.23 0.007 0.852 ± 0.201 1.03 ± 0.131 1.21 0.017 0.954 ± 0.135 1.03 ± 0.131 0.93 0.368

N-acetylaspartate

(NAA)

1.08 ± 0.036 0.919 ± 0.144 1.18 0.001 0.919 ± 0.144 0.995 ± 0.066 1.08 0.092 0.995 ± 0.094 0.995 ± 0.066 1 0.961

N-acetyl-aspartyl-

glutamate

(NAAG)

1.34 ± 0.077 0.884 ± 0.288 1.51 0.0005 0.884 ± 0.288 1.11 ± 0.355 1.26 0.057 0.974 ± 0.082 1.11 ± 0.355 0.88 0.449

Essential fatty

acids

Dihomolinolenate

(20:3n3 or n6)

0.900 ± 0.058 0.727 ± 0.156 1.24 0.014 0.727 ± 0.156 1.29 ± 0.173 1.78 2.76E-07 1.04 ± 0.107 1.29 ± 0.173 0.81 0.027

Docosapentaenoate

(n6 DPA; 22:5n6)

0.873 ± 0.076 0.669 ± 0.130 1.3 0.014 0.669 ± 0.130 0.993 ± 0.046 1.48 0.0008 1.05 ± 0.245 0.993 ± 0.046 1.05 0.864

Docosapentaenoate

(n3 DPA; 22:5n3)

1 ± 0.109 0.779 ± 0.154 1.28 0.038 0.779 ± 0.154 1.38 ± 0.275 1.77 5.86E-05 0.896 ± 0.176 1.38 ± 0.275 0.65 0.001

Docosahexaenoate

(DHA; 22:6n3)

0.985 ± 0.147 0.690 ± 0.134 1.43 0.004 0.690 ± 0.134 1.11 ± 0.183 1.6 0.0005 0.939 ± 0.212 1.11 ± 0.183 0.85 0.155

Carnitine-related

metabolites

Carnitine 1.01 ± 0.164 0.860 ± 0.159 1.17 0.045 0.860 ± 0.159 1.06 ± 0.143 1.23 0.015 0.925 ± 0.086 1.06 ± 0.143 0.87 0.132

Palmitoylcarnitine 0.906 ± 0.168 0.629 ± 0.301 1.44 0.015 0.629 ± 0.301 1.14 ± 0.266 1.81 0.0013 1.05 ± 0.213 1.14 ± 0.266 0.92 0.717

Stearoylcarnitine 1.09 ± 0.122 0.688 ± 0.333 1.58 0.003 0.688 ± 0.333 1.18 ± 0.309 1.71 0.002 1.06 ± 0.288 1.18 ± 0.309 0.9 0.595

Oleoylcarnitine 0.997 ± 0.188 0.640 ± 0.334 1.56 0.006 0.640 ± 0.334 1.22 ± 0.364 1.91 0.0009 1.13 ± 0.292 1.22 ± 0.364 0.93 0.732

Column 1 shows the comparison between the CR and AL at 2-h. Column 2 shows the comparison between AL mice at the 6-h vs. 2-h time point. Colum 3 shows comparison between the CR and AL at 6-h. Representative data

are shown as fold change between groups. The color-coded boxes indicate the change of direction of the metabolites between groups. Data are Mean ± SD. Red and green shaded cells indicate p ≤ 0.05 (red specifies that the mean

values are significantly higher for that comparison; green values significantly lower).
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TABLE 3 | Differences of glycolysis- and pentose phosphate-related metabolites in the young mice.

Biochemical CR Fold

change

AL Fold

change

2 h 6 h 6 h

2 h

p-value 2 h 6 h 6 h

2 h

p-value

Fructose-6-Phosphate 0.928 ± 0.224 0.993 ± 0.209 1.07 0.597 0.867 ± 0.291 1.16 ± 0.232 1.34 0.019

Glucose 0.987 ± 0.213 0.867 ± 0.311 0.88 0.391 0.998 ± 0.303 1.50 ± 0.785 1.5 0.138

Glucose-6-Phosphate 0.965 ± 0.126 0.994 ± 0.222 1.03 0.945 0.860 ± 0.310 1.29 ± 0.279 1.5 0.005

Lactate 0.966 ± 0.074 0.904 ± 0.124 0.94 0.353 0.964 ± 0.215 1.14 ± 0.111 1.18 0.026

Alanine 0.960 ± 0.122 0.913 ± 0.127 0.95 0.448 0.882 ± 0.143 1.06 ± 0.084 1.2 0.009

Isobar: Ribulose-5-Phosphate, Xyulose-5-phosphate 1.14 ± 0.192 0.877 ± 0.158 0.77 0.058 0.927 ± 0.425 1.20 ± 0.344 1.29 0.030

Representative data are shown as fold change between groups. Data are Mean ± SD. The color-coded boxes indicated the direction change of the metabolites between the 2-h and

6-h time points within groups. Red shaded cells indicate p ≤ 0.05 and specify that the mean values are significantly higher for that comparison.

well as metabolites associated with pentose phosphate pathway
(PPP), including arabitol and xyulose-5-phosphate and ribulose-
5-phosphate (28).

DISCUSSION

Caloric restriction is perhaps the most studied intervention
that slows down aging and extends longevity since the 1930s
(29). CR has been shown to enhance health span and retard
aging phenotypes in various systems, including the brain (30).
In this study, we further demonstrated that CR also has
significant impacts in young animals, especially the distinct
postprandial pattern in brain metabolism compared to AL
controls. CR mice produced higher levels of many metabolites
in a shorter period after a meal, and sustained the levels
for an extended period of time. The metabolites included
neurotransmitters, neurotrophic factors, essential fatty acids,
and carnitine-related metabolism (related to immune function
and reduced oxidative stress). The AL mice did not show the
similar increases in essential fatty acids and carnitine metabolism
until the 6-h time-point, but failed to show increases in
neurotransmitters and neuronal integrity markers at any time-
point. The findings suggest that CR mice might produce these
metabolites more effectively after a meal, especially those related
to cognitive functions.

On the other hand, CR mice showed constant lower levels of
glucose utilization compared to AL mice. This is consistent with
a previous findings using PET-18FDG scans that young CR mice
had lower glucose uptake in the brain (6). Other studies show
that lower glucose uptake was accompanied by higher fatty acids
utilization (e.g., ketone bodies), and that this brain metabolic
change is preserved with age (7).

Our findings are consistent with Dhahbi et al.’s observations of
postprandial responses in metabolic enzyme level induced by CR
(11). They showed that CR caused a reduced enzymatic capacity
for glycolysis which is consistent with our findings that glycolysis
is not up regulated after feeding in CR mice. Further, they
found increased activity of glutaminase, an enzyme that converts
glutamine to glutamate. This is in line with our observation that
CR mice had higher postprandial glutamate levels compared to
the ALmice. Collectively, our results are consistent with previous

findings that CR altered postprandial patterns in glycolysis and
neurotransmitter production.

The findings from the current study led us to speculate
that the early changes we saw in the brain metabolites might
be associated with the neuroprotective factors seen in aged
animals. Indeed, old animals with CR have been shown to have
preserved glutamate-glutamine neurotransmission cycling (5),
cell structure of white matter (6), cognitive functions (22), and
reduced neuroinflammation and oxidative stress (31), and lower
incidence for Alzheimer’s disease (32, 33). This is also in line
with a previous report that early enhancement of cerebral blood
flow (CBF) in young mice is associated with CBF preservation
in aging mice (8). In other words, the protective effects of CR
seen in the aging animals may be manifested as an enhancing
factor in young mice. As brain integrity plays a major role in
determining lifespan (34), our findings imply the brain metabolic
changes observed in the young CR mice may be a critical
factor that contributes to the extended lifespan and health
span phenomenon that has been repeatedly observed under
CR condition.

A limitation of the present study is that we only used male
mice; therefore, we were not able to investigate sex effects in the
study. Another limitation is that we used a long-lived rodent
model. Recent studies have shown that the lifespan response to
CR may vary widely in mice from different genetic backgrounds
(35). In some cases, CR shortened the lifespan in inbred mice.
It will be important in the future to determine if the beneficial
effects of CR observed in the young mice in the current study are
still warranted in those short-lived inbred mice. Future studies
will also need to look into the mechanism of the postprandial
turnover in the CR mice.

In conclusion, we demonstrated that CR induces distinct
postprandial responses in metabolites that are essential to
maintain brain functions, while also maintaining a lower level
of glycolysis. Our findings are consistent with literature that
CR enhances postprandial metabolic flexibility and turnover.
These early changes in CR mice might play a critical role for
neuroprotection in aging. Understanding the interplay between
dietary intervention and postprandial metabolic responses from
an early age may have profound implications for impeding brain
aging and reducing the risk for neurodegenerative disorders.
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