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Hyperhomocysteinemia as a Risk
Factor for Vascular Contributions to
Cognitive Impairment and Dementia
Brittani R. Price, Donna M. Wilcock and Erica M. Weekman*

Department of Physiology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States

Behind only Alzheimer’s disease, vascular contributions to cognitive impairment and
dementia (VCID) is the second most common cause of dementia, affecting roughly
10–40% of dementia patients. While there is no cure for VCID, several risk factors
for VCID, such as diabetes, hypertension, and stroke, have been identified. Elevated
plasma levels of homocysteine, termed hyperhomocysteinemia (HHcy), are a major, yet
underrecognized, risk factor for VCID. B vitamin deficiency, which is the most common
cause of HHcy, is common in the elderly. With B vitamin supplementation being a
relatively safe and inexpensive therapeutic, the treatment of HHcy-induced VCID would
seem straightforward; however, preclinical and clinical data shows it is not. Clinical trials
using B vitamin supplementation have shown conflicting results about the benefits of
lowering homocysteine and issues have arisen over proper study design within the
trials. Studies using cell culture and animal models have proposed several mechanisms
for homocysteine-induced cognitive decline, providing other targets for therapeutics.
For this review, we will focus on HHcy as a risk factor for VCID, specifically, the different
mechanisms proposed for homocysteine-induced cognitive decline and the clinical trials
aimed at lowering plasma homocysteine.

Keywords: hyperhomocysteinemia, vascular cognitive impairment and dementia, B vitamins, homocysteine,
dementia

INTRODUCTION

Vascular contributions to cognitive impairment and dementia (VCID) are defined as the conditions
arising from vascular brain injuries that induce significant changes to memory, thinking, and
behavior. It is the leading cause of dementia behind only Alzheimer’s disease (AD); however, there
is increasing awareness of the co-morbidity of VCID and AD (Bowler et al., 1998; Zekry et al., 2002;
Langa et al., 2004; Jellinger and Attems, 2010). Roughly 60% of AD patients have VCID, and it is
thought that vascular injuries act as an extra “hit” to the brain that lowers the threshold for cognitive
impairment in persons with AD pathology (Schneider and Bennett, 2010; Vemuri and Knopman,
2016). Also, it is suggested that patients with both AD pathology and VCID have a shorter time
to dementia and their rate of cognitive decline is faster (Schneider and Bennett, 2010; Vemuri and
Knopman, 2016). Recent studies have also shown that vascular injury precedes AD pathologies,
highlighting a role for the vasculature in AD progression (Canobbio et al., 2015; Janota et al., 2016).

While there is no cure for VCID, several studies have identified risk factors that can be modified
to reduce risk of developing VCID. A major, yet underrecognized, modifiable risk factor for VCID
is hyperhomocysteinemia (HHcy). Defined as elevated plasma levels of homocysteine, a non-
protein forming amino acid, HHcy has been identified as a risk factor for cardiovascular disease,
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stroke, VCID, and AD (Graham et al., 1997; Bostom et al., 1999;
Eikelboom et al., 1999; Beydoun et al., 2014). Studies have shown
that serum homocysteine levels are inversely related to cognitive
function in patients with dementia and elevated levels are more
common among VCID patients than among AD patients (Miller
et al., 2002; Clarke et al., 2003). Elevated plasma homocysteine is
also associated with hippocampal atrophy, white matter lesions,
and lacunar infarcts (Vermeer et al., 2002; Firbank et al., 2010).
In the clinic, it is clear that HHcy plays a role in VCID; however,
the mechanisms of homocysteine-induced cognitive impairment
and the clinical implications of reducing homocysteine remain
unclear. This review paper will focus on proposed mechanisms
of homocysteine in the brain, and the clinical trials aimed at
lowering homocysteine levels.

HOMOCYSTEINE METABOLISM

Homocysteine is produced in all cells and involved in the
metabolism of cysteine and methionine (Selhub, 1999). Normal
levels of homocysteine range between 5 and 15 µmol/L. Levels
between 15 and 30 µmol/L are considered mild, levels at
30–100 µmol/L are moderate and levels above 100 µmol/L
are considered severe HHcy. During normal metabolism, ATP
activates methionine to form S-adenosylmethionine (SAM).
SAM is a methyl donor to several different receptors and forms
S-adenosylhomocysteine (SAH) as a by-product of this methyl
reaction. SAH can then be hydrolyzed to form homocysteine.
Homocysteine can also go through two different re-methylation
processes to form methionine again. In one pathway, folate
is reduced to tetrahydrofolate which is then converted to
5, 10-methylenetetrahydrofolate. Methylenetetrahydrofolate
reductase (MTHFR) reduces 5, 10-methylenetetrahydrofate
to 5-methyltetrahydrofolate. Finally, 5-methyltetrahydrofolate
and the essential cofactor vitamin B12 add a methyl group
to homocysteine to form methionine again. In an alternative
pathway, betaine–homocysteine S-methyltransferase (BHMT)
uses betaine synthesized from choline as a methyl group to
convert homocysteine back to methionine.

Homocysteine can also go through a transsulfuration pathway
to form cysteine. Serine can be enzymatically added to
homocysteine by cystathionine beta synthase (CBS) and vitamin
B6 to form cystathionine (Locasale, 2013). Cystathionine can
then be cleaved by cystathionine gamma lyase (CGL) to form
cysteine. While cysteine can be converted back to cystathionine,
cystathionine cannot be converted to homocysteine again. The
homocysteine metabolic pathway is shown in Figure 1.

MECHANISMS OF
HOMOCYSTEINE-INDUCED COGNITIVE
IMPAIRMENT

Posttranslational Modification of
Proteins
As mentioned above, homocysteine is produced in all cells;
however, its conversion to cysteine or back to methionine does

not. The brain lacks both CGL and BHMT, making it dependent
on the folate cycle for re-methylation of homocysteine to
methionine (Sunden et al., 1997). While this makes the brain
especially vulnerable to raised levels of homocysteine, the
mechanisms of homocysteine toxicity in the brain remain
unclear, with several different mechanisms proposed. Some
studies suggest the post-translational modification of proteins
by homocysteine, termed homocysteinylation, contributes to
its toxicity, especially since the degree of homocysteinylation
is proportional to increased level of plasma homocysteine
(Jakubowski, 1999; Jakubowski et al., 2000; Perla-Kajan et al.,
2007). In the presence of adenosine triphosphate, methionyl-
tRNA synthase catalyzes the conversion of homocysteine
to homocysteine-thiolactone, which has been shown to
homocysteinylate proteins and alter their functions. Specifically,
homocysteine thiolactone acts as a Na/K ATPase inhibitor in
the hippocampus and cortex of rat brain cells, thus changing
the membrane potential of neurons (Rasic-Markovic et al.,
2009).

Oxidative Stress
Other studies suggest homocysteine induces cellular damage
via oxidative stress. As mentioned above, during normal
homocysteine metabolism, cysteine is produced. Cysteine is a
precursor for glutathione, which is a tripeptide that ultimately
reduces reactive oxygen species. Without homocysteine
conversion to cysteine, either due to CBS mutations or a diet
lacking in vitamin B6, glutathione levels decrease, leading to
increased reactive oxygen species and ultimately oxidative
stress. Homocysteine metabolism is also regulated by the
redox potential in a cell since several enzymes involved in its
metabolism are regulated by the oxidative status (Zou and
Banerjee, 2005). In one instance, the activity of methionine
synthase is lowered when reactive oxygen species are high
(Zou and Banerjee, 2005). Studies have also shown an
increase in neurodegeneration due to homocysteine-related
oxidative stress. In cultured embryonic cortical neurons and
differentiated SH-SY-5Y human neuroblastoma cells grown in
folate free media, there was an increase in cytosolic calcium,
reactive oxygen species, and apoptosis (Ho et al., 2003).
A significant increase in homocysteine was also found and
inhibiting formation of homocysteine prevented the increase
in reactive oxygen species. The increase in reactive oxygen
species due to HHcy also alters smooth muscle function
and promotes proliferation of smooth muscles cells (Welch
and Loscalzo, 1998). Homocysteine has also been shown to
inhibit endothelial nitric oxide synthase (eNOS) activity in
cultured aortic endothelial cells from adult mice (Jiang et al.,
2005) and humans (Jiang et al., 2005). In a genetic mouse
model of HHcy where the CBS gene is absent, homozygote
knockout mice show reduced eNOS activity compared to
wildtype mice (Jiang et al., 2005). While the decreased
activity of eNOS can affect oxidative stress, it also inhibits
endothelial-dependent vasodilation. Taken together with the
changes in vascular smooth muscle cells, these data provide
further insight into how homocysteine is a risk factor for
VCID.
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FIGURE 1 | Homocysteine metabolism: homocysteine is converted to methionine or cysteine via remethylation or transsulfuration pathways. Dimethylglycine (DMG),
betaine-homocysteine S-methyltransferase (BHMT), methylenetetrahydrofolate reductase (MTHFR).

AMPA and NMDA Receptors
Another proposed mechanism for homocysteine
neurodegeneration involves homocysteine’s role as an
agonist for AMPA (both metabotropic and ionotropic) and
NMDA receptors. Homocysteic acid, an oxidative product
of homocysteine that is released in response to excitatory
stimulation, acts an excitatory neurotransmitter by activating
the NMDA receptor (Cuenod et al., 1990). Activation of both
AMPA and NMDA receptors leads to increased intracellular
calcium, which in turn leads to activation of several kinases
(Robert et al., 2005). Overstimulation of these receptors due
to HHcy can then lead to increased free radicals and caspases,
which leads to apoptosis (Mattson and Shea, 2003) and
neurodegeneration. Using an NMDA antagonist can block the
neurotoxic effects of homocysteic acid in the brain (Olney et al.,
1987).

Cerebrovascular
The study of animal models has also lent insight into the
mechanisms of homocysteine toxicity and its role in VCID.
Several animal models have shown that high plasma levels
of homocysteine are sufficient to cause cognitive deficits and
vascular adverse events in the brain. Induction of HHcy in an
animal model can be achieved via genetic manipulation or diet.
Genetic manipulation of either CBS or MTHFR can produce
mouse models of HHcy. In humans, deficiencies in CBS result in

elevated plasma levels of homocysteine and thrombosis and are
the most common cause of hereditary HHcy. CBS± heterozygote
mice have a 50% lower CBS activity compared to wildtype mice
and develop mild HHcy (Watanabe et al., 1995). These mice show
endothelial damage, thickened cerebral arteriolar walls, mild
hypertension, and blood–brain barrier dysfunction (Baumbach
et al., 2002; Weiss et al., 2003; Kamath et al., 2006). In humans,
there are several polymorphisms in MTHFR that produce HHcy
and neurological conditions such as a progressive demyelinating
neuropathy and cognitive impairment (Clayton et al., 1986;
Hyland et al., 1988; Surtees et al., 1991). Chen et al. (2001)
deleted the MTHFR gene to create a mouse model of HHcy
that exhibits motor and gait abnormalities within 5 weeks after
birth. MTHFR−/− homozygotes also present with some loss of
function in cerebral vessels and abnormal lipid deposition in the
aorta and disruption of the laminar structure of the cerebellum
with no obvious changes in the cortex or cerebrum (Neves et al.,
2004).

Unlike MTHFR and CBS knockout mice, dietary induction
of HHcy allows for age related HHcy to be studied. Dietary
induction of HHcy in mice and rats can be achieved through
a reduction in the essential cofactors needed for homocysteine
conversion (folate, vitamins B6, and B12) or enrichment in
methionine, which increases the conversion of methionine to
homocysteine. A combination of these diets or even a diet of
increased homocysteine can also be used to induce HHcy. Troen
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et al. (2008) showed that feeding mice a B vitamin deficient
diet resulted in cognitive impairment on the Morris water maze
and rarefaction of brain capillaries. In another animal model, 6-
month-old Sprague–Dawley rats were placed on a diet deficient in
folate for 8 weeks. By the end of the 8 weeks, the rats on the folate
deficient diet had increased homocysteine levels, ultrastructural
changes to cerebral capillaries, endothelial damage, swelling of
pericytes, basement membrane thickening, and fibrosis (Kim
et al., 2002). Cognitive impairments, decreased acetylcholine in
the brain and microhemorrhages were seen in rats that were fed
a diet high in homocysteine for 5 or 15 months (Pirchl et al.,
2010).

Our lab has also recently developed a model of VCID
by inducing HHcy in order to investigate the mechanisms
of homocysteine-induced cognitive impairment. We placed
3-month-old C57BL6 mice on a combination diet that is deficient
in folate and vitamins B6 and B12 and enriched in methionine
(Sudduth et al., 2013) for 3 months. At the end of the 3 months,
plasma homocysteine levels reached moderate levels in the mice
on the homocysteine diet (82.93 ± 3.561 µmol/L compared to
5.89 ± 0.385 µmol/L in the control mice). When tested on
the radial arm water maze for behavioral deficits, these mice
exhibited significant cognitive impairments in spatial memory.
Prussian blue staining and magnetic resonance imaging showed
microhemorrhages were the main cerebrovascular pathology
induced by the HHcy diet. The mice on the HHcy diet
also had an increase in several pro-inflammatory cytokines
along with an increase in matrix metalloproteinase 9 (MMP9)
activity. MMP9 has been shown to degrade tight junctions,
leading to microhemorrhages and dystroglycans, and the pro-
inflammatory cytokines, tumor necrosis factor alpha (TNFα),
and interleukin 1 beta (IL-1β), stimulate its transcription (Galis
et al., 1994; Vecil et al., 2000; Michaluk et al., 2007; Candelario-
Jalil et al., 2011; Klein and Bischoff, 2011). Previous studies
have also shown homocysteine can induce MMP9 release from
mouse cerebral microvessel endothelial cells (Shastry and Tyagi,
2004). Based on this data, another possible mechanism for
homocysteine-induced cognitive impairment could be the pro-
inflammatory mediated increase in MMP9 leading to tight
junction degradation, microhemorrhages, and, finally, cognitive
impairment.

Astrocytes
In addition to the pathologies listed above, we have also shown
that astrocytic end-feet are disrupted in the mice on the HHcy
diet (Sudduth et al., 2017). In the brain, astrocytes make up
50% of the cells and their processes, termed astrocytic end-feet,
sheath arterioles, and capillaries. The main function of astrocytic
end-feet is to maintain ionic and osmotic homeostasis in the
brain (Simard and Nedergaard, 2004). To do this, astrocytes
have aquaporin four water channels and several potassium
channels located at their end-feet. In our mice on the HHcy
diet, we found a significant decrease in these channels, as
well as other structural markers located at the end-foot. These
decreases in the end-foot channels occur after 10 weeks on
the HHcy diet. Cognitive deficits and microhemorrhages are
also seen starting at 10 weeks on diet. Interestingly, increases

in the pro-inflammatory cytokines, TNFα, and IL-1 β, occur
after only 6 weeks on diet. We had also previously shown
that MMP9 was significantly increased in mice on the HHcy
diet (Sudduth et al., 2013). Taken together, we hypothesize
that another mechanism of homocysteine-induced cognitive
impairment involves the inflammatory-MMP9 pathway. In our
hypothesis, homocysteine increases TNFα and IL-1β expression,
which in turn activates MMP9, which degrades dystroglycans,
a key structural component that anchors the astrocytic end-
foot to the basal lamina of the vessels. This disruption of the
astrocytic end-foot leads to impaired ionic and osmotic buffering
and eventual cognitive impairment.

While several mechanisms of homocysteine-induced cognitive
impairment and neurodegeneration have been proposed and
discussed here, it is unlikely that homocysteine acts through only
one of these mechanisms. Homocysteine may act through several,
if not all of these mechanisms. It is also unclear whether the high
levels of homocysteine or the lack of B vitamins is the main cause
behind the cognitive impairment seen in hyperhomocysteinemic
patients. Discussed next are the clinical implications of HHcy
and the potential therapeutics tested in clinical trials to lower
homocysteine levels and improve cognition.

HYPERHOMOCYSTEINEMIA IN THE
CLINICAL SETTING

Extensive clinical data support the role of HHcy as a risk
factor for VCID. Given that normal and abnormal values are
set by individual clinical laboratories, mild-moderate HHcy is
loosely defined by clinical standards (Moll and Varga, 2015).
However, plasma homocysteine concentrations ranging from
15 and 100 µmol/L are uniformly considered to be indicative
of clinically relevant HHcy. Gibson et al. (1964) reported
vascular anomalies in patients with homocystinuria (elevated
concentration of homocysteine in both plasma and urine),
and McCully (1969) introduced his homocysteine hypothesis
which connected HHcy with an increased risk of atherosclerosis
(Abraham and Cho, 2010). To date, HHcy continues to serve
as a widely recognized risk factor for coronary artery disease
(CAD), peripheral vascular disease, myocardial infarction (MI),
and cerebrovascular disease (CVD; Maron and Loscalzo, 2009).
Of particular importance here is the association between HHcy
and CVD. CVD can manifest as a stroke, white matter disease,
cerebral large vessel disease (atherosclerosis), and cerebral small
vessel disease (arteriosclerosis), all of which can independently
induce cognitive impairment ranging from subtle deficits to
frank dementia (Troen et al., 2008; Maron and Loscalzo,
2009; Hainsworth et al., 2016). Furthermore, HHcy has been
associated with hippocampal and white matter atrophy in
older subjects with mild hypertension, as well as an increased
rate of hippocampal atrophy and cognitive decline in elderly
patients (Clarke et al., 1998; Firbank et al., 2010). As suggested
by the variety of cellular actions of homocysteine described
above, there is no shortage of candidate mechanisms by
which HHcy induces cognitive impairment despite known
etiologies.
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Hyperhomocysteinemia vs.
Homocystinuria
Both genetic mutations and dietary vitamin deficiencies can affect
homocysteine levels resulting in HHcy. Several polymorphisms
(notably C677T and A1298C) have been identified in the
MTHFR gene in humans, which can induce severe HHcy
(>100 µmol/L, termed homocystinuria) by limiting conversion
of homocysteine back to methionine (Moll and Varga, 2015;
Hainsworth et al., 2016). While rare, these polymorphisms
induce progressive demyelinating neuropathy and cognitive
impairment (Clayton et al., 1986; Hyland et al., 1988; Surtees
et al., 1991). That being said, deficiencies in CBS, the
rate-limiting enzyme of the aforementioned transsulfuration
pathway, are the most common cause of homocystinuria
and may result in thrombosis and low levels of cysteine
(Sacharow et al., 1993). In contrast to HHcy, homocystinuria
is a rare autosomal recessive metabolic disorder characterized
by severely elevated plasma homocysteine and subsequently
elevated urine homocysteine concentrations. Patients suffering
homocystinuria present with developmental delay, osteoporosis,
ocular abnormalities, thromoemobolic disease, and severe
premature atherosclerosis (Poloni et al., 2018). Given that less
marked elevations in plasma homocysteine (i.e., HHcy) are much
more common, homocystinuria will not be further discussed
in this review. Less marked elevations in plasma homocysteine,
referred to as HHcy, may be attributed to factors such as smoking,
aging, renal failure, and low dietary levels of folate and vitamins
B6 and B12 (Hainsworth et al., 2016).

Prevalence of B Vitamin Deficiency
As suggested, clinical mild–moderate HHcy is common,
especially in elderly patients, with the majority of cases resulting
from insufficient B vitamin status (Joosten et al., 1993; Troen
et al., 2008). The association of B vitamin status and normal
central nervous system function dates back to 1849 when
Addison reported on the “wandering mind” of patients with
pernicious anemia (Smith and Refsum, 2016). Reports of
insufficient B vitamin status with concomitant induction of HHcy
trace back to a landmark report by the Framingham Heart Study
in 1993. A cohort of 1041 elderly participants (418 men, 623
women) between the ages of 67 and 96 showed that plasma
homocysteine becomes elevated due to dietary deficiencies in B6
and folic acid and decreased absorption of B12 (Selhub, 2006;
McCully, 2007).

According to the Framingham report, daily intake of 3 mg
vitamin B6 and 400 µg of folic acid are required to prevent
elevations in plasma homocysteine concentration (Selhub, 2006;
McCully, 2007). In support of these amounts of dietary B
vitamins, the Nurses’ Health Study revealed that similar levels
of dietary B6 and folic acid prevent mortality and morbidity
from heart disease (Rimm et al., 1998; McCully, 2007). In the
United States, mandatory fortification of grains with folic acid
was authorized in 1996 and fully implemented in 1998 (Crider
et al., 2011). Prior to fortification of grain products, intakes of
B6 and folic acid were well below the recommended quantities
(McCully, 2007). By contrast, with the exception of those

partaking in a vegan diet, vitamin B12 intake is typically adequate.
However, in those >65 years of age lack of gastric acidity,
decreased intrinsic factor synthesis by gastric mucosal cells, and
history or presence of H. pylori infection may contribute to
inadequate B12 absorption (McCully, 2007). Not to mention,
the aging process itself is associated with decreased ability to
absorb B vitamins, which can lead to a gradually rising plasma
homocysteine concentration (estimated at 1 µmol/L/decade)
(McCully, 2007). Literature now suggests between 5 and 30% of
the general population, and 25% of those with vascular diseases,
to be affected by HHcy (Selhub, 2006; Peng et al., 2015; Yeh
et al., 2016). Granted, because blood homocysteine panels are
generally ordered only when patients experience a MI or stroke
without traditional risk factors, the aforementioned prevalence
of HHcy in the general population is likely skewed and possibly
underestimated.

HHcy, B Vitamin Status, and Cognition
Regardless, public significance of HHcy in the elderly population
should not be ignored given that it is easily treatable with
B vitamin fortification and serves as a modifiable risk factor
for development of cognitive decline, dementia, and AD.
A number of early cross-sectional studies relating HHcy or
insufficient B vitamin status to cognitive impairment led to
generation of the hypotheses suggesting a causal link. In effort
to address whether the hypothesis that HHcy induces cognitive
impairment is correct, a number of clinical trials have assessed
B vitamin refortification with cognitive endpoints. These vitamin
refortification trials are outlined in Table 1. Additionally, several
meta-analyses of these intervention trials have been conducted
(Wald et al., 2010; Ford and Almeida, 2012; Clarke et al., 2014).
Upon review, the general consensus suggests that homocysteine-
lowering by B vitamin refortification has no significant effect
on individual or global cognitive domains despite three trials
(FACIT, WAFACS, VITACOG) supporting a beneficial effect.
However, when interpreting the results of these trials one needs to
consider the fact that many were compromised by the challenges
of performing a cognitive clinical trial (cohort age, B vitamin
status of said cohort, trial duration, statistical power, etc.).

Limitations of Clinical Trials
As suggested, a number of factors related to trial design
and implementation must be considered. First and foremost,
the hypothesis being tested should be considered. Assuming
the hypothesis is that homocysteine-lowering supplementation
with B vitamins slows and/or prevents cognitive decline, those
randomized to the placebo arm of the trial must exhibit cognitive
decline. As reviewed in Table 1, as well as the aforementioned
meta-analyses, the majority of trials conducted fail to report
significant cognitive decline in those randomized to the placebo
arm. Meaning these trials are limited to showing only that B
vitamin treatment does not worsen cognition. Additionally, the
age range of trial participants must be considered. Referring to
the hypothesis above, if cognition is a study measure the age of
the participants should reflect the timeframe in which cognitive
decline and dementia occur. Duration of the intervention must
also be considered given that elderly individuals exhibiting
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normal cognition generally decline only by ∼0.1 points on
MMSE each year (Hainsworth et al., 2016; Smith and Refsum,
2016). Thus, duration of the intervention must be sufficient
to observe cognitive decline, especially if MMSE is to be used
as an assessment tool. Three trials represented in Table 1 and
seven of the nine trials examined by Wald et al. (2010) in
their meta-analysis were of short duration (<12 months) and
therefore too short to identify an effect on cognition. Assessment
tools must also be sensitive enough to detect subtle changes
over the course of the trial. Collectively, age range of the trial
cohort, duration of the intervention, and assessment tools will
dictate whether the trial design is sufficient to detect an effect.
Finally, the appropriateness of the intervention and whether the
chosen cohort is likely to respond to that intervention must
be considered. Supplied daily doses of B vitamins should be
sufficient to lower plasma homocysteine concentrations by at
least 20% (Hainsworth et al., 2016). For example, 1 trial addressed
in Table 1 prescribed doses of folic acid (0.2 mg) and vitamin
B12 (1 µg) that were too low to influence plasma homocysteine
(McMahon et al., 2006; Hainsworth et al., 2016). Furthermore,
the baseline B vitamin status of each potential participant must
be considered at the time of enrollment. This relates back to a
cardinal principle of nutrition in which the relationship between
vitamin status and a given outcome follows a sigmoidal curve.
For example, if a participant exhibited low levels of vitamin B6,
additional B6 intake would likely be beneficial, with the opposite
being true if the participant’s B6 intake were already high.
Additionally, when at the plateau phase (i.e., adequate B6 intake),
additional B6 intake will likely have no effect. Despite having
critical implications for clinical trials, this principle is often
overlooked. Consideration of the participant’s B vitamin status
at the time of enrollment would therefore aid in determining
whether they are likely to respond to intervention. As such, trial
enrollment should only be open to those with insufficient B
vitamin status or elevated plasma homocysteine concentration at
baseline. Together, these considerations suggest the conclusion
that homocysteine-lowering by B vitamin supplementation has
no effect on cognition is premature.

Beneficial Effects of B Vitamin
Supplementation
As previously mentioned, results from three trials (FACIT,
WAFACS, and VITACOG) do support a beneficial effect of B
vitamin supplementation on cognition. The FACIT trial showed
significant effects of B vitamins on cognition in participants
with high plasma homocysteine, while the WAFACS trial showed
similarly significant effects in those with inadequate B vitamin
status (Durga et al., 2007; Kang et al., 2008). Furthermore,
the VITACOG trial revealed strong effects of B vitamins on
both rates of brain atrophy and cognition in individuals with
mild cognitive impairment (MCI; Douaud et al., 2013). Further
data analysis revealed the sevenfold reduction in regional brain
atrophy to be significant only in those with plasma homocysteine
concentrations above the median (>11.3 µmol/L) (Douaud et al.,
2013). Results of the VITACOG trial thereby imply a threshold
effect of plasma homocysteine on measures of brain atrophy

and cognition. A threshold effect of plasma homocysteine is
further supported by results of the OPTIMA study in which
only plasma homocysteine concentrations >11 µmol/L were
associated with an increased rate of atrophy of the medial
temporal lobe (Clarke et al., 1998). The threshold concept is
further supported by a study showing a plasma homocysteine
concentration-dependent increase in the rate of cognitive decline
in AD patients (Oulhaj et al., 2010). Jointly, these studies suggest
the threshold for effect of plasma homocysteine lies between
10 and 11 µM, which may explain why studies conducted in
countries that employ mandatory folic acid fortification do not
find associations between plasma homocysteine and cognition.
Retrospective analysis of the VITACOG data revealed that the
protective effect of B vitamin supplementation on both brain
atrophy and cognition only occurred in those participants with
adequate omega-3 fatty acid status (Jerneren et al., 2015).
Additionally, the beneficial effect of B vitamin supplementation
on brain atrophy was observed only in participants not routinely
taking aspirin (Smith et al., 2010). Omega-3 fatty acid and aspirin
statuses may therefore contribute to the failure of B vitamin trials.

In all, given the challenges faced by previous trials, further
B vitamin supplementation trials are needed. New trials will be
most successful if they prescribe a full combination supplement
(B6, B12, and folic acid) at high dose (i.e., dosage sufficient to
reduce plasma homocysteine by 20%) to at-risk age participants
with elevated plasma homocysteine or inadequate B vitamin
status at baseline, adequate omega-3 fatty acid status at baseline,
and who do not routinely take aspirin.

CONCLUSION

With the number of people aged over 60 expected to increase
worldwide by 1.25 billion by 2050, accounting for 22% of the
world’s population, it is crucial to understand the causes of
dementia and develop treatments (Prince et al., 2015). Current
clinical and preclinical data provide strong evidence that HHcy is
a key risk factor for VCID. With B vitamin supplementation being
an inexpensive and safe therapeutic possibility, it would seem that
treatment of HHcy-induced VCID would allow for some progress
in lowering the number of dementia patients. Unfortunately, the
mechanisms through which HHcy induces cognitive impairment
remain unclear, with several different mechanisms proposed.
In addition, clinical trials aimed at lowering homocysteine
levels via B vitamin supplementation have also been lacking in
their study design and ability to properly test the hypothesis
that lowering homocysteine can slow and/or prevent cognitive
decline. Future studies involving preclinical animal models and
properly designed clinical trials will be necessary in order to
effectively treat HHcy-induced VCID and lower the incidence of
dementia.
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