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ABSTRACT OF THESIS 

 
 
 
 

MYOGLOBIN POST-TRANSLATIONAL MODIFICATIONS 
AND FRESH BEEF COLOR STABILITY 

 
 
Surface color of fresh beef is the major trait influencing consumers’ purchase 

decisions. Fresh beef color is determined by the myoglobin (Mb) redox stability. Post-
translational modifications (PTMs) play a critical role in regulating Mb structure and 
functionality. This thesis focuses on the PTMs in Mb and their impact on fresh beef color 
stability. 

In the first experiment, Mb PTMs in beef longissimus lumborum (LL) muscle during 
postmortem aging and their influence on fresh beef color stability were examined. Beef 
LL muscle from nine (n = 9) beef carcasses (24 h postmortem) were subjected to wet-
aging for 0, 7, 14 and 21 d. On each aging day, steaks were fabricated. Instrumental color 
and biochemical attributes of aerobically packaged steaks were evaluated on d 0, 3, and 
6 of storage. Mb PTMs were analyzed on 0, 7, 14 and 21 d of wet-aging using two-
dimensional electrophoresis and tandem mass spectrometry. Aging decreased (P < 0.05) 
surface redness, color stability, and Mb concentration. Gel image analyses identified six 
Mb spots with similar molecular weight (17 kDa) but different isoelectric pH. Tandem 
mass spectrometry identified multiple PTMs (phosphorylation, methylation, 
carboxymethylation, acetylation, and HNE alkylation) in these isoforms. The amino acids 
susceptible to phosphorylation were serine, threonine, and tyrosine, whereas other PTMs 
are detected in lysine, arginine, and histidine residues. Overall, Mb PTMs increased with 
aging. The aging-induced PTMs, especially those occurring close to hydrophobic heme 
pocket, could disrupt Mb tertiary structure, influence heme affinity, and compromise 
oxygen binding capacity, leading to surface discoloration.  

The second experiment was carried out to characterize the influence of vitamin E 
supplementation to beef cattle on the Mb PTMs in post-mortem LL muscle. Beef LL 
muscle samples (24 hours postmortem) were obtained from the carcasses of nine (n = 9) 
vitamin E-fed (VITE; 1000 IU vitamin E for 89 days) and nine (n = 9) control (CONT; diet 
without supplemental vitamin E) heifers. Sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis was used to separate Mb from other sarcoplasmic proteins of beef LL 
muscle. Tandem mass spectrometry identified multiple PTMs (phosphorylation, 



   

 

acetylation, alkylation, methylation, dimethylation, trimethylation, and 
carboxymethylation) in protein bands (17 kDa) representing Mb. Differential occurrence 
of acetylation, methylation, dimethylation and trimethylation were identified in Mb from 
CONT and VITE samples. Additionally, PTMs at lysine residues (K87, K96, K98 and K102) 
were unique to CONT, whereas PTMs at K118 were unique to VITE. Overall, 
supplementation of vitamin E decreased the numbers of post-translationally modified 
residues in myoglobin. These findings suggested that dietary supplementation of vitamin 
E in beef cattle might protect residues in Mb, especially those located spatially close to 
proximal histidine, from undergoing PTMs, and thereby improving Mb redox stability. 
 
KEYWORDS: Post-translational modifications, Myoglobin, Beef color stability, Aging, 
Vitamin E 
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1.1. Meat color 
 

Beef industry is a critical contributor to the global agriculture economy (FAO, 

2019). The U.S. as the world’s largest beef producer, and the retail equivalent value of 

U.S. beef industry was $107 billion in 2018 (USDA ERS, 2019). The color of fresh beef is of 

prime importance to the beef industry, because it significantly influences the consumers’ 

purchase decisions (Seideman et al., 1984; Mancini and Hunt, 2005; Suman et al., 2014). 

Discoloration of packaged fresh beef is caused a number of factors (Seideman et al., 

1984). Consumers consider any deviation from cherry-red color as an indicator of 

spoilage. Although the microbial safety of the discolored fresh beef is not always 

compromised, they had to be sold at discounted prices or manufactured as lower-value 

products (Suman and Joseph, 2013; Suman et al., 2014). The economic loss caused by 

these practices is estimated to be more than $1 billion annually in U.S. beef industry in 

2000 (Smith et al., 2000), and this figure is anticipated to have increased in the past 20 

years. Therefore, exploring the mechanisms of meat color and approaches to improve 

beef color stability would critically aid U.S. agriculture economy.  

Myoglobin (Mb) is the sarcoplasmic heme protein responsible for meat color 

(Livingston and Brown, 1981). Livestock Mb is composed of 153 amino acids, and has the 

molecular weight of approximately 17,000 Da. It consists of a heme prosthetic group and 

a globin moiety (Suman and Joseph, 2003). The globin peptide chain folds into eight 

helical segments wrapping the heme, enabling the latter’s water solubility and protecting 

the heme iron from oxidation (Suman and Joseph, 2013). In live animals, Mb is responsible 

to bind oxygen and deliver it to mitochondria, allowing the physiological functions of 
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muscle tissue (Wittenberg and Wittenberg, 2003). In fresh meat, the conjugated double 

bonds in heme group within Mb enable it to absorb visible light and thus serves as a 

pigment (Suman and Joseph, 2013).  

The fresh meat color perceived by consumers is primarily governed by the 

concentration and chemical form of Mb (Seideman et al., 1984). Variation in meat color 

stability may arise from numbers of factors. The endogenous factors including pH, muscle 

source, lipid oxidation, and mitochondrial activity influence meat color (Mancini and 

Hunt, 2005). Additionally, Mb concentration and meat color intensity are also related to 

factors such as animal species, sex, breed, and age (Lawrie, 1998). 

The ultimate pH of the muscle, which is largely determined by immediate 

antemortem or postmortem conditions, is a critical endogenous factor contributing to the 

meat color stability. Short-term excitement of animals immediately before slaughter can 

result in a low ultimate pH, causing muscle fibrils to be more “open” and scatter light, and 

expose Mb to be more readily oxidized to metmyoglobin (MetMb; Walters, 1975). On the 

contrary, long-term stress and depletion of nutrients can give rise to a high ultimate pH, 

which prevents the oxygen to combine with Mb forming cherry-red oxymyoglobin 

(OxyMb; Urbain, 1952). The high pH also causes the muscle fibers to be swollen and tightly 

packed together, forming a barrier to the diffusion of oxygen and the absorption of light, 

and thus leads to a dark appearance (Walters, 1975).              

Meat color stability is muscle-specific, and this is due to the differences in 

anatomical locations, physical functions, and metabolism of skeletal muscles (Hunt and 

Hedrick, 1977). The muscles used in locomotion require more oxygen for energy 
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production and contain a higher concentration of Mb (Seideman et al., 1984). The beef 

muscles demonstrating greater rate of oxygen consumption rate (O’Keeffe and Hood, 

1982) and lower MetMb reduction rate (Ledward, 1985) are color-labile, whereas muscles 

exhibited greater reducing activities are color-stable (Reddy and Carpenter, 1991).  

Joseph et al. (2012) reported that antioxidant and chaperone proteins, which protect Mb 

from oxidation, are over-abundant in color-stable longissimus lumborum (LL) than color-

labile psoas major (PM). Additionally, Nair et al. (2018a) documented more abundant 

glycolytic enzymes in LL than PM, indicating muscles with greater color stability have 

greater capacity to regenerate NADH for subsequent MetMb reduction and therefore 

stabilizing beef color.  

Lipid oxidation is not only responsible for rancid odor, but also Mb oxidation and 

meat discoloration. Lipid oxidation is the result of the interactions between unsaturated 

fatty acid and oxygen, generating primary and secondary lipid oxidation products, such as 

aldehyde and ketones.  The reactive secondary products of lipid oxidation can covalently 

adduct with OxyMb and accelerate its oxidation to MetMb (Faustman et al., 2010). Of 

specific, 4-hydroxynoenal (HNE) is a well-documented secondary product of n-6 

polyunsaturated fatty acid oxidation in meat (Sakai et al., 1995, 1998). HNE is a highly 

reactive electrophilic molecule reacting with the histidine and lysine residues in proteins 

by 1,4-adduction to form Michael adducts (Sakai et al., 1995). Previous studies (Alderton 

et al., 2003; Faustman et al., 1999; Suman et al., 2006, 2007; Naveena et al., 2010) 

documented that HNE adduction at histidine residues of Mb via Michael addition 

compromised Mb redox stability by altering its tertiary structure and thus accelerating 
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Mb oxidation. Therefore, the strategies to delay the lipid oxidation can decrease Mb 

oxidation and enhance meat color stability (Faustman et al., 2010).  

Mitochondria can impact meat color stability by influencing oxygen consumption 

and Mb redox state. In postmortem muscle, mitochondria continue to metabolize oxygen 

(Tang et al., 2005), and the competition between Mb and mitochondria for diffused 

oxygen is critical for the development of bright cherry-red surface color of meat. An 

increase in mitochondria activity can decrease oxygen partial pressure via respiration, 

which can limit available oxygen to bind with Mb, resulting in the conversion of OxyMb 

to Deoxymyoglobin (DeoxyMb; Tang et al., 2005) and darker meat color. On the other 

hand, limiting mitochondrial respiration by rotenone (Cornforth and Egbert, 1985) or low 

temperature (Bendall and Taylor, 1972) favors the formation of bright-red color. In 

addition, mitochondrial activity can affect MetMb reducing activity (MRA) through four 

different pathways: electron-transport mediated MRA (Tang et al., 2005; Ramanathan 

and Mancini, 2010; Ramanathan et al., 2010), under anaerobic conditions (Watts et al., 

1996; Lanier et al., 1978), NADH-dependent reductase activity (Giddings, 1977; Arihara et 

al., 1995), and non-enzymatic MRA (Elroy et al., 2015). To conclude, mitochondria 

influence both meat color development (via oxygen consumption) and color stability (via 

MRA).  

Several exogenous factors, for example the presence of ligands and antioxidants, 

also play important roles in fresh meat color. Strategies to preserve meat color were 

developed by employing antioxidants or applying various packaging methods to 

manipulate the ligands available for binding with Mb. Ligands, such as oxygen and CO, 
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can bind the sixth position of heme iron of Mb, forming OxyMb or COMb, respectively, 

and provide the desirable cherry-red color. In aerobically packaged meat, oxygen reacts 

with Mb in the fresh-cut meat, forming OxyMb and a cherry-red color, which is known as 

blooming in the industry. However, in less than a week, conventionally bloomed meat will 

turn to brown color due to the oxidation of OxyMb to MetMb (McMillin, 2008). Therefore, 

novel meat packaging strategies are desirable in order to increase the color shelf-life of 

fresh meat. Modified atmosphere packaging (MAP) systems containing high oxygen (80% 

oxygen and 20% carbon dioxide) and low CO (0.4% CO) have been developed to maintain 

color shelf life of meat up to 14 days (Church, 1994; Eilert, 2005; Fu et al., 2017). Previous 

studies (Jakobsen and Bertelsen 2000, Jayasingh et al. 2002) reported that the elevated 

level of oxygen in high-oxygen MAP could saturate Mb on meat surface, and thereby slow 

the MetMb formation. Nevertheless, high-oxygen MAP was reported to accelerate lipid 

oxidation, off-flavor development (Jakobsen and Bertelsen, 2000, Jayasingh et al. 2002), 

premature browning during cooking (Torngren, 2003; Seyfert et al., 2004a,b; John et al., 

2004, 2005; Suman et al., 2005,2009,2010b,2011; Mancini et al., 2010,2011), and bone 

darkening of bone-in cuts (Mancini et al., 2005). To extend meat color stability and avoid 

drawbacks of aerobic packaging, an anaerobic MAP technology with 0.4% CO (CO-MAP) 

was approved in the US (FDA, 2004). The use of CO in MAP enables the formation of COMb 

and provides cherry-red color, which is indistinguishable from OxyMb by human eyes 

(Cornforth and Hunt 2008). CO-MAP packaged ground beef and steaks have the shelf life 

up to 28 days and 35 days, respectively (Hunt et al., 2004). Additionally, no bone 

darkening or premature browning were observed in CO-MAP meat (Torngren, 2003; 
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Seyfert et al., 2004a,b; John et al., 2004, 2005; Mancini, et al., 2005,2009,2010; Suman et 

al.,2009,2010b,2011). However, since CO-MAP packaging can dramatically improve color 

stability, there is a possibility that the product could be spoiled even though it still appears 

fresh (Jayasingh et al., 2001; Cornforth and Hunt, 2008).  

Antioxidants can minimize oxidation-induced discoloration of meat (Decker et al., 

2000), and could be applied both pre-harvest and post-harvest (Faustman et al., 2010). 

Feeding meat-producing animal with vitamin E can delay the oxidation of lipids as well as 

Mb and can thus increase meat color stability (Faustman et al., 1989a,b; Kerry et al., 2000; 

Arnold et al., 1993). Kim (2018) observed over-abundant antioxidant proteins and 

glycolytic enzymes in non- vitamin E-supplemented beef compared with vitamin E-

supplemented beef, and documented that the strong antioxidant protection offered by 

vitamin E might lead to the less expression of antioxidant proteins and glycolytic enzymes 

that generate antioxidant metabolites in vitamin E-supplemented beef. Additionally, 

dietary supplementation of plant extracts rich in antioxidant compounds also contribute 

to increase the color shelf life of meat. Employing tea catechins, rosemary extract 

(O’Grady et al., 2006), and plant extract containing polyphenols (Gobert et al., 2010) in 

beef cattle diet can improve the color stability of beef. Moreover, the discoloration in 

lamb could be slowed down by dietary supplementation with turmeric (Karami et al., 

2011), and rosemary diterpenes (Ortuno et al., 2015).  In addition, synthetic and natural 

antioxidant can be also applied in meat system by injecting to whole-muscle cuts or 

incorporating into comminuted meats. Previous studies suggested that potassium lactate 

(Mancini et al., 2005; Knock et al., 2006; Mancini et al., 2009,2010; Suman et al., 
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2009,2010c; Ramanathan et al., 2011), calcium lactate (Lawrence et al., 2004), and 

sodium acetate (Livingston et al., 2004), pyruvate (Ramanathan et al., 2011) and succinate 

(Mancini et al., 2011; Ramanathan et al., 2011) can benefit beef color stability. A variety 

of natural antioxidants, including phosvitin (Jung et al., 2012), pomegranate extract (Qin 

et al., 2013), fenugreek (Hettiarachchy et al., 1996), grape-seed extract (Kulkarni et al., 

2011), chitosan (Georgantelis et al., 2007; Suman et al., 2010a,2011), rosemary (Sanchez-

Escalante et al., 2001), and olive-leaf extract (Hayes et al., 2010) can be incorporated in 

meat system to improve meat color. Furthermore, the effect of antioxidants can be 

packaging-dependent (Suman et al., 2009,2010a,b,c,2011; Mancini et al., 2010,2011). 

Injection enhancement of beef with succinate, pyruvate, and lactate is more evident in 

high-oxygen packaging than aerobic packaging and vacuum packaging (Ramanathan et 

al., 2011). Chitosan (Suman et al., 2010a) and lactate (Mancini et al., 2009; Suman et al., 

2010c) enhanced beef demonstrated greater redness in CO-MAP and aerobic packaging 

than high-oxygen packaging and vacuum packaging. 

 

1.2. Myoglobin chemistry   
 

Mammalian Mb has an iron-based heme moiety surrounded by a globin peptide 

chain of 153 amino acids. The primary structure of Mb determines its tertiary structure, 

and in turn governs the volume of the heme cavity, net charge, oxidation-reduction 

properties, the interactions with other biomolecules, and ultimately influences meat 

color (Suman and Joseph, 2013). Although Mb amino acid sequence varies with species 

(Brown and Mebine, 1969; Enoki et al., 2008; Suman and Joseph, 2013), the distal 
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(position 64) and proximal (position 93) histidines are conserved in livestock (mammalian) 

as well as poultry (avian) Mbs. The iron atom can accept six electrons in its outer orbit, 

forming six coordinate bonds. Four of these bonds are with pyrrole nitrogen atoms, and 

the fifth is with proximal histidine which connects heme to the globin chain. The distal 

histidine (position 64) is in the vicinity of the heme, but does not bond with heme. The 

sixth coordination site is available to bind with different ligands, which influences the 

redox state of the Mb (Han et al., 1970; Han et al., 1972; Mancini and Hunt, 2005; Suman 

and Joseph, 2013; Faustman and Suman, 2017). Distal histidine received considerable 

research attention due to its spatial interaction with hydrophobic heme pocket, which 

limits the size of the ligands and protect heme by preventing its interaction with large 

molecules (Cornforth and Jayasingh, 2004). Furthermore, the number of histidines were 

observed to be directly proportional to the susceptibility of mammalian Mb to HNE 

alkylation (Yin et al., 2011).   

  In fresh meat, Mb exists mainly in three redox forms, namely DeoxyMb, OxyMb, 

and MetMb. The equilibrium and relative proportions of these three forms of Mb 

determine the color of fresh meat during the postmortem storage and retail display 

(Watts et al., 1996; Suman and Joseph, 2013). DeoxyMb exists when no ligands are bound 

with the sixth coordination site of heme, and the iron is in ferrous state (Fe2+). Purplish-

red DeoxyMb is associated with color of fresh-cut and vacuum-packaged meat. When 

meat is exposed to air, an oxygen molecule binds to the sixth coordination site forming 

OxyMb, which provides an attractive cherry-red color. The partial pressure of oxygen in 

situ is critical to the formation of OxyMb. Brown MetMb results from the oxidation of the 
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ferrous (Fe2+) iron of heme in DeoxyMb or OxyMb to ferric state (Fe3+), and is associated 

with meat discoloration. MetMb has a water molecule bound at the sixth coordinate of 

the ferric heme and it is not able to carry oxygen.   

  During the storage of meat, accumulation of MetMb at the meat surface due to 

the oxidation is the major factor causing discoloration (Ledward et al., 1971). The redox 

reactions of MetMb formation can be reversible depending on the MetMb reducing 

activity (MRA), cofactors, and oxygen availability. MetMb reducing enzymes or reducing 

equivalents can reduce MetMb to DeoxyMb, which can then be oxygenated to bright red 

OxyMb. Therefore, MRA is a critical component in meat color stability. NADH is a reducing 

equivalent for both enzymatic and non-enzymatic MetMb reduction (Renerre and Labas, 

1987; Echevarne et al., 1990). The process of producing NADH continually depleted 

postmortem, however, NADH can be regenerated by dehydrogenase enzymes from 

cytoplasmic or mitochondria in postmortem muscle (Stewart et al., 1965; Watts et al., 

1966; Giddings, 1977). Previous studies indicated that enhancing beef with succinate 

(Ramanathan et al., 2011), lactate (Kim et al., 2006) or glycolytic and tricarboxylic acid 

(TCA) cycle substrates (Saleh and Watts, 1968) increased MRA due to the regeneration of 

reducing equivalents such as NADH. On the other hand, Jerez et al. (2003) suggested that 

limiting NADH content inhibited postmortem glycolysis, leading to decreased meat color 

stability.   

  Mb and mitochondria are dynamic components in live skeletal muscles, which 

facilitate oxygen delivery and energy production, respectively. In postmortem muscles, 

oxygen is used for Mb oxygenation, mitochondria oxygen consumption, lipid and protein 
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oxidation, and microbial growth. Noticeably, greater amount of oxygen utilized for 

mitochondria consumption, the less will be available for binding to Mb. Therefore, 

mitochondrial oxygen consumption and oxygen-consuming enzymes have a significant 

impact in Mb redox state (Tang et al., 2005; Ramanathan et al., 2018; Ramanathan et al., 

2019).    

 

1.3. Post-translational modification (PTM) of protein 
  

Post-translational modification (PTM) refers to the covalent processing events 

protein may undergo after translation by addition or removal of modifying groups to 

amino acids (Lodish, 1981; Han and Martinage, 1992; Mann and Jensen, 2003). Instead of 

merely being “decorations” of protein, PTM determines tertiary and quaternary 

structures of proteins and modulates the functional properties of proteins (Mann and 

Jensen, 2003; Seo and Lee, 2004; Nicolis et al., 2008). PTM plays a fundamental role in 

regulating biological processes as it determines protein’s functionality, localization, 

turnover and interaction with other proteins (Seo and Lee, 2004; Muller, 2017). PTMs 

influence a number of critical signaling events, and thus identification of the diverse realm 

of protein PTMs is important for generating deeper insight in cell regulation and protein 

biological function (Witz et al., 2007; Seo and Lee, 2004; Krueger and Srivastava, 2006). In 

addition, post-translationally modified proteins are associated with numerous diseases 

(Jensen, 2004; Conibear et al., 2019). In this perspective, investigation of PTMs is 

significant for biomarkers development and disease pathogenesis in medical sciences.  
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PTMs can cause the isoelectric point shift of the protein by modifying the titratable 

groups, which enable the 2-dimensional electrophoresis to resolve many PTM-induced 

isoforms (Halligan et al., 2004). Advances in mass spectrometry, a fundamental tool for 

detecting covalent modifications, make it possible to identify PTMs more rapidly and 

specifically (Jensen, 2004; Schwammle and Vaudel, 2017; Thygesen et al., 2018). 

Phosphorylation, acetylation, methylation, carboxymethylation and HNE alkylation are 

the common PTMs, and they are briefly introduced below.  

 

1.3.1. Phosphorylation 
 

Protein phosphorylation is the most common PTM that is involved in modulating 

molecular interactions in cellular pathways (Graves and Krebs, 1999; Pawson, 2002). 

Phosphorylation takes place on serine (Ser), threonine (Thr) and tyrosine (Tyr) residues in 

eukaryotic cells (Ham, 2011). Phosphorylation causes an acidic shift in the protein’s 

isoelectric pH and a mass increment of 80 Da by replacing the neutral hydroxyl groups on 

Ser, Thr and Tyr with negatively charged phosphoryl group (McLachlin and Chait, 2001; 

Halligan et al., 2004; Jensen, 2004). The phosphate group covalently attached to the 

protein can form either intra- or inter-molecular hydrogen bonds or salt bridges, and thus 

modify the protein from hydrophobic nonpolar to hydrophilic polar, promoting protein 

conformational changes and protein-protein interactions (Hunter, 2012; Ardito et al., 

2017).  

Activation of protein kinases leads to the addition of phosphate groups to the 

amino acids. Phosphatases, which works on the contrary of kinase, are responsible for the 
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removal of the phosphate groups from the target proteins by hydrolyzing phosphoric acid 

monoesters (Ardito et al., 2017).  Protein kinases and phosphatases work together to 

adjust phosphorylation states and control cellular processes (Ham, 2011). Protein 

phosphorylation plays a critical role in glycolysis metabolism (Graves and Krebs, 1999), 

which is an enzymatic conversion of glucose to pyruvate. Most enzymes involved in 

glycolysis are identified as phosphoproteins, including rate limiting enzymes glycogen 

phosphorylase (GP), enolase, phosphofructokinase (PFK) and pyruvate kinase (PK; Huang 

et al., 2011).  

Previous studies documented that meat tenderness is influenced by 

phosphorylation through its regulatory role in myofibrillar proteins (Chen et al., 2016; Li 

et al., 2017b; Liu et al., 2018), calpain system (Du et al., 2017, 2018) as well as glycolytic 

enzymes (Huang et al., 2011, 2012; Anderson et al., 2014). Moreover, phosphorylation 

was identified to impact meat color through influencing redox stability of myoglobin (Li 

et al., 2017; 2018). Additionally, Underwood et al. (2008) reported that protein 

phosphorylation is closely associated with intramuscular fat content through regulation 

of adenosine monophosphate-activated protein kinase (AMPK).  

 

1.3.2. Acetylation 
 

The acetylation usually happens on N-terminal when the growing polypeptide 

chains are still attached to the ribosomes (Kwan et al., 2016). It plays a role similar to 

phosphorylation. By transferring an acetyl group, acetylation increases the size of target 

amino acid’s side chain and neutralizes its positive charge, leading to a 42-Da mass 
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increase and isoelectric point shift (Parker et al., 2010; Kumar et al., 2004). Acetylation 

can regulate proteins’ stability and their interaction with other proteins by converting 

positively charged ammonia cation on lysine and arginine residues into a neutral moiety 

(Kumar et al., 2004; Zhu et al., 2005; Krueger and Srivastava, 2006; Xie et al., 2007). 

Furthermore, acetylation is critical in modulating the interactions between lysine residues 

of histones with negatively charged DNA, and it has been found to be involved in the 

regulation of intracellular compartmentalization, cell signaling, chromatin structure, 

cytokine signaling and apoptosis. (Sterner and Berger, 2000; Annunziato and Hansen, 

2000; Zhao et al., 2010; Seto and Yoshida, 2014; Kwan et al., 2016; Ali et al., 2018; 

Christensen et al., 2019). Additionally, most enzymes involved in intermediate 

metabolism, including glycolysis, glycogen metabolism, gluconeogenesis, the TCA cycle, 

fatty acid oxidation, and the urea cycle have been identified to be acetylated (Zhao et al., 

2010; Guan and Xiong, 2011; Menzies and Auwerx, 2013).    

 

1.3.3. Methylation 
 

Methylation refers to the addition of variable number of methyl groups to a 

protein, usually at lysine and arginine residues (Ong et al., 2004; Bermang et al., 2013). 

Methylation reactions do not contribute to any negative charge on the protein, but 

neutralize the positive charge of lysine and arginine, and thus reduce their hydrophilicity 

and alter the protein conformation (Kumar et al., 2004; Krueger and Srivastava, 2006; 

Uhlmann et al., 2012). The increased steric hindrance and decreased hydrogen bonding 

of methylated amino acids could impact the interactions between proteins and other 
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cellular substrates (Ong et al., 2004). Methylation has been associated with cell 

proliferation, which is a process commonly involved in cell growth and division, resulting 

in an increase in the number of cells (Kwan et al., 2016). Methylation has been widely 

studied in histone, where it acts as an epigenetic regulator of chromatin structure and 

gene expression (Greer and Shi, 2012; Lanouette et al., 2014; Clarke, 2018; Luo, 2018). In 

addition, methylation also plays a critical role in non-histone proteins, and thus is heavily 

involved in DNA repair, RNA processing and cellular signaling (Ong et al., 2004; Uhlmann 

et al., 2012).  

 

1.3.4. Carboxymethylation 
 

Carboxymethylation usually occurs at lysine, glutamate, aspartic acid, and 

cysteine residues. Carboxymethylation can cause a mass increment of 58 Da to the target 

amino acids by introducing a negatively charged carboxylic acid (Kung, 1976; Fang et al., 

2010; Conibear et al., 2019). Carboxymethylation on lysine is a non-enzymatic PTM and 

results in a glycation end product (Reddy et al., 1995; Conibear et al., 2019). The addition 

of carboxylic acid leads to a net charge change and alter the interactions of the lysine side 

chains. Previous studies reported that carboxymethylation is a potential modulator in 

chemotaxis, neurosecretory regulation and diabetes metabolism (Diliberto et al., 1976; 

Curtiss and Witztum, 1985; Hackett and Campochiaro, 1988).  
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1.3.5. HNE alkylation 
 

Reactive lipid oxidation products adduct at nucleophilic residues in proteins, and 

this process is called protein alkylation. The 4-hydroxyl-2-nonenal (HNE), one of the most 

abundant lipid-derived compounds, is generated through the β-cleavage of 

hydroperoxides from n-6 polyunsaturated fatty acids (Esterbauer et al., 1991), and has 

been studied as a model aldehyde to react with peptides and proteins. The conjugated 

double bond within the HNE molecule makes it a highly reactive electrophile, allowing it 

to covalently bind to the specific nucleophilic site of the protein to yield a hemiacetal 

structure (Esterbauer et al., 1991; Carini et al., 2004). HNE is found to adduct histidine, 

lysine, and cysteine residues via Michael addition, resulting in mass shift of 156 Da (Uchida 

et al., 1992; Faustman et al., 1999; Alderton et al., 2003; Fenaille and Guy, 2003; Suman 

et al., 2006, 2007). This modification can happen during food processing and storage, 

deteriorating the color, flavor, functional/physical properties and nutritional values of 

foods (Zamora and Hidalgo, 2001). Furthermore, in biological systems, protein alkylation 

by HNE contributes to oxidative stress and cellular toxicity (Codreanu et al., 2014; Yang et 

al., 2015). 

 

1.4. Protein PTMs and meat quality 
 

After slaughter, the metabolism in skeletal muscle cells changes in order to 

maintain homeostasis (Morgan et al., 1993). Biochemical changes in response to stoppage 

of respiration and blood circulation have a dramatic impact on the meat quality, such as 

tenderness, water-holding capacity, and color. Muscle proteins are the biomolecules 
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contributing to the meat quality development and could undergo a multitude of post-

translational modifications (PTMs), such as phosphorylation (Hojlund et al., 2009; Li et al., 

2020), acetylation (Jiang et al., 2019; Li et al., 2020), oxidation (Feng et al., 2008), nitration 

(Kanski et al., 2005), and glycosylation (Martin-Rendon and Blake, 2003). These PTMs play 

critical roles in regulation of postmortem muscle metabolism and meat quality 

development through modulating protein structure and functions (Li et al., 2020). 

 

1.4.1. Muscle to meat conversion 
 

A series of important physical-biochemical changes take place at the beginning of 

postmortem when muscle is converted to meat. These changes include pH decline, 

programmed cell death, rigor mortis, and proteolysis. PTMs are involved in the process of 

meat quality development, and could be affected by conditions prior and after animal 

slaughter. Physiological changes in response to pre-slaughter stress, such as handling and 

transport, might alter protein modification patterns and thus influence meat quality 

traits, especially the extent and rate of pH decline (Ferguson and Warner, 2008). After 

slaughter, muscle remains functional and metabolically active for several days (Paredi et 

al., 2012). A shift in the energy metabolism occur shortly after slaughter (Jia et al., 2006), 

and this dramatic metabolic change can result in the activation of PTMs to regulate the 

activity of proteins in order to cope with the shortage of ATP and the development of 

rigor mortis (Huang and Lametsch, 2013).  

Conversion of muscle to meat has been schematized into seven steps by 

D’Alessandro and Zolla (2013), including blood supply loss, glycolysis ensues, apoptosis, 
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onset of rigor, calcium- dependent and independent proteases, oxidative stress, and 

proteolysis. Among these steps, glycolysis and apoptosis are critically regulated by various 

PTMs, including phosphorylation (Shen et al., 2006; Huang et al., 2011; Paredi et al., 

2012), acetylation (Li et al., 2016; Jiang et al., 2019) and S-nitrosylation (Liu et al., 2018; 

Zhang et al., 2019).    

 

1.4.1.1. PTM and glycolysis in postmortem muscle  
 

Glycolysis is the core metabolic pathway converting glycogen into lactate and H+, 

producing ATP under anaerobic conditions. After exsanguination, muscle cells switch 

from aerobic metabolism to glycolytic one to generate ATP in order to maintain 

homeostasis and cell function. While glycolysis progresses in postmortem muscles, 

concomitant accumulation of lactate and pH decline critically influence meat tenderness 

(Silva et al., 1999) and water-holding capacity (Huff-Lonergan and Lonergan, 2005).  

Glycogen phosphorylase (GP) catalyzes the breakdown of glycogen to glucose-1 

phosphate. Previous investigations (Johnson, 1992; Schwagele et al., 1996; Sprang et al., 

1988) suggested that phosphorylation at serine at position 14 in GP resulted in structural 

changes of the protein, which represents the first step in the transformation of the 

enzyme to its active form. The amino- and carboxyl-terminal domains of GP rotated apart 

due to phosphorylation, enabling the increased access of substrates to the catalytic site 

(Sprang et al., 1991). Furthermore, a positive correlation was observed between GP 

activity and its phosphorylation level in postmortem sheep muscle, and the increased GP 

activity due to phosphorylation could accelerate the glycogenolysis, leading to a low 



   

19 

glycogen content and decline in pH (Chen et al., 2019a). However, S-nitrosylation of GP in 

pork could inhibit its activity, resulting in a reduced rate of glycolysis (Zhang et al., 2019). 

S-nitrosylation might modify the reactive cysteine residues in GP with NO moiety, and 

thus modulating GP’s activity (Hess et al., 2005).  

Pyruvate kinase (PK) is a critical rate limiting enzyme in glycolysis, catalyzing the 

irreversible conversion of phosphoenolpyruvate to pyruvate. Huang et al. (2011) 

observed that the the phosphorylation of PK contributed to the fast glycolysis and rapid 

pH decline in pork. On the contrary, Liu et al. (2018) and Chen et al. (2018, 2019b) 

documented a higher phosphorylation level of PK in slow pH decline group of postmortem 

ovine muscles compared to rapid pH decline group. According to Silva et al. (2019), the 

remarkable increase in PK phosphorylation during aging of beef longissimus muscle could 

be associated with activating glycolytic pathway to produce ATP. Additionally, pre-

slaughter stress was found to increase glycolysis through the acetylation of PK in 

postmortem mice longissimus muscle (Li et al., 2016). Nonetheless, deacetylation of 

lysine residues in PK was detected in stressed pork longissimus muscle compared to the 

control ones, suggesting that the differentially acetylated residues are possibly the 

consequence of pre-slaughter stress regulated postmortem glycolysis (Zhou et al., 2019).   

Phosphofructokinase (PFK) catalyzes the first step in the glycolytic pathway, the 

conversion of fructose-6-phosphate and ATP to fructose-1,6-bisphosphate and ADP. PFK 

with higher level of phosphorylation demonstrated higher activity in ovine muscle (Chen 

et al., 2019a). Additionally, previous studies (Marsin et al., 2000; Hardie et al., 2004; 

Sambandam and Lopschuk, 2003) showed that PFK is activated after phosphorylation by 
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AMP-activated protein kinase (AMPK). Phosphorylation of AMPK was found to regulate 

glycolysis in pork longissimus muscle through its activation of PFK (Shen et al., 2006).  

Phosphoglucomutase-1 (PGM1) is involved in both glycolysis and glycogenesis, 

reversibly catalyzing the conversion of glucose 1-phosphate to glucose 6-phosphate. 

Rodrigues et al. (2017) suggested that the higher level of PGM-1 phosphorylation 

contributed to faster glycolysis in beef muscles. The phosphorylated PGM-1 was found to 

prevent sarcomere shortening during conversion of muscle to meat (Silva et al., 2019). 

Additionally, a higher level of phosphorylated PGM1 was identified in tender beef 

longissimus muscles compared to their tough counterparts (Anderson et al., 2014). 

Nevertheless, Zhou et al. (2019) indicated that pre-slaughter stress may up-regulate 

glycolysis in porcine muscle through the downregulation of lysine acetylation of PGM1.  

Triosephosphate isomerase (TPI) is responsible for catalyzing the reversible 

conversion of glyceraldehyde-3-phosphate to dihydroxyacetone phosphate. The 

phosphorylation of TPI could result in the loss of catalytic activity in HeLa cells (Lee et al., 

2010). In addition, pork muscles with slow pH decline demonstrated higher levels of TPI 

phosphorylation compared with the fast pH decline muscles (Huang et al., 2011).  

 

1.4.1.2. PTM and apoptosis in postmortem muscle  
 

Mitochondrial energy production drops in the postmortem muscle due to the lack 

of oxygen, leading to the accumulation of the reactive oxygen species (ROS; Murphy, 

2009; Kim et al., 2007). The proteins, DNA, mitochondria, and cells that are prone to the 

oxidative stress would in turn engage in a programmed cellular procedure, also named 
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apoptosis (Kerr et al., 1972). Apoptosis is the preferential way the cells use to suicide 

themselves, avoiding the risk to damage surrounding cells (Longo et al., 2015).  

Heat shock protein (HSP) is responsible for cell protection and is involved in stress 

resistance and apoptotic signaling pathways (Ouali et al., 2006; Takayama et al., 2003). 

PTMs could induce structural changes in HSPs, including the reversible changes in 

oligomeric substructure or reversible cycles of dissociation and association, and in turn 

modulate HSPs’ interactions with target proteins and their chaperone-like activity 

(Mymrikov et al., 2011). Phosphorylation of HSP27 was identified in human (Loktionova 

and Kabakov, 1998; Liu et al., 2018), beef (Mato et al., 2019) and pork (Huang et al., 2011) 

muscles. Loktionova and Kabakov (1998) reported that phosphorylation of myocardial 

HSP27 is a key regulator in the protection of actin from fragmentation during injury. 

Charette et al. (2000) and Huot et al. (1996) observed that phosphorylated HSP27 can 

protect cells from exposing to stress factors and can inhibit stress-induced apoptosis. 

These observations could be due to the fact that phosphorylation at serine residues in 

HSP72 presumably lead to its dissociation, which enables HSP27 to become a lower 

molecular weight oligomer, which in turn critically promotes its activity in protecting cells 

from stress induced-apoptosis (Theriault et al., 2004; Yuan and Rozengurt, 2008; 

Mymrikov et al., 2011). Moreover, acetylation of HSP70 was identified in pork (Jiang et 

al., 2019; Zhou et al., 2019), indicating HSP acetylation might be involved in the regulation 

of postmortem cell stress response and apoptosis, and thus may affect meat quality. 

Furthermore, Guillemin et al. (2011) documented a positive correlation between HSPs 

and meat tenderness. In agreement, higher level of phosphorylated HSPB6 was observed 
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in tender beef compared to the tough beef (Mato et al., 2019). This could be attributed 

to fact that the phosphorylated HSPB6 interacts with universal adapter protein 14-3-3, 

which is a phospho-binding protein regulating essentially every major cellular function 

(Pennington et al., 2018). Phosphorylated HSPB6 displaces phosphorylated cofilin 

complex with protein 14-3-3, inducing the fragmentation of actin filaments (Mymrikov et 

al., 2011) leading to tenderization.  

 

1.4.2. Meat tenderness 
 

Meat tenderness is one of the most important quality attributes critical to 

consumers’ acceptability and their re-purchase decisions (Huffman et al., 1996; Miller et 

al., 2001; Hughes et al., 2014). The architecture and the integrity of the skeletal muscle 

cell as well as the events that modify muscle proteins determine the meat tenderness 

(Huff Lonergan et al., 2010). During postmortem aging, proteolysis of myofibrillar and 

other structural proteins have been considered as one of the key mechanisms for 

tenderization (Huff Lonergan et al., 2010; Wu et al., 2014). PTMs can alter the protein 

properties by changing their structural conformation and regulating muscle protein 

functions (Hu et al., 2006; Li et al., 2020). PTMs, including phosphorylation, acetylation, 

and S-nitrosylation were found to be involved in the tenderization through regulating the 

activities of structural proteins and endogenous enzymes.   
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1.4.2.1. PTMs and myofibrillar proteins 
 

Degradation of myofibrillar proteins is the fundamental phenomenon during meat 

tenderization (Te Pas et al., 2009; Choi and Kim, 2009; Habek et al., 2010). The extent of 

weakening of myofibrillar structure directly affects meat tenderness (Hollung et al., 

2014). Previous investigations suggested that the PTMs in myofibrillar proteins, such as 

myosin, titin, troponin, nebulin and desmin, influence meat tenderness of beef, pork and 

lamb (Li et al., 2020). 

Differentially phosphorylated myofibrillar proteins were identified in tough and 

tender beef. Muroya et al. (2007) discovered that myosin regulatory light chain (MyLC2) 

of beef longissimus muscle was double phosphorylated on the N-terminal region during 

the rigor formation, indicating the involvement of MyLC2 phosphorylation in rigor mortis. 

Furthermore, Franco et al. (2015) studied the proteome changes in beef longissimus 

thoracis muscle in response to pre-slaughter stress, and found that MyLC2 was highly 

phosphorylated in Dark Firm Dry (DFD) meat. Similarly, Mato et al. (2019) documented 

that DFD beef longissimus thoracis muscle demonstrated higher phosphorylation in 

myofibrillar proteins, including MyLC2, actin, troponin-T compared with normal beef, 

indicating that these phosphorylated myofibrillar proteins could be candidate biomarkers 

of DFD meat. Additionally, higher phosphorylation levels in titin and troponin T-fast 

skeletal muscle type were detected in tough beef longissimus muscle (from Maremmana 

breed) compared with tender counterparts, suggesting that phosphorylation of structural 

proteins is inversely related to meat tenderness (D’Alessandro et al., 2012a). 

D’Alessandro et al. (2012b) further studied the phosphorylation level of structural 
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proteins in beef longissimus muscle from Chianina breed, and found that tropomyosin 

beta was highly phosphorylated in tender beef, while alpha-actin was highly 

phosphorylated in tough beef.  

Bos indicus beef is generally tougher than Bos taurus beef. Rodrigues et al. (2017) 

compared the phosphoproteome profile of beef from Angus (Bos taurus) and Nellore (Bos 

indicus) cattle, and reported a higher phosphorylation level of MyLC2 and alpha-actin in 

Nellore, whereas troponin-T was highly phosphorylated in Angus. Silva et al. (2019) 

investigated the differential phosphoproteome between Nellore bulls and steers after 14 

days postmortem aging. Phosphorylated fast skeletal muscle troponin T was 

overabundant in beef from steers, which demonstrated higher tenderness compared with 

bulls, while phosphorylated myosin light chain was more abundant in 14-d aged beef 

compared with non-aged counterparts (Silva et al., 2019). Additionally, the abundance of 

phosphorylated alpha-actin and MyLC2 was positively correlated with sarcomere 

shortening (Silva et al., 2019).  

Lamb tenderness was also found to be regulated by phosphorylation of 

myofibrillar proteins. Chen et al. (2016) analyzed the phosphorylation patterns of 

myofibrillar proteins in tender and tough lamb longissimus muscles, and found higher 

phosphorylation level of beta-actin and MyLC2 in tough group than in tender group. The 

phosphorylated myofibrillar proteins could influence rigor mortis through contractile 

machinery and ultimately affect lamb tenderness (Chen et al., 2016). Similarly, Li et al. 

(2017a) examined the phosphoproteome of sheep longissimus thoracis et lumborum 

muscles with different tenderness and identified higher level of phosphorylated 
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tropomyosin alpha-1 chain in the tough group, whereas alpha-actinin-3 and myosin 

binding protein H were highly phosphorylated in the tender group. Moreover, Li et al. 

(2017b) incubated the myofibrillar proteins from sheep longissimus muscle, including 

MyHCs, actin, desmin and troponin-T, with protein kinase and phosphatase to control 

phosphorylation level in-vitro, followed by μ-calpain hydrolysis, and observed that 

phosphorylation prevents the myofibrillar proteins to be degraded by μ-calpain. In 

support, Li et al. (2018) modulated phosphorylation level of myofibrillar protein by adding 

either protein kinase inhibitor or phosphatase inhibitor to sheep longissimus thoracis 

lumborum muscles, and observed that the dephosphorylation enhanced the degradation 

of myofibrillar proteins.  

Phosphorylation and acetylation have been reported to be involved in pork rigor 

mortis and tenderness development. Huang et al. (2012) investigated the 

phosphorylation of the myofibrillar proteins in the three groups of pigs with different pH, 

and found that the highest phosphorylation level in the pork from fast pH decline rate 

group. Additionally, myosin-binding protein C, tropomyosin, and MyLC2 were found to be 

highly phosphorylated, and their phosphorylation levels were affected by the pH decline 

rate and postmortem time, suggesting that the phosphorylation of myofibrillar protein 

might be related to the rigor mortis as well as meat quality development (Huang et al., 

2012).  Moreover, Zhou et al. (2019) studied the acetylation of myofibrillar proteins from 

pork longissimus muscle in response to ante-mortem stress. The results indicated that 

pork loins from control pigs were more tender than those from animals subjected to 

transport stress. Furthermore, multiple myofibrillar proteins (nebulin, myosin binding 
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protein C, myosin light chain 3, tropomyosin 2, myosin heavy chain 7B) were differentially 

acetylated in pork from control animals and those exposed to ante-mortem stress, 

indicating the potential role of acetylation in stress response and tenderness (Zhou et al., 

2019).  

 

1.4.2.2. PTMs and calpain system 
 

During postmortem aging, proteolysis of muscle proteins by endogenous enzymes 

governs meat tenderization (Dransfield, 1993; Koohmaraie and Geesink, 2006; Taylor et 

al., 1995). There are several proteolytic systems present in the muscle, and the calpain 

system is considered to be the major protease contributing to tenderization during aging 

(Huff-Lonergan et al., 1996; Koohmaraie, 1990; Taylor et al., 1995; Goll et al., 1992). The 

calpain system consists of several isoforms of calpain, and an endogenous calpain 

inhibitor, named calpastatin (Sentandreu et al., 2002). The μ-calpain and m-calpain are 

the most characterized isoforms among all members of calpain. 

Previous investigations indicated that phosphorylation and S-nitrosylation 

influenced meat tenderness by regulating calpain and calpastatin function (Li et al., 2020). 

The μ-calpain is phosphorylated by protein kinase A (PKA) and protein kinase C (Storr et 

al., 2011). The phosphorylation of μ-calpain could regulate its proteolysis activity as well 

as its location within cells (Vazuez et al., 2008; Xu and Deng, 2006a, b). Du et al. (2017) 

investigated the effects of in-vitro phosphorylation on the activity of μ-calpain and its 

sensitivity to temperature and Ca2+ concentration. The alkaline phosphatase (AP) and 

phosphatase inhibitor (PI) were utilized to modulate μ-calpain’s phosphorylation level, 
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and the results showed that a higher degradation rate of μ-calpain in the AP group than 

PI group, indicating phosphorylation plays a negative role in μ-calpain degradation and 

activation (Du et al., 2017). Du et al. (2018) further observed both phosphorylation by 

PKA and dephosphorylation by AP could increase the activity of μ-calpain. Two serine 

residues (S255, S256) located on domains II and III of μ-calpain were phosphorylated by 

PKA. Additionally, phosphorylation by PKA resulted in increased α-helix content of 

domains II and III. These observations suggested the phosphorylation at S255 and S256 

could regulate the μ-calpain activity through changing its structure. Recently, Du et al. 

(2019) examined the ability of calpastatin to inhibit phosphorylated and 

dephosphorylated μ-calpain in-vitro, and found calpastatin presented greater inhibition 

to the PKA-phosphorylated μ-calpain compared with AP-dephosphorylated and control 

ones. These results indicated that while both dephosphorylation and PKA 

phosphorylation could positively regulate the activity of μ-calpain and that PKA 

phosphorylated μ-calpain was more sensitive to calpastatin.  

Protein S-nitrosylation is a ubiquitous PTM, that has been shown to regulate 

protein conformation and activity in biological systems (Hess et al., 2005; Stamler and 

Meissner, 2001). S-nitrosylation is achieved by coupling NO moiety with a reactive 

cysteine thiol of protein (Hess et al., 2005). The active site cysteine of calpain makes the 

enzyme sensitive to S-nitrosylation. Previous studies (Ascenzi et al., 2001; Lametsch et al., 

2008) indicated modifications of cysteine residues in calpain’s active site through 

oxidation and S-nitrosylation can inhibit its autolytic and proteolytic activities. Liu et al. 

(2016) evaluated the effect of S-nitrosylation on the autolysis and catalytic ability of μ-
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calpain in-vitro. The results suggested that S-nitrosylated μ-calpain, by nitric oxide donor 

S-nitrosoglutathione (GSNO), decreased its ability to degrade pork myofibrillar proteins, 

including titin, nebulin, troponin-T, and desmin. Moreover, the five S-nitrosylated 

cysteine residues (positions 49, 142, 351, 384, and 592) could be responsible for the 

decreased μ-calpain activity (Liu et al., 2016). Similarly, Zhang et al. (2018) determined 

the effect of nitrosylation on the μ-calpain proteolysis activity in beef semimembranosus 

muscle and found that the degradation of desmin and troponin-T was decreased by GSNO 

treatments and was increased by nitric oxide synthase (NOS) inhibitor. These results 

indicated that protein nitrosylation plays a negative role in meat tenderness through 

regulating calpain autolysis and myofibrillar protein degradation during postmortem 

aging.  

 

1.4.3. Meat color 
 

Meat color is a critical determinant of consumer acceptance of fresh meat 

(Mancini and Hunt, 2005; Suman et al., 2014; Neethling et al., 2017). The fresh meat that 

fails to meet the consumer-preferred cherry-red color are often be reduced in price or be 

processed into lower-value products before the microbial quality is compromised (Suman 

et al., 2014). Discoloration of meat not only leads to an annual economic loss of $1 billion 

to the U.S. meat industry, but also is a wastage of highly nutritious food (Smith et al., 

2000). The fresh meat color is mainly determined by the concentration and the redox 

forms of Mb (Seideman et al., 1984). Although meat discoloration is inevitable, 

understanding the biochemical pathways involved in Mb redox stability could contribute 
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to the development of novel strategies to improve color stability (Suman and Joseph, 

2013; Ramanathan et al., 2020a, b). Phosphorylation is the most common protein PTM 

and is a key regulator of biological process (Graves and Krebs, 1999). Previous 

investigations identified phosphorylation in Mb and glycolytic enzymes and indicated a 

potential role of phosphorylation in meat color stability (Li et al., 2020).  

 

1.4.3.1. Phosphorylation and myoglobin redox stability 
 

Li et al. (2017) evaluated the effect of phosphorylation on the color stability of 

ground lamb meat by utilizing phosphatase inhibitor (increase phosphorylation) and 

protein kinase inhibitor (decrease phosphorylation) to modulate phosphorylation of 

sarcoplasmic protein. The results indicated that the redness of the highly phosphorylated 

lamb declined faster than the low phosphorylated counterparts, indicating meat color 

stability was inversely related to the phosphorylation of sarcoplasmic proteins. Li et al. 

(2018a) further determined the phosphorylation levels of sarcoplasmic proteins from 

lamb longissimus thoracis et lumborum whole muscle cuts with different color stability 

and identified 9 phosphorylated glycolytic enzymes as color stability-related proteins. 

Moreover, the degree of phosphorylation of Mb was found to be inversely related to the 

lamb color stability. Higher content of OxyMb was observed in low phosphorylated meat 

than the highly phosphorylated counterpart, while the highest content of MetMb was 

determined in the highly phosphorylated group indicating that Mb redox stability was 

negatively influenced by phosphorylation. Li et al. (2018b) attempted to further 

understand the regulatory role of protein phosphorylation in meat color stability, and 
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investigated the color-related proteins and their phosphorylation sites. By performing 

quantitative phosphoproteomic analysis among lamb longissimus thoracis et lumborum 

muscles with different color stability, Li et al. (2018b) reported 27 key color-related 

phosphoproteins, including Mb and glycolytic enzymes. Additionally, phosphorylation at 

Mb S133 was significantly higher in color-labile lamb compared with the color-stable 

counterparts, suggesting a negative role of phosphorylation at S133 in meat color 

stability.  

 

1.4.3.2. Phosphorylation of glycolytic enzymes  
 

Phosphorylation of glycolytic enzymes, including glycogen phosphorylase, 

pyruvate kinase, phosphofructokinase, phosphoglucomutase-1, triosephosphate 

isomerase, as well as its impact on postmortem glycolysis and meat pH were reviewed in 

section 1.4.1. Interestingly, those glycolytic enzymes were also reported to be positively 

correlated with redness and MetMb reducing activity in beef (Gagaoua et al., 2020). 

Previous investigations indicated that the abundance of glycogen phosphorylase and 

triosephosphate isomerase were related to the color stability of semitendinosus (Wu et 

al., 2015), longissimus lumborum (Wu et al., 2016), and psoas major (Wu et al., 2016) 

muscles from Chinese Luxi yellow cattle. Phosphoglucomutase-1 was found positively 

correlated with surface redness of beef semitendinosus (Yu et al., 2017), and longissimus 

lumborum (Canto et al., 2015; Nair et al., 2018a), but negatively correlated with redness 

in beef psoas major (Wu et al., 2016). In general, the greater glycolytic metabolism in the 

postmortem muscle indicates a possible low oxygen consumption, which could minimize 
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Mb autoxidation, leading to lower MetMb accumulation and improved color stability 

(O’Keeffe and Hood, 1982; Renerre and Labas, 1987). In addition, the glycolytic enzymes 

contribute to the meat color stability through NADH regeneration in postmortem muscles 

(Ramanathan et al., 2010; Ramanathan and Mancini, 2010; Ramanathan et al., 2020a, b). 

Different isoforms of color-related enzymes, including creatine kinase (Joseph et al., 2012; 

Nair et al., 2016,2018a,b), glycogen phosphorylase (Wu et al., 2015), beta-enolase (Nair 

et al., 2016,2018a,b), triosephosphate isomerase (Wu et al., 2016; Nair et al., 

2016,2018a,b), phosphoglucomutase-1 (Canto et al., 2015; Nair et al., 2018a) and 

glyceraldehyde-3-phosphate dehydrogenase (Wu et al., 2016; Canto et al., 2015; Nair et 

al., 2018a) exhibiting different isoelectric pH have been identified in the two-dimensional 

gel electrophoresis, indicating that these enzymes might undergo PTMs. Nonetheless, the 

PTMs in abovementioned enzymes were not identified.  

Li et al. (2018a) identified 9 phosphorylated glycolytic enzymes that were 

correlated with lamb color stability. Further studies (Li et al., 2018b) analyzed the 

influence of specific phosphorylation sites on the functionality of these glycolytic enzymes 

and lamb color stability. The results indicated that phosphorylation of pyruvate kinase at 

S113, triosephosphate isomerase at S160, fructose-bisphosphate aldolase C at S124 or 

S127, and phosphoglucomutase-1 isoform X2 at Y550, S553 or Y554 could negatively 

impact meat color stability. In addition, phosphorylation of phosphoacetylglucosamine 

mutase at S64, beta-enolase isoform X1 at S272, fructose-bisphosphate aldolase A 

isoform X1 at S39, and 6-muscle type isoform X2 at S448 were positively related to meat 

color stability (Li et al., 2018b). Interestingly, the phosphorylation of glucose-6-phosphate 
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isomerase was up-regulated at S533, while down-regulated at S532 in the low color 

stability group (Li et al., 2018b). This observation suggested that differences in the 

phosphorylation sites within a protein could play different roles in regulating the protein’s 

functionality and meat color stability. 

In summary, protein phosphorylation influences meat color stability through 

regulating Mb redox stability and post-mortem glycolysis. Nonetheless, Mb 

phosphorylation patterns during the post-mortem aging, the involvement of other Mb 

PTMs in color stability, and the PTMs of Mb from different beef muscles are yet to be 

characterized.  

 

1.5. PTMs in myoglobin 
 

Diverse PTMs, such as phosphorylation (Stewart et al., 2004; Hojlund et al., 2009; 

Huang et al., 2011; Lametsch et al., 2011; Li et al., 2017a,b, 2018a,b), acetylation 

(Livingston et al., 1985; Noble et al., 1967; Jiang et al., 2019), methylation (Santucci et al., 

1993), carboxymethylation (Ray and Gurd, 1967; Hugli and Gurd, 1970; Schlecht, 1969; 

Banaszk et al., 1963; Wu et al., 1972; Harris and Hill, 1969) and HNE alkylation (Faustman 

et al., 1999; Alderton et al., 2003; Suman et al., 2006, 2007; Elroy et al., 2015), could 

influence the structure and function of mammalian Mbs. 

 

1.5.1. Phosphorylation of myoglobin  
 

Reversible phosphorylation, which can activate (or deactivate) numerous enzymes 

to regulate their functions, has been considered as the most common PTM (Cohen, 2002; 
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Grave and Krebs, 1999; Tripodi et al., 2015; Berndt et al., 2017). Previous investigations 

documented phosphorylation of Mbs from beluga whale (Stewart et al., 2004), human 

(Hojlund et al., 2009), pork (Huang et al., 2011; Lametsch et al., 2011), and sheep (Li et 

al., 2017a,b, 2018a,b).  

While phosphorylation in Mb has been detected by gel-based phosphoproteomic 

analysis of sarcoplasmic proteins in postmortem pork muscles (Huang et al., 2011; 

Lametsch et al., 2011), the sites of phosphorylation were not identified in these studies. 

Potassium phosphoramidate was utilized to chemically phosphorylate histidine residues 

in horse Mb, and the result indicated that the degree of phosphorylation may vary with 

site accessibility (Hohenster et al., 2013). In agreement, Stewart et al. (2004) discovered 

two potential phosphorylation sites (S117 and Y147) in beluga whale (Delphinapterus 

leucas) Mb. These two amino acid residues are located on the surface, and thus are readily 

accessible for protein kinase, which is the enzyme responsible for transferring phosphate 

groups from ATP to proteins. Hojlund et al. (2009) analyzed the phosphoproteome of 

human skeletal muscle, and identified phosphorylation at T68, T71 and S145 in human 

Mb. Moreover, Li et al. (2017a, 2018a, b) studied the influence of Mb phosphorylation on 

the color of sheep longissimus thoracis et lumborum muscles by analyzing sarcoplasmic 

phosphoproteins and reported that the phosphorylation level of Mb was inversely related 

to the lamb color stability. Furthermore, phosphorylation at S4, T35, T52, S59, T68, T71, 

Y104, S122 and S133 was detected in sheep Mb (Li et al., 2018b). The phosphorylation 

level at S133 was significantly greater in color-labile lamb compared with color-stable 

counterparts, indicating the negative role of S133 phosphorylation in meat color stability 
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(Li et al., 2018b). Interestingly, the phosphorylation level of Mb was greater in tough 

sheep longissimus thoracis et lumborum muscle compared with tender counterparts (Li 

et al., 2017b). These observations suggested that phosphorylation of Mb could be utilized 

as a biomarker for meat color as well as tenderness.  

 

1.5.2. Acetylation of myoglobin  
 

Acetylation was identified in Mbs from yellowfin tuna (Rice et al., 1979), bullet 

tuna (Ueki et al., 2005), sea hare (Nguyen et al., 2000), horse (Noble et al., 1967), cattle 

(Livingston et al., 1985), and pig (Jiang et al., 2019). N-terminus acetylation was detected 

in Mbs from yellowfin tuna (Rice et al., 1979) and bullet tuna (Ueki et al., 2005). Nguyen 

et al. (2000) studied the influence of N-terminus acetylation on the structure of Aplysia 

limacina (sea hare) Mb and observed that the absence of N-acetyl group in the 

recombinant wild-type Mb altered the orientations of heme and proximal histidine 

imidazole plane. Furthermore, lysine residues in beef Mb were chemically acetylated 

using acetic anhydride (Livingston et al., 1985), and the results indicated that lysine 

acetylation did not affect beef Mb’s oxygen affinity, whereas it severely decreased the 

enzymatic reduction rate of Mb. Additionally, Azami-Movahed et al. (2018) documented 

that lysine acetylation in horse apomyoglobin resulted in a less-ordered tertiary structure 

and absence of stable hydrophobic patches due to heme pocket disruption. These 

observations could be attributed to the disruption of charge distribution induced by lysine 

acetylation, which alter the ionic network on the protein surface and led to destabilization 

of protein structure (Azami-Movahed et al., 2018). Moreover, Jiang et al. (2019) identified 



   

35 

the acetylation at K43 and K78 in Mb from pork longissimus muscle and indicated that 

lysine acetylation was involved in the conversion of muscle to meat. In summary, 

acetylation could compromise Mb’s structural stability by modulating the charge 

distribution, and thereby regulating it functionality.  

  

1.5.3. Methylation of myoglobin 
 

Methylation is a common PTM catalyzed by methyltransferase. Methyl groups 

bind with nitrogen or oxygen on amino acid sidechains, leading to N- or O-methylation, 

respectively (Kwan et al., 2016). While methylation has not been reported in globin 

portion of Mb, several previous studies investigated methylation of heme groups in Mbs 

from horse (Santucci et al., 1993) and sperm whale (La Mar et al., 1986). These studies 

observed that methylation of heme did not influence heme re-orientation in horse and 

sperm whale Mbs. 

 

1.5.4. Carboxymethylation of myoglobin 
 

Carboxymethylation is a non-enzymatic PTM. In-vitro carboxymethylation by 

bromoacetate was documented in Mbs from human (Harris and Hill, 1969), sperm whale 

(Ray and Gurd, 1967; Hugli and Gurd, 1970; Schlecht, 1969; Banaszk et al., 1963; Wu et 

al., 1972) and harbor seal (Nigen and Gurd, 1973). Harris and Hill (1969) documented 

carboxymethylation at histidine, lysine, and methionine residues in human Mb. Similarly, 

histidine residues in sperm whale Mb were also susceptible to carboxymethylation. Hugli 

and Gurd (1970) identified the carboxymethylation at histidine residues (positions 12, 36, 
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81, 113, 116 and 119) in sperm whale Mb. Moreover, Nigen and Gurd (1973) observed 

similar carboxymethylation patterns in harbor seal and sperm whale Mbs and reported 

reactive histidine residues (positions 8, 81, 113, and 116) and unreactive histidines 

(positions 24, 64, 82,93, and 97) in both species. Banaszk et al. (1963) documented that 

the addition of carboxymethyl groups might introduce a minor rearrangement of the 

protein structure, which enables a second carboxymethylation step to be facilitated at a 

particular histidine residue. In addition, Schlecht (1969) observed that the isoelectric 

point of sperm whale Mb was altered upon carboxymethylation, indicating that the 

addition of carboxymethyl group altered charge distribution in Mb. Furthermore, Wu et 

al. (1972) reported that carboxymethylated sperm whale OxyMb underwent autoxidation 

faster than its unmodified counterparts. These studies suggested that 

carboxymethylation could compromise Mb redox stability through altering the heme 

protein’s net charge and structural properties.  

 

1.5.5. HNE alkylation of myoglobin 
 

HNE is an α,β-unsaturated aldehyde formed as a result of oxidation of n-6 

polyunsaturated fatty acids (Esterbauer et al., 1991) and has been detected in fresh beef, 

pork and fish (Sakai et al., 1995,1998,2004). HNE can inactivate enzymes and alter protein 

structure by covalently binding with lysine, cysteine, arginine, and histidine residues 

(Esterbauer et al., 1991; Uchida and Stadtman, 1992; Szweda et al., 1993). HNE has been 

used as a model aldehyde to investigate lipid oxidation-induced oxidation of Mb from 

beef (Alderton et al., 2003; Suman et al., 2006, 2007; Maheswarappa et al., 2016), pork 
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(Suman et al., 2006, 2007; Elroy et al., 2015), sheep (Yin et al., 2011), horse (Faustman et 

al., 1999), sperm whale (Tatiyaborworntham et al., 2012), yellowfin tuna (Lee et al., 2003), 

ostrich (Nair et al., 2014), emu (Nair et al., 2014), turkey (Naveena et al., 2010), and 

chicken (Naveena et al., 2010).  

In in-vitro model systems, HNE alkylation occurred exclusively at histidine residues 

in Mb (Alderton et al., 2003; Suman et al., 2006, 2007; Yin et al., 2013; Nair et al., 2014). 

Faustman et al. (1999) observed that the HNE alkylation accelerated horse OxyMb 

oxidation and resulted in mass increment of 156 Da, indicating that the HNE adducts were 

formed through Michael addition. Alderton et al. (2003) further identified six nucleophilic 

histidines (positions 24, 64, 93, 116, and 152) in beef Mb that were readily adducted by 

HNE, including the proximal (H93) and distal (H64) histidines associated with the heme 

group. Likewise, Naveena et al. (2010) documented covalent HNE adduction at histidine 

residues (positions 64 and 93) in chicken Mb. Suman et al. (2006, 2007) compared HNE-

induced redox instability in beef and pork Mbs at different storage conditions and 

reported that beef Mb was more susceptible to HNE alkylation than pork Mb. Both mono- 

and di-adducts were detected in beef Mb, while only mono-adducts were present in pork 

Mb (Suman et al., 2006). Additionally, the preferential HNE adduction at proximal 

histidine (H93) was exclusively detected in beef Mb, but absent in pork Mb, and this could 

render beef Mb a more favorable candidate for HNE adduction compared with pork Mb 

(Suman et al., 2007). The observed species-specificity in lipid oxidation-induced Mb redox 

instability suggested the important role of Mb primary structure in acceleration of heme 

oxidation (Suman et al., 2007). Furthermore, Yin et al. (2011) compared HNE-induced 
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OxyMb oxidation from various meat-producing species, including beef, pork, horse, 

sheep, deer, chicken, and turkey. The results indicated greater oxidation rate in Mbs 

containing greater number of histidine residues, suggesting a correlation between the 

number of histidine residues and HNE-induced Mb redox instability. Nair et al. (2014a) 

further investigated lipid oxidation induced-oxidation in emu and ostrich Mbs. Tandem 

mass spectrometry results revealed that HNE adducted histidine 36 in ostrich Mb, 

whereas histidine 34 and 36 were adducted in emu Mb, indicating that the variation in 

primary amino acid sequence of Mb could influence their redox stability in the presence 

of prooxidants. In addition, buffalo and goat Mbs share 95.4% sequence similarity (Suman 

and Joseph, 2013), and five histidine residues (positions 24, 36, 81, 88, and 119) in both 

Indian water buffalo and goat Mbs were found covalently modified by HNE in-vitro 

(Maheswarappa et al., 2016). This observation suggested that Mbs with similar primary 

structure might undergo HNE alkylation in a similar fashion.  

In summary, HNE alkylation is influenced by species-specific variations in amino 

acid sequence and the number as well as the locations of histidine residues in the Mb 

(Suman et al., 2007; Yin et al., 2011). HNE adduction, especially at the hydrophobic heme 

pocket, could induce conformational changes in Mb, which exposes the heme pocket to 

oxidizing environment, and thus lead to increased Mb oxidation (Alderton et al., 2003; 

Lee et al., 2003; Suman et al., 2007). 
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CHAPTER 2 

 

 

 

 

Myoglobin post-translational modifications influence  

color stability of beef longissimus lumborum 
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Abstract: 

Post-translational modifications (PTMs) of proteins play critical roles in biological 

processes. PTMs of muscle proteins influence meat quality. Nonetheless, myoglobin (Mb) 

PTMs and their impact on fresh beef color stability have not been characterized yet. 

Therefore, our objectives were to identify Mb PTMs in beef longissimus lumborum (LL) 

muscle during postmortem aging and to characterize their influence on color stability. The 

LL muscles from nine (n = 9) beef carcasses (24 h postmortem) were subjected to wet-

aging for 0, 7, 14 and 21 d. At the end of each wet-aging period, steaks were fabricated. 

One steak for analyses of PTMs was immediately frozen at –80°C, whereas other steaks 

were assigned to refrigerated storage in the darkness under aerobic packaging. 

Instrumental color and biochemical attributes were evaluated on d 0, 3, or 6 of storage. 

Mb PTMs were analyzed using two-dimensional electrophoresis and tandem mass 

spectrometry. Surface redness (a* value), R630/580 (color stability), and Mb 

concentration decreased (P < 0.05) upon aging. Gel image analyses identified six Mb spots 

with similar molecular weight (17 kDa) but different isoelectric pH. Tandem mass 

spectrometry identified multiple PTMs (phosphorylation, methylation, 

carboxymethylation, acetylation, and HNE alkylation) in these six isoforms. The amino 

acids susceptible to phosphorylation were serine (S), threonine (T), and tyrosine, whereas 

other PTMs are detected in lysine (K), arginine (R), and histidine residues. Additionally, 

distal histidine (position 64), critical to heme stability, was found to be alkylated. Overall, 

Mb PTMs increased with aging. The aging-induced PTMs, especially those occurring close 

to hydrophobic heme pocket, could disrupt Mb tertiary structure, influence heme affinity, 
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and compromise oxygen binding capacity, leading to decreased color stability of fresh 

beef. Furthermore, PTMs at K45, K47, and K87 were unique to Mb from non-aged beef, 

whereas PTMs at R31, T51, K96, K98, S121, R139, and K147 were unique to Mb from aged 

counterparts, indicating these Mb PTMs could be used as novel biomarkers for fresh beef 

color stability. 

 

Keywords: aging, beef color stability, longissimus lumborum, myoglobin, post-

translational modifications  
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2.1. Introduction 
 

The color of fresh beef is critical to meat industry as it is a major quality attribute 

influencing the consumers’ purchase decisions at the point of sale (Suman et al., 2014).  

Consumers often use the cherry-red color as an indicator of wholesomeness of fresh 

meats (Faustman and Cassens, 1990; Mancini and Hunt, 2005; Suman et al., 2014, 

Neethling et al., 2017). Meat discoloration results in consumer rejection, leading to huge 

economic loss. The U.S. beef industry incurs an annual revenue loss of $1 billion as a result 

of discoloration (Smith et al., 2000). Myoglobin (Mb) is the sarcoplasmic heme protein 

responsible for the meat color. The concentration and redox forms of Mb determine the 

fresh meat color. Furthermore, the primary structure of Mb dictates its tertiary structure, 

and in turn influences its functional properties as an oxygen carrier and its interactions 

with biomolecules, and ultimately affect meat color (Faustman et al., 2010; Suman and 

Joseph, 2013; Ramanathan et al., 2020a, b).  

Post-translational modifications (PTMs) are covalent changes in proteins by the 

addition or removal of modifying group(s) at one or more amino acids in the primary 

structure (Lodish, 1981; Han and Martinage, 1992; Mann and Jensen, 2003). PTMs can 

modulate proteins’ functionality, localization, turnover, and interactions with other 

proteins (Seo and Lee, 2004; Rakhit et al., 2014; Muller, 2017; Li et al., 2020). Previous 

investigations have documented that PTMs in calpain (Liu et al., 2016; Du et al., 2019), 

myofibrillar proteins (Huang et al., 2012; Li et al., 2017; Li et al., 2020), as well as metabolic 

enzymes (Anderson et al., 2014; Cruzen et al., 2015; Carlson et al., 2017; Liu et al., 2018; 

Huang et al., 2018) in skeletal muscles of livestock (cattle, pig, and sheep) influenced meat 
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tenderness and muscle to meat conversion. The aforementioned studies suggested the 

potential of protein PTMs as novel biomarkers for meat quality.  

PTMs such as oxidation (Lindsay et al., 2016; Bostelaar et al., 2016), methylation 

(Santucci et al., 1993), carboxymethylation (Ray and Gurd, 1967; Harris and Hill, 1969), 

phosphorylation (Stewart et al., 2004; Hojlund et al., 2009; Hohenester et al., 2013; Li et 

al., 2020), and acetylation (Livingston et al., 1985) influenced the functionality of 

mammalian Mbs. Additionally, alkylation (nucleophilic adduction by reactive aldehydes) 

compromises stability of beef Mb (Alderton et al., 2003; Suman et al., 2006, 2007; Yin et 

al., 2011; Elroy et al., 2015; Viana et al., 2020). 

Mb interacts reciprocally with small biomolecules, proteins, and cellular 

components in muscle food matrix during postmortem aging (Richards, 2013; 

Ramanathan et al., 2020a, b). The biomolecular interactions in postmortem skeletal 

muscles govern Mb chemistry and color of fresh meats (Fox, 1966; Giddings, 1977; 

Livingston and Brown, 1981; Seideman et al., 1984; Renerre, 1990; Faustman et al., 2010; 

Suman and Nair, 2017). Logically, in-situ PTMs in Mb can impact fresh meat color stability 

through modulating the heme protein’s structural and functional properties as well as 

interactions with other biomolecules (Suman and Joseph, 2013).  

Recent investigations (Li et al., 2018a, b) identified phosphorylation in glycolytic 

enzymes and Mb in sheep longissimus muscle and suggested that phosphorylation might 

be involved in meat color stability. Nonetheless, in-situ PTMs in beef Mb and their impact 

on fresh beef color stability have not been characterized yet. Therefore, the objective of 
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current study was to characterize the Mb PTMs in beef longissimus lumborum muscle 

during postmortem aging and their influence on fresh beef color stability.   

 

2.2. Materials and methods 
 

2.2.1. Beef fabrication 
 

Beef carcasses (n = 9; USDA choice; A maturity; black-hided crossbred heifers) 

were obtained from the USDA-inspected meat laboratory at the University of Kentucky 

(Lexington, KY). Longissimus lumborum (LL) muscle from the right side of carcasses were 

removed and divided into 4 equal-length sections after 24 h postmortem. The muscle 

sections were vacuum packaged (99% vacuum; Sipromac Model 600A, Drummondville, 

Quebec, Canada) in Prime Source vacuum pouches (3 mil, Bunzl Koch Supplies Inc., Kansas 

City, MO), and randomly assigned to wet-aging at 2°C for either 0, 7, 14, or 21 days. At 

the end of each wet-aging period, the muscle sections were removed from the vacuum 

package and fabricated into four 1.92-cm thick steaks. One steak from each muscle 

section allotted for proteome analyses was immediately vacuum packaged and frozen at 

–80°C until used. The remaining three steaks were allotted to refrigerated storage for 

evaluation of the color traits. The three steaks utilized for color evaluation were 

individually placed on Styrofoam trays and aerobically overwrapped with oxygen-

permeable film (15,500–16,275 cm3/m2/24 h oxygen transmission rate at 23°C). Packages 

were randomly assigned for refrigerated storage (2°C) for either 0, 3 or 6 days in the 

darkness (Mancini et al., 2009; Nair et al., 2018). At each storage time point, Mb 
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concentration, meat pH, instrumental color, metmyoglobin reducing activity (MRA) and 

lipid oxidation were evaluated.         

 

2.2.2. Instrumental color  
 

The surface color of steaks was measured instrumentally at each time point using 

a HunterLab LabScan XE colorimeter (Hunter Associations Laboratory, Reston, VA) with 

2.54-cm-diameter aperture, illuminant A, and 10° standard observer. The colorimeter was 

calibrated with standard black and white plates. On day 0 of storage, the steaks were 

bloomed for 2 h at 2 °C before evaluating the instrumental color attributes. CIE (1976) L* 

(lightness), a* (redness), and b* (yellowness) value were measured at 6 random locations 

on the oxygen-exposed surface of each steak (American Meat Science Association, 2012). 

Additionally, the reflectance was measured from 700 to 400 nm, and the ratio of 

reflectance at 630 nm and 580 nm (R630/580) was obtained as an indirect estimate of 

surface color stability (American Meat Science Association, 2012).  

 

2.2.3. Meat pH 
 

The pH value of raw steak samples was determined according to the method of 

Strange et al. (1977). Triplicate five grams of muscle samples were homogenized with 25 

mL of distilled deionized water, and the pH was measured utilizing an Accumet AR25 pH 

meter (Fisher Scientific, Pittsburg, PA, USA).  
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2.2.4. Lipid oxidation 
 

Lipid oxidation was measured using the thiobarbituric acid assay (Yin et al., 1993). 

Triplicate five grams of sample were homogenized with 22.5 mL of 11% trichloroacetic 

acid solution, and filtered through Whatman no.1 paper (GE Healthcare, Little Chalfont, 

UK). One milliliter of aqueous filtrate was mixed with 1 mL of aqueous thiobarbituric acid 

and incubated at 25 °C for 20 h. The absorbance values at 532 nm were measured utilizing 

a UV-2401PC spectrophotometer (Shimadzu Inc., Columbia, MD, USA), and were 

presented as thiobarbituric acid reactive substances (TBARS). 

 

2.2.5. Metmyoglobin reducing activity (MRA) 
 

The MRA was measured at three time points (d 0, 3, and 6) of each aging period. 

MRA was evaluated according to Sammel et al. (2002). Triplicate 2.45-cm samples 

removed from the oxygen-exposed steak surface were submerged in 0.3% sodium nitrate 

(Sigma-Aldrich Co., St. Louis, MO) solution for 20 min at room temperature to facilitate 

metmyoglobin formation. After 20 min, the samples were removed from the solution, 

blotted dry and vacuum packaged. The reflectance spectra was measured from 700 to 

400 nm on the light-exposed surface using a HunterLab LabScan XE colorimeter 

immediately after vacuum packaging in order to calculate pre-incubation surface 

metmyoglobin values (American Meat Science Association, 2012). The samples were then 

incubated at 30 °C for 2 h allowing for metmyoglobin reduction and then surface 

reflectance was rescanned to calculate post-incubation metmyoglobin values (American 

Meat Science Association, 2012). The MRA was calculated using the equation:  
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MRA = 100 × [(% pre-incubation surface metmyoglobin – % post-incubation surface 

metmyoglobin) / % pre-incubation surface metmyoglobin]. 

 

2.2.6. Myoglobin concentration  
 

The Mb concentration was measured at three time points (d 0, 3, and 6) of each 

aging period. Triplicate five-gram samples were homogenized with 45 mL ice-cold 40 

mM sodium phosphate buffer at pH 6.8 (Faustman and Phillips, 2001). The homogenate 

was filtered through Whatman no.1 paper, and the absorbance of the filtrate was 

measured at 525 nm (A525) utilizing a UV-2401PC spectrophotometer (Shimadzu Inc., 

Columbia, MD, USA) with 40 mM sodium phosphate buffer as a blank. The Mb 

concentration was calculated using the following equation:   

Myoglobin (mg/g) = [A525 / (7.6 mM−1cm−1 × 1 cm)] × (17,000/ 1000) × 10  

 where: 7.6 mM−1 cm−1 = mM absorptivity coefficient of Mb at 525 nm; 1 cm = light 

path length of cuvette; 17,000 Da = average molecular weight of Mb; and 10 = dilution 

factor.        

 

2.2.7. Isolation of sarcoplasmic proteome 
 

The sarcoplasmic proteomes from samples (n = 9) frozen (–80 °C) on each of the 

aging days (0, 7, 14, and 21) were extracted according to the method of Joseph et al. 

(2012). Frozen samples were thawed overnight at 2 °C. Five-gram of muscle tissue devoid 

of any visible fat and connective tissue was homogenized in 25 mL ice-cold extraction 

buffer (40 mM Tris, 5 mM ethylenediaminetetraacetic acid, pH = 8) using a Waring 
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blender (Model No. 51BL32; Waring Commercial, Torrington, CT). The homogenate was 

then centrifuged at 10,000 g for 15 min at 4 °C. The supernatant consisting of 

sarcoplasmic proteome extract was filtered through Whatman No.1 paper (GE 

Healthcare), and used for subsequent analyses (Joseph et al., 2012; Nair et al., 2018).  

 

2.2.8. Two-dimensional electrophoresis (2-DE) 
 

The protein concentration of the sarcoplasmic proteome extract was determined 

in duplicate employing the Bradford assay (Bradford, 1976) utilizing Bio-Rad Protein Assay 

kit (Bio-Rad Laboratories Inc., Hercules, CA). Nine-hundred micrograms of sarcoplasmic 

proteome was mixed with rehydration buffer (Bio-Rad Laboratories Inc.) optimized to 7 

M urea, 2 M thiourea, 20 mM DTT, 4% CHAPS, 0.5% Bio-Lyte 5/8 ampholyte and 0.001% 

Bromophenol blue. The mixture of sarcoplasmic protein and rehydration buffer was 

loaded into immobilized pH gradient (IPG) strips (pH 5−8; 17 cm; Bio-Rad Laboratories 

Inc.), and subjected to passive rehydration for 16 h (Joseph et al., 2012). First-dimension 

isoelectric focusing (IEF) which enables the separation of proteins based on their 

isoelectric point (pI) was performed using a Protean IEF cell system (Bio-Rad Laboratories 

Inc.). A low voltage (50 V) was applied during the initial active rehydration for 4 h, 

followed by a linear increase in voltage, and a final rapid voltage ramping to attain a total 

of 60 kVh. Further, the IPG strips were equilibrated with equilibration buffer I (6 M urea, 

0.375 M Tris-HCl, pH 8.8, 2% sodium dodecyl sulfate [SDS], 20% glycerol, 2% [w/v] 

dithiothreitol; Bio-Rad Laboratories Inc.) followed by equilibration buffer II (6 M urea, 

0.375 M Tris-HCl, pH 8.8, 2% SDS, 20% glycerol, 2.5% [w/v] iodoacetamide), each for 15 



   

49 

min. Second dimension separation of protein was achieved by 13.5% SDS polyacrylamide 

gel electrophoresis (SDS-PAGE; 38.5:1 ratio of acrylamide to bis-acrylamide) in a Protean 

II Multicell system (Bio-Rad Laboratories Inc.). The equilibrated strips were loaded on to 

18.5 cm × 20 cm lab cast SDS-PAGE gels with an agarose overlay, and the electrophoresis 

was completed using running buffer (25 mM Tris, 192 mM glycine, 0.1 % SDS) at room 

temperature. A constant voltage of 100 V was applied for approximately 16 h to allow the 

separation of proteins in the second dimension. Beef LL muscle during the aging days (0, 

7, 14, and 21) from all the carcasses (n = 9) was analyzed in duplicate, resulting in a total 

of 72 gels. 

 

2.2.9. Gel staining and image analyses 
 

Gels were stained for phosphorylated protein using Pro-Q Diamond (Invitrogen, 

Carlsbad, CA) according to manufacturer’s recommendations. Gels were immersed into 

fix solution (50% methanol and 10% acetic acid) and incubated twice at room 

temperature with gentle agitation for 30 min. Fixed gels were then immersed into 

ultrapure water in order to remove all the methanol and acetic acid. Pro-Q Diamond 

phosphoprotein gel stain was used to stain the gels for 2 h in the dark, followed by 

destaining in destaining solution (20% acetonitrile, 50 mM sodium acetate, pH 4) for 30 

min for three times. Gels were washed with ultrapure water for two times before they 

were imaged (532 nm laser; excitation: 555 nm; emission: 580 nm) using TyphoonTM FLA 

9500 biomolecular imager (GE Healthcare).  After gel imaging, gels were stained with 

Sypro Ruby Protein gel stain (Invitrogen, Carlsbad, CA) overnight in the dark, and were 
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transferred to a clean container, where they were destained twice with destaining 

solution (10% methanol, 7% acetic acid) for 30 min, and were rinsed with ultrapure water. 

Gels were then imaged (473 nm laser; excitation: 450 nm; emission: 610 nm) utilizing 

TyphoonTM FLA 9500 biomolecular imager (GE Healthcare). Gel images stained with Pro-

Q Diamond and Sypro Ruby were analyzed using PDQUEST software (Bio-Rad Laboratories 

Inc.).  

 

2.2.10. Liquid chromatography-electrospray ionization-tandem mass spectrometry  
 

The protein gel spots with similar molecular weight of 17 kDa were excised and 

subjected to dithiothreitol reduction, iodoacetamide alkylation, and in-gel trypsin 

digestion using a standard protocol. The resulting tryptic peptides were extracted, 

concentrated and subjected to shot-gun proteomics analysis as previously described in 

Kamelgarn et al. (2018). Nano-liquid chromatography (LC)–tandem mass spectrometry 

(MS/MS) analysis was performed using an LTQ-Orbitrap mass spectrometer (Thermo 

Fisher Scientific, Waltham, MA) coupled with an Eksigent Nanoflex cHiPLC™ system 

(Eksigent, Dublin, CA) through a nano-electrospray ionization source. The peptide 

samples were separated with a reversed-phase cHiPLC column (75 μm × 150 mm) at a 

flow rate of 300 nL/min. Mobile phase A was water with 0.1% (v/v) formic acid, while B 

was acetonitrile with 0.1% (v/v) formic acid. A 50-min gradient condition was applied: 

initial 3% mobile phase B was increased linearly to 40% in 24 min and further to 85% and 

95% for 5 min each before it was decreased to 3% and re-equilibrated. The mass analysis 

method consisted of one segment with 10 scan events. The first scan event was an 
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Orbitrap MS scan (300–1800 m/z) with 60,000 resolution for parent ions followed by data 

dependent MS/MS for fragmentation of the 10 most intense multiple charged ions with 

collision induced dissociation method. 

 

2.2.11. Identification of PTMs in myoglobin 
 

The LC-MS/MS data were submitted to a local mascot server for MS/MS protein 

identification via Proteome Discoverer (version 1.3, Thermo Fisher Scientific, Waltham, 

MA) against a custom database containing only beef Mb protein [MYG_BOVIN] 

downloaded from UniProt (https://www.uniprot.org/uniprot/P02192). Typical 

parameters used in the MASCOT MS/MS ion search were as follows: trypsin digestion with 

a maximum of two miscleavages; 10 ppm precursor ion and 0.8-Da fragment ion mass 

tolerances; methionine oxidation; lysine acetylation; lysine and arginine methylation; 

serine, threonine and tyrosine phosphorylation; 4-hydroxynonenal (HNE) modification on 

histidine, and lysine. 

 

2.2.12. Statistical analysis 
 

The LL muscle from 9 beef carcasses (n = 9) were utilized for current study. The 

experiment design was a split-split plot with randomized block design in the whole plot 

with nine replicates, wherein LL muscle from each carcass served as blocks, and aging 

time (0, 7, 14, and 21 d) as subplot. For the data of instrumental color and biochemical 

attributes, storage time (0, 3, and 6 d) was set as a sub-sub plot. The data were analyzed 

using PROC MIXED procedure of SAS version (SAS Institute Inc., Cary, NC), and the 

https://www.uniprot.org/uniprot/P02192
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differences among means were detected using the least significant difference at a 5% 

level. 

 

2.3. Results and discussion 
 

2.3.1. Instrumental color and biochemical attributes   
 

There was a significant aging × storage interaction (P < 0.05; Table 1) for lightness 

(L* value). While non-aged steaks exhibited lower (P < 0.05) L* value than aged 

counterparts on 0 d storage, all the steaks demonstrated similar lightness (P > 0.05) at the 

end of storage (6 d). Non-aged steaks demonstrated an increase (P < 0.05) in L* value 

during the storage, whereas L* value remained stable (P > 0.05) in the aged ones. Overall, 

aging resulted in an increase in lightness, which was consistent with the observations of 

Marino et al. (2014), Obuz et al. (2014), English et al. (2016) and Nair et al. (2018) in beef 

longissimus muscle.  

An aging × storage interaction (P < 0.05; Table 1) was observed for surface redness 

(a* value). All steaks demonstrated similar redness (P > 0.05) on days 0 and 3 of storage. 

A decrease in redness upon aging (P < 0.05) was observed on day 6 of storage, with steaks 

aged for 14 and 21 d exhibiting the lowest redness. In general, redness of non-aged steaks 

remained stable during the storage (P > 0.05), whereas redness of aged ones decreased 

(P < 0.05). In agreement, Liu et al. (1996) observed that prolonged aging of beef LL 

accelerated the loss of redness. Postmortem aging can influence the cellular mechanisms 

which determine the Mb redox chemistry and therefore impact the meat color stability 

(Ledward, 1985; Tang et al., 2005; King et al., 2012). In addition, Mancini and Ramanathan 
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(2014) reported that the decrease of redness in LL muscle during aging was possibly due 

to the negative effects of storage time on mitochondria-mediated metmyoglobin 

reduction. The increase in pH (Table 1) and lipid oxidation (Table 2) during aging and 

storage observed in the present study could also be responsible for the surface 

discoloration. The increase in pH observed in LL muscle could enhance mitochondria 

activity (Ramanathan and Mancini, 2018), resulting in the decrease of oxymyoglobin 

content as well as redness. Lipid oxidation, on the other hand, accelerates metmyoglobin 

formation, and thus promotes discoloration in fresh meat (Faustman et al., 2010).  

An interaction between aging and storage (P < 0.05; Table 1) was observed for 

yellowness (b* value). While all steaks demonstrated similar yellowness at the beginning 

of the storage (day 0), those aged for 14 and 21 d had lower (P < 0.05) yellowness on 

storage days 3 and 6 than their counterparts aged for 0 and 7 d. While the yellowness of 

non-aged steaks remained stable during storage, aged counterparts exhibited a decrease 

(P < 0.05) in yellowness.  Overall, an increase in aging time resulted in rapid loss of 

yellowness during the storage in beef LL steaks. Our observation was consistent with 

previous investigations which documented that aging (Obuz et al., 2014) and storage 

(Joseph et al., 2012; Canto et al., 2015) resulted in the decrease of yellowness in beef LL 

steaks. On the contrary, Marino et al. (2014) documented that yellowness of longissimus 

dorsi muscle was not influenced by aging. 

The ratio of reflectance at 630 nm and 580 nm (R630/580) indicates surface color 

stability; a greater ratio reflects lower metmyoglobin content and thus greater color 

stability. There was no aging × storage interaction (P > 0.05; Table 2) for R630/580. 
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Nevertheless, both aging and storage led to the decrease (P < 0.05) of surface color 

stability of LL muscle. Muscles aged for 14 and 21 d demonstrated lower (P < 0.05) color 

stability that those aged for 7 days or less. In agreement, previous studies (Lindahl, 2011; 

English et al., 2016) recorded that beef discoloration increased with aging. Longer aging 

could decrease mitochondria function and metabolites required to generate NADH, and 

therefore compromises color stability of beef (Ramanathan and Mancini, 2018). In 

addition, LL steaks exhibited a decrease (P < 0.05) in surface color stability during storage, 

and this observation was consistent with the results from previous investigations (Joseph 

et al., 2012; Canto et al., 2016; Nair et al., 2018).  

There was an aging × storage interaction (P < 0.05; Table 1) for pH. The pH of 

steaks aged for 0 and 7 d remained stable over the storage, whereas steaks aged for 14 

and 21 d exhibited an increase (P < 0.05) on day 6 of storage. In general, aging beyond 7 

days resulted in higher pH of beef LL steaks at the end of 6 days storage. The increase in 

the pH of aged meat during storage could be due to the proteolytic degradation of muscle 

fibers and the generation of basic metabolites (Lawrie, 1998). Likewise, Jayasooriya et al. 

(2007), Obuz et al. (2014) and Colle et al. (2015) documented that the pH of beef LL 

muscle increased with aging. 

There was an aging × storage interaction (P < 0.05; Table 1) for Mb concentration. 

While all steaks experienced a decrease in Mb concentration during the storage, the 

decline in non-aged steaks (0 d), which demonstrated the highest (P < 0.05) Mb 

concentration, was more pronounced than their aged counterparts. Previous research 

(Jeong et al., 2009; King et al., 2011; McKenna et al., 2005) also indicated that high content 
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of Mb in muscles was associated with rapid discoloration. Muscle with a high level of Mb 

also contains a high concentration of iron, which is a prooxidant indirectly favoring the 

formation of metmyoglobin, leading to the decline in color stability (Farouk et al., 2007; 

Purchas et al., 2010).   

The MRA indicates the ability of meat to reduce ferric metmyoglobin to ferrous 

redox forms (oxymyoglobin or deoxymyoglobin). The higher MRA suggests the greater 

inherent ability of muscle to reduce metmyoglobin, and thus improves the meat color 

stability. There was neither aging × storage interaction (P > 0.05) nor an effect of aging (P 

> 0.05) for MRA (Table 2). However, storage influenced (P < 0.001) MRA, with the greatest 

(P < 0.05) values observed at the beginning of the storage (d 0). MRA decreased during 

the storage in muscles aged for 0 and 7 d, whereas MRA in 21-d aged steaks had a 

tendency (P > 0.05) to increase from d 3 to d 6 of storage. Nair et al. (2018) documented 

a similar pattern in beef psoas major muscle. Likewise, Bekhit et al. (2001) observed that 

sheep longissimus muscle at 6 weeks postmortem had 20% higher MRA than those at 48 

h postmortem. Nair et al. (2018) suggested that the tendency of increased MRA with 

storage could be possibly due to the increased degradation of mitochondria, releasing 

more mitochondrial enzymes, and subsequently increased MRA without improving the 

surface redness.   

There was no storage × aging interaction (P > 0.05) for TBARS (Table 2). However, 

there was an effect of storage (P < 0.001) and aging (P = 0.0062) on lipid oxidation. In 

agreement, several previous investigations documented that lipid oxidation in beef LL 

muscle increased with longer aging periods (Mancini and Ramanathan, 2014; Colle et al., 
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2015; English et al., 2016) and storage times (McKenna et al., 2005; Joseph et al., 2012; 

Mancini and Ramanathan, 2014; Colle et al., 2015; Canto et al., 2016). The observed 

increase in TBARS upon aging and storage could be attributed to the decrease in the redox 

capacity of meat and the generation of free radicals, which trigger the chain reaction and 

enhance lipid oxidation in meat (Min and Ahn, 2005). A close positive correlation between 

lipid oxidation and Mb oxidation has been reported previously (Faustman and Cassens, 

1990; Suman and Joseph, 2013). Lipid oxidation-induced Mb oxidation promotes the 

accumulation of metmyoglobin and leads to surface discoloration (Faustman et al., 2010). 

 

2.3.2. Differential PTMs between myoglobin isoforms 
 

PTMs can cause a shift in the isoelectric point (pI) of proteins by adding, removing, 

or changing titratable groups; this change in pI enables 2-DE to resolve PTM-induced 

isoforms of proteins (Halligan et al., 2004). The representative 2-DE images (Figure 1) of 

beef sarcoplasmic proteome stained with Pro-Q Diamond for phosphorylated protein 

(Figure 1A) and Sypro Ruby for total protein (Figure 1B) are presented. Six Mb isoforms 

appeared in the gel images with similar molecular weight (17 kDa) but different pI, 

presenting the “beads on a string” appearance. These six Mb spots migrated different 

distances to the acidic side of the gel and exhibited different pI, indicating they were post-

translationally modified to different degrees. Similarly, Canto et al. (2015) identified 4 

spots with similar molecular weight and different pI on 2-DE as beef Mb, yet the PTMs in 

those spots were not identified. 
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Data in Table 3 indicated that the greatest number of phosphorylation sites were 

detected in isoform 3 (spot 3), whereas the sites of acetylation and carboxymethylation 

were most abundant in isoform 2 (spot 2). The largest number of methylation sites were 

observed in isoform 4 (spot 4). Phosphorylation, acetylation, methylation, and 

carboxymethylation could contribute to the pI shift by the addition of phosphates 

(McLachlin and Chait, 2001; Halligan et al., 2004; Jensen, 2004), acetyl group (Kumar et 

al., 2004; Xie et al., 2007), methyl group (Zhu et al., 2005; Xie et al., 2007) and carboxylic 

acid (Kung, 1979), respectively. The addition of negatively charged groups to the protein 

would cause its migration towards the acidic side of the gel (Anderson et al., 2014). 

Nonetheless, the magnitude of pI shift will be dependent on the number and chemistry 

of the titratable groups added to the protein. Kumar et al. (2004) observed a direct 

relationship between the number of residues phosphorylated in a protein and the pI shift. 

Furthermore, Halligan et al. (2004) indicated that phosphates add 1.5 negative charge to 

the protein at a pH near 6.5. On the other hand, the pI shift due to acetylation is generally 

small (< 0.2 pH; Zhu et al., 2005). Kumar et al. (2004) indicated that phosphorylation 

causes greater shift in pI than acetylation and methylation. Therefore, the combination 

of different PTMs could have contributed to the pI shifts of the isoforms 2, 3, and 4.  

Spot 1 (the most alkaline isoform with the greatest pI) representing the native 

form of Mb was observed to have HNE alkylation at the greatest extent (Table 3). HNE 

could adduct to the imidazole group of histidine and the amine group of lysine, forming 

Michael adducts (Esterbauer et al., 1991). The addition of HNE has a minimal effect on 

the pI compared with other PTMs, which introduce negatively charged groups 
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(phosphates, acetyl group, and carboxylic acid) to the protein. This could possibly be the 

reason why spot 1 exhibited no change in the pI.  

The Mb isoforms in spots 5 and 6 migrated further to the acidic side of the gel 

suggesting that they were post-translationally modified at a greater degree than the other 

isoforms. However, the number of sites of PTMs were lower in these 2 isoforms than in 

the other ones (Table 3). Phosphorylation was the major PTMs in the isoforms 5 and 6 

(Table 3), and this could have contributed to greater shift in pI of these 2 isoforms 

compared to the other isoforms in which a variety of PTMs were identified. 

 

2.3.3. PTMs patterns in beef myoglobin 
 

The position and identity of amino acids in beef Mb that underwent various PTMs 

are summarized in Figure 2. The amino acids susceptible to phosphorylation were serine 

(S), threonine (T), and tyrosine (Y), whereas other PTMs are detected in lysine (K), arginine 

(R), and histidine (H) residues. Moreover, lysine residues at positions 56, 63, 77, 78, 79, 

118, and 132 were susceptible to several PTMs, namely acetylation, methylation and 

carboxymethylation. A variety of factors such as the number of PTMs in a molecule of 

protein as well as their chemistry and location(s) influence protein functionality (Kumar 

et al., 2004). 

 

2.3.3.1. Phosphorylation sites in myoglobin  
 

Phosphorylation is the most common PTM and is a key regulator of 

biological/cellular processes (Graves and Krebs, 1999; Hunter, 2000). Phosphorylation has 
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been reported in Mb from beluga whale (Stewart et al., 2004), human (Hojlund et al., 

2009), pork (Huang et al., 2011; Lametsch et al., 2011), and sheep (Li et al., 2017; Li et al., 

2018a,b). Moreover, Li et al. (2018a, b) documented that the degree of phosphorylation 

in sheep Mb was inversely related to lamb color stability. Nonetheless, the impact of 

phosphorylation on the functionality of beef Mb is yet to be understood.  

Phosphorylation was identified in the serine (positions 58, 108, 121, and 132), 

threonine (positions 34, 51, 67, and 70), and tyrosine (position 103) residues of beef Mb 

(Figure 2). In agreement, previous studies reported that serine, threonine and tyrosine 

are the three amino acids that most susceptible to phosphorylation (Hunter, 2012; Ardito 

et al., 2017; Lin, 2018). Similar to our results, Li et al. (2018b) documented 

phosphorylation at T34, T51, S58, T67, T70, Y103, S121 and S132 in sheep Mb. 

Furthermore, Hojlund et al. (2009) identified phosphorylation at T67 and T70 in human 

Mb.  

In the three-dimensional model of beef Mb (Figure 3), T34, T51, T70 and S121 

residues are located on the surface and thus are readily accessible to protein kinase, 

which is the enzyme responsible for catalyzing phosphorylation. In support, Stewart et al. 

(2004) suggested that S117 in beluga whale Mb was a site for phosphorylation and is 

located on the Mb surface making it easily accessible to protein kinase. A phosphate 

group added to Mb could form intra- and inter-molecular hydrogen bonds or salt bridges 

and thus alter the interaction of the heme protein with other small biomolecules (Hunter, 

2012; Ardito et al., 2017).  
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Threonine at position 67 (T67) is located in the vicinity of distal histidine (position 

64) in beef Mb (Figure 3), which is critical to the oxygen binding capability and redox 

stability (Suman and Joseph, 2013). The addition of a negative phosphate group on T67 

influences the distal histidine’s spatial interaction with hydrophobic heme pocket, 

increases the heme pocket’s polarity, and decreases oxygen binding (Cameron et al., 

1993). In partial agreement, Livingston et al. (1986) suggested that T67 in Mb from 

yellowfin tuna, turtle, and sperm whale could be involved with ligand binding. Likewise, 

Stewart et al. (2004) reported that the substitution of valine at position 67 with threonine 

in beluga whale Mb influenced the distal histidine’s role in oxygen binding ability of heme. 

Additionally, Li et al. (2018b) suggested that the phosphorylation of sheep Mb at S132 

might compromise the heme protein’s oxygen binding ability and thus plays a negative 

role in color stability. Sheep and beef cattle Mb share 98.7% similarity in amino acid 

sequence (Suman and Joseph, 2013), therefore it is possible that the phosphorylation at 

S132 in beef Mb could be detrimental to its oxygen binding capability and redox stability.  

 

2.3.3.2. Acetylation sites in myoglobin  
 

Protein acetylation is involved in essential biological processes (Kwan et al., 2016; 

Ali et al., 2018; Zhao et al., 2010). Previous investigations documented acetylation of 

lysine in Mb from yellowfin tuna (Rice et al., 1979), cattle (Livingston et al., 1985), bullet 

tuna (Ueki et al., 2005), and pig (Jiang et al., 2019). In the present study, ten lysine 

residues (positions 50, 56, 63, 77, 78, 79, 87, 118, 133, and 147) were found to be 

acetylated in beef Mb. These ten positively charged lysine residues are located on the 
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surface in beef Mb. Charged residues play critical roles in protein stability through the 

formation of ionic networks (Strickler et al., 2006; Pace et al., 2009; Raghunathan et al., 

2013). Therefore, the addition of acetyl groups may neutralize the positively charged 

lysine residues, disrupting the charge distribution and altering the ionic network of Mb. 

Attachment of acetyl groups to surface lysine residues in Mb could decrease the protein’s 

hydrophilicity and induce unfolding, and this in turn expose the heme pocket to oxidizing 

agents, promoting heme iron release and jeopardizing oxygen binding ability. In partial 

agreement, Azami-Movahed et al. (2018) observed that horse apomyoglobin underwent 

acetylation-induced conformational changes with less ordered tertiary structure and 

absence of stable hydrophobic patches due to heme pocket disruption. Likewise, Nguyen 

et al. (2000) suggested that the N-terminus acetylation altered orientation of heme and 

proximal histidine imidazole plane in Mb from Aplysia limacine (sea hare). Moreover, 

Jiang et al. (2019) observed acetylation of K43 and K78 in pig Mb, and suggested that 

lysine acetylation may be related to meat quality. 

 

2.3.3.3. Methylation sites in myoglobin  
 

Methylation is a distinct PTM that contributes to minimal change in size and 

electrostatic status to lysine and arginine residues (Luo, 2018). This PTM is also involved 

in a number of biological processes (Ong et al., 2004; Uhlmann et al., 2012). Methylation 

has been identified in histone (Greer and Shi, 2012; Lanouette et al., 2014; Clarke, 2018; 

Luo, 2018), ribosomal protein (Pang et al., 2010), tumor suppressor p53 (Huang and 
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Berger, 2008), heat shock proteins (Abu-Farha et al., 2011), myosin (Li et al., 2015), and 

hemoglobin (Chen et al., 2017).  

Methylation sites were detected in arginine (positions 31 and 139) and lysine 

(positions 42, 56, 62, 63, 77, 78, 79, 96, 98, 102, 118, and 133) residues in beef Mb. The 

aforementioned methylation sites are adjacent to hydrophobic residues such as leucine 

(L), isoleucine (I), alanine (A), and phenylalanine (F) in the amino acid sequence (Figure 

2). This observation was consistent with previous report (Bremang et al., 2013), which 

reported that the amino acid residues near the methylated sites in proteins were 

predominantly hydrophobic in nature. Moreover, the methylation site K56 in Mb (Figure 

2) conforms with the MK lysine methylation motif reported by Pang et al. (2010), 

indicating that K56 might be methylated by a specific methyl transferase. The addition of 

methyl groups could increase hydrophobicity and steric hindrance, and in turn alter the 

stability of proteins (Bremang et al., 2013).  The methylation at K62 and K63 could impact 

distal histidine’s (H64) interactions with heme pocket (Figure 4) and compromise Mb 

redox stability. Likewise, the addition of methyl groups at K96 and K98 might affect the 

proximal histidine (H93) in the vicinity (Figure 4), which connects heme to the globin 

chain, and consequently influencing the oxygen binding ability/oxygen affinity. 

Additionally, the 11 sites (K56, K62, K63, K77, K78, K79, K96, K98, K102, K118, and K133) 

of methylation were also susceptible to other PTMs (acetylation, carboxymethylation, 

and HNE alkylation), indicating the existence of PTM crosstalk (Aggarwal et al., 2020). PTM 

crosstalk is defined as the interactions between co-occurring multiple PTMs, which can 

positively or negatively influence each other’s occurrence (van der Laarse et al., 2018). 
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The crosstalk among PTMs could alter protein functions (Zhang et al., 2015). Furthermore, 

methylation could decrease protein stability by acting in combination with other PTMs 

(Pang et al., 2010; Wu et al., 2017; Zhang et al., 2015; Moore and Gozani, 2014).  

Therefore, it is highly possible that the interplay between the PTMs at aforementioned 

11 lysine residues (methylation sites) could decrease Mb redox stability.   

 

2.3.3.4. Carboxymethylation sites in myoglobin  
 

Carboxymethylation is a non-enzymatic PTM and is a potential metabolic 

modulator in chemotaxis, neurosecretory regulation, and diabetes (Fang et al., 2010; 

Diliberto et al., 1976; Curtiss and Witztum, 1985; Hackett and Campochiaro, 1988). 

Carboxymethylation could be achieved in-vitro chemically (using bromoacetate) in the 

Mb from human (Harris and Hill, 1969), sperm whale (Ray and Gurd, 1967; Hugli and Gurd, 

1970; Schlecht, 1969; Banaszk et al., 1963; Wu et al., 1972) and harbor seal (Nigen and 

Gurd, 1973). However, Mb carboxymethylation has not been investigated in postmortem 

skeletal muscle tissue. 

Carboxymethylation was identified in 13 lysine residues (positions 56, 62, 63, 77, 

78, 79, 87, 96, 98, 102, 118, 133, and 147) in beef Mb. Carboxymethylation introduces 

negatively charged carboxylic acid to the positively charged lysine residues located on the 

Mb surface, which could alter the ionic network and lead to conformational changes (Fang 

et al., 2010). Furthermore, carboxymethylation at K62 and K63, which are adjacent to the 

distal histidine (H64; Figure 4), might induce a spatial rearrangement of heme pocket, 

influencing the oxygen affinity of beef Mb and the color stability of steaks. Additionally, 
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the loss of positive charge of K96 and K98 in the vicinity of proximal histidine (H93) could 

disrupt the heme iron-proximal histidine bond, compromising the heme affinity and 

damaging Mb helical structure (Smerdon et al., 1993; Hargrove et al., 1996). In 

agreement, Wu et al. (1972) observed that carboxymethylated sperm whale Mb 

(chemically modified) underwent autoxidation faster than its unmodified counterpart, 

indicating that carboxymethylation could compromise Mb redox stability. 

 

2.3.3.5. HNE alkylation sites in myoglobin  
 

HNE is an α,β-unsaturated aldehyde formed as a result of oxidation of ω-6 

polyunsaturated fatty acids (Esterbauer et al., 1991), which are present abundantly in the 

membrane phospholipids of skeletal muscles (Wood et al., 2008). The electrophilic nature 

of carbon 3 in HNE enables it to covalently bind to nucleophilic sidechains of lysine and 

histidine residues (Esterbauer et al., 1991; Uchida and Stadtman, 1992). Alkylation of 

proteins by HNE has been reported to cause cytotoxicity (Codreanu et al., 2014; Yang et 

al., 2015). In in-vitro model systems, HNE alkylation through Michael addition has been 

identified at histidine residues of Mbs from beef (Alderton et al., 2003; Suman et al., 2006, 

2007), pork (Suman et al., 2006, 2007; Elroy et al., 2015), sheep (Yin et al., 2011), horse 

(Faustman et al., 1999), sperm whale (Tatiyaborworntham et al., 2012), yellowfin tuna 

(Lee et al., 2003), ostrich (Nair et al., 2014), emu (Nair et al., 2014), turkey (Naveena et 

al., 2010), and chicken (Naveena et al., 2010). However, in-situ HNE alkylation of Mb in 

muscle foods has yet to be reported. 
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In the present study, histidine (position 64) and lysine (positions 45, 47, 56, 62, 63, 

77, 78, and 79) residues were modified by HNE alkylation in beef Mb. Histidine and lysine 

residues form cyclic hemiacetal derivatives (Uchida and Stadtman, 1992, 1993; Uchida, 

2003) via Michael addition with HNE. Alkylation at distal histidine (position 64), which is 

critical for heme stability, could destabilized heme iron’s ability to bind with oxygen and 

therefore compromise Mb redox stability and beef color stability (Suman and Joseph, 

2013). In agreement, previous investigations (Alderton et al., 2003; Suman et al., 2007; 

Viana et al., 2020) observed that HNE alkylation at H64 enhances oxidation of beef Mb. 

Additionally, the Michael adducts formed at lysine residues (positions 45, 47, 56, 62, 63, 

77, 78, and 79), especially at K62 and K63, which are located adjacent to the distal 

histidine (Figure 4), could compromise hydrophobic interactions stabilizing the tertiary 

structure of Mb, leading to globin unfolding (Ueki and Ochiai, 2006).  

 

2.3.4. Aging-induced PTMs influence beef color stability 
 

The sites of PTMs in beef Mb during 21 days of postmortem aging are presented 

in Table 4. Total PTMs sites increased with aging from day 0 to day 14, whereas it 

decreased thereafter. The decrease in number of detected PTMs from day 14 to day 21 

aging is possibly due to the observed decrease in the Mb concentration (Table 1) as a 

result of protein degradation.  

Increased number of phosphorylation, methylation and carboxymethylation sites 

were observed in Mb from aged beef compared with Mb from non-aged counterparts 

(Table 4). The increased number of phosphate groups, methyl groups and carboxylic acid 
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adducted to Mb could disrupt the ionic network, which is critical to the heme protein’s 

stability. Moreover, phosphorylation at T51 and S121, methylation at R31, K77, K78, K79, 

K96, K98, K102, K133, and R139, and carboxymethylation at K56, K96, K98, K118, and 

K147 were unique to Mb from aged beef, whereas carboxymethylation at K79 and K87 

were unique to Mb from non-aged counterparts (Table 5). The PTMs at K96 and K98 

observed in Mb from aged beef could influence the interactions between proximal 

histidine (H93) and heme iron (Figure 4), compromising the protein’s heme affinity and 

redox state (Hargrove et al., 1996; Grunwald and Richards, 2006). Previous studies 

indicated that minor variations in amino acid sequence of Mb, especially those close to 

the heme pocket, could alter autoxidation rate (Kitahara et al., 1990; Tada et al., 1998), 

heme affinity (Grunwald and Richards, 2006), and structural stability (Ueki and Ochiai, 

2004, 2006). Therefore, the decreased color stability in aged beef could be attributed to 

the increased number of PTMs (phosphorylation, methylation, carboxymethylation).  

Mb acetylation sites decreased during postmortem aging (Table 4). In agreement, 

a decrease in acetylation was observed in proteins during postmortem aging of pork 

longissimus muscle (Jiang et al., 2019). In addition, the dynamic acetylation-deacetylation 

of lysine residues could influence the conversion of muscle to meat and meat quality 

(Jiang et al., 2019). Acetylation can regulate stability of Mb and its interactions with other 

proteins by converting positively charged NH4
+ cation on lysine and arginine residues into 

a neutral moiety (Kumar et al., 2004; Zhu et al., 2005; Krueger and Srivastava, 2006; Xie 

et al., 2007). Moreover, acetylation at K87 and K118 were unique to Mb from non-aged 

beef, whereas acetylation at K56 and K147 were unique to Mb from aged beef (Table 5). 
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Therefore, aging might cause the deacetylation at K87 and K118, and acetylation at K56 

and K147, and in turn regulate Mb redox stability and color stability of beef.  

The number of HNE alkylation sites in Mb did not change during 14 days of aging 

(Table 4). Nevertheless, HNE alkylation at K45 and K47 were only detected in Mb from 

non-aged beef, whereas K78 and K79 were adducted by HNE only in Mb from aged 

counterparts (Table 5). Covalent binding of HNE to lysine residues compromise the 

tertiary structure of proteins and increase its susceptibility to oxidation (Isom et al., 2004; 

Szapacs et al., 2006); therefore, aging-induced HNE alkylation of lysine residues might 

play a critical role in Mb redox stability (Suman and Joseph et al., 2013). Additionally, 

distal histidine (H64) was alkylated in Mb from both non-aged and aged beef (Table 5). 

Our results were different from in-vitro studies of Suman et al. (2006) and Viana et al. 

(2020), in which beef Mb was incubated with HNE at meat conditions.  While Suman et 

al. (2006) identified four HNE adducted histidine residues (position 36, 81, 88 and 152) of 

beef Mb, the present study found only one histidine (H64) modified by HNE. Viana et al. 

(2020) observed the number of HNE adduction sites increased with storage, with 6 

histidines (positions 24, 36, 64, 93, 113, and 152) adducted after 21 days incubation at pH 

5.6 and 4°C; however, in the current study only one HNE alkylation site (K77) was detected 

after 21 days of aging. The lower number of HNE alkylation sites observed in-situ in beef 

Mb in the present study than in-vitro (Suman et al., 2006; Viana et al., 2020) could be 

possibly due to: (1) HNE adducting to several proteins other than Mb in muscle food 

matrix; (2) the formation of other in-situ PTMs in Mb adversely influencing HNE alkylation.  
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Overall, greater number of PTMs were identified in Mb from aged beef than in Mb 

from non-aged counterparts (Table 5). These aging-induced PTMs, especially those 

occurring close to hydrophobic heme pocket, could disrupt Mb tertiary structure, heme 

affinity, and oxygen binding capacity, leading to decreased color stability in aged beef 

observed in the present study. Furthermore, PTMs at K45, K47, and K87 were unique to 

Mb from non-aged beef, whereas PTMs at R31, T51, K96, K98, S121, R139, and K147 were 

unique to Mb from aged counterparts (Table 5), indicating these Mb PTMs sites could be 

used as biomarkers for fresh beef color stability. 

 

2.4. Conclusions 
 

Mb in fresh beef LL muscle underwent PTMs (phosphorylation, methylation, 

carboxymethylation, acetylation, and HNE alkylation) during postmortem aging. 

Increased number of phosphorylation, methylation and carboxymethylation sites were 

detected in Mb from aged beef compared to Mb from non-aged counterparts, whereas 

acetylation sites decreased during aging. While the number of HNE alkylation sites 

remained the same during 14 days of aging, HNE adduction at K78 and K79 were unique 

to aged beef, indicating HNE alkylation of lysine residues might play a critical role in Mb 

redox stability. The aging-induced PTMs could compromise Mb redox stability by adding 

modifying groups to amino acids, especially those close to hydrophobic heme pocket, and 

thus accelerating Mb oxidation and beef discoloration. These in-situ Mb PTMs could be 

utilized as novel biomarkers for fresh beef color stability. 
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Table 2.1: Surface lightness (L* value), redness (a* value), yellowness (b* value), meat 
pH, and myoglobin (Mb) concentration of aged1 beef longissimus lumborum steaks (n = 
9) during refrigerated storage (2°C) for 6 days under aerobic packaging2. 

Parameter Aging days 
Storage days 

0 3 6 

L* value 

0 38.22 ± 1.80c 41.60 ± 0.97b 42.11 ± 1.46ab 

7 42.28 ± 1.48ab 42.77 ± 1.31ab 43.87 ± 1.16a 

14 42.88 ± 1.33ab 43.02 ± 0.95ab 42.68 ± 1.05ab 

21 42.99 ± 1.51ab 43.08 ± 1.66ab 42.20 ± 0.90ab 

a* value 

0 24.79 ± 0.43a 25.05 ± 0.77a 23.48 ± 0.98ab 

7 25.77 ± 0.62a 24.60 ± 0.42a 21.81 ± 0.93b 

14 24.56 ± 0.57a 23.53 ± 0.86ab 17.26 ± 2.19c 

21 24.85 ± 0.34a 23.19 ± 0.77ab 16.35 ± 2.08c 

b* value 

0 19.55 ± 0.63ab 20.33 ± 0.63a 19.86 ± 0.54ab 

7 20.31 ± 0.46a 19.25 ± 0.30ab 17.66 ± 0.39b 

14 18.99 ± 0.53ab 18.22 ± 0.62b 15.91 ± 0.85c 

21 19.51 ± 0.40ab 18.47 ± 0.40b 15.99 ± 0.81c 

Meat pH 

0 5.53 ± 0.02c 5.54 ± 0.02c 5.56 ± 0.02bc 

7 5.62 ± 0.02b 5.63 ± 0.02b 5.61 ± 0.01bc 

14 5.56 ± 0.02bc 5.62 ± 0.02bc 5.77 ± 0.06a 

21 5.60 ± 0.02bc 5.63 ± 0.01b 5.80 ± 0.06a 

Mb 
concentration 

0 6.00 ± 0.33a 5.34 ± 0.20b 5.08 ± 0.21c 

7 5.14 ± 0.21bc 4.98 ± 0.23cd 5.21 ± 0.24bc 

14 4.74 ± 0.24d 4.68 ± 0.31d 4.58 ± 0.25d 

21 4.63 ± 0.25d 4.79 ± 0.34cd 4.51 ± 0.28d 

 
1 Aged in vacuum packaging at 2°C. 
2 Results expressed as mean ± standard error of the mean (SEM). 
a-d Means without common superscript within an attribute are different (P < 0.05).
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Table 2.2: Surface color stability (R630/580), metmyoglobin reducing activity (MRA) and 
lipid oxidation of aged1 beef longissimus lumborum steaks (n = 9) during refrigerated 
storage (2°C) for 6 days under aerobic packaging2. 

Parameter Aging days 
Storage days 

0 3 6 

R630/580 

0 6.06 ± 0.34ax 5.12 ± 0.33ay 4.52 ± 0.34az 

7 5.50 ± 0.26ax 4.80 ± 0.22ay 3.97 ± 0.27az 

14 5.09 ± 0.28bx 4.46 ± 0.30by 3.14 ± 0.51bz 

21 5.16 ± 0.23bx 4.39 ± 0.30by 2.94 ± 0.46bz 

MRA 

0 48.88 ± 3.99x 27.75 ± 2.22y 22.78 ± 3.47y 

7 45.05 ± 2.02x 30.39 ± 3.45y 19.16 ± 4.51y 

14 48.35 ± 3.94x 29.18 ± 5.04y 31.35 ± 8.08y 

21 41.76 ± 2.39x 21.41 ± 5.05y 34.16 ± 10.74xy 

Lipid oxidation3 

0 0.016 ± 0.002bz 0.028 ± 0.004by 0.035 ± 0.004bx 

7 0.020 ± 0.002az 0.047 ± 0.009ay 0.067 ± 0.018ax 

14 0.029 ± 0.004az 0.046 ± 0.012ay 0.062 ± 0.013ax 

21 0.027 ± 0.008az 0.048 ± 0.009ay 0.067 ± 0.015ax 
 

1 Aged in vacuum packaging at 2°C. 
2 Results expressed as mean ± standard error of the mean (SEM). 
3 Result expressed as absorbance at 532 nm. 
a-b Means within a column without common superscript within an attribute are different 
(P < 0.05).  
x-z Means within a row without common superscript are different (P < 0.05).
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Table 2.3: Post-translational modifications and their locations in myoglobin isoforms isolated from beef longissimus 
lumborum muscle from all aging days. 

Post-translational 
modifications 

Myoglobin spots a 

Spot 1 Spot 2 Spot 3 Spot 4 Spot 5 Spot 6 

Phosphorylation 51 Threonine 
58 Serine  
67 Threonine 

67 Threonine  
103 Tyrosine 

34 Threonine  
67 Threonine  
70 Threonine  
103 Tyrosine  
108 Serine  
121 Serine  
132 Serine 

34 Threonine  
51 Threonine  
58 Serine 

34 Threonine  
67 Threonine  
70 Threonine  
103 Tyrosine  
132 Serine 

70 Threonine 
103 Tyrosine  
108 Serine  
121 Serine 

Acetylation 50 Lysine 
63 Lysine  
77 Lysine  
78 Lysine  
79 Lysine  
118 Lysine 

56 Lysine  
63 Lysine  
77 Lysine 
78 Lysine  
79 Lysine  
87 Lysine  
118 Lysine  
133 Lysine 

50 Lysine  
56 Lysine 
63 Lysine  
77 Lysine  
78 Lysine  
79 Lysine  
118 Lysine 

63 Lysine  
77 Lysine 
78 Lysine  
79 Lysine 

63 Lysine  
77 Lysine 
78 Lysine 
147 Lysine 

– 

Methylation 31 Arginine  
42 Lysine  
56 Lysine  
62 Lysine  
63 Lysine  
118 Lysine  
133 Lysine  
139 Arginine   

31 Arginine  
42 Lysine  
62 Lysine 
63 Lysine  
98 Lysine  
102 Lysine  
118 Lysine 

31 Arginine  
42 Lysine 
77 Lysine 
78 Lysine  
79 Lysine  
118 Lysine  
139 Arginine 

31 Arginine  
42 Lysine  
56 Lysine  
62 Lysine  
63 Lysine  
96 Lysine  
98 Lysine  
118 Lysine  
133 Lysine 

77 Lysine  
78 Lysine  
139 Arginine 

56 Lysine 

 
a Spot number refers to the numbered spots in gel images (Figures 1 A and B). 
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Table 2.3 (continued): Post-translational modifications and their locations in myoglobin isoforms isolated from beef 
longissimus lumborum muscle from all aging days. 
 

Post-translational 
modifications 

Myoglobin spots a 

Spot 1 Spot 2 Spot 3 Spot 4 Spot 5 Spot 6 

Carboxymethylation 62 Lysine 
63 Lysine  
77 Lysine  
78 Lysine 
102 Lysine  
118 Lysine  
133 Lysine  
147 Lysine 

56 Lysine  
62 Lysine  
63 Lysine  
77 Lysine  
78 Lysine  
79 Lysine  
87 Lysine  
96 Lysine  
98 Lysine  
102 Lysine  
133 Lysine  
147 Lysine     

56 Lysine  
62 Lysine  
63 Lysine 
77 Lysine  
78 Lysine 
79 Lysine  
102 Lysine  
118 Lysine  
133 Lysine  
147 Lysine 

62 Lysine  
63 Lysine  
77 Lysine  
78 Lysine  
118 Lysine  
133 Lysine 

– 62 Lysine  
77 Lysine  
78 Lysine 

HNE alkylation  45 Lysine  
47 Lysine 
56 Lysine  
62 Lysine  
63 Lysine  
64 Histidine  
77 Lysine  
78 Lysine  
79 Lysine 

77 Lysine  
78 Lysine  
79 Lysine 

77 Lysine  
78 Lysine  
79 Lysine 

56 Lysine  
62 Lysine  
63 Lysine 
64 Histidine 

– 77 Lysine 
  

 
a Spot number refers to the numbered spots in gel images (Figures 1 A and B). 
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Table 2.4: Post-translational modifications and their locations in myoglobin isolated 
from beef longissimus lumborum muscle during postmortem aging. 

Post-translational 
modifications 

Aging days 

0 d 7 d 14 d 21 d 

Phosphorylation 34 Threonine  
58 Serine  
67 Threonine 
70 Threonine 
103 Tyrosine 
108 Serine  
132 Serine 

34 Threonine 
51 Threonine  
58 Serine  
67 Threonine  
70 Threonine  
103 Tyrosine  
108 Serine  
121 Serine  
132 Serine   

34 Threonine  
58 Serine  
67 Threonine  
70 Threonine 
103 Tyrosine  
108 Serine  
121 Serine  
132 Serine   

34 Threonine  
67 Threonine  
70 Threonine  
103 Tyrosine  
108 Serine  
132 Serine 

Acetylation 50 Lysine 
63 Lysine 
77 Lysine 
78 Lysine 
79 Lysine 
87 Lysine 
118 Lysine  
133 Lysine 

56 Lysine  
63 Lysine 
77 Lysine  
78 Lysine  
79 Lysine  
133 Lysine 

50 Lysine  
56 Lysine  
63 Lysine  
77 Lysine  
78 Lysine  
79 Lysine 

63 Lysine  
77 Lysine  
78 Lysine  
147 Lysine 

Methylation  42 Lysine  
56 Lysine  
62 Lysine 
63 Lysine  
118 Lysine   

31 Arginine  
42 Lysine  
56 Lysine  
62 Lysine  
63 Lysine  
77 Lysine  
78 Lysine  
79 Lysine  
96 Lysine  
98 Lysine  
118 Lysine  
139 Arginine 

31 Arginine  
42 Lysine  
56 Lysine  
62 Lysine  
63 Lysine  
77 Lysine  
78 Lysine  
98 Lysine  
102 Lysine  
118 Lysine  
133 Lysine 

31 Arginine  
42 Lysine  
63 Lysine  
77 Lysine  
78 Lysine  
98 Lysine  
102 Lysine  
118 Lysine  
133 Lysine 
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Table 2.4 (continued): Post-translational modifications and their locations in myoglobin 
isolated from beef longissimus lumborum muscle during postmortem aging. 
 

Post-translational 
modifications 

Aging days 

0 d 7 d 14 d 21 d 

Carboxymethylation 62 Lysine  
63 Lysine  
77 Lysine  
78 Lysine  
79 Lysine  
87 Lysine  
102 Lysine  
133 Lysine          

56 Lysine  
62 Lysine  
63 Lysine  
77 Lysine  
78 Lysine  
96 Lysine  
98 Lysine  
102 Lysine  
118 Lysine  
133 Lysine  
147 Lysine 

56 Lysine  
62 Lysine  
63 Lysine  
77 Lysine  
78 Lysine  
102 Lysine  
118 Lysine  
147 Lysine 

62 Lysine  
63 Lysine  
77 Lysine  
78 Lysine  
133 Lysine 

HNE alkylation 45 Lysine  
47 Lysine 
56 Lysine  
62 Lysine 
63 Lysine  
64 Histidine  
77 Lysine 

56 Lysine  
62 Lysine 
63 Lysine  
64 Histidine  
77 Lysine  
78 Lysine  
79 Lysine 

56 Lysine  
62 Lysine  
63 Lysine  
64 Histidine  
77 Lysine  
78 Lysine  
79 Lysine   

77 Lysine 

Total number of post-
translational 
modification sites 

35 45 40 25 
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Table 2.5: Differential post-translational modifications identified in myoglobin isolated 
from non-aged1 and aged2 beef longissimus lumborum muscle. 

Non-aged beef Aged beef 

Position Residue Modification a Position Residue Modification a 

34 Threonine P 31 Arginine M* 
42 Lysine M 34 Threonine P 
45 Lysine HΨ 42 Lysine M 
47 Lysine HΨ 50 Lysine A 
50 Lysine A 51 Threonine P* 
56 Lysine M H 56 Lysine A* M C* H 
58 Serine P 58 Serine P 
62 Lysine M C H 62 Lysine M C H 
63 Lysine M A C H 63 Lysine M A C H 
64 Histidine H 64 Histidine H 
67 Threonine P 67 Threonine P 
70 Threonine P 70 Threonine P 
77 Lysine A C H 77 Lysine A M* C H 
78 Lysine A C 78 Lysine A M* C H* 
79 Lysine A CΨ 79 Lysine A M* H* 
87 Lysine AΨ CΨ 96 Lysine M* C* 
102 Lysine C 98 Lysine M* C* 
103 Tyrosine P 102 Lysine M* C 
108 Serine P 103 Tyrosine P 
118 Lysine AΨ M 108 Serine P 
132 Serine P 118 Lysine M C* 
133 Lysine A C 121 Serine P*  
   132 Serine P 
   133 Lysine A M* C 
   139 Arginine M* 
   147 Lysine A* C* 

Total 22 35 Total 26 49 

 
a P = Phosphorylation; A = Acetylation; M = Methylation; C = Carboxymethylation; H = 
HNE alkylation 
1 Non-aged = aged for 0 d 
2 Aged = aged in vacuum packaging at 2°C for 7, 14, or 21 d 
Differential PTMs and their locations are listed in boldface 
Ψ PTMs unique to Mb isolated from non-aged beef longissimus lumborum muscle 
* PTMs unique to Mb isolated from beef longissimus lumborum muscle aged in vacuum 
packaging at 2°C for 7, 14, or 21 d 
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Figure 2.1: Representative two-dimensional gel electrophoresis map of sarcoplasmic proteome extracted from beef 
longissimus lumborum separated using an immobilized pH gradient (IPG) 5 to 8 strip in the first dimension and 13.5% SDS gel 
in the second dimension. The gel was stained with Pro-Q diamond for (A) phosphorylated protein and with Sypro Ruby for (B) 
total protein. Myoglobin spots with the same number are located at the same position (pI and MW) across the gels. 
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Figure 2.2: Post-translational modifications (phosphorylation, acetylation, methylation, 
carboxymethylation, HNE alkylation) and their locations in the amino acid sequence of 
beef myoglobin. Post-translationally modified residues are underlined. 

Sequence No. 10         20 30 40 50                    

Phosphorylation GLSDGEWQLV LNAWGKVEAD VAGHGQEVLI RLFTGHPETL EKFDKFKHLK

Acetylation GLSDGEWQLV LNAWGKVEAD VAGHGQEVLI RLFTGHPETL EKFDKFKHLK

Methylation GLSDGEWQLV LNAWGKVEAD VAGHGQEVLI RLFTGHPETL EKFDKFKHLK

Carboxymethylation GLSDGEWQLV LNAWGKVEAD VAGHGQEVLI RLFTGHPETL EKFDKFKHLK

HNE Alkylation GLSDGEWQLV LNAWGKVEAD VAGHGQEVLI RLFTGHPETL EKFDKFKHLK

Sequence No. 60 70 80 90 100                

Phosphorylation TEAEMKASED LKKHGNTVLT ALGGILKKKG HHEAEVKHLA ESHANKHKIP

Acetylation TEAEMKASED LKKHGNTVLT ALGGILKKKG HHEAEVKHLA ESHANKHKIP

Methylation TEAEMKASED LKKHGNTVLT ALGGILKKKG HHEAEVKHLA ESHANKHKIP

Carboxymethylation TEAEMKASED LKKHGNTVLT ALGGILKKKG HHEAEVKHLA ESHANKHKIP

HNE Alkylation TEAEMKASED LKKHGNTVLT ALGGILKKKG HHEAEVKHLA ESHANKHKIP

Sequence No. 110 120 130 140 150                     153

Phosphorylation VKYLEFISDA IIHVLHAKHP SDFGADAQAA MSKALELFRN DMAAQYKVLG FHG

Acetylation VKYLEFISDA IIHVLHAKHP SDFGADAQAA MSKALELFRN DMAAQYKVLG FHG

Methylation VKYLEFISDA IIHVLHAKHP SDFGADAQAA MSKALELFRN DMAAQYKVLG FHG

Carboxymethylation VKYLEFISDA IIHVLHAKHP SDFGADAQAA MSKALELFRN DMAAQYKVLG FHG

HNE Alkylation VKYLEFISDA IIHVLHAKHP SDFGADAQAA MSKALELFRN DMAAQYKVLG FHG
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Figure 2.3: Threonine (T34, T51, T67, and T70), serine (S58, S108, S121, and S132) and 
tyrosine (Y103) residues in beef myoglobin are indicated in blue, whereas distal histidine 
(H64) is in green. The residues in blue were phosphorylated. The 3-dimensional 
homology model of beef myoglobin was downloaded from SWISS-MODEL. 
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Figure 2.4: Distal (H64) and proximal (H93) histidines in beef myoglobin are indicated in 
green, whereas lysine residues (K62, K63, K96 and K98) are in red. The 3-dimensional 
homology model of beef myoglobin was downloaded from SWISS-MODEL. 
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CHAPTER 3 

 

 

 

 

Supranutritional supplementation of vitamin E influences myoglobin post-

translational modifications in postmortem beef longissimus lumborum muscle 
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Abstract: 

Post-translational modifications (PTMs) in myoglobin (Mb) can influence fresh 

meat color stability. Dietary supplementation of vitamin E improves beef color stability 

by delaying lipid oxidation-induced Mb oxidation and influences proteome profile of 

postmortem beef skeletal muscles. Nonetheless, the influence of vitamin E on Mb PTMs 

in post-mortem beef skeletal muscles has yet to be investigated. Therefore, the objective 

of current study was to examine the effect of dietary vitamin E on Mb PTMs in 

postmortem beef longissimus lumborum (LL) muscle. Beef LL muscle samples (24 hours 

post-mortem) were obtained from the carcasses of nine (n = 9) vitamin E-fed (VITE) (1000 

IU vitamin E for 89 days) and nine (n = 9) control (CONT) (diet without supplemental 

vitamin E) heifers. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 

was used to separate Mb from other sarcoplasmic proteins of beef LL muscle. Tandem 

mass spectrometry identified multiple PTMs (phosphorylation, acetylation, HNE 

alkylation, methylation, dimethylation, trimethylation, and carboxymethylation) in the 

protein bands (17 kDa) representing Mb. The amino acids susceptible to phosphorylation 

were threonine (T) and tyrosine (Y), whereas lysine (K) residues were prone to other 

PTMs. Same sites of phosphorylation (T34, T67, Y103), carboxymethylation (K77, K78) and 

HNE alkylation (K77, K78, K79) identified in Mbs from CONT and VITE samples, indicating 

these PTMs were not influenced by the vitamin E supplementation in cattle. Nonetheless, 

differential occurrence of acetylation, methylation, dimethylation and trimethylation 

were identified in Mb from CONT and VITE samples. Overall, a greater number of amino 

acids were modified in CONT than VITE, suggesting that the supplementation of vitamin 
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E decreased the numbers of post-translationally modified residues in Mb. Additionally, 

PTMs at K87, K96, K98 and K102 were unique to CONT, whereas PTMs at K118 were 

unique to VITE. These findings suggested that dietary supplementation of vitamin E in 

beef cattle might protect amino acid residues in Mb, especially those located spatially 

close to proximal histidine, from undergoing PTMs, and thereby improving Mb redox 

stability. 

 

Keywords: vitamin E, myoglobin, post-translational modifications, beef color stability  
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3.1. Introduction 
 

Meat discoloration is due to the conversion of cherry-red oxymyoglobin (OxyMb) 

to brownish metmyoglobin (MetMb) and adversely affects consumer perception of 

quality (Suman et al., 2014; Neethling et al., 2017). The secondary products of lipid 

oxidation can accelerate OxyMb oxidation through alkylation of myoglobin (Mb) leading 

to meat discoloration (Faustman et al., 1999). Pre-harvest applications of dietary 

antioxidants in animal production can minimize lipid oxidation-induced OxyMb oxidation 

(Faustman et al., 2010).  

Vitamin E (α‐tocopherol) is a lipid‐soluble antioxidant that protects highly 

oxidizable polyunsaturated fatty acids from oxidation by reactive oxygen species and free 

radicals (Buttriss and Diplock, 1988). Dietary supplementation of vitamin E demonstrated 

a dual protective effect for both lipid and Mb oxidation in beef (Faustman et al., 1989, 

Arnold et al., 1992; Sanders et al., 1997; Zerby et al., 1999; Lynch et al., 1999) and lamb 

(Wulf et al., 1995; Guidera et al. 1997; Strohecker et al., 1997; Gonzalez-Calvo et al., 

2015). Vitamin E also retards lipid and OxyMb oxidation in microsomes (Yin et al., 2013) 

and liposome (Yin et al., 1993) models in-vitro. In addition, dietary delivery of vitamin E 

improved pigment and lipid stability more efficiently than addition of this ingredient to 

postmortem muscles (Mitsumoto et al., 1993). The effect of vitamin E on meat color 

stability is believed through a direct protective effect for lipid, and an indirect effect for 

minimizing OxyMb oxidation (Faustman et al., 2010; Ramanathan et al., 2020a, b).  

Post-translational modification (PTM) refers to the covalent changes that proteins 

undergo after translation (Lodish, 1981; Han and Martinage, 1992; Mann and Jensen, 
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2003). PTMs determine protein structure and modulates the protein properties by 

addition or removal of modifying groups to amino acids (Mann and Jensen, 2003; Seo and 

Lee, 2004). PTM plays a fundamental role in regulating biological processes as it 

determines protein’s functionality, localization, turnover, and interactions with other 

biomolecules (Seo and Lee, 2004; Muller, 2017). Diverse PTMs such as phosphorylation 

(Stewart et al., 2004; Huang et al., 2011; Hohenester et al., 2013; Li et al., 2020), 

acetylation (Livingston et al., 1985; Jiang et al., 2019; Li et al., 2020), carboxymethylation 

(Ray and Gurd, 1967; Hugli and Gurd, 1970), and oxidation (Lindsay et al., 2016; Bostelaar 

et al., 2016) have been reported to regulate the structure and functionality of mammalian 

Mb. Furthermore, HNE alkylation accelerated in-vitro OxyMb oxidation by covalently 

binding to histidine residues (Faustman et al., 1999; Alderton et al., 2003; Suman et al., 

2006, 2007; Yin et al., 2011; Nair et al., 2014; Elroy et al., 2015).  

Li et al. (2018a, b) documented that the phosphorylation level of sheep Mb in 

inversely related to the color stability of longissimus muscle. Moreover, the results from 

Chapter 2 indicated that PTMs (including phosphorylation, acetylation, methylation, 

carboxymethylation, and alkylation) compromised beef Mb redox stability and color 

stability. These observations suggested that PTMs play a critical role in Mb functionality 

and fresh meat color stability.  

The effect of vitamin E on fresh beef color have been extensively studied from the 

standpoint of lipid oxidation-induced Mb oxidation. Recent study indicated dietary 

supplementation of vitamin E influenced the mitochondrial (Zhai et al., 2018) and 

sarcoplasmic (Kim, 2018) proteome profile of postmortem beef longissimus lumborum 
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(LL) muscle. Nonetheless, investigations were not undertaken on the potential effect of 

vitamin E on Mb PTMs in beef skeletal muscle. Therefore, the objective of current study 

was to examine the influence of dietary vitamin E supplementation on the Mb PTMs in 

postmortem beef LL muscle. 

 

3.2. Materials and methods 
 

3.2.1. Animal production and muscle sample collection 
 

The muscle samples were obtained from a feeding study (Harsh et al., 2018) 

completed at the University of Illinois. All protocols were approved by the University of 

Illinois Institutional Animal Care and Use Committee (Protocol #15008). Eighteen Angus × 

Simmental heifers were used in a randomized complete block design with treatment 

factors including daily dietary inclusion of no supplemental (CONT) or 1,000 IU vitamin 

E/animal per day (VITE). Heifers were managed as a group on a trace mineral maintenance 

diet prior to trial initiation and were administered an implant of 140 mg trenbolone 

acetate and 14 mg estradiol (Component TE-H; Elanco Animal Health, Greenfield, IN). 

After being weighed on day 1 and 0, heifers were stratified by bodyweight (n = 9 heifers 

per treatment). Diets were the same for the two dietary treatments with the exception 

of vitamin E inclusion as feed supplement. Diets were formulated to meet or exceed NRC 

(2000) recommendations and contained 20% corn silage, 35% modified wet distillers 

grains with solubles, 35% dry rolled corn, and 10% supplement (dry matter basis). Dietary 

vitamin E (dl-alpha-tocopheryl acetate) was provided to VITE heifers, and individual feed 



   

87 
 

intakes of all heifers were collected with a GrowSafe feeding system (GrowSafe Systems 

Ltd., Airdrie, AB, Canada).  

Heifers were weighed at 28-day intervals and fed for ad libitum intake daily for a 

total of 89 days on feed. Heifers were housed in 4.88 m × 4.88 m pens in a confinement 

barn with slatted, concrete floors covered with interlocking rubber matting. On day 90, 

heifers were slaughtered humanely under USDA inspection at a commercial slaughter 

facility. At 24 h postmortem, a 2.54-cm section of LL was excised from between the 12th 

and 13th rib section of the carcasses, immediately vacuum-packaged, frozen at –80 °C, 

and shipped in dry ice to the University of Kentucky. The results of growth performance, 

carcass quality, color attributes, and lipid oxidation are discussed in Harsh et al. (2018). 

 

3.2.2. Isolation of sarcoplasmic proteome 
 

The sarcoplasmic proteomes from beef LL muscle were extracted according to the 

method of Joseph et al. (2012). Frozen samples were thawed overnight at 2 °C. Five-gram 

of muscle tissue devoid of any visible fat and connective tissue was homogenized in 25 

mL ice-cold extraction buffer (40 mM Tris, 5 mM ethylenediaminetetraacetic acid, pH = 

8) using a Waring blender (Model No. 51BL32; Waring Commercial, Torrington, CT). The 

homogenate was then centrifuged at 10,000 g for 15 min at 4 °C. The supernatant 

consisting of sarcoplasmic proteome extract was filtered through Whatman No.1 paper 

(GE Healthcare, Little Chalfont, UK), and used for subsequent analysis. 
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3.2.3. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 
 

The sarcoplasmic proteomes from beef LL muscle were separated based on 

molecular weight using SDS-PAGE gels as described by Laemmli (1970). A stacking gel with 

3% of acrylamide and a resolving gel with 13% acrylamide were used. The diluted protein 

samples (3 mg/mL) dissolved in the SDS-PAGE sample buffer (10% [w/v] SDS, glycerol, 

0.1% [w/v] bromophenol blue, 0.5 M Tris-HCl, pH 6.8) were boiled with 10% β-

mercaptoethanol in the water bath for 5 min. Aliquots of 20 μg of protein per well were 

loaded to SDS-PAGE gels in a mini PROTEAN Tetra cell system (Bio-Rad Laboratories Inc.). 

The molecular weight standard (Bio-Rad Laboratories Inc.) used consisted of myosin (200 

kDa), β-galactosidase (116 kDa), phosphorylase b (97 kDa), bovine serum albumin (66 

kDa), ovalbumin (45 kDa), carbonic anhydrase (31 kDa), soybean trypsin inhibitor (21 

kDa), lysozyme (14 kDa), and aprotinin (6.5 kDa). The gels were stained with Colloidal 

Coomassie Blue for 48 h, and destained until sufficient background was cleared. 

 

3.2.4. Liquid chromatography-electrospray ionization-tandem mass spectrometry  
 

The protein gel bands (17 kDa) representing Mb in the SDS-PAGE gels were excised 

and subjected to dithiothreitol reduction, iodoacetamide alkylation, and in-gel trypsin 

digestion using a standard protocol. The resulting tryptic peptides were extracted, 

concentrated and subjected to shot-gun proteomics analysis as previously described in 

Kamelgarn et al. (2018). Nano-liquid chromatography (LC)–tandem mass spectrometry 

(MS/MS) analysis was performed using an LTQ-Orbitrap mass spectrometer (Thermo 

Fisher Scientific, Waltham, MA) coupled with an Eksigent Nanoflex cHiPLC™ system 



   

89 
 

(Eksigent, Dublin, CA) through a nano-electrospray ionization source. The peptide 

samples were separated with a reversed-phase cHiPLC column (75 μm × 150 mm) at a 

flow rate of 300 nL/min. Mobile phase A was water with 0.1% (v/v) formic acid while B 

was acetonitrile with 0.1% (v/v) formic acid. A 50-min gradient condition was applied: 

initial 3% mobile phase B was increased linearly to 40% in 24 min and further to 85% and 

95% for 5 min each before it was decreased to 3% and re-equilibrated. The mass analysis 

method consisted of one segment with 10 scan events. The first scan event was an 

Orbitrap MS scan (300–1800 m/z) with 60,000 resolution for parent ions followed by data 

dependent MS/MS for fragmentation of the 10 most intense multiple charged ions with 

collision induced dissociation (CID) method. 

 

3.2.5. Identification of PTMs in myoglobin 
 

The LC-MS/MS data were submitted to a local mascot server for MS/MS protein 

identification via Proteome Discoverer (version 1.3, Thermo Fisher Scientific, Waltham, 

MA) against a custom database containing only beef Mb protein [MYG_BOVIN] 

downloaded from UniProt (https://www.uniprot.org/uniprot/P02192). Typical 

parameters used in the MASCOT MS/MS ion search were as follows: trypsin digestion with 

a maximum of two miscleavages; 10 ppm precursor ion and 0.8-Da fragment ion mass 

tolerances; methionine oxidation; lysine acetylation; lysine mono-, di-, and tri-

methylation; arginine mono- and di-methylation; serine, threonine and tyrosine 

phosphorylation; 4-hydroxynonenal (HNE) modification on histidine, and lysine. 

 

https://www.uniprot.org/uniprot/P02192
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3.3. Results and discussion 
 

3.3.1. Influence of vitamin E supplementation on beef myoglobin PTMs 
 

Tandem mass spectrometry identified multiple PTMs (such as phosphorylation, 

methylation, dimethylation, trimethylation, carboxymethylation, acetylation, and HNE 

alkylation) in protein bands (17 kDa) representing Mb. PTMs in Mb from CONT and VITE 

beef are presented in Table 1. The amino acids susceptible to phosphorylation were 

threonine (T) and tyrosine (Y), whereas lysine (K) residues were prone to other PTMs. 

While Mb from CONT and VITE exhibited same number of PTMs, a greater number of 

amino acids were modified in CONT than VITE (16 vs 13). Mb from CONT and VITE 

demonstrated similar pattern in phosphorylation (T34, T67, Y103), carboxymethylation 

(K77, K78), and HNE alkylation (K77, K78, K79) sites, indicating these PTMs were not 

influenced by the vitamin E supplementation in beef animals. Nonetheless, differential 

occurrence of acetylation, methylation, dimethylation and trimethylation were identified 

in Mb from CONT and VITE samples (Table 1; Figure 1), and are discussed below. 

Seven lysine residues were acetylated in Mb from both CONT and VITE animals. 

While six of acetylation sites (K50, K63, K77, K78, K79, and K147) were observed in both 

in CONT and VITE, acetylation at K87 and K118 were unique to CONT and VITE, 

respectively (Table 1). The addition of acetyl group neutralizes the positive charge of 

lysine, and thereby disrupting the ionic network and Mb tertiary structure. Moreover, the 

acetylation-induced conformational changes in Mb could result in an increased tendency 

for unfolding, compromising the heme stability and oxygen affinity (Azami-Movahed et 

al., 2018; Nguyen et al., 2000). Compared with K118, K87 is in closer proximity to the 
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proximal histidine (H93), which is bound to heme moiety (Figure 1). Thus, the acetylation 

of distantly located K118 could have much lesser impact on the hydrophobic heme pocket 

than the acetylation in K87. In partial agreement, Suman et al. (2006) documented that 

the HNE alkylation at H88, which is adjacent to K87, appeared to compromise Mb redox 

state due to potential interference with proximal histidine. In general, the lysine 

acetylation in VITE occurred at residues far from proximal histidine may result in minimum 

damage of Mb redox stability, which could also explain the better color stability in vitamin 

E-supplemented beef (Faustman et al., 1989). 

The ε-amine moiety of lysine can be methylated up to three times from 

unmodified lysine to mono-, di-, and tri-methylated forms, altering the biophysical 

properties (i.e., pKa value and size) of this residue (Luo, 2018). Differential methylation, 

di-methylation and tri-methylation sites were detected in Mb from CONT and VITE 

samples (Table 1). While K31 and K42 were methylated in both CONT and VITE Mbs, 

methylation at K98 and K118 were unique to CONT and VITE, respectively. The addition 

of methyl groups increases the overall size and hydrophobicity of the lysine sidechains 

(Bremang et al., 2013; Luo, 2018), which in turn could induce conformational changes and 

compromise Mb redox stability. The K98 lies in the closer vicinity of proximal histidine 

(H93) compared with the K118 (Figure 1). Consequently, the methylation at K98 in CONT 

might result in a greater damage on the heme iron-proximal histidine bond and heme 

affinity than at K118 in VITE. The removal of heme could lead to the decrease of helical 

content, which is detrimental to the Mb tertiary structure (Ochiai, 2011), and thereby 

resulting in meat discoloration (Suman and Joseph, 2013). Additionally, lysine di-
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methylation at K118 and K133 were only detected in VITE beef. While K96, K102 and K133 

were tri-methylated in CONT, only K118 were tri-methylated in VITE. As lysine 

methylation progressed, the adduction of increased number of methyl groups could lead 

to a decrease in lysine’s hydrophilicity and the residue’s capability to form hydrogen 

bonds (Luo, 2018); this in turn could compromise protein hydrophilicity and stability 

(Hamamoto et al., 2015). Therefore, a tri-methylated lysine could contribute to a greater 

level of hydrophobicity to proteins than a di-methylated lysine. Accordingly, the three tri-

methylated lysine residues (K96, K102, and K133) observed in CONT could be more 

deleterious to Mb tertiary structure than the two di-methylated (K118 and K133) and one 

tri-methylated (K118) lysine residues in VITE samples; thus, Mb from VITE samples might 

have better redox stability than its counterpart from CONT samples. Furthermore, K96 

and K102 are closer to proximal histidine (H93) spatially compared to K118 and K133 

within Mb tertiary structure (Figure 1), so that the observed tri-methylation at K96 and 

K102 in CONT could have a greater impact on the hydrophobic heme pocket and Mb redox 

stability compared to the di-methylation at K118 and K133 in VITE. Overall, the location 

and number of mono-, di-, and tri-methylated lysine residues observed in CONT might be 

more detrimental to Mb redox stability than those in VITE, which could lead to the lower 

color stability of beef from non-vitamin E fed animals than the beef from vitamin E-

supplemented cattle (Faustman et al., 1989).  

Previous investigations documented that dietary supplementation of cattle with 

vitamin E (i.e., α-tocopherol) could improve OxyMb stability (Chan et al., 1996; Faustman 

et al., 1989) and beef color stability (Faustman et al., 1989; Arnold et al., 1993; Lanari et 
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al., 1993; Sherbeck et al., 1995). The observed color-stabilizing effect of α-tocopherol was 

believed to be achieved by direct inhibition of lipid oxidation, and thereby indirectly 

delaying OxyMb oxidation (Faustman et al., 2010; Ramanathan et al., 2020a). Secondary 

products of lipid oxidation have been shown to accelerate OxyMb oxidation through 

alkylation of Mb (Witz, 1989; Faustman et al., 1999). 4-Hydroxy-2-nonenal (HNE), a well-

documented secondary product of linoleic acid oxidation, was observed to covalently 

adduct with histidine residues in beef Mb via Michael addition, exposing heme and 

subsequently accelerating Mb oxidation (Faustman et al., 1999; Alderton et al., 2003; 

Suman et al., 2006; Suman et al., 2007). Therefore, α-tocopherol, the lipid-soluble and a 

chain-breaking antioxidant, was expected to decrease HNE generation from lipid 

oxidation and in turn improve Mb stability. Nonetheless, current study observed HNE 

alkylation at three lysine residues (K77, K78, and K79) in Mbs from both CONT and VITE 

groups (Table 1), suggesting that this PTM was not influenced by the dietary 

supplementation of vitamin E.  

Interestingly, our results indicated the supplementation of vitamin E seems to 

exert its protective effect on Mb by influencing several other PTMs such as acetylation, 

methylation, di-methylation and tri-methylation. Additionally, the supplementation of 

vitamin E decreased the numbers of post-translationally modified residues in Mb. PTMs 

at K87, K96, K98 and K102 were unique to CONT, whereas PTMs at K118 were unique to 

VITE. These observations indicated that dietary supplementation of vitamin E in beef 

cattle might protect residues in Mb, especially those located spatially close to proximal 

histidine, from undergoing PTMs, and thereby improving Mb redox stability. 
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3.4. Conclusions 
 

Dietary supplementation of vitamin E decreased the number of post-

translationally modified residues in Mb from beef LL. While phosphorylation, 

carboxymethylation, and alkylation of Mb were not influenced by vitamin E 

supplementation, differential acetylation, methylation, dimethylation and trimethylation 

sites were identified in Mb from CONT and VITE beef cattle. The unique PTMs in CONT 

Mb (K87, K96, K98 and K102) were spatially closer to proximal histidine compared to the 

unique PTM (K118) in Mb from VITE samples, and thus could be more detrimental to Mb 

redox stability due to the potential interference with proximal histidine. The strong 

antioxidant protection offered by vitamin E might have minimized the occurrence of PTMs 

at residues located spatially close to proximal histidine in Mb and could have contributed 

to the improved beef color stability. 
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Table 3.1: Impact of supranutritional supplementation of vitamin E on myoglobin post-
translational modifications in postmortem beef longissimus lumborum muscle 

Post-translational 
modifications a 

CONT b VITE b 

Phosphorylation  34 Threonine 
67 Threonine 
103 Tyrosine 

34 Threonine 
67 Threonine 
103 Tyrosine 

Carboxymethylation  77 Lysine 
78 Lysine 

77 Lysine 
78 Lysine 

HNE Alkylation  77 Lysine 
78 Lysine 
79 Lysine 

77 Lysine 
78 Lysine 
79 Lysine 

Acetylation  50 Lysine 
63 Lysine 
77 Lysine 
78 Lysine 
79 Lysine 
87 LysineΨ 
147 Lysine 

50 Lysine 
63 Lysine 
77 Lysine 
78 Lysine 
79 Lysine 
118 Lysine* 
147 Lysine 

Methylation 31 Arginine 
42 Lysine 
98 LysineΨ 

31 Arginine 
42 Lysine 
118 Lysine* 

Dimethylation  – 118 Lysine* 
133 Lysine* 

Trimethylation  96 LysineΨ 
102 LysineΨ 
133 LysineΨ 

118 Lysine* 

Total number of post-
translationally modified 
residues 

16 13 

 

a Position and residue are listed for the post-translational modifications 
b CONT: non-vitamin E diet; VITE: 1000 IU vitamin E diet for 89 days 
Differential PTMs are listed in boldface 
Ψ PTMs unique to myoglobin from controlled beef  
* PTMs unique to myoglobin from vitamin E supplemented beef 



   

 
 

9
6 

Figure 3.1: Differential post-translational modifications at lysine (K) residues in myoglobins from longissimus lumborum 
muscle of CONT (non-vitamin E diet) and VITE (1000 IU vitamin E diet for 89 days) fed heifers. Differential post-translational 
modifications are indicated in red, whereas distal (H64) and proximal (H93) histidines in beef myoglobin are in green. The 3-
dimensional homology model of beef myoglobin was downloaded from SWISS-MODEL. 
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SUMMARY 

 

Color stability is critical to fresh beef retailing and has significant economic impact. 

The redox state of myoglobin (Mb) determines fresh beef color and is influenced by the 

heme protein’s interactions with cellular organelles and biomolecules in the postmortem 

skeletal muscle. Post-translational modifications (PTMs) can modulate proteins’ 

functionality and interactions with other proteins by the addition or removal of modifying 

group(s) to amino acids in primary structure. Diverse PTMs, including oxidation, 

methylation, phosphorylation, acetylation and alkylation, have been reported to 

influence the functionality of mammalian Mbs. Nonetheless, the in-situ PTMs in beef Mb 

and their impact on fresh beef color stability have not been characterized. Therefore, the 

objectives of this thesis research were to characterize the PTMs in beef Mb and their 

influence on fresh beef color stability. 

The first experiment examined the influence of Mb PTMs on the color stability of 

fresh beef longissimus lumborum (LL) muscle during postmortem aging. The results 

indicated that postmortem wet-aging decreased (P < 0.05) surface redness, color stability, 

and Mb concentration. Mb in fresh beef LL muscle underwent PTMs (phosphorylation, 

methylation, carboxymethylation, acetylation, and HNE alkylation) during postmortem 

aging. Aging resulted in an increase in the number of phosphorylation, methylation and 

carboxymethylation sites and a decrease in the number of acetylation sites in beef Mb. 

While the number of alkylation sites remained the same during 14 days of aging, HNE 

adduction at lysine (positions 78 and 79) residues were unique to aged beef, indicating 
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HNE alkylation of lysine residues might play a critical role in Mb redox stability. 

Furthermore, PTMs at lysine (positions 45, 47, and 87) residues were unique to Mb from 

non-aged beef, whereas PTMs at arginine (positions 31, and 139), threonine (position 51), 

serine (position 121), and lysine (positions 96, 98, and 147) residues were unique to Mb 

from aged counterparts. These aging-induced PTMs could compromise Mb redox stability 

by adding modifying groups to amino acids, especially to those residues close to 

hydrophobic heme pocket, and thus accelerating Mb oxidation and beef discoloration.  

The second experiment examined the influence of vitamin E supplementation to 

beef cattle on Mb PTMs in beef LL muscle. Beef LL samples (24 h postmortem) were 

obtained from the carcasses of vitamin E‐fed (VITE; 1,000 IU vitamin E for 89 days) and 

control (CONT; diet without supplemental vitamin E) heifers. Dietary supplementation of 

vitamin E decreased the number of post-translationally modified residues in Mb from 

beef LL. Differential occurrence of acetylation, methylation, dimethylation and 

trimethylation sites were detected in lysine (K) residues due to vitamin E 

supplementation. The unique PTMs in CONT Mb (K87, K96, K98 and K102) were spatially 

closer to proximal histidine compared to the unique PTM (K118) in Mb from VITE samples, 

and thus could be more detrimental to Mb redox stability due to the potential 

interference with proximal histidine. These findings indicated that vitamin E might protect 

Mb from PTMs, especially those spatially close to proximal histidine, and therefore 

improve Mb redox stability and beef color stability.  

In summary, in-situ PTMs compromised Mb redox stability and beef color stability 

by adding modifying groups to amino acids, especially to those residues close to 
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hydrophobic heme pocket. Dietary supplementation of vitamin E might offer the 

antioxidant protection by minimizing the occurrence of PTMs at residues located spatially 

close to proximal histidine in Mb and thus contribute to improved beef color stability.  
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