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Ischemic stroke is a leading cause of death and disability with limited therapeutic
options. Resulting inflammatory mechanisms after reperfusion (removal of the thrombus)
result in cytokine activation, calcium influx, and leukocytic infiltration to the area of
ischemia. In particular, leukocytes migrate toward areas of inflammation by use of
integrins, particularly integrins β1 and β2. Integrins have been shown to be necessary
for leukocyte adhesion and migration, and thus are of immediate interest in many
inflammatory diseases, including ischemic stroke. In this review, we identify the main
integrins involved in leukocytic migration following stroke (αLβ2, αDβ2, α4β1, and α5β1)
and targeted clinical therapeutic interventions.

Keywords: ischemic stroke, integrins, inflammation, leukocytes, clinical trial results

INTRODUCTION

Ischemic stroke is a leading cause of death and disability in the United States with limited
therapeutic interventions available, including tissue plasminogen activator (t-PA) and endovascular
mechanical thrombectomy (Rao et al., 2014; Benjamin et al., 2017; Rai et al., 2017). These
interventions are focused on the removal of the thrombus, restoring blood flow, oxygen and
glucose to hypoperfused areas, but are unable to affect the inflammatory, necrotic, and blood-brain
barrier (BBB) mechanism that follow. In particular, the initial inflammatory cascade is initiated
by the decrease in ATP production, release of cytokines, influx of intracellular calcium, reactive
oxygen species, etc., that develops during occlusion and continues for days afterward (Sandoval
and Witt, 2008). Using shear forces from cerebral blood flow, marrow-derived leukocytes (including
polymorphonuclear leukocytes (PMNs), neutrophils, lymphocytes and monocytes) are recruited to
the site of injury (Dereski et al., 1993; del Zoppo, 1994; Stefanidakis and Koivunen, 2006).

For the purpose of this review, we will focus on the recruitment and rolling of leukocytes under
the direction of integrins, as well as some of their ligands following reperfusion after ischemic
stroke. We will then introduce recent β2 and β1 integrin-specific stroke clinical trials, and, finally,
discuss potential future directions for the field.

LEUKOCYTIC INFILTRATION FOLLOWING ISCHEMIC STROKE

Leukocyte Recruitment
The initial endothelial response upregulates endothelial selectins, particularly P-selectin and
E-selectin, translocating them from an intracellular, inactive state, to the available extracellular
matrix for leukocytic binding, while the upregulation of L-selectin on the leukocyte is essential
for recruitment to the site of injury (Bargatze et al., 1994). Both are acutely regulated, P-selectin at
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15 min and E-selectin at 2 h post ischemia. These extracellularly
located selectins then facilitate the recruitment and activation of
leukocytes to the area of ischemia (Zhang et al., 1998). Leukocytes
then undergo a conformational change, facilitating polarization
and the development of certain cellular characteristics: a
leading edge, main body, and rear-uropod protrusion. The
uropod, or posterior protrusion, in fast moving leukocytes
promotes mobility, while the leading protrusions (lamellipodia
and filopodia, small leg-like projections) are less likely to be used
due to the rate limiting interaction with actin filaments (Ridley
et al., 2003) (summarized in Figure 1). Though this mechanism is
less obvious in the highly mobile leukocytes. Once leukocytes are
bound to selectins, additional binding to integrins and adhesion
molecules (intracellular adhesion molecule (ICAMs and vascular
adhesion molecule-1 (VCAM) occurs, permitting leukocytic
rolling (del Pozo et al., 1995; Lorant et al., 1995; Kindzelskii et al.,
1996; Becker, 2002). Additional damage can occur once at the site
of ischemia, as infiltration into the brain parenchyma across the
BBB destroys surrounding vasculature (Clark et al., 1993; Chou
et al., 2004), and leukocytes continually release additional factors
(reactive oxygen species, cytokines, and proteases) that enhance
leukocytic recruitment (Wang et al., 2008).

Leukocyte Infiltration
At the site of injury, leukocytes continue to increase binding
on cerebrovasculature up to 48 h following ischemic stroke, and
use transendothelial migration as a method for infiltration from
the cerebrovasculature into the surrounding brain parenchyma.
Early adhesion, prior to 24 h following reperfusion, is attributed
to neutrophils. Within 30 min to a few hours following
reperfusion, neutrophils arrive at the site of injury, peaking at
maximum expression around 1–3 days, though expression can
still be detected 7–15 days later in preclinical stroke models
(Weston et al., 2007). This upregulation is also seen in ischemic
stroke patients, where neutrophils have been detected beginning
at 6 h, with radiolabeled imaging, and continue to be detected
up to 72 h (Aspey et al., 1989). The early recruitment and
infiltration of neutrophils across the BBB appears to be highly
significant in stroke, as high neutrophilic infiltration is associated
with damaged cerebrovasculature (Enzmann et al., 2013), while
depletion reduces infarct volume and dysfunction in stroke
models (Chou et al., 2004).

As reperfusion injury continues, the circulating leukocytes
switch from neutrophils to mononucleuar leukocytes
(monocytes/lymphocytes) which dominate the adherent
culture from 24 h to 7 days post reperfusion (Schroeter et al.,
1994; Stevens et al., 2002; Ishikawa et al., 2005). Of the two types
of lymphocytes, B- and T-, T cells have emerged as the dominant,
damage-inducing lymphocyte in ischemic stroke (Brait et al.,
2011). Preclinical studies have shown that the inhibition of all
lymphocytes results in smaller infarct and improved neurological
outcomes, but only the reintroduction of T-lymphocytes to mice
reversed any benefits (Yilmaz et al., 2006; Kleinschnitz et al.,
2010). Activated T-lymphocytes, not B-, have been detected in
patients up to 60 days post-stroke, and are correlated with an
increased risk of stroke reoccurrence and death (Tarkowski et al.,
1995; Nadareishvili et al., 2004).

Clinical Importance of Leukocytes
Multiple studies have established the importance of leukocytic
adherence and infiltration into the brain parenchyma following
ischemic stroke, but targeting the leukocytes has a high degree
of risk. This is evident as inhibition of leukocytic cells increase
the occurrence of bacterial infection and mortality as evident
by Leukocytic Adhesion Deficiency (LAD-1) (Stefanidakis and
Koivunen, 2006). Because these cells are necessary for bacterial
resistance, systemic inhibition following ischemic stroke is
exceptionally risky. However, studies in stroke patients show
a strong correlation between increased levels of peripheral
leukocytes and neutrophils, and increased infarct volume (Price
et al., 2004; Buck et al., 2008). Thus, some current therapeutic
strategies have focused on the inflammatory cascade have
focused on blocking the adhesion and infiltration of cells at
the site of injury, primarily endothelial expressed ICAMs and
VCAM. This method has shown success in preclinical studies,
but has failed to translate to the clinic. Thus, the focus has
switched to directly targeting the integrins, a primary mediator
of leukocyte adhesion, rather than their ligands, as discussed
above. This review is focused on integrins β2 and β1 that have
shown promise in therapeutically targeting the ischemic stroke
inflammatory cascade.

ROLE OF INTEGRINS POST-STROKE: AN
OVERVIEW

Integrins are a diverse group of heterodimers composed of 18
different α and β subunits, creating 24 unique combinations.
Integrins exist on every cell type, while exhibiting a high diversity
of ligands and grouped into four different receptor groups:
RGD (Arg-Gly-Asp), laminin receptors, collagen receptors, and
leukocyte-specific receptors. Within these groups, integrins
can have a variety of ligands and roles following ischemic
stroke (reviewed in Edwards and Bix, 2019). Under normal
cerebrovascular conditions, integrins are in a highly inactive
state, typically in a bent conformation (Takagi et al., 2002;
Nishida et al., 2006). Following ischemic stroke, activation
signals are sent. Chemokines are translocated to the lumen,
on the apical side of endothelial cells, to induce “inside-
out” signaling (Chavakis, 2012). Integrins then undergo a
conformational change to increase integrin affinity for potential
ligands while enhancing detection by localizing to the leading
or rear-facing edge of the leukocyte’s cell wall for ligand
detection (Ridley et al., 2003; Hyun et al., 2009). Activated
integrins then bind to available ligands, permitting leukocytic
rolling and intracellular signaling. This is termed “outside-in”
signaling (Hato et al., 1998; Tominaga et al., 1998; Ley et al.,
2007). Leukocytes continue movement to the site of injury,
looking for areas to cross the endothelial cell barrier, and
eventually coming to a halt. Aggregation/clustering of integrins
increases binding avidity (strength of binding), preventing flow
conditions from detaching leukocytes from the endothelial
cells (Ley et al., 2007). Using transmigration, leukocytes will
infiltrate into the cerebral parenchyma using these integrin-
ligand connections.
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FIGURE 1 | Representative diagram of regions of interest on activated leukocytes.

β2 Integrins
β2 integrins are the only group of integrins exclusively expressed
on leukocytes (derived from hematopoietic cells) (Schenkel et al.,
2004), and like most integrins, are highly conserved across
species (Schittenhelm et al., 2017). They are also the most highly
expressed integrin on circulating blood leukocytes, tending to
cluster at the retraction area of the cell (the rear), in both an active
and inactive state, compared to other β1, β4, β3, and β7 integrins
found on circulating leukocytes (Pierini et al., 2000; Lindbom
and Werr, 2002). Genetic leukocyte adhesion changes (LAD-1,
as discussed above) has been attributed to mutations in the β2
subunit, reducing β2 expression. Thus, leukocytic movement is
reduced on the cell surface with less movement toward the site
of inflammation (Arnaout, 1990; Scharffetter-Kochanek et al.,
1998). Importantly, in β2 inhibited mice, there is not total arrest
of leukocytic recruitment or infiltration (Pierini et al., 2000),
suggesting that other factors likely play a role. There are 4
identified heterodimers of β2 integrins, and of these, the most
highly studied are αLβ2 and αMβ2 in ischemic stroke, and will be
reviewed in more detail below. The other β2 integrins, αXβ2 and
αDβ2, have not been individually studied in the context of stroke
as have αLβ2 and αMβ2 integrins, though CD18 (β2) inhibition
in addition to t-PA has been shown to increase the time window
of t-PA administration without an increase in hemorrhagic
transformation in a rat embolic stroke model (Zhang et al., 1999).
Furthermore, Figure 2 summarizes the results in this section.

αLβ2 Integrin
Integrin αLβ2 is also referred to as CD11a/CD18 and LFA-
1 (lymphocyte functional-associating antigen-1). αLβ2 integrin
acutely increases in ischemic stroke patients, with detectable
amounts through 72 h associated around the area of ischemia
(Gerhard et al., 2000; Zhao et al., 2002). This suggests a

correlation between αLβ2 integrin expression and inflammatory
damage following ischemia. αLβ2 is expressed on all leukocytes
(Soriano et al., 1999), though at particularly high levels on
T-lymphocytes (Hammond et al., 2014; Walling and Kim, 2018).
In healthy individuals, extracted blood analysis revealed that
αLβ2 activation requires leukocytic rolling on P- or E-selectins,
inducing an active conformational change (Kuwano et al., 2010),
but it is the binding of chemokines g-protein coupled receptors
(GPCR) and Rap-1 activation that induces the high-affinity
conformational state of αLβ2 (Steffen et al., 1994; Greenwood
et al., 1995; Ghandour et al., 2007). In this state, αLβ2 has many
possible ligands, ICAM-1, ICAM-2, ICAM-3, ICAM-4, ICAM-
5, and junctional adhesion molecule-1 (JAM-1) (Marlin and
Springer, 1987; de Fougerolles et al., 1991, 1994; Tian et al.,
2000), though ICAM-1 is preferentially bound (Walling and Kim,
2018). The high avidity αLβ2-ICAM-1 complex, once formed,
allows t-lymphocytes to move against circulatory flow and the
shear forces, resulting in the high-speed movement of leukocytes
(Katakai et al., 2013; Dominguez et al., 2015).

In an intraluminal model of experimental ischemic stroke,
αLβ2 inhibition with the use of transgenic mice results in reduced
infarct volume, edema volume and mortality. However, this
phenomenon is evident in transient, but not permanent middle
cerebral artery occlusion (Arumugam et al., 2004). This may be
due to the previously mentioned high avidity of αLβ2-ICAM-1
bonds, and is evident in an in vitro study using αLβ2 (LFA-
1) knock-in mice that experience high avidity through binding
of lymphocytes mediated through ICAM-1 binding, but are
unable to continue movement due to a non-polarized uropod
(Park et al., 2010). An explanation for this phenomenon may be
that the recycling process within the leukocyte is overwhelmed
(Shaw et al., 2004). By enhancing αLβ2 expression, recycling
may not be able to allow for dislocation of αLβ2-ICAM-1
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FIGURE 2 | Representative image of the β2 integrin response following experimental stroke and inhibitory antibody treatment in preclinical trials. Inhibition of (A) αLβ2

and (B) αMβ2 integrins post-stroke responses and effects.

complexes, preventing movement from the loss of high adhesion
bonds. Enhanced αLβ2 expression could be a potential new
avenue for therapy, especially if no enhanced mortality, infection,
etc., are observed.

Independently, ICAMs play a significant role in inflammation
following ischemic stroke. ICAM-1, in particular, is acutely
increased in both cultured human endothelial cells undergoing
hypoxia and following intraluminal suture middle cerebral artery
occlusion, while expression remains sustained for up to a week
post-injury (Hess et al., 1994a,b; Zhang et al., 1995). ICAM-2,
another possible ligand, does not change in expression following
cytokine stimulation (de Fougerolles et al., 1991; Nortamo
et al., 1991a,b). Furthermore, serum of ischemic stroke patients
contains soluble ICAM-1, but not ICAM-2 in addition to
being a risk factor (Kaplanski et al., 1994; Shyu et al., 1997).
Antibodies targeting ICAM-1 in rodents and humans have shown
contradictory results. An intraluminal suture middle cerebral
artery occlusion model in mice and rats showed a decrease
in leukocyte infiltration and infarct volume (Connolly et al.,
1996; Kitagawa et al., 1998; Vemuganti et al., 2004), while one
study reported opposing effects (Furuya et al., 2001). ICAM-
1 inhibition was translated to the clinic through testing of
the murine ICAM-1 antibody, Enlimomab in ischemic stroke.
Unfortunately, the study was halted early due to increased rate
of infection, infarct volumes, neurological scores and mortality
for patients (Furuya et al., 2001).

αMβ2 Integrin
Integrin αMβ2, also known as CD11b/CD18 and Mac-1
(macrophage-1 antigen), exhibits many similarities to αLβ2
through its expression on all leukocytes (Springer et al., 1979),
and common ligand binding partners such as the family of
ICAMs and JAMs (von Andrian et al., 1991). Additional
ligands are fibrinogen, heparin (von Andrian et al., 1991),
elastase (Cai and Wright, 1996), complement C3 fragment
(C3bi) (Micklem and Sim, 1985), kinogen components, and
urokinase and its receptor (Chavakis et al., 1999). Just as αLβ2,
hypoxia induced factors (cytokines, chemokines, etc.) induce

conformational change of αMβ2 to a high affinity ligand-binding
state (Stanimirovic et al., 1997). Binding assays with ICAM-1 as a
ligand and both αLβ2 and αMβ2 as receptors show αLβ2 integrin is
preferably bound (Lub et al., 1996). This suggests that the binding
sites on both αLβ2 and αMβ2 compete for ICAM-1 binding.

Following experimental ischemic stroke in rats, integrin αMβ2
is upregulated (Campanella et al., 2002), and has shown benefit
when inhibited. Antibodies against both CD11b/CD18 reduce
infarct volume and reestablish cerebral blood flow as a result of
decreased neutrophil infiltration following intraluminal stroke
surgery (Chen et al., 1994; Bowes et al., 1995; Zhang et al., 1995).
In a different approach, the addition of recombinant neutrophil
inhibitory factor (rNIF) inhibits a binding domain on Mac-1 and
yields similar results in the same intraluminal occlusion model
(Jiang et al., 1998). Furthermore, and similarly to αLβ2 integrin
inhibition, inhibition of αMβ2 is also effective in transient, but not
permanent experimental ischemic stroke in an embolic occlusion
model (Zhang et al., 2003).

β1 Integrins
β1 integrins are a diverse set of integrins, with laminin-binding,
collagen-binding, RGD-binding and leukocyte heterodimers. β1
integrins are not as highly expressed on leukocytes as β2 integrins,
but they do play a major role in leukocyte adhesion and migration
following ischemic stroke. The activity of β1 integrins is similar to
β2 integrins. They undergo a conformational change to induce
“inside-out” and “outside-in” cellular signaling (Campanero
et al., 1994). As the cells migrate, the β1 integrins are most
commonly clustered around the uropod, but will be located in any
area of the leukocyte that is in contact with the endothelial cell or
extracellular matrix (Campanero et al., 1994; Caimi et al., 2001).
Inhibition of the β1 integrin, just as with β2 integrin inhibition,
does not fully stop leukocyte rolling. However, when both β1 and
β2 integrins are inhibited, complete leukocyte arrest occurs (Lobb
and Hemler, 1994; Pierini et al., 2000). This suggests that both β1
and β2 integrins are necessary for leukocyte migration, regardless
of expression load. Of all the β1 integrins, both α4β1 and α5β1
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appear to be the most highly expressed and the most studied
in post-stroke inflammation. The other β1 integrin expressed on
leukocytes, α9β1, has not been studied in the context of stroke
as its expression and role has not yet been fully elucidated in the
brain. Figure 3 summarizes the results discussed in this section.

α4β1 Integrin
α4β1, also known as CD49d/CD29 VLA-4 (very late antigen-
4), is localized primarily to leukocytes (neutrophils, monocytes,
lymphocytes, macrophages, etc.) and microglia as a leukocyte-
specific receptor. Additionally, α4 will also dimerize with
β4, which is found in gut endothelium (Hammond et al.,
2014). Activation of α4β1 integrin results from the binding
of upregulated chemokines to GPCRs in the same manner as
αLβ2 as discussed above (Vajkoczy et al., 2001). This stimulates
binding to α4β1’s preferred ligand, VCAM-1, but experiments
have shown some preference for paxillin ICAM-1 (Steffen et al.,
1994; Ghandour et al., 2007), and fibronectin (Hart and Greaves,
2010) as well. Interestingly, instead of using the β1 submit of the
heterodimer for binding, integrin α4β1 uses its α subunit of α4β1
to mediate binding to VCAM-1 (Luo et al., 2007).

Preclinical ischemic stroke studies targeting α4β1 have shown
increasingly varied results. Most researchers reported a decrease
in VCAM-1 expression, cytokine production, and infiltrating
leukocytes (Liesz et al., 2011; Langhauser et al., 2014; Llovera
et al., 2015), but this reduction in inflammation did not
result in reduced infarct volumes or functional deficit following
analysis of a randomized preclinical trial involving six different
centers (Llovera et al., 2015). Langhauser et al went one step
further and found that no treatment paradigm (prophylactic or
therapeutic) and no model (transient or permanent) showed
efficacy (Langhauser et al., 2014). On the other hand, both Becker,
2002 and Relton et al., 2000 found that inhibition of α4 improved
both infarct volumes and functional deficits. When a preclinical
randomized control trial was implemented at multiple centers,
researchers found efficacy only in patients with small infarct
volumes (Llovera et al., 2015). Collectively, these contradictory

results may be caused by a couple of scenarios, 1) the varying
expression of integrin α4β1 expression following ischemic stroke
resulting in continued leukocyte infiltration, or 2) integrin
α4β1 is not a primary driver of post-stroke pathophysiology,
but other factors, including other integrins, promote leukocyte
migration (Hammond et al., 2014).

α5β1 Integrin
α5β1, also known as CD49e/CD29 and VLA-5, plays an as
yet largely undetermined role in inflammation, with studies
primarily limited to cell culture. What is known is that leukocytes
express different β1 integrins with α5β1 composing around 50%
of all β1 –integrins expressed on neutrophils (Pierini et al.,
2000) and monocytes (Pacifici et al., 1994). Additionally, α5β1 is
necessary for leukocyte adhesion. Only inhibition of both α5β1
and β2 integrins completely blocks adhesion in vitro (Pierini et al.,
2000), while inhibition of α5β1 alone prevents transmigration
across the BBB (Labus et al., 2018) in vitro. As an RGD receptor,
fibronectin has been shown to be the primary and preferred
[over other potential ligands such as fibrinogen (Suehiro et al.,
1997)] ligand for α5β1 on endothelial cells and leukocytes
(Schaffner et al., 2013; Bharadwaj et al., 2017). Importantly, in the
presence of activated αLβ2, leukocyte α5β1 binding to fibronectin
is enhanced (Bohnsack, 1992; Loike et al., 1999; Gronholm
et al., 2016). α5β1 integrin expression is induced by cytokines,
particularly TNFα (Li et al., 2011) toward the leading edge of
the cell in contrast with other integrins at the uropod (Pierini
et al., 2000). Furthermore, α5β1 integrin appears to be highly
sensitive to calcium (Pierini et al., 2000), an ion that is increased
rapidly following reperfusion (Sandoval and Witt, 2008). Upon
calcium buffering, α5β1 expression moves from the front of the
cell to the uropod and the leukocyte becomes elongated. The
change in expression localization and morphology is attributed
to non-movement as the leukocyte cannot detach α5β1 from the
vascular wall (Pierini et al., 2000). Recently, Edwards et al. (2019)
found that inhibition of α5β1 integrin by the small peptide ATN-
161 prevented CD45+ leukocytes from infiltrating the brain

FIGURE 3 | Representative image of the β1 integrin response following experimental stroke and inhibitory antibody treatment in preclinical trials. Inhibition of (A) α4β1

and (B) α5β1 integrins post-stroke responses and effects.
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parenchyma following the tandem/transient common carotid
artery/middle cerebral artery occlusion model. Additionally, mice
were observed to have reduced BBB permeability, functional
deficits, edema, and infarct volume following middle cerebral
artery occlusion (Roberts et al., 2015; Edwards et al., 2019). Thus,
targeting α5β1 after ischemic stroke could be a new avenue for
reduction of inflammation following ischemic stroke.

CLINICAL IMPLICATIONS

The preclinical studies discussed here point towards the potential
of targeting β2 and β1 integrins in the treatment of post-
stroke inflammation. Though their potential has not fully been
elucidated, many clinical trials, not just limited to stroke, have
been approved in the last 10 years targeting these integrins.

The most common target for post-stroke inflammation are
the β2 integrins. Though some efficacy has been reported,
no clinical stroke trials to date have targeted the αL subunit
in stroke patients. However, one clinical trial with the
monoclonal antibody, Efalizumab, has shown promise in
decreasing T-lymphocyte rolling in patients with moderate-
severe plaque psoriasis (Lebwhohl et al., 2003).

In preclinical studies targeting αMβ2, a hookworm isolated
recombinant glycoprotein targeting rNIF (UK279276) (Zhang
et al., 2003) and humanized Hu23F2G (Leukarrest) (Yenari
et al., 1998), were both shown to decrease infarct volume
and increase functional recovery following reperfusion. Both
therapies had negligible side effects in Phase 1 studies and thus
were continued to a Phase II study, respectively, before the trials
were halted due to no observed efficacy (Becker, 2002; Krams
et al., 2003). The failure to target αMβ2 integrin may be due
to the observation that human ischemic stroke patients do not
experience the increase in αMβ2 expression as seen in rodent
stroke models (Caimi et al., 2001). Interestingly, when given in
conjunction with United Kingdom279276, patients experienced
a slight improvement (Krams et al., 2003), but no follow-up has
been conducted. This interesting effect may be worth additional
investigation in future clinical trials.

Clinical inhibition of β1 integrins, on the other hand, is
small and varied. Of the current clinical trials, one trial has
emerged targeting α4β1 in the context of ischemic stroke. The
monoclonal antibody targeting the α4 subunit (Natalizumab) has
been successful in protecting patients from relapses in multiple
sclerosis (Polman et al., 2006) and Crohn’s disease (Sandborn
et al., 2015). However, in a Phase II ischemic stroke study, patients
receiving Natalizumab showed no improvement in infarct growth
or neurological scores over 30 days. Furthermore, two patients
(out of 79) died from serious infections attributed to Natalizumab
treatment (Elkins et al., 2017). At this time, there are no further
clinical trials planned.

FUTURE CONSIDERATIONS

As discussed in this review, targeting leukocytic integrins
has had limited to no efficacy in clinical trials. Importantly,

these studies have collectively employed only three different
therapeutics and two targets; there are still significant areas that
can be investigated. Though not discussed here, most preclinical
investigations have focused on the ligands themselves rather than
the integrin as the therapeutic target, highlighting the continued
importance of integrins in stroke.

It is also important to note that preclinical studies carried out
in rodents inadequately model the post-stroke pathophysiology
that patients experience. Preclinical stroke research is also
typically limited, focusing on one species, sex, and age
that do not necessarily match the demographic of stroke
patients (see Kahle and Bix, 2012 for a review of this topic).
Furthermore, as the changes following stroke and/or reperfusion
are inadequately understood, identifying appropriate therapeutic
targets that translate from the lab to clinical trials, has been
particularly challenging.

However, this does not suggest abandoning therapeutic trials
for ischemic stroke. As mentioned above, stroke is a leading
cause of death and disability, separate from cardiovascular
disease. This will not improve without intervention with our
aging and obese population. Fortunately, with the advent of
stroke mortality-altering therapies, i.e., t-PA and endovascular
mechanical thrombectomy, our financial burden has shifted
to aftercare. When we review the amount of trials performed
for thrombolytic agents (Multicentre Acute Stroke Trial–Italy
(MAST-I) Group, 1995; National Institute of Neurological
Disorders and Stroke rt-Pa Stroke Study Group, 1995; The
Multicenter Acute Stroke Trial–Europe Study Group, 1996) and
endovascular thrombectomy [MR CLEAN (Berkhemer et al.,
2015), ESCAPE (Goyal et al., 2015), EXTEND IA (Campbell
et al., 2015), SWIFT PRIME (Saver et al., 2015), and REVASCAT
(Jovin et al., 2015)] as potential treatments of ischemic stroke, it
is obvious that the complexities of stroke affect the outcome of
the clinical trial. This includes, but is not limited to, the time a
patient takes to arrive at an ER, time to treatment, location of the
stroke, amount of surrounding collaterals, current medications
and co-morbidities (diabetes, cancer, etc.), and if the patient has
experienced multiple strokes.

Based on current advances, as well as previous failures,
a focus on integrins as a therapeutic target for stroke is
emerging. A significant reason for this focus may be the
complex, multi-dimensional role that integrins appear to play
in brain pathophysiology. Integrins are diverse, existing on all
cell types with varying roles depending upon expression and
activation. This complexity can represent a significant challenge
to integrin-targeted therapies inasmuch as such therapies could
have diverse, even unintended off-target effects. However, we
believe that this can be overcome by a better understanding
of how integrin function and expression is altered after stroke,
with the potential to exploit stroke-dependent integrin changes
to therapeutic effect. For example, identifying a specific integrin
to be upregulated in select cells in the post-stroke brain or
brain-targeting cells, but not in other organs, could render
it a viable therapeutic target. This emphasizes the need and
importance of preclinical stroke research to discover and unravel
the complexities of integrin biology. We are confident that such
studies will result in viable new stroke therapies.
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CONCLUSION

In this review, we have implicated integrins as an area of
research for limiting inflammation following ischemic stroke.
To date, therapeutic inhibition of αLβ2, αMβ2, and α4β1 has
shown promising results in preclinical studies, but translation to
the clinic has been disappointing. Going forward, more targeted
antibodies to all reactive β1 and β2 integrins after ischemic stroke

may prove more beneficial, but more research needs to be done
to completely understand the human inflammatory response and
how that relates to changes in preclinical models.
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