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Abstract

Borrelia burgdorferi, the causative agent of Lyme disease, survives in nature through a
cycle that alternates between ticks and vertebrates. To facilitate this defined lifestyle, B.
burgdorferihas evolved a gene regulatory network that ensures transmission between
those hosts, along with specific adaptations to niches within each host. Several regulatory
proteins are known to be essential for the bacterium to complete these critical tasks, but
interactions between regulators had not previously been investigated in detail, due to experi-
mental uses of different strain backgrounds and growth conditions. To address that deficit in
knowledge, the transcriptomic impacts of four critical regulatory proteins were examined in a
uniform strain background. Pairs of mutants and their wild-type parent were grown simulta-
neously under a single, specific culture condition, permitting direct comparisons between
the mutant strains. Transcriptomic analyses were strand-specific, and assayed both coding
and noncoding RNAs. Intersection analyses identified regulatory overlaps between regu-
lons, including transcripts involved in carbohydrate and polyamine metabolism. In addition,
it was found that transcriptional units such as ospC and dbpBA, which were previously
observed to be affected by alternative sigma factors, are transcribed by RNA polymerase
using the housekeeping sigma factor, RpoD.

Introduction

Borrelia burgdorferi, the bacterium that causes Lyme disease, is an obligately parasitic spiro-
chete whose enzootic cycle alternates between vertebrates and Ixodes spp. ticks. Survival of B.
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burgdorferi in nature requires that the spirochete accurately control production of proteins
and other factors necessary for each aspect of its cycle. A number of B. burgdorferi factors have
been identified that are critical for bacterial survival in nature, and have been observed in cul-
ture to control production of borrelial RNAs, proteins, and other components [1-3]. All evi-
dence indicates that regulatory networks that operate in cultured bacteria are also functional
during the bacteria’s vertebrate-tick infectious cycle [1-3]. Insights on B. burgdorferi regula-
tory networks have been obtained through transcriptome or proteome comparisons between
mutant and wild-type bacteria. However, all prior studies examined only a single mutant and
its parent. Due to variations in culture conditions and/or strain backgrounds, results of such
studies cannot be directly compared with each other. To permit comparisons of mutants with
each other, and thereby identify regulatory network overlaps, the present studies examined
wild-type and several congenic mutant strains, all cultured under the same conditions. Four
regulatory factors were examined that have been shown to be, or hypothesized to be, critical
for B. burgdorferi’s transmission between feeding ticks and vertebrate hosts [1-3].

An alternative sigma factor, RpoS, is required for maximal expression of a regulon that is
important for transmission from ticks into vertebrates, and during vertebrate infection. Previ-
ous studies of the RpoS regulon were focused on bacteria cultured under conditions that
induce high-level expression of RpoS, such that comparisons of wild-type and ArpoS strains
readily revealed differences in expression levels of RpoS-targeted transcripts [4-7]. A caveat of
examining bacteria under such conditions is that low-level expression of transcripts in an rpoS
mutant may be misinterpreted as absence of those transcripts, especially when using tech-
niques with limited sensitivity, such as immunoblotting or arrays. Using RpoS-inducing con-
ditions may also complicate studies of other regulatory factors that function both through and
independently of RpoS, since a mutant’s impact on RpoS might be misinterpreted as evidence
that all effects of the other regulator are mediated through RpoS.

Two transcriptional promoters have previously been described for rpoS, one of which is
dependent upon another alternative sigma, RpoN [5, 8-10], and a second that appears to be
dependent upon the housekeeping sigma, RpoD [11]. For that reason, an rpoN mutant was
included in these analyses. Three DNA-binding proteins, including BadR, bind to sites 5" of
rpoS, and have been reported to affect the transcription of rpoS under certain conditions [11-
17].

BadR is a ROK (repressor of kinase) type of DNA-binding protein. It was originally anno-
tated as a putative xylose-responsive repressor [16, 18]. That hypothetical function is likely
incorrect, as B. burgdorferi cannot utilize xylose as an energy source [19]. Prior studies found
that BadR binds to DNA 5 of poS, and a badR mutant exhibited altered expression of rpoS
under a tested culture condition [16, 17]. Furthermore, BadR was also shown to bind DNA 5’
of bosR, which encodes another DNA-binding protein that binds 5" of 7poS [17]. A previous
array analysis of a cultured badR mutant detected significantly altered expression of over 200
transcripts, including numerous mRNAs of proteins that are important for mammalian infec-
tion [16, 17]. Consistent with those findings, badR mutants are not able to colonize mice. As
with other ROK-type DNA-binding proteins, binding of recombinant BadR to DNA is modu-
lated by certain phosphorylated carbohydrates [16].

CsrA (Carbon storage regulator A) is an RNA-binding protein that, in other organisms,
regulates diverse cellular processes including its namesake process, carbon storage [20].
Homologues have roles in regulation of virulence in several pathogenic bacterial species [21,
22]. Previous studies on the B. burgdorferi CsrA homologue revealed seemingly contradictory
results. Several studies observed that csrA mutants exhibited altered expression of lipoproteins,
motility, and cell shape, and were unable to infect mice [23-27]. In contrast, another study did
not observe those changes in protein expression or infectivity [28]. The basis of those different
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results remains to be determined. Consistent with the former, the present studies observed sig-
nificant changes to numerous transcripts in a csrA mutant, supporting the hypothesis that
CsrA is a regulator of B. burgdorferi physiology.

In this study, a comprehensive transcriptomic approach was undertaken to identify tran-
scripts that were significantly affected in bacteria deleted of either rpoS, rpoN, badR, or csrA.
Strand-specific RNA sequencing (RNA-Seq) was used, permitting global analyses of the coding
and noncoding transcriptomes. Those data were compared with results of their wild-type
parental strain, to identify components of the CsrA, BadR, RpoS, and RpoN regulons that were
affected under a single, uniform condition. Points were identified where those regulons inter-
sect. The culture conditions used for these studies did not induce high-level expression of
rpoS, the result of which provided substantial new insights on pathways that control borrelial
gene expression. For example, CsrA was found to function independently of RpoS to exert
substantial effects on numerous transcripts, and some transcriptional units that had previously
been hypothesized to require RpoS for transcription, such as ospC and dbpBA, were found to
be transcribed using the “housekeeping” sigma factor, RpoD.

Materials and methods

Bacteria and culture conditions

All studies described were performed using the B. burgdorferi strain B31-A3 and direct deriva-
tives. B31-A3 is a clonal derivative of the type strain B31 [29, 30]. B31-A3 contains the full
complement of naturally-occurring DNA elements identified in the sequenced culture of
strain B31 with the exception of cp9 [18, 31]. Absence of cp9 does not have any detectable
effects on infectivity or gene expression [29, 32, 33]. Generation and validation of each of the
four mutations in the B31-A3 background has been described previously [8, 16, 27, 29]. Prior
to RNA-Seq analyses, all strains were assessed for the presence of the full repertoire of natural
DNA elements by multiplex PCR [34]. The badR and rpoN mutants had apparently lost Ip21
during production or subsequent cultivation. Ip21 contains a long stretch of untranscribed,
repetitive DNA along with ORFs that are involved in maintenance and partitioning, and lp21
is not known to play a role in infection processes [18, 30, 32]. All other naturally-occurring
plasmids were retained in all cultures of the strains.

Cultures and harvesting of bacteria were performed essentially as described previously [30].
B. burgdorferi were cultured in Barbour-Stoenner-Kelly IT (BSK-II) liquid medium [35]. All
strains were grown as at least three distinct cultures. Briefly, 5 ml of medium was inoculated
with a 1:100 dilution of bacteria from frozen glycerol stocks, then incubated at 34°C. Previous
studies have demonstrated that the inoculation from -80°C to warmer media conditions
induces substantial changes in transcript and protein levels [36] which can confound studies
of gene regulation. To avoid those effects, the initial 34°C cultures were grown until cell densi-
ties reached mid exponential phase (~1x10 bacteria/ml). Cultures were then diluted into 10
ml of fresh BSK-II to a final density of 1x10° bacteria/ml, and again incubated at 34°C. All cul-
tures grew with essentially identical division rates. When cultures reached mid-exponential
phase (1x10 bacteria/ml), bacteria were harvested by centrifugation at 8200xG for 30 minutes
at 4°C. Supernatants were removed and the cell pellets immediately resuspended in 1 ml of
pre-warmed (60°C) TRIzol (Thermo-Fisher, Waltham, MA). Cell suspensions were stored
until use at -80°C.

RNA isolation and library construction

RNA was isolated and its integrity validated essentially as described previously [30]. Briefly,
RNA was isolated from 500 ul of the above-described cell suspensions using the Zymo RNA
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Direct-Zol miniprep kit (Zymo, CA USA). RNA was eluted from the column with 35 pl
RNase-free water and stored at -80C. Yield and integrity were examined using a Bioanalyzer
with the RNA 6000 Nano kit (Agilent, CA USA). Electropherograms were examined to ensure
that RNA was intact and all samples used for library construction had RIN scores >9. RNA
concentration was further determined using a Nanodrop 2000 spectrophotometer (Thermo-
Fisher, Waltham, MA).

[Mlumina cDNA libraries were generated using the RNAtag-seq protocol as described previ-
ously [30, 37]. Briefly, 840 ng of total RNA was fragmented, dephosphorylated, and ligated to
DNA adapters carrying 5’-AN8-3’ barcodes with a 5’ phosphate and a 3’ blocking group. Sam-
ples bearing unique barcoded RNAs were pooled and depleted of rRNA using the RiboZero
Bacterial Gold rRNA depletion kit (Illumina, CA USA). These pools of barcoded RNAs were
converted to Illumina cDNA libraries and sequenced in paired end mode for 75 cycles on the
IMlumina Nextseq 500 platform (Illumina, San Diego, CA).

RNA-Seq data analysis

As previously described [30, 38], reads corresponding to each particular sample were deconvo-
luted, based on their associated barcode. Up to 1 mismatch in the barcode was allowed, with
the caveat that it did not result in assignment to multiple barcodes. Multiplexing barcodes
were trimmed using in house scripts [30]. The expected read length following removal of
indexing barcodes was 33bp and we attained an average read length of 32.5 bp. Quality of
reads was assessed using FastQC (v0.11.5) (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc). De-convoluted reads were trimmed using Trimmomatic v0.36 [39] to remove
low quality reads, trim low quality bases from the ends of reads, and to trim any reads in
which both pairs did not have a length of at least 25 bases. A custom transcriptome (multi-
FASTA) was created by merging the curated B. burgdorferi B31 coding sequences (NCBI
Assembly ASM868v2_CDS as of 5/1/17) FASTA with a multi-FASTA of all ribosomal and
tRNAs and a multi-FASTA containing a set of recently identified putative ncRNAs[30]. The
custom index is available on Figshare (see below). The transcriptome was indexed using the
Salmon-index function set for quasi mapping with default settings and auto library detection
(v0.8.2) [40]. Mapping and counting was conducted using Salmon (v.0.8.2) in quasi mode with
seqBias and GCbias flags activated. The B. burgdorferi genome contains several regions of high
similarity encoded on the plasmids that have confounded both transcript quantification and
genome assembly in the past [18, 31, 41, 42]. Salmon utilizes a probabilistic model to estimate
the true mapping location for ambiguously-mapped reads, providing increased accuracy of
estimation of both identical sequences in different locations and of paralogous gene clusters
[40, 43]. For the examination of read abundance surrounding the rpoSlocus reads from each
sample were aligned to the B. burgdorferi B31 genome sequence using BWA [18, 31, 44], and
read abundance was examined using Artemis (Release 16.0) [45].

For logistical reasons, cultures of csrA, badR, and the wild-type parent were grown simulta-
neously, and rpoS, rpoN, and additional cultures of the wild-type parent were simultaneously
grown at a later date. Batch effects are a well-known confounding variable in RNA-Seq experi-
ments, and can often account for as much or more variability than the biological effect in ques-
tion [46]. To account for this, data from each mutant were compared with its simultaneously-
grown wild-type and other mutant strain. Results from each set of cultures clustered well by
principal component analysis, whereas the two batches of wild-type bacteria were separate
from each other, supporting our decision to compare mutants to wild-type samples only
within batch (S1 Fig). Results from the csrA, badR, and the wild-type parent were compared
with each other, and the rpoS, rpoN, and wild-type were compared separately.
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Downstream data analysis (differential expression testing, plotting, significance filtering,
and intersection identification) was performed in RStudio (1.0.143) (http://www.rstudio.com).
Differential expression analyses were conducted using DESeq2 (v1.41.1) both with and with-
out a Benjamini-Hochberg FDR correction set to alpha = .05 [47]. Thirty-nine transcripts had
less than three total reads summed across all samples and were not tested. PCA and MA plots
were generated using DESeq functions plotMA and plotPCA. Count data was extracted using
the DESeq plotCounts function and replotting the data using ggplot2 [48]. Significance filter-
ing was set at a padj value less than 0.05 and a log2FoldChange of greater than one. The avail-
ability of all code and reference data utilized in these studies is openly available and is
described below in the Data Availability section.

These analyses used the ncRNA list and nomenclature of the first comprehensive analysis
of the B. burgdorferi noncoding transcriptome [30]. A later study by other researchers used dif-
ferent criteria for calling putative ncRNAs, resulting in a somewhat different list [49, 50].
Although the later list was not used in the current analyses, our raw data are readily accessible
to anyone who wishes to analyze them against those or other transcript sets (see Data Avail-
ability, below).

Quantitative reverse transcription-PCR (qQRT-PCR)

Purified RNAs from each of the above-described cultures was also assayed by qRT-PCR for
comparison with RNA-Seq results. Approximately 1 ug of isolated RNA was treated with
Turbo DNase I for 45 minutes to remove contaminating genomic DNA (Thermo-Fisher,
Waltham, MA). Normalized amounts of RNA were converted to cDNA using SuperScript
(BioRad, Hercules, CA). cDNAs were diluted 1:20 for use in gPCR. SYBER-Green based qPCR
was performed essentially as described previously [30, 51] using a CFX96 Touch (BioRad, Her-
cules, CA). Briefly, 2 pl of cDNA was combined with 5 pl 2X iTaq qPCR Supermix (BioRad,
Hercules, CA), 300 uM of appropriate oligonucleotide primer pairs (S1 Table), and nuclease
free H,O to a final volume of 10 pl. Reactions were performed in technical triplicate. Cycling
conditions consisted of an initial melt at 95°C for 2 minutes followed by 40 cycles of PCR with
a 15 second melt at 95°C, a 15 second extension at 60°C and fluorescence detection. Melt
curves were performed by increasing reaction temperatures in 0.5°C increments from 65°C to
95°C. Melt curves confirmed that each particular set of primers and template generated a sin-
gle specific product. Transcripts were targeted that do not have associated antisense RNAs.
Data from qRT-PCR were analyzed by the AACt method [52] normalized to f¢sK, which has
previously been shown to be stably expressed during a variety of different culture conditions
[30].

Quantitative PCR analyses of native plasmid 1p28-4

Total DNA was isolated from all five strains. For each, gPCR was performed, targeting 1p28-4
(primer pair qlp28-4F and glp28-4R) and the dnaA gene at the chromosome’s center (primer
pair gDnaAF and qDnaAR) (S1 Table). The relative abundance of each strain’s 1p28-4 was nor-
malized to its chromosome, using the ACt method.

Results

Deletion of csrA perturbs transcripts of genes associated with virulence and
diverse cellular processes

CsrA has been proposed to pre- and post-transcriptionally regulate a number of processes in
B. burgdorferi, from flagellar assembly and motility to the expression of infection-associated
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Fig 1. Log ratios of samples vs. mean abundance of transcripts. (A) csrA mutant compared to wild-type. (B) badR
mutant compared to wild-type. (C) rpoS mutant compared to wild-type. (D) rpoN mutant compared to wild-type. Red
points indicate transcripts which met the criteria of a log2 fold change >1 and an adjusted p-value (padj) < 0.05. The
X-axis is given as mean normalized count across compared samples and the Y-axis as log2 fold change between
conditions.

https://doi.org/10.1371/journal.pone.0203286.9001

proteins [23-26, 53]. To further investigate these hypotheses, RNA-Seq analyses were per-
formed on a csrA null mutant, the first such global analysis of B. burgdorferi CsrA. We
observed that 239 transcripts were significantly different between the csrA mutant and the
wild-type parent (13.4% of the transcriptome) (Fig 1A, Table 1 and S2 and S5 Tables). Of the
affected transcripts, 153 had reduced abundance and 86 had increased abundance in the
mutant. Approximately two thirds (158 transcripts or 66%) of the differentially expressed (DE)
transcripts consisted of ORF mRNAs [30]. The majority of DE transcripts (171/239 or 71.5%)
were plasmid-encoded, and the majority of these were reduced in the mutant (116/169 or
68.6%). Importantly, deletion of csrA did not have significant effects on any of the other three
regulatory proteins being studied, indicating that the observed effects were not due to CsrA
working through BadR, RpoS, or RpoN. The RNA-Seq results were validated by performing
qRT-PCR analyses of cdaA, glpF, glpK, glpD, bosR, spoVG, bbk32, dbpA, and sodA transcripts
(Fig 2).

The known or proposed functions of the DE ORFs support the hypothesis that CsrA con-
trols a diverse regulon. Deletion of csrA negatively affected transcripts for several outer surface
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Table 1. Differentially expressed transcripts when comparing the csrA mutant to wild-type, listed in order of genome reference number. The included transcripts
met the criteria of >1 log2 fold-change and an adjusted p-value (padj) when comparing the csrA mutant to wild-type. A total of 239 transcripts were differentially regulated,
not including the mutated gene, by the mutation. The first column contains the CDS/custom transcript ID which is the transcript ID for all coding sequences obtained
from the NCBI Gene file format file or the transcript ID given to ncRNAs. RefSeq entries are further separated by the character “_”. The first portion gives the genetic ele-
ment from which it is derived, the second describes the type of element (CDS), the third provides RefSeq ID, and the fourth provides a number indicating the particular
entries ordered number in the RefSeq entry. The second column is the gene information, for the ncRNAs it contains the location relative to other genes and for predicted
or known genes it contains gene name. The remaining columns describe the various metrics of expression of each impacted transcript including, base mean (average
library size normalized counts across all samples), log2FC (Fold change estimate), IfcSE (uncertainty of the log fold change estimate), stat (Wald statistic), pvalue, padj (pva-
lue following Benjamini-Hochberg adjustment). ORFs and ncRNAs are identified according to the names or numbers assigned to genes and transcripts by the initial
genome sequencing of B. burgdorferi strain B31 [18, 31] or from our previous analyses of that strain’s ncRNA transcriptome [30].

RefSeq CDS/Custom Transcript ID Gene Name baseMean | log2FoldChange |1fcSE stat pvalue padj
ncRNA0002 AI-(BB_0004,BB_0004/ 3041.858416 | -1.36714353 0.248794138 | -5.495079342 | 3.91E-08 7.56E-07
BB_0005)
ncRNA0003 AA-(BB_0005,BB_0006) 1243.576562 | -1.545333022 0.311573702 | -4.959767184 | 7.06E-07 1.03E-05
ncRNA0006 A-(BB_0013) 3033.894978 | -1.608698814 0.339632615 | -4.736585192 | 2.17E-06 2.74E-05
ncRNA0007 A-(BB_0014) 214.8526993 | -1.215649307 0.481870969 | -2.522769338 | 0.011643475 | 0.040193419
ncRNA0014 A-(BB_0084) 380.5460997 | -1.357896884 0.388753058 | -3.492954863 | 0.000477707 | 0.002884877
ncRNA0031 AA-(BB_0198,BB_0199) 400.7134034 | -1.332232934 0.373955161 | -3.562547258 | 0.000367274 | 0.002360254
ncRNA0035 A-(BB_0208) 510.9105757 | -1.073378765 0.291108995 | -3.687205759 | 0.00022673 | 0.001526171
ncRNA0037 A-(BB_0211) 1238.76926 | -1.369299269 0.314591832 | -4.352621806 | 1.35E-05 0.000134756
ncRNA0042 A-(BB_0240) 2021.458735 | -1.879991865 0.349110627 | -5.385089195 | 7.24E-08 1.33E-06
ncRNA0043 A-(BB_0244) 577.795707 | -1.256653342 0.403868558 | -3.111540418 | 0.00186114 | 0.009029975
ncRNA0050 AJA-(BB_0269,BB_0269/ 1285.298201 | -1.696511444 0.556125738 | -3.050589691 | 0.002283925 | 0.010685504
BB_0270,BB_0270)
ncRNA0057 A-(BB_0347) 34.51259723 | -1.887737468 0.548599499 | -3.441012019 | 0.000579543 | 0.003368469
ncRNA0063 A-(BB_0381) 391.0552137 | -1.635832191 0.433065836 | -3.777329118 | 0.000158519 | 0.001120158
ncRNA0070 A-(BB_0446) 529.3172145 | -1.785175913 0.312674426 | -5.709376155 | 1.13E-08 2.54E-07
ncRNA0071 A-(BB_0450) 65.28090439 | -4.683065312 0.697311108 | -6.715890878 | 1.87E-11 7.76E-10
ncRNA0072 A-(BB_0454) 396.651084 | 2.956000331 0.659455311 | 4.482487719 | 7.38E-06 8.16E-05
ncRNA0073 I-(BB_t06/BB_0461) 2784.933991 | 1.305078491 0.230041096 | 5.673240628 | 1.40E-08 3.10E-07
ncRNA0080 p-(BB_0522) 879.8130905 | -1.668711458 0.235879187 | -7.074432798 | 1.50E-12 6.73E-11
ncRNA0084 A-(BB_0581) 87.52936081 | -1.86382887 0.465310745 | -4.005557342 | 6.19E-05 0.000490079
ncRNA0087 A-(BB_0588) 1536.156421 | -1.983017812 0.709181109 | -2.796207891 | 0.005170613 | 0.020915805
ncRNA0099 A-(BB_0633) 150.8640122 | -2.112142504 0.596785888 | -3.539196463 | 0.000401347 | 0.002531459
ncRNAO0125 ATA-(BB_0794,BB_0794/ 2242.036294 | -1.51380039 0.260264023 | -5.816402779 | 6.01E-09 1.42E-07
BB_0795,BB_0795)
ncRNA0132 pI-(BB_0845a,BB_0845a/ 211.2546476 | -1.882309932 0.534541277 | -3.521355622 | 0.000429346 | 0.002649192
BB_0845b)
ncRNAO0133 A-(BB_B03) 471.6283693 | -1.017684262 0.245633747 | -4.143096275 | 3.43E-05 0.000299246
ncRNA0136 AI-(BB_B09,BB_B09/ 476.369844 | -1.314926159 0.352213017 | -3.733326407 | 0.000188967 | 0.001302881
BB_B10)
ncRNA0144 ATA-(BB_P01,BB_P01/ 5.386579535 | -2.405247545 0.855087975 | -2.812865595 | 0.004910217 | 0.020149638
BB_P02,BB_P02)
ncRNA0148 A-(BB_P21) 93.09625772 | -1.057974939 0.420039394 | -2.518751701 | 0.011777167 | 0.040193419
ncRNA0152 IA-(BB_P32/BB_P33, 276.3515173 | 2.167303442 0.364938587 | 5.938816884 | 2.87E-09 7.64E-08
BB_P33)
ncRNAO0153 AIA-(BB_P35,BB_P35/ 34.01766031 | -1.98207391 0.798737356 | -2.481508965 | 0.013082742 | 0.043686097
BB_P36,BB_P36)
ncRNA0168 A-(BB_R43) 73.05907492 | -1.339319655 0.46258358 | -2.89530306 | 0.003787926 | 0.016127096
ncRNAO0185 I-(BB_0O29/BB_030) 1573.01516 | 1.543988845 0.477729846 | 3.231928796 | 0.001229577 | 0.006403576
ncRNA0186 AJA-(BB_0O32,BB_032/ 90.75800452 | 1.563150832 0.325703169 | 4.799311092 | 1.59E-06 2.06E-05
BB_033,BB_033)
ncRNA0187 A-(BB_0O36) 30.42655709 | -1.803465374 0.720330268 | -2.503664573 | 0.01229145 | 0.041402801
ncRNAO0191 A-(BB_0O44) 8.708649435 | -2.530781759 0.797617394 | -3.172926993 | 0.001509105 | 0.007514635
(Continued)
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RefSeq CDS/Custom Transcript ID Gene Name baseMean | log2FoldChange |1fcSE stat pvalue padj
ncRNA0200 IA-(BB_L29/BB_L30, 867.0447963 | -1.763677237 0.352133584 | -5.008545957 | 5.48E-07 8.12E-06
BB_L30)
ncRNA0218 IA-(BB_N32/BB_N33, 29.8614237 | 2.060586205 0.516857045 | 3.986762348 | 6.70E-05 0.000525662
BB_N33)
ncRNA0226 P-(BB_D05a) 56.8286166 | -5.381016157 0.67963523 | -7.917506215 | 2.42E-15 1.29E-13
ncRNA0229 I-(BB_D18/BB_D20) 117.8530042 | -1.450639654 0.345422551 | -4.199609001 | 2.67E-05 0.000248821
ncRNA0231 p-(BB_D20) 3348.603578 | -1.31009764 0.387511439 | -3.380797334 | 0.000722758 | 0.004089227
ncRNA0232 I-(BB_D22/BB_D23) 141.5006657 | -1.092538093 0.252136531 | -4.333120985 | 1.47E-05 0.000146408
ncRNA0233 p-(BB_D23) 46.44975772 | -2.615412768 0.750703561 | -3.483948797 | 0.000494074 | 0.002973173
ncRNA0239 A-(BB_E09) 1464.223554 | -2.363199357 0.428192961 | -5.519005611 | 3.41E-08 6.91E-07
ncRNA0240 A-(BB_E09) 74.83749 -2.991500413 0.853438126 | -3.50523409 | 0.000456206 | 0.002764835
ncRNA0242 I-(BB_E23b/BB_E29a) 107.0500482 | -1.832009291 0.592483694 | -3.092083897 | 0.001987567 | 0.009534721
ncRNA0245 I-(BB_E31/BB_E33) 314.7614859 | -1.875521284 0.485353166 | -3.864240341 | 0.000111435 | 0.000825107
ncRNA0246 I-(BB_E31/BB_E33) 124.5161323 | -1.367831258 0.432304443 | -3.164046267 | 0.001555921 | 0.007725168
ncRNA0247 A-(BB_F03) 1699.002338 | -3.043049689 0.293976557 | -10.35133453 | 4.13E-25 5.41E-23
ncRNA0248 AIP-(BB_F03,BB_F03/ 239.2275787 | -1.691341153 0.556097881 | -3.041445059 | 0.002354455 | 0.010985308
BB_F05,BB_F05)
ncRNA0249 pI-(BB_F05,BB_F05/ 9.67900222 | -2.374420185 0.741158663 | -3.203659762 | 0.001356927 | 0.006931911
BB_F06)
ncRNA0250 PI-(BB_F11a,BB_Fl1la/ 15.60876515 | -2.95590859 0.733796314 | -4.028241261 | 5.62E-05 0.000453887
BB_F12)
ncRNA0251 I-(BB_F11a/BB_F12) 727.7453318 | -3.628950353 0.253865442 | -14.29477888 | 2.36E-46 1.00E-43
ncRNA0252 Ip-(BB_F14/BB_Fl4a, 58.86305107 | -1.389686207 0.459183251 | -3.026430526 | 0.002474597 | 0.011514312
BB_F14a)
ncRNA0253 plp-(BB_F14a,BB_Fl4a/ 16.1459582 | -1.986715918 0.793616815 | -2.503369235 | 0.012301713 | 0.041402801
BB_F16,BB_F16)
ncRNA0255 I-(BB_F0040/BB_F32) 49.42843423 | -2.200046006 0.637668726 | -3.450139414 | 0.000560297 | 0.00327899
ncRNA0257 PI-(BB_G05,BB_G05/ 56.23393737 | -3.085696694 0.788709911 | -3.912334118 | 9.14E-05 0.000694948
BB_G06)
ncRNA0259 AA-(BB_G07,BB_G08) 88.149747 | 1.50709705 0.260690153 | 5.781181338 | 7.42E-09 1.71E-07
ncRNA0263 IA-(BB_G28/BB_G29, 24.0789363 | -1.668736711 0.650242423 | -2.566330111 | 0.010278096 | 0.036239332
BB_G29)
ncRNA0271 P-(BB_H30) 22.38915613 | -1.767197173 0.655615851 | -2.695476582 | 0.007028802 | 0.026365748
ncRNA0281 IpI-(BB_K09/BB_K10, 166.2483876 | -1.672741729 0.505577971 | -3.308573206 | 0.000937727 | 0.005053634
BB_K10,BB_K10/BB_K12)
ncRNA0284 A-(BB_K17) 123.8271122 | -2.273935919 0.296721246 | -7.663542628 | 1.81E-14 8.80E-13
ncRNA0285 A-(BB_K19) 59.46915813 | -1.710662288 0.514990052 | -3.321738508 | 0.000894585 | 0.004882943
ncRNA0286 A-(BB_K19) 219.9417934 | -1.500183594 0.498015038 | -3.012325895 | 0.002592541 | 0.011876819
ncRNA0287 I-(BB_K55/BB_K56) 86.5607051 | -2.023857127 0.572688859 | -3.53395582 | 0.00040939 | 0.0025632
ncRNA0289 AJA-(BB_K33,BB_K33/ 54.0182385 | -1.710605599 0.416989275 | -4.10227721 | 4.09E-05 0.000348352
BB_K34,BB_K34)
ncRNA0297 A-(BB_J18) 206.5236032 | -2.307138732 0.688145025 | -3.352692597 | 0.000800295 | 0.004439424
ncRNA0299 I-(BB_J20/BB_J0058) 119.1266624 | -1.713102967 0.322707732 | -5.308527805 | 1.11E-07 1.90E-06
ncRNA0300 I-(BB_J20/BB_J0058) 169.4427612 | -1.622166436 0.5479595 -2.960376517 | 0.003072633 | 0.013686553
ncRNA0304 I-(BB_J37/BB_J41) 103.2796554 | -1.321009225 0.482436974 | -2.738200627 | 0.006177638 | 0.023910266
ncRNA0306 I-(BB_J37/BB_J41) 3515.789368 | 1.039600627 0.355673147 | 2.922910082 | 0.003467766 | 0.014950902
ncRNA0307 IA-(BB_J37/BB_J41,BB_J41) | 1187.105717 | 1.028436646 0.375322809 | 2.740138948 | 0.006141322 | 0.023823851
ncRNA0308 I-(BB_J50/BB_J51) 893.058206 | -5.421448561 0.494839696 | -10.95596938 | 6.22E-28 1.06E-25
ncRNA0310 Ip-(BB_J50/BB_J51,BB_J51) |106.491945 | -1.600677163 0.607456387 | -2.635048699 | 0.008412521 | 0.030809728
ncRNA0311 A-(BB_A04) 361.981407 | 1.92915261 0.411397747 | 4.689263914 | 2.74E-06 3.36E-05

(Continued)
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RefSeq CDS/Custom Transcript ID Gene Name baseMean | log2FoldChange |1fcSE stat pvalue padj
ncRNAO0318 IP-(BB_A16/BB_A18, 1800.37672 | -2.047895874 0.566676993 | -3.613868038 | 0.000301663 | 0.001983519
BB_A18)
ncRNA0322 I-(BB_A37/BB_A38) 2507.453992 | -1.934721258 0.464555498 | -4.164671965 | 3.12E-05 0.000276561
ncRNA0325 A-(BB_A66) 457.9294428 | -1.540030266 0.339220102 | -4.539914515 | 5.63E-06 6.35E-05
ncRNA0326 I-(BB_A66/BB_A68) 456.2996811 | 1.397904593 0.367271858 | 3.806184882 | 0.000141127 | 0.001014089
ncRNA0327 I-(BB_A68/BB_A69) 288.5694033 | 1.134754485 0.411545698 | 2.75729886 0.005828106 | 0.022764367
ncRNA0328 I-(BB_A73/BB_A74) 55.68358442 | -1.579146243 0.646463656 | -2.44274559 | 0.014576008 | 0.047920738
ncRNA0344 A-(BB_Q52) 10.93288614 | -2.492065144 0.858939246 | -2.901328767 | 0.003715838 | 0.01585983
ncRNA0353 IA-(BB_Q85/BB_Q88, 66.89124586 | -1.49929536 0.616918906 | -2.430295692 | 0.015086509 | 0.049219013
BB_Q88)
1cl[NC_001318.1_cds_NP_212138.2_3 BB_0004 3213.612708 | -1.011843497 0.350191279 | -2.889402332 | 0.003859749 | 0.016310552
1cl]NC_001318.1_cds_NP_212156.1_20 ruvB 2074.85845 | -1.076565311 0.202076814 | -5.327505365 | 9.96E-08 1.75E-06
1cl]NC_001318.1_cds_NP_212161.1_25 BB_0027 9710.085949 | -1.78806112 0.33743615 | -5.298961365 | 1.16E-07 1.96E-06
1cl]NC_001318.1_cds_NP_212169.1_33 BB_0035 2717.907721 | 1.110406753 0.214694041 | 5.172042722 | 2.32E-07 3.65E-06
Icl]NC_001318.1_cds_NP_212306.2_161 BB_0172 2887.764892 | -1.217319862 0.123742701 | -9.837508402 | 7.76E-23 8.81E-21
Icl]NC_001318.1_cds_NP_212319.1_174 BB_0185 1345.323777 | 1.349770078 0.218738922 | 6.17069 6.80E-10 1.93E-08
1c]|[NC_001318.1_cds_NP_212419.2_270 BB_0285 4139.079468 | -1.154948662 0.317610837 | -3.636364149 | 0.000276513 | 0.001839462
1c]|[NC_001318.1_cds_NP_212464.1_313 BB_0330 9233.475103 | 1.149087729 0.219007371 | 5.246799329 | 1.55E-07 2.56E-06
1c]|[NC_001318.1_cds_NP_212468.1_317 BB_0334 3335.870455 | 1.049316796 0.157717762 | 6.653130124 | 2.87E-11 1.14E-09
1c]|[NC_001318.1_cds_NP_212498.1_345 mgsA 3019.346339 | 1.742561091 0.164753604 | 10.57677071 | 3.82E-26 5.42E-24
1c][NC_001318.1_cds_NP_212499.1_346 la7 8401.745644 | 1.813485579 0.28233191 | 6.423239871 | 1.33E-10 4.09E-09
1c]|[NC_001318.1_cds_NP_212541.1_388 manA 2887.103188 | 1.179754844 0.149300098 | 7.901902686 | 2.75E-15 1.42E-13
1cl[NC_001318.1_cds_NP_212542.1_389 fruAl 6219.62582 | 1.501253133 0.222065333 | 6.760411964 | 1.38E-11 5.86E-10
1c][NC_001318.1_cds_NP_212549.1_394 BB_0415 1448.604328 | -1.231446613 0.221932825 | -5.548735809 | 2.88E-08 5.98E-07
1cl]NC_001318.1_cds_NP_212568.1_409 BB_0434 410.6547229 | -1.026236311 0.305759261 | -3.356353976 | 0.000789774 | 0.004409788
1cl]NC_001318.1_cds_NP_212585.1_426 BB_0451 435.9912764 | 1.065285948 0.208990807 | 5.097286147 | 3.45E-07 5.33E-06
1c]NC_001318.1_cds_NP_212620.2_459 rpmC 492.1829109 | 1.007744941 0.202337379 | 4.980517913 | 6.34E-07 9.31E-06
1c]NC_001318.1_cds_NP_212643.1_482 BB_0509 8232.921912 | -2.925501491 0.365731686 | -7.999037549 | 1.25E-15 6.89E-14
1c]|[NC_001318.1_cds_NP_212652.1_488 dnaK 5264.983523 | 1.178215406 0.19904193 | 5919433176 | 3.23E-09 8.21E-08
1c]|[NC_001318.1_cds_NP_212671.1_500 BB_0537 1848.252264 | 1.232384605 0.238276054 | 5.172087516 | 2.31E-07 3.65E-06
1cl]NC_001318.1_cds_NP_212672.1_501 BB_0538 967.7451027 | 1.121459917 0.239070239 | 4.690922314 | 2.72E-06 3.36E-05
1c]|[NC_001318.1_cds_NP_212696.1_524 BB_0562 1222.608908 | 1.195586657 0.147028901 | 8.13164381 | 4.24E-16 2.49E-14
1c]|[NC_001318.1_cds_NP_212711.1_539 BB_0577 1867.115855 | -1.438036835 0.222937044 | -6.450416729 | 1.12E-10 3.59E-09
1c]|[NC_001318.1_cds_NP_212722.1_550 BB_0588 1645.236707 | -1.769614933 0.130872183 | -13.52170412 | 1.16E-41 3.31E-39
1cI[NC_001318.1_cds_NP_212751.1_578 BB_0617 777.7214187 | 1.015625323 0.226394111 | 4.486094267 | 7.25E-06 8.07E-05
1c][NC_001318.1_cds_NP_212760.1_587 rnmV 17091.35904 | -1.237327813 0.410056749 | -3.017455062 | 0.002549068 | 0.011824118
Icl]NC_001318.1_cds_NP_212771.2_597 BB_0637 8048.197727 | 1.095157563 0.261344496 | 4.190474945 | 2.78E-05 0.00025591
Icl]NC_001318.1_cds_NP_212772.1_598 BB_0638 3886.718713 | 1.105574398 0.209984884 | 5.265018978 | 1.40E-07 2.34E-06
1c]|[NC_001318.1_cds_NP_212773.1_599 potD 1482.689456 | 1.254211323 0.286927391 | 4.371180168 | 1.24E-05 0.000125269
1c][NC_001318.1_cds_NP_212778.1_604 nanE 697.3884376 | 1.073611768 0.19917336 | 5.39033818 | 7.03E-08 1.32E-06
1c]|[NC_001318.1_cds_NP_212812.1_638 BB_0678 5061.700522 | 1.19084516 0.184625608 | 6.450054089 | 1.12E-10 3.59E-09
1c]|[NC_001318.1_cds_NP_212813.2_639 BB_0679 4281.290839 | 1.087255066 0.192459876 | 5.649255778 | 1.61E-08 3.47E-07
1cl]NC_001318.1_cds_NP_212828.2_653 fth 14060.76269 | -2.511684041 0.374188652 | -6.71234691 | 1.92E-11 7.77E-10
Icl] cabP 3690.875669 | -1.146485517 0.267498556 | -4.285950297 | 1.82E-05 0.000176067
NC_001318.1_cds_YP_008686588.1_680
1c]NC_001318.1_cds_NP_212900.1_719 cvpA 420.5109223 | 1.157542839 0.239778975 | 4.827541022 | 1.38E-06 1.86E-05
1c]|[NC_001318.1_cds_NP_212901.1_720 murG 901.267597 | 1.366187686 0.281129643 | 4.859635828 | 1.18E-06 1.62E-05
1c]|[NC_001318.1_cds_NP_212902.1_721 BB_0768 1156.42566 | 1.01241342 0.234590479 | 4.315662868 | 1.59E-05 0.000156641
(Continued)
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RefSeq CDS/Custom Transcript ID Gene Name baseMean | log2FoldChange |1fcSE stat pvalue padj
Icl]NC_001318.1_cds_NP_212903.1_722 BB_0769 1653.77636 | 1.253523799 0.240916322 | 5.203150152 | 1.96E-07 3.18E-06
1c][NC_001318.1_cds_NP_212904.1_723 BB_0770 1364.054451 | 1.318173253 0.24452395 | 5.390773603 | 7.02E-08 1.32E-06
Icl]NC_001318.1_cds_NP_212907.1_727 BB_0773 467.79866 1.273917781 0.178834561 | 7.123442872 | 1.05E-12 4.84E-11
Icl]NC_001318.1_cds_NP_212919.1_739 spoVG 2664.703766 | 1.261401239 0.211981895 | 5.950514032 | 2.67E-09 7.23E-08
1c]| BB_0794 8844.212411 | -1.020839036 0.17423885 | -5.858848551 | 4.66E-09 1.15E-07
NC_001318.1_cds_YP_008686594.1_748
Icl]NC_001318.1_cds_NP_212932.1_752 BB_0798 412.7429471 | -1.367264622 0.230607112 | -5.928978559 | 3.05E-09 7.94E-08
1cl]NC_001318.1_cds_NP_212975.1_793 arcA 2690.756525 | 1.011615231 0.157525181 | 6.421927127 | 1.35E-10 4.09E-09
1c][NC_001318.1_cds_NP_212976.2_794 arcB 2452.381364 | 1.161259482 0.247934672 | 4.6837317 2.82E-06 3.43E-05
1cl]NC_001903.1_cds_NP_046987.2_798 BB_B01 877.5381411 | 1.388320735 0.215561895 | 6.440473802 | 1.19E-10 3.76E-09
1cl]NC_001903.1_cds_NP_046988.1_799 BB_B02 2128.099072 | 1.093811634 0.196510568 | 5.566172052 | 2.60E-08 5.47E-07
1cl]NC_001903.1_cds_NP_046990.2_801 chbC 11469.16755 | 1.518292428 0.224234778 | 6.77099442 | 1.28E-11 5.58E-10
1cl]NC_001903.1_cds_NP_046991.1_802 chbA 2551.066468 | 1.802467823 0.276127156 | 6.527673154 | 6.68E-11 2.42E-09
1cl]NC_001903.1_cds_NP_046992.2_803 chbB 1687.198719 | 2.399229955 0.263942445 | 9.089973967 | 9.91E-20 8.88E-18
1c]|NC_001903.1_cds_NP_046993.1_804 BB_B07 8409.809781 | 1.379859483 0.163157096 | 8.457244702 | 2.74E-17 1.79E-15
1c]|NC_001903.1_cds_NP_047004.2_812 guaA 11235.00282 | 1.122969516 0.136736824 | 8.212634214 | 2.16E-16 1.32E-14
1cI[NC_001903.1_cds_NP_047005.1_813 ospC 292.2425211 | -1.444790637 0.487067621 | -2.966304013 | 0.003014024 | 0.013507586
1cl[NC_001903.1_cds_NP_047009.2_815 BB_B23 2583.013976 | 1.194275661 0.153920788 | 7.759027729 | 8.56E-15 4.29E-13
1cl]NC_001903.1_cds_NP_047013.1_819 BB_B27 1716.86092 | 1.09085916 0.184033083 | 5.927516626 | 3.08E-09 7.94E-08
1cl]NC_001903.1_cds_NP_047014.1_820 BB_B28 4249.142152 | 1.266728604 0.143683797 | 8.816085248 | 1.19E-18 9.18E-17
1c]NC_001903.1_cds_NP_047015.1_821 BB_B29 24118.646 | 1.407250063 0.212691935 | 6.616377174 | 3.68E-11 1.42E-09
1cl|NC_000948.1_cds_NP_051171.1_830 BB_P10 89.29313498 | -1.665579649 0.568149994 | -2.931584381 | 0.003372377 | 0.014650915
1cl]NC_000948.1_cds_NP_051190.1_849 BB_P29 117.5902665 | -1.925349814 0.651102731 | -2.95705996 | 0.003105877 | 0.013738464
1cl]NC_000948.1_cds_NP_051192.1_851 BB_P31 319.4277675 | 1.450607612 0.331481902 | 4.37612915 | 1.21E-05 0.000123284
1cl]NC_000948.1_cds_NP_051193.1_852 BB_P32 812.8429087 | 1.909156521 0.235635362 | 8.102164722 | 5.40E-16 3.06E-14
1cl]NC_000948.1_cds_NP_051194.2_853 BB_P33 507.5530008 | 2.135405263 0.245441907 | 8.700247189 | 3.31E-18 2.45E-16
1c]|NC_000948.1_cds_NP_051195.1_854 bdrA 840.2082301 | 1.327617956 0.302692249 | 4.386032214 | 1.15E-05 0.000119145
1c]|NC_000948.1_cds_NP_051196.1_855 bppA 59.0359037 | -1.406828985 0.558482981 | -2.519018542 | 0.011768246 | 0.040193419
1cI[NC_000948.1_cds_NP_051197.1_856 bppB 16.41223164 | -1.500572432 0.595533131 | -2.519712763 | 0.011745063 | 0.040193419
1cI[NC_000949.1_cds_NP_051234.2_890 BB_S31 105.7674492 | -1.61576679 0.504778499 | -3.200942183 | 0.00136979 | 0.006963441
1cl]NC_000949.1_cds_NP_051237.1_892 BB_S34 208.7781932 | 1.122702036 0.372157025 | 3.016742832 | 0.002555065 | 0.011824118
1cl]NC_000949.1_cds_NP_051238.1_893 BB_S35 265.7310316 | 1.325298003 0.239761792 | 5.52756131 3.25E-08 6.66E-07
1cl|]NC_000949.1_cds_NP_051240.1_894 bdrE 326.736536 | 1.358376963 0.242081995 | 5.611226741 | 2.01E-08 4.28E-07
1cl|NC_000949.1_cds_NP_051241.2_895 bppA 41.41867394 | -2.507569395 0.644486353 | -3.890802937 | 9.99E-05 0.000752885
1cl]NC_000950.1_cds_NP_051274.2_927 bdrH 752.05999 | -1.019325728 0.238699916 | -4.270322938 | 1.95E-05 0.000186747
1c]NC_000950.1_cds_NP_051278.1_930 BB_R31 1579.32556 | -1.113009695 0.443119222 | -2.51176126 | 0.012013033 | 0.040672355
1cl]NC_000950.1_cds_NP_051280.1_932 BB_R33 295.7891493 | 1.070632049 0.254705484 | 4.203411853 | 2.63E-05 0.000246019
1cl]NC_000950.1_cds_NP_051281.1_933 BB_R34 206.0163455 | 1.161125002 0.218429448 | 5.315789667 | 1.06E-07 1.85E-06
1c]|NC_000950.1_cds_NP_051282.1_934 bppA 20.6580321 | -2.419159274 0.672161892 | -3.599072338 | 0.000319354 | 0.002075803
1c]|NC_000951.1_cds_NP_051301.1_951 BB_M10 26.57919292 | -1.783800995 0.552979602 | -3.225798903 | 0.001256216 | 0.00650254
1cl]NC_000951.1_cds_NP_051329.2_978 erpK 89.22936299 | -1.238045803 0.471227478 | -2.627278462 | 0.008607087 | 0.031253451
1cl]NC_000951.1_cds_NP_051330.1_979 BB_M39 174.8340308 | -1.364514032 0.518402401 | -2.632152222 | 0.008484584 | 0.031006966
1cl[NC_000952.1_cds_NP_051338.1_986 BB_0O05 56.56386104 | -1.292207756 0.465504454 | -2.775929952 | 0.005504407 | 0.021850826
1cl]NC_000952.1_cds_NP_051362.1_1010 | BB_029 207.6325904 | -1.106695965 0.441931172 | -2.50422698 | 0.012271928 | 0.041402801
1cl]NC_000952.1_cds_NP_051365.1_1013 | BB_O32 381.8142121 | 1.026021902 0.245024295 | 4.187429255 | 2.82E-05 0.00025591
1cl]NC_000952.1_cds_NP_051366.1_1014 | BB_O33 262.1173124 | 1.010347941 0.210338316 | 4.803442187 | 1.56E-06 2.04E-05
1cl|NC_000952.1_cds_NP_051372.1_1020 | erpL 12.95799511 | -1.949705703 0.71377829 | -2.731528444 | 0.00630413 | 0.02418003
1cl]NC_000953.1_cds_NP_051387.1_1034 | BB_L10 89.29313498 | -1.665579649 0.568149994 | -2.931584381 | 0.003372377 | 0.014650915
1cl]NC_000954.1_cds_NP_051443.1_1087 | BB_N31 161.0855567 | 1.627410115 0.348823424 | 4.665426693 | 3.08E-06 3.69E-05
(Continued)
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Table 1. (Continued)

RefSeq CDS/Custom Transcript ID Gene Name baseMean | log2FoldChange |1fcSE stat pvalue padj
1cl]NC_000954.1_cds_NP_051444.1_1088 | BB_N32 241.9969265 | 1.586427412 0.308950619 | 5.134889897 | 2.82E-07 4.41E-06
1c]NC_000954.1_cds_NP_051445.1_1089 | BB_N33 157.3216497 | 1.888712116 0.288264846 | 6.552002924 | 5.68E-11 2.10E-09
1c]NC_000954.1_cds_NP_051446.1_1090 | bdrQ 227.796319 | 1.701845715 0.263258846 | 6.464533837 | 1.02E-10 3.46E-09
Icl]NC_000954.1_cds_NP_051450.1_1094 | erpQ 1968.305688 | 1.458291354 0.359888349 | 4.052066028 | 5.08E-05 0.000415658
1c]|[NC_001849.2_cds_NP_045388.1_1111 | BB_D04 31.08243243 | -1.094553278 0.428260926 | -2.555809345 | 0.010594115 | 0.037122999
1c]|[NC_001849.2_cds_NP_045397.1_1115 | BB_D13 908.2099786 | -1.394902701 0.304581916 | -4.57972922 | 4.66E-06 5.36E-05
1c]|NC_001849.2_cds_NP_045398.1_1116 |BB_D14 3487.083186 | -1.744927691 0.326860939 | -5.338440546 | 9.37E-08 1.66E-06
1c]|[NC_001849.2_cds_NP_045404.1_1119 | BB_D21 967.6859329 | -1.895897547 0.440022711 | -4.308635668 | 1.64E-05 0.000159853
1c]|NC_001849.2_cds_NP_045405.1_1120 | BB_D22 128.5625749 | -1.23419393 0.316273386 | -3.902300932 | 9.53E-05 0.000721183
Ic]| BB_D0031 25.13306541 | -2.773679485 0.70351362 | -3.942609505 | 8.06E-05 0.000626765
NC_001849.2_cds_YP_004940417.1_1121
1c]|[NC_001850.1_cds_NP_045416.1_1133 | BB_E09 524.595921 | -1.11887635 0.396427462 | -2.82239869 | 0.004766588 | 0.019798779
1c]|[NC_001850.1_cds_NP_045428.1_1139 | BB_E21 8358.69302 | -1.131514218 0.253371318 | -4.465833882 | 7.98E-06 8.76E-05
1c]|[NC_001850.1_cds_NP_045436.1_1141 | BB_E31 93.10926862 | -1.879099504 0.381704541 | -4.922916288 | 8.53E-07 1.21E-05
I]| arp 9.140034358 | -1.998405324 0.818669073 | -2.441041673 | 0.014644965 | 0.047971938
NC_001851.2_cds_YP_004940409.1_1142
1c]|[NC_001851.2_cds_NP_045439.1_1144 | repU 189.0840177 | -2.286930833 0.378577934 | -6.040845561 | 1.53E-09 4.21E-08
1c]|[NC_001851.2_cds_NP_045442.1_1145 | BB_F06 11.18133266 | -2.261136123 0.827384713 | -2.732871528 | 0.006278482 | 0.024136014
Ic]|[NC_001851.2_cds_NP_045444.1_1146 | BB_F08 152.5453178 | -1.253124952 0.415636758 | -3.014952189 | 0.002570198 | 0.011848455
1d]| BB_F0034 131.6802735 | -1.220309664 0.498446076 | -2.448228046 | 0.014356076 | 0.047564976
NC_001851.2_cds_YP_004940410.1_1147
Icl]NC_001851.2_cds_NP_045449.2_1148 | BB_F14 47.65068541 | -3.144088867 0.736154608 | -4.270962693 | 1.95E-05 0.000186747
1c]| BB_F17 21.28080946 | -2.380548185 0.759226444 | -3.13549166 | 0.001715663 | 0.008444434
NC_001851.2_cds_YP_004940411.1_1149
Icl]NC_001851.2_cds_NP_045453.2_1150 | BB_F20 136.227553 | -2.849065131 0.295141639 | -9.653213099 | 4.76E-22 4.77E-20
Icl]NC_001851.2_cds_NP_045457.1_1152 | BB_F24 283.2747783 | -2.12742045 0.368574807 | -5.772018074 | 7.83E-09 1.78E-07
1c][NC_001851.2_cds_NP_045458.1_1153 | BB_F25 156.0679977 | -1.989776392 0.451280505 | -4.409178704 | 1.04E-05 0.000109757
Icl]NC_001851.2_cds_NP_045459.1_1154 | BB_F26 1080.037774 | -2.756403353 0.444938874 | -6.195015798 | 5.83E-10 1.68E-08
1c]| BB_F0041 431.5944656 | -2.393300878 0.516787972 | -4.63110794 | 3.64E-06 4.27E-05
NC_001851.2_cds_YP_004940414.1_1157
Icl]NC_001852.1_cds_NP_045464.1_1159 | BB_G02 182.6516298 | 1.367896406 0.397186284 | 3.443966874 | 0.000573246 | 0.00334328
Icl]NC_001852.1_cds_NP_045472.1_1163 | BB_G12 81.95387397 | -2.359314711 0.670799011 | -3.517170827 | 0.000436173 | 0.002671952
1c][NC_001852.1_cds_NP_045481.1_1172 | BB_G21 257.5363142 | -1.920188356 0.710774817 | -2.701542473 | 0.006901866 | 0.02611973
Icl]NC_001852.1_cds_NP_045482.1_1174 | BB_G22 64.42227065 | -2.664763491 0.638466233 | -4.17369526 | 3.00E-05 0.000268625
1c]|[NC_001853.1_cds_NP_045498.1_1188 | BB_H04 146.0244758 | -1.764826058 0.517657817 | -3.40925221 | 0.000651412 | 0.003760526
1c]|[NC_001853.1_cds_NP_045510.1_1195 | BB_H17 10.29555978 | -2.234942039 0.800322419 | -2.792552085 | 0.005229405 | 0.02096611
1c]|NC_001853.1_cds_NP_045516.1_1196 | BB_H25 30.47678431 | -1.561052859 0.518258182 | -3.012114256 | 0.002594349 | 0.011876819
1c]|[NC_001853.1_cds_NP_045517.1_1197 | BB_H26 1195.446691 | -1.591603607 0.4611763 | -3.451182569 | 0.000558136 | 0.003277605
1c]|NC_001855.1_cds_NP_045596.1_1233 | BB_K22 260.1823499 | -1.082818368 0.34636474 | -3.126237301 | 0.001770586 | 0.008639852
1c]|NC_001855.1_cds_NP_045597.1_1234 | BB_K23 2453.836139 | -1.76010754 0.38683042 | -4.550075304 | 5.36E-06 6.09E-05
1cl[NC_001855.1_cds_NP_045598.1_1235 | BB_K24 377.5769784 | -1.774945995 0.437272966 | -4.05912584 | 4.93E-05 0.000405238
Ic]| BB_K54 131.6013456 | -1.957517875 0.652698517 | -2.999114942 | 0.002707651 | 0.01236228
NC_001855.1_cds_YP_004940636.1_1236
1c]|NC_001855.1_cds_NP_045605.1_1237 | BB_K32 213.6510062 | -1.873429774 0.489655712 | -3.826014332 | 0.000130235 | 0.000943786
1c]|NC_001855.1_cds_NP_045606.1_1238 | BB_K33 37.62541137 | -1.379270088 0.444039976 | -3.106184497 | 0.001895184 | 0.009169031
1c]|NC_001855.1_cds_NP_045607.1_1239 | BB_K34 221.9972259 | -1.173040964 0.21313803 | -5.503668033 | 3.72E-08 7.45E-07
Ic]| BB_K0058 51.97230439 | -1.399070285 0.544398454 | -2.569938021 | 0.010171671 | 0.035977936
NC_001855.1_cds_YP_004940637.1_1241
1c]|[NC_001855.1_cds_NP_045612.1_1242 | BB_K40 3811.74482 | -1.359892512 0.231723983 | -5.868587679 | 4.40E-09 1.10E-07
1c]|NC_001855.1_cds_NP_045618.1_1246 | BB_K47 2505.671645 | 1.249316306 0.317102255 | 3.939790037 | 8.16E-05 0.000631294
(Continued)
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Table 1. (Continued)

RefSeq CDS/Custom Transcript ID

1c]|NC_001855.1_cds_NP_045620.1_1248
1c]|[NC_001855.1_cds_NP_045623.1_1251
1c]|NC_001855.1_cds_NP_045624.1_1252
1c]|NC_001856.1_cds_NP_045633.1_1254
1cl|NC_001856.1_cds_NP_045643.1_1260
1cl|[NC_001856.1_cds_NP_045647.2_1263
1cl|]NC_001856.1_cds_NP_045648.1_1264
1cl]NC_001856.1_cds_NP_045650.1_1266
1c]|NC_001856.1_cds_NP_045667.1_1276
1c]|NC_001857.2_cds_NP_045676.1_1287
1c]|NC_001857.2_cds_NP_045698.1_1304
1c]|NC_001857.2_cds_NP_045703.1_1305
1c]NC_001857.2_cds_NP_045704.1_1306
1c]|NC_001857.2_cds_NP_045707.1_1309
1c]|NC_001857.2_cds_NP_045709.2_1310
1c]|[NC_001857.2_cds_NP_045710.1_1311
1cl|NC_001857.2_cds_NP_045725.1_1323
1cl|[NC_001857.2_cds_NP_045726.1_1324
1cl|[NC_001857.2_cds_NP_045727.1_1325
1cl|]NC_001857.2_cds_NP_045731.1_1327
1c]|NC_001857.2_cds_NP_045733.1_1329
1c]|NC_001857.2_cds_NP_045738.1_1333

1c]|
NC_001857.2_cds_YP_004940408.1_1337

1c]|NC_001857.2_cds_NP_045746.1_1338
1c]|[NC_001857.2_cds_NP_045747.1_1339
1cI[NC_000956.1_cds_NP_051489.1_1361
1cI[NC_000956.1_cds_NP_051502.1_1373
1cI[NC_000956.1_cds_NP_051504.1_1374
1c][NC_000956.1_cds_NP_051521.1_1385
Icl]NC_000956.1_cds_NP_051533.1_1388

Gene Name
BB_K49
BB_K52
BB_K53
BB_J09
BB_J19
BB_J23
BB_J24
BB_J26
BB_J43
BB_A03
dbpB
BB_A30
BB_A31
BB_A34
BB_A36
BB_A37
BB_A52
BB_A53
BB_A54
BB_A58
BB_A60
BB_A65
BB_A0078

BB_A73
osm28
BB_Q27
BB_Q40
bdrV
BB_Q62
BB_Q85

https://doi.org/10.1371/journal.pone.0203286.t001

baseMean
1392.93963
62.12418253
359.8395733
24951.96368
8721.994493
37.83775028
96.33456458
38.55968829
43.39693922
12443.29488
89.46809468
869.6149934
693.6564221
190.0838372
46.52933338
93.94411642
1613.061442
375.6912082
599.9624458
8350.064089
1031.73146
185.7509576
99.0563379

233.2233394
12273.60539
184.692011

481.1703282
634.196218

20.48709362
31.08243243

log2FoldChange | 1fcSE

1.08561374
-1.650671092
-1.319843975
1.809636522
-1.226737445
-2.452974412
-1.30740669
-1.054612052
-1.947979145
2.136543909
-2.646999244
1.35254358
1.565907435
-2.164189119
-2.130484898
-1.91040809
1.01788004
1.346830886
1.900543585
1.298241485
1.00641711
-1.571198149
-1.7817888

-1.829096851
2.234165789
1.478250023
1.463624848
2.699534338
2.091457406
-1.094553278

0.354606502
0.586187285
0.48424027

0.37729147

0.357426229
0.487590759
0.376420695
0.379750298
0.670370858
0.336492459
0.558325827
0.216997662
0.26914935

0.577886296
0.582127955
0.652530567
0.312733352
0.375697753
0.367018587
0.296675316
0.222117345
0.496762792
0.581545432

0.424452475
0.394208008
0.447598087
0.367880474
0.317216535
0.544783424
0.428260926

stat

3.061460336
-2.815944895
-2.725597306
4.796388644
-3.43214164
-5.030805791
-3.473259329
-2.777119751
-2.905823132
6.349455542
-4.740957908
6.23298689
5.817987062
-3.745008546
-3.659822345
-2.927691339
3.254785695
3.584878732
5.178330612
4.375967316
4.531015402
-3.162874059
-3.063885815

-4.309308956
5.667479461
3.302628105
3.978533659
8.510068181
3.839062122
-2.555809345

pvalue
0.002202602
0.004863401
0.006418525
1.62E-06
0.000598835
4.88E-07
0.000514178
0.005484297
0.003662884
2.16E-10
2.13E-06
4.58E-10
5.96E-09
0.000180388
0.00025239
0.003414889
0.00113478
0.000337235
2.24E-07
1.21E-05
5.87E-06
0.001562199
0.002184823

1.64E-05
1.45E-08
0.000957833
6.93E-05
1.74E-17
0.000123505
0.010594115

padj
0.010333418
0020054168
0.024508405
2.07E-05
0.00346876
7.31E-06
0.003045537
0.021850826
0.015712574
6.46E-09
2.70E-05
1.34E-08
1.42E-07
0.001253343
0.00168557
0.01477655
0.005964598
0002183692
3.60E-06
0.000123284
6.58B-05
0.007733793
0.010300298

0.000159853
3.16E-07

0.005142466
0.000541691
1.18E-15

0.000902701
0.037122999

proteins that are involved with transmission from ticks and with survival within the vertebrate
host, including ospC (down 2.7-fold), dbpB (down 6.3-fold), vIsE (down 5.3-fold), and arp
(down 4.0-fold) [54-63]. In the remainder of this section, we focus on examples of transcripts
that were affected only by the csrA mutation, while subsequent sections present information
on transcripts that were impacted by csrA and one or more other mutations (i.e. regulome

overlaps).

As noted above, previous studies of csrA mutant B. burgdorferi produced varied results,

with some showing significant impacts on rpoS or RpoS-affected transcripts, while others did
not observe such effects [24, 28]. Under the growth conditions employed in our studies, dele-
tion of ¢srA did not significantly change levels of either the rpoN or rpoS mRNAs (Fig 3). How-
ever, the mutant did demonstrate significant changes in levels of several transcripts that were
previously seen to be altered in some rpoN or rpoS mutants [5, 6]. For example, both ospC and
dbpB were expressed at significantly lower levels in the csrA mutant than in the wild-type

(Table 1). Those results suggest that at least some members of the previously-described RpoS
regulon are also controlled through RpoS-independent mechanisms (see below).
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Fig 2. qRT-PCR of select transcripts in csrA and badR mutants. Total RNAs from the cultures used for RNA-Seq were converted to cDNA.
qRT-PCR was performed on cdaA, bosR, glpF, glpK, glpD, spoVG, bbk32, dbpA, and sodA. Pearson correlations were calculated and plots were
generated using GraphPad Prism 6. (A) Scatter plot comparing fold-change of each transcript as assayed by qRT-PCR (Y-axis) and RNA-Seq (X-
axis) for AbadR compared to the wild-type parent. The assayed transcripts were highly correlated, with a Pearson coefficient of 0.921, and two-tailed
P-value of 0.0004. (B) Scatter plot comparing fold-change of each transcript as assayed by qRT-PCR (Y-axis) and RNA-Seq (X-axis) for AcsrA
compared to WT. The analyzed transcripts were not correlated, due to a single outlier, sodA, with a Pearson coefficient of 0.364. Also due to the
outlier, the two-tailed P-value is 0.336. The reason for the sole inconsistency of sodA in AcsrA is unclear. Ongoing investigations of sodA indicate that
it is under complex regulation, including apparent post-transcriptional control by the BpuR RNA-binding protein (our unpublished results).

https://doi.org/10.1371/journal.pone.0203286.9002

Although deletion of csrA did not have any significant effects on either the rpoN or rpoS
mRNAs, there was a significant, 25.7-fold decrease in the level of antisense RNA ncRNA0071,
which is transcribed within the rpoN ORF (Fig 3) [30]. Please note that this report uses the
ncRNA nomenclature of Arnold et al., 2016 [30], which was the first published description of
the B. burgdorferi ncRNA transcriptome. Among other notable observations, numerous tran-
scripts that encode outer-surface lipoproteins that play roles in vertebrate infection were pres-
ent at lower amounts in the mutant. These included the fibronectin-binding protein-encoding
bbk32 and several members of the erp family [64-66].

Multiple transcripts encoding key nutrient scavenging proteins were present at higher levels
in the mutant, including guaA, BB_B23, and BB_B29. GuaA and the BB_B23-encoded protein
are involved in purine salvage and the uptake of hypoxanthine, respectively. GuaA is essential
for the borrelial infectious cycle [67], and BB_B23 mutants are defective in vertebrate infection
[68]. ORF BB_B29 encodes a putative glucose transporter and, while not absolutely essential
for vertebrate infection, mutants are significantly defective for growth on certain carbohydrate
sources [69]. Together, these data support the hypothesis that CsrA controls a range of systems
that are important for survival in both the tick and vertebrate hosts.

BadR controls transcripts of genes associated with catabolite uptake and
utilization

Consistent with the previous array-based study of BadR [16], levels of a large number of tran-
scripts were altered by deletion of badR. A number of these transcripts encode proteins
involved in the uptake of catabolites from the extracellular milieu. Under the studied growth
conditions, a total of 234 transcripts were DE in the badR mutant: 134 decreased and 100
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Fig 3. Log2 transformed counts of RNA-Seq results of select transcripts in csrA mutant and wild-type B.
burgdorferi. Three replicates were assessed. Some values were essentially identical, and so appear to be single dots in
the figures.

https://doi.org/10.1371/journal.pone.0203286.9003

increased (Fig 1B, Table 2 and S3 and S6 Tables). Similar to what was observed for the csrA
mutant, approximately one third of DE transcripts were putative ncRNAs (69/234 or 29.5%).
Of the 100 transcripts that increased in the badR mutant, only 14 (14%) were putative ncRNAs,
whereas 55/134 (41.0%) of the reduced transcripts were putative ncRNAs. The ratio of affected
transcripts was slightly skewed towards the plasmids, with 129 (55.1%) transcripts originating
from the small native replicons. Transcripts in elevated abundance reflected a plasmid vs.
chromosome bias consistent with the overall trend, with 65/100 (65%), whereas the bias was
not maintained for the transcripts of reduced abundance 64/134 (47.8%). RNA-Seq results
were validated by qRT-PCR analyses of select transcripts (Fig 2). A number of these transcripts
were affected only in the badR mutant, while many were also altered in the csrA mutant. Exam-
ples of transcripts affected only by AbadR are presented below, and those that overlapped with
AcsrA are presented in the subsequent section. We note, however, that deletion of badR did
not affect levels of csrA transcript, indicating that regulon overlaps were due to convergence,
rather than one protein operating through the other.

Glycerol is a key nutrient for B. burgdorferi during tick colonization, and mutants unable to
metabolize that carbohydrate are significantly impaired [70]. The operon encoding import
and catabolism of glycerol consists of four genes glpF, glpK, an ORF of unknown function
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Table 2. Differentially expressed transcripts when comparing the badR mutant to wild-type, listed in order of genome reference number. The included transcripts
met the criteria of >1 log2 fold-change and an adjusted p-value (padj) when comparing the badR mutant to wild-type. A total of 234 transcripts were differentially regu-
lated, not including the mutated gene, by the mutation. The first column contains the CDS/custom transcript ID which is the transcript ID for all coding sequences
obtained from the NCBI Gene file format file or the transcript ID given to ncRNAs. RefSeq entries are further separated by the character “_”. The first portion gives the
genetic element from which it is derived, the second describes the type of element (CDS), the third provides RefSeq ID, and the fourth provides a number indicating the
particular entries ordered number in the RefSeq entry. The second column is the gene information, for the ncRNAs it contains the location relative to other genes and for
predicted or known genes it contains gene name. The remaining columns describe the various metrics of expression of each impacted transcript including, base mean
(average library size normalized counts across all samples), log2FC (Fold change estimate), IfcSE (uncertainty of the log fold change estimate), stat (Wald statistic), pvalue,
padj (pvalue following Benjamini-Hochberg adjustment). ORFs and ncRNAs are identified according to the names or numbers assigned to genes and transcripts by the ini-
tial genome sequencing of B. burgdorferi strain B31 [18, 31] or from our previous analyses of that strain’s ncRNA transcriptome [30].

RefSeq CDS/Custom Transcript ID Gene Name baseMean | log2FoldChange |1fcSE stat pvalue padj
ncRNA0001 PI-(BB_0003,BB_0003/ 968.8208685 | -1.091121118 0.280770351 | -3.886169302 | 0.000101838 | 0.00069651
BB_0004)
ncRNA0002 AI-(BB_0004,BB_0004/ 3041.858416 | -1.466630978 0.248955372 | -5.891140104 | 3.84E-09 6.87E-08
BB_0005)
ncRNA0003 AA-(BB_0005,BB_0006) 1243.576562 | -1.402633207 0.311544968 | -4.5021854 6.73E-06 5.78E-05
ncRNA0006 A-(BB_0013) 3033.894978 | -1.651261635 0.339717919 | -4.860684529 | 1.17E-06 1.18E-05
ncRNA0007 A-(BB_0014) 214.8526993 | -1.496435951 0.482793757 | -3.099534591 | 0.001938249 | 0.00909322
ncRNA0014 A-(BB_0084) 380.5460997 | -1.168956757 0.38865126 | -3.007726663 | 0.002632098 | 0.01162608
ncRNA0031 AA-(BB_0198,BB_0199) 400.7134034 | -1.254495741 0.373991555 | -3.354342427 | 0.000795538 | 0.004384473
ncRNA0035 A-(BB_0208) 510.9105757 | -1.367867121 0.292134086 | -4.682326331 | 2.84E-06 2.64E-05
ncRNA0037 A-(BB_0211) 1238.76926 | -1.499844735 0.314759246 | -4.76505378 | 1.89E-06 1.81E-05
ncRNA0042 A-(BB_0240) 2021.458735 | -1.868463425 0.349137347 | -5.351657282 | 8.72E-08 1.10E-06
ncRNA0043 A-(BB_0244) 577.795707 | -2.193831378 0.40473779 | -5.420376925 | 5.95E-08 7.73E-07
ncRNA0050 ATA-(BB_0269,BB_0269/ 1285.298201 | -1.970983739 0.556213454 | -3.543574368 | 0.000394742 | 0.002392333
BB_0270,BB_0270)
ncRNA0057 A-(BB_0347) 34.51259723 | -1.771846181 0.548621557 | -3.22963281 | 0.001239493 | 0.006263669
ncRNA0061 A-(BB_0374) 321.0807142 | -1.221514521 0.292759095 | -4.172422107 | 3.01E-05 0.0002261
ncRNA0063 A-(BB_0381) 391.0552137 | -1.499645362 0.433017783 | -3.463241977 | 0.000533708 | 0.003123385
ncRNA0070 A-(BB_0446) 529.3172145 | -2.031253639 0.313402561 | -6.481292412 | 9.09E-11 2.12E-09
ncRNA0071 A-(BB_0450) 65.28090439 | -4.497370774 0.703386199 | -6.39388544 | 1.62E-10 3.67E-09
ncRNA0072 A-(BB_0454) 396.651084 | 2.955889742 0.659489457 | 4.48208794 | 7.39E-06 6.29E-05
ncRNA0073 I-(BB_t06/BB_0461) 2784.933991 | 1.60500746 0.229931003 | 6.980387322 | 2.94E-12 8.09E-11
ncRNA0076 AA-(BB_0465,BB_0466) 1466.200068 | -1.173752479 0.258622838 | -4.538471893 | 5.67E-06 5.00E-05
ncRNA0080 p-(BB_0522) 879.8130905 | -1.911466532 0.236932979 | -8.067541052 | 7.17E-16 2.81E-14
ncRNA0083 AI-(BB_0556,BB_0556/ 349.181935 | -1.071796374 0.268731567 | -3.988353087 | 6.65E-05 0.000470152
BB_0557)
ncRNA0084 A-(BB_0581) 87.52936081 | -2.554026659 0.470127152 | -5.43262955 | 5.55E-08 7.33E-07
ncRNA0087 A-(BB_0588) 1536.156421 | -2.232166273 0.709217961 | -3.147362865 | 0.001647504 | 0.007948155
ncRNA0099 A-(BB_0633) 150.8640122 | -4.912156619 0.640176561 | -7.673127875 | 1.68E-14 6.08E-13
ncRNA0105 A-(BB_0660) 99.2736016 | -2.451368375 0.757036542 | -3.23811103 | 0.00120324 | 0.006116768
ncRNAO110 A-(BB_0697) 1608.781804 | -1.363019634 0.256463472 | -5.314673554 | 1.07E-07 1.30E-06
ncRNAO117 A-(BB_0747) 270.2800642 | -1.177533684 0.473249509 | -2.488187864 | 0.012839589 | 0.043805776
ncRNAO0125 AIA-(BB_0794,BB_0794/ 2242.036294 | -1.573260538 0.260394058 | -6.041844998 | 1.52E-09 2.98E-08
BB_0795,BB_0795)
ncRNA0132 pI-(BB_0845a,BB_0845a/ 211.2546476 | -2.25854887 0.535976359 | -4.213896437 | 2.51E-05 0.000192548
BB_0845b)
ncRNA0133 A-(BB_B03) 471.6283693 | -1.626316186 0.246864331 | -6.587894579 | 4.46E-11 1.10E-09
ncRNAO0134 AI-(BB_B03,BB_B03/ 130.5038159 | 2.104778754 0.376423997 | 5.591510561 | 2.25E-08 3.24E-07
BB_B04)
ncRNAO0135 1-(BB_B03/BB_B04) 1218.809536 | 3.522740679 0.296249536 | 11.89112641 | 1.32E-32 1.49E-30
ncRNAO0136 AI-(BB_B09,BB_B09/ 476.369844 | -2.090544907 0.354339634 | -5.899833676 | 3.64E-09 6.59E-08
BB_B10)

(Continued)
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Table 2. (Continued)

RefSeq CDS/Custom Transcript ID Gene Name baseMean | log2FoldChange |1fcSE stat pvalue padj
ncRNA0148 A-(BB_P21) 93.09625772 | -1.906327102 0.42831528 | -4.450756704 | 8.56E-06 7.25E-05
ncRNAO0150 I-(BB_P29/BB_P30) 412.4991435 | 1.151296559 0.448344914 | 2.567881385 | 0.010232216 | 0.036685188
ncRNAO0152 IA-(BB_P32/BB_P33,BB_P33) | 276.3515173 | 2.117378095 0.365073141 | 5.799873664 | 6.64E-09 1.13E-07
ncRNA0154 A-(BB_S11) 104.5257947 | -1.477242221 0.477036608 | -3.096706199 | 0.001956837 | 0.00913012
ncRNA0185 I-(BB_O29/BB_030) 1573.01516 | 1.545721747 0.477736479 | 3.235511242 | 0.001214251 | 0.006154374
ncRNA0186 ATA-(BB_032,BB_032/ 90.75800452 | 1.658067092 0.325706168 | 5.090683735 | 3.57E-07 3.92E-06
BB_033,BB_033)
ncRNAO188 A-(BB_036) 23.57876286 | -1.934664257 0.731373306 | -2.64524866 | 0.008163091 | 0.030756069
ncRNA0191 A-(BB_O44) 8.708649435 | -1.952083338 0.79304848 | -2.461493072 | 0.013836007 | 0.0464051
ncRNA0200 TA-(BB_L29/BB_L30,BB_L30) | 867.0447963 | -2.254648069 0.353335763 | -6.381035557 | 1.76E-10 3.89E-09
ncRNA0205 A-(BB_L36) 27.97464525 | -1.847277027 0.738413586 | -2.501683421 | 0.01236044 | 0.042697421
ncRNA0218 TA-(BB_N32/BB_N33, 29.8614237 | 2.012668676 0.517685749 | 3.887819354 | 0.000101149 | 0.000695772
BB_N33)
ncRNA0225 I-(BB_D04/BB_D05a) 86.57888532 | -2.205735552 0.542257921 | -4.067687105 | 4.75E-05 0.00034119
ncRNA0226 P-(BB_DO05a) 56.8286166 | -4.172467124 0.631313043 | -6.60918885 | 3.86E-11 9.68E-10
ncRNA0229 1-(BB_D18/BB_D20) 117.8530042 | -1.351834939 0.345411029 | -3.913699406 | 9.09E-05 0.000631798
ncRNA0233 p-(BB_D23) 46.44975772 | -2.519658462 0.750954393 | -3.355274949 | 0.000792861 | 0.004383906
ncRNA0239 A-(BB_E09) 1464.223554 | -2.309739158 0.428228105 | -5.393712208 | 6.90E-08 8.84E-07
ncRNA0240 A-(BB_E09) 74.83749 -2.662732492 0.853298616 | -3.120516594 | 0.001805341 | 0.008612034
ncRNA0242 I-(BB_E23b/BB_E29a) 107.0500482 | -1.634381518 0.591753121 | -2.761931385 | 0.005746055 | 0.022704251
ncRNA0245 I-(BB_E31/BB_E33) 314.7614859 | -1.445505713 0.484755182 | -2.98192937 | 0.002864381 | 0.012380813
ncRNA0257 PI-(BB_G05,BB_G05/ 56.23393737 | -3.935288751 0.795248019 | -4.948504938 | 7.48E-07 8.01E-06
BB_G06)
ncRNA0259 AA-(BB_G07,BB_G08) 88.149747 | 1.10442889 0.263139801 | 4.197118353 | 2.70E-05 0.000205525
ncRNA0281 IpI-(BB_K09/BB_K10, 166.2483876 | -1.374538803 0.505265076 | -2.720431054 | 0.006519687 | 0.025291632
BB_K10,BB_K10/BB_K12)
ncRNA0284 A-(BB_K17) 123.8271122 | -2.104304342 0.296306341 | -7.101786398 | 1.23E-12 3.62E-11
ncRNA0286 A-(BB_K19) 219.9417934 | -1.262032589 0.497593607 | -2.536271711 | 0.011203977 | 0.039528405
ncRNA0297 A-(BB_J18) 206.5236032 | -4.034115008 0.717156855 | -5.625150172 | 1.85E-08 2.74E-07
ncRNA0299 I-(BB_J20/BB_J0058) 119.1266624 | -1.620207512 0.322869489 | -5.018149959 | 5.22E-07 5.62E-06
ncRNA0304 I-(BB_J37/BB_J41) 103.2796554 | -1.378344172 0.48298017 | -2.853831809 | 0.004319539 | 0.017514704
ncRNA0308 I-(BB_J50/BB_J51) 893.058206 | -5.20269521 0.494508761 | -10.52093637 | 6.92E-26 4.91E-24
ncRNA0311 A-(BB_A04) 361.981407 | 2.135911713 0.411274034 | 5.19340278 | 2.06E-07 2.38E-06
ncRNA0318 IP-(BB_A16/BB_A18, 1800.37672 | -1.63311484 0.56659464 | -2.882333724 | 0.003947414 | 0.016316617
BB_A18)
ncRNA0322 I-(BB_A37/BB_A38) 2507.453992 | -1.827061965 0.464565418 | -3.932841091 | 8.39E-05 0.000588325
ncRNA0326 I-(BB_A66/BB_A68) 456.2996811 | 1.581317957 0.367259293 | 4.305726189 | 1.66E-05 0.000133701
ncRNA0327 I-(BB_A68/BB_A69) 288.5694033 | 1.264266587 0.411522547 | 3.072168452 | 0.002125098 | 0.009754828
ncRNA0330 p-(BB_Q04) 720.3616324 | -1.024359045 0.398542035 | -2.570266009 | 0.010162045 | 0.036572852
ncRNA0337 I-(BB_Q37/BB_Q38) 248.2040394 | 1.382053001 0.42404404 | 3.259220435 | 0.001117188 | 0.005696322
rnall tRNA-Ile-1 3677.251289 | -1.070763646 0.431861739 | -2.479413086 | 0.01315988 | 0.044643975
1c][NC_001318.1_cds_NP_212138.2_3 BB_0004 3213.612708 | -1.161277569 0.350246068 | -3.315604869 | 0.00091445 | 0.004806509
Icl]NC_001318.1_cds_NP_212142.2_7 cdaA 904.7017596 | -1.110337438 0.151425193 | -7.332580652 | 2.26E-13 6.99E-12
Icl]NC_001318.1_cds_NP_212144.1 9 BB_0010 909.552351 | -1.051581313 0.245404371 | -4.285096096 | 1.83E-05 0.00014536
1c][NC_001318.1_cds_NP_212156.1_20 ruvB 2074.85845 | -1.615201563 0.202585957 | -7.972919689 | 1.55E-15 5.86E-14
1c][NC_001318.1_cds_NP_212157.1_21 ruvA 1097.97296 | -1.273090208 0.151883284 | -8.382029754 | 5.20E-17 2.39E-15
1c]|[NC_001318.1_cds_NP_212160.1_24 BB_0026 1860.316044 | -1.010075684 0.181995954 | -5.549989787 | 2.86E-08 4.02E-07
1c]|[NC_001318.1_cds_NP_212161.1_25 BB_0027 9710.085949 | -2.082180896 0.337466351 | -6.170040036 | 6.83E-10 1.45E-08
(Continued)
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Table 2. (Continued)

RefSeq CDS/Custom Transcript ID Gene Name baseMean | log2FoldChange |1fcSE stat pvalue padj
1cl]NC_001318.1_cds_NP_212169.1_33 BB_0035 2717.907721 | 1.16654414 0.214712484 | 5.433052237 | 5.54E-08 7.33E-07
1c][NC_001318.1_cds_NP_212174.1_38 cheR 2192.918259 | -1.271798562 0.187794352 | -6.772293995 | 1.27E-11 3.32E-10
1c][NC_001318.1_cds_NP_212300.1_155 | malQ 848.9299321 | 1.252229151 0.320511286 | 3.906973652 | 9.35E-05 0.000646997
Icl]NC_001318.1_cds_NP_212306.2_161 | BB_0172 2887.764892 | -1.261054254 0.123970769 | -10.17219033 | 2.64E-24 1.61E-22
1c]|[NC_001318.1_cds_NP_212374.1_225 | glpF 2634.820779 | 1.096128043 0.214494113 | 5.110294302 | 3.22E-07 3.58E-06
1c]|[NC_001318.1_cds_NP_212375.1_226 | glpK 5175.056984 | 2.392006594 0.337870592 | 7.079653128 | 1.45E-12 4.17E-11
Ic]|[NC_001318.1_cds_NP_212376.1_227 | BB_0242 990.1464708 | 2.168283941 0.419660091 | 5.166762312 | 2.38E-07 2.70E-06
1c]|[NC_001318.1_cds_NP_212377.1_228 | glpD 6087.037737 | 2.007251927 0.236394298 | 8.491118202 | 2.05E-17 9.68E-16
1c]|[NC_001318.1_cds_NP_212419.2_270 | BB_0285 4139.079468 | -1.005966128 0.317608 -3.16731987 | 0.00153851 | 0.00755067
1c]|[NC_001318.1_cds_NP_212464.1_313 | BB_0330 9233.475103 | 1.246831348 0.219007994 | 5.693086005 | 1.25E-08 1.95E-07
Ic][NC_001318.1_cds_NP_212465.1_314 | BB_0331 360.8537922 | 1.056494139 0.349446428 | 3.023336497 | 0.002500041 | 0.011233693
Ic][NC_001318.1_cds_NP_212477.1_326 | gatC 285.3009861 | -1.21149949 0.216711395 | -5.590382031 | 2.27E-08 3.24E-07
1c][NC_001318.1_cds_NP_212498.1_345 | mgsA 3019.346339 | 1.88485369 0.164726999 | 11.44228752 | 2.57E-30 2.57E-28
Icl]NC_001318.1_cds_NP_212499.1 346 | la7 8401.745644 | 1.980278708 0.282326106 | 7.014153714 | 2.31E-12 6.46E-11
1c]NC_001318.1_cds_NP_212510.1_357 | metK 3414.267219 | 1.007169116 0.303249798 | 3.321252387 | 0.000896145 | 0.004796807
1c][NC_001318.1_cds_NP_212530.1_377 | rpmG 7700.523929 | -1.014284963 0.225205091 | -4.503827867 | 6.67E-06 5.78E-05
1c]|[NC_001318.1_cds_NP_212542.1 389 | fruAl 6219.62582 | 1.359858126 0.22210754 | 6.122521208 | 9.21E-10 1.84E-08
1c]|[NC_001318.1_cds_NP_212549.1_394 | BB_0415 1448.604328 | -1.279087526 0.222055031 | -5.760227649 | 8.40E-09 1.39E-07
1cl]NC_001318.1_cds_NP_212561.2_403 | BB_0427 376.5915461 | -1.245177776 0.398443638 | -3.12510392 | 0.001777423 | 0.00850267
Ic]|[NC_001318.1_cds_NP_212562.1_404 | BB_0428 2667.6549 | -1.138481301 0.213578724 | -5.330499604 | 9.79E-08 1.21E-06
1c]|[NC_001318.1_cds_NP_212563.1_405 | BB_0429 2866.185843 | -1.045234832 0.205122092 | -5.095671663 | 3.48E-07 3.84E-06
1c]|[NC_001318.1_cds_NP_212564.2_406 | BB_0430 199.0192104 | -1.022890971 0.324696532 | -3.150298416 | 0.001631038 | 0.007891072
1cl[NC_001318.1_cds_NP_212568.1_409 | BB_0434 410.6547229 | -1.042338737 0.306030686 | -3.405994191 | 0.000659236 | 0.003717479
Icl[NC_001318.1_cds_NP_212574.1_415 | rpmH 1315.252463 | -1.117891999 0.181344863 | -6.164453644 | 7.07E-10 1.49E-08
Icl]NC_001318.1_cds_NP_212585.1_426 | BB_0451 435.9912764 | 1.007584914 0.20928468 | 4.814422702 | 1.48E-06 1.44E-05
Icl]NC_001318.1_cds_NP_212588.1_429 | BB_0454 2730.888853 | -1.031595834 0.18436356 | -5.595443224 | 2.20E-08 3.21E-07
1c]|[NC_001318.1_cds_NP_212599.1_440 | BB_0465 2885.545854 | -1.007502788 0.230478313 | -4.37135613 | 1.23E-05 0.000100134
1c][NC_001318.1_cds_NP_212643.1_482 | BB_0509 8232.921912 | -2.709765829 0.365717385 | -7.409453136 | 1.27E-13 4.15E-12
1c]|[NC_001318.1_cds_NP_212667.1_496 | BB_0533 5644.777969 | -1.062869351 0.106871435 | -9.945308127 | 2.64E-23 1.55E-21
1c]|[NC_001318.1_cds_NP_212671.1_500 | BB_0537 1848.252264 | 1.055907202 0.23840089 | 4.429124408 | 9.46E-06 7.90E-05
1cl|]NC_001318.1_cds_NP_212677.2_505 | BB_0543 8778.761317 | -1.019087913 0.163819468 | -6.220798579 | 4.95E-10 1.07E-08
1cl]NC_001318.1_cds_NP_212696.1_524 | BB_0562 1222.608908 | 1.053705746 0.14722859 | 7.156937018 | 8.25E-13 2.46E-11
1c]|[NC_001318.1_cds_NP_212711.1_539 | BB_0577 1867.115855 | -1.516846079 0.22325663 | -6.794181569 | 1.09E-11 2.90E-10
1c]|[NC_001318.1_cds_NP_212722.1_550 | BB_0588 1645.236707 | -2.280846585 0.1324333 | -17.2226063 | 1.80E-66 5.10E-64
1cl]NC_001318.1_cds_NP_212732.1_560 | murB 2605.560826 | -1.093452916 0.256548625 | -4.262166346 | 2.02E-05 0.000160363
1cl]NC_001318.1_cds_NP_212737.1_565 | p66 18788.96545 | 1.191518505 0.370846197 | 3.212972161 | 0.00131369 | 0.006618978
1c][NC_001318.1_cds_NP_212760.1_587 | rnmV 17091.35904 | -1.622284749 0.410087902 | -3.955943936 | 7.62E-05 0.000536466
Icl] BB_0627 1365.69883 | -1.137219758 0.235678807 | -4.825294946 | 1.40E-06 1.38E-05
NC_001318.1_cds_YP_008686584.1_588
1c]|[NC_001318.1_cds_NP_212771.2_597 | BB_0637 8048.197727 | 1.247308866 0.261337592 | 4.772787777 | 1.82E-06 1.75E-05
1cl]NC_001318.1_cds_NP_212772.1_598 | BB_0638 3886.718713 | 1.374480998 0.209927381 | 6.547411741 | 5.85E-11 1.38E-09
1cl]NC_001318.1_cds_NP_212773.1_599 | potD 1482.689456 | 1.111387661 0.287042753 | 3.871854103 | 0.000108011 | 0.000732837
1cl[NC_001318.1_cds_NP_212777.1_603 | ylqF 699.0466979 | -1.012270773 0.224680411 | -4.505380641 | 6.63E-06 5.78E-05
Icl]NC_001318.1_cds_NP_212778.1_604 | nanE 697.3884376 | 1.091911248 0.199286939 | 5.479090873 | 4.28E-08 5.82E-07
Icl]NC_001318.1_cds_NP_212812.1_638 | BB_0678 5061.700522 | 1.130878673 0.184670586 | 6.123761744 | 9.14E-10 1.84E-08
1c]|[NC_001318.1_cds_NP_212813.2_639 | BB_0679 4281.290839 | 1.092892006 0.192500112 | 5.677357764 | 1.37E-08 2.12E-07
1c][NC_001318.1_cds_NP_212815.2_641 | BB_0681 1841.564157 | 1.132095989 0.198715125 | 5.697080115 | 1.22E-08 1.92E-07
(Continued)
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RefSeq CDS/Custom Transcript ID Gene Name baseMean | log2FoldChange |1fcSE stat pvalue padj
Icl]NC_001318.1_cds_NP_212817.1_643 | BB_0683 9215.747161 | -1.342614394 0.200226812 | -6.705467576 | 2.01E-11 5.18E-10
1c]NC_001318.1_cds_NP_212818.2_644 | fni 5419.350534 | -1.360464659 0.310958576 | -4.375067179 | 1.21E-05 9.89E-05
1cl|NC_001318.1_cds_NP_212828.2_653 | fth 14060.76269 | -3.018553552 0.374236073 | -8.065907513 | 7.27E-16 2.81E-14
Icl]NC_001318.1_cds_NP_212829.1_654 | rpsP 1323.098993 | -1.039395173 0.253757071 | -4.096024477 | 4.20E-05 0.000307202
1cl|NC_001318.1_cds_NP_212830.1_655 | BB_0696 1648.933208 | -1.064165262 0.332285958 | -3.202558632 | 0.001362126 | 0.006822647
Icl] cabP 3690.875669 | -1.213430799 0.267574041 | -4.534934676 | 5.76E-06 5.06E-05
NC_001318.1_cds_YP_008686588.1_680
Icl] BB_0739 1873.957841 | -1.419653077 0.173023273 | -8.204983358 | 2.31E-16 1.01E-14
NC_001318.1_cds_YP_008686589.1_694
1c][NC_001318.1_cds_NP_212899.1_718 | BB_0765 561.7600503 | 1.079796925 0.175287443 | 6.160149906 | 7.27E-10 1.51E-08
1c][NC_001318.1_cds_NP_212900.1_719 | cvpA 420.5109223 | 1.356521949 0.239595391 | 5.661719703 | 1.50E-08 2.30E-07
Icl]NC_001318.1_cds_NP_212901.1_720 | murG 901.267597 | 1.560828217 0.281070942 | 5.553146858 | 2.81E-08 3.98E-07
Icl]NC_001318.1_cds_NP_212902.1_721 | BB_0768 1156.42566 | 1.034548687 0.234654542 | 4.408815955 | 1.04E-05 8.59E-05
1cl]NC_001318.1_cds_NP_212903.1_722 | BB_0769 1653.77636 | 1.261924875 0.240959955 | 5.237073006 | 1.63E-07 1.93E-06
Icl]NC_001318.1_cds_NP_212904.1_723 | BB_0770 1364.054451 | 1.297246253 0.244604596 | 5.303441851 | 1.14E-07 1.37E-06
Icl]NC_001318.1_cds_NP_212907.1_727 | BB_0773 467.79866 1.23579489 0.179319285 | 6.891589423 | 5.52E-12 1.49E-10
1cl|NC_001318.1_cds_NP_212919.1_739 | spoVG 2664.703766 | 1.601558347 0.21191112 | 7.557689027 | 4.10E-14 1.46E-12
1c]| BB_0794 8844.212411 | -1.00438858 0.174263856 | -5.763608144 | 8.23E-09 1.37E-07
NC_001318.1_cds_YP_008686594.1_748
Icl]NC_001318.1_cds_NP_212932.1_752 | BB_0798 412.7429471 | -1.27472152 0.230756119 | -5.524107118 | 3.31E-08 4.62E-07
1c][NC_001318.1_cds_NP_212975.1_793 | arcA 2690.756525 | 3.208277689 0.156554928 | 20.49298436 | 2.49E-93 1.06E-90
Icl]NC_001318.1_cds_NP_212976.2_794 | arcB 2452.381364 | 2.753000269 0.247532876 | 11.12175607 | 9.83E-29 8.37E-27
1cl|NC_001318.1_cds_NP_212977.2_795 | BB_0843 9954.801279 | 2.005127584 0.225005605 | 8.911456163 | 5.04E-19 2.68E-17
1cl|NC_001318.1_cds_NP_212985.1_797 | BB_0852 258.4724191 | -1.108790124 0.362781795 | -3.056355468 | 0.002240455 | 0.010174651
1cl]NC_001903.1_cds_NP_046990.2_801 | chbC 11469.16755 | 5.577232622 0.223856 24.91437634 | 5.20E-137 | 4.43E-134
1cl]NC_001903.1_cds_NP_046991.1_802 | chbA 2551.066468 | 5.136410472 0.275411401 | 18.64995587 | 1.26E-77 4.30E-75
1c]|NC_001903.1_cds_NP_046992.2_803 | chbB 1687.198719 | 6.041919219 0.262574866 | 23.01027252 | 3.68E-117 | 2.09E-114
1c]|NC_001903.1_cds_NP_046993.1_804 | BB_B07 8409.809781 | 4.824049857 0.162670624 | 29.6553228 | 2.90E-193 | 4.93E-190
1c][NC_001903.1_cds_NP_046996.1_806 | BB_B10 3773.691125 | -1.28185313 0.381829657 | -3.357133493 | 0.000787551 | 0.004368726
1c][NC_001903.1_cds_NP_047015.1_821 | BB_B29 24118.646 -2.302950375 0.212949666 | -10.81452915 | 2.94E-27 2.18E-25
1cl]NC_000948.1_cds_NP_051171.1_830 | BB_P10 89.29313498 | -1.80856563 0.568945229 | -3.178804458 | 0.001478838 | 0.007321109
1cl]NC_000948.1_cds_NP_051176.1_835 | BB_P15 57.75190122 | -1.511845915 0.533207038 | -2.83538252 | 0.004577085 | 0.018471031
1c]NC_000948.1_cds_NP_051187.2_846 | BB_P26 172.8371938 | 1.044255165 0.268808755 | 3.884751315 | 0.000102435 | 0.000697785
1c]NC_000948.1_cds_NP_051192.1_851 | BB_P31 319.4277675 | 1.343678557 0.331802576 | 4.04963268 | 5.13E-05 0.000367062
1cl|NC_000948.1_cds_NP_051193.1_852 | BB_P32 812.8429087 | 1.854983089 0.23580194 | 7.866699848 | 3.64E-15 1.35E-13
1cl|NC_000948.1_cds_NP_051194.2_853 | BB_P33 507.5530008 | 2.041103905 0.245742172 | 8.305875571 | 9.91E-17 4.44E-15
1cl]NC_000948.1_cds_NP_051195.1_854 | bdrA 840.2082301 | 1.459685689 0.302686653 | 4.822431625 | 1.42E-06 1.40E-05
1cl]NC_000948.1_cds_NP_051200.1_859 | erpB 7072.921801 | 1.016940813 0.344628397 | 2.950832906 | 0.003169183 | 0.013359205
1c]|NC_000949.1_cds_NP_051218.1_876 | BB_S15 10.07082847 | 2.315424388 0.806609874 | 2.870562912 | 0.004097417 | 0.016733574
1c]|NC_000949.1_cds_NP_051229.2_886 | BB_S26 135.8581982 | 1.00586234 0.349072328 | 2.881529873 | 0.003957497 | 0.016318687
1cI[NC_000949.1_cds_NP_051234.2_890 | BB_S31 105.7674492 | -1.268266915 0.504053967 | -2.516133186 | 0.011865034 | 0.041491072
1c][NC_000949.1_cds_NP_051238.1_893 | BB_S35 265.7310316 | 1.022944148 0.241100842 | 4.242806206 | 2.21E-05 0.000171655
1cl]NC_000949.1_cds_NP_051240.1_894 | bdrE 326.736536 | 1.384619643 0.242365624 | 5.712937421 | 1.11E-08 1.78E-07
1cl]NC_000950.1_cds_NP_051272.1_925 | BB_R25 73.6903149 | 1.567845055 0.47257634 | 3.317654571 | 0.000907767 | 0.004806509
1cl|NC_000950.1_cds_NP_051274.2_927 | bdrH 752.05999 | -1.407429246 0.239268756 | -5.882210729 | 4.05E-09 7.11E-08
1cl|NC_000950.1_cds_NP_051281.1_933 | BB_R34 206.0163455 | 1.062124857 0.219253677 | 4.844273872 | 1.27E-06 1.27E-05
1cl]NC_000951.1_cds_NP_051316.1_965 | BB_M25 73.66910533 | 1.56778483 0.472774075 | 3.316139594 | 0.000912702 | 0.004806509
1cl]NC_000952.1_cds_NP_051365.1_1013 | BB_O32 381.8142121 | 1.017080674 0.245240622 | 4.147276529 | 3.36E-05 0.000251307
(Continued)
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1cl]NC_000952.1_cds_NP_051368.1_1016 | BB_O35 19.61631666 | 1.531544803 0.614609961 | 2.491897136 | 0.012706283 | 0.043592704
1cl|NC_000952.1_cds_NP_051373.1_1021 | erpM 506.3123838 | 1.178636168 0.240991847 | 4.890771956 | 1.00E-06 1.03E-05
1cl|NC_000953.1_cds_NP_051387.1_1034 | BB_L10 89.29313498 | -1.80856563 0.568945229 | -3.178804458 | 0.001478838 | 0.007321109
1cl]NC_000953.1_cds_NP_051392.1_1039 | BB_L15 57.75190122 | -1.511845915 0.533207038 | -2.83538252 | 0.004577085 | 0.018471031
1cl]NC_000953.1_cds_NP_051417.1_1062 | erpO 7072.829661 | 1.016942202 0.344623288 | 2.950880677 | 0.003168693 | 0.013359205
1cl]NC_000954.1_cds_NP_051443.1_1087 | BB_N31 161.0855567 | 1.597055987 0.349207277 | 4.57337545 | 4.80E-06 4.30E-05
1cl]NC_000954.1_cds_NP_051444.1_1088 | BB_N32 241.9969265 | 1.728633599 0.308943605 | 5.595304672 | 2.20E-08 3.21E-07
1cl]NC_000954.1_cds_NP_051445.1_1089 | BB_N33 157.3216497 | 1.90141208 0.288793883 | 6.583976291 | 4.58E-11 1.11E-09
1c]|NC_000954.1_cds_NP_051446.1_1090 | bdrQ 227.796319 | 1.584969312 0.264083749 | 6.001767683 | 1.95E-09 3.69E-08
1c]|NC_000954.1_cds_NP_051450.1_1094 | erpQ 1968.305688 | 1.240874035 0.360078608 | 3.446119836 | 0.000568698 | 0.003260919
1cI[NC_001849.2_cds_NP_045397.1_1115 | BB_D13 908.2099786 | -1.446791877 0.304769578 | -4.747166331 | 2.06E-06 1.94E-05
1cI[NC_001849.2_cds_NP_045398.1_1116 | BB_D14 3487.083186 | -1.95219011 0.326963037 | -5.970675236 | 2.36E-09 4.39E-08
1cl]NC_001849.2_cds_NP_045399.2_1117 | BB_D15 1008.771523 | -1.197583135 0.198847084 | -6.022633637 | 1.72E-09 3.32E-08
1cl]NC_001849.2_cds_NP_045404.1_1119 | BB_D21 967.6859329 | -1.852887349 0.440068742 | -4.210449803 | 2.55E-05 0.000194633
1c][NC_001849.2_cds_NP_045405.1_1120 | BB_D22 128.5625749 | -1.396085804 0.318107631 | -4.388721519 | 1.14E-05 9.38E-05
Ic]| BB_D0031 25.13306541 | -2.332828324 0.700631412 | -3.329608525 | 0.000869682 | 0.004731846
NC_001849.2_cds_YP_004940417.1_112
Ic][NC_001851.2_cds_NP_045439.1_1144 | repU 189.0840177 | 1.753939584 0.35530882 | 4.936380643 | 7.96E-07 8.47E-06
1cl]NC_001851.2_cds_NP_045456.1_1151 | BB_F23 367.9227399 | 2.20505297 0.256947467 | 8.581726827 | 9.35E-18 4.55E-16
1cl]NC_001851.2_cds_NP_045458.1_1153 | BB_F25 156.0679977 | 1.059224925 0.435755106 | 2.430780295 | 0.015066347 | 0.04943736
1c][NC_001852.1_cds_NP_045472.1_1163 | BB_G12 81.95387397 | -2.20532043 0.670605133 | -3.288552864 | 0.001007039 | 0.00519693
1c]NC_001852.1_cds_NP_045482.1_1174 | BB_G22 64.42227065 | -3.125608056 0.641815831 | -4.869945401 | 1.12E-06 1.13E-05
1c]|[NC_001852.1_cds_NP_045484.2_1176 | BB_G24 50.67291727 | -1.450408152 0.561382788 | -2.583634878 | 0.009776523 | 0.035651861
1cl|]NC_001852.1_cds_NP_045485.1_1177 | BB_G25 3.961622236 | -2.090912702 0.854820598 | -2.446025174 | 0.014444091 | 0.047594109
1cl]NC_001852.1_cds_NP_045489.1_1181 | BB_G29 357.369219 | -1.009105265 0.377296002 | -2.674571849 | 0.007482474 | 0.028443423
1c]|[NC_001852.1_cds_NP_045491.2_1183 | BB_G31 41.00949741 | -1.490324525 0.469590481 | -3.173668518 | 0.001505255 | 0.007430287
1c]|NC_001853.1_cds_NP_045510.1_1195 | BB_H17 10.29555978 | -2.148674895 0.800721139 | -2.683424715 | 0.007287238 | 0.027825485
1c]|NC_001853.1_cds_NP_045517.1_1197 | BB_H26 1195.446691 | -1.144943567 0.461056964 | -2.483301754 | 0.013017077 | 0.044247668
1cl[NC_001855.1_cds_NP_045575.1_1225 | BB_KO01 1354.450581 | 1.456025551 0.334102075 | 4.358026067 | 1.31E-05 0.000105926
1cl[NC_001855.1_cds_NP_045597.1_1234 | BB_K23 2453.836139 | -1.425251086 0.386783132 | -3.684884288 | 0.000228807 | 0.001481588
Icl]NC_001855.1_cds_NP_045598.1_1235 | BB_K24 377.5769784 | -1.452422742 0.43695597 | -3.323956741 | 0.0008875 0.004792717
1cl]NC_001855.1_cds_NP_045606.1_1238 | BB_K33 37.62541137 | -1.381941183 0.444818197 | -3.106755056 | 0.001891531 | 0.008898554
1c]|NC_001855.1_cds_NP_045612.1_1242 | BB_K40 3811.74482 | -1.258348118 0.231710329 | -5.430694971 | 5.61E-08 7.35E-07
1c]NC_001855.1_cds_NP_045618.1_1246 | BB_K47 2505.671645 | 1.677219339 0.317042319 | 5.290206506 | 1.22E-07 1.47E-06
1cl]NC_001855.1_cds_NP_045620.1_1248 | BB_K49 1392.93963 | 1.632033985 0.354485887 | 4.603946289 | 4.15E-06 3.76E-05
1cl|]NC_001855.1_cds_NP_045624.1_1252 | BB_K53 359.8395733 | -1.240359481 0.484313307 | -2.561068345 | 0.010435083 | 0.037333919
1cl]NC_001856.1_cds_NP_045633.1_1254 | BB_J09 24951.96368 | 1.396908601 0.377302455 | 3.70235757 | 0.000213605 | 0.001388434
1cl]NC_001856.1_cds_NP_045642.1_1259 | BB_]18 652.4014099 | -1.21353758 0.493482874 | -2.459128057 | 0.013927493 | 0.046598272
1c]|NC_001856.1_cds_NP_045643.1_1260 | BB_J19 8721.994493 | -1.178524274 0.357433879 | -3.297181218 | 0.000976605 | 0.005055191
1c]|NC_001856.1_cds_NP_045648.1_1264 | BB_J24 96.33456458 | -1.446657884 0.37915883 | -3.815440313 | 0.00013594 | 0.000911442
1cl]NC_001856.1_cds_NP_045660.1_1272 | BB_J36 1399.444538 | -1.03853811 0.235436708 | -4.411113785 | 1.03E-05 8.54E-05
1cl]NC_001856.1_cds_NP_045661.2_1273 | BB_J37 15.94581387 | -1.809580589 0.694226935 | -2.606612476 | 0.009144279 | 0.033489691
1cl[NC_001856.1_cds_NP_045667.1_1276 | BB_J43 43.39693922 | -1.683539357 0.669523881 | -2.514532201 | 0.011919042 | 0.041513166
Icl]NC_001856.1_cds_NP_045669.1_1277 | BB_J45 396.4427063 | -1.389596423 0.387960567 | -3.5817981 0.000341237 | 0.002120903
1cl]NC_001857.2_cds_NP_045676.1_1287 | BB_A03 12443.29488 | 2.365156998 0.336486898 | 7.028972045 | 2.08E-12 5.91E-11
1cl|]NC_001857.2_cds_NP_045677.1_1288 | BB_A04 322.0576528 | 1.186683617 0.439379821 | 2.700815014 | 0.00691698 | 0.026711149
1cl]NC_001857.2_cds_NP_045696.2_1302 | BB_A23 697.3262104 | -1.509462463 0.587335071 | -2.570019291 | 0.010169285 | 0.036572852
(Continued)
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Table 2. (Continued)

RefSeq CDS/Custom Transcript ID

1c]|NC_001857.2_cds_NP_045697.1_1303
1c]|NC_001857.2_cds_NP_045703.1_1305
1c]|NC_001857.2_cds_NP_045704.1_1306
1c]|NC_001857.2_cds_NP_045705.1_1307
1cl|NC_001857.2_cds_NP_045707.1_1309
1cl|NC_001857.2_cds_NP_045710.1_1311
1cl|[NC_001857.2_cds_NP_045725.1_1323
1cl|NC_001857.2_cds_NP_045726.1_1324
1c]|NC_001857.2_cds_NP_045727.1_1325
1c]|[NC_001857.2_cds_NP_045731.1_1327
1c]|NC_001857.2_cds_NP_045733.1_1329
1c]|NC_001857.2_cds_NP_045739.1_1334
1c]NC_001857.2_cds_NP_045747.1_1339
1c]|NC_000956.1_cds_NP_051469.1_1342
1c]|NC_000956.1_cds_NP_051489.1_1361
1c]|NC_000956.1_cds_NP_051491.1_1363
1cl]NC_000956.1_cds_NP_051494.1_1366
1cl|NC_000956.1_cds_NP_051502.1_1373
1cl]NC_000956.1_cds_NP_051504.1_1374
1cl]NC_000956.1_cds_NP_051521.1_1385

Gene Name baseMean |log2FoldChange | 1fcSE stat pvalue padj

dbpA 424.4061803 | -1.294172188 0.532360559 | -2.431006891 | 0.015056928 | 0.04943736
BB_A30 869.6149934 | 1.582224773 0.216857972 | 7.296133785 | 2.96E-13 9.01E-12
BB_A31 693.6564221 | 1.993259822 0.268904006 | 7.412533024 | 1.24E-13 4.14E-12
BB_A32 110.7421883 | 1.110559517 0.324430366 | 3.42310595 0.000619099 | 0.003514421
BB_A34 190.0838372 | -1.75905884 0.577174012 | -3.047709707 | 0.002305926 | 0.010416423
BB_A37 93.94411642 | -1.86769252 0.652655129 | -2.861683662 | 0.004213973 | 0.017127436
BB_A52 1613.061442 | 1.078698677 0.31275508 | 3.449020483 | 0.000562624 | 0.003259009
BB_A53 375.6912082 | 1.380553161 0.375841734 | 3.673230076 | 0.000239504 | 0.001533364
BB_A54 599.9624458 | 1.952102454 0.367103617 | 5.317578918 | 1.05E-07 1.29E-06
BB_A58 8350.064089 | 1.319104334 0.296677938 | 4.446250175 | 8.74E-06 7.37E-05
BB_A60 1031.73146 | 1.630327073 0.221726805 | 7.352864153 | 1.94E-13 6.12E-12
BB_A66 625.4863294 | 1.009382205 0.338610772 | 2.980951255 | 0.002873545 | 0.012388981
osm28 12273.60539 | 2.102644849 0.394215493 | 5.333744837 | 9.62E-08 1.20E-06
BB_QO05 100.9367965 | 1.796704482 0.595838392 | 3.015422481 | 0.002566215 | 0.011410613
BB_Q27 184.692011 | 2.143457033 0.446777313 | 4.797595967 | 1.61E-06 1.56E-05
BB_Q29 93.20450698 | 1.487257023 0.362277235 | 4.105300802 | 4.04E-05 0.000296402
BB_Q32 73.6825877 | 1.568087947 0.471959354 | 3.322506342 | 0.000892126 | 0.004792717
BB_Q40 481.1703282 | 1.262062785 0.368213247 | 3.427532266 | 0.000609094 | 0.003469187
bdrV 634.196218 | 2.372377131 0.317623917 | 7.469138837 | 8.07E-14 2.81E-12
BB_Q62 20.48709362 | 3.14255226 0.535260529 | 5.871070419 | 4.33E-09 7.52E-08

https://doi.org/10.1371/journal.pone.0203286.t002

(ORF BB_0242), and glpD [18, 70, 71]. The glpFKD operon appears to be under complex con-
trol, being reported to be impacted by several regulatory factors, including RpoS, SpoVG,
cyclic-di-GMP, and ppGpp [70, 72-74]. In addition, an antisense RNA that is transcribed
within the glpF ORF, ncRNA0042, was recently identified in two independent studies [30, 50].
Upon deletion of badR, glpFKD operon transcript levels increased 2- to 4-fold, and
ncRNA0042 was reduced 3.6-fold (Fig 4). Thus, both BadR and ncRNA0042 need to be consid-
ered along with the other proteins and small molecules in future studies on the mechanism
controlling borrelial glycerol utilization.

A previous study found that badR deletion had a significant effect upon RpoS expression
[16]. In contrast, the conditions utilized in our studies did not show any significant differences
in rpoS mRNA levels between the badR mutant and its wild-type parent. Transcripts of rpoS
were readily detected in both strains. Additionally, there were no significant changes in the
expression levels of any of the known regulators of rpoS (dsrA, hfg, bosR or rpoN) or RpoS-
affected transcripts such as ospC (Fig 5). Possible reasons for these results are discussed below.

The CsrA and BadR regulons share substantial overlap

To better understand how these two regulatory factors interact, we analyzed their differen-
tially-expressed transcript sets for intersection and divergence (Figs 6 and 7 and S4 Table). As
noted above, deletion of either regulatory factor did not have any detectable impact on expres-
sion of the other. Compared with the wild-type parent, the AcsrA and AbadR mutants showed
significant changes in the same 150 transcripts (54 Table). Of these, 80 transcripts were
reduced in both mutants, 66 were increased in both mutants, 1 was reduced in the rpoN, csrA,
and badR mutants, and only 3 were affected in opposite directions (i.e. reduced in the badR
mutant while increased in the csrA mutant, or vice versa), 1 of which was also at reduced abun-
dance in the rpoN mutant (S4 Table). In contrast, the set of transcripts affected by CsrA alone
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Fig 4. RNA-Seq analyses of expression of the gipFKD operon in the badR mutant. Log2 transformed counts of
transcripts encoded from the glpFKD operon and the anti-glpF small ncRNA (ncRNA0042) in badR mutant and wild-
type. Three replicates were assessed. Some values were essentially identical, and so appear to be single dots in the
figures.

https://doi.org/10.1371/journal.pone.0203286.g004

consisted of 19 increased members and 68 reduced transcripts (Tables 1 and 2 and S4 Table),
and, of the transcripts impacted by BadR alone, 53 were reduced and 31 were increased (Tables
3 and 4 and S4 Table).

Of the 80 transcripts that were decreased in both mutants, there was a slight bias towards
the plasmids, with 56.3% of transcripts being plasmid encoded. Approximately half of the
dually reduced transcripts (52.5%) were putative ncRNAs. Conversely, the vast majority of the
67 dually increased transcripts were transcripts encoding ORFs, with only 10 putative ncRNAs
(14.9%). The bias for plasmid/chromosomal origin was similar to the ratio for reduced tran-
scripts, with 62.6% of increased transcripts originating from the plasmids.

BadR and CsrA are known nucleic acid-binding proteins and could mediate all of the DE
transcript changes directly. However, both mutants exhibited altered expression of spoVG,
which encodes a regulatory protein with site-specific DNA-/RNA-binding activity [74-76].
The mRNA encoding SpoVG was significantly increased by 3-fold in the badR mutant and
2.3-fold in the csrA mutant. It is possible that some of the BadR- and/or CsrA-affected ORFs of
unknown function also encode nucleic acid-binding proteins.

Transcripts encoding proteins that are involved in chitobiose uptake (chbCAB) were signifi-
cantly enhanced by 35- to 65-fold in the badR mutant, as was previously observed [16].
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Fig 5. Log2 transformed counts of RNA-Seq results of select transcripts in badR mutant and wild-type B.
burgdorferi. Three replicates were assessed. Some values were essentially identical, and so appear to be single dots in
the figures.

https://doi.org/10.1371/journal.pone.0203286.g005

Moreover, those transcripts were among the most highly increased transcripts in that data set
(Fig 8). Deletion of csrA also increased the expression of chbCAB, by 2.8- to 5.2-fold. Chito-
biose is a dimer of N-acetylglucosamine that can be used as an energy source. It is also required
for peptidoglycan synthesis [77, 78]. Transcripts encoding other proteins involved with cell
wall synthesis were also affected by deletion of either csrA or badR. The nanE transcript,
encoding the epimerase that converts N-acetylmannosamine-6-phosphate into GIcNAc-6P,
was increased 2.1-fold by the absence of badR. MurG is a key enzyme involved in the forma-
tion of the peptidoglycan cell wall, transferring GIcNAc moieties from lipid intermediate I to
lipid intermediate II; murG transcript levels were increased in both the badR and csrA mutants,
by 3-fold and 2.6-fold, respectively.

Other carbohydrate-utilization pathways affected by both the badR and csrA mutants
include increased levels of transcripts encoding a putative hexose transporter IIABC compo-
nent (BB_0408) (2.5-fold and 2.8-fold, respectively) and a subunit of another putative hexose/
pentose ABC transporter (BB_0678) (2.2-fold and 2.9-fold, respectively).

Several transcripts involved in the uptake and catabolism of polyamines were significantly
increased by deletion of either badR or csrA. Polyamines are cationic organic bases that are
present in significant levels within vertebrate hosts, can affect a wide variety of biological pro-
cesses, and are often involved in stress and osmotic responses. The polyamine uptake system
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the csrA and badR mutants). The vertical bars indicate the number of transcripts in each set or paired set (e.g. 80
transcripts were reduced in both the ¢srA and badR mutants, 68 transcripts were reduced only in the badR mutant, 66
transcripts were elevated in both the csrA and badR mutants, etc.).

https://doi.org/10.1371/journal.pone.0203286.9006

in B. burgdorferi, and the polyamines spermine and spermidine, are important for control of
bacterial growth and expression of infection-associated proteins [79, 80]. Polyamines can be
imported through the PotABCD transporter or produced de novo from arginine. B.

guaA la7

ospC chbCAB glpFKD
OppA3 spoVG p66
17others BB_F25  ncRNA0317 61 others BB_F23 27 others
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Fig 7. Interaction network of four essential regulatory factors. An interaction network was generated using Adobe Illustrator using the
data in S5-58 Tables. Transcripts that were found in higher abundance by the deletion of a particular factor are indicated by a blocked line
stretching from the regulator to the transcript as the regulatory factor would be expected to naturally lower transcript abundance. Those
that were found in lower abundance follow the same scheme but are indicated by arrows as the regulatory factor would be expected to
naturally increase transcript abundance.

https://doi.org/10.1371/journal.pone.0203286.9007
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Table 3. Differentially expressed transcript when comparing the rpoS mutant to wild-type. The included transcript met the criteria of >1 log2 fold-change and an
adjusted p-value (padj) when comparing the rpoS mutant to wild-type. One transcript was impacted, not including the mutated gene, by the mutation. The first column
contains the CDS/custom transcript ID which is the transcript ID for all coding sequences obtained from the NCBI Gene file format file or the transcript ID given to
ncRNAs. RefSeq entries are further separated by the character “_”. The first portion gives the genetic element from which it is derived, the second describes the type of ele-
ment (CDS), the third provides RefSeq ID, and the fourth provides a number indicating the particular entries ordered number in the RefSeq entry. The second column is
the gene information, for the ncRNAs it contains the location relative to other genes and for predicted or known genes it contains gene name. The remaining columns
describe the various metrics of expression of each impacted transcript including, base mean (average library size normalized counts across all samples), log2FC (Fold
change estimate), IfcSE (uncertainty of the log fold change estimate), stat (Wald statistic), pvalue, padj (pvalue following Benjamini-Hochberg adjustment). The ncRNA is
listed according to the nomenclature the previous analyses of the strain B31 ncRNA transcriptome [30].

RefSeq CDS/Custom Transcript ID | Gene Name baseMean log2FoldChange | 1fcSE stat pvalue padj
ncRNA0317 I-(BB_A16/BB_A18) 934.0496735 1.303422865 0.279366013 4.665645805 3.08E-06 0.002619633
https://doi.org/10.1371/journal.pone.0203286.t003

burgdorferi possess part of the arginine deaminase pathway, consisting of the enzymes ArcA to
convert arginine to citrulline and ArcB to convert citrulline to ornithine and carbamoyl-phos-
phate [18, 80]. The badR and csrA mutants both exhibited increased expression of arcA
(9.2-fold and 2-fold, respectively), arcB (6.7-fold and 2.2-fold, respectively), and potD (2.1-fold
and 2.3-fold, respectively).

Most transcripts from Ip28-4 appeared to be decreased in both the badR and csrA mutants.
To further examine these observations, we isolated genomic DNA from all 5 strains, then used
qPCR to examine the copy numbers of [p28-4 relative to the chromosome. We found that the
ratio of Ip28-4 to chromosome was reduced in the csrA (0.45:1) and badR (0.43:1) mutants, but
that relative abundance also fluctuated in the rpoN (1.37:1) and rpoS (0.81:1) mutants (Fig 9).
B. burgdorferi has one of the most complex known bacterial genomes, and smaller replicons/
plasmids may occasionally be lost during cultivation. As was performed for all of the strains
used in the current studies, it is common practice to examine the replicon profile of B. burgdor-

feri strains by use of plasmid-specific PCR. At least three hypotheses could explain the results
on lp28-4 transcript levels: either those initially-clonal cultures now contain a mixture of bacte-
ria with and without the plasmid, many transcripts from Ip28-4 are under the control of BadR
and CsrA, or BadR and CsrA have an influence on 1p28-4 copy number. Considering the
apparent variation in plasmid copy number we opted not to make any further inferences
regarding transcripts from genes on lp28-4. Plasmid 1p28-4 is not necessary for mammalian
infection, although it has some role in tick colonization, so further investigation of these results
is warranted [32, 81, 82]. No other borrelial replicon exhibited such a broad expanse of DE

Table 4. Differentially expressed transcripts when comparing the rpoN mutant to wild-type. The included transcripts met the criteria of >1 log2 fold-change and an
adjusted p-value (padj) when comparing the rpoN mutant to wild-type. A total of 6 transcripts were differentially regulated, not including the mutated gene, by the muta-
tion. The first column contains the CDS/custom transcript ID which is the transcript ID for all coding sequences obtained from the NCBI Gene file format file or the tran-
script ID given to ncRNAs. RefSeq entries are further separated by the character “_”. The first portion gives the genetic element from which it is derived, the second
describes the type of element (CDS), the third provides RefSeq ID, and the fourth provides a number indicating the particular entries ordered number in the RefSeq entry.
The second column is the gene information, for the ncRNAs it contains the location relative to other genes and for predicted or known genes it contains gene name. The
remaining columns describe the various metrics of expression of each impacted transcript including, base mean (average library size normalized counts across all samples),
log2FC (Fold change estimate), IfcSE (uncertainty of the log fold change estimate), stat (Wald statistic), pvalue, padj (pvalue following Benjamini-Hochberg adjustment).
ORFs and ncRNAs are identified according to the names or numbers assigned to genes and transcripts by the initial genome sequencing of B. burgdorferi strain B31 [18,
31] or from our previous analyses of that strain’s ncRNA transcriptome [30].

RefSeq CDS/Custom Transcript ID Gene Name baseMean log2FoldChange |1fcSE stat pvalue padj
ncRNA0247 A-(BB_F03) 1699.002338 | -1.505899416 0.295702788 | -5.09261149 | 3.53E-07 4.82E-05
ncRNA0251 I-(BB_F11a/BB_F12) |727.7453318 | -1.186871298 0.186813665 | -6.353235984 | 2.11E-10 3.46E-08
1cl|]NC_001318.1_cds_NP_212583.1_424 | BB_0449 973.8721962 | 1.053792918 0.264341728 | 3.986479644 | 6.71E-05 0.006869549
1cl|]NC_001851.2_cds_NP_045439.1_114 | repU 189.0840177 | -1.381674328 0.377685357 | -3.658268196 | 0.000253925 | 0.0226871
1c]|NC_001851.2_cds_NP_045453.2_115 | BB_F20 136.227553 -1.216027769 0.244677301 | -4.969924738 | 6.70E-07 8.44E-05
1c]|NC_001851.2_cds_NP_045456.1_115 | BB_F23 367.9227399 | -1.211569926 0.247841487 | -4.888487162 | 1.02E-06 0.000118961

https://doi.org/10.1371/journal.pone.0203286.t004
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Fig 8. Expression of chitobiose metabolism transcripts affected in badR and csrA mutants. Log2 transformed
counts of transcripts encoded from the chbA and chbB loci in the badR, csrA, and wild-type strains. Three replicates
were assessed. Some values were essentially identical, and so appear to be single dots in the figures.

https://doi.org/10.1371/journal.pone.0203286.9008

transcripts, so the current study did not evaluate copy numbers of the other naturally-occur-
ring plasmids.

ospC and dbpBA can be transcribed independently of either alternative
sigma factor

RpoN and RpoS§ are the only alternative sigma factors of B. burgdorferi, and both are essential
for transmission from ticks to vertebrates and for establishment of vertebrate infection [6, 9].
For this reason, we chose deletion mutants in these two sigma factors as an early step in dis-
secting the gene regulatory networks important for pathogenesis. It is well established that
many regulatory factors of B. burgdorferi are controlled by environmental stimuli [3, 4, 36, 83—
88]. In order to control for such potential effects, we performed transcriptome analysis of a
single, specific culture condition: mid-exponential phase at 34°C. Both rpoS and rpoN mRNAs
were readily detected at significant levels in the wild-type parental strain under these growth
conditions.

Previous immunoblot- or array-based analyses of rpoS mutants, cultured under conditions
that otherwise induce high-level expression of RpoS, observed that levels of numerous tran-
scripts, such as ospC and dbpBA, were substantially affected by the rpoS mutation [5, 6, 8]. This
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Fig 9. Relative plasmid copy number as assayed by qPCR from mutant and wild-type strains. Genomic DNA was
isolated from all five strains and qPCR was performed targeting the plasmid 1p28-4 and the chromosome. Three
biological replicates of each strain were assayed. Relative copy number of 1p28-4 per chromosome was determined
using the ACt method.

https://doi.org/10.1371/journal.pone.0203286.g009

led to hypotheses that RpoS-RNA polymerase holoenzyme might directly transcribe all of
those genes. However, under the current culture conditions, ospC, dbpBA, and other tran-
scripts were produced at detectable levels in the rpoS mutant. Moreover, all of those transcripts
were expressed at approximately equivalent amounts in wild-type and rpoS mutant samples.
These results, combined with those presented below for the rpoN mutant, indicate that the
ospC, dbpB, dbpA, and many other genes can be transcribed by RNA polymerase using the
“housekeeping” sigma, RpoD. We validated these studies with qRT-PCR on samples harvested
from independent cultures, which also readily detected ospC and dbpBA transcripts in the rpoS
mutant.

Overall, almost no transcripts were detectably impacted by deletion of rpoS under the stud-
ied culture conditions. Only 1 transcript, "cRNA0317, was detected as DE (Fig 1C and
Table 3). This transcript is a putative small RNA that is encoded downstream of the ospB ORF,
in an intergenic location. While RpoS protein production is also controlled post-transcription-
ally, none of the transcripts of known regulators DsrA, Hfq, or BBD18, were observed to be
affected in either the rpoS deletion mutant or any of the other examined mutants.

Deletion of rpoN resulted in very few significant changes (Fig 1D and Table 4). Transcript
levels of BB_0449, the gene that is divergently-transcribed from rpoN, were approximately
twice as high in the mutant, possibly due to transcriptional read-through from the inserted
antibiotic resistance gene. The only other significant difference was the reduced expression of
several transcripts on Ip28-1, including BB_F23, which encodes a putative partition protein.
Considering these data, it is possible that rpoN could affect the replication of Ip28-1. Notably,
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Fig 10. Promoter utilization of rpoS in the ArpoN mutant. Read coverage histograms of rpoSlocus and upstream genomic region in wild-type
and ArpoN strains. Abundance plots represent the merged normalized expression from three independent biological replicates. Blue lines indicate
relative transcript abundance from left to right (the coding strand of flgl, flg] and rpoS) and red lines indicate relative transcript abundance from the
opposite strand (right to left), and reside above (+) and below (-) the central axis. Open reading frames are indicated below coverage plots and
direction of transcription is given by arrows at the ends of genes. Transcriptional start sites of the two previously mapped promoters are indicated
by “T'SS” and arrows. Normalized read coverage of each strand is given as RPKMO (reads per kb of gene per million reads aligning to annotated
ORFs) is given on Y-axis on the left. The RpoN- and RpoD-dependent transcriptional start sites were previously identified [1, 11, 90]. Figures were
generated in the Artemis Genome Viewer and edited in Adobe Illustrator.
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none of the transcripts previously hypothesized to require RpoS, such as ospC or dbpBA, were
affected by deletion of rpoN.

The rpoS locus has previously been shown to have both an RpoN- and an RpoD-dependent
promoter [1, 11, 89], leading us to investigate read coverage plots for the region around rpoS in
the wild-type and rpoN mutants (Fig 10). These analyses highlighted that transcription initiat-
ing from the fIgl and flgJ genes that are directly 5 of rpoS appears to continue into the rpoS
ORE [30, 90]. Consistent with that observation, the previously-mapped RpoD-dependent pro-
moter of rpoS is located within the flg] ORF [11]. Altogether, these results indicate that essen-
tially all transcription of rpoS under the assayed culture conditions resulted from RNA
polymerase-RpoD holoenzyme using the previously-mapped promoter within flg/ and/or by
read-through from the promoter 5’ of flgI]. The read coverage plots indicated that substantial
amounts of transcripts from fIg] were terminated in the space between the flgJ and rpoS ORFs
(Fig 10). No intrinsic (Rho-independent) terminators are present in this region [30], implying
that some other type of transcriptional regulatory element exists immediately 5 of the rpoS
OREF.

Discussion

In an effort to determine whether there are overlaps between borrelial regulons, we simulta-
neously examined wild-type and pairs of mutant B. burgdorferi that were grown under a single,
specific condition, so that each batch of RNA-Seq data sets could be compared with each
other. Several important conclusions can be drawn from these results: Both CsrA and BadR
affect levels of numerous transcripts, evidently independently of RpoS; the CsrA and BadR reg-
ulons include transcripts affected by only one of those proteins, and also include a substantial
number of transcripts that were affected by both nucleic acid-binding proteins; neither CsrA
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nor BadR affected each other’s transcript levels; CsrA can alter levels of transcripts such as
ospC and dbpBA without affecting rpoS; transcription from the promoters of ospC and dbpBA
do not require RpoS, but can be transcribed by the housekeeping sigma, RpoD; and, under the
conditions examined by these studies, rpoS was transcribed from only its RpoD-dependent
promoters.

None of the regulons defined by the current studies are likely to be complete. Had we cho-
sen another growth condition, those stimuli could affect regulatory networks to the extent that
additional members of these regulons might have been detected, while other transcripts might
have been obscured by the effects of competing factors. For example, variations in culture con-
ditions, such as acid stress, temperature, or osmolarity, can have significant effects on cellular
levels of RpoS, explaining the substantial differences previously found between different analy-
ses of rpoS mutant B. burgdorferi [6, 8, 10, 91-96]. We note also that the majority of previous
studies on borrelial RpoS function have focused on bacteria cultured under conditions that
caused high-level RpoS expression. We opted not to replicate such analyses because the large
differences in RpoS content between wild-type bacteria that express high levels of the protein
and an rpoS mutant can lead one to overlook subtleties. For example, prior array-based studies
reported that levels of ospC and dbpBA were found to be greatly diminished in rpoS mutants in
some instances, indicating that RpoS plays a positive role in their expression, but the low levels
of ospC, dbpBA, etc. in rpoS mutants led to assumptions that RpoS is essential for their tran-
scription [5, 7]. However, under the studied culture conditions, rpoS, ospC, and dbpBA were
produced at significantly detectable levels in all strains, and neither ospC nor dbpBA were
affected by deletion of rpoS. This demonstrates that both ospC and dbpBA are transcribed by
RpoD-directed RNA polymerase. The previously-reported effects of RpoS enhancing expres-
sion of ospC and dbpBA indicate that either their promoters can also be recognized by RpoS-
containing holoenzyme, or RpoS controls production of one or more factors that affect ospC
and dbpBA transcript levels (e.g. DNA-binding proteins that stimulate transcription) [5, 97].
Regarding the first hypothesis, while elevated RpoS content can correlate with increased tran-
scription of ospC, there is no strong evidence that RpoS-RNA polymerase holoenzyme directly
transcribes the ospC promoter. Studies have been performed on the ospC promoter in the
unrelated bacterium E. coli, but those studies determined that the two species’ RNA polymer-
ases recognize different DNA sequences, so firm conclusions cannot be drawn from that report
[97]. In support of the latter hypothesis, DNA sequences adjacent to the ospC promoter are
required for maximal transcription [98-101], and a recent study provided evidence for at least
one RpoS-controlled DNA-binding protein [73]. In addition, this can explain how ospC is
repressed early during mammalian infection, while dbpBA and rpoS continue to be expressed
[59, 102, 103]. Clearly, much remains to be learned about the mechanisms by which B. burg-
dorferi controls transcription of ospC and other virulence factors.

In addition, only a portion of the badR-affected transcripts observed in the current RNA--
Seq study were also observed to be affected by badR in a previous, array-based study[16]. As a
caveat, arrays measure only transcripts that hybridize with a probe derived from a segment of
each gene, and hybridization efficiency is sensitive to temperature, pH, salt concentrations,
and other experimental conditions. In addition, all prior array-based analyses studied only
mRNAs, without considering intergenic or antisense ncRNAs. Even with those caveats, the
data suggest that some of the transcripts affected by badR in the current study were influenced
by additional regulatory factors that had little-to-no effect on them under the conditions of the
previous transcriptome analysis. These might include other regulatory proteins, or, since BadR
function is dependent upon cellular carbohydrate contents, differences in metabolic status or
nutrient composition between batches of culture media might have contributed to results.
These variations reinforce the hypothesis that B. burgdorferi uses multiple factors in a complex
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network of overlapping regulons, such that fluctuations in levels of a single regulatory factor
may have significant impacts on some targets but not on others. Indeed, all intensively studied
operons of B. burgdorferi are controlled by multiple factors. For example, transcription of the
erp operons is directly regulated by the BpaB repressor, BpuR co-repressor, and Eb{C antire-
pressor proteins, each of which also regulates other transcripts in various ways [104, 105]. Data
from the current study further aids dissection of the regulatory interplay of B. burgdorferi.

Prior studies detected two promoters that drive transcription of rpoS, one of which is
dependent upon RpoN, and the other upon RpoD [11, 15, 16, 89] (Fig 10). The current study
demonstrates that transcription initiating from the RpoD-dependent promoter(s) 5’ of the
upstream flgl and flgJ ORFs [90] probably also contributes to the expression of rpoS (Fig 10).
The previously-identified RpoD-dependent promoter of rpoS lies within the flgf ORF [11], so
it is unlikely that a feature at the end of flg/ could terminate transcription that arose from one
RpoD-dependent promoter but not the other. Further studies are required to determine
whether the upstream promoters are regulated by B. burgdorferi, and how use of each pro-
moter affects the others. It is also notable that all 7poS transcripts in the rpoN mutant origi-
nated from the RpoD-dependent promoters, serving as a reminder that the RpoD promoters
must always be considered when studying conditions and regulatory factors that affect borre-
lial RpoS levels. These analyses also indicated considerable diminishment of transcription
between flgJ and rpoS, suggestive of a regulatory mechanism operating in that area. The
sequence does not contain an obvious intrinsic terminator [30]. Several proteins are known to
bind DNA in this region, including BadR [15, 17]. While prior research on those factors has
focused on the RpoN-dependent promoter, it would be worthwhile to examine their effects on
transcription from the RpoD-dependent promoters.

In conclusion, these studies expanded knowledge of the B. burgdorferi CsrA, BadR, RpoS,
and RpoN regulons. Under the examined growth conditions, none of these regulatory proteins
were observed to have impacts on any of the other three, indicating that effects of two proteins
on a single transcript were due to converging regulatory pathways. This lack of impact on one
another was true when considering both adjusted and non-adjusted p-values. Substantial con-
vergence was observed between the csrA and badR mutant transcriptomes, as well as evidence
that each regulates a distinct set of transcripts. CsrA exerted significant impacts upon numer-
ous transcripts, such as ospC and dbpBA, through mechanisms that appear to be independent
of RpoS, further advancing understanding of these infection-associated regulons.

Supporting information

S1 Fig. Principal component analysis of RNA-Seq samples. Principle component analysis
was performed for all 19 samples examined in this study and the results are plotted above.
“WT-1” and “WT-2” indicate data from the two sets of wild-type cultures.

(PDF)

S1 Table. Primers used in these studies. Contains all primers used within these studies for
qPCR and qRT-PCR. Name and nucleotide sequence (5’-3’) is given for each.
(DOCX)

$2 Table. Differentially expressed transcripts when comparing the csrA mutant to wild-
type, listed in order of fold change. The included transcripts met the criteria of >1 log2 fold-
change and an adjusted p-value (padj) when comparing the csrA mutant to wild-type sorted by
fold change. A total of 239 transcripts were differentially regulated, not including the mutated
gene, by the mutation. The first column contains the CDS/custom transcript ID which is the
transcript ID for all coding sequences obtained from the NCBI Gene file format file or the
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transcript ID given to ncRNAs. RefSeq entries are further separated by the character “_”. The
first portion gives the genetic element from which it is derived, the second describes the type
of element (CDS), the third provides RefSeq ID, and the fourth provides a number indicating
the particular entries ordered number in the RefSeq entry. The second column is the gene
information, for the ncRNAs it contains the location relative to other genes and for predicted
or known genes it contains gene name. The remaining columns describe the various metrics
of expression of each impacted transcript including, base mean (average library size normal-
ized counts across all samples), log2FC (Fold change estimate), IfcSE (uncertainty of the log
fold change estimate), stat (Wald statistic), pvalue, padj (pvalue following Benjamini-Hoch-
berg adjustment). ORFs and ncRNAs are identified according to the names or numbers
assigned to genes and transcripts by the initial genome sequencing of B. burgdorferi strain B31
[18, 31] or from our previous analyses of that strain’s ncRNA transcriptome [30].

(DOCX)

S3 Table. Differentially expressed transcripts when comparing the badR mutant to wild-
type, listed in order of fold change. The included transcripts met the criteria of >1 log2 fold-
change and an adjusted p-value (padj) when comparing the badR mutant to wild-type sorted
by fold change. A total of 234 transcripts were differentially regulated, not including the
mutated gene, by the mutation. The first column contains the CDS/custom transcript ID
which is the transcript ID for all coding sequences obtained from the NCBI Gene file format
file or the transcript ID given to ncRNAs. RefSeq entries are further separated by the character
“ 7. The first portion gives the genetic element from which it is derived, the second describes
the type of element (CDS), the third provides RefSeq ID, and the fourth provides a number
indicating the particular entries ordered number in the RefSeq entry. The second column is
the gene information, for the ncRNAs it contains the location relative to other genes and for
predicted or known genes it contains gene name. The remaining columns describe the various
metrics of expression of each impacted transcript including, base mean (average library size
normalized counts across all samples), log2FC (Fold change estimate), IfcSE (uncertainty of
the log fold change estimate), stat (Wald statistic), pvalue, padj (pvalue following Benjamini-
Hochberg adjustment). ORFs and ncRNAs are identified according to the names or numbers
assigned to genes and transcripts by the initial genome sequencing of B. burgdorferi strain B31
[18, 31] or from our previous analyses of that strain’s ncRNA transcriptome [30].

(DOCX)

S4 Table. Intersection table of all transcripts that differentially expressed across all
mutants. Contains the entire set of transcripts that were differentially expressed under any
condition and what condition they were impacted by. A total of 331 transcripts, including
those mutated, were differentially expressed across our total data set. The first column is the
gene information, for the ncRNAs it contains the location relative to other genes and for pre-
dicted or known genes it contains gene name. The second column contains the CDS/custom
transcript ID which is the transcript ID for all coding sequences obtained from the NCBI Gene
file format file or the transcript ID given to ncRNAs. RefSeq entries are further separated by
the character “_”. The first portion gives the genetic element from which it is derived, the sec-
ond describes the type of element (CDS), the third provides RefSeq ID, and the fourth provides
anumber indicating the particular entries ordered number in the RefSeq entry. The following
8 columns are given as each mutant and increased abundance or decreased abundance. If a
transcript was differentially expressed in a condition it’s cell value is given as TRUE. Empty
cells indicate that a transcript was not impacted by a given condition. ORFs and ncRNAs are
listed according to the numerical order assigned to genes and replicons by the initial genome
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sequencing of B. burgdorferi strain B31 (13, 69).
(XLSX)

S5 Table. Total differential expression testing table for the csrA mutant. Contains the dif-
ferential expression testing results for the csrA mutant compared to wild-type. The first col-
umn is the gene information, for the ncRNAs it contains the location relative to other genes
and for predicted or known genes it contains gene name. The second column contains the
CDS/custom transcript ID which is the transcript ID for all coding sequences obtained from
the NCBI Gene file format file or the transcript ID given to ncRNAs. RefSeq entries are further
separated by the character “_”. The first portion gives the genetic element from which it is
derived, the second describes the type of element (CDS), the third provides RefSeq ID, and the
fourth provides a number indicating the particular entries ordered number in the RefSeq
entry. The remaining columns describe the various metrics of expression of each impacted
transcript including, base mean (average library size normalized counts across all samples),
log2FC (Fold change estimate), IfcSE (uncertainty of the log fold change estimate), stat (Wald
statistic), pvalue, padj (pvalue following Benjamini-Hochberg adjustment). ORFs and ncRNAs
are listed according to the numerical order assigned to genes and replicons by the initial
genome sequencing of B. burgdorferi strain B31 (13, 69).

(XLSX)

S6 Table. Total differential expression testing table for the badR mutant. Contains the dif-
ferential expression testing results for the badR mutant compared to wild-type. The first col-
umn is the gene information, for the ncRNAs it contains the location relative to other genes
and for predicted or known genes it contains gene name. The second column contains the
CDS/custom transcript ID which is the transcript ID for all coding sequences obtained from
the NCBI Gene file format file or the transcript ID given to ncRNAs. RefSeq entries are further
separated by the character “_”. The first portion gives the genetic element from which it is
derived, the second describes the type of element (CDS), the third provides RefSeq ID, and the
fourth provides a number indicating the particular entries ordered number in the RefSeq
entry. The remaining columns describe the various metrics of expression of each impacted
transcript including, base mean (average library size normalized counts across all samples),
log2FC (Fold change estimate), IfcSE (uncertainty of the log fold change estimate), stat (Wald
statistic), pvalue, padj (pvalue following Benjamini-Hochberg adjustment). ORFs and ncRNAs
are listed according to the numerical order assigned to genes and replicons by the initial
genome sequencing of B. burgdorferi strain B31 (13, 69).

(XLSX)

S7 Table. Total differential expression testing table for the rpoS mutant. Contains the dif-
ferential expression testing results for the rpoS mutant compared to wild-type. The first col-
umn is the gene information, for the ncRNAs it contains the location relative to other genes
and for predicted or known genes it contains gene name. The second column contains the
CDS/custom transcript ID which is the transcript ID for all coding sequences obtained from
the NCBI Gene file format file or the transcript ID given to ncRNAs. RefSeq entries are further
separated by the character “_”. The first portion gives the genetic element from which it is
derived, the second describes the type of element (CDS), the third provides RefSeq ID, and the
fourth provides a number indicating the particular entries ordered number in the RefSeq
entry. The remaining columns describe the various metrics of expression of each impacted
transcript including, base mean (average library size normalized counts across all samples),
log2FC (Fold change estimate), IfcSE (uncertainty of the log fold change estimate), stat (Wald
statistic), pvalue, padj (pvalue following Benjamini-Hochberg adjustment). ORFs and ncRNAs

PLOS ONE | https://doi.org/10.1371/journal.pone.0203286  August 30, 2018 32/39


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0203286.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0203286.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0203286.s008
https://doi.org/10.1371/journal.pone.0203286

@° PLOS | ONE

B. burgdorferiCsrA, BadR, RpoN, and RpoS regulatory networks

are listed according to the numerical order assigned to genes and replicons by the initial
genome sequencing of B. burgdorferi strain B31 (13, 69).
(XLSX)

S8 Table. Total differential expression testing table for the rpoNmutant. Contains the dif-
ferential expression testing results for the rpoN mutant compared to wild-type. The first col-
umn is the gene information, for the ncRNAs it contains the location relative to other genes
and for predicted or known genes it contains gene name. The second column contains the
CDS/custom transcript ID which is the transcript ID for all coding sequences obtained from
the NCBI Gene file format file or the transcript ID given to ncRNAs. RefSeq entries are further
separated by the character “_”. The first portion gives the genetic element from which it is
derived, the second describes the type of element (CDS), the third provides RefSeq ID, and the
fourth provides a number indicating the particular entries ordered number in the RefSeq
entry. The remaining columns describe the various metrics of expression of each impacted
transcript including, base mean (average library size normalized counts across all samples),
log2FC (Fold change estimate), IfcSE (uncertainty of the log fold change estimate), stat (Wald
statistic), pvalue, padj (pvalue following Benjamini-Hochberg adjustment). ORFs and ncRNAs
are listed according to the numerical order assigned to genes and replicons by the initial
genome sequencing of B. burgdorferi strain B31 (13, 69).

(XLSX)
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