
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Computer Science Computer Science

2022

Don't Give Me That Story! -- A Human-Centered Framework for Don't Give Me That Story! -- A Human-Centered Framework for

Usable Narrative Planning Usable Narrative Planning

Rachelyn Farrell
University of Kentucky, rac7hel@gmail.com
Author ORCID Identifier:

https://orcid.org/0000-0002-2106-7170
Digital Object Identifier: https://doi.org/10.13023/etd.2022.440

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Farrell, Rachelyn, "Don't Give Me That Story! -- A Human-Centered Framework for Usable Narrative
Planning" (2022). Theses and Dissertations--Computer Science. 124.
https://uknowledge.uky.edu/cs_etds/124

This Doctoral Dissertation is brought to you for free and open access by the Computer Science at UKnowledge. It
has been accepted for inclusion in Theses and Dissertations--Computer Science by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

https://uknowledge.uky.edu/
https://uknowledge.uky.edu/cs_etds
https://uknowledge.uky.edu/cs
https://orcid.org/0000-0002-2106-7170
https://uky.az1.qualtrics.com/jfe/form/SV_0lgcRp2YIfAbzvw
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Rachelyn Farrell, Student

Dr. Stephen G. Ware, Major Professor

Dr. Simone Silvestri, Director of Graduate Studies

Don’t give me that story! – A human-centered framework for usable narrative
planning

DISSERTATION

A dissertation submitted in partial
fulfillment of the requirements for
the degree of Doctor of Philosophy
in the College of Engineering at the

University of Kentucky

By
Rachelyn Farrell

Lexington, Kentucky

Director: Dr. Stephen G. Ware, Professor of Computer Science
Lexington, Kentucky 2022

Copyright© Rachelyn Farrell 2022

ABSTRACT OF DISSERTATION

Don’t give me that story! – A human-centered framework for usable narrative
planning

Interactive or branching stories are engaging and can be embedded into digital
systems for a variety of purposes, but their size and complexity makes it difficult
and time-consuming for humans to author them. Narrative planning algorithms can
automatically generate large branching stories with guaranteed causal consistency,
using a hand-authored library of story content pieces. The usability of such a system
depends on both the quality of the narrative model upon which it is built and the
ability of the user to create the story content library.

Current narrative planning algorithms use either a limited or no model of character
belief, which typically leads to undesireable stories and difficult domain authoring
challenges. Domain authoring is further complicated by a lack of intelligent tools
for summarizing the content that a domain can produce so that its author can
effectively evaluate it. In this work I extend a prior narrative planning framework to
model deeply nested character beliefs, thus avoiding common character omniscience
problems without overburdening the domain author. Human subjects evaluations
demonstrate that the belief model tracks nested beliefs correctly, and that it improves
overall character believability in solution spaces over previous models. This model
makes domain authoring more intuitive, but also adds complexity to the story
generation algorithm, making the planner’s output even harder for the author to
predict.

As a step toward more intelligent domain authoring tools, I present a novel method
for measuring story similarity by encoding important story information into a fixed-
length numeric vector. This enables automatic clustering of stories based on their
semantic similarity, facilitating high-level communication of large story spaces. I
compare the story similarity metric to assessments made by humans, and find the
metric to be highly accurate in judging how similar two stories are to each other. I
then demonstrate its use in clustering solution spaces, and evaluate two strategies
for summarizing the content of the resulting clusters. I find both techniques to be
more effective than a control in communicating large story spaces to humans. These
contributions together advance the usability of narrative planning algorithms by

improving their underlying narrative model and providing a basis for more intelligent
domain authoring tools.

KEYWORDS: narrative planning, artificial intelligence, interactive narrative, belief,
story similarity, authoring tools

Author’s signature: Rachelyn Farrell

Date: December 14, 2022

Don’t give me that story! – A human-centered framework for usable narrative
planning

By
Rachelyn Farrell

Director of Dissertation: Dr. Stephen G. Ware

Director of Graduate Studies: Dr. Simone Silvestri

Date: December 14, 2022

For my kids, Kaius and Lyra –
so that we may afford bigger, more expensive toys.

ACKNOWLEDGMENTS

I would like to express my sincerest appreciation to the National Science Foundation

for sponsoring this research, and to the members of my defense committee for their

guidance and expertise throughout this process.

No aspect of this work would have been possible without Dr. Stephen G. Ware,

my advisor and mentor, who taught me everything I know about artificial intelligence,

research, and many other things. Leading by example, he taught me to appreciate

science, to ask intelligent questions, and to take the time to do things the right way. As

a novice young story writer, I lacked the tools to create the kinds of stories I wanted,

but Dr. Ware made me believe that this was no obstacle I could not overcome. I am

profoundly grateful for the impact he has had on my life, my work in general, and of

course this work in particular.

Many thanks are also in order for the contributions made to this work by fellow

members of the Narrative Intelligence Lab. Dr. Alireza Shirvani helped design and

evaluate the belief model presented in Chapter 2. Cory Siler contributed to the Sabre

implementation of the belief model. Mira Fisher helped evaluate the story distance

metric presented in Chapter 3. Lastly, Edward T. Garcia collaborated with me on a

very early version of the solution space summarization project, which greatly shaped

my understanding of the problem. I thank all of them for their friendship as well as

their contributions, direct and indirect.

I am also extremely grateful to Dr. Lewis Baker, whose expert statistical advice

and analysis has benefitted my work at many stages. Dr. Ben Samuel also lended

his unique and valuable perspective during our group meetings at the University of

New Orleans. I thank him especially for his humor and good nature, which never

failed to bring me joy. I also thank the many other great minds who contributed to

iii

my knowledge and understanding of these topics through conversations at academic

conferences.

I have had the pleasure of learning from many outstanding computer science

teachers over the years. I thank them all for their wisdom, most memorably the

words of Dr. Pamela Lawhead, who taught us that the way to solve any computer

science problem is to “Go sit under a tree, and be a person who has this problem.” Her

advice resonated and stuck with me because it succinctly expresses what I love most

about computer science—that the answers are not written down anywhere because

no one has figured them out yet. I thank all those who helped me to see challenges

as exciting opportunities for creativity and growth.

I thank my family for encouraging me to chase after my goals, and believing I could

achieve them. Finally, no one has had greater impact on me than my husband, Chris

Farrell. I am eternally grateful to him for supporting me in every way imaginable,

and for being an endless well of intelligent conversation, without whom I would be

much, much stupider.

iv

TABLE OF CONTENTS

Acknowledgments . iii

Table of Contents . v

List of Figures . vi

List of Tables . vii

Chapter 1 Introduction . 1

Chapter 2 Belief Model . 6
2.1 Related Work . 6
2.2 Blackbeard Domain . 10
2.3 Problem Definition . 12
2.4 Search . 21
2.5 Evaluations . 22
2.6 Limitations . 25

Chapter 3 Summarizing Solution Spaces . 27
3.1 Related Work . 27
3.2 Grammalot Domain . 32
3.3 Salience Vectors . 32
3.4 Salience Distance . 38
3.5 Distance Metric Evaluation . 39
3.6 Clustering and Visualization . 45
3.7 Evaluation of Solution Space Summaries 51

Chapter 4 Conclusion . 63

Appendices . 66
Appendix A: Accuracy for 18 Salience Distance Variations 66
Appendix B: Best Performing Weights . 67
Appendix C: Stories used for Domain Authoring Study 69
Appendix D: Qualitative Survey . 70

Bibliography . 72

Vita . 80

v

LIST OF FIGURES

2.1 Example Blackbeard solution in state space 11
2.2 Six types of character plans . 23

3.1 A depiction of the initial state in Grammalot 32
3.2 Distance metric accuracy . 42
3.3 Hierarchical clustering of the 58 Grammalot solutions 46
3.4 Example cluster summary for Grammalot problem #193 48
3.5 Example tree summary for Grammalot (problem 193) 51
3.6 Depiction of the Grammalot initial state without the crossroads 52
3.7 Storytelling robot . 54
3.8 Story display box . 55
3.9 Number of stories having each number of configuration dependencies . . 57
3.10 Engagement factors . 58
3.11 Participant accuracy . 59
3.12 Confidence ratings . 60
3.13 Perceived understanding of the story space (1=low, 5=high) 61

4.1 Accuracy results for 18 variations of Salience Distance 66

vi

LIST OF TABLES

2.1 Results after filter . 25

3.1 Example stories X and Y . 37
3.2 Salience vectors after each step in story X 37
3.3 Salience vectors after each step in story Y 38
3.4 Grammalot domain configurations . 53
3.5 Number of solutions per problem . 53
3.6 Configuration dependencies for each story question 57

4.1 Weights scoring 37 on the first analysis 67
4.2 Weights scoring 411 on the second analysis (both scored 36 on the first) . 68

vii

Chapter 1 Introduction

Recent technology has found many applications for embedding narrative elements
into human-facing systems in entertainment, education, training, therapy, journalism,
and a variety of other fields. Digital interactive narratives can represent many
possible stories as a branching tree structure, and allow the interactions of the user to
affect which narrative trajectory they ultimately experience. Incorporating branching
narratives into interactive systems can improve their overall effectiveness by increasing
user engagement. However there is a major authoring bottleneck that limits how
complex interactive narratives can be: Branching stories are fundamentally difficult
to author because the more interaction points they contain, the more complex the
story becomes, and the more difficult it becomes for the author to keep track of all
the different branches.

Authors commonly deal with this problem by manually limiting the branching
factor of the story—railroading the diverging branches back towards a central, linear
storyline, or a small few of them. This is not an ideal solution, however, because
it can leave readers longing for more interactivity, for a larger story with more
possible endings, and more ways for their actions to matter or have an impact on
the story. Since interactivity leads to some benefits already, it stands to reason that
more benefits could be obtained by allowing more interactivity. One of the goals
of story generation research is to enable authors to create larger branching stories
by automatically combining smaller hand-authored elements into many different
coherent stories. This changes the authoring task to that of creating reusable pieces
of story content, rather than having to manually construct every single possible story.

Planning-based narrative generation systems, or narrative planners, can automate
plot generation at a low level by modeling individual properties of the world and
how they are changed by different events. A planning system can generate multiple
branching paths from the beginning of a story through to multiple ends, in which the
underlying properties and logic of the world remain consistent while the content of
the individual stories varies by branch. A formal plan-based representation of story
permits a great deal of authorial control for system designers and narrative authors.
An author creates a planning domain, which defines everything that can be true in
the story world, all events that can occur, when they can occur and what happens
when they do. They can also specify constraints to define the kinds of stories to be
generated, such as how the story should end (author goals) and key events that must
happen at some point in the story (landmark events). System designers can embed
models of specific narrative features (like conflict, suspense, character models, etc.)
to further constrain stories in a variety of ways, using fine-grained information about
the story world.

The theoretical benefits of the planning approach to story generation are enticing,
but current systems suffer from a lack of usability for at least three reasons. First,
usability requires the underlying narrative model to reliably produce acceptable story
structures, but current models are imperfect and often allow stories that do not meet

1

human expectations of storiness. Second, humans must be able to effectively construct
planning domains that model the kinds of stories they are intending to create; but
this requires manually evaluating the generated story spaces, which are typically too
large to read in full. These goals are interrelated: Insufficient narrative models leave
domain authors responsible for handling complex problems; yet as narrative models
grow in complexity to account for more nuances, it becomes even harder for domain
authors to predict and control their output. Third, the planner also needs to be fast
enough for practical use. The general problem of planning speed and efficiency is
outside the present scope, but this work makes contributions toward the first two
goals and discusses their implications for the third.

Much of narrative planning research has aimed to define a model of narrative that
reliably produces acceptable stories. As readers process the events of a story they
take on the minds of the characters and attempt to understand their motivations
and predict their future actions (Gerrig, 1993; Frith and Frith, 2001). When readers
cannot make sense of a character’s behavior, they may disengage with the story or
have an unfavorable reaction. This has led to models of character intentionality
that constrain characters’ actions based on their individual goals, producing more
acceptable stories by ensuring that characters only act in ways that might help them.
Intentionality models prevent characters from acting against their interests or for
no reason, but they also reveal a more subtle type of unwanted behavior related to
character belief, which is the subject of Chapter 2.

Intentional narrative planners track individual character goals and ensure that,
while the story achieves the author’s goal, characters can only take actions that are
part of a plan to achieve their own goals. However, if such a system does not model
individual character knowledge, then its characters may appear omniscient. This
problem is often described in terms of the Belief Desire Intention model of agency
(Georgeff et al., 1998), which states that an entity’s behavior is considered believable
(i.e. the audience will attribute agency to that entity) when it appears to be motivated
by its own beliefs, desires, and intentions. Conversely, when an entity—even one that
is motivated by its own goals—does not appear to possess its own set of beliefs,
it is seen as less believable. If the underlying narrative model treats characters as
omniscient, the system will likely allow many stories that humans deem unacceptable,
unless the author manually encodes complex belief mechanics into the domain.

As an example, consider the following sequence, which might be generated by
existing intentional narrative planners:

Ann is at her desk and wants coffee, so she goes to a nearby coffee
shop. While she is there, her friend Bob delivers coffee to her desk. Ann
leaves the coffee shop without buying anything, goes back to her desk, and
drinks the coffee.

This is an unwanted sequence because it demonstrates Ann’s omniscience: how does
she know that there is coffee at her desk if she was away when it arrived?1

1Of course, stories often contain gaps like these, and humans can readily infer unnarrated events
to form coherent sequences (e.g. perhaps Ann received a phone call from Bob, informing her that

2

An intentional narrative planner can justify Ann leaving the coffee shop at that
moment because it can help her achieve her goal to have coffee: the plan “walk back
to my desk, drink coffee” is possible and it satisfies her goal. Yet this plan defies the
audience’s expectation of limited belief: Ann should not have known there was coffee
at her desk because she was away when it arrived. According to the reader, the plan
“walk to my desk, drink coffee” does not make sense for Ann at this point because
Ann should not believe it is possible, even though it is.

This shows why intentional planners should take into account characters’ beliefs
when deciding what actions make sense for them. If they do not, it falls to the domain
author to manually encode beliefs and observation rules into the domain, which can
quickly become intractable. To demonstrate this process, here is one way we might
fix the above example.

1. Add a property to the domain like believes coffee(?character, ?place),
representing whether or not a character believes there is coffee at a place.
Update the initial state to include any instances of this property that are true
at the beginning, such as believes coffee(Ann, CoffeeShop) — since Ann initially
believes there is coffee at the coffee shop.

2. Using the believes coffee property above, add to the effects of the action for
delivering coffee: Any character currently located at the place where coffee is
being delivered subsequently believes there is coffee at that place.

3. Add to the preconditions of the action for drinking coffee: The character
drinking coffee must believe there is coffee at that place in order to drink it.

These adjustments prevent the problematic example: Characters can no longer make
plans to drink coffee that was delivered while they were away. It is now impossible
to drink coffee without believing there is coffee at that place, and the only way to
acquire that belief is to be present when it is delivered there.

Of course, this only avoids one specific situation; if the author is concerned with
the whole solution space, more work needs to be done to avoid similar problematic
scenarios. For example, one would also want to add effects similar to those of step
2 to any other action that moves coffee, such as buying coffee from the coffee shop
or walking from place to place while having coffee. Any other domain action that
involves coffee (e.g. microwaving coffee) should be constrained as in step 3 so that
characters cannot plan to do these things unless they believe the coffee is there. Also,
no nested beliefs have yet been modeled, such as whether Bob believes that Ann
believes there is coffee at a place, which may cause unexpected problems. Finally,
only a single belief property has been modeled, that of the presence of coffee at a
place. If the domain is to contain anything beyond this type of scenario, beliefs
about many other properties will need to be modeled. The task becomes increasingly
complex and difficult as the domain grows.

there is coffee at her desk); but this is undesirable because it introduces inconsistencies between the
reader’s mental model of the story and the system’s model.

3

Another option for domain authors is to “hack” the domain to avoid revealing
character omniscience, by which I mean using properties that do not actually reflect
the intended mechanics of the world. For example, without modeling any beliefs,
the unwanted example can be prevented by making having coffee a precondition of
leaving the coffee shop. These are not the intended mechanics of the story world—
that it should be physically impossible to leave the coffee shop without coffee—but
it will prevent the unwanted story since the plan “walk to my desk, drink coffee”
is impossible once Ann has reached the coffee shop, even after Bob has delivered
coffee to her desk. However, the story is prevented for the wrong reason: Ann’s
action should not be impossible, it should only be unreasonable for Ann. This type
of domain modification is still tedious (a complete domain would require many such
hacks), and is also likely to have unforeseen consequences in other story branches.

A better approach is for the underlying planning model to explicitly track
individual character beliefs, automatically update them based on whether or not
characters observe events, and use them when testing whether a plan makes sense
for a given character. Chapter 2 presents a planning model that does this, tracking
separate beliefs for each character including arbitrarily nested theory of mind (their
beliefs about others’ beliefs, etc.). Using this model, characters can only act in ways
they believe can contribute to their goal, which eliminates the omniscience problem
and improves character believability over previous models. Furthermore the model
allows characters to automatically interact with each other in more complex ways,
such as anticipating each other’s actions, surprising each other, influencing, plotting
against, and deceiving each other.

As mentioned previously, usability requires generated stories to be acceptable not
just according to general narrative properties like causal coherence and character
believability, but also according to the specific design goals of the author. Verifying
this requires the author to observe the output of the narrative planning process, called
the solution space, but this is fundamentally challenging because solution spaces
can be so large. Reading all the stories is a slow process and is mentally taxing
because they tend to be very similar to each other. Even for small domains it can be
impractical to read all the stories, especially if doing so multiple times (e.g. after each
domain modification). There is a need for tools that can intelligently help authors
evaluate and debug solution spaces more efficiently.

The need for authoring tools is further underscored by the belief model presented
in Chapter 2. While the model makes authoring easier in one sense, by removing the
need to keep up with belief information manually or use hacks to avoid omniscient
behavior, it also further complicates authoring because it makes observing and
debugging solution spaces even more difficult. Adding belief makes solution spaces
larger and harder to imagine, with more logic behind the scenes determining whether
stories are acceptable or not. New features like this introduce new kinds of mistakes
authors can make that propagate throughout the solution space and become difficult
problems to debug. This is not limited to the specific belief model presented here,
but rather is likely to be the case for any future improvements to models of character
and other narrative elements. It is therefore important to address the authoring
challenge, not only because it serves the ultimate goal of usability, but also to aid

4

ongoing research and development of these models.
Clustering algorithms are a logical starting point for the development of tools

that help authors better explore and evaluate solution spaces. A tool that identifies
groups of semantically similar stories could allow authors to get a high-level view of
the full space just by reading a small number of stories (e.g. one from each cluster). It
could also serve as a road map to explore specific groups of stories in more detail, and
could help draw attention to outliers, which may be useful for identifying particularly
interesting stories as well as for catching stories that are unwanted. Clustering
solution spaces requires a meaningful measurement of the similarity between two
stories, which is an open research topic. Existing plan comparison models can easily
identify structural differences between two story plans, but these tend not to agree
with how humans assess story similarity.

I address this need in Chapter 3 by presenting a novel method for measuring
the similarity between two narrative plans that is based on human perception. The
method frames story comparison as a comparison of human memories of stories;
it encodes story information analogously to how the mind stores them in memory
according to one psychological model. These encodings can then be compared
using standard vector distance functions for a similarity measurement. I define
the similarity model formally using the narrative planning framework defined in
Chapter 2, as well as generically so that it can be more readily adapted to other
story generation systems. I present an evaluation that demonstrates the model’s
accuracy according to humans in an example domain, compared to several alternative
approaches for measuring story similarity. I then apply the metric to clustering
solution spaces, and propose two techniques for summarizing the resulting clusters.
In a final evaluation, I find both techniques to be helpful for communicating story
spaces to humans in a simulated domain authoring scenario.

To be usable at a large scale, narrative planning algorithms will need to run
faster than they can presently; this is a high priority for future work. This work
makes two significant contributions toward other current hindrances to usability. The
first is a knowledge representation and planning framework that improves character
believability in generated stories by ensuring that characters are limited to their
own individual beliefs. Assuming a correctly authored domain, this causes solution
spaces to contain more acceptable stories and fewer unacceptable stories, making the
narrative model more effective in general. The second contribution is a model of story
similarity that encodes important story information as vectors that can be compared
using standard distance calculations. This enables meaningful clustering of solution
spaces which can help domain authors better understand and debug the content they
are creating. Together this work supports a narrative planning model that is more
usable because its input can be authored more intuitively and its output can be more
easily evaluated.

5

Chapter 2 Belief Model

To solve the omniscience problem described in the introduction, this chapter presents
a narrative planning framework that extends a previous model to account for
character beliefs. Modeling belief formally is challenging because people can possess
not only their own beliefs, but also beliefs about each other’s beliefs. This leads to
an infinite set of beliefs, even with only two agents (I believe you believe I believe
you believe...). Limited belief models have been proposed for narrative planning
that represent only first-level character beliefs, but many basic types of character
interactions like deception, cooperation, and influence require at least two nested
belief levels. For instance, to model Ann deceiving Bob, there must be a difference
between what Ann believes to be true (1 level) and what Ann believes Bob believes
to be true (2 levels). Furthermore, conveying deeply nested mental states (having 3
or more nested levels) either implicitly or explicitly is so common in fiction that it
may be impossible to write fiction without doing so (Zunshine, 2022). Deeply nested
belief states are therefore considered important for storytelling and thus the narrative
model should not impose a limit on theory of mind depth, even though this incurs a
computational cost.

This chapter describes a belief model for centralized narrative planning systems
that features unlimited theory of mind for characters. The model is formally defined
in Sections 2.3-2.4 and details are given for an implementation of this planner called
Sabre. Sabre supports all the features defined by the Action Description Language
(ADL; Pednault, 1989), including typed variables and equality, negated literals,
quantified and disjunctive goals, and conditional effects. Sabre is the first narrative
planner to support all of these features combined with intention, deep theory of mind,
and numeric fluents. 1

Two human subjects evaluations demonstrate that the belief model accurately
tracks nested beliefs, and that it improves character believability in solution spaces
compared to previous intentionality models. Section 2.6 discusses the model’s
limitations, including challenges for domain authoring that further motivate the work
presented in Chapter 3.

2.1 Related Work

Narrative Planning

Early work in story generation explored both a character-centric model that simulates
stories using autonomous character agents (Meehan, 1977) and an author-centric
model that uses a global “author” agent who controls characters like a puppet
master (Dehn, 1981). The two highlight a fundamental trade-off between character
believability and authorial control: Using autonomous characters, a system cannot

1For benchmark results and more details about this implementation I refer the reader to (Ware
and Siler, 2021).

6

fully control the trajectory and outcome of the story, though its characters will appear
believable. Conversely, with a centralized storytelling agent, the system fully controls
the story but its characters act in ways that do not appear believable to readers. Riedl
and Bulitko (2013) survey story generation systems and classify them according to
how they approach this trade-off. There are also data-driven approaches to story
generation (McIntyre and Lapata, 2009; Li et al., 2013), including recent applications
of deep learning (Finlayson, 2017; Martin et al., 2018; Yao et al., 2019), which generate
stories using large narrative datasets and do not explicitly model either character or
author agents. This work, and narrative planning in general, takes the author-centric
approach, prioritizing control over the story and having to account for character
believability in other ways.

Kybartas and Bidarra (2016) note that story generation is always in some way
mixed-initiative. They classify story generation systems by what components of
narrative are being generated, and to what extent other components are manually
authored. In the context of this survey, the present work is concerned with generating
plots (sequences of events), as opposed to what Kybartas and Bidarra refer to
as “space” (the entities and properties of the story world).2 Narrative planning
approaches use planning algorithms to automate the generation of plot sequences,
relying on manually authored domain content including action templates, characters,
entities, and setting information.

UNIVERSE (Lebowitz, 1985) is an early plan-based system that generates soap
opera style plots from a library of manually authored plot fragments. The plot
fragments themselves supply most of the melodramatic intrigue; each one represents
an interesting series of events involving a number of characters. For example, in one
fragment a character is threatened by their spouse’s domineering parent, causing the
marriage to end and the spouse to begin a new relationship, among other effects.
UNIVERSE is an author-driven system; its characters have no agency but instead
have traits and other properties that the planning system uses to determine which
plot fragments can apply and how. The system can continue storytelling after each
fragment is executed by selecting new high-level author goals to pursue, such as to
increase tension between two characters, have a character begin a new relationship,
etc.

The character believability issue is largely avoided in the UNIVERSE model;
the system relies on the manually authored content to adequately constrain plot
fragments so that they can only apply in believable contexts. For example, the
parent role in the fragment described above must be filled by a character who is
not very nice. In this way the system produces stories that are generally consistent
with characters’ personalities and current situations (if the author has modeled the
fragments appropriately), but believability is far from guaranteed. UNIVERSE’s
high-level event representation allows a great deal of authorial intent—in the sense

2Here the term “space” refers to the entities or “existents” of the story world, their properties,
and their initial configuration, similar to Ryan (2012)’s definition of story space. Elsewhere in this
document I use the term “solution space” in the planning sense, to refer to the set of solutions
generated by a planner. Additionally, I use “space” in the psychological sense to refer to the spatial
dimension of events.

7

that the human author can write content and get the kinds of stories they expect—
but it precludes the system from doing any structural reasoning about the narrative.
Furthermore it limits the system’s variety and capacity for the kinds of emergent
behavior that are possible when plot is modeled at a lower level.

Young (1999) argued for the use of partial-order planning to generate plot, in
part because its explicit representation of individual causal links between goals,
preconditions, and effects allows it to model complex causal and hierarchical
relationships between narrative events. Research has since evolved that incorporates
planning and narrative in a variety of ways, e.g. integrating planning algorithms
into story generation and interactive narrative systems (Cavazza et al., 2002;
Porteous et al., 2010); and embedding models of narrative directly into the
knowledge representation and search of the planner to create planning systems that
automatically reason about universal narrative concepts like intentionality (Riedl
and Young, 2010; Teutenberg and Porteous, 2013), conflict (Ware et al., 2014), and
suspense (Bae and Young, 2008; Cheong and Young, 2015). For a survey of planning-
based approaches to narrative generation and interactivity, see Young et al. (2013).

The present work adopts methodology from previous planners that have embedded
models of intentionality into the planner’s knowledge representation, adding to this
representation a theory of mind for characters. It builds on the contributions of several
planners beginning with the Intent-based Partial Order Causal Link (IPOCL) planner
(Riedl and Young, 2010). IPOCL is a centralized planner that uses character goals
to constrain the plan specification so that characters appear to be acting in pursuit
of their own goals. The characters are not autonomous; they cannot independently
pursue their goals. Rather, the author is the only agent and must search for a plan
that both achieves its goal and does not violate certain constraints—namely, that
each step in the plan is consistent with the motivations of the characters who take
the action. IPOCL ensures this by tracking “intention frames”, plan-like structures
that represent causally connected steps a character takes to achieve one or more
of their goals. A character action is permitted only if that action exists within an
intention frame for that character. Intention frames effectively “explain” why the
characters take each of their actions.

Ware et al. (2014) extended IPOCL to allow failed character plans and conflict
between characters in the Conflict Partial Order Causal Link (CPOCL) planner.
CPOCL preserves intention frames that cannot be fully executed, e.g. due to
conflicting actions from other characters. In other words, the existence of a plan
to achieve the character’s goal is sufficient to justify the character carrying out
actions from that plan, even if the rest of the plan does not actually happen
in the story. Refining this notion of the search space as “possible worlds” that
can be imagined by the characters and used to justify their actions, Ware and
Young (2014) introduced Glaive, a state-space implementation of the CPOCL model.
Glaive utilized advancements in state-space planning (Hoffmann and Nebel, 2001) to
achieve significant improvements in speed and efficiency compared to its plan-space
predecessors. The present work adopts Glaive’s state-space approach and its model
of intentionality, where character actions can be explained by their existence within
some suitable plan for that character, even if that plan is not part of the solution.

8

The addition of belief to this model constrains the planner to accept these character
plans (henceforth called explanations) only if the character believes that they are
possible and will achieve their goals.

Belief

Theory of mind has been modeled in character-centric narrative systems, where
characters are agents with true partial observability. The Thespian framework (Si
and Marsella, 2014) treats theory of mind as central to interactive narratives. Talk of
the Town (Ryan et al., 2015) models narrative characters that observe, misremember,
and lie. These and others like them have robust character models, but leverage little
or no centralized planning to coordinate the story. Centralized planning algorithms
that are not designed for narrative generation have modeled agent intentions and
beliefs for real world situations (Pollack, 1986), but they make assumptions that
are unhelpful for narrative problems, e.g. that agents always cooperate (Grosz and
Kraus, 1996), or always compete (De Rosis et al., 2003), or that ignorance is always
bad (Bolander and Andersen, 2011). In these systems, agents are designed to cope
with an actual lack of knowledge—seen as a challenge to be overcome—rather than
model it on purpose to tell interesting stories.

Several narrative planners have focused on character knowledge, partial
observability, and wrong beliefs, but they tend to limit theory of mind depth. For
example, Virtual Storyteller (Brinke et al., 2014) and HeadSpace (Sanghrajka et al.,
2022) use a 1-layer theory of mind, meaning they represent what is true, and what
each character believes is true, but stop short of representing what each character
believes each other character believes is true. Some, like IMPRACTical (Teutenberg
and Porteous, 2013) use a 1-layer model, but defer to a shared state for 2-or-more-
layer beliefs. Instead of modeling what each character believes each other character
believes, they use a single state representing “what everyone assumes everyone else
believes”, which can be different from reality or any particular character’s beliefs.
There are also narrative planners that include microtheories of character or audience
beliefs that are used to achieve specific narrative qualities, such as suspense (Cheong
and Young, 2015), ideal story structure (Robertson and Young, 2015), and deception
(Christian and Young, 2004), but these are not intended to be general solutions to
the belief problem.

Ostari (Mohr et al., 2018) is an author-centric narrative planning system designed
to allow agents to play games with asymmetric information. Like the present work,
it models intentional agents with unlimited theory of mind, but Ostari also models
uncertainty. Using dynamic epistemic logic, it represents all doxastically accessible
possible worlds—all the worlds each agent believes could be the real world at a given
moment. Ostari can be used for story generation, but the high cost of modeling
uncertainty limits the scope of narrative problems it can solve. In the present work,
character beliefs can be nested to any depth, but characters are committed to specific
beliefs rather than considering multiple worlds to be possible at once. This trade-off
allows the system to solve larger narrative problems while not significantly limiting
the kinds of character interactions it can generate.

9

2.2 Blackbeard Domain

For a running example I introduce a toy narrative planning domain called Blackbeard.
It includes three characters: James, Marley, and the pirate Blackbeard; and three
locations: Tortuga, Skull Island, and Port Royal. Characters can sail from one
location to another if they have a ship, or can go along with someone who has a
ship. James and Marley each want to have the treasure for themselves. Blackbeard
prefers for the treasure to be buried, but would accept having it himself over it being
anywhere else. If the treasure is buried, it can only be dug up by Blackbeard or by
someone who has a map. After someone digs up the treasure, anyone at that location
can take it. Characters can also tell each other if they have a map.

10

Figure 2.1: Example Blackbeard solution in state space

𝒔𝟑: loc(J)=S ^ loc(M)=S

^ loc(BB)=S ^ loc(Tr)=B

^ map(J) =⊤

𝒔𝟐: loc(J)=R ^ loc(M)=R

^ loc(BB)=S ^ loc(Tr)=B

^ map(J) =⊤

𝒔𝟎: loc(J)=R ^ loc(M)=R

^ loc(BB)=S ^ loc(Tr)=B

^ map(J)=⊤

𝒔𝟏: loc(J)=R ^ loc(M)=R

^ loc(BB)=S ^ loc(Tr)=B

^ map(J) =⊥

𝒔𝟓: loc(J)=S ^ loc(M)=S

^ loc(BB)=S ^ loc(Tr)=S

^ map(J) =⊤

tell-map

sail

dig

take(BB)

M

tell-map

PRE: b(J, map(J)=⊤)

EFF: 𝑏(M, map(J)=⊤)

ACT: J

OBS: J, M

sail

PRE: loc(J)=R ^ loc(M)=R

EFF: loc(J)=S ^ loc(M)=S

ACT: J, M

OBS: J, M, BB

dig

PRE: loc(Tr)=B ̂ loc(J)=S ^ map(J)=⊤
EFF: loc(Tr)=S

ACT: J

OBS: J, M, BB

take(J)

PRE: loc(J)=S ^ loc(Tr)=S

EFF: loc(Tr)=J

ACT: J

OBS: J, M, BB

take(M)

PRE: loc(M)=S ^ loc(Tr)=S

EFF: loc(Tr)=M

ACT: M

OBS: J, M, BB

action

surprise action

character belief

Key:

Actions:

M
BB

BB

𝒔𝟒: loc(J)=S ^ loc(M)=S

^ loc(BB)=S ^ loc(Tr)=B

^ map(J) =⊥

sail

BB

𝒔𝟔: loc(J)=S ^ loc(M)=S

^ loc(BB)=S ^ loc(Tr)=BB

^ map(J) =⊤

𝒔𝟕: loc(J)=S ^ loc(M)=S

^ loc(BB)=S ^ loc(Tr)=J

^ map(J) =⊤

𝒔𝟖: loc(J)=S ^ loc(M)=S

^ loc(BB)=S ^ loc(Tr)=M

^ map(J) =⊤

dig

take(BB)

PRE: loc(BB)=S ^ loc(Tr)=S

EFF: loc(Tr)=BB

ACT: BB

OBS: J, M, BB

take(J) take(M)

BBJ M BBJ M BBJ M

M BB

BB
BB

J
M

J M

J M

J J

Assignments:
loc(Tr)=B: Treasure is buried.

loc(Tr)=N: Treasure is nowhere.

loc(Tr)=S: Treasure is at Skull Island.

loc(Tr)=J: James has Treasure.

loc(Tr)=M: Marley has Treasure.

loc(J)=S: James is at Skull Island.

loc(J)=R: James is at Tortuga.

loc(M)=S: Marley is at Skull Island.

loc(M)=R: Marley is at Tortuga.

loc(BB)=S: Blackbeard is at Skull Island.

map(J)=⊤: James has a map.

map(J)=⊥: James does not have a map.

f3

f5

f1

f2

f4

J

Initial State:
loc(J)=R ̂ loc(M)=R ̂ loc(BB)=S ̂

loc(Tr)=B ̂ map(J) =⊤ ^ b(M, map(J) =⊥) ^

b(BB, map(J) =⊥)

Author Utility Function:
⟨loc(Tr)=BB → 1, ⊤ → 0⟩

Character Utility Functions:

James (J):

⟨loc(Tr)=J → 1, ⊤ → 0⟩

Marley (M):
⟨loc(Tr)=M → 1, ⊤ → 0⟩

Blackbeard (BB):
⟨loc(Tr)=B → 2, loc(Tr)=BB → 1, ⊤ → 0⟩

tell-map

Figure 2.1 shows part of the state space for a Blackbeard problem in which James
and Marley begin at Tortuga, and Blackbeard begins at Skull Island, where the
treasure is buried. Marley and Blackbeard each have a ship, and James has a map
but Marley and Blackbeard do not know this. The author’s goal, i.e. the way the

11

story should end, is for Blackbeard to have the treasure. In this image, red curved
edges represent the beliefs of a character in a given state, so in the initial state
s0, James (J) has no wrong beliefs, while Marley (M) and Blackbeard (BB) both
believe that s1 is the real state. These can be interpreted as infinitely nested beliefs
by following each belief edge in sequence. For example, in s0, Marley believes that

James believes that Marley believes s1 is the real state: s0
M→ s1

J→ s1
M→ s1.

The example solution is four steps long and comprises the five states highlighted in
gray in the left column of Figure 2.1. The actions tell-map, sail, dig, and take(BB)
represent the story where James tells Marley that he has a map to the treasure so
that she will agree to sail with him to Skull Island; They sail to the island, James
digs up the treasure, and then Blackbeard takes it. The other states in the figure
are those that the planner needs to consider in order to verify that this sequence is
indeed a solution. They represent the beliefs of characters and the plans that explain
characters’ actions in this sequence.

2.3 Problem Definition

Characters and Fluents

A problem defines a finite number of characters, special entities which should appear
to have beliefs and intentions. The term “character” is used rather than “agent”
because the narrative planner is the only decision maker, though it creates the
appearance that each character is an agent. James (J), Marley (M), and Blackbeard
(BB) are the characters in the example domain.

A problem defines some number of state fluents, properties whose values can
change over time. For some fluent f , let Df denote the domain of f , or the set of
possible values f can take on. Our implementation (Sabre) supports two kinds of
fluents: nominal and numeric. For nominal fluents, Df is a finite set of possible
nominal values. For numeric fluents, Df = R. Numeric fluents are denoted as fR.

Seven types of logical literals l are supported. The first six are given by this
grammar:

l := f = v | f 6= v | fR > n | fR ≥ n | fR < n | fR ≤ n
v := any value in Df

n := v | fR | n+ n | n− n | n · n | n÷ n

These six kinds of literals have a fluent f on the left, a relation (=, 6=, >
etc.) in the middle, and a value on the right. For nominal literals, a value is
one of Df . For numeric literals, a value is a real number, a numeric fluent, or an
arithmetic expression. Marley’s location is an example of a nominal fluent whose
domain is Tortuga, Skull Island, or Port Royal. The Blackbeard planning domain
contains no numeric fluents, but for example a character’s wealth could be represented
numerically.

The seventh kind of literal takes the form believes(c, l), which we abbreviate b(c, l),
and which means that character c believes literal l is true. Beliefs can be nested, e.g.
b(c1, b(c2, f = v)) means that character c1 believes that character c2 believes that

12

fluent f has value v. As mentioned previously, unlimited theory of mind is a key
feature of this model and thus beliefs can be nested in this manner to any depth.

Logical Expressions

Three kinds of complex logical expressions are defined: preconditions that must be
checked, effects that describe how states are modified, and utility functions that define
preferences over states.

Preconditions are converted to disjunctive normal form during pre-processing.
A process similar to Weld’s (1994) is used to compile out first order quantifiers.
Universal quantifications are replaced by conjunctions, and existential by
disjunctions:

∀v(f = v)↔ (f = v1) ∧ (f = v2) ∧ ...
∃v(f = v)↔ (f = v1) ∨ (f = v2) ∨ ...

In keeping with classical planners, preconditions and effects must be finite, so
quantifiers over numeric fluents are not permitted. The constants > and ⊥ are
considered to be in disjunctive normal form. > is a disjunction of one empty clause
and always true, while ⊥ is a disjunction of zero clauses and always false. Negated
literals are compiled out using these equivalencies:

¬(f = v)↔ (f 6= v)
¬(f > v)↔ (f ≤ v) etc.

Complex belief expressions are compiled out using:

¬b(c, x)↔ b(c,¬x)
b(c, x ∧ y)↔ b(c, x) ∧ b(c, y)
b(c, x ∨ y)↔ b(c, x) ∨ b(c, y)

Preconditions may not be contradictions. For example, the precondition b(c, f =
v) ∧ b(c, f 6=v) is not allowed.

Effects describe how the state after an event differs from the state before. Effects
can be conditional, meaning they may not apply, depending on the state before the
event. Like UCPOP (Penberthy and Weld, 1992) and Fast Downward (Helmert,
2006), Sabre represents all effects as having a condition, even if that condition is
simply >.

A single effect e can be described by this grammar:

e := p→ g
g := f = v | fR = n | b(c, g)

All effects have a condition p in disjunctive normal form. The effect p → (f = v)
means that, when p holds in the state before, fluent f has value v in the state after.
Numeric fluents can be assigned numeric values following the grammar for n given
above (i.e. n is a number, numeric fluent, or arithmetic expression). For example,
> → (fR = fR + 1) means that fR has a value one higher in the state after.

13

Effects can modify character beliefs directly. p → b(c, f = v) means that, when
p holds in the state before, character c believes fluent f has value v in the state
after. Belief effects can also be arbitrarily nested, e.g. p → b(c1, b(c2, f = v)) and so
on. Having defined a single effect, we define an effect expression as a conjunction of
effects:

(p1 → g1) ∧ (p2 → g2) ∧ ...

In keeping with classical planning, effects must be deterministic, so disjunctions
and expressions equivalent to disjunctions (like existential quantifications) are not
permitted in effect expressions. Effects may not be contradictions.

Utility functions are compiled into a normal form similar to effects. They are
conditional, but at least one condition must hold in any state. A utility function is
an ordered sequence of m conditional numeric expressions p→ n:

〈p1 → n1, p2 → n2, ...,> → nm〉

Here, m ≥ 1, p1...m−1 are conditions in disjunctive normal form, and n1...m are numeric
values following the grammar for n above (a number, numeric fluent, or arithmetic
expression). The last condition pm must be > to ensure that one case will always hold.
Utility functions are similar to if/elseif/else statements in a programming language.
To evaluate a utility function in a state, each conditional expression pi → ni is
considered in order until one where pi holds is found, then ni is evaluated. In the
Blackbeard example, Marley wants to have the treasure. Her utility function is:

〈loc(Tr) = M → 1,> → 0〉

where loc(Tr) is a fluent representing the location of the treasure, and M represents
Marley. This means that if she has the treasure, her utility is 1, and otherwise her
utility is 0.

Initial State and Goal

A problem defines an initial state s0 as an assignment of a value to every fluent, i.e.
∀f : f = v where v ∈ Df , along with assignments for any wrong beliefs that characters
initially hold. In the example problem, since James has a map (map(J) = >) but
Marley and Blackbeard believe that he does not, their wrong beliefs are included in
the initial state: b(M,map(J) = ⊥) ∧ b(BB,map(J) = ⊥) .

Beliefs that are not specified in the initial state are inferred using the following
variants of classical planning’s closed world assumption (that anything not stated to
be true is assumed false). First, if a character’s belief about a fluent is not stated, it
is assumed that they believe whatever is actually true. So if s0 |= f=v, then assume
s0 |= b(c, f = v) unless explicitly stated that s0 |= b(c, f = u) where u 6= v. Second,
characters assume that other characters have the same beliefs they have, unless stated
otherwise. If s0 |= b(c1, f=v) and there is no explicit statement for b(c1, b(c2, f=u))
where u 6= v, then assume b(c1, b(c2, f=v)). These assumptions are only used for the
initial state.

14

A problem defines an author utility function, which expresses preferences for the
states the planner should attempt to reach. A problem also defines a utility function
for each character. Recall that the planner is the only decision maker and it must
ensure that characters appear realistic. The planner chooses when and how the
characters act so that the author’s utility is increased and the characters appear to
be working towards increasing their own utility.

In the example problem in Figure 2.1, the author has specified that the planner
should only accept stories where Blackbeard (BB) gets the treasure; The author’s
utility function is:

〈loc(Tr) = BB → 1,> → 0〉

James and Marley have utility functions similar to the author’s, except they
each want to have the treasure themselves. Blackbeard’s utility function is slightly
different:

〈loc(Tr) = B → 2, loc(Tr) = BB → 1,> → 0〉

Blackbeard prefers for the treasure to be buried (B), but if it is not buried, he
would rather have it himself (BB) than any other alternative.

Events: Actions and Triggers

Events change the world state. Domain authors can create two kinds of events:
actions, which the planner can choose to take, and triggers, which must occur when
they can.

An action a defines a precondition expression pre(a) and an effect expression
eff(a). It also defines a set of 0 to many actors act(a). Actors are the characters
responsible for taking the action. For an action to make sense in a narrative plan,
every actor needs a reason to take the action.

Actions also define when characters observe them occurring. Formally, an action
a defines a function obs(a, c): For any character c, obs(a, c) returns a precondition
expression p such that, when p holds, c observes action a occur. When a character
observes an action, they update their beliefs based on the action’s effects. When a
character does not observe an action, their beliefs remain the same (unless explicitly
modified by the effect).

For example, the tell-map action is defined below, where a character c1 tells
another character c2 that they (c1) have a map, at some location l:

Action a: tell-map(c1, c2, l)
pre(a) : b(c1,map(c1)) = > ∧ loc(c1) = l ∧ loc(c2) = l
eff(a) : > → b(c2,map(c1)) = >
act(a) : {c1}

obs(a, c) : loc(c) = l

Consider the instance of this action where c1 is James, c2 is Marley, and l is Tortuga.
This action can only occur if James believes that he has a map and James and Marley
are both at Tortuga (pre(a)). After it occurs, Marley believes that James has a map

15

(eff(a)). Only James is an actor (act(a)), because he is the only one who needs a
reason to take the action. The action can occur whether or not Marley wants it to
happen. Finally, the action is observed by any character whose location is Tortuga
(obs(a, c)). They will know that Marley believes James has a map, whereas those
not at Tortuga will not know.

Triggers are events that must happen when their preconditions are met. A trigger
t defines pre(t) and eff(t) as above. Any time the world is in a state where pre(t)
holds, eff(t) must immediately be applied to change the world state. Actions advance
time, but triggers do not. In other words, after time is advanced by taking an action,
any number of triggers may then apply to update the state, but they happen instantly.
If multiple triggers can apply in a state, the system chooses arbitrarily. To ensure
determinism, triggers should not be defined such that their outcome depends on order
of execution.

Triggers are similar to the axioms and derived predicates of PDDL planners
(Thiébaux et al., 2005), but not identical. Notably, triggers modify state fluents
directly rather than deriving new predicates from them. Triggers are convenient for
modeling belief updates based on character observations. Consider this example,
which means “When characters c1 and c2 are in the same place, c1 sees that c2 is
there.”

Trigger t: see(c1, c2, l)
pre(t) : loc(c1) = l ∧ loc(c2) = l ∧ b(c1, loc(c2) 6= l)
eff(t) : > → b(c1, loc(c2) = l)

Suppose James is at Tortuga and believes Blackbeard is at Port Royal, but really
Blackbeard is at Skull Island. If James then sails to Skull Island, he would share
a location with Blackbeard while believing that Blackbeard is someplace else. This
trigger would then apply, correcting James’s wrong belief about Blackbeard’s location.

Triggers represent rules of the world common to all, so they do not define actors or
observation functions. Triggers are effectively observed by any character who believes
their precondition holds. If a character believes a trigger can happen in a state, then
it does, regardless of whether they want it to.

Action Results Action effects have a finite number of conjuncts as specified by the
domain author, but because actions can be observed and because there is no limit on
the depth of theory of mind, actions can cause infinitely many changes to the world
state. In the tell-map example, when Marley’s belief is updated, James knows it,
and knows that Marley knows it, and knows that any bystanders know it, and knows
that they know that she knows it, and so on.

Let res(a) be the results of action a, a possibly infinite conjunction composed of
the action’s explicitly authored effects and any effects implied by observations. Its
conjuncts are in the same format as above, p → g, where p is a condition and g is
either an assignment of a value to a fluent or a belief. res(a) is defined by these two
rules:

16

1. res(a) |= eff(a)
2. ∀c : (res(a) |= p→ g)⇒

(res(a) |= (obs(a, c) ∧ b(c, p))→ b(c, g))

The first rule states the results of a include the effects of a. The second defines results
implied by observations. If res(a) includes the effect p → g, character c observes
action a occur, and c believes the condition p holds, then c will subsequently believe
g. If Blackbeard is at Tortuga when James tells Marley that he has a map, then
Blackbeard will subsequently believe that Marley believes that James has a map,
even though this was not explicitly authored as an effect of the tell-map action.

Fortunately, there are a finite number of preconditions that ever need to be
checked—those that appear in event preconditions, action observation functions,
effect conditions, and utility conditions. During pre-processing, Sabre calculates all
relevant results (i.e. all results that would affect this finite list of preconditions),
adding explicit effects to actions so that all relevant results are accounted for.

State Space

The planner starts at the initial state and searches forward through the space of
possible future states for a solution. To save memory, Sabre does not store a state
as an array of values for each fluent; instead, it stores the history of events that led
to that state, and when it needs to know the value of a fluent, it looks back through
the history for the last time the fluent was modified.3

Let s be a state, and let σ(e, s) denote the state after event e (recall an event is
an action or a trigger). For any literal l, we can determine if l holds in σ(e, s) using
this procedure:

if e has result p→ g, and p holds in s, and g |= l then
return > . Case 1

else if e has result p→ g, and p holds in s, and g ∧ l→ ⊥ then
return ⊥ . Case 2

else if pre(e) |= l then return > . Case 3
else if pre(e) ∧ l→ ⊥ then return ⊥ . Case 4
else if l holds in s then return > . Case 5
else return ⊥ . Case 6

There are six cases. Case 1 states that l holds if e has a result (whose condition
holds) which makes l true. Case 2 states that l does not hold if e has a result which
contradicts l. Consider the precondition fR > 1. The effect fR = 0 is not an exact
negation of it, but fR > 1 ∧ fR = 0 is a contradiction, so this effect would make that
precondition ⊥.

3The first proposed representation of this model used states that were complete assignments of
all non-belief fluents, and beliefs were represented as epistemic edges between these states (Shirvani
et al., 2017), much like the graph shown in Figure 2.1. The graph method entails identifying when
duplicate nodes have been created, which requires graph isomorphism checks. Since states are only
identical if they contain all the same character beliefs, checking if two states are duplicates requires
comparing not just the two states themselves, but also all the states the characters believe in those
states, and what they believe in those states, etc. This makes expanding nodes costly; Sabre’s
representation avoids this cost in exchange for the higher cost of evaluating a given state fluent.

17

In contrast with classical planning, σ(e, s) is defined for any event from any state,
regardless of whether the event’s precondition holds in that state. This is to account
for characters observing events which they wrongly believed were impossible. When
a character observes such an event, they first update their beliefs so that the action’s
precondition holds, and then update their beliefs based on its effect. In Figure 2.1,
s4 represents the state Blackbeard believes to be the real state when the actual state
is s3 (i.e. after tell-map and sail have occurred). In s4, James does not have a map,
so s4 6|= pre(dig), yet dig nevertheless occurs and is observed by Blackbeard. When
Blackbeard observes James digging up the treasure, he first learns that James has a
map and then considers the effects of the action. Cases 3 and 4 express this—that
l holds if it is implied by e’s precondition, and does not hold if it contradicts e’s
precondition. Since cases 1 and 2 are checked first, 3 and 4 only apply when l was
not changed by a result of the event. If none of these cases apply, event e has no
bearing on l, so we check l in the previous state s (cases 5 and 6).

Recall that a trigger must be applied when its precondition holds, and triggers
happen instantly. When the world state is s and there exists a trigger t such that
s |= pre(t), the world must immediately transition to σ(t, s). For an event e and
state s, the notation α(e, s) refers to the state of the world after taking event e and
then applying any relevant triggers. α is defined recursively as:

function α(e, s)
if ∃ trigger t such that σ(e, s) |= pre(t) then

return α(t, σ(e, s))
else return σ(e, s)

As shorthand, let α({a1, a2, ..., an}, s) represent the state after a sequence of n actions
taken in that order from state s. Importantly, characters should not be able to
anticipate an event whose precondition does not hold. We say that an event e is
foreseeable in state s when s |= pre(e), and unforeseeable when s 6|= pre(e). Likewise,
α({a1, a2, ..., an}, s) is foreseeable iff each action is foreseeable in the state before it
occurs, i.e. s |= pre(a1) ∧ α(a1, s) |= pre(a2) ∧ α({a1, a2}, s) |= pre(a3), and so on.

Explanations and Solutions

Informally, a solution is a sequence of actions which can be executed from the initial
state, leads to a state where the author’s utility is improved, and in which every
action is explained, i.e. characters taking the action believe the action can lead to
increasing their utility.

The notation u(cauthor, s) denotes the author’s utility in state s; u(c, s) denotes
the utility of character c in state s; and β(c, s) refers to what a character c believes
the state to be when the actual state is s. β(c, s) is defined by this equivalence:

s |= b(c, l)↔ β(c, s) |= l

An action a1 is explained in state s when it is explained for all of act(a1), its
actors. An action a1 is explained for a character c in state s when:

1. There exists a sequence of n ≥ 1 actions {a1, a2, ..., an} that starts with a1.

18

2. α({a1, a2, ..., an}, β(c, s)) is foreseeable.

3. u(c, α({a1, a2, ..., an}, β(c, s))) > u(c, β(c, s)).

4. All actions ai where i > 1 are explained in the state before they occur; i.e. a2
is explained in α(a1, β(c, s)), a3 is explained in α({a1, a2}, β(c, s)), and so on.

5. No strict subsequence of {a1, a2, ..., an} also meets these 5 criteria and achieves
the same or higher utility.

Requirement #1 states that there exists a plan which starts with action a1. #2 states
that character c believes the plan can be executed. In other words, the whole plan
must be executable from β(c, s), even if it cannot be executed from s, perhaps because
c has wrong beliefs. #3 states that c believes the plan will lead to a state where their
utility is higher (even if it actually will not). #4 states that the rest of the actions
(after a1) must also be explained. This means that if the plan relies on actions by
other characters, those actions must make sense for those characters according to c.
#5 states that the sequence should not include redundant or unnecessary actions. For
example, James cannot plan to sail to Skull Island, then sail back to Tortuga, then
sail to Skull Island again, dig up the treasure and take it. This plan is redundant;
the first two actions could be removed and it would still achieve the same utility.

As an example, consider the sail action in Figure 2.1, where James and Marley
sail together from Tortuga to Skull Island. Would this action be explained in the
initial state, s0? Recall that in the initial state, Marley believes that James does not
have a map.

To be explained, it must be explained for all of its actors (James and Marley in
this case). It is explained for James: He can imagine a plan to sail to Skull Island,
dig up the treasure, and take it. This plan begins with the action in question, sailing
to Skull Island (#1). The plan is possible based on his current beliefs (#2), and
he thinks it will lead to a state where his utility is higher (#3). James is the only
actor for the dig and take actions, so these do not need to be explained for any other
characters (#4), and there is no strict subsequence of this plan that would also work
(#5). Therefore the sail action is explained for James in the initial state. However,
Marley does not believe it is possible for James to dig up the treasure, since she
wrongly believes he does not have a map. Although there is a plan that starts with
sail and increases Marley’s utility—sail with James, let James dig up the treasure,
then take the treasure—it is not possible given her beliefs (#2). In fact there is no
possible plan according to her beliefs that meets all the other criteria. The sail action
is therefore not explained in the initial state, since it cannot be explained for one of
its actors. It can, however, be explained after James tells Marley that he has a map,
as in the solution shown in the figure.

Having defined explained actions, we can now formally define a solution. Let s0
be the initial state. A solution to a problem is a sequence of n actions {a1, a2, ..., an}
such that:

1. α({a1, a2, ..., an}, s0) is foreseeable.

19

2. u(cauthor, α({a1, a2, ..., an}, s0)) > u(cauthor, s0).

3. All actions in {a1, a2, ..., an} are explained in the state immediately before they
occur.

In short, the plan is possible, improves the author’s utility, and contains no
unexplained actions.4

Pre-Processing and Simplification

A subtle challenge arises when dealing with triggers and beliefs. Triggers are not
only checked in the current state s, but also in every character’s beliefs. Consider an
example trigger, where x and y are shorthand for any two literals:

Example trigger t:
pre(t) = x ∧ ¬y
eff(t) = > → y

And imagine c is a character and the state is:

x ∧ y ∧ b(c, x) ∧ b(c,¬y)

The trigger does not apply in this state, but it does apply in β(c, s). The state should
immediately transition to:

x ∧ y ∧ b(c, x) ∧ b(c, y)

The above procedure defining α fails to capture this case. Even if it did, since Sabre
does not limit how far theory of mind can be nested, it is difficult to know how many
levels of beliefs need to be checked to make sure all triggers have been applied. A
solution to this problem is proposed in (Shirvani et al., 2017), but it requires expensive
graph isomorphism checks. Sabre works differently.

During pre-processing, for every character c, if there exist a trigger t with the
effect p → g, and b(c, g) is in the set of all possible preconditions, a new trigger t′

4Previous publications have included a fourth rule here similar to rule #5 for explanations: that
no strict subsequence of {a1, ..., an} also meets these criteria. In this document and all evaluations
herein, that rule is not applied to solutions. The motivation to use the subsequence rule for solutions
was to reject stories that contain unnecessary steps, or steps that do not contribute to the author’s
goal (though they are explained for the characters). For instance, a character may walk back and
forth between two locations if they have goals relevant to each one. They are effectively changing
their mind about which goal to pursue, and since commitment to plans is not modeled, this behavior
is allowed by the definition given here. Enforcing the subsequence rule for solutions is one way to
exclude some unwanted stories like this, but it also removes other stories that are not unwanted.

For example, in the Grammalot domain (to be introduced in Section 3.2), enforcing this rule
would exclude any story where the guard arrests the bandit, since the bandit being arrested does
not contribute to either of the endings (Tom succeeding or failing). One could argue that if the
author wants it to be possible for the bandit to be arrested, they can specify this in the author
utility function; but I would contend that it is an unnecessary burden for the author to have to
specify which character goals are allowed to be achieved. As long as the author’s utility is ultimately
increased, characters should be allowed to take any action they have reason to, because this can
help communicate their motivations, provide resolution, and contribute to the story in other ways.

20

Algorithm 1 The Sabre algorithm

1: Let A be the set of all actions defined in the domain.
2: sabre(cauthor, s0, ∅, s0)
3: function sabre(c, r, π, s)
4: Input: character c, start state r, plan π, current state s
5: if u(c, s) > u(c, r) then
6: if c = cauthor or π is non-redundant then
7: return π
8: Choose an action a ∈ A such that s |= pre(a).
9: for all c′ ∈ act(a) such that c′ 6= c do

10: if a is unforeseeable in β(c′, s) then return failure.

11: Let state b = α(a, β(c′, s)).
12: if sabre(c′, β(c′, s), {a}, b) fails then return failure.

13: return sabre(c, r, π ∪ a, α(a, s))

is generated with pre(t′) = b(c,pre(t)) and eff(t′) = b(c,eff(t)). This ensures
triggers also account for all relevant effects. To use the earlier example:

Original trigger t:
⇒

New trigger t′:
pre(t) = x ∧ ¬y pre(t′) = b(c, x) ∧ b(c,¬y)
eff(t) = > → y eff(t′) = > → b(c, y)

The preconditions of these new triggers may add to the set of all possible precondition
literals, so the process is repeated until no new triggers are needed. It is possible to
construct triggers that would cause this process to run infinitely, in which case one
would need to revert to the graph-based solution, but in practice such a domain has
not been encountered.

Sabre also uses methods adapted from other planners (Hoffmann, 2003; Helmert,
2006) to simplify the problem by detecting propositions which must always be true
or false. This sometimes allows the removal of fluents, actions, and triggers from the
domain to reduce the time and memory required during search.

2.4 Search

Sabre’s search procedure is given in Algorithm 1. It takes four inputs: the character c
for whom to find a plan, the state r where the search began, a plan π, and the current
state s. The plan π is the sequence of actions that can be executed from r to reach
s. sabre can find a plan for any character from any state. The initial call to sabre
(line 2) uses the special author character cauthor, the initial state of the problem s0,
and the empty plan ∅.

sabre starts by checking if c’s utility is higher in s than it was in r (line 5).
If so, then this is either a solution (if c is the author) or a possible explanation
for a character. For an explanation to be valid, the plan must not contain any
unnecessary actions. If the current plan is not a solution or a valid explanation, we
nondeterministically choose an action a to add to the plan. Before exploring further,

21

Sabre checks whether that action can be explained for all its actors other than c (lines
9 to 12). When c is cauthor Sabre needs to find an explanation for all the actors. When
c is a character other than the author, that character must be able to anticipate the
cooperation of other characters who are part of their plan. For example, James must
expect that Marley will consent to the sail action in order to include it in his plan.

There are two cases where a cannot be explained for an actor c′. The first is when
α(a, β(c′, s)) is unforeseeable (line 10), meaning c′ does not think a is possible. The
second is when c′ cannot imagine a plan starting with a that improves their utility
(line 12), so they have no reason to take it. For example, Marley cannot expect
Blackbeard to dig up the treasure, because she knows that this wouldn’t improve
Blackbeard’s utility. If the action can be explained for all actors besides c, we add a
to the plan, advance the current state to α(a, s), and recursively call sabre.

If the first call to sabre on line 2 returns a plan, it is a solution to the problem; it
is possible from the initial state (all actions’ preconditions hold when they occur), it
leads to a state where the author’s utility is higher, and all actions can be explained
for the characters who take them. sabre may not terminate if no solution exists, so
in practice we impose a maximum depth on the search.

2.5 Evaluations

A human subjects evaluation demonstrated that the model accurately tracks nested
beliefs (Shirvani et al., 2017). Three stories were generated, each in a different
domain, that included narrative elements like deception, cooperation, anticipation,
and surprise. Subjects were assigned one of the three stories, first reading a
description of its initial state and then answering comprehension questions about the
world and the characters’ initial beliefs. Responses were removed from the analysis
if the subject misunderstood the initial state (answered any of these comprehension
questions incorrectly). Story actions, translated into simple English sentences, were
then displayed one step at a time. At certain points throughout the story, subjects
were asked questions about characters’ current beliefs, including nested beliefs up to
two levels. In total, data was collected for 54 of these belief questions across the three
different domains.

Sabre’s belief model, along with a 1-layer limited belief model and a model lacking
belief, were tested for accuracy compared to the human data, on all questions for
which subjects’ answers were in agreement (94% of questions). Sabre achieved 100%
accuracy, while the 1-layer and zero belief models achieved only 49% and 44%,
respectively. This means that for these stories, readers tracked characters’ beliefs
in a way that previous models fail to capture, but that the Sabre model captures
with complete accuracy.

Sabre’s explanations represent the plans that explain or justify characters’ actions
and are responsible for ensuring character believability. To evaluate whether this
belief model improves overall believability compared to previous models, we asked
human subjects to assess the believability of different plans from the perspective of
a character in a story (Shirvani et al., 2018).

22

Figure 2.2: Six types of character plans

Figure 2.2 depicts the overlapping spaces of different definitions for character
plans. The oval labeled C represents the classical plan constraint, where each action
is possible when it occurs. B represents the belief constraint, where each action will
be possible when it occurs, according to the beliefs of the character at the beginning of
the plan. I is the constraint that plans must achieve the character’s goal (or increase
their utility), either in reality or in the mind of the character. Previous intentional
planners such as Glaive constrain character plans to be possible in reality (C) and to
achieve the character’s goal (I), the combined regions labeled iv+ v. Sabre plans are
represented by regions v + vi: plans that the character believes are possible (B) and
will achieve their goals (I), regardless of whether they are or will in reality.

Using a Blackbeard problem, we generated every possible pairing of a partial story
(a sequence that is foreseeable from the initial state), and a plan for Marley that falls
into any of the regions in Figure 2.2, where the story and plan lengths combined did
not exceed 7 steps. From the state at the end of the partial story, all plans were either
possible in reality or according to Marley’s current beliefs, or both. The plans were
tagged based on whether they satisfied each constraint in the diagram for Marley in
that state.

The evaluation aimed to compare the believability of Sabre plans and plans in
the other regions, given the same partial story. For some partial story, two plans
paired with that story were randomly sampled from two different spaces and shown
to participants. The partial story was displayed first, with each step translated into
a simple sentence in third person and present tense (e.g. “James and Marley sail to
Skull Island”). After these steps, the two plans were displayed side by side, translated
into future tense and first person from Marley’s perspective (e.g. “James and I will
sail to Skull Island”). We asked subjects which of the two plans made more sense for
Marley to be considering at that time in the story. Each data point therefore reflects
a preference for one class of plans over another.

Regions of interest were grouped, and comparisons were made between groups by
counting the number of times a subject preferred a plan from any region in the first
group over a plan from any region in the second group, and vice versa. The binomial
test then determines whether plans from one group were favored significantly more
often than the other. Sabre plans (v + vi) were perceived as more believable than
non-Sabre plans (i+ ii+ iii+ iv) with p = .014. In the original publication, we were

23

unable to draw more specific conclusions, such as whether Sabre plans were preferred
over Glaive plans. A later investigation into why this was the case revealed a factor
that caused some plans to be less believable for a separate reason, which is relevant to
this document because it pertains to domain authoring and suggests a direction for
future work in character believability modeling. When we account for this factor via
filtering, we do find a significant preference for Sabre plans over Glaive plans. The
section below describes this additional analysis, which has not yet been published
elsewhere.

Inefficient Plans

After subjects in the above experiment answered which plan made more sense between
the two options, they were also asked to identify (via checking boxes) which steps
in the rejected plan, if any, they deemed to be flaws. Examination of this data
revealed that steps where Blackbeard sails to Tortuga were reported as flaws far
more frequently than any other step.

In the Blackbeard problem used for this study, Blackbeard begins at Skull Island,
and his goal is to have his treasure and be at Port Royal (note that this is different
from the example in Section 2.2, in which he wants his treasure to remain buried).
In this problem, Blackbeard almost never has a reason to be in Tortuga. However,
since the domain allows characters to sail between any two islands, it is considered
reasonable for him to sail to Tortuga just so that he can then sail from Tortuga to
Port Royal, as if Tortuga is a step along the way. Even though sailing directly from
Skull Island to Port Royal would have taken fewer steps, the existence of this shorter
plan does not invalidate the longer plan (it is not a subsequence of it; see Section
2.3). Humans realize that the shorter plan makes more sense than the longer plan,
and for some people this weakened the believability of the longer plan.

The model does not and should not limit characters to only form optimal plans.
This would force characters to be perfectly rational, which is not typical of stories.
Furthermore it can be useful towards the author’s goals for characters to be allowed to
pursue longer plans than necessary. However, plan efficiency is one element by which
people commonly evaluate character believability, and sometimes this behavior does
not appear believable. It may be possible in future work to further improve character
believability by constraining explanations to better account for plan efficiency. For
now, the model errs on the side of inclusion and allows characters to make inefficient
plans because this includes more stories in the solution set (which can be filtered out
later).

To examine the effect of Sabre’s belief model on believability in the absence of
the efficiency question, I carefully reviewed all responses and removed those where
the participant reported a flaw that demonstrated an inefficient plan (a character
sails to some location other than their actual destination at that moment). The filter
disproportionately removed data where subjects had rejected Sabre plans over others.
Inefficient plan steps represented the majority of flaws that were reported for Sabre
plans. The results after this filter are shown in Table 2.1. Hypothesis 1 (Sabre plans
are preferred over the rest) is now supported with p < .001, and additionally Sabre

24

Hypothesis Regions Successes / Total P -Value
1 v + vi � i+ ii+ iii+ iv 63 / 93 p < .001
2 v + vi � iv + v 30 / 46 p = .028
3 v + vi � i+ ii+ iv + v 62 / 93 p < .001

Table 2.1: Results after filter

plans are preferred over plans using previous intentionality models (p = .028) as well
as classical plans (p < .001).

This study demonstrates that Sabre’s model of belief improves character
believability over previous models. Notably, however, it can still allow characters
to appear to do things unnecessarily: When a shorter (or for other reasons perceived
better) plan is available, a pursued plan may seem unreasonable. For now, it falls
to the domain author to recognize and eliminate this kind of behavior when it is not
wanted.

2.6 Limitations

Modeling theory of mind improves character believability over previous intentionality
models and allows more complex character interactions, but it is computationally
expensive. An obvious direction for future work is to explore improvements to
the search process via pruning and better heuristics that account for beliefs and
intentions. This approach dramatically improved performance for other narrative
planners like Glaive and IMPRACTical. It is also worth noting that although the
model does not limit theory of mind depth, in practice a limit can be imposed in order
to speed up search. For example, there is some research suggesting that 3-4 levels
of nesting may be sufficient to cover most scenarios found in literature (Zunshine,
2022).

Uncertainty is not modeled, meaning characters cannot be unsure about the state
of the world. They commit to a set of beliefs about everything, and do not consider
any other world to be possible. Because of this, it may be difficult to construct
certain types of domains for which information and deduction are a central focus, e.g.
murder mystery stories (Eger, 2020). Modeling true uncertainty comes with a high
computational cost, but a limited model could still improve the system’s capabilities
and is worth exploring in future work.

Character believability is improved but by no means perfect. One example is
described above, where believability suffered when characters pursued unnecessarily
long plans. Similar problems might be caused by characters leaving plans incomplete
or changing plans without reason. Future work may explore ways of eliminating this
unwanted behavior, e.g. by modeling plan costs, preferences over plans, commitment
to plans, etc. Believability may also be improved by modeling personality and emotion
(Shirvani and Ware, 2019, 2020), which could give the author more control over how
characters act on an individual basis.

The belief model improves authorability in the sense that it provides a simple

25

syntax for authoring belief mechanics that would otherwise be extremely difficult
to program by hand. Yet the general problem of author burden remains. Domain
authors must still define fluents, actions, triggers, and utility functions, and evaluating
these definitions is difficult because solution spaces are so large and complex. Human
authors will make mistakes and wrongly expect certain stories or sequences to be
present or absent in the solution space, and it can be difficult both to notice these
problems and to identify their cause. The belief model further complicates this issue
because it adds more automatic reasoning that the planner does behind the scenes,
and therefore more ways for unexpected situations to arise.

In fact, the same would likely be true for other models and features that improve
believability, such as those suggested above. As narrative models continue to increase
in complexity so that they can further hone in on the ideal set of acceptable stories,
their solution spaces will become increasingly difficult to evaluate. It may therefore
be essential to first address the problem of solution space summarization so that
adequate domains can be created to facilitate and test these increasingly complex
narrative models. The methodology presented in Chapter 3 aims to benefit future
research in this area by enabling meaningful summarization of solution spaces that
can help domain authors understand and debug domains more effectively.

26

Chapter 3 Summarizing Solution Spaces

For interactive narrative domain authors, it is critical to understand and be able
to evaluate all the branches of the story world being created. Narrative planners
can produce solution spaces that are far too large, detailed, and repetitious for
humans to simply read and comprehend. This is by design—and the very reason
for using narrative planning—but without a means of summarizing these spaces,
domain authors cannot know if they are creating the kinds of stories they intend to
create. Authoring tools can help people understand solution spaces better, e.g. by
allowing them to test whether certain conditions, actions, or sequences are possible
or impossible, or providing an interface for exploring solution spaces manually. These
are useful tools, but they require the user to know what they are looking for. What
is missing is a high-level view of the solution space, and a means of organizing the
stories so that they can be explored more efficiently. Clustering stories based on their
similarity can solve this problem; it can visualize the story space as a whole and
guide authors to evaluate stories in meaningful groups, providing significant aid in
designing, editing, and debugging story domains.

Clustering stories for humans requires a measurement of similarity, or a distance
metric, that captures what humans perceive to be similar and different about two
stories. This problem is challenging because humans often have very different ideas
about what makes stories similar than the algorithms that created them do. This
chapter presents a story distance metric that captures the human perspective of story
similarity using a cognitive model of narrative comprehension and memory. It then
demonstrates how the proposed distance metric can be used to cluster solution spaces
into meaningfully different branches that help communicate their content effectively.

My approach to similarity is inspired by research into meaningful choices
in interactive narratives. Although many other factors contribute to choice
meaningfulness (Iten et al., 2018), one study (Cardona-Rivera et al., 2014) suggests
that people find choices more meaningful when their expected outcomes are
sufficiently different from each other in terms of their situational properties—whether
they involve the same characters, locations, and other entities. This is based on the
event-indexing situation model (EIM) (Zwaan et al., 1995; Zwaan and Radvansky,
1998), a cognitive model that describes how narrative events are processed, stored,
and retrieved in memory. Building on this capability of the EIM to capture
meaningful differences between story events, this work extends the model to capture
meaningful differences between entire stories.

3.1 Related Work

Situation Models in Narrative Planning

Psychological research in narrative comprehension has established the theory of
cognitive situation models (Van Dijk et al., 1983; Johnson-Laird, 1983), in which

27

a reader maintains a mental model of the current situation, and actively updates
it as new information is perceived. The event-indexing model (EIM) (Zwaan et
al., 1995; Zwaan and Radvansky, 1998) posits that events are the focal points of
narrative situations, and that they are indexed along at least five dimensions, labeled
protagonist, time, space, causality, and intentionality (the who, when, where, how,
and why of each perceived event); and that they are stored in short- and long-term
memory as a network of nodes connected through links in these dimensions. During
narrative comprehension, new events can be processed (integrated into the mental
situation model) more quickly if they share any index with any previous events, and
previous events are easier to recall if they share any index with the current situation
model. Humans also appear to segment continuous perceived behavior in general into
discrete events along these dimensions (Newtson, 1973; Radvansky and Zacks, 2011).

The protagonist index was originally described as linking together events that
involve the story’s protagonist. This definition requires that a specific story
protagonist be established, which is not always the case, so it is often generalized to
include other important characters and even objects the reader is actively tracking.
The time index links events that occur in the same time frame, where the time frame is
updated whenever the narrative discourse indicates a time shift, such as night falling,
weeks passing, etc. The space index links events that occur in the same location.
The causality index links events that are causally related, i.e. there is a link between
events if the earlier event enables the later event in some way. The intentionality
index links events that are motivated by the same goals, i.e. they occur for the same
reason.

These indices were first mapped onto narrative planning events in Indexter
(Cardona-Rivera et al., 2012), which explicitly tracks the salience of previous story
events based on the indices they share with the most recently experienced event
(representing the current situation model). The authors suggest this technique could
be used to manipulate narrative qualities that are based on memory and expectation,
like surprise or suspense. Indexter, along with the present work, assumes that
characters, locations, and time frames are represented in the planning domain as
unique symbols, making it easy to determine whether two events share any of these
indices. Causality is modeled explicitly by the planner, and Indexter accounts for
intentionality using IPOCL’s frames of commitment (Riedl and Young, 2010), which
reflect what specific goal a character is pursing when they take each of their actions.

Under the Indexter model, the salience of a past event is calculated based on
the presence or absence of shared indices with the event currently being perceived.
A value is given for each index: 1 if the past event being recalled, ei, shares that
index with the current event, en; otherwise 0. Indexter also allows each index type
to be assigned a weight coefficient corresponding to the strength of its individual
contribution to salience, such that the total salience will be between 0 and 1. The
salience of the past event ei is calculated as:

salience(ei, en) = wtten + wssen + wppen + wccen + wiien

where t, s, p, c, and i are respectively the time, space, protagonist, causality, and

28

intentionality indices of an event, and w∗ are the weights of each index. The indices
are assumed to be equally weighted (w∗ = 0.2), in lieu of a better set of weights
supported by evidence. The present work does not provide a general answer to this
question, but sheds some light on it by demonstrating the effects of different index
weightings in an example domain.

A later study validated this model by measuring readers’ response time when asked
questions about previous events (Kives et al., 2015). Readers tended to respond faster
when the past event shared one or more indices with the current event than when it
did not. Cardona-Rivera and Young (2014) also proposed a more nuanced salience
calculation that scales the salience of a past event according to the total index overlap
between the situation model and all the events in the story. Thereby, for example,
the strength of the recall effect from a story location that only appears a few times
would be stronger than that of a frequently used location.

One study measured player agency through choice meaningfulness, finding that
two story situations, or events, are meaningfully different when they differ along
situational dimensions (Cardona-Rivera et al., 2014).1 This was captured with a
situation vector that represents a person’s mental model of a situation. The vector is
a four-tuple 〈S, T,G,C〉 encoding the perceived space, time, goals (of the player), and
characters involved in the situation. Two situation vectors v1 and v2 are considered
different when ∆(v1, v2) > 0, where ∆ of two vectors returns a number between 0 and
4 indicating the number of indices that are equal between them. Thus, two events
are considered different when they differ by any dimension. Notice that the causality
index is missing from this vector. Comparing the situational similarity of two events
that are both one step in the future—rather than two events that occur at different
points in the same linear story—renders the causality index useless. Two possible
outcomes of the same choice cannot share the causality index, since one cannot be
the causal ancestor of the other if they are both already enabled.

In my own previous work, we explored whether we could predict and influence
players’ choices for story endings using Indexter’s model of salience (Farrell et al.,
2020). We found that people tend to prefer endings that share indices with previous
choices they had made that were situationally different (i.e. more meaningful choices,
according to the study described above). In other words, players preferred endings
that reminded them of their meaningful choices. Once they have made decisions that
cause certain entities—locations, times, goals, and characters—to be more salient
than others, they are more likely to prefer endings that reuse those same entities.
The causality index was not used in this study, either, for similar reasons.

These studies (Cardona-Rivera et al., 2014; Farrell et al., 2020) highlight the
important role that the situational dimensions play in how humans perceive the
branching of interactive stories. Situational differences between the outcomes of
branching points (player choices) indicate to the player that the story is branching
in a more meaningful way. Making a choice that steers the story in some direction

1This is based on Murray’s (1997) definition of agency as the satisfying ability to make
meaningful choices and observe their consequences—though other definitions also exist (Wardrip-
Fruin et al., 2009).

29

along these dimensions establishes an important reference point for the player that
can be used to model their preferences for the ending. We assume this is because the
most satisfying ending is the one that makes the player’s choices feel most relevant
or impactful. Notably, the causality index was not used, so this is not the same as
reincorporation (Tomaszewski, 2011), whereby a player’s action is made necessary
by the ending. In this case the ending simply reminds the player of their previous
choice because it involves some of the same story entities. The present work extends
these notions to model overall difference or similarity between stories by comparing
the salience of all story entities at the end. The idea is that stories, like events and
branching directions, are perceived as more similar when the same entities are used,
and less similar when different entities are used.

Story Similarity

It is useful to distinguish between two broadly defined types of similarity that can
exist between stories: those that describe the discourse, or presentation of the stories
(non-structural similarities); and those that describe the stories’ fictional events
and the relationships between them (structural similarities). Studies have shown
that without reflection, humans often base their assessments of story similarity on
discourse elements like presentation style, setting, types of events, linguistic features,
and more (Löwe, 2011; Fisseni and Löwe, 2012). However, there is also evidence
that humans are capable of identifying structural similarities and comparing stories
independently of the presentation layer, especially when prompted to do so (Fisseni
and Löwe, 2012). The present work deals with generating and analyzing narratives
at the plot level, and so is specifically concerned with structural similarities.

Several formal frameworks have been proposed for modeling structural similarities
between narrative texts (Löwe, 2011; Bod et al., 2012; Reiter, 2014). These seek to
capture the extent to which humans would judge two stories to be “the same story”,
based exclusively on structural features like causality, the role of the protagonist,
temporal ordering, expectations, and more. Narrative plans already define many of
the same structural features; the present work aims to formalize a model of overall
similarity between two narrative plans.

One way to compare narrative plans is to treat them simply as classical plans
and use classical plan distance metrics. For example, it is common to measure the
difference between two plans as the set difference between the sets of unique actions
in each plan (Srivastava et al., 2007). A more nuanced method is the edit distance, or
number of editing operations required to convert one plan into the other (Levenshtein,
1966). Edit distance can be applied at different levels of granularity, e.g. an editing
operation may be to replace an action with another action, or to replace a single
parameter within an action with a different symbol. These are useful metrics of
structural similarity, but they are limited. They only measure syntactic differences
between the plans, and do not utilize any story-specific information modeled by the
narrative planner, such as the relative importance of characters (as opposed to other
symbols) and their intentions, conflicts between them, and so on.

30

Story plans can also be translated into natural language, at which point linguistic
methods could be used to assess their overall similarity. Methods like BLEU and
ROUGE (Papineni et al., 2002; Lin, 2004) evaluate the quality of system-generated
text based on the degree of n-gram overlap with a target text written by humans.
The same techniques can be applied to measure the similarity of two translated
stories based on their lexical overlap; however these metrics have many well known
weaknesses. For example, they do not consider the meaning of words (synonyms are
not recognized as similar), nor their morphology (variations of the same word are not
recognized as similar). They also do not model the relative importance of different
words, so for example articles and proper nouns are given equal importance. Another
linguistic approach could be to use a language transformer like BERT (Devlin et
al., 2019) to project both story texts into a latent space where their distance can
be measured. BERT is a large model, trained on millions of words from books and
Wikipedia articles, and so accounts for many of the drawbacks of the above methods,
but incurs a significant computational cost. These methods would primarily capture
non-structural similarities, and may be unreliable for this task since they are sensitive
to different text realizations of the story plans. Moreover, they would not be ideal
for summarizing clusters of stories, since they do not provide a concise justification
for their similarity assessments that could meaningfully label a cluster. My approach
is to group stories based on which story entities are most important, so that these
entities can be used to label and summarize the clusters they establish.

Kypridemou and Michael (2013) validate the general approach of measuring story
similarity by summarizing each story and comparing the two summaries. Subjects
in their study first rated the appropriateness of a single summary as a summary of
each of two stories, and then rated the similarity between those two stories. The
more appropriate the summary was for both, the higher the similarity between them.
One summary-based story plan comparison metric has been proposed, called ISIF
distance (Amos-Binks et al., 2016); it summarizes a CPOCL (Ware and Young,
2011) narrative plan based on its important steps (IS) and summaries of its intention
frames (IF). The important steps are those events with highest causal degree (total
number of incoming and outgoing causal links), in line with earlier work in narrative
summarization suggesting that more important events have more causal connections
(Lehnert, 1981; Trabasso and Sperry, 1985). ISIF’s intention frame summaries
capture how character goals are motivated and achieved by encoding the motivating
and satisfying steps for each character goal. The authors propose a Jaccard-based
distance metric that compares the overlap of the stories’ important steps and intention
frame summaries. This method captures important structural differences that other
domain-independent metrics do not, but its scalability is limited. For example, it
exclusively compares sets of grounded actions, but similar actions do not always have
identical signatures. By comparison, the present work models more narrative features
(i.e. characters, time, and space, in addition to causality and intentionality) and uses
a numeric vector representation that captures more nuanced information.

31

Figure 3.1: A depiction of the initial state in Grammalot

3.2 Grammalot Domain

The experiments and examples in this chapter use a story domain called Grammalot,
which was originally developed to test players’ experience of interactive narratives
using different methods for controlling non-player characters (Ware et al., 2022).
The domain has been modified slightly from its original version.

There are four characters including the player character, named Tom. Tom begins
at his cottage where he is given the task of acquiring a potion for his grandmother,
and a coin that can be used to buy an item. A merchant is in the market selling the
potion in question, as well as a sword. There are four locations: Tom’s cottage, the
market, the merchant’s house, and a crossroads that connects them all (see Figure
3.1). The town guard is in the market watching for criminals, and a bandit lurks
in the crossroads. The bandit has one coin and wants to acquire other items of
value—coins and potions.

Seven actions are available. Characters can walk from one place to another if
connected by a path. Characters can buy items from the merchant in exchange for a
coin. If a character is armed, they can rob an unarmed character (steal an item from
them). An armed character can attack and kill another character. Characters can
take items from characters who are sleeping or dead. Tom can wait for night, causing
the guard to disappear and the merchant to go to sleep at her house (instantly, and
with all her belongings). Finally, the guard can arrest a character who has committed
a crime (robbed, attacked, or taken an item that did not belong to them). The story
ends when Tom returns to his cottage carrying the potion, or is arrested or killed.

3.3 Salience Vectors

As I have described in Section 3.1, the EIM defines the situational indices in a binary
fashion, recording simply whether or not two events are linked along each index. Prior
work has modeled the salience of events, but the present work concerns the salience of
the entities responsible for linking the events. Each time an entity is involved in the
latest event, it becomes salient—i.e. it is present in the current situation model—and

32

its salience decays by some amount each time an event passes that does not involve
it. The salience of all story entities after the story has occurred can then serve to
summarize the reader’s memory of the story.

For all but the causality index there is a specific type of entity whose involvement
in the two events establishes the linkage between them. The protagonist index is
defined in terms of which characters are involved in both events, so the set of entities
that can become salient through the protagonist index is the set of characters in
the domain. Likewise, the sets of locations and time frames (typed parameters
in the domain) are the entities for the space and time indices, respectively. The
intentionality index is based on character goals, which intentional planners require
domains to explicitly define, although their representations differ. In Sabre, a
character goal is any condition of a character utility function other than the constant
>.

The causality index is unique in that it is defined not in terms of the properties
of the events, but of the events themselves and how they occur in the specific context
of the story. Sharing the causality index means that one event is a causal ancestor
of the other—i.e. there is a causal chain connecting some effect of the earlier event
to some precondition of the later event. There is no clearly identifiable finite set of
entities that become salient through this index. One option is the set of grounded
actions in the domain: We can say that a specific event becomes salient due to either
being the current event itself or being a past event that enabled it. Alternatively,
we could use the set of all grounded fluents or even all possible assignments of some
value to some (non-numeric) fluent: We can say that these properties become salient
when they are used in the causal ancestry of the current event. The section below
gives definitions for all three of these variations of causality, and all are included in
the evaluation in Section 3.5.

Definitions

A story is summarized as a set of five fixed-length numeric vectors, called the salience
vectors because they represent the relative salience of the entities in the story at
a given time. Each vector reflects one of the five situational dimensions previously
discussed. This section defines a function for each dimension that determines whether
an entity of a certain type becomes salient upon an action occurring. Variations of
some definitions are included in an effort to generalize them to other types of story
systems.

Let S = {S1, ...Sn} be a sequence of n explained actions. The function
salient(e, i, S) returns a Boolean value indicating whether or not an entity e becomes
salient after step i in S, and is defined based on the entity type as follows.

Protagonist The protagonist dimension links events that involve the same
important characters. Three alternative definitions are given here. The first makes
use of intentional planners’ distinction between characters who are responsible for
taking the action (its actors), and those who are involved in it but not willfully (e.g. a
recipient of the action). The second definition does not make this distinction, instead

33

treating all characters involved in the action equally. The third adheres closer to the
original EIM description of the protagonist index as linking events that involve the
story’s protagonist, thus a predefined story protagonist is required for this definition.
In the Grammalot domain, the protagonist is Tom.
For a character c:

Definition 1a. salient(c, i, S) ⇐⇒ c ∈ act(Si)

Definition 1b. salient(c, i, S) ⇐⇒ c ∈ args(Si)

Let cprotag be the story protagonist.

Definition 1c. salient(c, i, S) ⇐⇒ c = cprotag ∧ c ∈ args(Si)

Time The time dimension links events that occur within the same time frame.
The planning domain should explicitly provide the time frame of each action in its
parameters.
For a time frame t:

Definition 2. salient(t, i, S) ⇐⇒ t ∈ args(Si)

Space The space dimension links events that occur in the same location. As with
time frames, locations must be provided as arguments of each action.
For a location l:

Definition 3. salient(l, i, S) ⇐⇒ l ∈ args(Si)

Future work may improve the definitions of time and space using a hierarchical
representation, since both can be organized hierarchically in memory (Magliano et
al., 2001; Zacks et al., 2009). However, the domains available at present are too small
to make use of such a representation, and this discrete symbol-based definition is
sufficient to demonstrate useful properties for now.

Intentionality The intentionality dimension links events that occur for the same
reasons. Intentional planners differ in their representations of character goals and
how they decide which goal an action is contributing to—e.g. intention frames (Riedl
and Young, 2010), relevant actions (Teutenberg and Porteous, 2013), or explanations
(Ware and Young, 2014). Sabre tracks explanations for every action—the plans that
justify each actor’s participation in it. Each explanation satisfies some condition of
a character’s utility function; these conditions represent the reasons why the action
occurred.

This is not perfect. Some planners may not distinguish between which of a
character’s goals an action is in service of, only that the action is justified. Even when
this information is modeled by the planner, it is still possible that there are multiple
valid explanations for the character’s action, or that the audience could interpret

34

the behavior in a completely different way. This limited definition is still useful, but
future work may improve upon it, e.g. through goal recognition techniques.2

Sabre tracks one explanation per actor in an action. Let explanations(Si) be the
set of explanations found during search for the action Si. For some explanation π, let
goal(π) be the character goal that is achieved (i.e. the condition of the character’s
utility function that holds) at the end of the sequence.
For a goal g:

Definition 4a. salient(g, i, S) ⇐⇒ ∃π : π ∈ explanations(Si) ∧ goal(π) = g

Since related work has emphasized the importance of goal motivations for comparing
stories Amos-Binks et al. (2016, 2017), I include an alternative definition for
intentionality that considers not just the goals that explain why the action occurred,
but also any goals that are motivated as a result of the action. An action is said
to motivate a goal when it changes the goal condition from being satisfied (true) to
unsatisfied (false). For example, in Grammalot the guard wants to punish criminals:
He has a goal for each of the other characters that they are either not a criminal, or
have been punished. Initially this condition is true for Tom: He is not a criminal. If
Tom commits a crime, it becomes false, so this motivates the guard’s goal to punish
Tom.

Recall that α(S, s0) denotes the state reached by executing the sequence S from
the initial state s0.

Definition 4b. salient(g, i, S) ⇐⇒ (∃π : π ∈ explanations(Si) ∧ goal(π) =
g) ∨ (α(S1:i−1, s0) |= g ∧ α(S1:i, s0) |= ¬g)

Causality The causality dimension links events that are causally related, meaning
the earlier action enables the later action. Planners can readily access this information
through causal links or equivalent structures. Informally, two actions are causally
linked when the earlier action has some effect that enables the later action, or
enables some other action that in turn enables it, and so on. Below I give a formal
definition, but the exact implementation is not important. What matters is that
causal relationships between events are identified in some way.3

In Sabre, event effects are always represented as conditional effects in the form
p→ g. We use a method based on UCPOP (Penberthy and Weld, 1992) to account
for causal links through conditional effects: Any effect condition that holds true
when the event occurs is treated as a precondition of that event for the purpose of
identifying causal links.

A causal link 〈Si, Sj, p〉 links parent Si to child Sj (for j > i) via precondition p
iff:

2Modeling belief changes the goal recognition task, as I have observed in previous work (Farrell
and Ware, 2020). Since characters’ beliefs affect their plans and behavior, and are not directly
observable, beliefs and goals must be inferred together. In other words, there are even more possible
explanations for actions when characters are allowed to have wrong beliefs.

3For example, the current definition does not include causal links when an event sets a property
that is already true. In some situations, such as when using numeric fluents, it may be better to
include these (Farrell and Ware, 2017).

35

α(S1:i−1, s0) |= ¬p∧α(S1:i, s0) |= p∧pre(Sj) |= p∧¬∃k : i < k < j∧α(S1:k, s0) |= ¬p

Let ancestors(Si) be the set of causal parents of Si and all actions in the transitive
closure of this relation.

As discussed previously, three alternative versions of the causality definition are
given, each of which uses a different type of entity (actions, fluents, and assignments).
For an action a:

Definition 5a. salient(a, i, S) ⇐⇒ a = Si ∨ a ∈ ancestors(Si)

Let fluent(p) denote the fluent for which the literal p states some relation.
For a fluent f :

Definition 5b. salient(f, i, S) ⇐⇒ ∃k : (k = i ∨ Sk ∈ ancestors(Si)) ∧ (∃p :
pre(Sk) |= p ∧ fluent(p) = f)

For an assignment f=v:

Definition 5c. salient(f=v, i, S) ⇐⇒ ∃k : (k = i ∨ Sk ∈ ancestors(Si)) ∧ (∃p :
pre(Sk) |= p ∧ fluent(p) = f ∧ α(S1:k−1, s0) |= f=v)

Algorithm

Algorithm 2 summarizes a given story S with a set of five vectors representing the
salience of all entities at the end of the story. Since the task is to compare complete
stories, it captures summaries at the end. Summarizing incomplete stories could
be accomplished simply by halting this algorithm at the desired step. The function
salient(entity, step, story) returns whether an entity is made salient by a particular
action, based on its type, according to the definitions given above. By default,
Definition 1a is used for protagonist, 4b for intentionality, and 5a for causality.

Let d be a constant decay factor between 0 and 1 (using 0.5 as a default). Let
C be the set of characters in the domain, T the set of time frames, L the set of
locations, G the set of character goals, and A the set of grounded actions. The set
of entities E comprises these five sets. The algorithm begins by initializing the set of
salience vectors V with five numeric vectors, each having length equal to the number
of elements in the corresponding set in E.

Entities are assigned a zero salience value initially, representing no salience at all.
The procedure then steps through the actions in the story, assigning the maximum
salience value (1) to each entity involved in the current action, and decreasing the
salience of all entities that are not involved. The resulting set of vectors V represents
the salience of each entity in E at the end of the story.

For an example comparison, consider the two stories displayed in Table 3.1, which
appear to be fairly similar—Tom either waits for night (story Y) or he doesn’t (story
X), but otherwise the same events occur: he walks to the crossroads and gets attacked
by the bandit. Due to these similarities there should be a small distance value
between them. Notice, however, that they share no identical action signatures. Many

36

Algorithm 2 Create salience vectors for a given story

procedure summarize(S, d)
2: E ← {C, T, L,G,A} . the set of sets of entities

V ← {v1, v2, v3, v4, v5} . such that |vi| = |Ei|
4: Initialize all values in v1...5 to 0.

for i in 1...|S| do
6: for j in 1...5 do

for k in 1...|Ej| do
8: if salient(Ejk, i, S) then

Vjk ← 1
10: else

Vjk ← Vjk ∗ d

Story Action Signature Label

X
walk(Tom, Cottage, Crossroads, Day) a1X
attack(Bandit, Tom, Crossroads, Day) a2X

Y
wait(Tom, Cottage, Day) a1Y

walk(Tom, Cottage, Crossroads, Night) a2Y
attack(Bandit, Tom, Crossroads, Night) a3Y

Table 3.1: Example stories X and Y

Step
v1 v2 v3 v4 v5

T B Day Night Cottage Xroads gT gB a1X a2X a1Y a2Y a3Y
1 1 0 1 0 1 1 1 0 1 0 0 0 0
2 .5 1 1 0 .5 1 .5 1 1 1 0 0 0

Table 3.2: Salience vectors after each step in story X

metrics rely on comparing sets of common actions, including ISIF distance, and would
therefore deem these stories to be highly different.

The salience vectors after each step in story X are shown in Table 3.2 (using
d = 0.5). The character goals are abbreviated as gT (Tom’s goal to have the potion
and be at the cottage) and gB (the bandit’s goal to have Tom’s coin), and the action
labels reference Table 3.1. Entities whose values remain zero across all vectors are
omitted for space.

After step 1 (Table 3.2), the entities Tom, Day, Cottage, Crossroads, Tom’s goal,
and the action a1X itself—walk(Tom, Cottage, Crossroads, Day)—are salient. After
step 2, the Bandit, the bandit’s goal, and the new action a2X have become salient.
Entities that are still involved remain salient: Day, Crossroads, and a1X (since it is
a causal ancestor of a2X). Uninvolved entities have decayed: Tom (since he was not
an actor in the attack), Cottage, and Tom’s goal.

37

Step
v1 v2 v3 v4 v5

T B Day Night Cottage Xroads gT gB a1X a2X a1Y a2Y a3Y
1 1 0 1 0 1 0 1 0 0 0 1 0 0
2 1 0 .5 1 1 1 1 0 0 0 1 1 0
3 .5 1 .25 1 0.5 1 .5 1 0 0 1 1 1

Table 3.3: Salience vectors after each step in story Y

The final row of this table (representing the salience vectors at the end of
Algorithm 2), encodes important information about the story: that it ends with
the bandit acting on his goal at the crossroads; that it never involves night or the
other locations and characters (not shown); and which actions are most important.

Table 3.3 shows the vectors for the second story (Y), revealing that this story
also ends with the bandit acting on his goal at the crossroads, but at night and with
different actions.

3.4 Salience Distance

The salience distance SD between two stories x and y is defined as a linear
combination of the distances between their corresponding salience vectors of each
type:

SD(x, y) =
5∑

i=1

wi ∗NSE(vix, viy) (3.1)

where wi are relative weights for each dimension, which sum to 1 (by default we use
equal weights, w∗ = 0.2), and NSE(u, v) calculates the normalized squared Euclidean
distance between a pair of vectors (their squared Euclidean distance after scaling their
lengths to have unit norm). This is an appropriate function for this case because the
magnitudes of the vectors are not important; only their directions. This accounts
for the unbalanced sizes of the different vectors (e.g. the causality vector is likely to
be much larger than the other four). The normalized squared Euclidean distance is
always between 0 and 1, so the final salience distance value is also bound between 0
and 1.

The salience distance between stories X and Y from Table 3.1 is calculated using
Equation 1 with v1...5X from the bottom row of Table 3.2, and v1...5Y from the bottom
row of Table 3.3. Since the final v1, v3, and v4 happen to be identical for these
two stories (all characters, locations, and goals are equally salient at the end), these
contributions to the equation will be zero. The differences come entirely from the
time and causality vectors, i.e.:

SD(X, Y) =0.2 ∗NSE([1, 0], [0.25, 1])

+0.2 ∗NSE([1, 1, 0, 0, 0, . . .], [0, 0, 1, 1, 1, . . .])

38

The result is a distance value of 0.296, which is relatively small, as intuition
suggests it should be. The metric captures the similarity of some elements while
recognizing differences in others. This example demonstrates a key benefit of this
method: not only can it automatically calculate a useful distance metric to compare
stories, but the vectors also reveal where their differences come from.

3.5 Distance Metric Evaluation

We compared the accuracy of salience distance to several other metrics, including
edit distance, action set distance, ISIF, and several machine-learning based methods.
This section describes first the dataset we collected from humans, then the various
distance metrics included in the comparison, and finally the analysis and results.

Story Distance Dataset

To evaluate the accuracy of the salience distance metric we collected a dataset
of human annotations of story similarity in the Grammalot domain (Section 3.2).
Distance values from different metrics cannot be directly compared due to their
differing scales (e.g. a salience distance of 0.2 and an ISIF distance of 0.2 do not
have the same meaning). Therefore this dataset focuses on comparisons between
two distance values. A comparison is a triplet of solutions 〈REF,A,B〉 where REF
is a reference story and A and B are two other stories, and is interpreted as the
question, “Which story is more similar to the reference: A, or B?” This question
can be answered by any distance metric: If the distance between REF and A is less
than the distance between REF and B, then its answer is A. If the two distances
are equal then its answer is undefined; otherwise it is B. Human answers to these
kinds of comparisons were collected as ground truth so that accuracy scores for the
distance metrics could be obtained.

Subjects were recruited using the online crowd-sourcing platform Prolific. They
read a description of the domain, then completed 8 tasks in which they read a reference
story followed by a pair of stories (shown in random order). Subjects were randomly
assigned a question type: whether they are asked which story is “more similar to”
or “more different from” the reference (inverting their answers accordingly). To
limit cognitive load, the reference story remained the same for a given participant
throughout the whole task, as did the question type. Equality was not an option; A
and B were the only available answers.

A breadth-first search of the Grammalot problem to depth 6 using Sabre produced
58 solutions. The stories used for comparisons were randomly selected from these,
constrained only on the requirement that each participant would view only one
reference story. First the solutions were randomly sampled for 8 different stories
to use as references, then for each reference, 8 pairs of different stories for A and B
were randomly sampled. Stories shown to participants were first translated into basic
English sentences, and ranged from 2 to 6 sentences long. Data was collected from
64 participants, each answering 8 questions, for a total of 512 answers.

39

Metrics

This analysis includes the following distance metrics adapted from the literature. For
each of these metrics we produced a distance matrix, containing pairwise distance
values for all 58 of the Grammalot solutions used in the above dataset. For the
methods that require text input, we used the same translations that were shown to
participants.

Action Distance measures the Jaccard distance between the sets of grounded
actions in each plan (Srivastava et al., 2007). The Jaccard distance between

two sets x and y is defined as: J(x, y) = 1− |x∩y||x∪y| .

ISIF (Amos-Binks et al., 2016) measures a combined Jaccard distance between two
sets of grounded actions taken from each plan. The important steps (IS) of a
story are those with the most causal connections to other steps. The intention
frame summaries (IF) of a story are the motivating and satisfying steps of the
plans characters enact in pursuit of their goals. The ISIF distance between two
stories x and y is then defined as:

ISIF (x, y) = 1− 1
2

(|ISx∩ISy |
|ISx∪ISy | + |IFx∩IFy |

|IFx∪IFy |

)
.

Edit Distance counts the number of insertions, deletions, or substitutions required
to convert one plan into the other (Levenshtein, 1966). Three variations are
used: Edit Action applies these operations to whole action signatures; Edit
Symbol applies them at the symbol level (the action name and parameters);
and Edit Word applies them at the word level using the English translation of
the story set.

BLEU is an automatic evaluation metric for summary comparison that evaluates
textual similarity as co-occurrence of subsequences between a target text and a
reference text (Papineni et al., 2002).4 BLEU considers a combined score from
multiple lengths of n-grams; all possible equally-weighted groupings of these
n-gram lengths were tested. To present the range, the lowest-scoring BLEU
method (using only unigrams or unigrams and bigrams) and the highest score
(e.g. using only trigrams—most combinations tied for this score) are reported.

Rouge is another text comparison metric similar to BLEU, but considers a single
n-gram length or the longest common subsequence (Lin, 2004). Rouge was
tested using n-grams 1 through 5, and Rouge-L (longest common subsequence).
The lowest Rouge score was a tie between Rouge-1 and Rouge-L; the highest
between Rouge-3, Rouge-4, and Rouge-5.

BERT (Devlin et al., 2019) is an English language text transformer which encodes
similarities of input texts by placing them in a latent space. Each story was
processed as a sequence of word-level tokens, with special tokens to indicate

4REF is used as the reference to which A and B are compared.

40

where sentence separations occur and where the story starts and ends. The
final predicted position of each story in latent space was extracted, and distance
measurements were calculated as the cosine distance between two of these
positions. This was tested both with an unmodified instance of the base
transformer and with five tuned instances. For these, the text stories were
processed into two datasets for BERT’s Next Sentence Prediction and Masked
Language Modeling tasks. The five instances were trained for these tasks for
some number of training epochs (1...5). Note that this does not fine-tune BERT
on the task of measuring distance between stories, but on generating text more
like these stories. The lowest score (using the unmodified BERT), and the
highest score (the instance with one training epoch) are reported.

All 18 possible combinations of the definitions presented in Section 3.3 are included in
this analysis. Section 3.5 shows results for the default variation (using Definitions 1a,
4b, and 5a), along with the best and worst scores among all 18 variations (labeled best
variation and worst variation). The best score was a tie between the two variations
that used Definition 1a for protagonist and 5b for causality (using either 4a or 4b for
intentionality). The worst variation used Definitions 1c, 4b, and 5c. Results for all
variations are included in Appendix A.

Different index weights were tested using the default vector definitions and the
default decay rate d = 0.5. This included all possible combinations of the five weights
w1...5 ranging from 0 to 1 in increments of 0.1. The results in Section 3.5 show the
best and worst scores achieved using modified weights (labeled best weights and worst
weights). The weights that achieved the highest scores are shown in Appendix B.
They were different between the two analyses and there were many ties, but one clear
trend is that time should be weighted low or zero for the most accurate performance
in this domain.

Likewise, different decay rates were also tested (0.05 ≤ d ≤ 0.95, in increments of
0.05), using the default weights and vector definitions. Scores for the best and worst
decay are reported in Section 3.5 (best ≤ 0.25, worst = 0.95).

Results

The metrics were compared in two ways; first using only the questions where
people agreed on an answer, and second using all the questions. Participants
significantly agreed if at least 7 out of 8 provided the same answer (binomial test,
p = .039), which occurred for 37 of the 64 questions. Figure 3.2a shows the results
of the analysis using these questions, in which a metric scores one point for each
question it answers the same as the majority of humans. Undefined answers (equal
distances) are counted as incorrect.

A binomial test indicates that a score of 24 or higher is statistically better than
chance. Most metrics exceed this threshold. The default variation of Salience answers
34 out of 37 questions correctly (92% accuracy), which is higher than all other metrics

41

(a) Using the 37 questions humans agreed on

(b) Using all questions

Figure 3.2: Distance metric accuracy

42

except the best BERT (with which it is tied) and the best Rouge. A z-test of two
proportions was used to assess whether any of these differences are significant. The
green dotted lines indicate the thresholds where the test becomes significant: A score
of 28 or below is significantly worse than 34, and only 38 or above, which is impossible,
would be significantly higher. Salience distance performed very well in this evaluation.
It was significantly more accurate than ISIF and Edit Action, and scored higher than
almost all of the other metrics, though not significantly higher.

Accuracy was also measured using all 512 answers collected, scoring one point
for each individual human answer the metric agrees with. This effectively weighs
the score for each question by how strongly people agreed on it. Half a point was
awarded for undefined answers, since in this case people did not necessarily agree
that one answer is correct. This means that providing a wrong answer is worse than
providing no answer; and that when people were evenly split (4 out of 8 subjects
answered A, and the other 4 answered B—this happened for 5 out of 64 questions),
all three possible answers (A, B, and undefined) are worth the same 4 points. The
highest possible score is 420, which represents agreement with the majority on every
question.

Figure 3.2b shows the results of this analysis. The default Salience scores 388,
and again the low and high z-test thresholds are shown, 360 and 414. Note that no
p-value correction is being applied, so one might reasonably consider comparisons on
the thresholds to be insignificant. Here the default Salience outperforms all other
metrics except the best Rouge, and significantly outperforms the unmodified BERT
and Edit Word in addition to Edit Action and ISIF.

Discussion

Both analyses suggest that intelligently choosing values for w∗ and d may improve
accuracy, although the improvements here were not significant. Equal weighting
appears to be a good default, but better weights may be informed by domain
knowledge (e.g. dimensions or entities that are more or less important). The ideal
decay value is also likely to vary by domain, but may be related to measurable
properties like average story length.

None of the 18 variations of Salience were significantly better or worse than the
default, with accuracy ranging from 84-95%. This suggests that the technique does
not strictly depend on one set of definitions, and may be adaptable to other kinds of
story systems. The selection of default definitions here is based on two factors. When
possible I prefer those that utilize more of the planning model; Definition 1a considers
all characters and distinguishes between actors and non-actors, so it is more nuanced
than 1b and 1c. Definition 4b for intentionality is more nuanced than 4a because
it considers goal motivations. In the case of causality, I prefer the definition that
yields the most human-readable feature names, i.e. Definition 1a using actions. This
is important for the work described in the next section; actions make more intuitive
cluster labels than fluents or assignments, and provide information in a form people
are more likely to expect in this context.

43

While most of the metrics performed well in both analyses, ISIF is a notable
exception. ISIF and Action Jaccard both have a tendency to produce distance values
of 1, e.g. for stories that do not contain identical action signatures (such as the
example pair discussed in Section 3.3). This results in many undefined answers, i.e.
when both distance values are 1, which explains why they perform better in the
second analysis than the first (undefined answers are worth half credit). Still it was
surprising to see ISIF perform worse than Action Jaccard, upon which it is based.
The difference is that Action Jaccard compares the full set of actions in both stories,
whereas ISIF only compares actions of specific importance. These action sets may be
helpful toward describing important story differences, but as a distance metric, this
study shows it to be less accurate than considering the full sets of actions (at least in
this domain).

The text-based methods generally performed well, with the best being Rouge-3+.
This is a viable approach for measuring story distance, as long as the stories can be
automatically translated into natural language. Note that these methods are sensitive
to different text realizations; the translations used here were simple and repetitive,
which is helpful to these metrics. Edit Symbol also performed well, and does not rely
on text translations, but does require a plan-like symbolic representation. Salience is
comparable in accuracy to these approaches, does not depend on text translations,
and does not necessarily depend on a planning representation either. (For example,
if the characters, locations, etc. can be extracted from text stories using natural
language processing, then the same method can be used to measure distance between
stories that never involved a planner.) Furthermore, the primary benefit of salience
distance is that the salience vectors encode important semantic information about
the stories that can explain where their differences and similarities come from. The
other methods, apart from ISIF, do not have this capability.

Salience with best weights was the only metric to correctly answer all 37 questions
on which subjects agreed; but this is not a fair metric, since we cannot assume the
optimal weights are known. I include the following example in this discussion for
possible insight into how this technique might be improved in the future. No fair
metric answered this question correctly, despite human subjects agreeing on its answer
with a 7/8 majority.5

(Reference) Tom walks to crossroads. Bandit walks to market. Guard
walks to crossroads. Bandit walks to crossroads. Bandit attacks Tom.

(A) Tom walks to crossroads. Tom waits for night. Bandit attacks
Tom.

(B) Tom walks to crossroads. Tom walks to market. Tom buys potion.
Bandit walks to market. Bandit attacks Tom.

According to the majority of subjects, story A is more similar to the reference than
story B is; yet almost all of the metrics answered that B is more similar. B contains
more of the same actions and content as the reference compared to A, so why do
humans think A is more similar?

5The story text has been abbreviated here for space.

44

In the reference, Tom goes to the crossroads and does nothing, while others walk
in and out of the market, and then he gets attacked. It may seem like Tom bears some
responsibility for this fate—if he had done something instead of nothing, he might
have avoided it. Story A involves waiting for night, which is semantically similar to
doing nothing. In A, Tom goes to the crossroads and allows himself to be attacked,
while in B, he tries to achieve his goal but gets attacked in the process. In this light,
B feels different, despite containing many of the same elements as the reference and
being similar in structure and text.

Of course this is just one possible interpretation of why subjects chose A over B.
It may be that waiting is similar to doing nothing, or perhaps this example reflects
another type of similarity that the metrics are not accounting for, e.g. thematic or
high-level structural similarities. Whatever the case, this example demonstrates that
some semantic similarities are not captured by any of these metrics. Future work
may benefit from exploring ways to account for situations like this.

Limitations

This study only used a single domain due to limited resources; it was preferable to get
a lot of data from one domain than less data from multiple domains. This domain
was chosen because it contains multiple characters, goals, and ways for characters
to achieve their goals in a small number of steps. It models enough variety to
capture some differences between metrics, but perhaps a larger domain would be
able to capture more significant differences. In the future, if more resources become
available, these results could be replicated in other domains and with more data to
allow stronger conclusions to be drawn.

The salience distance metric was shown to be effective under varying definitions,
but this was not tested exhaustively. The technique is theoretically applicable for any
system that can identify some reasonable adaptation of its definitions, although there
may be some situations that do not work well. The definitions themselves leave room
for improvement, especially as models of intentionality continue to improve. Time
and space could also be represented hierarchically, and other situational dimensions
could be represented beyond the five discussed, e.g. emotions, ideas, or objects.

3.6 Clustering and Visualization

Thus far I have defined a numeric vector that summarizes a story’s content by
calculating the salience of each entity involved in the story upon its ending. Distances
between these vectors can model the extent to which two stories are semantically
different from each other. I showed that the salience distance metric is highly accurate
according to humans in an example domain and compares favorably to existing
methods for measuring story distance. The salience method is unique in that the basis
for the distance measurement is a summary of each story, based on a cognitive model
of story comprehension, which contains information that can explain the stories’
similarities and differences in detail. In this section I utilize that information to

45

summarize the results of solution space clustering, and evaluate the technique as a
potential domain authoring tool.

As a starting point for this tool, I use hierarchical clustering to break down
the solution space into clusters and label them using relevant information from the
salience vectors. This can provide domain authors the ability to explore key parts of
the space with more control and better understand what kinds of stories the domain
is modeling. Hierarchical clustering begins by assigning every point (in this case, a
story) to its own cluster, and then merges the two most similar clusters together.
This process is repeated until all points have been merged into the same cluster. The
resulting graph is a dendrogram showing the order in which the points were merged—
a hierarchical breakdown of the story space. The dendrogram allows us to choose any
number of clusters and see how the space is best separated into that many groups.

Hierarchical clustering begins with a distance matrix. Let S be a solution set,
and D|S|×|S| be a matrix produced using the salience distance metric, where Dij =
SD(Si, Sj). Salience distance is symmetric, so Dij = Dji. A hierarchical clustering of
D produces a dendrogram like the example shown in Figure 3.3. I use Ward’s linkage
method (Ward, 1963) to determine distance between clusters.6

Figure 3.3: Hierarchical clustering of the 58 Grammalot solutions

By itself, this graph can provide a road map that allows domain authors to save
time in getting a broad sense of what is possible in the domain by reading only a select
group of stories (e.g. one from each branch at a certain height). Still, this amount
of reading becomes tedious when trying to understand minute differences between

6Linkage criteria specify which points of a cluster to compare—e.g. the center of each cluster
(average linkage), or the points from each cluster that are closest together (single linkage), etc.
Ward’s method measures the distance between two clusters as the increase in the error sum of
squares after merging the two clusters together, similar to how differences between groups are
calculated in statistical methods like analysis of variance (ANOVA).

46

different story spaces (e.g. after a domain modification). I propose a cluster labeling
procedure that summarizes the similarities within each cluster, so that authors can
quickly ascertain information about those stories without actually having to read
them. This technique uses the salience vectors from which the distance matrix was
derived, defined in Section 3.3, and the vector features, which are the names of the
story entities (E in Algorithm 2).

The goal is to label each cluster with the name of an entity whose prominence in
the target cluster distinguishes that cluster from the rest of the stories in the space.
Ideally, the entity would be present in all stories in the cluster (having salience > 0 in
the vectors for those stories), and absent in all other stories (salience = 0). However,
there is no guarantee that such an entity will exist for every cluster, so it is necessary
to identify the entity which comes the closest to this ideal. That is, the entity having
the highest difference between its average salience in the target cluster and its average
salience in the other clusters. This concept is applied in two different ways. The first
method cuts the dendrogram into a set of clusters and labels them; the second method
directly labels the edges of the dendrogram.

Cluster Labels

There are several approaches for determining the optimal number of clusters k for a
given dataset. The examples here use the silhouette method (Zhou and Gao, 2014),
but others may be equally suitable. To avoid displaying too many clusters, I constrain
the value of k such that (2 ≤ k ≤ 5). If the best value of k according to the silhouette
method is not in the desired range, the second best value is used (and so on). The
dendrogram is then cut at the height that produces k clusters, and the following
procedure is used to label each one. This labeling method could also be used with
other clustering algorithms such as k -means that simply produce k clusters in the
first place.

Let V be the set of salience vectors for the stories in the target cluster, and
its complement V , the set of vectors for all stories in the solution set that are not
members of this cluster. Equation 3.2 finds the feature f of these vectors for which
the difference between its average salience in the target cluster and its average salience
in the other clusters is the highest:

arg max
f

∑V
v vf
|V |

−
∑V

v vf

|V |
(3.2)

A label can now be assigned for the target cluster using the name of the feature f .
To clarify the meaning of the labels I add the words “is important” after the feature
name, e.g. “The bandit is important”. Entities that are named using planning syntax
(actions and goals) are translated into natural language, e.g. “The guard arresting the
bandit at the market” or “The bandit wanting Tom’s coin”. To convey the relative
sizes of the clusters, I depict each cluster as a circle with size scaled proportionally
to the number of stories in the cluster—for this I use the open-source graph drawing
tool GraphViz (Ellson et al., 2001). Figure 3.4 shows the result of this procedure for

47

an example problem in a modified version of the Grammalot domain (which I will
formally introduce in Section 3.7).

Figure 3.4: Example cluster summary for Grammalot problem #193

The result is a high-level summary of the solution set. Without reading any stories,
domain authors can see what types of stories exist within the solution space and how
many of each type. By viewing an image like this after every domain modification,
the author can quickly spot where the recent changes have significantly impacted the
solution set. Additional features could then allow them to examine stories within a
specific cluster. I test a version of this tool in the evaluation presented in Section 3.7.

Dendrogram Labels

A similar procedure can be used to label the edges of the dendrogram, but in this
case some additional factors need to be accounted for. Here, the labels should explain
each “split” in the tree, i.e. distinguish specifically between a target branch and its
sibling (the only other child of its parent), rather than the full complement of itself.

48

There is no need to consider stories that are not clustered under the parent of the
target cluster, because that distinction will be described by the parent’s label.

Additionally, the label for a given cluster should be balanced between the cluster’s
two children. Consider, for example, a cluster whose right child contains 90% of its
stories, and the left child only 10%. A feature which is prominent in its right child,
but absent in its left child, may still have a high average salience in the cluster. It
is important not to label this cluster using such a feature, since the feature is not
representative of the cluster as a whole (it would make a better label for the cluster’s
right child). The equation below therefore considers the balance of a feature’s salience
between the cluster’s two children. In summary, it seeks a feature that is (1) highly
salient in this cluster, (2) minimally salient in the sibling of this cluster, and (3)
evenly distributed between the two children of this cluster.

Let n be a node in the dendrogram. Let Vn be the set of vectors for all stories
clustered in n, and Vn′ the set of vectors for the stories in the sibling of n. Let Vlc
and Vrc be the vectors for the left and right children of n, respectively. Assign a label
for node n using the feature f that maximizes this formula:

arg max
f

(∑Vn

v vf
|Vn|

−
∑Vn′

v vf
|Vn′|

)
− b ∗

∣∣∣∣∣
∑Vlc

v vf
|Vlc|

−
∑Vrc

v vf
|Vrc|

∣∣∣∣∣ (3.3)

where b is a constant between 0 and 1 weighing the relative importance of the
balance between the children as compared to the primary calculation. For the images
presented here I use b = 0.25. I also impose a feature significance threshold of 0.5, to
account for situations where the best label found is not very descriptive of the cluster.
If the maximum value of the above formula is less than this threshold, I do not use
that feature (i.e. no label is returned). When multiple features tie for the maximize
value, the feature with the lowest mean salience in n is returned.7

As with the previous diagram, the label comprises the feature (translated into
natural language if it is an action or goal) and the words “is important”. Algorithm
3 recursively labels the dendrogram nodes in a depth-first order beginning at the
root, and excluding labels that have already been used for ancestors of the current
node.8 When no label is found, an inversion of the sibling’s label is used instead.
If both siblings return no label, those branches remain unlabeled. The function
getLabel(node, excludeList) returns the feature f that maximizes Equation 3.3 for
this node, ignoring all features in the exclude list, or null if the maximum value did
not exceed the feature significance threshold. The function inv(label) replaces the
text “is important” in the label with “is NOT important”, or returns null if the label
is null.

7The goal of this tie-breaker is to encourage the labels to be ordered more chronologically from
root to leaves when possible. Parents are labeled before children (see Algorithm 3), and labels
cannot be reused in the same branch, so choosing the less salient of the tied features first—-i.e. the
one which tends to be present earlier in the stories—-allows the more salient (later) feature to be
used later in the branch.

8Each node is responsible for labeling its children. The root node itself does not receive a label
since it describes the whole space rather than a single cluster.

49

Algorithm 3 Label the nodes of a dendrogram

For the initial call, n is the root of the dendrogram, depth = 0, and excludeList is
an empty list.
function labelTree(n, depth, excludeList)

if d ≤ depthmax and size(n) ≥ minClusterSize then
Let nL and nR be the left and right children of n, respectively.
Set the label of nL = getLabel(nL, excludeList)
Set the label of nR = getLabel(nR, excludeList)
if label of nL is not null then

Append label of nL to excludeList.
else

Set label of nL = inv(label of nR)

if label of nR is not null then
Append label of nR to excludeList.

else
Set label of nR = inv(label of nL)

labelTree(nL, depth+ 1, excludeList)
labelTree(nR, depth+ 1, excludeList)

return

I display the labeled tree using GraphViz to avoid overlapping labels while fitting
the final image into a desired size.9 Figure 3.5 shows the labeled tree for the same
example problem summarized in Figure 3.4. For this image and those used in the
evaluation below, the maximum depth of the tree is limited to 4, both to constrain the
image size and to avoid presenting too much information. I also impose a minimum
cluster size of 5. If a cluster is more than 4 branches deep or contains fewer than 5
stories, I do not label it. All unlabeled branches are cropped from the displayed tree,
and clusters with inverted labels are colored red.

The labeled tree shows more detailed information about the solution space than
the k-clusters graph defined in Section 3.6. For example, it is apparent from both
graphs that in 10% of the stories, the guard’s goal to arrest Tom is important. This
means that Tom likely commits crimes in these stories. The circle graph stops there,
but the tree graph further reveals that there are two primary ways for this to occur.
Either Tom robs the potion from the merchant, or the bandit attacks the merchant
(allowing Tom to take the potion from her, which is still a crime since it does not
belong to him).

These two graphs are both useful, and have different strengths and weaknesses.
The circle graph is less informative, but it is easier and faster to read. It also draws
attention directly to the clusters that are most important, whereas the tree graph
may obscure that information. Both diagrams provide a high-level summary of the

9This conversion retains the structure of the dendrogram but loses information about the height
of each cluster split. If display size were not a constraint, it would be preferable to label the actual
dendrogram and keep the height information intact.

50

Figure 3.5: Example tree summary for Grammalot (problem 193)

solution space and a means of exploring the stories more intelligently (e.g. click on
a specific cluster to read or sample those stories). The goal of the tree graph is to
provide as much information about the clustering as possible, while the circle graph
aims to show just as much as is needed to convey the high-level groupings without
overwhelming the reader. In the next section, I evaluate both of these graphs as
domain authoring tools and find that while they have some different effects, both
graphs are able to help people better understand solution spaces.

3.7 Evaluation of Solution Space Summaries

The final evaluation demonstrates that both the tree and circle diagrams described
above can improve people’s understanding of a solution space—operationalized as
their ability to correctly answer questions about whether or not a specific story is
part of that space. Participants were recruited and paid through Prolific to configure
a story domain and then answer questions of this type about the domain they
configured. They were incentivized to consider the questions carefully via possible
bonus payments for answering either at least 90% or at least 50% of the questions
correctly. Subjects were given one of three different tools—either a baseline tool, or
a tool using one of the two graphs—to help them in these tasks.

It is important to point out that these tools are meant to help domain authors
better understand the output of a creative task in which they are highly engaged. Due
to limited resources it was not feasible to conduct this study using only individuals
who represent potential domain authors (e.g. people with interactive narrative
experience). This evaluation uses crowd-sourced survey takers, which comes with
a known risk of low engagement, and this task in particular is mentally demanding.
To account for this, I allowed participants to engage with the summary tools as much

51

or as little as they wanted throughout the task, and used metrics derived from their
activity logs to classify their overall engagement level when analyzing the results.
This study finds no significant effect among the whole set of participants, but this
group includes those who interacted with the tools very little, if at all. Among those
who interacted a lot, demonstrating high engagement, both of the summary tools
significantly improved users’ accuracy over the baseline.

Domain Configurations

In a perfect world, we would have asked study participants to create their own
story domain with the help of one of the tools, and then evaluated how well they
understood their domain and how helpful they found the tool to be. This approach
is impractical for two reasons: First, it would require training many people to do a
very technical task. Second, it would have required the tools to run online, including
the time-consuming step of searching for all solutions to the problem (and doing so
many times while the domain is being modified). Instead, we settled for the closest
reasonable approximation of this design: We asked participants to simply configure
several predetermined properties of an existing domain, for which all the necessary
searches could be precomputed.

For this experiment we used the Grammalot domain discussed in Section 3.2, but
removed the crossroads location to reduce the size of the search space and allow more
solutions at smaller depths. The three remaining locations are now connected directly
to each other as in Figure 3.6. The bandit’s initial location is now the market since
he can no longer be at the crossroads.

Figure 3.6: Depiction of the Grammalot initial state without the crossroads

Subjects each configured a version of this domain by choosing values for the eight
binary configuration variables listed in Table 3.4. In total there are 256 possible
domain configurations, varying several different aspects of the domain: a belief in
the initial state (C1), two preconditions (C2 and C3), two effects (C4 and C5), an
observation function (C6), and two utility functions (C7 and C8).

The Grammalot domain previously discussed in this document (Section 3.2) most
closely matches, but is not identical to, problem #193 (11000001), in which: The
bandit initially knows about Tom’s coin (C1 = >), being armed keeps characters

52

C1
>: Initially the bandit knows that Tom has a coin.
⊥: Initially the bandit does not know that Tom has a coin.

C2
>: Armed characters are safe from being robbed.
⊥: Armed characters are not safe from being robbed.

C3
>: Armed characters are safe from being attacked.
⊥: Armed characters are not safe from being attacked.

C4
>: The guard arrests criminals by tying them up in the current location.
⊥: The guard arrests criminals by taking them away to an unknown location.

C5
>: Taking an item from a sleeping character wakes them up.
⊥: Taking an item from a sleeping character does not wake them up.

C6
>: All characters observe the effects of armed robbery.
⊥: Only characters in the same location as the robbery observe its effects.

C7
>: The merchant may or may not commit crimes to achieve her goals.
⊥: The merchant is unwilling to commit any crimes to achieve her goals.

C8
>: Tom may or may not commit crimes to achieve his goal.
⊥: Tom is unwilling to commit any crimes to achieve his goal.

Table 3.4: Grammalot domain configurations

Min 1st Qu. Med. Mean 3rd Qu. Max
40 89.5 173 212.9 260.8 828

Table 3.5: Number of solutions per problem

safe from being robbed (C2 = >), but not attacked (C3 = ⊥), characters disappear
when arrested (C4 = ⊥), sleeping characters do not wake up when interacted with
(C5 = ⊥), robbery is not universally observed (C6 = ⊥), and the merchant is not
willing to commit crimes (C7 = ⊥), but Tom is (C8 = >). This is the problem
summarized in Figures 3.4 and 3.5.

For each of these 256 problem configurations, all solutions up to 5 steps long
were collected using Sabre’s breadth-first search. The number of solutions for these
problems ranged from 40 to 828, as summarized in Table 3.5. Each solution set was
clustered using the procedure outlined in the previous section, and both types of
visual summary (circle and tree graphs) were created for each.

Procedure and Summary Tools

Participants were tasked with helping a “storytelling robot” (Figure 3.7) with its job
of configuring a story world that could tell lots of different stories—specifically, stories
that would fit on its small screen. They were explicitly told that this means stories
could be at most 5 sentences long. To reinforce the length limit, stories were always
displayed against the same backdrop, representing the robot’s screen, which clearly

53

Figure 3.7: Storytelling robot

fits exactly five lines.
The task began with the robot describing what it has decided about the story

world already (a description of the domain that pertains to all configurations). It then
asked the participant to help answer a few remaining questions. Participants initially
provided an answer to each of the eight questions representing the configurations
listed in Table 3.4. They were informed that they would be allowed to change
these configurations later. Once the questions were answered, an initial configuration
was identified, and a summary tool determined by the participant’s grouping was
displayed.

The baseline tool (Group 0) displays a random story from among the entire
solution set of the currently configured problem, and allows the user to randomly
sample a new solution using a button labeled “Generate Another” (Figure 3.8). The
same story display box is also used for the other two tools, but where different subsets
of the solution space can be sampled. The baseline tool always samples the entire
solution set.

The tree graph tool (Group 1) displays the labeled tree diagram (Section 3.6) of
the configured problem, with clickable nodes. When a node is clicked, the story
display box appears, showing a random story from the cluster that was clicked.
The “Generate Another” button is configured to continue sampling the same clicked
cluster. The tree diagram remains on screen so that the user can scroll between it and
the story display box. The clicked cluster on the tree remains highlighted while the
story display box is configured to sample that cluster, and the cluster label is used
as a title for the story display box—e.g. “Generating stories where: the Merchant
is important”. (For the baseline tool, the story display box is untitled.) The user
can close the story display box to view only the diagram, or click another cluster to
reconfigure the display. The circle graph tool (Group 2) is identical to the tree graph
tool except that it uses the circle graph (Section 3.6) instead of the tree.

Participants were asked to try to understand what is possible in the story world

54

Figure 3.8: Story display box

they have just configured using the summary tool provided. They were allowed to
interact with the tool as much or as little as they wanted before proceeding. On the
next page eight toggles were added to the screen, one for each configuration option.
When a toggle is changed, the underlying domain configuration is changed and the
summary is updated accordingly; for Group 1 and 2 the summary image is replaced
with that of the newly configured domain, and for Group 0 a new story is randomly
sampled from the new domain. Participants were asked to configure the story world
to their liking, and to try to understand what is and is not possible in that world
before moving on so that they could accurately answer questions about it on the next
page. On the questions page they were allowed to continue using the tool, but this
was intentionally not mentioned beforehand because it would likely encourage them
to skip this phase.

Questions were displayed one at a time, each using one of the 14 stories listed in
Appendix C. The question asked, “Is the above story possible in your story world?”,
with answer choices “Yes, it is possible” or “No, it is NOT possible”. Accuracy
scores were obtained from each participant based on the number of these questions
they answered correctly, as determined by the domain configuration they had selected.

In addition to directly measuring accuracy, the study also assessed how well
subjects thought they understood the solution space. This was measured in two
ways. First, after each story question, a followup question asked how confident the
user felt about their answer on a scale from “Not confident at all” (1) to “Absolutely
confident” (5). Second, the study ended with a qualitative survey targeting perceived
understanding of the space using Likert scale agreement ratings with statements like
“I have seen an example of every type of story that is possible in my story world.”
(see the full survey in Appendix D).

Perceived understanding was measured, but no hypothesis was made for how the
summary tools would affect these measurements. This is because two conflicting
effects were expected. On one hand, if the tools help people understand the space
better, then people who use the tool should rate their understanding of the space
higher than people who did not use the tools. This assumes people are accurate in

55

judging their understanding. On the other hand, it is reasonable to expect a Dunning-
Kruger effect (Kruger and Dunning, 1999). People whose actual understanding of the
space is limited may overestimate their knowledge, whereas people with improved
understanding (via the summary tools) should be able to assess their knowledge
more accurately. In truth, solution spaces are very difficult to fully comprehend, so
the most accurate answer is likely to be lower than the baseline.

Data was collected from 120 individuals. Two responses were discarded due to
invalid logs (the participant completed the survey twice). Of the 118 valid responses,
40 were in the control group, 38 in the trees group, and 40 in the circles group.

Stories

All participants were asked about the same 14 stories, which are listed in Appendix
C. The stories were selected based on their dependencies on the eight domain
configurations. A story depends on a configuration if that story is only possible
when that configuration is set a certain way (either true or false). For example,
consider the story labeled Q5, which has two dependencies, C2 = ⊥ and C3 = >:

Tom walks to the Market.
Tom buys the Potion from the Merchant using his coin.

The Bandit robs the Merchant’s sword from the Merchant.
The Guard arrests the Bandit.

Tom walks to his Cottage.

This story is only possible if armed characters are not safe from being robbed
(C2 = ⊥), since the merchant is armed in step 3 when the bandit robs her. It is also
only possible if armed characters are safe from being attacked (C3 = >), although
the reason for this is less obvious. The bandit is already armed so he has no need
for the merchant’s sword; his only reason for stealing her sword is to cause her to
become unarmed, thus allowing him to attack her and take Tom’s coin. The bandit’s
explanation for step 3 (rob the sword, attack, take the coin) would not be valid if
armed characters were not safe from being attacked, because there would be a strict
subsequence of that plan that is possible and achieves the same utility (attack, take
the coin). Therefore step 3 would not be explained and this would not be a solution.
Provided that C2 = ⊥ and C3 = >, this story is always possible, i.e. it does not
depend on any other domain configurations.

Table 3.6 lists the configuration dependencies for the 14 stories used for questions.
The stories were selected so that all configurations are used at least once. If possible,
both values of each configuration are used, though in many cases only one option can
enable stories. For example, when Tom is unwilling to commit crimes (C8 = ⊥), this
removes many stories from the solution space but does not add any. Configuration
C5 is only used once because it only enables two stories and they are very similar.
Some configurations only enable stories when they are combined with certain others
(most notably, C6 requires at least 3 other configurations). No two stories depend on
the exact same set of configurations.

56

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14

C1 > > > > >
C2 ⊥ > > ⊥ ⊥ ⊥ ⊥ ⊥ >
C3 > ⊥ > ⊥ ⊥
C4 > > > >
C5 >
C6 ⊥ > ⊥
C7 > > >
C8 > > > > > > > > >

Table 3.6: Configuration dependencies for each story question

The number of configurations each story depends on is also important. The more
dependencies it has, the less likely it is for a given participant to configure a world
that enables the story. That is to say, the story is more likely to be impossible, and
is easier to rule out because there are more potential reasons why it is impossible.
Stories were selected to include the full range of possible numbers of configuration
dependencies (1-6), but stories with fewer dependencies were preferred. Figure 3.9
shows the frequency distribution of the numbers of dependencies among the 14 stories.
Six was the highest possible number, i.e. no story exists within the search depth limit
(5) that depends on more than 6 of these configurations.

Figure 3.9: Number of stories having each number of configuration dependencies

Classifying Engagement

Engagement is classified using two factors: the total number of stories the participant
viewed (before and during the questioning) and the number of times they changed the
domain configuration. An individual is classified as highly engaged if either of these

57

factors is at least one standard deviation above the mean. As expected, engagement
was skewed towards the low end on both factors. As shown in Figure 3.10, the mean
number of stories viewed was 17, and the high threshold was 33 (marked with a dotted
vertical line). For configuration changes, the mean was 4 and the high threshold 9.
The classification procedure identified 24 of the 118 participants as highly engaged (9
from the control group, 6 from the trees group, and 9 from the circles group). These
numbers are relatively small, but large enough to draw some significant conclusions.
This group best represents the population of potential domain authors because they
willfully engaged in the task rather than skipping through it.

(a) Stories Viewed

(b) Domain Configuration Changes

Figure 3.10: Engagement factors

58

Results

Figure 3.11 shows the accuracy for the three groups, first among all participants
(Figure 3.11a) and second, just the highly engaged participants (Figure 3.11b). A
one-way anova with accuracy as the quantitative dependent variable and tool type
(none, tree, circles) as the categorical independent variable reveals a significant effect
of tool type on accuracy for the highly engaged participants (p = .017). No effect was
found among the general population. A Welch’s two-sample t-test was performed
to compare each tool type independently to the control for the highly engaged
participants. Accuracy was significantly increased for both the tree graphs (p = .025)
and the circle graphs (p = .006).

(a) All participants (b) Highly engaged participants

Figure 3.11: Participant accuracy

Among the participants who were most engaged in the task, the experimental
tools were significantly more helpful than the baseline. This group is assumed to
best reflect the population of actual domain authors, who would likely be much more
engaged than the participants in this study.

All confidence ratings for all subjects in each group were combined and then
compared using the Wilcoxon sum rank test. The results are displayed in Figure
3.12. The trees group had significantly lower confidence than the control (p < .001),
both for the highly engaged participants and the whole population. Among the highly
engaged, the circles group also had lower confidence than the control (p = .012), but
this effect was not present for the general population. This is an interesting result: it
means that the graphs improved accuracy while lowering confidence; likely because
they did a good job of revealing how much nuance there is to the story world, and
thus how difficult the questions actually are.

The survey questions were combined into a single item to measure subjects’ overall
perception of their understanding of the solution space. The groups were compared
using the Wilcoxon sum rank test. Among the whole population, those in the circles
group felt that they had a better understanding of the solution space than those in

59

(a) All participants (b) Highly engaged participants

Figure 3.12: Confidence ratings

the control group did (p = .011), and this was marginally significant among just
the highly engaged participants (p = .088). This result is especially encouraging
because the circles group reported lower confidence than the control when answering
the individual questions, but by the time they reached the end of the task, they felt
that they understood the solution space better than the control group. The circle
graphs likely struck a good balance between conveying the complexity of the space
and summarizing its content in a comprehensible form.

On the other hand, the survey responses from the trees group were significantly
lower than the control for both the whole population (p = .023) and for just the
highly engaged participants (p = .028). That is, people using the tree tool perceived
their understanding of the solution space to be significantly worse than those in
the other two groups did—even though they actually understood it better than the
control group according to the quantitative data. This makes sense given that the
tree graphs conveyed more detail about the space than the other tools did, so people
in this group were more aware of their limited knowledge.

Discussion

This is a complicated task to ask of crowd-sourced workers. These results do not
show an effect in the general population, but they demonstrate how difficult the
task is. The tools are intended for domain authors who are carefully considering the
problem. When only the highly engaged participants are considered in the analysis,
a significant effect is observed.

Participants in the control group were overly confident in their understanding of
the story space—making this a difficult baseline to beat—though the accuracy results
show that this was largely false confidence. They perceived their understanding of the
solution space to be quite good because their tool did not give them sufficient feedback
to realize how nuanced the solution space could be. This is akin to the problem a

60

(a) All participants (b) Highly engaged participants

Figure 3.13: Perceived understanding of the story space (1=low, 5=high)

real domain author would experience. They believed they accurately understood the
solution space, and since reading random stories is not likely to uncover the specific
scenarios that reveal their misunderstanding, they were never shown any indication
that they were wrong.

The tree diagrams in particular present a lot of information and may have confused
some participants, which could have contributed to the low confidence effects in that
group. Even though participants who used this tool felt that they understood the
story space less than others, they were significantly better at answering the questions
than the baseline. The circles tool improved both actual understanding and perceived
understanding for engaged participants, proving that it is possible to convey similarly
useful information without overburdening users.

Both diagrams had a tendency to decrease rather than increase confidence,
most likely because they showed people more of the space. When people realize
how complex the space is, they become less sure about their answers. Confidence
was overwhelmingly high for the control group, especially among those who were
highly engaged. Yet the accuracy results show the real story—that people in both
experimental groups were significantly better at determining whether or not specific
stories are modeled by the domain.

Limitations

This preliminary study validates the general concept, but more work is required
before these techniques can be applied in a real domain authoring tool. Speed is the
biggest issue at present. Generating summaries from the salience vectors is fast, but
searching for solutions is not. This study was designed so that all possible domain
configurations could be precomputed and searched offline. For a practical domain
authoring tool, the search itself will need to be much faster.

The cluster labels used here are generally good descriptors of the cluster as a whole,

61

but sometimes they appear incorrect for an individual story within the cluster. For
example, in problem #255, the following story appears in a cluster labeled Nighttime:

The Bandit walks to the Merchant’s House.
Tom walks to the Merchant’s House.
The Bandit attacks and kills Tom.

Nighttime does not appear in this story, but it is important in most of the other stories
that are similar to this one; it is the most appropriate single-feature label to use for
this cluster. Other labels like The Merchant’s house, The Bandit attacking Tom at
the Merchant’s house, etc. were all considered and were deemed less descriptive of
this cluster as a whole than Nighttime is. Perhaps this problem could be mitigated
by looking for pairs of features rather than a single feature, although this would come
at the expense of more complicated-looking labels.

As mentioned in a previous section, it would be ideal to include more than a single
domain when evaluating these models, but resources to that end are again limited.
One of the major goals of this work is to improve the capability of authors to create
more domains so that more domains are available for evaluations like this. A future
study should include more domains, and should directly target interactive narrative
authors and researchers to better assess what effect the tools have on highly engaged
users.

62

Chapter 4 Conclusion

Narrative planning is an interpretable process, but it can produce large solution
spaces which are not interpretable. This is, in fact, the very reason humans can
benefit from using narrative planning to generate interactive stories. The stories
we want to write are too complex for us to write them by hand; but narrative
planning allows us to model the story world abstractly, as we do in our minds, and
let the computer automatically produce all the possible stories we did not specifically
imagine. However, authors must be able to reliably evaluate the planner’s output
so that they can iteratively modify the input until it produces a solution space
that achieves their creative vision. The work presented in this document makes
two major contributions toward this goal: Chapter 2 defined a narrative planning
model that automatically tracks character beliefs and observation, allowing authors
to write narrative planning domains much more intuitively; and Chapter 3 proposed
a cognition-based model of story similarity that enables meaningful summarization
of solution spaces.

Speed remains a significant limitation to this work. Generating whole solution
spaces, especially for large narrative domains, is a lengthy process, and the belief
model adds considerable overhead. There are a number of ways this problem
can be addressed. More accurate search heuristics and pruning strategies can be
developed that specifically account for beliefs and intentions; this approach has been
successful for similar models in the past. The salience model may also prove useful
for speeding up planning—for example, by using salience as a step cost function
(Ware and Farrell, 2022). As mentioned previously, it is not strictly necessary to
model infinitely nested beliefs (3-4 levels of nesting is probably sufficient for most
storytelling needs), so limiting theory of mind depth can mitigate some of the belief
tracking overhead. Lastly, generating the whole solution space may not actually
be necessary for summarizing domains: It may be possible to generate summary
trees directly by using the distance metric during search. These represent clear and
important directions for future work.

The belief model has interesting implications for goal recognition, which is often
used in areas such as robotics and intelligence analysis. Goal recognition can be
viewed as planning in reverse: Given a sequence of observed events, infer parts
of the full initial state that are not observable (i.e. the agents’ beliefs and goals).
Existing techniques tend to make assumptions such as full observability and agent
rationality; but by incorporating this belief model, agent behavior can be explained
without making these assumptions. There are also potential applications for this in
interactive narrative systems, such as audience modeling, i.e. estimating what readers
are inferring about the beliefs and intentions of characters and even the author. We
have proposed a basic technique for belief and goal recognition which can be improved
upon (Farrell and Ware, 2020). Here too, a salience model may be useful; for example,
salience could identify which plans or goals the inferrer is most likely to expect, given
multiple plausible explanations.

63

Character believability is an important challenge for narrative planning systems,
which seek to generate plots without violating audience expectations of reasonable
character behavior. This work addresses one significant believability problem—that
without an underlying model of character belief, the plans that justify characters’
behavior may rely on information that characters should not have access to, according
to the audience. Modeling belief removes many offending stories from the solution
space, but much can be done to further improve believability. Better character
models, e.g. models of personality and emotion, can give authors more control
over individual characters’ behavior, making it easier to build domains that produce
the kinds of stories they expect. Reasoning about plan preferences may help avoid
characters doing things that are inefficient or otherwise less believable due to the
existence of a better alternative. The challenge here is to invalidate just the plans
that cause believability problems; not all plans that are inefficient would necessarily
do so. Finally, modeling uncertainty in some form could enable new kinds of character
interactions; e.g. characters exploring or taking actions for the purpose of learning
information. Audiences likely expect characters to be able to take such actions, and
not doing so may come across as unbelievable. Although a full model of uncertainty
may be intractable in this context, limited models could be developed that enable
some of these interactions. Perhaps belief and goal recognition could also be used
here, allowing characters to make inferences about others’ beliefs and goals rather
than fully knowing them.

The story similarity work is broadly applicable beyond the specific application that
is the focus of this document. The distance metric stands to improve measurements
of solution diversity, which are often used to evaluate narrative planning models and
features. It may also be useful in experience management, where different possible
trajectories through an ongoing story are compared and evaluated. Previous studies
have demonstrated that salience can be used in player modeling; e.g. to represent
player agency, expectations, and preferences. Those studies used much simpler models
of pairwise event salience, but could be extended to account for entire sequences of
events using the richer model presented here. Salience may also be useful toward
measuring story quality or related aspects, such as coherence; as well as for identifying
interesting or unique stories, since cluster outliers often represent stories with unique
properties.

There are clear opportunities for improving the story similarity model. First, the
space and time dimensions could be represented hierarchically which may outperform
the present model when tested in domains that feature nested locations and time
frames—e.g. rooms within buildings, varying time of day for multiple days, etc. The
metric performed best when the time index was weighted low, which makes sense
given that the time dimension was relatively unimportant in the domain, but more
work needs to be done to determine whether or not this representation of time as
a discrete parameter of an event is effective. A possible alternative might be to
simply designate certain events as segmenting time, e.g. “night falls”, rather than
requiring all events to carry explicit time frame parameters. Intentionality could also
be modeled more accurately. Currently we use an explanation that is mostly arbitrary
(the first one found); it is a reasonable explanation, but it is not guaranteed to be

64

the only one, nor the most reasonable one. This could be improved in a number of
ways, e.g. by checking exhaustively to find all valid explanations, or by modeling
commitment to specific plans, or by inferring which explanation the audience is most
likely to attribute to the action (e.g. goal recognition).

There may also be a more effective way of modeling causality, which is different
from the other four indices because it does not pertain to a set of story entities
that are either involved in an event or not. Causality makes previous events become
salient again, and we already have a model of what happens when an event becomes
salient: the entities involved in it become salient. Perhaps causality would be better
represented not as its own dimension, but as another means by which entities in
the other four dimensions can become salient. That is, when an event occurs, the
entities involved in that event and those involved in the event’s causal ancestors
become salient. An early test of this idea showed promising results, but it was not
fully explored and there are several unanswered questions, including how salient those
entities should become (as salient as the entities involved in the current event, or less
so?) and how this should be determined: Should salience be weighed by the recency
of the ancestor event, by the number of steps in the causal ancestry, or some other
way?

In this document I propose two methods of summarizing solution spaces using the
salience distance metric, but these are only a starting point. They would benefit from
a better labeling algorithm that does not appear to misclassify some clusters. One way
to do this might be to look for pairs of features, rather than an individual feature, that
together make a good descriptive label, although this still does not guarantee that
a good label will always exist. There are many other ways domain authoring could
be made easier. It would be interesting to build an interactive domain exploration
tool that summarizes the solution space incrementally as the user chooses events,
somewhat like a choice-based adventure game. Features like identifying common
mistakes and pointing them out would also be helpful. Ideally there would also be a
standard domain library, or some set of basic actions that authors could easily start
from, building more specific domain content on top of this for their own purposes.
The problem with this is that new narrative planning models continue to be built
that require new types of input, so a standard library may still be far off in the future.

The contributions of this work are critical if narrative planning solution spaces
are to be used by humans to create interactive stories. Authors cannot rely on
narrative planning systems to produce high quality solution spaces unless they can
both write domains and evaluate solution spaces effectively. Techniques that address
important hindrances to character believability, like the belief model presented here,
allow domains to be written more intuitively; but in doing so, they further complicate
solution spaces and make the planner’s output even harder to predict. It is therefore
important to develop domain authoring tools that can provide adequate feedback, so
as to facilitate ongoing research that may otherwise be stymied by these difficulties.
This work represents a significant step toward a model of interactive story generation
that is usable, and still retains the powerful authorial control inherent in the narrative
planning paradigm.

65

Appendices

Appendix A: Accuracy for 18 Salience Distance Variations

(a) Using the 37 questions humans agreed on

(b) Using all questions

Figure 4.1: Accuracy results for 18 variations of Salience Distance

66

Appendix B: Best Performing Weights

Protagonist Time Space Intentionality Causality

0.0 0.0 0.1 0.3 0.6
0.0 0.0 0.1 0.4 0.5
0.0 0.0 0.1 0.5 0.4
0.0 0.0 0.1 0.6 0.3
0.0 0.0 0.2 0.3 0.5
0.0 0.0 0.2 0.4 0.4
0.0 0.1 0.2 0.4 0.3
0.0 0.1 0.2 0.5 0.2
0.0 0.1 0.3 0.4 0.2
0.0 0.1 0.3 0.5 0.1
0.0 0.1 0.3 0.6 0.0
0.0 0.1 0.4 0.5 0.0
0.1 0.0 0.1 0.2 0.6
0.1 0.0 0.1 0.3 0.5
0.1 0.0 0.1 0.4 0.4
0.1 0.0 0.1 0.5 0.3
0.1 0.0 0.2 0.2 0.5
0.1 0.0 0.2 0.3 0.4
0.1 0.1 0.2 0.3 0.3
0.1 0.1 0.2 0.4 0.2
0.1 0.1 0.2 0.5 0.1
0.1 0.1 0.2 0.6 0.0
0.1 0.1 0.3 0.4 0.1
0.1 0.1 0.3 0.5 0.0
0.2 0.0 0.1 0.2 0.5
0.2 0.0 0.1 0.3 0.4
0.2 0.0 0.1 0.4 0.3
0.2 0.0 0.2 0.2 0.4
0.2 0.1 0.2 0.3 0.2
0.2 0.1 0.2 0.4 0.1
0.2 0.1 0.2 0.5 0.0
0.2 0.1 0.3 0.4 0.0
0.3 0.0 0.1 0.2 0.4
0.3 0.0 0.1 0.3 0.3
0.3 0.1 0.2 0.4 0.0
0.3 0.1 0.3 0.3 0.0
0.4 0.0 0.1 0.2 0.3
0.4 0.1 0.2 0.3 0.0
0.4 0.1 0.3 0.2 0.0
0.5 0.1 0.2 0.2 0.0

Table 4.1: Weights scoring 37 on the first analysis

67

Protagonist Time Space Intentionality Causality

0.5 0.0 0.1 0.0 0.4
0.6 0.0 0.1 0.0 0.3

Table 4.2: Weights scoring 411 on the second analysis (both scored 36 on the first)

68

Appendix C: Stories used for Domain Authoring Study

Q1 The Bandit robs the Potion from the Merchant.
The Merchant robs the Bandit’s sword from the Bandit.
Tom walks to the Market.
The Merchant attacks and kills Tom.

Q2 The Bandit buys the Merchant’s sword from the Merchant using
his coin.
Tom waits for night.
Later that night, the Bandit walks to Tom’s cottage.
The Bandit attacks and kills Tom.

Q3 Tom walks to the Market.
Tom buys the Potion from the Merchant using his coin.
The Bandit buys the Merchant’s sword from the Merchant using
his coin.
The Bandit robs his coin from the Merchant.
Tom walks to his Cottage.

Q4 Tom walks to the Market.
The Merchant attacks the Guard.
Tom takes the Guard’s sword from the Guard.
Tom robs the Potion from the Merchant.
Tom walks to his Cottage.

Q5 Tom walks to the Market.
Tom buys the Potion from the Merchant using his coin.
The Bandit robs the Merchant’s sword from the Merchant.
The Guard arrests the Bandit.
Tom walks to his Cottage.

Q6 Tom walks to the Market.
The Bandit attacks and kills the Merchant.
The Guard arrests the Bandit.
Tom takes the Potion from the Merchant.
The Guard arrests Tom.

Q7 Tom walks to the Market.
The Guard arrests the Bandit.
Tom takes the Bandit’s sword from the Bandit.
Tom robs the Potion from the Merchant.
Tom walks to his Cottage.

69

Q8 Tom waits for night.
Later that night, Tom walks to the Mansion. ¡— Mansion
Tom takes the Merchant’s sword from the Merchant.
Tom robs the Potion from the Merchant.
Tom walks to his Cottage.

Q9 The Guard walks to Tom’s Cottage.
The Merchant robs the Bandit’s coin from the Bandit.
The Merchant walks to Tom’s Cottage.
The Guard arrests the Merchant.
Tom takes the Potion from the Merchant.

Q10 The Bandit robs the Potion from the Merchant.
Tom waits for night.
Later that night, the Bandit walks to Tom’s Cottage.
The Bandit attacks and kills Tom.

Q11 The Bandit walks to Tom’s Cottage.
The Bandit attacks and kills Tom.

Q12 The Bandit buys the Merchant’s sword from the Merchant using
his coin.
Tom walks to the Market.
The Bandit robs the Bandit’s coin from the Merchant.
The Bandit attacks and kills Tom.

Q13 Tom walks to the Market.
Tom buys the Potion from the Merchant using his coin.
The Bandit attacks and kills the Merchant.
Tom walks to his Cottage.

Q14 Tom walks to the Market.
The Guard arrests the Bandit.
Tom takes the Bandit’s coin from the Bandit.
Tom buys the Potion from the Merchant using the Bandit’s coin.
Tom walks to his Cottage.

Appendix D: Qualitative Survey

Inverted questions are marked (-).

1. The questions were easy to answer.

2. The questions asked me about stories I had not already considered. (-)

3. I have seen an example of every type of story that is possible in my story world.

4. I could tell which story world options had greater impact on what was possible
in the story world.

70

5. It was easy to notice when changing a story world option eliminated stories or
introduced new ones.

6. The tool was helpful for answering the questions.

7. It was hard to find specific stories I was looking for. (-)

71

Bibliography

Adam Amos-Binks, David L Roberts, and R Michael Young. Summarizing and
comparing story plans. In Proceedings of the 7th Workshop on Computational
Models of Narrative (CMN), 2016.

Adam Amos-Binks, Colin Potts, and R. Michael Young. Planning graphs for
efficient generation of desirable narrative trajectories. In Proceedings of the 13th
AAAI International Conference on Artificial Intelligence and Interactive Digital
Entertainment (AIIDE), volume 13, 2017.

Byung-Chull Bae and R. Michael Young. A use of flashback and foreshadowing for
surprise arousal in narrative using a plan-based approach. In Joint International
Conference on Interactive Digital Storytelling, pages 156–167, 2008.

Rens Bod, Bernhard Fisseni, Aadil Kurji, and Benedikt Löwe. Objectivity and
reproducibility of proppian annotations. In Proceedings of the 3rd Workshop on
Computational Models of Narrative (CMN), pages 15–19, 2012.

Thomas Bolander and Mikkel Birkegaard Andersen. Epistemic planning for single-and
multi-agent systems. Journal of Applied Non-Classical Logics, 21(1):9–34, 2011.

Hans ten Brinke, Jeroen Linssen, and Mariët Theune. Hide and Sneak: story
generation with characters that perceive and assume. In Proceedings of the
2014 International Conference on Artificial Intelligence and Interactive Digital
Entertainment (AIIDE), pages 174–180, 2014.

Rogelio Cardona-Rivera and Robert Young. A knowledge representation that models
memory in narrative comprehension. In Proceedings of the 28th AAAI Conference
on Artificial Intelligence, volume 28, 2014.

Rogelio E. Cardona-Rivera, Bradley A. Cassell, Stephen G. Ware, and R. Michael
Young. Indexter: a computational model of the event-indexing situation model for
characterizing narratives. In Proceedings of the 3rd Workshop on Computational
Models of Narrative (CMN), pages 34–43, 2012.

Rogelio E. Cardona-Rivera, Justus Robertson, Stephen G. Ware, Brent Harrison,
David L. Roberts, and R. Michael Young. Foreseeing meaningful choices. In
Proceedings of the 10th AAAI International Conference on Artificial Intelligence
and Interactive Digital Entertainment (AIIDE), pages 9–15, 2014.

Marc Cavazza, Fred Charles, and Steven J. Mead. Character-based interactive
storytelling. IEEE Intelligent Systems Special Issue on AI in Interactive
Entertainment, 17(4):17–24, 2002.

72

Yun-Gyung Cheong and R. Michael Young. Suspenser: a story generation system
for suspense. IEEE Transactions on Computational Intelligence and Artificial
Intelligence in Games (TCIAIG), 7(1):39–52, 2015.

David Christian and R. Michael Young. Strategic deception in agents. In Proceedings
of the 2004 International Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS), pages 218–226, 2004.

Fiorella De Rosis, Valeria Carofiglio, Giuseppe Grassano, and Cristiano Castelfranchi.
Can computers deliberately deceive? a simulation tool and its application to
Turing’s imitation game. Computational Intelligence, 19(3):235–263, 2003.

Natalie Dehn. Story generation after TALE-SPIN. In Proceedings of the 7th
International Joint Conference on Artificial Intelligence (IJCAI), volume 81, pages
16–18, 1981.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of deep bidirectional transformers for language understanding.
In Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies,
volume 1, pages 4171–4186. Association for Computational Linguistics, 2019.

Markus Eger. Murder mysteries: the white whale of narrative generation? In
Proceedings of the AAAI International Conference on Artificial Intelligence and
Interactive Digital Entertainment (AIIDE), pages 210–216, 2020.

John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C North, and Gordon
Woodhull. Graphviz– open source graph drawing tools. In International Symposium
on Graph Drawing, pages 483–484, 2001.

Rachelyn Farrell and Stephen G. Ware. Causal link semantics for narrative planning
using numeric fluents. In Proceedings of the 13th AAAI international conference on
Artificial Intelligence and Interactive Digital Entertainment, pages 193–199, 2017.

Rachelyn Farrell and Stephen Ware. Narrative planning for belief and intention
recognition. In Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, volume 16, pages 52–58, 2020.

Rachelyn Farrell, Stephen G. Ware, and Lewis J. Baker. Manipulating narrative
salience in interactive stories using indexter’s pairwise event salience hypothesis.
IEEE Transactions on Games, 12(1):74–85, 2020.

Mark A. Finlayson. ProppLearner: deeply annotating a corpus of russian folktales
to enable the machine learning of a russian formalist theory. Digital Scholarship in
the Humanities, 32(2):284–300, 2017.

Bernhard Fisseni and Benedikt Löwe. Which dimensions of narrative are relevant for
human judgments of story equivalence? In Proceedings of the 3rd Workshop on
Computational Models of Narrative (CMN), 2012.

73

Uta Frith and Chris Frith. The biological basis of social interaction. Current
Directions in Psychological Science, 10(5):151–155, 2001.

Michael Georgeff, Barney Pell, Martha Pollack, Milind Tambe, and Michael
Wooldridge. The belief-desire-intention model of agency. In International workshop
on agent theories, architectures, and languages, pages 1–10, 1998.

Richard J Gerrig. Experiencing narrative worlds: On the psychological activities of
reading. Yale University Press, 1993.

Barbara Grosz and Sarit Kraus. Collaborative plans for complex group action.
Artificial Intelligence, 86(2):269–357, 1996.

Malte Helmert. The fast downward planning system. Journal of Artificial Intelligence
Research, 26:191–246, 2006.

Jörg Hoffmann and Bernhard Nebel. The ff planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence Research, 14:253–302,
2001.

Jörg Hoffmann. The Metric-FF planning system: translating “ignoring delete lists”
to numeric state variables. Journal of Artificial Intelligence Research, 20:291–341,
2003.

Glena H Iten, Sharon T Steinemann, and Klaus Opwis. Choosing to help monsters:
A mixed-method examination of meaningful choices in narrative-rich games and
interactive narratives. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, pages 1–13, 2018.

Philip Nicholas Johnson-Laird. Mental models: Towards a cognitive science of
language, inference, and consciousness. Number 6. Harvard University Press, 1983.

Christopher Kives, Stephen G. Ware, and Lewis J. Baker. Evaluating the
pairwise event salience hypothesis in Indexter. In Proceedings of the 11th
AAAI International Conference on Artificial Intelligence and Interactive Digital
Entertainment, pages 30–36, 2015.

Justin Kruger and David Dunning. Unskilled and unaware of it: how difficulties in
recognizing one’s own incompetence lead to inflated self-assessments. Journal of
personality and social psychology, 77(6):1121, 1999.

Ben Kybartas and Rafael Bidarra. A survey on story generation techniques
for authoring computational narratives. IEEE Transactions on Computational
Intelligence and Artificial Intelligence in Games (TCIAIG), 2016.

Elektra Kypridemou and Loizos Michael. Narrative similarity as common summary.
In Proceedings of the 4th Workshop on Computational Models of Narrative (CMN),
2013.

74

Michael Lebowitz. Story telling as planning and learning. Poetics, 14(6):483–502,
1985.

Wendy G. Lehnert. Plot units and narrative summarization. Cognitive Science,
5(4):293–331, 1981.

Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. In Soviet physics doklady, volume 10, pages 707–710, 1966.

Boyang Li, Stephen Lee-Urban, George Johnston, and Mark Riedl. Story generation
with crowdsourced plot graphs. In Proceedings of the 2013 International
Conference of the Association for the Advancement of Artificial Intelligence
(AAAI), volume 27, 2013.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In
Text summarization branches out, pages 74–81. Association for Computational
Linguistics, 2004.

Benedikt Löwe. Methodological remarks about comparing formal frameworks for
narratives. In Proceedings of the 3rd Workshop in the Philosophy of Information,
2011.

Joseph P Magliano, Jason Miller, and Rolf A Zwaan. Indexing space and time in film
understanding. Applied Cognitive Psychology: The Official Journal of the Society
for Applied Research in Memory and Cognition, 15(5):533–545, 2001.

Lara J. Martin, Prithviraj Ammanabrolu, Xinyu Wang, William Hancock, Shruti
Singh, Brent Harrison, and Mark O. Riedl. Event representations for automated
story generation with deep neural nets. In Proceedings of the 32nd International
Conference of the Association for the Advancement of Artificial Intellignece, pages
868–875, 2018.

Neil McIntyre and Mirella Lapata. Learning to tell tales: A data-driven approach to
story generation. In Proceedings of the Joint Conference of the 47th Annual Meeting
of the ACL and the 4th International Joint Conference on Natural Language
Processing of the AFNLP, pages 217–225, 2009.

James R. Meehan. TALE-SPIN, an interactive program that writes stories. In
Proceedings of the 5th International Joint Conference on Artificial Intelligence
(IJCAI), pages 91–98, 1977.

Henry Mohr, Markus Eger, and Chris Martens. Eliminating the impossible: a
procedurally generated murder mystery. In Proceedings of the Workshop on
Experimental Artificial Intelligence in Games, 2018.

Janet H Murray. Hamlet on the holodeck: The future of narrative in cyberspace. 1997.

Darren Newtson. Attribution and the unit of perception of ongoing behavior. Journal
of Personality and Social Psychology, 28(1):28, 1973.

75

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: A method
for automatic evaluation of machine translation. In Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics, pages 311–318. Association
for Computational Linguistics, 2002.

Edwin PD Pednault. Adl: exploring the middle ground between strips and the
situation calculus. In Proceedings of the 1st International Conference on Principles
of Knowledge Representation and Reasoning, pages 324–332, 1989.

J. Scott Penberthy and Daniel S. Weld. UCPOP: a sound, complete, partial order
planner for ADL. In Proceedings of the 3rd International Conference on Principles
of Knowledge Representation and Reasoning, volume 92, pages 103–114, 1992.

Martha E. Pollack. A model of plan inference that distinguishes between the beliefs
of actors and observers. pages 207–214, 1986.

Julie Porteous, Marc Cavazza, and Fred Charles. Applying planning to interactive
storytelling: Narrative control using state constraints. ACM Transactions on
Intelligent Systems and Technology, 1(2):1–21, 2010.

Gabriel A Radvansky and Jeffrey M Zacks. Event perception. Wiley Interdisciplinary
Reviews: Cognitive Science, 2(6):608–620, 2011.

Nils Reiter. Discovering Structural Similarities in Narrative Texts using Event
Alignment Algorithms. PhD thesis, 2014.

Mark O. Riedl and Vadim Bulitko. Interactive narrative: an intelligent systems
approach. AI Magazine, 34(1):67–77, 2013.

Mark O. Riedl and R. Michael Young. Narrative planning: balancing plot and
character. Journal of Artificial Intelligence Research (JAIR), 39(1):217–268, 2010.

Justus Robertson and R. Michael Young. Interactive narrative intervention alibis
through domain revision. In Proceedings of the Workshop on Intelligent Narrative
Technologies, 2015.

James Owen Ryan, Adam Summerville, Michael Mateas, and Noah Wardrip-Fruin.
Toward characters who observe, tell, misremember, and lie. 2015.

Marie-Laure Ryan. Space. The living handbook of narratology. Hamburg University,
2012.

Rushit Sanghrajka, R Michael Young, and Brandon Thorne. Headspace:
Incorporating action failure and character beliefs into narrative planning. In
Proceedings of the AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, volume 18, pages 171–178, 2022.

Alireza Shirvani and Stephen G. Ware. A plan-based personality model for story
characters. In Proceedings of the 15th AAAI international conference on Artificial
Intelligence and Interactive Digital Entertainment, pages 188–194, 2019.

76

Alireza Shirvani and Stephen G. Ware. A formalization of emotional planning for
strong-story systems. In Proceedings of the 16th AAAI international conference on
Artificial Intelligence and Interactive Digital Entertainment, pages 116–122, 2020.

Alireza Shirvani, Stephen G. Ware, and Rachelyn Farrell. A possible worlds
model of belief for state-space narrative planning. In Proceedings of the 13th
AAAI International Conference on Artificial Intelligence and Interactive Digital
Entertainment (AIIDE), pages 101–107, 2017.

Alireza Shirvani, Rachelyn Farrell, and Stephen G. Ware. Combining intentionality
and belief: Revisiting believable character plans. In Proceedings of the 14th
AAAI International Conference on Artificial Intelligence and Interactive Digital
Entertainment (AIIDE), pages 222–228, 2018.

Mei Si and Stacy C. Marsella. Encoding theory of mind in character design for
pedagogical interactive narrative. Advances in Human-Computer Interaction, 2014,
2014.

Biplav Srivastava, Tuan Anh Nguyen, Alfonso Gerevini, Subbarao Kambhampati,
Minh Binh Do, and Ivan Serina. Domain independent approaches for finding diverse
plans. In Proceedings of the 2007 International Joint Conference on Artificial
Intelligence (IJCAI), pages 2016–2022, 2007.

Jonathan Teutenberg and Julie Porteous. Efficient intent-based narrative generation
using multiple planning agents. In Proceedings of the 2013 International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), pages 603–610, 2013.

Sylvie Thiébaux, Jörg Hoffmann, and Bernhard Nebel. In defense of PDDL axioms.
Artificial Intelligence, 168(1-2):38–69, 2005.

Zach Tomaszewski. On the use of reincorporation in interactive drama. In Proceedings
of the 2011 International Conference on Artificial Intelligence and Interactive
Digital Entertainment (AIIDE), volume 7, 2011.

Tom Trabasso and Linda L Sperry. Causal relatedness and importance of story events.
Journal of Memory and Language, 24(5):595–611, 1985.

Teun Adrianus Van Dijk, Walter Kintsch, et al. Strategies of discourse comprehension.
1983.

Joe H. Jr. Ward. Hierarchical grouping to optimize an objective function. Journal of
the American Statistical Association, 58(301):236–244, 1963.

Noah Wardrip-Fruin, Michael Mateas, Steven Dow, and Serdar Sali. Agency
reconsidered. In Proceedings of the 2009 Digital Games Research Association
Conference, 2009.

Stephen G. Ware and Rachelyn Farrell. Salience as a narrative planning step cost
function. In Proceedings of the IEEE Conference on Games, 2022. (forthcoming).

77

Stephen G. Ware and Cory Siler. Sabre: A narrative planner supporting intention
and deep theory of mind. In Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, pages 99–106, 2021.

Stephen G. Ware and R. Michael Young. CPOCL: a narrative planner supporting
conflict. In Proceedings of the 7th AAAI International Conference on Artificial
Intelligence and Interactive Digital Entertainment (AIIDE), pages 97–102, 2011.

Stephen G. Ware and R. Michael Young. Glaive: a state-space narrative
planner supporting intentionality and conflict. In Proceedings of the 10th
AAAI International Conference on Artificial Intelligence and Interactive Digital
Entertainment (AIIDE), pages 80–86, 2014.

Stephen G. Ware, R. Michael Young, Brent Harrison, and David L. Roberts. A
computational model of plan-based narrative conflict at the fabula level. IEEE
Transactions on Computational Intelligence and Artificial Intelligence in Games
(TCIAIG), 6(3):271–288, 2014.

Stephen G. Ware, Edward Garcia, Mira Fisher, Alireza Shirvani, and Rachelyn
Farrell. Multi-agent narrative experience management as story graph pruning.
IEEE Transactions on Games, 2022. (forthcoming).

Daniel S. Weld. An introduction to least commitment planning. AI magazine,
15(4):27–61, 1994.

Lili Yao, Nanyun Peng, Ralph Weischedel, Kevin Knight, Dongyan Zhao, and Rui
Yan. Plan-and-Write: towards better automatic storytelling. In Proceedings of the
33rd International Conference of the Association for the Advancement of Artificial
Intellignece (AAAI), pages 7378–7385, 2019.

R. Michael Young, Stephen G. Ware, Bradly A. Cassell, and Justus Robertson.
Plans and planning in narrative generation: a review of plan-based approaches
to the generation of story, discourse and interactivity in narratives. Sprache und
Datenverarbeitung Special Issue on Formal and Computational Models of Narrative,
37(1-2):41–64, 2013.

R. Michael Young. Notes on the use of plan structures in the creation of interactive
plot. In Proceedings of the AAAI Fall Symposium on Narrative Intelligence, pages
164–167, 1999.

Jeffrey M Zacks, Nicole K Speer, and Jeremy R Reynolds. Segmentation in reading
and film comprehension. Journal of Experimental Psychology: General, 138(2):307,
2009.

Hong Bo Zhou and Jun Tao Gao. Automatic method for determining cluster number
based on silhouette coefficient. In Advanced materials research, volume 951, pages
227–230, 2014.

Lisa Zunshine. The Secret Life of Literature. MIT Press, 2022.

78

Rolf A. Zwaan and Gabriel A. Radvansky. Situation models in language
comprehension and memory. Psychological Bulletin, 123(2):162, 1998.

Rolf A Zwaan, Mark C Langston, and Arthur C Graesser. The construction
of situation models in narrative comprehension: An event-indexing model.
Psychological Science, 6(5):292–297, 1995.

79

Vita

Rachelyn Farrell (Rachel) was born in Durham, North Carolina. She grew up in
Oxford, Mississippi, and earned a Bachelor of Science in Computer Science from
the University of Mississippi in 2012. In 2014, she entered the University of New
Orleans and worked as a Research Assistant in the Greater New Orleans Center for
Information Assurance. In 2015, she joined the Narrative Intelligence Lab, which
began at the University of New Orleans and moved to the University of Kentucky in
2019. Rachel earned a Master of Science in Computer Science from the University of
New Orleans in 2017.

80

	Don't Give Me That Story! -- A Human-Centered Framework for Usable Narrative Planning
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Belief Model
	2.1 Related Work
	2.2 Blackbeard Domain
	2.3 Problem Definition
	2.4 Search
	2.5 Evaluations
	2.6 Limitations

	3 Summarizing Solution Spaces
	3.1 Related Work
	3.2 Grammalot Domain
	3.3 Salience Vectors
	3.4 Salience Distance
	3.5 Distance Metric Evaluation
	3.6 Clustering and Visualization
	3.7 Evaluation of Solution Space Summaries

	4 Conclusion
	Appendices
	Appendix A: Accuracy for 18 Salience Distance Variations
	Appendix B: Best Performing Weights
	Appendix C: Stories used for Domain Authoring Study
	Appendix D: Qualitative Survey

	Bibliography
	Vita

