


















our laboratory has discovered that JNK is required for survival
and proliferation of malignant B-lymphoma cells, suggesting a
dual role for this kinase in solid vs lymphoid cancers,52 which
was shown to depend on the CARD11/Bcl10/Malt1 pathways
with negative regulation by DUSP4.53,54 The diverse roles that
JNK potentially plays in CLL vs epithelial cell tumors may be
contributing to the progrowth function of Par-4 in CLL via p21
suppression.

To determine the effect of Par-4 on CLL growth in vivo, we used
Par-42/2 mice, which were deficient for Par-4 in all tissues. In-
troduction of Par-4 deficiency delayed CLL development in the
Em-Tcl1 mice and also prolonged their survival compared with
Par-41/1Tcl1 mice. Because these are whole-body knockouts
for Par-4, the lack of Par-4 in the microenvironment and other
cell types could also be playing a role in the delayed CLL growth
observed. The Em-Tcl1mice lacking Par-4 had an average lifespan
of about 12 months, which was more than the Par-41/1Tcl1 mice,
although they developed CLL-like disease without indication of
other tumors previously observed in the Par-42/2 animals.10 The
characteristics of CLL in Par-42/2mice were indistinguishable from
Par-4–sufficient mice, demonstrating that Par-4 is not required
for CLL but appears to promote disease growth, when present.
Because CLL cells secrete Par-4, the CLL microenvironment
could be affected by Par-4, which is currently being investigated.

Additionally, we are generating B-cell–specific Par-42/2 mice to
further demonstrate its B-cell–intrinsic role.

For the first time here, we show that constitutive Par-4 expression
in CLL cells is regulated by BCR signaling by using small mol-
ecule inhibitors of upstream kinases activated by BCR as well
as by shRNA-mediated knockdown of Lyn kinase (supplemental
Figure 5) and siRNA targeting of CD79a (Figure 3B). When BCR
signaling is engaged, Src family and Syk protein kinases are
activated, which triggers activation of downstream signaling
networks that include the Ras-MAPK (ERK) pathway and the PI3K
pathway.33 Targeting ERK1/2 in Em-Tcl1 CLL cells resulted in a
decrease in Par-4 expression, further confirming that Par-4 is
regulated by survival signaling in malignant CLL cells. Thus,
high levels of Par-4 coexisted with constitutive ERK activation in
CLL cells, which is once again different from fibroblasts wherein
Par-4 was shown to block ERK2 expression to prevent Ras
transformation and Par-4 itself was inhibited by the Ras-MEK-
ERK pathway.55 PC-3 prostate cancer cells also exhibit ERK1/2
activation despite expressing high levels of Par-4, which appears
to be due to signaling upstream of ERK1/2 in PC-3 cells. PKCa
and epidermal growth factor receptor signaling have both been
found to be responsible for ERK1/2 signaling in PC-3 cells and
could be masking the effect of ERK inhibition by Par-4.56 PKCa
is found to be variably expressed in CLL cells and potentially
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Figure 6. Loss of Par-4 in the Em-Tcl1–transgenic mice delays CLL growth and increases survival. Leukemic status in Par-41/1 and Par-42/2 EmTcl1 mice was measured by
staining of peripheral blood lymphocytes for CD51CD191 cells. Animals died of natural progression of disease or were euthanized due to poor body conditions for humane
reasons. (A) Percentage of CLL cases detected with age of Par-41/1Tcl1 and Par-42/2Tcl1 cohorts over time. P5 .0002 comparing the 2 curves by log-rank test (n5 16, Par-41/1

Em-Tcl1; n5 10, Par-42/2Tcl1). (B) Effect of Par-4 loss on the survival of Em-Tcl1 mice. Survival curve represents a total of 17 Par-41/1 Tcl1 mice and 9 Par-42/2Tcl1 mice. P5 .0472
comparing the 2 curves by log-rank test. (C) Tissues from Par-42/2Tcl1 mice were harvested and expression of Par-4 and Tcl1 proteins was determined by western blot analysis.
Par-4 was detected in the spleen of Par-41/1Tcl1 mouse, but was not present in any of the tissues of the Par-42/2Tcl1 mouse. (D) Spleens from multiple Em-Tcl1 mice and
Par-42/2Tcl1 mice were harvested and total protein was isolated. Immunoblots were probed for Par-4 and p21. Protein expression was normalized to b-actin. LN, lymph node;
Mesen. LN, mesenteric lymph node.
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could not compensate for the inhibition of ERK1/2 signaling on
Par-4 expression,57 suggesting that Par-4 regulation by the Ras-ERK
pathway may be tissue specific.

In summary, our studies demonstrate that constitutive Par-4
expression is regulated by the well-known tonic signaling via

BCR in CLL cells, showing, for the first time, regulation of Par-4
expression by a cell surface receptor and that the constitutively
expressed Par-4 is functional. Furthermore, our studies suggest
that the tumor suppressor Par-4may have a novel progrowth role
in the context of CLL. Because Par-4 enhances the growth of CLL
cells, it may be beneficial to CLL patients to inhibit Par-4. Current

Table 1. Human CLL patient information

Patient no. Age, y Treated CD381 Zap701 IgVH mutation Cytogenetics WBC, 3 109/L

UK hCLL
1 76 No Positive U-CLL Trisomy 12 19.8
2 82 No Negative Negative M-CLL 20.7
3 56 No U-CLL
4 36 No Negative M-CLL 13q deletion 38.3
6 46 No Negative Negative M-CLL 13q deletion 41
7 52 Yes M-CLL 15.2
8 69 No Positive M-CLL Normal 29
9 57 Yes U-CLL 40
10 62 Yes M-CLL 11.7% 17p deleted cells 83.7
11 69 No M-CLL Trisomy 12, 13q deletion 30.2
13 70 No M-CLL 17.4
14 63 No Positive Positive M-CLL Trisomy 12 34.8
15 53 Yes Positive Positive U-CLL 13q deletion 12.1
16 55 Yes M-CLL 6
17 76 Yes M-CLL 36.6
18 80 Yes U-CLL 142
20 57 No U-CLL 7.4
21 78 No M-CLL 45.9
22 74 No Negative Negative M-CLL 11.3
23 77 Yes* Negative Negative M-CLL 11
24 71 No Negative Negative M-CLL 7.7
25 70 No Negative Negative M-CLL 23
26 62 No Negative Positive M-CLL 62.5
27 64 No Negative Positive U-CLL 9.4
28 58 Yes* Negative Positive U-CLL 8.4
29 80 Yes* Positive Positive U-CLL 39.6
30 52 No Negative Positive U-CLL 68.2
31 66 No Negative Negative U-CLL 20.4

OSU hCLL
1 40 M-CLL 13q deletion 88.2
2 59 M-CLL 13q deletion 22.6
3 M-CLL 13q deletion 99.1
4 51 M-CLL Trisomy 12 148.8
5 71 U-CLL 138
6 U-CLL 17p deletion; 13q deletion 152
7 U-CLL 13q deletion; 11q deletion 196.6
8 57 U-CLL 13q deletion; 2.5% trisomy 12 38.2
9 M-CLL 106.9
10 M-CLL 13q deletion 221.3
11 61 M-CLL 78.2
12 68 M-CLL 13q deletion 170.9
13 72 U-CLL Trisomy 12 135.2
14 61 U-CLL 17p deletion; 13q deletion 87
15 55 U-CLL 157.2
16 67 U-CLL Trisomy 12 330.7

Blank cells indicate that relevant information is not available. Total peripheral white blood cell (WBC) counts at the time of collection are indicated. Cytogenetics, CD381, Zap701 are indicated
if known through previous diagnosis or by flow cytometry. CD381 distinction was determined by.30% CD381 cells of leukemic clone.23,58 Patient samples were collected at the University of
Kentucky Markey Cancer Center (UK hCLL) or as indicated at The Ohio State (OSU hCLL) Brown Comprehensive Cancer Center.

*Patient has received previous therapy but not on current treatment.
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therapeutics for CLL target the BCR-signaling pathway, which
may inadvertently reduce Par-4 expression. In future studies,
it would be interesting to see whether combination therapy
involving Par-4 inhibition would bemore effective than inhibition
of BCR signaling alone, especially for patients who develop
resistance to such therapies.
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Figure 7. Primary human CLL cells have high levels of Par-4 protein expression. (A) Immunoblot analysis of activated SFK and Par-4 protein expression levels in primary
human CLL (hCLL) samples compared with the whole peripheral blood lysate of normal donors (WBC). Protein values are normalized to b-actin. (B) Cell lysates of purified B cells
from CLL patients (n 5 4) and from healthy donors (n 5 4) were probed for Par-4. The bar graph represents Par-4 protein values normalized to GAPDH expression. P 5 .022
determined by Student t test. (C) Survival curves of hCLL cells treated with BCR-signaling inhibitors. Assay performed in triplicate. Error bars represent SEM. (D) Primary human
peripheral blood CLL cells (97.7% CD51CD191) were treated with 1 mMdasatinib (left) and 5 mM fostamatinib (right). p-SFK and Syk levels are normalized to their respective total
protein levels. Total Syk, Lyn, and Par-4 protein expression levels are normalized to b-actin.
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